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Abstract. Human brain functional connectivity (FC) networks, estimated based
on resting-state functional magnetic resonance imaging (rs-fMRI), has become a
promising tool for imaging-based brain disease diagnosis. Conventional low-
order FC network (LON) usually characterizes pairwise temporal correlation of
rs-fMRI signals between any pair of brain regions. Meanwhile, high-order FC
network (HON) has provided an alternative brain network modeling strategy,
characterizing more complex interactions among low-order FC sub-networks that
involve multiple brain regions. However, both LON and HON are usually
constructed within a fixed and relatively wide frequency band, which may fail in
capturing (sensitive) frequency-specific FC changes caused by pathological
attacks. To address this issue, we propose a novel “multi-frequency HON
construction” method. Specifically, we construct not only multiple frequency-
specific HONs (intra-spectrum HONs), but also a series of cross-frequency inter‐
action-based HONs (inter-spectrum HONs) based on the low-order FC sub-
networks constructed at different frequency bands. Both types of these HONs,
together with the frequency-specific LONs, are used for the complex network
analysis-based feature extraction, followed by sparse regression-based feature
selection and the classification between mild cognitive impairment (MCI) patients
and normal aging subjects using a support vector machine. Compared with the
previous methods, our proposed method achieves the best diagnosis accuracy in
early diagnosis of Alzheimer’s disease.

1 Introduction

As an irreversible, severe degenerative neurological disease, Alzheimer’s disease (AD)
is notorious for progressive perceptive and cognitive deficits. Mild cognitive impairment
(MCI) is known as an intermediate stage between normal aging and AD. Although some
individuals with MCI remain stable over time, more than half of MCI subjects progress
to dementia within ~5 years, at a ratio of about 10–15% per year [1]. Such a high
conversion rate could possibly be reduced if receiving proper treatments in this “early
AD” stage. Thus, early detection of MCI is significantly important and clinically
valuable for delaying AD progression. However, accurate MCI diagnosis based on brain
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imaging is still challenging, since brain anatomical and functional changes at this stage
are considerably subtle [2, 3].

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the
blood oxygenation level-dependent (BOLD) signals as a neurophysiological index of
neural activity, has been successfully applied to identify functional pathological
biomarkers for MCI diagnosis [4]. Functional connectivity (FC), defined as the temporal
correlation of BOLD signals between any pair of brain regions, has been widely applied
to explore brain intrinsic functional architectures, with which a whole-brain FC network
can be constructed; such connectomics information has contributed considerably to
brain disease diagnosis [5, 6]. While promising, the previous mostly-adopted FC
network is a typical low-order network (LON), since it usually characterizes the pairwise
relationship between brain regions by using the temporal synchronization of BOLD
signals. As a result, this type of network can hardly reveal the potentially complex rela‐
tionship and high-level interactions among multiple brain regions, which may be more
sensitive to the subtle MCI-related changes.

One of recent promising technique advances on brain network modeling is called
high-order FC network (HON), which quantifies high-level inter-regional interactions
by using topographical resemblance information between low-order sub-networks [7,
8]. However, both LON and HON are constructed at a fixed and relatively wide
frequency band, which may be insensitive and insufficient to capture the frequency-
specific changes caused by early pathological attacks. Actually, it has been suggested
that the neuronal oscillations at distinct frequency bands have different biophysiological
meanings and may contribute differently to FC [9]. Thus, the frequency-specific FC as
well as the cross-frequency interaction analysis have opened up a new effective way for
exploring basic neuroscience problems on high-level cognitive functions [10], and could
be used for revealing subtle pathological variations in a scenario where the traditional
LON is less effective to detect [11].

In this study, we propose a novel brain connectomics-based disease diagnosis frame‐
work based on frequency-specific HONs from rs-fMRI. Specifically, we construct
multiple frequency-specific HONs and multiple cross-frequency interaction-based
HONs (based on the LONs calculated at each frequency band). The frequency-specific
HONs (namely, intra-spectrum HONs) are constructed based on the topographical
similarity between low-order sub-networks for each sub-frequency band, which char‐
acterize the intra-spectrum high-level interactions. On the other hand, the cross-
frequency interaction-based HONs (namely, inter-spectrum HONs) are constructed by
quantifying cross-frequency-band topographical similarity between low-order sub-
networks derived from different frequency bands. Since different frequency bands carry
different neurobiological functions, such inter-spectrum HONs are able to measure high-
level modulations among brain functional systems. To evaluate the effectiveness of these
new network modeling metrics, we use both types of these HONs, along with frequency-
specific LONs, for classification between MCI patients and normal controls (NC). We
conduct extensive comparisons between our framework and other state-of-the-art
methods in MCI diagnosis. The results show our framework can significantly outperform
comparison methods.
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2 Methods

Our proposed framework consists of the following 6 steps. (1) For each subject, the
regional mean time series of BOLD signals in each ROI are decomposed into multiple
frequency sub-bands. (2) Within each sub-band, one LON is constructed by calculating
Pearson’s correlation between each pair of the frequency-specific regional mean time
series. (3) An intra-spectrum HON is thus estimated based on the topographical simi‐
larity between each pair of the low-order FC sub-networks constructed from the same
frequency sub-band. (4) An inter-spectrum HON is further estimated based on the topo‐
graphical similarity between each pair of the low-order FC sub-networks that are
constructed from two different frequency sub-bands. (5) From each of the constructed
FC networks, the complex network property-related features are extracted using
weighted clustering coefficients for each “node” [12]; among them, the discriminative
features are selected using sparse regression-based feature selection. (6) Support vector
machine (SVM) with a linear kernel is trained on the selected features for MCI classi‐
fication. Figure 1 illustrates the main flowchart of our proposed multi-frequency HONs
construction approach.

Fig. 1. Illustration on how to construct intra-spectrum low-order and high-order FC networks,
as well as inter-spectrum high-order FC networks.

2.1 Multi-frequency High-Order FC Networks

Suppose that 𝐗 ∈ ℝ
P×R denotes regional mean time series with P time points from a

total of R regions-of-interest (ROIs), where each mean time series has been band-pass
filtered at a relatively wide frequency band. A full-spectrum FC is derived by computing
the Pearson’s correlation Cij between the mean time series of the i-th and the j-th ROIs.
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By estimating the FC between each possible pair of ROIs, a FC network can be
constructed as a symmetric matrix 𝐂 = [Cij] ∈ ℝ

R×R. Without loss of generality, we
assume each column of 𝐗 has been de-meaned and also variance-normalized by dividing
by the standard deviation. The FC network can thus be equivalently computed by
𝐂 = 𝐗T𝐗. This defines one LON by simply calculating temporal correlation between
mean time series from any pair of brain ROIs. In addition, this LON is a full-spectrum
FC network (i.e., 0.015–0.15 Hz in this study), which could be incapable to capture the
subtle pathological changes particularly at specific frequency spectrum.

In this study, we address the above issue by the construction of multi-frequency
HONs. By fast Fourier transformation, the mean time series 𝐗 can be decomposed into
frequency-band-specific time series 𝐗k ∈ ℝ

P×R (k = 1, 2, 3 and 4) at four different sub-
bands: SB1 = 0.015–0.0488 Hz, SB2 = 0.0488–0.0825 Hz, SB3 = 0.0825–0.1163 Hz,
SB4 = 0.1163–0.15 Hz (through equal separation of 0.015–0.15 Hz). Within the k-th
sub-band, one LON can be constructed as 𝐂k = (𝐗k)T𝐗k, and thus totally four frequency-
specific LONs can be obtained. Different from full-spectrum analysis, these frequency-
specific LONs (constructed at their respective sub-frequency bands) are able to reveal
those frequency-specific pathological variations.

Alternatively, each frequency-specific LON 𝐂k can also be rewritten as
𝐂k = [𝐜k

1, 𝐜k
1,… , 𝐜k

R
] ∈ ℝ

R×R, where the i-th column 𝐜k
i
 (or the i-th row due to the

symmetry of 𝐂k) delineates the connectivity pattern between the i-th ROI and all other
ROIs and can be regarded as a low-order “sub-network”. Thus, a high-order FC can
further be defined as pair-wise topographical similarity between low-order sub-
networks. Similar to the frequency-specific LONs, the intra-spectrum HON at the k-th
sub-band can be constructed by calculating the high-order FC between every pair of
low-order sub-networks as 𝐇k = (𝐂k)T𝐂k. The difference between the frequency-specific
LONs and the intra-spectrum HON is that the latter characterizes high-level interactions
among brain regions in each frequency sub-band, and totally there are four intra-spec‐
trum HONs.

To comprehensively explore high-level FC, we further construct an inter-spectrum
HON which is calculated based on the correlation of low-order sub-networks defined at
two different sub-bands. Specifically, the inter-spectrum high-order FC between two
different frequency sub-bands, i.e., SBk and SBl, is estimated by computing Pearson’s
correlation between 𝐜k

i
 and 𝐜l

j
 (k, l = 1,… , 4, k ≠ l; i, j = 1,… , R, i ≠ j). With a unified

form, an inter-spectrum HON between two different sub-bands can be constructed by
𝐇kl = (𝐂k)T𝐂l. Such inter-spectrum HON provides a straightforward way to charac‐
terize the high-level cross-frequency modulations among brain regions. For the four sub-
frequency bands, we have totally C2

4 = 6 inter-spectrum HONs.

2.2 Feature Extraction and Classification

For each subject, a total of 14 FC networks are constructed, including (1) four frequency-
specific LONs, (2) four intra-spectrum HONs, and (3) six inter-spectrum HONs. But,
the feature dimensionality will be rather high, if directly using the connectivity strengths
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from these 14 networks as features. An effective alternative is using complex network
properties, extracted by graph theoretic analysis, as high-level features. To this end, we
compute a weighted local clustering coefficient [12, 13] for each node (for reflecting the
efficiency of information transferring in a local range) in each network as a feature, and
then concatenate all these features to form a long feature vector with the length of
14 × R. Since there could be some redundant features which may affect classification,
we conduct feature selection based on sparse regression [14, 15] to derive a subset of
features with best discriminability. Finally, the SVM with a linear kernel is trained on
the selected feature subset for MCI classification.

3 Experiments

3.1 Data

We use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://
adni.loni.usc.edu/) for validation of the proposed multi-frequency HONs in MCI clas‐
sification. Totally, 59 NC subjects and 53 MCI patients (consisting of both early and
late MCIs) are selected from ADNI-2 for our experiments. Subjects from both classes
are age- and gender-matched, and they were all scanned using 3.0T Philips scanners.
The rs-fMRI data are preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) according to the well-accepted pipeline. Specifically, the first three
volumes of each subject are discarded before preprocessing for magnetization equili‐
brium. Then, rigid-body registration is used to correct head motion. The rs-fMRI data
are normalized to Montreal Neurological Institute (MNI) space, and further spatially
smoothed by a Gaussian kernel with full-width-at-half-maximum (FWHM) of
6 × 6×6 mm3. Of note, we do not perform scrubbing to the data with large (i.e., >0.5 mm)
frame-wise displacement. However, the subjects who have more than 2.5 min rs-fMRI
data with large frame-wise displacement are excluded for further analysis. Head motion
parameters and also the mean BOLD time series of white matter and cerebrospinal fluid
are regressed out to further remove artifacts that may interfere with FC estimation.
According to the Automated Anatomical Labeling (AAL) atlas, the rs-fMRI data are
parcellated into 116 ROIs. Regional mean rs-fMRI time series of each ROI is band-pass
filtered between 0.015 and 0.15 Hz.

3.2 Performance Evaluation

The leave-one-out cross-validation (LOOCV) scheme is adopted to evaluate the diag‐
nosis performance of the proposed method. Specifically, in each fold of LOOCV proce‐
dure, an additional inner LOOCV is carried out on the training data to determine the
optimal hyper-parameters for both sparse regression (used for feature selection) and
SVM (used for classification). The classification performance is measured based on
classification accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), and
specificity (SPE). To fairly evaluate the effectiveness of our proposed framework,
extensive experimental comparisons are carried out based on the following 9 methods
(1) LONF: Low-order FC networks constructed using full-spectrum BOLD signals; this
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is the most widely used method. (2) HONF: High-order FC networks constructed based
on the LONF. (3) LONF+HONF: Combination of the full-spectrum low- and high-order
FC networks. (4) LONIA: Intra-spectrum low-order FC networks, which were previously
used mainly for group-level analysis. (5) HONIA: Intra-spectrum high-order FC
networks, newly proposed by us. (6) Inter-spectrum high-order FC networks, newly
proposed. (7) LONIA+HONIA: Combination of the intra-spectrum low- and high-order
FC networks. (8) HONIA+HONIE: Combination of the intra-spectrum and inter-spec‐
trum high-order FC networks. (9) LONIA+HONIA+HONIE: Combination of intra-spec‐
trum low- and high-order FC networks as well as inter-spectrum high-order FC
networks, i.e., our full method.

Table 1 summarizes the classification performance on MCI diagnosis for all of the
9 aforementioned methods. Compared with LONs, HONs achieved better classification
performance in either full-spectrum or multi-spectrum FC analysis. From another aspect,
multiple-spectrum FC analysis outperformed full-spectrum FC analysis for either LONs
or HONs. By exploiting the high-level interactions among brain regions across different
frequency spectrums, the HONIE produced the best performance among all comparison
methods using a single type of the FC networks. On the other hand, integrating different
types of FC networks further improved the classification results. The combination of
LONIA, HONIA and HONIE yielded the best classification performance (i.e., 83.9% in
accuracy). This indicates that all the three types of FC networks, characterizing brain
functional organizations from different aspects, provide complementary information to
each other for MCI diagnosis.

Table 1. Performance comparison of different methods in MCI classification.

Method ACC (%) AUC SEN (%) SPE (%)
LONF 61.6 0.648 56.6 66.1

HONF 65.2 0.658 56.6 72.9

LONF + HONF 67.9 0.698 60.4 74.6

LONIA 70.5 0.746 66.0 74.6

HONIA 73.2 0.747 71.7 74.6

HONIE 75.0 0.757 71.7 78.0

LONIA + HONIA 75.9 0.798 73.6 78.0

HONIA + HONIE 79.5 0.833 77.4 81.4

LONIA + HONIA + HONIE 83.9 0.908 79.3 88.1

3.3 Intra-spectrum and Inter-spectrum HONs

Figure 2 presents the group-averaged HONIA (0.015–0.0488 Hz), HONIA (0.0488–
0.0825 Hz), and HONIE (across two sub-bands) for NC and MCI groups as an example.
The discriminability index [16], calculated as an r2-value for each connection in each
type of the FC network, is also shown. Larger r2-value indicates higher separability of
the feature distribution patterns between two classes. From these results, we can see that
the three HONs identified several different discriminative FC links, indicating that they
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may serve as complementary features for MCI diagnosis. This also offers an additional
evidence for the highest classification performance achieved by the combination of three
types of networks.

Fig. 2. Group-averaged FC networks of HONIA (0.015–0.0488 Hz), HONIA (0.0488–0.0825 Hz),
and HONIE (across two sub-bands) for NC and MCI groups, as well as the separability matrices
between two groups for each type of the networks.

4 Conclusion

In this paper, we have presented a novel framework based on multi-frequency high-order
FC networks for MCI diagnosis. Rather than using the full-spectrum FC, we construct
both intra-spectrum HONs and inter-spectrum HONs to capture those previously
ignored frequency-dependent high-order FC and cross-frequency modulation-related
high-order FC. Both multi-frequency LONs and HONs are jointly used for MCI diag‐
nosis. Experimental results show that different brain networks do provide valuable
complementary information for MCI classification, and our full method achieves the
best performance. This indicates the promise of the proposed brain network modeling
method for brain connectomics-orientated studies.
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