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Preface

The First International Workshop on Connectomics in NeuroImaging (CNI 2017) was
held in Quebec City, Canada, on September 14th, 2017, in conjunction with the 20th
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI).

Connectomics is the study of whole brain maps of connectivity, commonly referred
to as the brain connectome, which focuses on quantifying, visualizing, and under-
standing brain network organization, including its applications in neuroimaging. The
primary academic objective is to bring together computational researchers (computer
scientists, data scientists, and computation neuroscientists) to discuss new advance-
ments in network construction, analysis, and visualization techniques in connectomics
and their use in clinical diagnosis and group comparison studies. The secondary aca-
demic objective to attract neuroscientists and clinicians to show recent methodological
advancements in connectomics, and how they are successfully applied in various
neuroimaging applications. CNI 2017 was held as a single-track workshop, which
included: four keynote speakers (Bharat Biswal, Chris Rorden, Boris Bernhardt, and
Moo Chung), oral paper presentations, poster sessions, and software demonstrations.

The quality of submissions to our workshop was very high. Authors were asked to
submit 8 pages in LNCS format for review. A total of 26 papers were submitted to the
workshop in response to the call for papers. Each of the 26 papers underwent a rigorous
double-blind peer-review process, with each paper being reviewed by at least two
(typically three) reviewers from the Program Committee, which was composed of 31
well-known experts in the field of connectomics. Based on the reviewing scores and
critiques, the best 19 papers were accepted for presentation at the workshop, and
chosen to be included in this Springer LNCS volume. The large variety of connec-
tomics techniques, applied in neuroimaging applications, were well represented at the
CNI 2017 workshop.

We are grateful to the Program Committee for reviewing the submitted papers and
giving constructive comments and critiques, to the authors for submitting high-quality
papers, to the presenters for excellent presentations, and to all the CNI 2017 attendees
who came to Quebec City from all around the world.

September 2017 Guorong Wu
Paul Laurienti

Leonardo Bonilha
Brent Munsell
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Connectome of Autistic Brains, Global Versus
Local Characterization

Saida S. Mohamed1,5(B), Nancy Duong Nguyen1,3, Eiko Yoneki4,
and Alessandro Crimi2

1 African Institute for Mathematical Sciences of Tanzania, Bagamoyo, Tanzania
2 African Institute for Mathematical Sciences of Ghana, Biriwa, Ghana

3 School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
4 Computer Laboratory, University of Cambridge, Cambridge, UK

5 Faculty of Science, Cairo University, Giza, Egypt
saida@sci.cu.edu.eg

Abstract. The underlying neural mechanisms of autism spectrum dis-
orders (ASD) remains unclear. Most of the previous studies based on con-
nectomics to discriminate ASD from typically developing (TD) subjects
focused either on global graph metrics or specific discriminant connec-
tions. In this paper we investigate whether there is a correlation between
local and global features, and whether the characterization that discrim-
inates ASD from TD subjects is primarily given by widespread network
differences, or the difference lies in specific local connections which are
just captured by global metrics. Namely, whether miswiring of brain
connections related to ASD is localized or diffuse. The presented results
suggest that the widespread hypothesis is more likely.

Keywords: ASD ·Connectome ·Tractography ·Autism ·Graph metrics

1 Introduction

A connectome is a mathematical representation of the brain as a network com-
prising a set of nodes and edges that relate them [17]. Nodes represent distinct
homogeneous brain regions generally defined by a brain atlas. Edges represent
connectivity, either functional given by co-activation in time of functional sig-
nal, or structural given by the fibers physically connecting the areas. Some brain
pathologies investigated by using connectomes have been considered either by
their effect in specific local connections or by their impact to the global brain
network. For instance, with Alzheimer’s disease there is an overall disruption
of structural and functional connectivity [13]. Schizophrenia is considered the
“disconnection” disease with several miswirings between brain areas [20]. Stroke
and gliomas are mostly focal lesions and many studies have shown disruptions
in structural and functional connectivity related to the focal damage, though
subsequent changes on the global organization might be present [9].

c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 1–8, 2017.
DOI: 10.1007/978-3-319-67159-8 1



2 S.S. Mohamed et al.

1.1 Connectomes and Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a set of neuro-developmental disorders char-
acterized by impaired social interaction and repetitive behaviors [1]. The under-
lying neural mechanism of ASD remains unclear. Magnetic resonance imaging-
based characterization of ASD has been explored as a complement to the current
behavior-based diagnoses [19]. Several studies have proposed biomarkers for dis-
crimination of ASD subjects. Rudie et al. investigated global metrics obtained
from functional and structural connectomes [16]. The same metrics have also
been used in a support vector machine (SVM) framework to characterize global
changes in the connectome of ASD subjects [7]. A rich-club refers to a close group
of nodes with relatively high degree. Ray et al. used an overall rich-club score
for the connectome to discriminate ASD, attention deficit/hyperactive disorder,
and typically developing (TD) subjects [14]. At the local level, ASD has been
investigated looking for few connections which can be used to discriminate ASD
from TD subjects. Promising results have been found using functional connec-
tomes [19], structural connectomes [12], and effective connectivity graphs [3,10].
Lastly, local areas have been studied by using the same global graph metrics
used in the aforementioned works but applied to specific local network regions
[8], and 10 areas were found statistically different among ASD and TD subject
groups. Nevertheless, given the high number of needed connections to discrim-
inate between the two groups in a case-control setting, the question remains
whether the most representative biomarkers, which allow the discrimination,
are specific local connection differences or ASD is a diffuse global connectome
disconnection pathology such as schizophrenia. In this paper we want to investi-
gate whether there is a correlation between these two aspects, and whether one
is more predominant than the other. To do so, we compute the most common
global metrics and verify if any of them is useful in discriminating ASD from TD
subjects. We then seek for the local connections which are different across those
two groups and whether there is a correlation between the two types of char-
acterization. In the end, we draw some conclusion considering all these results.
The rationale is that if there is statistically significant global metric that dis-
criminate the two groups, there might be a correlation either with single specific
local features or with the ensemble of local features.

1.2 Global Metrics

Global metrics are important tools to analyse the network because they allow
us to represent with few scalar values the topology and efficiency of a network.
Those might represent the segregation, integration, centrality, and resilience of a
network. To be in line with previous works on ASD [7,16], we focus on network
segregation and integration, using only features which are statistically represen-
tative for our dataset.

– Segregation refers to the process of grouping communities such that members
of the same community are more densely connected than members of different
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communities. This is similar to the concept of clustering and community
detection [4].

– Integration refers to the network’s ability to propagate information and the
efficiency of global communication [4].

In our experiments, we tested several metrics of integration and segregation for
weighted graphs in discriminating the two groups with a t-test, and we then
retained those which are statistically significant (p-value < 0.5). Those are one
metric of segregation (Louvain modularity) and one of integration (characteristic
path length) both in their weighted version.

The Louvain modularity method is a community detection method that par-
titions the network using a greedy algorithm that optimizes the modularity [15].
The optimization is performed in two steps. First, the method groups individ-
ual nodes into “small” communities by optimizing modularity locally. Second,
it builds a new network whose nodes are the newly formed communities. These
steps are iterated until a maximum of modularity is attained and a hierarchy of
communities is produced. For weighted graphs, modularity is defined as

Q =
1

2m

∑

ij

[
Aij − kikj

2m

]
δ(ci, cj), (1)

where Aij is the weight of the edge connecting between nodes i and j from the
adjacency matrix A, ki and kj are the sums of weights of the edges connected to
node i and j respectively, m = 1/(2Aij), ci and cj are the communities of nodes
i and j, and δ is a simple delta function.

Weighted characteristic path length measures the integrity of the network and
the ease of information flow within the network. The distance dij is the shortest
path between node i and j. It is quantified by the weighted count of edges in
this shortest path [15]. The characteristic path length is the average of all the
distances between every pair in the network defined as

LW =
1

n(n − 1)

∑

i,j∈n,i �=j

dWij , (2)

where n is the number of nodes.

1.3 Local Connectivity Differences

We define specific connections which can discriminate between 2 groups of net-
works as local connectivity difference. Local connectivity difference can be found
in several ways, as false discovery rate [20], by analyzing the SVM weights trained
to discriminate between ASD and TD [6], or by using network based statistics
(NBS) [20]. NBS is a nonparametric statistical test used to identify connections
within connectivity matrices which are statistically significant different between
two distinct populations [20]. In practice, the NBS checks the family-wise error
rate, where the null hypothesis is tested independently at each of the edges. This
is achieved performing a two-sample t-test at each edge independently using the
values of connectivity. The tests are repeated k times, each time randomly per-
muting members of the two populations.



4 S.S. Mohamed et al.

2 Methods

Our evaluation is carried out with the following steps:

1. For all connectomes of both ASD and TD subjects the aforementioned global
metrics are computed.

2. Those metrics are used as features for an SVM classification task.
3. NBS is performed to identify discriminant local connection.
4. Local and global features are then compared.

Beyond the SVM classification, to extract more meaning from the features
as in [16] a univariate t-test is performed on the single features assessing their
statistical significance independently from the other features. To compare global
and local features, univariate and multivariate regressions are performed between
the statistically significant global metrics and the local connections.

3 Data and Experimental Settings

The experiments have been performed on the San Diego State University cohort
of the ABIDE-II dataset [5]. This cohort was chosen as it was the one with
diffusion tensor imaging (DTI) volumes at sufficient resolution to allow accept-
able quality tractography. One sample was discarded as it produced too noisy
tractography with the used algorithm. The final dataset included 30 ASD and
24 TD subjects matched for age, gender, handedness, and nonverbal intelligence
quotient. For each subject, DTI and T1 have been acquired and co-registered.
Imaging data were acquired on a GE (Milwaukee, WI) 3T MR750 scanner.
T1 data were acquired with repetition time (TR) = 8.108 ms, echo time (TE)
= 3.172 ms, flip angle = 8◦, 172 slices, 1 mm3 resolution. DTI volumes were
obtained with an echo-planar pulse sequence with full head coverage and encoded
for 61 noncollinear diffusion directions with TR = 8,500 ms, TE = 84.9 ms, flip
angle = 90◦, FOV = 240 mm, 128× 128 matrix, 1.88× 1.88× 2mm3 resolution.

3.1 Pre-processing and Connectome Construction

DTI volumes have been pre-processed with eddy current correction and skull
stripping. Linear registration has been applied between the automated anatomic
labeling (AAL) atlas [18] and the T1 reference volume by using linear regis-
tration with 12 degrees of freedom. Tractographies for all subjects have been
generated processing DTI data with a deterministic Euler approach stemming
from 2,000,000 seed-points and stopping when the fractional anisotropy was
smaller than <0.1. Additionally, all the structural connections with fiber lengths
<30 mm were also excluded. To construct the connectome, the graph nodes have
been determined using the 90 regions in the AAL atlas. The edges have been
weighted with the number of tracts connecting two regions.
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3.2 Experimental Settings

All features are computed by using the Brain Connectivity Toolbox1, while the
SVM implementation of Scikit-learn2 was used. Due to the stochastic aspects
of the Louvain modularity, experiments were repeated 100 times, averaging the
results. NBS was used with k = 1000 permutations thresholding the p-value at
α = 0.01. All results are computed in a leave-one-out cross-validation manner.

4 Results and Discussions

Classification performance by using the global metrics jointly and an SVM clas-
sifier can be summarized by the receiver operating characteristic curve (ROC)
shown in Fig. 1(a). It can be seen that the mean of 100 runs is significant with
a mean area under the curve (AUC) of 0.77 in agreement with similar pre-
vious results on another dataset [7]. Performing the SVM classification using
only one feature at time, the AUC was 0.70 (mean) for the Louvain modularity,
and 0.74 for the characteristic path length. It is worthwhile to mention that
the Louvain modularity was producing sometimes relatively high and sometimes
relatively low AUC. Table 1 shows the mean and standard deviation for each
feature for ASD and TD brain matrices, and the resulting p-values indicate the
features where the two classes differ. Those results are in agreement with Rudie
et al. [16]. The difference in structural modularity and characteristic path length
among ASD and TD subjects can reflect a subtle randomization of the network
connectivity as proposed in [15]. Despite using the Louvain modularity and char-
acteristic path length as a representation of segregation and integration can be
reductive, giving their significance with the used dataset we used those features
jointly with local differences looking for correlations. NBS detected 10 symmetric
discriminant structural connections depicted in Fig. 1(b–d), are similar to those
obtained with the same dataset and using SVM in [3], and on another dataset
using also NBS [8]. However, those are slightly different from the functional
connections detected in [19].

Table 1. Mean value and standard deviation of the global metrics for both the ASD
and TD population. The last column gives the one-tail p-values comparing the two.

Feature ASD TD p-value

Mean Std Mean Std

Louvain modularity 0.542 ±0.020 0.532 ±0.021 0.047

Weighted characteristic path length 0.0163 ±0.0016 0.0155 ±0.0010 0.049

It is worthwhile to mention that the detected connections are obtained with
a p-value threshold of 0.01 and with a p-value threshold of 0.05 there are approx-
imately 3 times more connections. Those connections are mostly located at the
1 http://brain-connectivity-toolbox.net.
2 http://scikit-learn.org/.

http://brain-connectivity-toolbox.net
http://scikit-learn.org/
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Fig. 1. (a) Mean ROC and AUC for the classification task with both features obtained
averaging 100 times the ROC with different Louvain modularity computed. (b) axial,
(c) coronal and (d) sagittal view of the statistical different connections between the ASD
and TD subjects. The used abbreviations are MOG = middle occipital gyrus, SOG =
superior occipital gyrus, PoCG = posterior cingulate gyrus, THA = thalamus, SFG =
superior frontal gyrus, INS = insula, PCL = Paracentral lobule, CAU = caudate, PHG
= para hippocampal gyrus, L = left, and R= right.

occipital gyrus on both sides going to the orbitofrontal cortex, thalamus and
caudate left, para-hippocampal gyrus, in agreement with former studies [8,11].
The accuracy of the SVM classification using the 2 global features was 65%
while using the 10 discriminant connection was 61%. This is in line with pre-
vious studies [7], which are also suggesting that accuracy can be increased if
functional rather than structural connectivity is used [19].
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The univariate correlation between the mean Louvain modularity or weighted
characteristic path length and single connections detected by the NBS was not
so strong. In fact, all the computed r2 score were between 0.01 and 0.2, when 0
is no correlation and 1 is perfect correlation. Instead, performing a multivariate
regression between the Louvain modularity or path length and all connectivity
values jointly gave respectively a mean r2 = 0.49 and r2 = 0.48, suggesting
a stronger meaning in using all connections jointly. Moreover, given also the
high number of different connections between the two groups (10 and 31 for the
α = 0.01 and α = 0.05 p-value threshold respectively), and their location spread
across the brain, we conclude that ASD is more characterized by spread mis-
wiring similar to schizophrenia rather than few representative disconnections.
Therefore, we agree with previous hypothesis that a global disruption of con-
nectivity is the basis of ASD, and that changes during development compensate
for the disruption [2], although the experiments should be repeated with larger
sample sizes.

5 Conclusion

In this paper we have shown that the structural connectome of ASD and TD
subjects can be classified by either using the Louvain modularity and charac-
teristic path length or a set of structural connections, giving similar accuracy.
Lastly, given still the high number of connections and their heterogeneous loca-
tion within the brain of structural connection, ASD could be considered as a
widespread miswiring of the brain. Future work comprises the use of functional
connectivity in the analysis, the inclusion of other global metrics beyond segre-
gation and integration, and investigating different settings for classification.
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Abstract. Human brain functional connectivity (FC) networks, estimated based
on resting-state functional magnetic resonance imaging (rs-fMRI), has become a
promising tool for imaging-based brain disease diagnosis. Conventional low-
order FC network (LON) usually characterizes pairwise temporal correlation of
rs-fMRI signals between any pair of brain regions. Meanwhile, high-order FC
network (HON) has provided an alternative brain network modeling strategy,
characterizing more complex interactions among low-order FC sub-networks that
involve multiple brain regions. However, both LON and HON are usually
constructed within a fixed and relatively wide frequency band, which may fail in
capturing (sensitive) frequency-specific FC changes caused by pathological
attacks. To address this issue, we propose a novel “multi-frequency HON
construction” method. Specifically, we construct not only multiple frequency-
specific HONs (intra-spectrum HONs), but also a series of cross-frequency inter‐
action-based HONs (inter-spectrum HONs) based on the low-order FC sub-
networks constructed at different frequency bands. Both types of these HONs,
together with the frequency-specific LONs, are used for the complex network
analysis-based feature extraction, followed by sparse regression-based feature
selection and the classification between mild cognitive impairment (MCI) patients
and normal aging subjects using a support vector machine. Compared with the
previous methods, our proposed method achieves the best diagnosis accuracy in
early diagnosis of Alzheimer’s disease.

1 Introduction

As an irreversible, severe degenerative neurological disease, Alzheimer’s disease (AD)
is notorious for progressive perceptive and cognitive deficits. Mild cognitive impairment
(MCI) is known as an intermediate stage between normal aging and AD. Although some
individuals with MCI remain stable over time, more than half of MCI subjects progress
to dementia within ~5 years, at a ratio of about 10–15% per year [1]. Such a high
conversion rate could possibly be reduced if receiving proper treatments in this “early
AD” stage. Thus, early detection of MCI is significantly important and clinically
valuable for delaying AD progression. However, accurate MCI diagnosis based on brain
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imaging is still challenging, since brain anatomical and functional changes at this stage
are considerably subtle [2, 3].

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the
blood oxygenation level-dependent (BOLD) signals as a neurophysiological index of
neural activity, has been successfully applied to identify functional pathological
biomarkers for MCI diagnosis [4]. Functional connectivity (FC), defined as the temporal
correlation of BOLD signals between any pair of brain regions, has been widely applied
to explore brain intrinsic functional architectures, with which a whole-brain FC network
can be constructed; such connectomics information has contributed considerably to
brain disease diagnosis [5, 6]. While promising, the previous mostly-adopted FC
network is a typical low-order network (LON), since it usually characterizes the pairwise
relationship between brain regions by using the temporal synchronization of BOLD
signals. As a result, this type of network can hardly reveal the potentially complex rela‐
tionship and high-level interactions among multiple brain regions, which may be more
sensitive to the subtle MCI-related changes.

One of recent promising technique advances on brain network modeling is called
high-order FC network (HON), which quantifies high-level inter-regional interactions
by using topographical resemblance information between low-order sub-networks [7,
8]. However, both LON and HON are constructed at a fixed and relatively wide
frequency band, which may be insensitive and insufficient to capture the frequency-
specific changes caused by early pathological attacks. Actually, it has been suggested
that the neuronal oscillations at distinct frequency bands have different biophysiological
meanings and may contribute differently to FC [9]. Thus, the frequency-specific FC as
well as the cross-frequency interaction analysis have opened up a new effective way for
exploring basic neuroscience problems on high-level cognitive functions [10], and could
be used for revealing subtle pathological variations in a scenario where the traditional
LON is less effective to detect [11].

In this study, we propose a novel brain connectomics-based disease diagnosis frame‐
work based on frequency-specific HONs from rs-fMRI. Specifically, we construct
multiple frequency-specific HONs and multiple cross-frequency interaction-based
HONs (based on the LONs calculated at each frequency band). The frequency-specific
HONs (namely, intra-spectrum HONs) are constructed based on the topographical
similarity between low-order sub-networks for each sub-frequency band, which char‐
acterize the intra-spectrum high-level interactions. On the other hand, the cross-
frequency interaction-based HONs (namely, inter-spectrum HONs) are constructed by
quantifying cross-frequency-band topographical similarity between low-order sub-
networks derived from different frequency bands. Since different frequency bands carry
different neurobiological functions, such inter-spectrum HONs are able to measure high-
level modulations among brain functional systems. To evaluate the effectiveness of these
new network modeling metrics, we use both types of these HONs, along with frequency-
specific LONs, for classification between MCI patients and normal controls (NC). We
conduct extensive comparisons between our framework and other state-of-the-art
methods in MCI diagnosis. The results show our framework can significantly outperform
comparison methods.
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2 Methods

Our proposed framework consists of the following 6 steps. (1) For each subject, the
regional mean time series of BOLD signals in each ROI are decomposed into multiple
frequency sub-bands. (2) Within each sub-band, one LON is constructed by calculating
Pearson’s correlation between each pair of the frequency-specific regional mean time
series. (3) An intra-spectrum HON is thus estimated based on the topographical simi‐
larity between each pair of the low-order FC sub-networks constructed from the same
frequency sub-band. (4) An inter-spectrum HON is further estimated based on the topo‐
graphical similarity between each pair of the low-order FC sub-networks that are
constructed from two different frequency sub-bands. (5) From each of the constructed
FC networks, the complex network property-related features are extracted using
weighted clustering coefficients for each “node” [12]; among them, the discriminative
features are selected using sparse regression-based feature selection. (6) Support vector
machine (SVM) with a linear kernel is trained on the selected features for MCI classi‐
fication. Figure 1 illustrates the main flowchart of our proposed multi-frequency HONs
construction approach.

Fig. 1. Illustration on how to construct intra-spectrum low-order and high-order FC networks,
as well as inter-spectrum high-order FC networks.

2.1 Multi-frequency High-Order FC Networks

Suppose that 𝐗 ∈ ℝ
P×R denotes regional mean time series with P time points from a

total of R regions-of-interest (ROIs), where each mean time series has been band-pass
filtered at a relatively wide frequency band. A full-spectrum FC is derived by computing
the Pearson’s correlation Cij between the mean time series of the i-th and the j-th ROIs.
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By estimating the FC between each possible pair of ROIs, a FC network can be
constructed as a symmetric matrix 𝐂 = [Cij] ∈ ℝ

R×R. Without loss of generality, we
assume each column of 𝐗 has been de-meaned and also variance-normalized by dividing
by the standard deviation. The FC network can thus be equivalently computed by
𝐂 = 𝐗T𝐗. This defines one LON by simply calculating temporal correlation between
mean time series from any pair of brain ROIs. In addition, this LON is a full-spectrum
FC network (i.e., 0.015–0.15 Hz in this study), which could be incapable to capture the
subtle pathological changes particularly at specific frequency spectrum.

In this study, we address the above issue by the construction of multi-frequency
HONs. By fast Fourier transformation, the mean time series 𝐗 can be decomposed into
frequency-band-specific time series 𝐗k ∈ ℝ

P×R (k = 1, 2, 3 and 4) at four different sub-
bands: SB1 = 0.015–0.0488 Hz, SB2 = 0.0488–0.0825 Hz, SB3 = 0.0825–0.1163 Hz,
SB4 = 0.1163–0.15 Hz (through equal separation of 0.015–0.15 Hz). Within the k-th
sub-band, one LON can be constructed as 𝐂k = (𝐗k)T𝐗k, and thus totally four frequency-
specific LONs can be obtained. Different from full-spectrum analysis, these frequency-
specific LONs (constructed at their respective sub-frequency bands) are able to reveal
those frequency-specific pathological variations.

Alternatively, each frequency-specific LON 𝐂k can also be rewritten as
𝐂k = [𝐜k

1, 𝐜k
1,… , 𝐜k

R
] ∈ ℝ

R×R, where the i-th column 𝐜k
i
 (or the i-th row due to the

symmetry of 𝐂k) delineates the connectivity pattern between the i-th ROI and all other
ROIs and can be regarded as a low-order “sub-network”. Thus, a high-order FC can
further be defined as pair-wise topographical similarity between low-order sub-
networks. Similar to the frequency-specific LONs, the intra-spectrum HON at the k-th
sub-band can be constructed by calculating the high-order FC between every pair of
low-order sub-networks as 𝐇k = (𝐂k)T𝐂k. The difference between the frequency-specific
LONs and the intra-spectrum HON is that the latter characterizes high-level interactions
among brain regions in each frequency sub-band, and totally there are four intra-spec‐
trum HONs.

To comprehensively explore high-level FC, we further construct an inter-spectrum
HON which is calculated based on the correlation of low-order sub-networks defined at
two different sub-bands. Specifically, the inter-spectrum high-order FC between two
different frequency sub-bands, i.e., SBk and SBl, is estimated by computing Pearson’s
correlation between 𝐜k

i
 and 𝐜l

j
 (k, l = 1,… , 4, k ≠ l; i, j = 1,… , R, i ≠ j). With a unified

form, an inter-spectrum HON between two different sub-bands can be constructed by
𝐇kl = (𝐂k)T𝐂l. Such inter-spectrum HON provides a straightforward way to charac‐
terize the high-level cross-frequency modulations among brain regions. For the four sub-
frequency bands, we have totally C2

4 = 6 inter-spectrum HONs.

2.2 Feature Extraction and Classification

For each subject, a total of 14 FC networks are constructed, including (1) four frequency-
specific LONs, (2) four intra-spectrum HONs, and (3) six inter-spectrum HONs. But,
the feature dimensionality will be rather high, if directly using the connectivity strengths
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from these 14 networks as features. An effective alternative is using complex network
properties, extracted by graph theoretic analysis, as high-level features. To this end, we
compute a weighted local clustering coefficient [12, 13] for each node (for reflecting the
efficiency of information transferring in a local range) in each network as a feature, and
then concatenate all these features to form a long feature vector with the length of
14 × R. Since there could be some redundant features which may affect classification,
we conduct feature selection based on sparse regression [14, 15] to derive a subset of
features with best discriminability. Finally, the SVM with a linear kernel is trained on
the selected feature subset for MCI classification.

3 Experiments

3.1 Data

We use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://
adni.loni.usc.edu/) for validation of the proposed multi-frequency HONs in MCI clas‐
sification. Totally, 59 NC subjects and 53 MCI patients (consisting of both early and
late MCIs) are selected from ADNI-2 for our experiments. Subjects from both classes
are age- and gender-matched, and they were all scanned using 3.0T Philips scanners.
The rs-fMRI data are preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) according to the well-accepted pipeline. Specifically, the first three
volumes of each subject are discarded before preprocessing for magnetization equili‐
brium. Then, rigid-body registration is used to correct head motion. The rs-fMRI data
are normalized to Montreal Neurological Institute (MNI) space, and further spatially
smoothed by a Gaussian kernel with full-width-at-half-maximum (FWHM) of
6 × 6×6 mm3. Of note, we do not perform scrubbing to the data with large (i.e., >0.5 mm)
frame-wise displacement. However, the subjects who have more than 2.5 min rs-fMRI
data with large frame-wise displacement are excluded for further analysis. Head motion
parameters and also the mean BOLD time series of white matter and cerebrospinal fluid
are regressed out to further remove artifacts that may interfere with FC estimation.
According to the Automated Anatomical Labeling (AAL) atlas, the rs-fMRI data are
parcellated into 116 ROIs. Regional mean rs-fMRI time series of each ROI is band-pass
filtered between 0.015 and 0.15 Hz.

3.2 Performance Evaluation

The leave-one-out cross-validation (LOOCV) scheme is adopted to evaluate the diag‐
nosis performance of the proposed method. Specifically, in each fold of LOOCV proce‐
dure, an additional inner LOOCV is carried out on the training data to determine the
optimal hyper-parameters for both sparse regression (used for feature selection) and
SVM (used for classification). The classification performance is measured based on
classification accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), and
specificity (SPE). To fairly evaluate the effectiveness of our proposed framework,
extensive experimental comparisons are carried out based on the following 9 methods
(1) LONF: Low-order FC networks constructed using full-spectrum BOLD signals; this
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is the most widely used method. (2) HONF: High-order FC networks constructed based
on the LONF. (3) LONF+HONF: Combination of the full-spectrum low- and high-order
FC networks. (4) LONIA: Intra-spectrum low-order FC networks, which were previously
used mainly for group-level analysis. (5) HONIA: Intra-spectrum high-order FC
networks, newly proposed by us. (6) Inter-spectrum high-order FC networks, newly
proposed. (7) LONIA+HONIA: Combination of the intra-spectrum low- and high-order
FC networks. (8) HONIA+HONIE: Combination of the intra-spectrum and inter-spec‐
trum high-order FC networks. (9) LONIA+HONIA+HONIE: Combination of intra-spec‐
trum low- and high-order FC networks as well as inter-spectrum high-order FC
networks, i.e., our full method.

Table 1 summarizes the classification performance on MCI diagnosis for all of the
9 aforementioned methods. Compared with LONs, HONs achieved better classification
performance in either full-spectrum or multi-spectrum FC analysis. From another aspect,
multiple-spectrum FC analysis outperformed full-spectrum FC analysis for either LONs
or HONs. By exploiting the high-level interactions among brain regions across different
frequency spectrums, the HONIE produced the best performance among all comparison
methods using a single type of the FC networks. On the other hand, integrating different
types of FC networks further improved the classification results. The combination of
LONIA, HONIA and HONIE yielded the best classification performance (i.e., 83.9% in
accuracy). This indicates that all the three types of FC networks, characterizing brain
functional organizations from different aspects, provide complementary information to
each other for MCI diagnosis.

Table 1. Performance comparison of different methods in MCI classification.

Method ACC (%) AUC SEN (%) SPE (%)
LONF 61.6 0.648 56.6 66.1

HONF 65.2 0.658 56.6 72.9

LONF + HONF 67.9 0.698 60.4 74.6

LONIA 70.5 0.746 66.0 74.6

HONIA 73.2 0.747 71.7 74.6

HONIE 75.0 0.757 71.7 78.0

LONIA + HONIA 75.9 0.798 73.6 78.0

HONIA + HONIE 79.5 0.833 77.4 81.4

LONIA + HONIA + HONIE 83.9 0.908 79.3 88.1

3.3 Intra-spectrum and Inter-spectrum HONs

Figure 2 presents the group-averaged HONIA (0.015–0.0488 Hz), HONIA (0.0488–
0.0825 Hz), and HONIE (across two sub-bands) for NC and MCI groups as an example.
The discriminability index [16], calculated as an r2-value for each connection in each
type of the FC network, is also shown. Larger r2-value indicates higher separability of
the feature distribution patterns between two classes. From these results, we can see that
the three HONs identified several different discriminative FC links, indicating that they
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may serve as complementary features for MCI diagnosis. This also offers an additional
evidence for the highest classification performance achieved by the combination of three
types of networks.

Fig. 2. Group-averaged FC networks of HONIA (0.015–0.0488 Hz), HONIA (0.0488–0.0825 Hz),
and HONIE (across two sub-bands) for NC and MCI groups, as well as the separability matrices
between two groups for each type of the networks.

4 Conclusion

In this paper, we have presented a novel framework based on multi-frequency high-order
FC networks for MCI diagnosis. Rather than using the full-spectrum FC, we construct
both intra-spectrum HONs and inter-spectrum HONs to capture those previously
ignored frequency-dependent high-order FC and cross-frequency modulation-related
high-order FC. Both multi-frequency LONs and HONs are jointly used for MCI diag‐
nosis. Experimental results show that different brain networks do provide valuable
complementary information for MCI classification, and our full method achieves the
best performance. This indicates the promise of the proposed brain network modeling
method for brain connectomics-orientated studies.

Acknowledgements. This work is partially supported by NIH grants (EB006733, EB008374,
EB009634, MH107815, AG041721, and AG042599).

References

1. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., Belleville, S.,
Brodaty, H., Bennett, D., Chertkow, H., Cummings, J.L.: Mild cognitive impairment. Lancet
367(9518), 1262–1270 (2006)

Constructing Multi-frequency High-Order Functional Connectivity Network 15



2. Zhu, X., Suk, H.I., Lee, S.W., Shen, D.: Subspace regularized sparse multitask learning for
multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–
618 (2016)

3. Zhu, X., Suk, H.I., Wang, L., Lee, S.W., Shen, D.: A novel relational regularization feature
selection method for joint regression and classification in AD diagnosis. Med. Image Anal.
38, 205–214 (2017)

4. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking
whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2012)

5. Chen, X., Zhang, H., Lee, S.-W., Shen, D.: Hierarchical high-order functional connectivity
networks and selective feature fusion for MCI classification. Neuroinformatics 1–14 (2017)

6. Wang, J., Wang, Q., Peng, J., Nie, D., Zhao, F., Kim, M., Zhang, H., Wee, C.Y., Wang, S.,
Shen, D.: Multi-task diagnosis for autism spectrum disorders using multi-modality features:
a multi-center study. Hum. Brain Mapp. 38(6), 3081–3097 (2017)

7. Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., Shen, D.:
Topographical information-based high-order functional connectivity and its application in
abnormality detection for mild cognitive impairment. J. Alzheimers Dis. 54(3), 1095–1112
(2016)

8. Zhang, Y., Zhang, H., Chen, X., Lee, S.-W., Shen, D.: Hybrid high-order functional
connectivity networks using resting-state functional MRI for mild cognitive impairment
diagnosis. Scientific Reports (2017)

9. Salvador, R., Martinez, A., Pomarol-Clotet, E., Gomar, J., Vila, F., Sarro, S., Capdevila, A.,
Bullmore, E.: A simple view of the brain through a frequency-specific functional connectivity
measure. NeuroImage 39(1), 279–289 (2008)

10. Tewarie, P., Hillebrand, A., van Dijk, B.W., Stam, C.J., O’Neill, G.C., Van Mieghem, P.,
Meier, J.M., Woolrich, M.W., Morris, P.G., Brookes, M.J.: Integrating cross-frequency and
within band functional networks in resting-state MEG: a multi-layer network approach.
NeuroImage 142, 324–336 (2016)

11. Wee, C.Y., Yap, P.T., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang,
L., Shen, D.: Resting-state multi-spectrum functional connectivity networks for identification
of MCI patients. PLoS ONE 7(5), e37828 (2012)

12. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and
interpretations. NeuroImage 52(3), 1059–1069 (2010)

13. Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.: High-order resting-state functional
connectivity network for MCI classification. Hum. Brain Mapp. 37(9), 3282–3296 (2016)

14. Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki, A.: Aggregation of sparse linear
discriminant analysis for event-related potential classification in brain-computer interface. Int.
J. Neural Syst. 24(1), 1450003 (2014)

15. Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki, A.: Sparse Bayesian classification
of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2256–
2267 (2016)

16. Zhang, Y., Wang, Y., Jin, J., Wang, X.: Sparse Bayesian learning for obtaining sparsity of
EEG frequency bands based feature vectors in motor imagery classification. Int. J. Neural
Syst. 27(2), 1650032 (2017)

16 Y. Zhang et al.



Consciousness Level and Recovery Outcome Prediction
Using High-Order Brain Functional Connectivity Network

Xiuyi Jia1,2, Han Zhang2, Ehsan Adeli2, and Dinggang Shen2(✉)

1 School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, China

2 Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA
dgshen@med.unc.edu

Abstract. Based on the neuroimaging data from a large set of acquired brain
injury patients, we investigate the feasibility of using machine learning for auto‐
matic prediction of individual consciousness level. Rather than using the tradi‐
tional Pearson’s correlation-based brain functional network, which measures only
the simple temporal synchronization of the BOLD signals from each pair of brain
regions, we construct a high-order brain functional network that is capable of
characterizing topographical information-based high-level functional associa‐
tions among brain regions. In such a high-order brain network, each node repre‐
sents the community of a brain region, described by a set of this region’s low-
order functional associations with other brain regions, and each edge characterizes
topographical similarity between a pair of such communities. Experimental
results show that the high-order brain functional network enables a significant
better classification for consciousness level and recovery outcome prediction.

1 Introduction

Studying the relationship between consciousness and brain activity has drawn a lot of
attention in the recent years, especially using resting-state functional MRI (rs-fMRI) to
investigate how brain functional network supports consciousness [1, 2]. The resting-
state brain functional architecture can be characterized by different brain networks
defined by correlated spontaneous brain activity between the regions of interest (ROIs).
However, it is still unclear which key brain regions and their corresponding networks
are essential to consciousness emergence and maintenance [3]. Perri et al. [4] reported
that negative default mode network (DMN) connectivity seemed to be of metabolic
neuronal origin, characterized by patients who have emerged from disorders of
consciousness. Qin et al. [5] investigated three different functional networks to distin‐
guish between conscious and unconscious states, and found that the salience network
connectivity correlated with consciousness, while the DMN connectivity can be used to
predict the recovery of consciousness. Wu et al. [3] summarized that the functional
connectivity strength mainly in the DMN was disrupted with varying degrees of
consciousness loss, and hence this disruption could be a potential biomarker for
consciousness level prediction.
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In these previous works, brain networks were usually constructed first based on the
simple Pearson’s correlation (PC), and then a particular group-level statistical analysis,
such as one-way ANalysis Of VAriance (ANOVA), were applied to investigate if there
exists any significant group differences in the population-averaged brain networks
between different consciousness-level groups. Note that the PC-based network construc‐
tion only captures the pairwise relationships through simple correlation operations. It is
incapable of capturing any higher-order, complex relations between the brain regions,
thus causing difficulty for the subsequent statistical analyses to exploit the consciousness
level. Moreover, the hypothesis-driven analysis, such as in [5], limits our understanding
of the biological substrate of consciousness with respect to the whole-brain complex
network due to simply including a few predefined brain regions while ignoring other
brain regions’ contribution. To address these limitations, we investigate the relevant
machine learning methods for automatic prediction of individual consciousness level
according to the whole-brain complex networks.

For the construction of complex brain networks, some previous research have
utilized certain prior knowledge and network information for building the respective
models. Typical models include sparse representation (SR) [6], joint low-rank and sparse
(SLR) method [7], and weighted sparse group representation method [8]. However,
again in all these models, the networks are constructed by considering only pairwise
interactions between ROIs. The higher order relations between the ROIs (i.e., nodes in
the brain network) were overlooked in most of the previous works. To extract the under‐
lying complex relationships from the network, in this paper, we propose a simple but
effective high-order brain functional connectivity network (BFCN) construction
method. In particular, the high-order BFCN is constructed based on the conventional
low-order BFCN. Each node in the high-order BFCN represents the community of each
ROI described by a set of low-order network values, and the edge between each pair of
the nodes represents the correlation between the two communities. This high-order
BFCN can model complex interactions and relationships among brain regions at a higher
level, without introducing any extra parameters.

We use our proposed high-order BFCN for prediction of individual consciousness
level. Experimental results on using rs-fMRI data for acquired brain injury (ABI) clas‐
sification show that the high-order network enables a successful classification between
the consciousness preserved and unresponsive patients. We also apply our high-order
BFCN to predict whether the unresponsive patients would regain consciousness, from
which we obtain a promising accuracy of 87.18%.

2 Materials

Our dataset comprises 53 patients with ABI but with the fully preserved consciousness
state, and 39 ABI patients with unresponsive wakefulness state (including 26 in vege‐
tative state and 13 in coma). These different groups of patients are categorized as follows
[9]. (1) The preserved consciousness patients were able to communicate and had expe‐
rienced brain injury. (2) The vegetative state patients were characterized by no evidence
of awareness of self or environment and also an inability to interact with others; no
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evidence of sustained, reproducible, purposeful, or voluntary behavioral responses to
visual, auditory, tactile, or noxious stimuli; no evidence of language comprehension or
expression; intermittent wakefulness manifested by the presence of sleep-wake cycles;
sufficiently preserved hypothalamic and brainstem autonomic functions to permit
survival with medical and nursing care; bowel and bladder incontinence; and variably
preserved cranial nerve reflexes and spinal reflexes. (3) The coma patients were char‐
acterized by no arousal/eye-opening, no behavioral signs of awareness, impaired spon‐
taneous breathing, impaired brainstem reflexes, and no vocalizations of more than 1 h.
Both vegetative state and coma patients are categorized as “unresponsive” subjects,
while all other patients belong to another group of “consciousness preserved” subjects.
The rs-fMRI data of these patients were collected from 2010 to 2014 via a Siemens 3.0
T scanner with the following parameters: TR = 2 s, slice number = 33, slice thick‐
ness = 4 mm, matrix size = 64 × 64. The data was preprocessed by using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/) similar to [3]. It is important to note that the T1-weighted
images of these subjects were also acquired and used to guide the registration using
group-wise registration algorithm in SPM8 (DARTEL) for avoiding registration error
due to lesions. The subjects with excessive head motion or large lesions that induced
severe brain distortions were excluded during data screening.

The consciousness levels of the patients were assessed using the Glasgow Coma
Scale (GCS) [10] and the Coma Recovery Scale-Revised (CRS-R) [11] on the day of
the scanning. The recovery outcome was assessed using the Glasgow Outcome Scale
(GOS) [12] at 3 months after scanning. The GOS provides a measurement of outcome,
ranging from 1 to 5. The GOS score of less than 3 was defined as nonawakened, and the
GOS score of larger or equal 3 as awakened [3]. In our 39 subjects (26 in vegetative state
and 13 in coma), 17 of them regained consciousness after 3 months while the remained
22 of them were still nonawakened. We will learn a model with our high-order networks
to predict both consciousness level (53 consciousness preserved vs. 39 unresponsive)
and recovery outcome (17 awakened vs. 22 nonawakened).

3 High-Order BFCN Construction

Low-Order BFCN: In this subsection, we will introduce the basics of low-order BFCN
construction method for brain disorder diagnosis, and then extend the definitions to
capture high-order network characteristics in the next subsection.

Assume each brain is parcellated into N ROIs. Here, each ROI has a mean time series
xi ∈ RK, i = 1, 2, … , N, where K is the number of time points. xi can be represented as
xi =

[
x1i; x2i; … ; xKi

]
. Thus, each subject is represented by a matrix,

X =
[
x1, x2,… , xN

]
∈ RK×N. The BFCN construction is simply defined as finding a

connectivity matrix W ∈ RN×N, which can be formulated as a matrix-regularized network
learning method [7]:

minW f (X, W) + 𝜆R(W) (1)
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where f (X, W) is a data-fitting term, and R(W) is a matrix-regularized term. Using
different f (X, W) or R(W), we can obtain different BFCN construction methods. For
instance, in the Pearson’s correlation (PC) coefficient based BFCN, the connectivity
matrix is calculated by [13]:

minW

N∑

i,j=1

‖‖‖xi − Wijxj

‖‖‖
2
, (2)

Sparse representation (SR) is another popular method to construct BFCN:

minW

⎛
⎜
⎜
⎝

N∑

i=1

‖‖‖‖‖‖
xi −

∑

j≠i

Wijxj

‖‖‖‖‖‖

2

+ 𝜆

N∑

i=1

∑

j≠i

|||Wij

|||

⎞
⎟
⎟
⎠
, (3)

where the regularization term enforces sparsity in the network, since it is known that
BFCN is intrinsically sparse [14]. By importing the modularity prior as the matrix-
regularized term, Qiao et al. [7] also proposed joint sparsity and low rank (SLR) regu‐
larizations in BFCN construction, by using both L1-norm and trace norm of W:

minW

⎛
⎜
⎜
⎝

N∑

i=1

‖‖‖‖‖‖
xi −

∑

j≠i

Wijxj

‖‖‖‖‖‖

2

+ 𝜆1‖W‖1 + 𝜆2‖W‖∗
⎞
⎟
⎟
⎠
. (4)

Note that if we set 𝜆1 = 0, we would have only a low-rank regularization. As can be
seen, all these BFCN construction methods use pairwise relationships between ROIs,
and hence they are low-order network construction techniques.

High-Order BFCN: We propose a high-order BFCN construction method, which can
implicitly capture high-order relationships among ROIs, rather than just the pairwise
relations. Specifically, we propose to capture a second-level relationship built on the
previous lower-order BFCN. As a result, we can additionally capture inter-regional
resemblances in the BFCN. In order to achieve this goal, we can first use any method
for constructing the low-order BFCNs as introduced in the previous subsection. In this
low-order network, for each node (i.e., brain ROI), we have a vector (i.e., rows in the
low-order network matrix) measuring the relations between this node and all other
nodes. Let’s call this vector a node’s community. Then, based on this low-order BFCN,
a second layer of correlations can be computed between any pairs of brain ROIs.
Figure 1 illustrates the computation procedure to build a high-order network, given a
low-order BFCN.

Specifically, assume Wj =
[
W1j,… , Wmj,… , WNj

]
 represent the community of the

node j (corresponding to the ROI xj) described by a set of Wmj,∀m ∈ {1..N}. Here, Wmj

represents the interaction relationship of the node m and the node j. Thus, we can calcu‐
late the Pearson’s correlation coefficients between the node j’s community and any
arbitrary node q’s community as follows:
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Hjq =

(
Wj − Wj

)T(
Wq − Wq

)

√(
Wj − Wj

)T(
Wj − Wj

)√(
Wq − Wq

)T(
Wq − Wq

) . (5)

This way, Hjq would be a correlation between the communities of the two nodes j
and q. Hence, it describes a more complex relationship between ROI xj and ROI xq at a
higher level. With the assumption that Wj has been centralized by Wj − Wj and further

normalized by 
√(

Wj − Wj

)T

(Wj − Wj), the PC coefficient can be simply represented

as Hjq = WT
j

Wq. In the high-order network, the new edge between nodes j and q would
have the weight of Hjq. Dropping the indices and writing in a matrix form, we would
have H = WTW to represent the high-order BFCN. Under such settings, it is easy to
construct high-order networks from the corresponding various low-order networks, such
as H(PC) = WT

(PC)
W(PC) and H(SLR) = WT

(SLR)
W(SLR), with W(PC) and W(SLR) as the low-order

BFCNs estimated based on Pearson’s correlation and sparse and low-rank regulari‐
zation, respectively.

It is worth pointing out that some machine learning methods also tried to use the
linear transformation WTW to select features [15, 16]. The main difference is that these
machine learning methods aim at solving the over-determined problem (with more
subjects than features in matrix) or under-determined problem (with more features than
subjects in W) by using the linear transformation. In our work, we do not have these
problems as our network W is a N × N matrix, and we want to use the high-order network
WTW to extract more complex correlation on community level.

4 Experiments

Network Construction and Experimental Setting: In our experiments, for each
subject, 200 ROIs are defined based on Craddock’s 200 atlas, and the mean rs-fMRI

Fig. 1. Construction of high-order BFCN based on low-order BFCN. Each element in the high-
order BFCN is calculated based on a pair of ROI communities from the low-order BFCN.
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signals are extracted from each ROI to construct the BFCN. We construct two types of
low-order BFCNs as described in Sect. 2, including PC and SLR. Based on these two
low-order BFCNs, we can construct two respective high-order BFCNs, namely H_PC
and H_SLR. For the regularization tuning parameters (i.e., 𝜆1 and 𝜆2 in Eq. 4) involved
in the SLR low-order BFCN model, we use the same setting as in [7], and search their
optimal values in the set 

{
2−5, 2−4, … , 20, … , 24, 25

}
. Note that there are no parame‐

ters to tune for the construction of high-order BFCN.
As we have 200 ROIs as nodes in a network, and since the connectivity matrix is

symmetric, we will vectorize the lower-triangle of the matrix and use it as the feature

vector for each network. As a result, we will have 200 × (200 − 1)
2

= 19900 edges to
describe each connectivity network. For each of the BFCNs, we use these edge strength
values in the networks as features. We then select the most informative features among
all these features, and then learn a classifier model. For feature selection, we use a simple
information theoretic feature selection techniques, which evaluates the information gain
for every single feature, and selects the features with the most information gain. Specif‐
ically, we measure the information gain ratio with respect to the class label for each
feature, similar to [17]. Then, we choose all the features with information gain ratio
values larger than 0.01 in our experiments. After the selected features are identified, we
employ a polynomial kernel SVM with c = 1 as the classifier.

Classification Results on Consciousness Level Prediction: In the following, we report
four evaluation measures: accuracy, sensitivity, specificity, and F-Score for both low-order
and high-order networks using the above feature selection and classification methods. The
reported values are the mean of 10 different runs of 10-fold cross validation, and hence
introduce reliable results with no over-fitting effects to the particular population of the
data. For selection of tuning parameters in SLR, we further conduct an inner leave-one-out
cross validation on the training set to obtain their best parameter values.

0

0.2

0.4

0.6

0.8

1

Accuracy Sensitivity Specificity F-Score

PC H_PC SLR H_SLR

Fig. 2. Comparison of classification results between low-order BFCNs (including PC and SLR)
and high-order BFCNs (including H_PC and H_SLR).
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The results are shown in Fig. 2. From these results, we can conclude that the high-
order BCNF obtains a better performance in all experiments. Furthermore, we can see
that H_SLR obtains the best classification results, with 78.04% accuracy, 86.39% sensi‐
tivity, 66.82% specificity, and 81.72% F-Score.

Results on Recovery Outcome Prediction: From the previous subsection, we can see
that the H_SLR can generate the best classification accuracy results. Therefore, we use
H_SLR to predict the recovery outcome of unresponsive patients. In order to be able to
compare with previous methods [3, 5] on the same application, we implement two
different cross-validation settings: (1) leave-one-out cross validation (LOOCV), and (2)
5 runs of leave-two-out cross validation (LTOCV). Note that, for the 2nd case, we average
results from 5 different runs and reported the average.

As shown in Table 1, our proposed method can obtain the best accuracy of 87.18%,
compared to other methods, under LOOCV.

Table 1. Comparison of accuracy on different methods.

Method LOOCV (%) LTOCV (%)
H_SLR +SVM 87.18 81.54
PC + SVM [3] 81.25 75.61
PC + ANOVA [5] 74.00* N/A

Note that the comparisons are conducted under different cross-validation mecha‐
nism. N/A means the result is not available from the corresponding reference. * This
accuracy was obtained based on a classification model trained using all subjects (i.e.,
not via stringent machine learning).

5 Conclusion

In this paper, we proposed a simple but effective high-order brain functional connectivity
network construction method for predicting both consciousness level and recovery
outcome in acquired brain injury. Our proposed high-order network treats the
community of each ROI as its features and the correlation between any pair of commun‐
ities as the edge between the two ROIs. Compared to the low-order network, the high-
order network can extract more information at the high level. The experiments on both
consciousness level prediction and recovery outcome prediction in ABI show that our
proposed high-order network can obtain a better classification performance. In future
work, other relationships between communities will also be investigated to build the
high-level network.
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Abstract. The increasing availability of functional Magnetic Resonance
Imaging (fMRI) has led to a number of studies of brain networks with
the aim of developing computer aided diagnosis of disease. Typically
these are based on a statistical or machine learning method operat-
ing on connectivity networks, or features derived from them. This work
presents a novel kernel method allowing classification tasks on connec-
tivity networks represented as symmetric positive definite (SPD) matri-
ces. It defines a kernel based on geodesic distances measured on the
Riemannian manifold of SPD matrices, and automatically adjusts the
eigenvalues of the matrices to improve accuracy. This is coupled with
a Gaussian Process (GP) classifier, and used to discriminate healthy
controls from Schizophrenia patients. The new kernel offers superior
classification accuracy to previous kernels, and the adjusted eigenval-
ues allow discovery of clinically meaningful differences in connectivity
between patients and controls.

1 Introduction

Brain networks based on resting state functional magnetic resonance imaging
(rs-fMRI) have become increasingly prominent in the study and, potentially,
diagnosis of conditions affecting neural functioning. The brain is represented as
a graph whose nodes correspond to anatomical regions defined by an atlas, while
edges are weighted with the estimated functional connectivity between pairs of
regions. The edge weights can be calculated as the simple correlation between the
fMRI signal timecourses of a pair of regions. However sparse inverse covariance
matrix estimation, which estimates partial correlations to remove the effect of
indirect connections, is more sensitive [14]. The resulting connectivity graphs
can be conveniently represented as symmetric positive definite (SPD) adjacency
matrices.

Comparing brain networks between subjects then becomes a problem of com-
paring SPD matrices. These do not lie in a Euclidean space, but rather form a
Riemannian manifold. A number of recent publications have used operations
on this manifold, either to manipulate the matrices to improve discrimination
c© Springer International Publishing AG 2017
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between clinical groups [8] or by defining a kernel function on the manifold that
can be used directly in classification with a kernel method such as a support
vector machine (SVM) [3,4]. Kernel functions on the manifold are based on the
Gaussian radial basis function (RBF) [5]. In the Euclidean space R

n, this is
given by k(x,y) = exp(−γ‖x − y‖2) for a pair of n dimensional vectors. On a
manifold, the Euclidean distance is replaced by a distance induced by the Rie-
mannian metric. A number of metrics have been proposed for the manifold of
SPD matrices, Sym+. However many of these suffer from various drawbacks for
use as kernel functions in machine learning [5]. The widely used affine invariant
metric [10] induces a true geodesic distance, but is computationally expensive
and can result in a non positive definite Gaussian kernel for some values of γ.
The Stein divergence [15] is fast, but does not induce a geodesic distance and
gives a positive definite RBF kernel only for a non-continuous range of values
of γ, which poses difficulties for parameter tuning. The log-Euclidean metric [1],
on the other hand, suffers from neither difficulty.

Although using kernels based on distances under metrics such as the log-
Euclidean is an elegant and powerful approach, there are two deficiencies where
improvements can potentially be made. Firstly, the estimated eigenvalues may
be biased or inaccurate if the sample size is small. Secondly, the eigenvalues may
not be optimal for the desired purpose of discriminating between two clinical
groups. A method to tackle these issues is proposed in [17]. The authors use
a kernel based on the Stein divergence due to its computational efficiency, and
adjust the eigenvalues of SPD matrices by learning a set of coefficients for their
original eigenvalues. This is done by performing an optimisation of functions such
as kernel alignment. The adjusted eigenvalues provide improvement in accuracy
in a variety of tasks including brain network classification.

Our work presented here instead makes use of the log-Euclidean kernel,
selected for the reasons described above. The eigenvalues of the original SPD
matrices are multiplied by a set of coefficients learned from the training data,
but rather than optimising kernel alignment we maximise the log likelihood of
the data under a Gaussian process framework. This has a number of advantages.
Chiefly, the eigenvalue coefficients and the length scale parameter γ can be opti-
mised jointly rather than separately any without any need for cross-validation
and the Gaussian process framework provides a great deal of flexibility in terms
of what types of learning problems can be addressed. Although here we restrict
ourselves to binary classification, this can be extended to multiclass classifica-
tion, regression, and time to event analysis via different likelihood functions. We
show that this provides improved accuracy in classifying Schizophrenia patients
and controls in a publically available dataset, and that the adjusted eigenvalues
yield matrices that show significant differences in connectivity between the two
clinical groups.
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2 Methods and Materials

2.1 Subjects

The methods are applied to at set of 100 subjects drawn from the publically
available COBRE dataset, described in [2]. This consists of 53 patients and
47 healthy controls. Schizophrenia was diagnosed using the Structured Clinical
Interview for DSM Disorders. Subjects with schizophrenia were excluded if they
had a DSM-IV Axis I diagnosis of other neurological disorders, mental retarda-
tion, if they had suffered severe head trauma with a loss of consciousness greater
than 5 min loss of consciousness, or if they had history of substance abuse or
dependence during the last 12 months. Healthy control subjects were excluded
if they had any DSM-IV Axis I mental disorders, other neurological conditions,
or a history of substance abuse or head trauma.

2.2 Image Data

All subjects were scanned on a 3-Tesla Siemens Trio scanner with a 12-channel
head coil. The T1-weighted structural images used to define anatomical regions in
each subject were acquired with a five echo MEMPR sequence with TE = 1.64,
3.5, 5.36, 7.22, and 9.08 ms, TR = 2.53, and voxel size = 1 mm isotropic. The
resting-state fMRI images were acquired with a gradient-echo EPI sequence with
TE = 29 ms, TR = 2 s, and a voxel size 3 × 3× 4 mm. For more detailed informa-
tion on this dataset, see1.

2.3 Image Processing

The preprocessing of rs-fMRI data was performed as follows. SPM82 was used
to perform image preprocessing. The first 10 time points were discarded to avoid
instability of the initial MRI signal. All the time points after 150 were also dis-
carded. Then, the images were corrected for intra-volume acquisition time delay
and inter-volume geometric displacement of head motion. After these corrections,
the images were spatially normalized to a 3× 3× 3 mm3 Montreal Neurological
Institute (MNI) 152 template and then linearly detrended and temporally band-
pass filtered (0.01–0.08 Hz) to remove low-frequency drift and high-frequency
physiological noise. Finally the global signal, the white matter signal, the cere-
brospinal fluid (CSF) signal and the motion parameters (1.5 mm translational
and 1.5◦ rotational parameters) were regressed out.

2.4 Brain Network Construction

Networks were constructed using GRETNA software3. First, the whole brain was
divided into 90 cortical and subcortical regions of interest using the automated
1 tinyurl.com/fcon1000-cobre.
2 http://www.fil.ion.ucl.ac.uk/spm.
3 http://www.nitrc.org/projects/gretna/.

http://www.tinyurl.com/fcon1000-cobre
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/gretna/


28 J. Young et al.

anatomical labelling (AAL) atlas [16] with each region representing a network
node. Then, the mean time series of each region were generated. As a final step,
sparse inverse covariance matrix estimation was applied to the set of time series
for each subject. The regularisation parameter was set by cross-validation. The
resulting precision matrices were inverted to provide an SPD covariance matrix
representing the brain network for each subject.

2.5 Gaussian Process Classification

Before introducing the discriminative log-Euclidean kernel, it is necessary to
briefly discuss the Gaussian process (GP) classification we use it with in our
experiments. For a more detailed treatment see [12]. Formally speaking, a GP
is a generalisation of ordinary multivariate Gaussian distributions to the case
of an infinite number of variables, which means it can be seen as a distribution
over functions. In practice, any finite subset of the variables forms a multivariate
Gaussian. Hence a Gaussian process, like a multivariate Gaussian, can be fully
parameterised by a mean vector m and a covariance matrix K. In a GP, the
elements of these are determined a mean function m(x,θ) and a covariance
function k(x,x′,θ), where x and x′ are data vectors and θ is a vector collecting
hyperparameters which control the functional form of the mean and covariance
functions. So we can write

GP ∼ N (m,K) (1)

where

m =
[

m(x)
m(x′)

]
, K =

[
k(x,x) k(x,x′)
k(x′,x) k(x′,x′)

]
(2)

In Gaussian processes for regression, the GP forms a prior over the space of
regression functions f(x) which map a data vector x onto a regression target
value y. Assuming a (univariate) Gaussian likelihood function with variance σ2,
and for simplicity a zero mean function, we can then model the regression as

yi = f(xi) + ε

f ∼ N (μ = 0,K)

ε ∼ N (0, σ2)

(3)

By then applying Bayes’ rule, we can calculate the resulting posterior, which
gives a predictive distribution for an unseen test vector x∗. For a set of training
vectors X and corresponding training targets y, the predictive distribution for
the value of f(x∗) is given by

p(f(x∗)|X,y,x∗,θ) ∼ N (μ∗, σ2∗
)

μ∗ = k∗�C−1y

σ2∗
= k(x∗,x∗) = k∗�C−1k∗

(4)
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where C = K+σ2I. K is the covariance matrix derived from the covariance func-
tion k, training data X and covariance hyperparameters θ, so Ki,j = k(xi,xj,θ),
and k∗ is a vector of covariances between the test data point x∗ and all the
training data points.

Binary classification is more complex, as the Gaussian likelihood function
is replaced with a sigmoid, mapping the latent function f(x) to interval [0, 1],
representing the probability a data vector having a particular class. This results
in the posterior being non-Gaussian, and hence they must be approximated.
Here we make use of expectation propagation (EP) [7], as this has been shown
to provide results as accurate as the gold standard Monte-Carlo Markov Chain
(MCMC) methods for this task, while being far faster to compute [9].

The GP covariance function hyperparameters θ control its behaviour. For the
discriminative log-Euclidean kernel these are comprised of the vector of eigen-
value coefficients a and characteristic length scale γ for our kernel function.
These are tuned by type-II maximum likelihood with gradient decent, making
use of the derivatives from Eq. 10.

2.6 The Discriminative Log-Euclidean Kernel

The conventional log-Euclidean kernel is based on the log-Euclidean metric intro-
duced in [1]. The log-Euclidean geodesic distance between SPD matrices S1 and
S2 is given by

dLE(S1,S2) = ‖logm(S1) − logm(S2)‖F (5)

where logm is the matrix logarithm and ‖ · ‖F the Frobenius norm. Hence,
the RBF log-Euclidean kernel is

kLE(S1,S2) = exp
(−dLE(S1,S2)2

γ2

)
(6)

The functional form of the discriminative RBF log-Euclidean kernel is iden-
tical, but the original matrices S are replaced by adjusted matrices S∗. The
adjustment is done by rescaling the eigenvalues of S, by multiplying them by a
vector of d coefficients a, where d is the dimensionality of the matrices. Using
the eigen decomposition of SPD matrices, if S = UΛU�, where U is a matrix
whose columns are the eigenvectors and Λ is a diagonal matrix of the eigenvalues
(λ1, ..., λd), then

S∗ = U

⎛
⎜⎜⎜⎝

λ1a1

λ2a2

. . .
λdad

⎞
⎟⎟⎟⎠U� (7)

and
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logm(S∗) = U

⎛
⎜⎜⎜⎝

log(λ1a1)
log(λ2a2)

. . .
log(λdad)

⎞
⎟⎟⎟⎠U� (8)

We want to set the values of a with gradient based optimisation. From Eq. 8
we can see that logm(S∗)i,j =

∑d
k=1 Ui,kUj,klog(λkak). Hence the derivatives

of logm(S∗) with respect to the kth value of a are given by

∂

∂ak
logm(S∗)i,j =

Ui,kUj,k

ak
. (9)

Now differentiating Eq. 6 with respect to ak, we obtain

∂

∂ak
kLE(S∗

1,S
∗
2) = kLE(S∗

1,S
∗
2)

∂

∂ak

−dLE(S∗
1,S

∗
2)

2

γ2

= kLE(S∗
1,S

∗
2)

−2
γ2

1�sLE(S∗
1,S

∗
2) � ∂

∂ak
sLE(S∗

1,S
∗
2)1

(10)

where 1 is a length d vector of ones, � is the Hadamard or elementwise
product, and sLE(S∗

1,S
∗
2) is logm(S∗

1) − logm(S∗
2). By plugging Eq. 9 into Eq. 10

we obtain a formula for the derivatives of the kernel functions with respect to
the elements of the vector of eigenvalue coefficients a.

2.7 Impementation Details

The discriminative log-Euclidean kernel is implemented as a new covariance func-
tion for the GPML toolbox4. The values of a are optimised in the log domain to
keep a positive. To avoid repeating the computationally costly eigendecomposi-
tion, these are precomputed for all SPD connectivity matrices. The covariance
function then operates on vectors consisting of the concatenated eigenvalues and
eigenvectors of a matrix. The values of a are initialised to 1 and the initial value
of γ is the median dLE between all pairs of matrices in the training data.

2.8 Classification Experiments

For the classification experiments, a Monte-Carlo cross validation (MCCV) pro-
cedure was used, where the data and labels were randomly shuffled 200 times.
After each shuffle, the first 90% of matrices and labels were used for training and
the remaining 10% for testing. The results of all 200 test sets were then averaged.
For comparison, the same procedure is used with the conventional log-Euclidean
kernel (i.e., unadjusted eigenvalues), and with a linear kernel and Gaussian ker-
nel on vectors of the elements of each connectivity matrix (i.e., assuming the
connectivities lie in a Euclidean space).
4 http://www.gaussianprocess.org/gpml/code/matlab/doc/.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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2.9 Group Difference Experiments

To examine the possibility of finding group differences in connectivity with the
adjusted eigenvalues, a tenfold cross-validation experiment was performed. For
each fold, 90 subjects were used for training, yielding a set of values for the eigen-
value coefficients a. These coefficients were then used to adjust the eigenvalues
in the connectivity matrices for the 10 subjects set aside for testing. The process
was repeated so that eigenvalues of all 100 subjects were adjusted. To calcu-
late the statistical significance of differences in connectivity between patients
and controls, for each matrix element in the upper triangle of the connectiv-
ity matrix, the connectivity values for all subjects in the matrix element were
extracted, and a two sided t-test was applied to the values. Finally, we corrected
for multiple comparisons with false discovery rate correction.

3 Results and Discussion

Results of classification are shown in Table 1. The discriminative log-Euclidean
kernel produces higher accuracy than the alternative kernels, with an improve-
ment of nearly 4% over the basic linear kernel. Surprisingly, perhaps, the dif-
ference gained by operating on the manifold is small, although both manifold
kernels outperform the Euclidean ones. Sensitivity and specificity are reasonably
well balanced at 65.7% and 82.6% respectively.

The adjustments to the eigenvalues tend to be small, with values of a close
to unity. The largest adjustments are mostly negative (shrinking the eigenvalue)
and are associated with the largest eigenvalues. This supports the idea that the
larger eigenvalues can be overestimated [17].

Table 1. Results of classification experiments

Euclidean kernels Manifold kernels

Linear RBF Log-Euclidean Discriminative log-Euclidean

Accuracy (%) 71.35 72.30 72.85 74.95

The pattern of significant differences in connectivity between patients and
controls in the adjusted matrices is shown in Fig. 1. p-values are inverted in the
figure so brighter colours mean a higher level of significance.

Brain regions found to show the most significant differences in functional
connectivity, using both the original and adjusted connectivity matrices, include
the temporal gyri and striatum with stronger connectivity in patients than
controls, and reduced connection strength in patients in both left and right
fusiform gyri. Several previous studies have reported functional dysconnectivity
in these regions in Schizophrenia patients relative to controls (see [11] for review).
Furthermore, functional dysconnectivity in these regions has been reported to
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Fig. 1. Connections with significant difference (p < 0.05) between patients and controls
using the eigenvalue-adjusted connectivity matrices, according a 2-sided test. Brain
regions with clusters of significant connectivity are labelled: SOG = L and R superior
occipital gyri, FFG = L and R fusiform gyri, STR = striatum, THL = thalamus, MTG
= L and R mediotemporal gyri.

Fig. 2. Connections between atlas regions with most significant differences between
patients and controls. Hubs of significant connectivity differences are labelled according
to their AAL abbreviations. Visualisations from Nilearn, http://nilearn.github.io/.

depend on the symptom profile of patients [6,11,13]. Overall, the differences in
connectivity identified with our technique are consistent with the existing litera-
ture. The anatomical patterns of significant connectivity are shown in Fig. 2. For
clarity, only the most significantly different (p < 0.005) connections are shown.

http://nilearn.github.io/
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The primary limitation of this technique is that it is restricted to operating
on SPD matrices, which are not provided by all types of connectivity, espe-
cially structural connectivity obtained from tractography. However it should be
possible to circumvent this by using graph Laplacians as in [4].

4 Conclusions

We have introduced the discriminative log-Euclidean kernel, and shown that by
allowing the eigenvalues of matrices representing brain connectivity networks
to be adjusted, it can provide superior classification ability to previous kernels,
including one operating on the manifold of SPD matrices. Although the resulting
changes to the eigenvalues alter the connectivity matrices, the ability to discover
clinically important differences in connectivity between regions from the matrices
is unaffected.
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Abstract. Structural networks contain high dimensional data that
raise huge computational and visualization problems, especially when
attempting to characterise them using graph theory. As a result, it can
be non-intuitive to grasp the contribution of each edge within a graph,
both at a local and global scale. Here, we introduce a new platform that
enables tractography-based networks to be explored in a highly interac-
tive real-time fashion. The framework allows one to interactively tune
graph-related parameters on the fly, as opposed to conventional visual-
ization softwares that rely on pre-computed connectivity matrices. From
a neurosurgical perspective, the method also provides enhanced under-
standing regarding the potential removal of a specific node or transection
of an edge from the network, allowing surgeons and clinicians to discern
the value of each node.

1 Introduction

The human brain can be viewed as a network [1]. This highly specialized network
can be conceptualized to as a set of gray matter (GM) regions that are linked
together by white matter (WM) connections, represented by graph nodes and
edges respectively. Brain networks derived from graph theory analyses are often
dense and complex, and thus perceptually challenging to visualize [11]. While
thresholding edges can help reduce the complexity of a network, it often leads
to high variance in graph metrics [6,8,13]. Moreover, false positive in tractogra-
phy [4,10] pollute connectivity matrices and adversely impact on chosen graph
metric.

To better understand the role of these confounding factors on network
topology, we develop a new visualization framework for exploring structural
networks in a highly-interactive fashion. More specifically, the proposed visual-
ization framework: (1) provides real-time insight of various thresholds on graph
metrics; and (2) enables a seamless transition between an graph abstract (nodes
and edges) and an anatomical (streamlines) representation, allowing one to
inspect the underlying architecture of a specific edge.

c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 35–41, 2017.
DOI: 10.1007/978-3-319-67159-8 5
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2 Methods

2.1 Structural Connectivity

Diffusion-weighted images of a single-subject were acquired along 64 uniformly-
distributed directions at b = 1000 s/mm2, using single-shot EPI on a 1.5 Tesla
SIEMENS Magnetom (128 × 128 matrix, 2 mm isotropic resolution, TR/TE
11000/98 ms) and a GRAPPA factor of 2. An anatomical T1-weighted 1 mm
isotropic MPRAGE (TR/TE 6.57/2.52 ms) image was also acquired for the
estimation of partial volume maps (PVE). The diffusion-weighted images were
upsampled to the anatomical resolution (1 mm isotropic). Fiber Orientation Dis-
tribution Functions from spherical deconvolution [12] were used for tractography.
PVE maps were used in the tracking process to provide a better tracking domain
as opposed to fractional anisotropy (FA)-based mask where streamline propaga-
tion is often prematurely halted in crossing regions.

Probabilistic Particle Filtering Tractography [9] was done seeding from the
WM and GM interface (1 × 1 × 1 mm3, 2M seeds). The particle filtering trac-
tography algorithm ensured that streamlines did not terminate prematurely in
the WM by the application of a back-tracking rule to allow the tractography
algorithm to find alternative pathways. Freesurfer [7] was used to parcellate the
brain into 163 labels [5]. Subcortical regions were included to ensure an accurate
representation of WM connections throughout the brain (e.g. thalamocortical
radiations). The same reasoning was applied to the brain stem and cerebellum
regions to ensure the inclusion of the corticospinal/corticocerebellar tracts within
the graph. A 3 mm dilation was used to ensure a robust overlap between stream-
lines end-points (e.g. GM/WM interface) and anatomical labels [14]. Finally,
streamlines and brain labels were loaded in FiberNavigator1 [3].

3 Visualization

First, an iso-surface is derived from the T1-weighted image for contextual ref-
erence as shown in Fig. 1. Next, a spherical node (red) is positioned at the

Fig. 1. Graph construction. (a) Mesh derived from anatomical T1 image. (b) Nodes
derived from anatomical labels. (c) Edges derived from tractogram. (Color figure online)

1 Open source software available at: chamberm.github.io/fibernavigator single.html.

http://chamberm.github.io/fibernavigator/_single.html
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barycenter of each label. A default weighted connectivity matrix M is built by
normalizing the number of streamlines linking each anatomical region2. A trans-
fer function is responsible for mapping values of M towards edge thickness and
opacity. The default view also re-sizes each node by its degree and a side panel
shows a set of global graph metrics (e.g., mean degree, global efficiency).

Selecting a node instantly initiates the computation of node-related metrics
(e.g. degree, strength, centrality, efficiency). In addition, selecting any 2 nodes
immediately reveals the underlying streamlines forming the edge between them.
An interactive global threshold (acting on the weights of M) is also available,
which automatically updates the global and local metrics of the network on the
fly, as well as the visualization of the graph. Finally, to reduce visual ambiguity
in node selection, nodes are depth sorted and color-graded in real-time according
to the current viewpoint. Importantly, although very fast, the new framework
is implemented on CPU using C++ and GLSL shaders, can run on a single
core computer, and does not require any specific hardware. Experiments were
performed on a laptop with the following specifications: System: Windows 8,
Video card: Geforce GT 640 M memory 2 GB, NVIDIA Driver: 306.97, CPU:
Intel(R)Core(TM) i7-3632QM @ 2,20 GHz, 16 GB RAM.

4 Results

Underlying streamlines linking 2 nodes are illustrated in Fig. 2. From left to right:
corpus callosum (CC), optic radiation (OR) and corticospinal tract (CST). Con-
troversial streamlines forming thick edges in the graph (number of streamlines
in this case) are easily identified (e.g. Frontal Aslant Tract (FAT) [2]) and can
potentially be removed from the network (e.g. Mij = 0) as shown in Fig. 3.

Fig. 2. Bundle selection using node picking (white).

2 Demo available online at: www.youtube.com/watch?v=eZ2JubD25NA.

www.youtube.com/watch?v=eZ2JubD25NA
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Fig. 3. Frontal aslant tract (FAT) [2] rapidly identified by the selection of 2 nodes.

Figure 4 shows two versions of the whole-brain network (i.e. unthresholded vs
thresholded) as well as its associated global and nodal graph metrics (Tables 1
and 2). Given a specific node of interest (e.g. pre-central gyrus, Fig. 4 yellow),
the user can instantaneously observe variations in the different metrics related
to that node by dragging the threshold slider (2% threshold). A 30 frame-per-
second (FPS) ratio was maintained during the process.

Table 1. Real-time global graph metrics

Metrics Default graph Thresholded graph (2%)

# of nodes 161 160

# of edges 4632 938

Density 0.36 0.07

Mean degree 62.59 12.68

Global efficiency 0.446 0.104

Finally, Fig. 5 shows how depth-sorting can help differentiate occipital nodes
from frontal nodes. For any viewpoint, a transfer function assigns a color grading
to each node based on their Z position in the scene. In this example, nodes located
in the posterior aspect of the brain appear brighter than the ones located in the
frontal lobe since the camera is looking at the brain from behind.
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Fig. 4. Threshold graph visualization. Node sizes are recomputed on the fly according
to their new strength. Yellow: pre-central gyrus (R). (Color figure online)

Table 2. Real-time local graph metrics (right pre-central gyrus)

Metrics Default graph Thresholded graph (2%)

Degree 88 24

Strength 3.73 3.49

Eigen centrality 0.165 0.161

Closeness centrality 0.919 0.691

Local efficiency 0.896 0.955

5 Discussion

To the best of our knowledge, this is the first visualization platform support-
ing comprehensive exploration of structural connectomics in real-time. The tool
allows the user to easily prune undesired edges of the graph (e.g. false-positive
streamlines). The mean FPS ratio was above 30 during all steps, indicating no
latency. Initial piloting of the tool (by users new to graph theory) revealed the
following consensus: hubs and underlying streamlines were easily identifiable by
all. Moreover, participants were mostly curious how simple threshold manipula-
tion altered local and global network metrics.

After discussing with neurosurgeons, the framework also incorporates various
representation of M by allowing direct manipulation of bundle-specific edge
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Fig. 5. Depth-sorted nodes provide increase visual cues when compared to default
rendering.

weights (e.g. to simulate de- or re-myelination and its effect on the network).
The current version also allows users to input a more general connectivity matrix
(e.g. derived from other software or image modalities such as functional MRI or
MEG). In other words, the users are not bound to a specific tractography pipeline
to generate the aforementioned connectivity matrix. Moreover, it is important to
specify that any set of brain parcellation can be used here (i.e. varying number
of labels).

6 Conclusion

With the large variety of metrics and parameters involved in connectomics (e.g.
weights of M, threshold techniques [6]), the proposed growing visualization
framework will also serve as a quality assurance tool for close inspection of
data prior to launching massive analyses. From a clinical perspective, the pro-
posed platform will also provide neurosurgeons with a better understanding of
the effect of transecting pathways underlying critical hubs, and perhaps phys-
iotherapists insight into the impact of strengthening a given edge on network
characteristics.
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Abstract. The majority of works using brain connectomics for demen-
tia diagnosis heavily relied on using structural (diffusion MRI) and func-
tional brain connectivity (functional MRI). However, how early demen-
tia affects the morphology of the cortical surface remains poorly under-
stood. In this paper, we first introduce multi-view morphological brain
network architecture which stacks multiple networks, each quantifying
a cortical attribute (e.g., thickness). Second, to model the relationship
between brain views, we propose a subject-specific convolutional brain
multiplex composed of intra-layers (brain views) and inter-layers between
them by convolving two consecutive views. By reordering the intra-layers,
we generate different multiplexes for each subject. Third, to distinguish
demented brains from healthy ones, we propose a pairing-based ensemble
classifier learning strategy, which projects each pair of brain multiplex
sets onto a low-dimensional space where they are fused, then classified.
Our framework achieved the best classification results for the right hemi-
sphere 90.8% and the left hemisphere 89.5%.

1 Introduction

Early diagnosis of brain dementia, specifically mild cognitive impairment (MCI)
which may convert to Alzheimer’s disease (AD), is critical for the early inter-
vention, to prevent the onset of AD. Machine learning approaches have been
successfully employed in diagnosing AD based on images obtained from MRI
[1], which provide an efficient and non-invasive way for investigating neurological
disorders at a whole-brain level. On a brain connectional level, network analy-
sis of functional and structural brain connectivity (obtained from functional
MRI (fMRI) and diffusion-weighted MRI (dMRI)) helped identify dementia bio-
markers and brain connections affected by this neurodegenerative disorder [2].
Recently, more research has focused on accurate detection of early mild cogni-
tive impairment (eMCI), which is essential for slowing down potential conversion
to AD. For instance, [3] investigated the predictive power of various combina-
tions of connectomic features, such as pairwise connectivity and maximum flow
c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 42–50, 2017.
DOI: 10.1007/978-3-319-67159-8 6
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between two brain regions, extracted from dMRI images for eMCI and normal
control (NC) classification problem. On the other hand, [4] computed sparse
temporal networks using sliding-window approach over a time series of resting-
state functional MRI. [5] extended this work by additionally considering the
high-order correlation between different pairs of brain regions. By combining
low-order with high-order correlations, they further improved the classification
accuracy of eMCI/NC.

Although dementia has been shown to affect neuronal connections in the
brain as well as the cortical surface causing cortical thinning [6], research explor-
ing morphological connectivity of the cortex is almost absent [1]. More specifi-
cally, how the shape of a cortical brain region gets affected in relation to the
shape of another cortical brain region using various shape measurements (e.g.,
curvature, sulcal depth) remains somewhat unexplored. To address these limita-
tions, we propose to use morphological cortical networks for dementia onset iden-
tification. Additionally to using one-layer network (considering only one morpho-
logical view, such as cortical thickness), we construct a multi-layer network (mul-
tiplex), consisting of multiple morphological views. Previous research showed
that using multi-layer networks (i.e., stacking different networks) improved the
prediction accuracy for disease identification when compared to using single view
networks. Some of these works included classification of NC/MCI/AD using com-
bination of features from MRI, PET, and CSF [7], structural inter- and intra-
subject brain similarities in MRI [8], both confirming that multiplex network fea-
tures yield better classification results in comparison to using low-level features.
Other works, not concerned with MCI/AD, used multiplexes for simultaneous
analysis of anatomical and functional brain networks [9] and varied frequency in
fMRI to find important functional brain regions affected by schizophrenia [10].

However, none of these multiplex-based methods explored the relationship
between two consecutive layers in the multiplex or cortical morphology. Specifi-
cally, to the best of our knowledge, no previous methods explored the similarity
between layers in a typical multi-layer network for modeling brain connectivity
[1]. We note that simple concatenation of multiple networks hinders the investiga-
tion of potentially complex changes in cortical regions, which might vary jointly
or independently across different brain views as they become affected by dementia
onset. Hence, we introduce inter-layers into a multiplex structure to capture the
relationship between different brain views. Basically, each brain multiplex consists
of different morphological views (intra-layers) and inter-layers splipped between
two consecutive intra-layers, thereby quantifying the relationship between two
consecutive brain views.

Since each multiplex is not invariant to the ordering of the intra-layers, we
generate multiple multiplexes for each subject while considering all possible com-
binations of intra-layers, thereby capturing all relationship between different
brain views in a more holistic manner. Fusing information from different brain
multiplexes is crucial for more accurate identification of the demented brain state
since each brain multiplex captures a unique relationship between brain views,
which can help unravel the complex nature of brain disorders for more accurate
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Table 1. Major mathematical notations used in this paper.

Mathematical notation Definition

V Brain network (single view) in R
n×n

M Brain multiplex composed of intra-layers and convolutional inter-layers

Ci,j Convolutional intra-layer between consecutive brain network views Vi and

Vj in M
M = {M1, . . . , MN} Subject-specific brain multiplexes with different orderings of intra-layers

Mk matrix in R
d×Ns Containing the d multiplex features for all Ns training

samples from multiplex Mk ∈ M

Mk,l = [Mk,Ml] Paired multiplex feature matrices derived from two training multiplexes in M

[Bk,Bl] CCA basis matrices spanning the canonical space where Mk and Ml are

projected

Σk,l Covariance matrix of paired training multiplex matrices Mk and Ml

Wk Transformation matrix from the original multiplex space to the

low-dimensional canonical multiplex space

Λ2 Diagonal matrix of eigenvalues (i.e., canonical correlations squared)

M̂k Canonical representation of multiplex Mk projected onto CCA space

M̂k,l Fused CCA-mapped multiplex feature matrices of original multiplexes Mk

and Ml

I Identity matrix in R
d×d

diagnosis. However, most existing network fusion methods often extract features
independently from each network, and then simply concatenate them into a long
feature vector for classification [1], while overlooking the correlation between
them. To address this issue, we propose to use canonical correlation analysis
(CCA) to map two sets of features into a shared space where they become more
comparable [11,12]. CCA was shown to yield more discriminative features than
any of the input feature vectors alone or their simple concatenation [12]. Since
we are not restricted to only two sets of features as in [12], we propose a novel
pairing-based CCA mapping of multiple sets of brain multiplexes, where each
pair of multiplex sets is mapped onto a CCA space then fused. Ultimately, in
the spirit of ensemble classifier learning, we input the fused multiplex features
to train a linear classifier in each spanned CCA space.

Overall, we propose three fundamental contributions to the state-of-the-art of
brain network analysis in order to identify dementia in its early stage: (1) brain
multiplex structure based on cortical morphology, (2) pairing-based ensemble
classifier learning strategy using CCA-mapped sets of brain connectomic fea-
tures, and (3) giving new insights into how the early stage of MCI affects mor-
phological brain connectivity in left and right cortical hemispheres.

2 Ensemble Classifier Using Paired CCA-Mapped
Convolutional Brain Mutliplexes for eMCI/NC
Classification

In this section, we introduce the concept of a convolutional brain multiplex
and present our novel canonical ensemble classifier learning technique using
paired sets of brain multiplexes. Matrices are denoted by boldface capital letters,
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Fig. 1. Pipeline of the proposed pairing-based ensemble classifier learning using fused
convolutional brain multiplexes. (A) Morphological brain network construction using
different cortical attributes. (B) Brain multiplex construction. (C) We use canonical
correlation analysis (CCA) to first project a pair of multiplex sets onto a common space
where they become more comparable, then fuse them together to train a linear SVM
classifier.

e.g., X, and scalars are denoted by lowercase letters, e.g., x. We denote the trans-
pose operator and the trace operator as XT and tr(X), respectively. For easy
reference and enhancing the readability, we have summarized the major mathe-
matical notations in Table 1. We illustrate in Fig. 1 the proposed framework for
convolutional brain multiplex construction and pairing-based ensemble classifier
learning using CCA mapping of sets of brain multiplexes.

• Step 1: Convolutional brain multiplex construction and feature
extraction. In a generic way, we define a brain multiplex M using a set of
M intra-layers {V1, . . . ,VM}, each representing a single view of the brain mor-
phology, (i.e., cortical attribute), where between two consecutive intra-layers
Vi and Vj we slide an inter-layer Ci,j . This yields to the following multiplex
architecture: M = {V1, C1,2,V2, . . . ,Vi,Ci,j ,Vj , . . . ,VM}. Each inter-layer is
defined by convolving two consecutive intra-layers. Each element in row a and
column b within the convolutional inter-layer matrix Ci,j between views Vi and
Vj is defined as: Ci,j(a, b) =

∑
p

∑
q Vi(p, q)Vj(a − p + 1, b − q + 1). We note

that for a specific multiplex, we are only allowed to explore similarities between
consecutive layers. Hence, to explore the inter-relationship between all possible
combinations of intra-layers, we generate for each subject N multiplexes through
simply reordering the intra-layer networks, thereby generating an ensemble mul-
tiplexes M = {M1, . . . ,MN} (Fig. 1-B). Each subject-specific brain multiplex
in M captures unique similarities between different morphological brain net-
work views (e.g., sulcal depth network and cortical thickness network) that may
not be present in a different multiplex. This will allow not only to explore how
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different brain views get altered by a specific disorder, but how their relationship
might get affected.

Since the morphological brain connectivity matrices are symmetric (Fig. 1-
A), we extract features from each multiplex by directly concatenating the weights
of all connectivities in each triangular matrix. For each network of size n × n,
we extract a feature vector of size (n × (n − 1)/2).

• Step 2: Pairing-based ensemble classifier learning using canonical
mapping of brain multiplex sets. Since each multiplex Mk ∈ M captures
a unique and complex relationship between different brain network views, one
needs to examine all morphological brain multiplexes in the ensemble M. This
will provide us with a more holistic understanding of how explicit morpholog-
ical brain connections can be altered by dementia onset as well as how their
implicit high-order (a connection of connections) relationship can be affected.
However, due to complex nature of the multiplex structure, feature reduction
method is required to reduce the redundancy of the data by extracting the most
representative features. Instead of extracting features from different multiplexes
independently, and motivated by the fact that canonical correlation analysis is
efficient in analyzing and fusing associations between two sets of variables [11,12],
we propose a pairing-based CCA mapping strategy of sets of multiplexes of our
training samples for brain multiplex feature fusion.

Suppose that Mk ∈ R
d×Ns and Ml ∈ R

d×Ns are two training multiplex fea-
ture matrices derived from two different multiplexes in M, where Ns denotes
the number of training samples. For each pair of multiplexes Mk,l = [Mk,Ml],

we define their covariance matrix Σk,l =
(

cov(Mk) cov(Mk,Ml)
cov(Ml,Mk) cov(Ml)

)

, where

cov(Mk) = MkMT
k denotes the within-set covariance matrix of Mk, and

cov(Mk,Ml) = MkMT
l denotes the between-set covariance matrix of Mk and

Ml. To map both training multiplex matrices onto a space where the respec-
tive distributions of their features are more ‘aligned’ and easily comparable,
we aim to maximize the pair-wise correlation across the two matrices Mk

and Ml: corr(M̂k, M̂l) = cov(M̂k,M̂l)

var(M̂k)·var(M̂l)
, where M̂k denotes the linear CCA

mapping of the multiplex feature matrix Mk to the canonical shared space
using the estimated transformation matrix WT

k such that M̂k = WT
k Mk.

Similarly, the second set of training multiplex features Ml is mapped using
the estimated transformation matrix WT

l . More precisely, cov(M̂k, M̂l) is
defined as WT

k cov(Mk,Ml)Wl, var(M̂k) as WT
k cov(Mk)Wk, and var(M̂l) as

WT
l cov(Ml)Wl.
Both canonical transformation matrices are estimated through maximizing

the covariance between the mapped multiplex feature matrices M̂k and M̂l,
constrained to var(M̂l) = var(M̂k) = I, using Lagrange multipliers. This is
achieved through solving the following eigenvector equations:

{
cov(Mk)−1 cov(Mk,Ml) cov(Ml)−1 cov(Ml,Mk)Ŵk = Λ2Ŵk

cov(Ml)−1 cov(Ml,Mk) cov(Mk)−1 cov(Mk,Ml)Ŵl = Λ2Ŵl
,
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where Ŵk and Ŵl denote the eigenvectors and Λ2 represent the diagonal
matrix of eigenvalues (i.e., canonical correlations squared). The dimension of
the canonical shared space is defined as the rank of covariance matrix between
both multiplex feature matrices. Ultimately, each transformation matrix Wk is
generated through sorting the eigenvectors in Ŵk with non-zero eigenvalues.
To perform paired multiplex feature fusion in the canonical space, we simply
concatenate the transformed multiplex features as follows:

M̂k,l =
(
M̂k

M̂l

)

=
(
WT

k Mk

WT
l Ml

)

=
(
Wk 0
0 Wl

)T (
Mk

Ml

)

Next, we use each fused pair of training multiplex feature matrices M̂k,l to
train a linear support vector machine (SVM) classifier (Fig. 1). Noting that for
each training subject we have N multiplexes estimated, we perform C2

N map-
pings of each pair of multiplexes in M. Subsequently, a linear SVM classifier is
learned for each pair of multiplexes. In the testing stage, we use the learned
canonical transformation matrices to respectively map each pair of testing mul-
tiplex feature vector onto their corresponding CCA space where they are fused
and then communicated to an SVM classifier. Finally, we average all soft scores
by ensemble SVM classifiers to determine the label of the testing subject.

3 Results and Discussion

Evaluation dataset. We used leave-one-out cross validation to evaluate the
proposed classification framework on 76 subjects (35 eMCI and 41 NC) from
ADNI GO public dataset1, each with structural T1-w MR image [13]. We note
that the 35 eMCI samples comprise the first and last acquisition timepoints for 18
different eMCI subjects, which are largely spaced out in time. Hence, we assume
that these two distant timepoints can simulate two different eMCI subjects. We
used FREESURFER to reconstruct both right and left cortical hemispheres for
each subject from T1-w MRI. Then we parcellated each cortical hemisphere
into 35 cortical regions using Desikan-Killiany Atlas. We defined N = 6 mul-
tiplexes, each using M = 4 cortical network views. For each cortical attribute
(signal on the cortical surface), we compute the strength of the morphological
network connection linking ith ROI to the jth ROI as the absolute difference
between the averaged attribute values in both ROIs. Multiplex M1 includes
cortical attribute views {V1,V2,V3,V4}, M2 includes {V1,V2,V4,V3},
M3 includes {V1,V3,V4,V2}, M4 includes {V1,V3,V2,V4}, M5 includes
{V1,V4,V2,V3}, and M6 includes {V1,V4,V3,V2}. For each cortical region,
V1 denotes the maximum principal curvature brain view, V2 denotes the mean
cortical thickness brain view, V3 denotes the mean sulcal depth brain view, and
V4 denotes the mean of average curvature.

Comparison methods and evaluation. For our eMCI/NC classification task,
we benchmarked our pairing-based ensemble classifier strategy against: (1) using
single SVM trained on each brain view, and on the concatenated views, (2)
1 http://adni.loni.usc.edu.

http://adni.loni.usc.edu
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Table 2. eMCI/NC classification accuracy using our method and different comparison
methods

Fig. 2. Classification accuracies for our proposed pairing-based ensemble classifier
learning of CCA-mapped brain features and comparison ensemble classifier methods.
Views: concatenated brain views. Correlation: correlational brain multiplexes. Convo-
lution: Convolutional brain multiplexes. Ensemble classifiers: one SVM trained for each
view (or multiplex) without any pairing strategy or CCA mapping. Ensemble paired
classifiers: pairing different views (or multiplexes) without CCA mapping. Ensemble
CCA paired classifiers: pairing different views (or multiplexes) with CCA mapping.

ensemble SVM classifiers (without the pairing or CCA mapping strategies), and
(3) ensemble paired SVM classifiers (without CCA mapping). For each of these
methods, we generate three classification results using: (1) features from brain
views, (2) features from correlational multiplexes (inter-layer computed using
Pearson correlation), and (3) features from convolutional multiplexes (inter-layer
computed using 2D convolution). For evaluation, we report in Table 2 the predic-
tion accuracy, the area under the receiver operating characteristic (ROC) curve,
the sensitivity and specificity of the eMCI/NC classification task. In Fig. 2, we
specifically show the comparison of classification accuracy for ensemble, pairing-
based ensemble and pairing-based ensemble with CCA-mapping classification
based on views, correlational multiplexes and convolutional multiplexes. Our
proposed ensemble CCA paired classifiers framework outperformed all compar-
ison methods (89.5%) when using morphological multiplexes of the left hemi-
sphere, while the best performance (90.8%) was achieved using multi-view brain
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network (i.e., stacked brain views) of the right hemisphere. These results may
indicate that there is a difference in the level of complexity of the disease progres-
sion across both hemispheres, i.e., different morphological properties of the brain
change in more consistent manner across the different views in the case of right
hemisphere, while these interactions are more complex in the early progression
of dementia in the left hemisphere. We also show that using the combination of
different morphological views resulted in better classification accuracies in case
of all reported methods than those based on single brain views.

4 Conclusion

We propose a novel pairing-based ensemble classifier strategy that fuses morpho-
logical multi-view brain networks as well as convolutional brain multiplexes for
distinguishing between eMCI patients and healthy controls. The performance of
our method gave us insights into how dementia might affect the right and the left
hemispheres in its early stage: complex connectional alterations in cortical mor-
phology spanning multiple cortical attributes of the left hemisphere (captured
by the multiplex), and simple alterations across different brain views in the right
hemisphere (captured by the morphological multi-view network). In our future
work, we will integrate functional and diffusion networks in our multiplex struc-
ture to explore how the relationship between multimodal connectomic views is
altered with dementia onset.
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Abstract. Previous studies have identified disordered functional (from
fMRI) and structural (from diffusion MRI) brain connectivities in Autism
Spectrum Disorder (ASD). However, ‘shape connections’ between brain
regions were rarely investigated in ASD – e.g., how morphological
attributes of a specific brain region (e.g., sulcal depth) change in rela-
tion to morphological attributes in other regions. In this paper, we use
conventional T1-w MRI to define morphological connectivity networks,
each quantifying shape similarity between different cortical regions for
a specific cortical attribute at both low-order and high-order levels. For
ASD identification, we present a connectomic manifold learning frame-
work, which learns multiple kernels to estimate a similarity measure
between ASD and normal controls (NC) connectomic features, to per-
form dimensionality reduction for clustering ASD and NC subjects. We
benchmark our ASD identification method against supervised and unsu-
pervised state-of-the-art methods, while depicting the most discrimina-
tive high- and low-order relationships between morphological regions in
the left and right hemispheres.

1 Introduction

Autism spectrum disease (ASD) is a neurodevelopmental disorder characterized
by altered cognitive functions, specifically difficulties in learning and impairment
in social interaction. The centers for Disease Control and Prevention (CDC)
estimates autism’s prevalence as 1 in 68 children in the United States. Recently,
interest in understanding how ASD alters connectivity between different brain
regions has grown with the development of important technological and method-
ological neuroimaging tools. Most of connectomic studies on ASD in the liter-
ature [1–3] have mainly focused on structural and functional connectivity (FC)
derived from diffusion tensor imaging (DTI) and functional magnetic resonance
imaging (fMRI), respectively. For example, [4] used functional MRI to quantify
consistent spatial temporal FC patterns to distinguish between ASD subjects and
normal controls (NC). Another work [5] applied a unified connectivity framework

c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 51–59, 2017.
DOI: 10.1007/978-3-319-67159-8 7
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on DTI that learns the underlying patterns of ASD pathology through projec-
tive non-negative decomposition into sets of discriminative, developmental and
reconstructive components. However, one of the potential limitations of solely
relying on fMRI or DTI are: (1) fMRI has low signal-to-noise ratio possibly
induced by non-neural noise, hence its derived functional connectivity strength
between pairs of ROIs can be spurious or noisy, and (2) fiber tractography meth-
ods can produce largely variable and somewhat biased structural brain networks
[6]. As an alternative, we propose a different type of brain network: a morpholog-
ical network solely constructed from T1-w MRI. Since recent research on ASD
reported brain cortical thickness changes in autism during early childhood [7], we
specifically propose to build different morphological networks based on the mor-
phology of the cortical surface, where each network is associated with a unique
low-order cortical attribute such as sulcal depth or cortical thickness. However,
since simply concatenating morphological brain networks overlooks how their
relationship might be affected at a higher-order level by autism, we introduce
morphological high-order brain networks for autism identification. Unlike func-
tional high-order networks which model the dynamic brain activity within a
time-window [8], our high-order network (HON) is able to characterize more
complex interaction patterns among brain regions in morphology.

On the other hand, a very limited number of works used machine-learning
methods on human connectome data from MRI for ASD/NC classification [9], in
a supervised manner. For instance, [10] used a functional network estimated from
resting state fMRI to distinguish between ASD subjects and healthy controls. [11],
which adopted a network regularized support vector machine, used DTI to identify
faulty sub-networks associated with ASD. However, while the majority of super-
vised machine-learning techniques are somewhat limited in terms of scalability as
they require reliable and accurate labeling of medical data, unsupervised learning
techniques can provide decision support for early intervention, help develop data-
driven guidelines for care plan management, and help group patients by similar
non-semantic features (i.e., latent representation of brain disorder group or sub-
group), to enable comparative effectiveness research (e.g., of medications) [12].
From a connectomic perspective, very few studies applied unsupervised learning
methods for brain disease applications [9]. For instance, [13] computed spectral
graph clustering to identify significant connectome modules for different brain dis-
order groups (Alzheimer’s disease (AD) and Significant Memory Concern (SMC)).
Another work [14] used a multi-view spectral clustering to group functional and
structural brain networks of traumatic brain injury (TBI) patients. However, to
the best of our knowledge, no previous unsupervised learning methods were used
to distinguish between autistic and healthy brains [9].

To fill this gap, we propose a high-order morphological connectomic manifold
learning for ASD identification using a novel unsupervised data clustering method
called single-cell interpretation via multikernel learning (SIMLR) [15]. SIMLR has
many appealing aspects. First, it inputs high-order networks and efficiently learns
a similarity matrix between networks by combining multiple kernels which pro-
vides a better fit to the inherent statistical distribution of the HON data. Second,
it is scalable and separates subpopulations more accurately than conventional
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Fig. 1. Illustration of the proposed high-order connectomic manifold learning for autis-
tic brain state identification. (A) High-order morphological network construction using
multiple brain networks, each measuring a unique cortical attribute (e.g., thickness) on
the cortical surface. These are stacked together to form a morphological brain tensor T s

for subject s. (B) Given the high-order feature matrix of all subjects, we used SIMLR
[15] to learn proper weights for multiple kernels, which measure different distances
between subjects. Next, we use the learned kernels to construct a symmetric similarity
matrix S between subjects. SIMLR imposes a low-rank constraint on S such that dif-
ferent populations of the input data will be embedded into independent block-diagonal
structure that clusters similar samples. This outputs a latent data representation in
a low-dimensional space, which is inputted to a clustering algorithm. Each point in
the 2D scatter plot represents an ASD or NC subject, and the corresponding colors
represent the true labels in each cluster.

methods (e.g., PCA or t-SNE). Third, it improves weak similarities between
samples through graph diffusion, which adds transitive similarities between dis-
similar regions that have many similar neighboring regions. We compare our
framework with both supervised and unsupervised disease identification tech-
niques. To the best of our knowledge, this is the first work that: (1) defines high-
order morphological brain networks, (2) jointly integrates multiple cortical mor-
phological brain networks for autism identification, and (3) utilizes unsupervised
SIMLR technique on ASD connectomic data.

2 High-Order Connectomic Manifold Learning
for Unsupervised Clustering of Autistic
and Healthy Brains

In this section, we present the high-order connectomic manifold learning for
ASD identification using multiple kernels based on SIMLR technique introduced
in [15]. We denote tensors by boldface Euler script letters, e.g., X . Matrices are
denoted by boldface capital letters, e.g., X, and scalars are denoted by lowercase
letters, e.g., x. For easy reference and enhancing the readability, we have summa-
rized the major mathematical notations in Table 1. Figure 1 illustrates the pro-
posed pipeline for ASD/NC identification in four major steps. (1) construction
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Table 1. Major mathematical notations used in this paper

Mathematical
notation

Definition

T s brain tensor of subject s in R
nr×nr×nv

Xk brain network in R
nr×nr denoting the k-th frontal-view of tensor T

Hs high-order morphological brain network for subject s

hs high-order feature vector extracted from the upper triangular part of Hs

Kl l-th learning kernel in R
n×n

n number of subjects

S similarity matrix in R
n×n for connectomic manifold learning

L latent matrix in R
n×c

c number of clusters

m number of kernels

w weighting vector of the kernels in R
m

In identity matrix in R
n×n

of low-order morphological network (2) construction of high-order morphological
network (3) feature extraction (4) connectomic manifold learning using SIMLR.

Low-order morphological network construction. For each subject s, we
construct a brain tensor T s of size Rnr×nr×nv for each cortical hemisphere, where
nr is the number of cortical regions of interest (ROIs) and nv is the number of
the tensor frontal views. Basically, for each cortical attribute (e.g., thickness),
we construct a morphological brain network that constitutes a frontal view in
T s. Let xk

i and xk
j denote the mean of a cortical attribute of the i-th ROI and

the j-th ROI in the k-th frontal view respectively. We then compute the absolute
difference between xk

i and xk
j which depicts the connectivity strength between

ROIs i and j. An element in the i-th row and j-th column of the k-th frontal
view Xk is defined as: Xk

ij = |xk
i − xk

j |.
High-order morphological network construction (HON). As the low-
order network is unable to reveal the intrinsic similarities between more than a
pair of ROIs, we propose to construct a high-order morphological network based
on Pearson correlation to detect more complex interaction patterns between mul-
tiple brain regions. In addition to maintaining the pairwise relationship between
ROIs in the same morphological view, the morphological HON underlines the
relationship between ROIs across different views. Let ys

ij denote the vector of
the s-th subject corresponding to the connectivity strength between the i-th and
j-th ROIs across all views. Each row in the high-order network Hs represents
a pair of ROIs (i, j) and each column denotes a pair of ROIs (p, q). For a sub-
ject s, an element in Hs is defined using the Pearson’s correlation coefficient
as Hs

ij,pq = corr(ys
ij , y

s
pq). We note that the entries Hs

ij,pq of the HON matrix
indicate the influence of the connectivity strength between the i-th and j-th ROI
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on the connectivity strength between the p-th and q-th ROI. Thus, it underlines
the higher order relationship between multiple ROIs.

Feature Extraction. For each subject, features are extracted in a naive way.
Due to their symmetry, we concatenate the upper triangle elements of the HON
matrix for subject s into a long feature vector hs. The weights on the diagonal
are set to zero to avoid self-connectedness. Next, using K-fold data partition
scheme, the extracted features of all ASD and NC subjects, while excluding the
K-th fold, are fed into SIMLR.

High-order connectomic manifold learning. In this section, we briefly
present the framework introduced in [15] and how we adapted it to our aim.
The main idea of SIMLR is to learn a pairwise similarity matrix of size n × n
from an input matrix of size n × d where n is the number of subjects and d is
the dimension of their associated feature vectors. This allows to learn the con-
nectomic manifold where all HON features {h1, . . . ,hn} are nested. Instead of
using one predefined distance metric which may fail to capture the nonlinear
relationship in the data, we use multiple Gaussian kernels with learned weights
to better explore in depth the similarity patterns among ASD and NC HONs. In
other words, adopting multiple kernels allows to better fit the true underlying
statistical distribution of the input matrix of high-order features. Additionally,
constraints are imposed on kernel weights to avoid a single kernel selection [15].

The Gaussian kernel is expressed as follows: K(hi,hj) = 1
εij

√
2π

e
(− |hi−hj |2

2ε2
ij

)
,

where hi and hj denote the feature vectors of the i-th and j-th subjects respec-
tively and εij is defined as: εij = σ(μi+μj)/2, where σ is a tuning parameter and

μi =
∑

l∈KNN(hi) |hi−hj |
k , where KNN(hi) represents the top k neighboring sub-

jects of subject i. The computed kernels are then averaged to further learn the
similarity matrix S through an optimization framework formulated as follows:

min
S,L,w

∑

i,j

−wlKl(hi,hj)Sij + β||S||2F + γtr(LT (In − S)L) + ρ
∑

l

wllogwl (1)

Subject to:
∑

l wl = 1, wl ≥ 0, LTL = Ic,
∑

j Sij = 1, and Sij ≥ 0 for all
(i, j), where:

1.
∑

i,j −wlKl(hi,hj)Sij refers to the relation between the similarity and the
kernel distance with weights wl between two subjects. The learned similarity
should be small if the distance between a pair of subjects is large.

2. β||S||2F denotes a regularization term that avoids over-fitting the model to
the data.

3. γtr(LT (In −S)L): L is the latent matrix of size n × c where n is the number
of subjects and c is the number of clusters. The matrix (In − S) denotes the
graph Laplacian.

4. ρ
∑

l wllogwl imposes constraints on the kernel weights to avoid selection of
a single kernel.
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An alternating convex optimization is adopted where each variable is opti-
mized while fixing the other variables until convergence [15]. Once, the similarity
matrix S is obtained, a dimensionality reduction is performed on S using t-SNE
[16]. In other words, the data is projected onto a lower dimension that preserves
the similarity depicted in S resulting in an n × c latent matrix L. For visualiza-
tion, the same algorithm is used to create an embedding of S in a 2D space. A
K-means clustering is then applied to the latent matrix L to cluster similar sub-
jects and assess the concordance with the true labels (Fig. 1). It should be noted
that the true labels were only used in the form of distinct colors to intuitively
visualize the groups in (Fig. 1).

3 Results and Discussion

Evaluation dataset and method parameters. We evaluated the proposed
clustering framework on 80 subjects (40 ASD and 40 NC) from Autism Brain
Imaging Data Exchange (ABIDE I)1 public dataset, each with structural T1-
w MR image [17]. We used FREESURFER to reconstruct both right and left
cortical hemispheres for each subject from T1-w MRI. Then we parcellated each
cortical hemisphere into 35 cortical regions using Desikan-Killiany Atlas. For
each subject, we generated nv = 4 cortical morphological networks: X1 denotes
the maximum principal curvature brain view, X2 denotes the mean cortical
thickness brain view, X3 denotes the mean sulcal depth brain view, and X4

denotes the mean of average curvature. For SIMLR parameters, using a nested
grid search, we set the number of clusters to c = 4. We used m = 21 kernels
where each kernel is determined by a set of hyperparameters (σ = 1 : 0.25 : 2.5,
number of top KNN neighbors in {10, 12, 14}), where σ is the variance parameter
of the Gaussian function.

Method evaluation and comparison methods. To evaluate the repro-
ducibility of our high-order connectomic manifold learning and clustering frame-
work, we used two k-fold cross-validation schemes (k = 5 and k = 10) using ran-
domized partitioning of data samples. The process was repeated 30 times and
the average classification performance reported as final result for all comparison
methods. We first compared our ASD/NC clustering method with Ward’s linkage
clustering [18], a widely used hierarchical clustering algorithm which optimizes a
Euclidean objective function as a criterion for merging a pair of clusters at each
step. This method was previously used for clustering functional HON networks
for Alzheimer’s disease diagnosis in [8]. Second, we compared the ASD/NC seg-
regation efficiency of our method with two classification frameworks based on
supervised linear support vector machine (SVM) classifier. Specifically, the first
supervised method learns a single SVM using training connectomic features.
To further evaluate SIMLR in a supervised manner, we propose a SIMLR-based
ensemble classifier learning framework, where we use SIMLR to cluster the train-
ing data into different clusters, and then train an SVM classifier for each training

1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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Fig. 2. ASD identification accuracy using our method and comparison supervised and
unsupervised methods. We evaluated each of these methods on (i) the concatenated
low-order morphological networks (i.e., 4 views) that we term with CON, and (ii) the
high-order morphological networks (HON).

cluster. In the testing stage, we use label majority voting by all trained SVM
classifiers to label an input testing subject. Each of these methods was evaluated
on (i) the concatenated low-order morphological networks (i.e., 4 views) that we
term with CON, and (ii) the high-order morphological networks (HON). Figure 2
displays ASD identification accuracies of all methods.

For the left hemisphere (LH), our method (Fig. 2–unsupervised SIMLR HON)
had the best performance in distinguishing between ASD/NC subjects among all
methods using both 5-fold and 10-fold cross-validation schemes, with an aver-
age performance of 63.64%. We note that the accuracies increased in average
with HON across all methods, which might indicate that LH has more discrim-
inative regions at a higher-order morphological level, except for the supervised
SIMLR based ensemble SVM which scored better with CON. The low perfor-
mance of supervised SIMLR-based ensemble SVM can be explained by the fact
that SIMLR tends to produce more homogenous clusters, hence creating a non-
balanced data samples for SVM training. This points to the imbalanced data
issue for training supervised methods. On the other hand, results for the right
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hemisphere (RH) were better in average with unsupervised SIMLR CON. The
performance of other methods also peaked when using CON features, except for
supervised SIMLR ensemble based SVM. This might indicate that morphological
changes due to ASD in RH regions occur at a low-order morphological connec-
tivity level rather than a higher order level. In other words, the RH pairwise con-
nectivity strength between regions in the same view depicts better the changes
associated with autism than the high order relationship between regions of dif-
ferent views. Still, the unsupervised methods scored better in performance than
supervised methods and the best discriminative power was obtained when using
the LH. For our best performing methods, we identified the top 2 discriminative
high-order relationships for LH: (1) (fusiform gyrus, parahyppocampal gyrus)
and (Lingual gyrus, pericalcarine cortex), and (2) (entorhinal cortex, transverse
temporal gyrus) and (fusiform gyrus, posterior cingulate cortex); along with the
top 2 discriminative low-order regions for RH: (1) entorhinal cortex and posterior
singulate cortex, and (2) precuneus cortex and postcentral gyrus.

4 Conclusion

In this paper, we presented the first work on a high-order connectomic mani-
fold learning using morphological brain networks for autism identification. Our
framework outperformed both supervised and unsupervised baseline methods
and was able to further identify the most discriminative relationships between
pairs of morphological brain connectivities. Noting that ASD classification is a
challenging problem, achieving 65.62% is quite promising based on solely T1-w
MR images. To improve the connectomic manifold learning for a more accu-
rate ASD/NC segregation, we will evaluate our method on the whole ABIDE
dataset, which allow more powerful statistical analysis of our results. Further,
we will extend our unsupervised learning method to spatiotemporal connectomic
data for monitoring and predicting ASD progression.
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Abstract. We present a generative Bayesian framework that automat-
ically extracts the hubs of altered functional connectivity between a
neurotypical and a patient group, while simultaneously incorporating
an observed clinical severity measure for each patient. The key to our
framework is the latent or hidden organization in the brain that we can-
not directly access. Instead, we observe noisy measurements of the latent
structure through functional connectivity data. We derive a variational
EM algorithm to infer both the latent network topology and the unknown
model parameters. We demonstrate the robustness and clinical relevance
of our model on a population study of autism acquired at the Kennedy
Krieger Institute in Baltimore, MD. Our model results implicate a more
diverse pattern of functional differences than two baseline techniques,
which do not incorporate patient heterogeneity.

1 Introduction

Functional connectomics explores the intrinsic organization of the brain via the
underlying assumption that two regions, which reliably co-activate are more
likely to participate in the same neural processes than two uncorrelated or anti-
correlated regions [1]. It has become ubiquitous in the study of neurological
disorders, such as schizophrenia and autism. From a practical standpoint, these
functional relationships are typically evaluated in resting-state fMRI (rsfMRI),
which does not require patients to complete challenging experimental paradigms.
Neuroscientifically, group-level changes in the functional architecture of the brain
are treated as biomarkers of a particular neurological condition.

State-of-the-art methods follow a two-step procedure of first fitting a
connection- or graph-based model and then identifying group differences. Unfor-
tunately, connection-based effects [2] are difficult to interpret and nearly impos-
sible to verify through direct stimulation. While large-scale graph properties,
c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 60–69, 2017.
DOI: 10.1007/978-3-319-67159-8 8
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such as modularity [3] and small-worldness [4], mitigate these limitations, are
markedly removed from the original network and rarely illuminate a concrete
etiological mechanism. Additionally, most studies implicitly treat the patient
group as homogeneous, for example, by conducting a statistical evaluation that
differentiates patients from controls. This simplification has likely contributed
to the lack of reproducible rsfMRI findings in the clinical literature [5].

This paper tackles a fundamental yet overlooked question in the study of
functional connectomics: how do we identify the altered functional pathways
given a heterogeneous patient cohort? Going one step beyond conventional graph
analytics, we will characterize the full network topology, i.e., the entire collection
of nodes (brain regions) and edges (functional connections) associated with the
affected subnetwork. Our framework is based on two guiding principles: (1) com-
plex neurological disorders reflect a distributed but interrelated network of func-
tional impairments, (2) the influence of this affected subnetwork is moderated
by the observed clinical severity. Hence, rather than dismissing or regressing out
the clinical scores, these measures will crucially guide our network estimation
procedures. We draw from the Bayesian model of [6]; however, our novel data
likelihood reflects the patient-specific contributions of two functional templates.

We evaluate our model on a population study of Autism Spectrum Disor-
der (ASD). ASD is characterized by impaired social-communicative skill and
awareness across multiple sensory domains, coupled with restricted/repetitive
behaviors. Despite ongoing efforts, the complex and heterogeneous presentation
of ASD has impeded the discovery of robust neuroimaging biomarkers for the dis-
order. Functional connectomics has largely implicated the default mode [7] and
large-scale network measures [2]. However, these approaches blur information
across regions and connections, so it is unclear what neural processes are being
impacted. In contrast, our mathematical framework will automatically infer the
altered functional pathways, as informed by autism severity.

2 Generative Model of Abnormal Communities

We hypothesize that a given neurological disorder reflects coordinated disrup-
tions in the brain. Although we cannot specify a priori where these disruptions
will occur, we assume that the affected regions will communicate differently
with other parts of the brain than if the disorder were not present. In the func-
tional connectomics realm, our assumption can be modeled by region hubs, which
exhibit a large number of altered functional connections, as compared to the neu-
rotypical cohort. Below, we refer to these region hubs as disease foci ; the altered
connectivity pattern is termed the canonical network.

Following the methodology of [6], we define latent functional connectivity
templates Fij and F̄ij , which capture the neural synchrony between region i and
region j in the neurotypical (i.e., control) and clinical populations, respectively.
Empirically, we find that three states: low (Fij = 0), medium (Fij = 1), and
high (Fij = 2), best capture the dynamic range and variability of our data. The
rsfMRI correlation Bl

ij for control subject l is a noisy observation of the latent
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Fig. 1. Hierarchical network model. Left: Conceputal diagram of behavioral influ-
ence. Red regions correspond to the disease foci, and red edges specify the canonical
functional network. Green edges are normal (i.e., healthy) connections. The canonical
network contribution for each patient m is specified by the clinical severity, βm ∈ [0, 1].
Here, β1 > βM , as indicated by the darker edges. Right: Graphical model repre-
sentation. The label Ri indicates whether region i is healthy or abnormal. The neu-
rotypical template {Fij} provides a baseline functional architecture for the brain,
whereas the clinical template {F̄ij} describes the canonical network organization. The
patient rsfMRI correlations {B̄m

ij } are generated according to the clinical scores {βm}.
(Color figure online)

template Fij . However, the rsfMRI correlations {B̄m
ij } for patient m are drawn

from either latent template in proportion to the observed clinical severity βm ∈
[0, 1]. Figure 1 outlines the full generative process.

Our discrete representation of latent functional connectivity is a notable
departure from conventional analysis. Essentially, we assume that the rsfMRI
correlations fall into one of three general categories, and that differences in the
bin assignments are the relevant markers of a disorder. The beauty of our frame-
work is that we isolate the disorder-induced effects in the latent structure, while
accommodating noise and subject variability via the data likelihood.

Disease Foci: The binary variable Ri indicates whether region i is healthy
(Ri = 0), or whether it is a disease foci (Ri = 1). We assume an i.i.d. Bernoulli
prior: P (Ri = 1;πr) = πr. The unknown parameter πr is shared across regions.

Latent Network Topology: The latent functional connectivity Fij denotes the
co-activation between regions i and j in the neurotypical template. Once again,
Fij is modeled as a tri-state random variable with an i.i.d. multinomial prior
across all pairwise connections: P (Fij = s;πf ) = πf

s , ∀s = 0, 1, 2.



Extracting Network-Based Functional Differences 63

The clinical template F̄ij depends on both the neurotypical template Fij

and the region labels R. We define this variable via three simple rules: (1) a
connection between two disease foci is abnormal, (2) a connection between two
healthy regions is normal, and (3) a connection between a healthy region and
a disease foci is abnormal with unknown probability η. Ideally, F̄ij = Fij for
healthy connections, and F̄ij �= Fij for abnormal connections. However, to better
accommodate noise, we allow the clinical template to deviate from these rules
with probability ε. Mathematically, the conditional distribution is given by

P (Fij |Fij , Ri, Rj , η, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

εFT
ij F̄ij

(
1−ε
2

)FT
ij F̄ij

, Ri = Rj = 1,

(1 − ε)FT
ij F̄ij

(
ε
2

)FT
ij F̄ij

, Ri = Rj = 0,

ε
FT

ij F̄ij

1

(
1−ε1
2

)FT
ij F̄ij

, Ri �= Rj ,

(1)

where ε1 = ηε+(1−η)(1− ε) reflects the interaction between the edge density η
and the latent noise ε when the region labels differ. For convenience, we have
represented the neurotypical connectivity Fij as a length-three binary indicator
vector [Fij0 Fij1 Fij2]T, and likewise for the clinical template.

Data Likelihood: The rsfMRI correlation Bl
ij for subject l is generated from

a Gaussian distribution, with mean and variance controlled by the neurotypical
functional template Fij , i.e., P (Bl

ij |Fij = s; {μ, σ2}) = N (
Bl

ij ;μs, σ
2
s

)
.

In contrast, the patient likelihood weighs the relative contributions of the clin-
ical and neurotypical templates according to the observed severity score βm ∈
[0, 1]. Effectively, the patient rsfMRI correlation B̄m

ij is sampled from a condi-
tional Gaussian mixture with a priori probabilities βm and 1 − βm.

Using the binary indicator representation for Fij and F̄ij , we have

P (B̄m
ij |Fij , F̄ij ;βm, {μ, σ2}) = βm

[
2∏

s=0

N (
B̄m

ij ;μs, σ
2
s

)F̄ijs

]

+ (1 − βm)

[
2∏

s=0

N (
B̄m

ij ;μs, σ
2
s

)Fijs

]

. (2)

Intuitively, patients with larger βm will more closely follow the clinical template
than patients with smaller βm. The patient-specific analysis in Eq. (2) distin-
guishes our model from conventional methods and from the prior work of [6].

Variational Inference: We introduce a set of auxiliary random vari-
ables {Zm

ij }, which indicate whether the corresponding rsfMRI measure B̄m
ij is

drawn from the clinical (Zm
ij = 1) or neurotypical (Zm

ij = 0) Gaussian mix-
ture. This strategy allows us to eliminate the sum in Eq. (2) by replacing the
conditional density of B̄m

ij with the following joint distribution over Zm
ij and B̄m

ij :

P (Zm
ij , B̄m

ij |Fij , F̄ij ;βm, {μ, σ2}) = P (Zm
ij ;βm)P (B̄m

ij |Fij , F̄ij , Z
m
ij ; {μ, σ2})

=

[

βm

2∏

s=0

N (
B̄m

ij ;μs, σ
2
s

)F̄ijs

]Zm
ij

[

(1 − βm)
2∏

s=0

N (
B̄m

ij ;μs, σ
2
s

)Fijs

]1−Zm
ij

(3)
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We combine the above terms to obtain the joint density of latent and observed
random variables. Let Θ = {πr, πf , η, ε, μ, σ2} denote the collection of unknown
but non-random parameters, and recall that the clinical scores βm are given.
The region labels {Ri} induce a complex dependency across pairwise connec-
tions 〈i, j〉. Therefore, we leverage a Variational EM framework to derive the
Maximum Likelihood (ML) solution to our model [8].

Our approximate posterior assumes the following factorized form:

Q(R,F, F̄ , Z) =
N∏

i=1

qr
i (Ri; α̃i)

∏

〈i,j,〉
qc
ij(Fij , F̄ij ; ν̃ij)

M∏

m=1

∏

〈i,j,〉
qz
ij(Z

m
ij ; γ̃m

ij ), (4)

where qr
i (·) and qz

ij(·) are Bernoulli distributions parameterized by α̃i and γ̃m
ij ,

respectively. Conversely, qc
ij(·) is a multinomial distribution with 9 states para-

meterized by ν̃ij ; these states account for the 9 configurations of Fij and F̄ij .
Equation (4) preserves the connection-wise dependencies in our model while
remaining tractable for a large number of regions.

We employ a coordinate descent algorithm to jointly optimize all unknown
quantities. During the E-step, we fix Θ and iteratively update the elements of
Q(·) to minimize the variational free energy. The updates for ν̃ij and γ̃m

ij can be
expressed in closed form given the other variational parameters. However, the
updates for {α̃i} are coupled. Therefore, we perform an inner fixed-point iter-
ation until the region posterior converges. In the M-step, we fix Q(R,F, F̄ , Z)
and optimize the model parameters Θ. The prior and likelihood updates for
{πr, πf , μ, σ2} parallel those of a Gaussian mixture model. We then jointly opti-
mize the edge density η and the latent noise ε via Newton’s method.

Model Evaluation: The marginal posterior qr
i (Ri; α̃i) informs us about the

disease foci. We evaluate the robustness of these region assignments via boot-
strapping. Specifically, we fit the model to random subsets of the data while pre-
serving the ratio of patients to neurotypical controls. We run two experiments,
corresponding to subsets with 90% and 50% of the overall cohort, respectively.
Our results are averaged across 100 data re-samplings.

Our canonical network corresponds to the idealized graph of functional differ-
ences: Fij �= F̄ij . Despite the confounding latent noise, governed by the parame-
ter ε, we can approximate the canonical network based on the max a posteriori
(MAP) solution for {R,F, F̄} and the parameter estimates Θ̂.

Finally, we perform a qualitative comparison of our proposed model with the
Bayesian formulation in [6], which assume a homogeneous patient group, and
with univariate t-tests on the pairwise rsfMRI correlation coefficients.

Synthetic Experiments: We have run simulations on synthetic data sampled
from our model to demonstrate that our variational algorithm can recover the
ground truth region labels. Figure 2 illustrates the error in region assignments
with respect to two quantities: the latent noise ε and the Gaussian separation
Δμ/σ between adjacent connectivity states assuming equal variances.

In the first experiment (left), we sample disease foci based on the region
prior πr estimated from our autism dataset (see Table 1) and sweep both noise
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Fig. 2. Probability of error in the inferred region labels, as averaged across 50 gen-
erations of synthetic data. The red X and red line correspond to the noise regime
estimated from our real-world dataset. Left: Disease foci were sampled according to
πr in Table 1. Right: Uniformly distributed changes in latent functional connectivity.
Gray interval denotes the upper and lower standard deviation. (Color figure online)

quantities. In the second experiment (right), we assume that the latent functional
differences are uniformly distributed across the brain (i.e., πr = 0) and compute
the false positive assignments of regions as disease foci. Here, we have fixed the
Gaussian separation according to our rsfMRI dataset and focus on the latent
noise ε. The number of regions, cohort sizes and edge density η are fixed according
to the values from our autism dataset. As seen, our algorithm performance is
near-perfect for small values of ε and larger Gaussian separations. Encouragingly,
the region assignment error is small in the noise regime of our real-world dataset,
as marked with a red X (left) and a red line (right) in Fig. 2.

3 Population Study of Autism

We demonstrate our method on a cohort of 66 children with high-functioning
ASD and 66 neurotypical controls, who were matched on the basis of age, gen-
der and IQ. RsfMRI scans were acquired on a Phillips 3T Achieva scanner
using a single-shot, partially parallel gradient-recalled EPI sequence (TR/TE =
2500/30 ms, flip angle = 70◦, res = 3.05×3.15×3 mm, 128 or 156 time samples).
Children were instructed to relax and focus on a cross-hair while remaining still.

RsfMRI preprocessing includes slice time correction, rigid body realignment,
and normalization to the EPI version of the MNI template using SPM [9]. The
time series were temporally detrended, and we use CompCorr to estimate and
remove spatially coherent noise from the white matter and ventricles, along
with linearly detrended versions of the six rigid body realignment parameters
and their first derivatives [10]. The cleaned data was spatially smoothed (6 mm
FWHM Gaussian kernel), temporally filtered using a 0.01–0.1 Hz pass band, and
spike-corrected via tools from the AFNI package [11].

We define 116 cortical, subcortical and cerebellar regions based on the Auto-
matic Anatomical Labeling (AAL) atlas [12]. The rsfMRI measure Bl

ij is com-
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Fig. 3. Results of our heterogeneous patient model. Left: Disease foci projected onto
the inflated cortical surface. Right: Canonical network of abnormal functional connec-
tivity. Yellow nodes correspond to the disease foci. Blue lines signify reduced functional
connectivity in ASD; magenta lines denote increased functional connectivity in ASD.
(Color figure online)

puted as the Pearson correlation coefficient between the mean time courses of
regions i and j. We focus on deviations from baseline by centering the correla-
tion histogram for each subject and fixing μ1 = 0. Our severity measures βm

correspond to the Autism Diagnostic Observation Schedule (ADOS) total raw
score, normalized by the maximum possible test score.

Canonical Network: Figure 3 illustrates the canonical network inferred by our
model. The yellow nodes correspond to the disease foci, and we display connec-
tions that are consistently implicated across bootstrapping trials. Magenta and
blue lines denote increased and reduced latent connectivity in ASD, relative to
the neurotypical population. As seen, we identify four disease foci: the right pre-
central gyrus (R.PreCG), the right posterior cingulate gyrus (R.PCG), the right
angular gyrus (R.ANG) and vermis 8 of the cerebellum (Verm8).

Our results are closely aligned with growing evidence, which suggests that
brain abnormalities associated with ASD occur at the level of interconnected
systems/modules [13,14]. RsfMRI studies in neurotypical subjects have identi-
fied several intrinsically connected modules related to visual, motor, auditory,
behavioral control, and interoceptive processes [15]. The nodes in Fig. 3 belong
to two of these modules: the right precentral gyrus (R.PreCG) and the cerebel-
lar vermis (Verm8) represent critical foci of the sensorimotor network that is
specialized in the production of action, while the right posterior cingulate gyrus
(R.PCG) and the right angular gyrus (R.ANG) are both key nodes of the default

Table 1. Estimated model parameters for the proposed patient-specific model (top)
and the homogeneous model of [6] (bottom).

πr πf
0 πf

1 πf
2 η ε μ0 μ1 μ2 σ2

0 σ2
1 σ2

2

Prop 0.035 0.28 0.49 0.22 0.16 0.11 –0.18 0.00 0.23 0.037 0.031 0.030

Homogen 0.0087 0.29 0.48 0.22 0.16 0.052 –0.18 0.00 0.22 0.037 0.032 0.031
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Fig. 4. Average marginal posterior probability qri (·) for each community across 100
random samplings of the rsfMRI dataset. Top row includes 90% of the subjects in each
subset, and the bottom row includes 50%. Reproducibility of cerebellar regions are
listed underneath. The colorbar denotes the average posterior probability q̄ri .

mode network (DMN), which is more engaged during self-referential processing
and social cognition [16]. Extant ASD research has largely focused on under-
standing social-communicative deficits in ASD and the potential involvement of
the DMN. However, an emerging consensus suggests that movement abnormal-
ities are also specific for ASD [17] and potentially rooted in the intrinsic func-
tional organization of the brain [18]. For example, action execution, imitation,
and emulation can be linked to shared functional dynamics between the senso-
rimotor and DMN systems [19]. As such, communication disruptions between
these systems may negatively impact the development of internal action models,
which are crucial to both sensorimotor and social skill development in children
with ASD [20]. Considered together, our findings support the theory that motor
behavior and self-referential processing deficits experienced by individuals with
ASD can be jointly attributed to faulty connections within the brain.

Figure 4 reports the average posterior probability q̄r
i (·) of each region across

100 bootstrapped trials. We display only the regions for which q̄r
i > 0.3 to empha-

size the most prominent patterns. As seen, our model consistently recovers the
canonical network foci in Fig. 3 when trained on 90% of the data. Remarkably,
we are still able to detect the original network foci using half the dataset, which
further validates the reproducibility of our Bayesian model. Finally, our boot-
strapping experiments also implicate cerebellar regions adjacent to Vermis 8,
which ties into broader theories of altered cerebellar functioning in ASD [21].

Figure 5 compares our canonical network (left) with the model of [6] (mid-
dle), which assumes a homogeneous patient group, and with standard univariate
tests (right). Notice that while the estimated model parameters in Table 1 are
nearly identical, the proposed and homogeneous Bayesian models implicate dif-
ferent functional networks. Specifically, the homogeneous model identifies a sin-
gle disease foci (R.ANG). However, incorporating the severity scores βm seems
to provide an additional level of flexibility, which allows us to find robust effects
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Proposed Method Homogeneous Connection T-Test

Fig. 5. Qualitative comparison of our proposed model of patient heterogeneity (left),
the original Bayesian model described in [6] (middle), and the top connections (p <
0.001 uncorrected) via two-sample t-tests on the pairwise correlation values (right).

in other brain regions. The connections implicated by two-sample t-tests form a
markedly different pattern than the network model results; they tend to concen-
trate in the frontal cortex and anterior cingulate gyrus. This observation suggests
that our disease foci provide a unique perspective of the data.

4 Conclusion

We have introduced a novel probabilistic framework that identifies group differ-
ences in functional connectivity while accommodating a heterogeneous clinical
presentation. Specifically, we assume a latent graph organization that captures
population-level effects. The influence of this latent structure on the data is
moderated by the observed clinical severity scores for each patient. Synthetic
experiments confirm that our variational algorithm can accurately infer ground-
truth region labels under noise levels commiserate to real-world data. We further
evaluate our model on a population study of high-functioning ASD. Our results
implicated a distributed network of abnormal connectivity that concentrates in
the precentral gyrus, posterior cingulate, angular gyrus and cerebellar vermis.
We use bootstrapping to verify the robustness of our region assignments, and we
demonstrate that our model identifies a richer set of functional differences than
two baseline approaches, which do not account for patient heterogeneity.

Acknowledgments. This work was supported in part by the National Institute
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Abstract. Investigation of functional brain connectivity patterns using
functional MRI has received significant interest in the neuroimaging
domain. Brain functional connectivity alterations have widely been
exploited for diagnosis and prediction of various brain disorders. Over
the last several years, the research community has made tremendous
advancements in constructing brain functional connectivity from time-
series functional MRI signals using computational methods. However,
even modern machine learning techniques rely on conventional correla-
tion and distance measures as a basic step towards the calculation of the
functional connectivity. Such measures might not be able to capture the
latent characteristics of raw time-series signals. To overcome this short-
coming, we propose a novel convolutional neural network based model,
FCNet, that extracts functional connectivity directly from raw fMRI
time-series signals. The FCNet consists of a convolutional neural net-
work that extracts features from time-series signals and a fully connected
network that computes the similarity between the extracted features
in a Siamese architecture. The functional connectivity computed using
FCNet is combined with phenotypic information and used to classify
individuals as healthy controls or neurological disorder subjects. Experi-
mental results on the publicly available ADHD-200 dataset demonstrate
that this innovative framework can improve classification accuracy, which
indicates that the features learnt from FCNet have superior discrimina-
tive power.

Keywords: Functional connectivity · CNN · fMRI · Deep learning

1 Introduction

In recent literature, functional magnetic resonance imaging (fMRI) has become a
popular neuroimaging modality to explore the functional connectivity (FC) pat-
terns of the brain. Specifically, the resting state FC has shown to reflect a robust
functional organization of the brain. Many studies [1–3] have shown promising

c© Springer International Publishing AG 2017
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outcomes in the understanding of brain disorders like schizophrenia, attention
deficit hyperactivity disorder (ADHD) and Alzheimer’s disease by studying brain
functional networks in resting state fMRI. The human brain can be viewed as
a large and complicated network in which the regions are represented as nodes
and their connectivity as edges of the network. FC is viewed as a pair-wise
connectivity measurement which describes the strength of temporal coherence
(co-activity) between the brain regions. A number of recent studies have shown
FC as an important biomarker for the identification of different brain disorders
like ADHD [1], schizophrenia [3] and many more.

Several methods have been developed for extracting the FC from temporal
resting state fMRI data such as correlation measures [3], clustering [1] and graph
measures [2]. Most of the existing techniques, including modern machine learn-
ing methods like clustering, rely on conventional distance-based measures for
calculating the strength of similarity between brain region signals. These mea-
sures act as hand-crafted features towards determining the FC and, may not be
able to capture the inherent characteristics of the time-series signals.

A convolutional neural network (CNN) provides a powerful deep learning
model which has been shown to outperform existing hand-crafted features based
methods in a number of domains like image classification, image segmentation
and object recognition. The strength of a CNN comes from its representation
learning capabilities, where the most discriminative features are learned during
training. A CNN is composed of multiple modules, where each module learns
the representation from one lower level to a higher, more abstract level. To
our knowledge, CNNs have not been investigated to determine the FC of brain
regions. In this work, our motivation is to construct the FC patterns from fMRI
data by exploiting the representation learning capability of a CNN. Particularly,
we are interested to determine if a CNN can capture the latent characteristics
of the brain signals. Compared with other methods, our approach calculates the
FC directly from pairs of raw time-series fMRI signals, naturally preserving the
inherent characteristics of the time-series signal in the constructed FC.

For training, FCNet requires pairs of fMRI signals and a real value indicating
the degree of FC. Training data is produced using a generator that selects pairs of
time-series signals that are considered functionally connected, and those that are
not. This data is used to train a Siamese network [4] architecture to predict FC
from an input signal pair. We demonstrate the expressive power of the features
extracted from the FCNet in a classification framework that classifies individuals
as healthy control or disorder subjects.

The proposed framework has several stages and is illustrated in Fig. 1. The
first stage is to train the proposed FCNet using the data generated by a data
generator (Fig. 1a). The FCNet learns to infer the FC between the brain regions.
Once the FCNet is trained, the next step is to use the FCs to distinguish healthy
control and disorder subjects. This is accomplished by the classification pathways
(Fig. 1b, c). During training, the fMRI signal from a training subject is fed into
the trained FCNet, which generates a FC map of the brain regions. Then an
Elastic Net (EN) [5] is used to extract the most discriminative features from
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Fig. 1. Flowchart of the proposed method. In (a), FCNet is trained from the data
generated by the generator. In the training pipeline (b), functional connectivity (FC)
is generated through FCNet. Next, discriminant features are selected and are con-
catenated with phenotypic data, then employed to train a SVM classifier. The testing
pipeline is shown in (c). After FC is calculated, features are selected and concatenated
with phenotypic data. A trained SVM is employed for classification.

the FC. The process combines variable shrinkage and grouped feature selection.
These features are concatenated with phenotypic information to create a final
feature map. The feature map is used to train a SVM classifier which learns to
classify between healthy control and disorder subjects. Once the classification
path of Fig. 1b is trained, it can be used to classify test subjects as shown in
Fig. 1c.

The contributions of this work include: (1) a novel CNN-based deep learn-
ing model for extraction of functional connectivity from raw fMRI signals (2)
a learnable similarity measure for calculation of functional connectivity and
(3) improved classification accuracy over the state-of-the-art on the ADHD-200
dataset.

2 Method

2.1 Data and Preprocessing

The resting state fMRI data evaluated in this work is from the ADHD-200 con-
sortium [6]. Different imaging sites contributed to the dataset. The data is com-
prised of resting state functional MRI data as well as phenotypic information.
The consortium has provided a training dataset, and an independent testing
dataset separately for each imaging site. We have used data from three sites:
NeuroImage (NI), New York University Medical Center (NYU) and Peking Uni-
versity (Peking). All sites have a different number of subjects. Additionally,
imaging sites have different scan parameters and equipment, which increases
the complexity and diversity of the dataset. This data has been preprocessed as
part of the connectome project1 and brain is parcellated into 90 regions using
the automated anatomical labelling atlas [7]. A more detailed description of the

1 www.preprocessed-connectomes-project.org/adhd200/.

http://www.preprocessed-connectomes-project.org/adhd200/
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data and pre-processing steps appears on the connectome website. We have inte-
grated phenotypic information of age, gender, verbal IQ, performance IQ and
Full4 IQ for NYU and Peking (for NeuroImage, phenotypic information of IQs
was not available).

2.2 Functional Connectivity Through FCNet

In this work, we propose a novel deep CNN for the calculation of FC. Our
proposed method calculates FC directly from raw time-series signals instead of
relying on conventional similarity measures like correlation or distance based
measures.

FCNet is a deep-network architecture for jointly learning a feature extractor
network that captures the features from the individual regional time-series signal
and a learnable similarity network that calculates similarity between the pairs.
The FCNet is presented in Fig. 2 and individual networks are detailed below.
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Fig. 2. Architecture of the FCNet. (a) FCNet with coupled feature extractor network
(one network for each brain region) and the similarity network which measures the
degree of similarity between the two regions. (b) The feature extractor network which
includes multiple layers namely Convolutional (Conv), Batch Normalization (B-Norm),
Pooling (pool), Fully Connected (F.Conn) and Leaky-ReLU (L-ReLU). (c) The simi-
larity measure network. (d) Legends for feature extractor network.

The Feature Extractor Network: This network extracts features from indi-
vidual brain region time-series signals and is comprised of multiple layers that
are common in CNN models to learn abstract representations of features. Here,
we use a Leaky Rectified Linear Unit (ReLU) as the non-linearity function, due
to its faster convergence over ReLU [8]. The network accepts time-series signal
of length 172. All pooling layers pool spatially with pool length of 2. For all
convolution layers, we use kernel size of 3 and the number of filters are 32, 64,
96, 64, 64 for layers C1, C2, C3, C4, C5 respectively. The last fully connected
layer in the network has 32 nodes.

The Similarity Measure Network: This network employs a neural network
to learn the FC between pairs of extracted features from two brain regions.
This is in contrast to conventional methods that use hand-crafted computations
like correlation or distance based measures. The input to this network are the
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abstracted features extracted from two regions. The network computes their FC,
which relates to the similarity between the two regions. The network is comprised
of three fully connected layers where the last layer is connected to a softmax
classifier with dense connections. Next, we describe architectural considerations
and training.

Coupled Architecture with Shared Parameters: In order to calculate the
FC between different pairs of brain regions, the brain regions must undergo the
same feature extraction processing. It can be realized by employing the two
feature extractor networks (coupled structure) with the constraint that both
networks share the same set of parameters. During the training phase, updates
are applied to the shared parameters. The approach is similar to Siamese network
[4] that is used to measure similarity between two images.

Data Generator for Training FCNet: For training FCNet, we require simi-
lar (functionally connected) and dissimilar (not functionally connected) regions
with corresponding labels (one and zero respectively). We develop a generator
to generate pairs of brain regions using support from affinity propagation [9]
clustering for labelling the training pairs. We make pairs for regions that lie in
the same cluster and assign them the label one (functionally connected). For
unconnected pairs (regions that are not functionally connected), we randomly
pick regions that do not belong to the same cluster and label the pair zero. The
procedure is detailed in Algorithm1.

Algorithm 1. Data generation for training of the FCNet.
Input: X % X is the subjects in training data, nReg (number of regions) = 90.
Output: (Pairs, Labels) % Pairs and Labels are used for training of FCNet.

1 for each x in X do
2 c ← cluster(x) % clustering results in c
3 count ← 0
4 for i ← 1 to nReg do
5 for each j in (1 → nReg) such that c(xi) = c(xj) and i �= j do
6 AddToPairs((xi,xj), Pairs)
7 AddToLabels(1, Labels)
8 count ← count + 1

9 end
10 for k ← 1 to count do
11 r ← RandomSelectRegion(x) such that c(xi) �= c(r)
12 AddToPairs((xi,r), Pairs)
13 AddToLabels(0, Labels)

14 end

15 end

16 end
17 return (Pairs,Labels)
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Training of FCNet: FCNet is trained on pair-wise signals with labels gener-
ated from the generator as described above. The FCNet is trained end-to-end
using a coupled architecture minimizing the cross-entropy loss

Lfc = − 1
n

n∑

1

[yilog(ŷi) + (1 − yi)log(1 − ŷi)], (1)

where n is the number of training samples, yi is the label of pairs (1 for func-
tionally connected and 0 for unconnected regions) and ŷi is the prediction by
the softmax layer.

To evaluate FC through the FCNet, regions belonging to each subject are
grouped into pairs (for 90 regions belonging to a subject 4005 unique pairs are
created). The pairs are passed to the trained FCNet, which computes FC for
each pair.

2.3 Feature Selection and Classification

The FC of a subject may contain highly correlated features. We investigate Elas-
tic Net (EN) based feature selection [5] for extracting discriminant features. EN
combines the L1 penalty to enable variable selection and continuous shrinkage,
and the L2 penalty to encourage grouped selection of features. If y is the label
vector for subjects yiε(l1, l2, ...ln) and X = {FC1, FC2, ...FCn} represents the
functional connectivity of subjects, we minimize the cost function

Len(λ1, λ2, β) = (||y − Xβ||)2 + λ1(||β||)1 + λ2||β||2, (2)

where λ1 and λ2 are weights of the terms forming the penalty function, and β
coefficients are calculated through model fitting. The features with non zero β
coefficients relating to minimum cross validation error are extracted. Similar to
[1], phenotypic information of the subjects are concatenated with the EN based
selected features to construct a combined feature set for classification.

The final step in the proposed framework is classification where a support
vector machine (SVM) classifier is utilized to evaluate the discriminative ability
of the selected features.

3 Experiments and Results

The proposed framework is evaluated on a dataset provided by the ADHD-
200 consortium, and contains four categories of subjects: controls, ADHD com-
bined, ADHD hyperactive-impulsive and ADHD inattentive. Here we combine
all ADHD subtypes in one category since we want to investigate classification
between healthy control and ADHD.

In many biomedical domains specifically fMRI, scarcity of the data emerges
as a challenging task. To address this issue, we combine all subjects from training
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Table 1. Comparison of FCNet with the average results of competition teams, highest
accuracy achieved for individual site, correlation based FC and state-of-the-art clus-
tering based FC results [1]. The highest accuracy for NI was not quoted by [10].

NI Peking NYU

Average accuracy [6] 56.9% 51.0% 35.1%

Highest accuracy [10] – 58% 56%

Clustering method [1] 44% 65% 61%

Correlation 52.0 % 52.9% 56.1%

Proposed method 64.0% 68.6% 63.4%

datasets of the different imaging sites and FCNet is trained on this combined
training dataset. Feature selection and classification is evaluated on individual
imaging datasets. The trained SVM classifier is tested with independent test data
provided for each individual site, and results are presented in Table 1. The results
show that our method outperforms the average accuracy results of competition
teams (data from the competition website), highest accuracy for any individual
site (from [10]) and correlation-based FC results. For correlation based results,
FC is calculated through correlation and the rest of processing pipeline is same
as our method. It is worth noting that the parameters of our framework are
held constant for all the imaging datasets. Our method also performs well in
comparison with a state-of-the-art clustering based FC technique [1]. In order
to compare with the related work [1] that employed phenotypic information,
we compare and present the results in Table 2, which shows that our method
performs well in all of the three imaging sites. Finally, in order to study the
FC differences between the healthy control group and the ADHD group, we
visualize their respective FC patterns using the Peking dataset and present the
results in Fig. 3. The results show that in ADHD, the temporal lobe functional
connectivity is reduced compared to healthy controls.

Table 2. Comparison of proposed method with the state-of-the-art results [1]. The
results suggest that the FCNet outperforms the state-of-the-art classification accuracy.

Phenotypic information Method NI Peking NYU

Not used Clustering method [1] 44% 58.8% 24.3%

Proposed method 60.0% 62.7% 58.5%

Used Clustering method [1] – 65% 61%

Proposed method 64.0% 68.6% 63.4%
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(a) FC patterns of the healthy control group.
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(b) FC patterns of the ADHD group.

Fig. 3. Comparison of mean functional connectivity (FC) of healthy control group (a)
and ADHD group (b) for the Peking dataset. For the sake of clarity, only the top 200
connections (based upon their connectivity strength) from both groups are presented.
The FC patterns show alterations. The temporal lobe FC patterns are altered the most
with a decrease of 15% FC patterns in the ADHD group. The inter-temporal lobe FC
patterns are reduced from 22.7% (healthy group) to 7.7% (ADHD group).

4 Conclusion

In this paper, we have proposed a novel convolutional neural network-based
deep learning model called FCNet for functional connectivity estimation from
fMRI data. The proposed model extracts functional connectivity from raw time-
series signals instead of relying on any conventional distance based measure. The
FCNet is comprised of a feature extractor network that extracts features from the
raw time-series signals and a learnable similarity measure network that calculates
the similarity between regions. The FCNet is an end-to-end trainable network.
After calculating functional connectivity, elastic net is applied to select discrim-
inant features. Finally, a support vector machine classifier is applied to evaluate
the classification results. Experimental results on the ADHD-200 dataset demon-
strate promising performance with our method.
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Abstract. Identifying white matter connectivity patterns in the human brain
derived from neuroimaging data is an important area of research in computa-
tional medicine. Recently, machine learning techniques typically use region-to-
region or hub-base connectivity features to understand how the brain is orga-
nized, and then use this information to predict the clinical outcome. Unfortu-
nately, computational models that are trained with these types of features are
very localized to a particular region in the brain, i.e. one particular brain region
or two connected brain regions, and may not provide the level of information
needed to understand more complex relationships that span multiple connected
brain regions. To overcome this limitation a new subnetwork feature is intro-
duced that combine region-to-region and hub-based delay information using the
shortest path algorithm. The proposed feature is then used to construct a deep
learning model to recognize the identity of 20 different subjects. The results
show person identification models trained with our feature are approximately
30% and 50% more accurate than models trained only using hub-based features
and region-to-region features, respectively. Lastly, a connectome fingerprint is
identified using a neural network backtrack approach that selects the subnetwork
features that are responsible for classification performance.

1 Introduction

The brain connectome provides unprecedented information about global and regional
conformations of neuronal network architecture (or network architecture for brevity)
across the entire brain with milimetric precision [1, 2]. Identifying connectivity patterns,
commonly called fingerprints, in connectome data is a challenging problem. Typically,
machine learning algorithms attempt to learn connectivity patterns using features
derived from region-to-region connectivity information shown in Fig. 1(a), or features
derived using a hub-based network analysis technique shown in Fig. 1(b). In general,
region-to-region information is considered to be a localmeasure of connectivity, in that,
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it is localized to two connected brain regions. Whereas, hub-based information may be a
more global measure of connectivity because it considers the entire network topology1.
In particular, a centrality hub-based measure may quantify how one particular brain
region influences communication across subnetwork borders, where a large hub-based
measure has more influence, i.e. is critical for communication across subnetwork bor-
ders, and a small hub-based measure has less influence, i.e. is not critical for commu-
nication across subnetwork borders.

Different from previous connectome analysis approaches that only use region-to-
region or hub-based features, a new subnetwork feature is proposed that combines
region-to-region and hub delay information into a single feature that represents a
connected subnetwork in the brain. Furthermore, the proposed approach considers the
whole brain and is completely data-driven, i.e., no prior clinical or anatomical
knowledge is used to narrow down which subnetwork features are to be included in the
computational model. For instance, in [3] the functional connectome fingerprint that
demonstrated the highest classification accuracy was based on two well-known func-
tional subnetworks that are localized to the medial frontal and frontoparietal brain
regions, and in [4] the structural connectome fingerprint that demonstrated the highest
classification accuracy was based on voxel connectivity values localized to the corpus
callosum that is a fiber dense brain region.

Conceptually, our new feature is similar to the spreading dynamic approach
introduced in [5], in that, hub regions are important, and are likely shape communi-
cation pathways. However, instead of using linear threshold models to understand how
these communication pathways spread throughout the brain, our approach uses a
modified version of Dijkstra’s shortest path algorithm to identify communication
pathway backbones. In particular, unlike the traditional shortest path algorithm that
only considers region-to-region delay information to compute the shortest path, i.e. the

Fig. 1. Example connectivity features derived from (a) region-to-region values (e.g. in graph
terminology edge weight values), and (b) hub-based values using the Eigenvector centrality
measure annotated in parenthesis above or below the node. (c) Dijkstra’s shortest path solution
that may not be plausible, and a more biologically plausible shortest path found the proposed
modified shortest path algorithm.

1 Hub-based may also be a local measure, e.g. node degree or strength are two such examples.
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subnetwork that has the least communication delay between a start and end brain
region, our modified shortest path algorithm includes a hub-delay based on a centrality
hub-based measure.

To overcome issues that may arise between biological plausible mechanisms and
topology-based features found using the traditional shortest path algorithm [5], the
included hub-delay will likely route communication through brain regions that are
critical for communication across subnetworks. In doing so, the resulting subnetwork
feature will likely represent a shorter, or simpler, communication path as illustrated in
Fig. 1(c). In general, favoring simpler pathways tend to shrink the topology of the
network, which in turn may represent a more biologically plausible solution.

2 Materials and Methods

2.1 Participants, MRI Acquisition, and Connectome Reconstruction

Twenty subjects were recruited (mean age 34.6 ± 10.66 years) with no history of
neurological or psychiatric illnesses. All subject had 3 DWI scans. First scan: 3T
Siemens TIM Trio equipped with an 8-channel head coil for signal reception (3D
MP-RAGE, TR = 2250 ms, TE = 3.2 ms, 256 � 256 matrix, 256 � 256 mm FOV,
parallel imaging GRAPPA = 2, 30-directions with b = 1000 s/mm2, TR = 10000 ms,
TE = 93 ms, 128 � 128 matrix parallel imaging GRAPPA = 2, FOV = 243 � 243
mm, isotropic 1.9 mm voxel size). Second scan: same scanner as the first yielding
similar images. The average time between first and second scan was 126.4 ± 102.8
days (range 12–442). Third scan: A different physical unit but same type of MRI
scanner (3T Siemens TIM Trio), equipped with a different head coil (12-channel)
employing the same imaging sequences. The average time between first scan and third
scan was 158.4 ± 103.6 days (range 21–465).

Probabilistic tractography is used estimate the number of white matter streamlines
connecting each pair of cortical regions, where the seed regions were obtained through
an automatic segmentation process on the T1 weighted images that divided the human
cerebral cortex into cortical and subcortical regions of interest (ROIs) based on the
Lausanne atlas. This process yielded m ¼ 83 ROIs: 41 regions in each hemisphere plus
the brainstem. The ROIs were transformed into each subject’s DTI space using an
affine transformation obtained with FSL’s FLIRT. Next, a comprehensive neuronal
connectivity matrix, or connectome, is calculated for each subject, where connectivity
is measured by the number of probabilistic white matter fiber tract streamlines arriving
at ROI j when ROI i was seeded, then averaged with the number of probabilistic white
matter fiber tract streamlines arriving at ROI i when ROI j was seeded. The resulting
mxm connectivity matrix C is a symmetric with respect to the main diagonal, and the
values are normalized.

2.2 Subnetwork Feature

For each subject an m dimension hub feature vector hu ¼ ðhu1 ; . . .; hui ; . . .; humÞ is created
using the connectivity values in C and the Eigenvector centrality or clustering coefficient
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hub-based graph-theoretic measures2 denoted by u. Next, an N ¼ mðm� 1Þ=2
dimension feature vector fu ¼ ðf u1 ; . . .; f ua ; . . .; f uN Þ is created that combines the
region-to-region connectivity values in the upper diagonal of C with the hub values
in hu. More specifically, one feature f ua is a subnetwork, or group of connected brain
regions, where hub and region-to-region connectivity values both represent communi-
cation delays, and a ¼ ðs; tÞ is an index to subscript mapping seen in Fig. 2(c), that
defines the start and end brain regions, and s 6¼ t. For example, when a ¼ N the fin-
gerprint start and end brain regions are ðm� 1;mÞ.

For any start brain region, the shortest path to the remaining ðm� 1Þ brain regions
are found using a modified version of Dijkstra’s shortest path algorithm [6] that is
visually illustrated in Fig. 2(a–b). For instance, when node-1 is selected to be the start
node, the family of shortest paths found by original version of Dijkstra’s algorithm are
shown in Fig. 2(a). On the other hand, the family of shortest paths shown in Fig. 2(b)

Fig. 2. Examples that illustrates: (a) shortest path algorithm, and (b) modified version of the
shortest path algorithm that combines path and hub delays. In (a) and (b) the start node is 1, and
in (b) the normalized Eigenvector centrality hub measure is provided in the parenthesis. Lastly,
(c) provides an index to subscript mapping example that is used to calculate the subnetwork
features. In addition, example feature calculations are provided when the start node is 1, where a
smaller value equals the least delay.

2 The hub-based measures are computed using the publically available brain connectivity toolbox
(https://sites.google.com/site/bctnet/).
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are those found by the modified version, which includes the Eigenvector centrality hub
delay. As seen in Fig. 2(b), when the hub delay is included in the shortest path
calculation, the solution will favor simpler pathways, i.e. number of nodes between the
start node and stop node is less.

In particular, similar to the original version, the modified version of shortest path
algorithm incrementally updates two values: (1) path delay du at brain region u, and
(2) the predecessor pu brain region at brain region u. However, a hub delay cost hv is
added

if dvþ 1
logðC v; uð ÞÞ þ

1
logðhvÞ\du then du  dvþ 1

logðC v; uð ÞÞ þ
1

logðhvÞ ;

pu  v;
ð1Þ

where Cðu; vÞ is the connectivity value from brain region u to brain region v and logð�Þ
is the natural logarithm. More precisely, the new feature

f ua ¼ dt þ 1
logðhtÞ ; and a ¼ ðs; tÞ ð2Þ

defines a subnetwork that is acyclic that measures the total path dtð Þ and hub delay htð Þ.
It is important to note, the natural logarithm is used to ensure, as best as possible, the
region-to-region connectivity and hub values are normally distributed3. After each
subnetwork feature is calculated the inverse value is taken that converts smaller sub-
network features to largest ones, and vice versa.

2.3 Person Identification Model and Performance Evaluation

A nxN training data matrix Fu ¼ ffu1 ; fu2 ; . . .; fui ; . . .; fun g and a nx20 dimension subject
training label matrix Y ¼ fy1; y2; . . .; yi; . . .; yng are constructed, where row vector yi ¼
ðy1i; y2i; . . .; y20iÞ defines the binary labels for subnetwork feature vector fui . Next the
subnetwork features in Fu and the subject label matrix Y are used to train a person
identification model represented by a dense neural network as shown in Fig. 3, where
the hidden-layer architecture is 3000; 1000; 500; 100; 20½ �. One additional supervised
learning layer is added when the model is trained that also has 20 nodes, one for each
training subject. Based primarily on the small size of the training population, the
back-propagation optimization procedure uses the stochastic gradient decent algorithm
[7] and the categorical cross-entropy loss function [8] to compute the edge weight and
bias values at each layer that result in the highest classification accuracy. Once the
supervised training step completes, the supervised training layer is removed, and the
number of nodes in output layer are then used for person classification.

3 Hub value less than one are set to an arbitrarily large number that represents positive infinity.
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The classification accuracy of the person identification model is evaluated using a
3-fold cross-validation strategy. Three folds were selected because the data set has 20
different subjects, and each subject had 3 different DTI scans. For each subnetwork
feature vector, in each test fold, classification accuracy is evaluated using the known
subject labels, where a score of 100%means the identity of all 20 subjects were correctly
recognized. The 3-fold cross-validation strategy is repeated 20 times, and the classifi-
cation accuracy is reported by finding the mean and standard deviation using the results
of the 60 randomly generated test folds. Lastly, the optimal momentum and learning rate
were found by incorporating a grid search procedure in the cross-validation strategy.

The software used to develop, train, and test the dense neural network was written
in Python, and used the publically available Theano4 and Keras5 Python deep learning
libraries that wrap the C++ NVIDIA CUDA deep neural network libraries6. All the
reported results were executed on a NVIDIA GeForce GTX 970 graphics card that had
4 GB of memory.

2.4 Feature Selection and Majority Vote Subnetwork Feature

In deep neural network learning approaches selecting input features that have the greatest
contribution, and the least contribution, to classification accuracy is a very challenging
problem. To address this limitation, we use the backtrack approach similar to that
introduced in [9] which starts at the output layer andworks backwards through the trained
neural network, i.e., through the hidden layers to the input layer (not including the
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Fig. 3. Dense neural network architecture that defines one visible layer (input layer with N
nodes), five hidden layers, and four activation layers, where the last activation layer defines 20
nodes, one for each subject in the connectome data set.

4 http://deeplearning.net/software/theano/.
5 https://keras.io/.
6 https://developer.nvidia.com/cudnn.

84 B.C. Munsell et al.

http://deeplearning.net/software/theano/
https://keras.io/
https://developer.nvidia.com/cudnn


activation layers), and follows the nodes that have the largest contribution to the layer
directly above. As a result, each input subnetwork feature is assigned a normalizedweight
value in [0 1], where a value of one implies input subnetwork feature has the greatest
contribution to classification accuracy.

Next, for each subnetwork feature selected by the backtrack approach, a majority
vote technique is then applied to find the common subnetwork path across all subjects.
This step is required because, even though the start and end brain region are the same
for one particular subnetwork feature, both the number of nodes in the subnetwork
path, i.e. length, and the specific brain regions along the path are likely to differ a small
amount between multiple subjects. For instance, given the subnetwork feature fa that
starts at brain region 10 and ends at brain region 20 for subjects S1, S2 and S3 shown in
Fig. 4, suppose we wanted to compute the majority subnetwork feature. First, the path
length L is identified by finding the median subnetwork path length jPj across each
subject. Since we know the start end brain regions of fa will be the same for each
subject, the remaining brain regions that have the greatest occurrence are identified.
The top brain region occurrence values are selected, which are then combined with the
start and end brain regions to form the majority subnetwork feature. Finally, to ensure
the proposed approach does not create a majority subnetwork that does not exist in any
subject, a subnetwork path constraint is included that prevents this degenerate case.

3 Results

At completion of the grid-search, the momentum and learning rate that yielded the
reported accuracy results was 0:5 and 0.001, respectively. These optimum model
parameter values were then used to determine the classification accuracy summarized
in Table 1, and also select the majority subnetwork features that have the greatest
influence on classification accuracy. For comparison purposes, the classification per-
formance of five different neural networks were trained and tested using: (1) the pro-
posed majority subnetwork features, (2) hub-only features, and (3) region-to-region
connectivity features. Also, the same person identification model neural network

Fig. 4. Given subnetwork feature fa (start region 10 and end region 20) find the common
subnetwork path that represents the brain regions with the greatest occurrence across all three
subjects.
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Fig. 5. Subnetwork connectivity diagrams (a) all 16 majority subnetwork features in table
(f) that form the connectome fingerprint. Individual subnetworks formed by the (b) top 1-to-4
majority subnetwork features, (c) top 5-to-8 majority subnetwork features, (d) top 9-to-12
majority subnetwork features, and (e) top 13-to-16 majority subnetwork features, also provided
in table (f).
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design, and optimal model parameter values (momentum and learning rate) were also
used in all performance evaluations.

The top 16 majority fingerprint features found by the backtrack feature selection
technique and majority vote approach are shown in Fig. 5(f), where table cells high-
lighted in light blue indicate two, or more, majority subnetwork features that are joined
at the same brain region.

Furthermore, the top 16 are categorized into four different groups, namely the top:
1-to-4, 5-to-8, 9-to-12, and 13-to-16. The connectome fingerprint defined by the top 16
majority subnetwork features, is shown in Fig. 5(a), where brain regions are repre-
sented by red nodes and the size of the node is the related to the number of times the
brain region is present in one, or more, majority subnetwork features, e.g., the Brain
Stem occurs 6 times. Additionally, the subnetworks formed by the top 1-to-4, 5-to-8,
9-to-12, and 13-to-16 majority subnetworks are shown in Fig. 5(b–e), respectively.

4 Discussion

As shown in Table 1, subnetwork connectivity features that combine pathway and hub
delay information, on average, produce trained person identification models that are
roughly 91% accurate, whereas models trained only using hub-based features are
roughly 62% accurate and models trained using only region-to-region connections are
roughly 41% accurate. These results suggest that features that represent subnetworks,
based on both hub and pathway delay information, provide a richer descriptor of subtle
subnetwork architecture differences that are likely intrinsic to one particular subject.
Furthermore, from a neuro-biological point of view, the connectome fingerprint rep-
resented by the top 16 majority subnetwork features found by the backtrack approach
includes brain regions that are critical to self-awareness, emotion, reward, attention,
memory tasks, planning, movement, consciousness, and decision making. All of which
would be important to distinguish the identity of an individual.

Table 1. Mean classification accuracy when the neural network is trained and tested using the
five different features. The neural network is trained to recognize the identify of 20 different
subjects.
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5 Conclusion

We present a new subnetwork feature that combines hub delay and path delay infor-
mation using a modified version of Dijkstra’s algorithm. Conceptually, the proposed
subnetwork feature may allow machine learning techniques to more accurately identify
subnetwork patterns and subtle network architecture differences. To assess the per-
formance of our new subnetwork feature, a deep learning classification model is trained
using the proposed feature, and was able to recognize the identity of 20 different
subjects with 91% accuracy. Finally, a connectome fingerprint is identified using the
top 16 majority subnetwork features found by a neural network backtrack approach and
the majority vote technique.
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Abstract. The human brain can be divided into two tissue categories, namely:
gray matter that maybe associated with cognitive, motor, emotion, and visual
processing, and white matter that facilitates neuronal communication between
gray matter regions. To better understand the organization of white matter
connections in the brain, white matter fiber tracts derived from a diffusion tensor
image scan is estimated and visualized by publically available software toolsets.
In general, one white matter fiber tract is visualized as a thin 3D cylinder,
however this approach has many computational limitations, especially when
trying to visualize thousands of fiber tracts that have varying size and length. To
overcome this limitation, a very simple and efficient imposter approach is
proposed, commonly used in the computer graphics community, that exploits
the programmable pipeline architecture found in GPU-based parallel processing
systems. Using 10,000 fiber tracts derived from a real DTI scan, we show the
rendering speed of our imposter approach is 50% times faster, and requires
900% less memory, when compared visualization approach that uses 3D
cylinders.

1 Introduction

White matter fiber tractography from diffusion tensor imaging (DTI) allows clinicians
and neuroscientists to understand the white matter connectivity across the entire brain.
As shown in Fig. 1(a–b) white matter fiber tractography, or fiber tracts for short, are
typically visualized using the line primitive commonly found in computer graphics
libraries. Because the fiber tract may be hard to see, the line width (e.g. pixel width) of
individual fiber tracts are adjusted by clinicians to make the fiber tract easier to rec-
ognize, or distinguish from neighboring fiber tracts. At the moment, publically avail-
able software tools such as TrackVis1, DSIStudio2, and 3DSlicer3 visualize DTI fiber
tracts using line strips or triangle-based cylinders, all of which unfortunately have
severe disadvantages. For instance, line strips show poor lighting, and the OpenGL
core implementation typically limit smooth lines to a one-pixel thickness. The primary
problem with triangulated cylinders is that a complicated surface mesh, like illustrated

1 http://trackvis.org/.
2 http://dsi-studio.labsolver.org/.
3 https://www.slicer.org/.
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in Fig. 1(c), overwhelms the graphics processing unit (GPU), and even small adjust-
ments put a huge burden on the central processing unit (CPU), with the end result being
poor responsiveness on desktop systems with dedicated high performance graphics
capabilities. Furthermore, GPU capable mobile computing devices (e.g. laptops,
tablets, and smartphones) have a limited amount of memory, and compute cores,
compared to desktop systems, so the visualization of thousands of fiber tracts using a
triangulated cylinder approach cannot be supported with limited hardware capabilities.

To overcome these software and hardware limitations, our approach applies a
common lighting, or imposter, trick to a rectangular 3D surface that gives the
appearance of a 3D triangulated cylinder. In general, the CPU/GPU benefits of our
approach are: (1) Decrease computational complexity, i.e. do not need to create and
draw thousands of triangles that define smooth cylinders, and (2) Decrease memory
complexity, i.e. does not need to buffer thousands of triangles that define a smooth
cylinder surface mesh.

Even though advanced graphic rendering techniques have been applied to visual-
izing fiber tract data [1, 2] using tubelet, or tuboid, imposter-based frameworks, they
are extremely complex, and ultimately extremely difficult to implement. Therefor they
are rarely, if at all, used in publically available software toolsets. Unlike the previous
tubelet or tuboid imposter-based approaches, our approach is very simple and efficient.
More specifically, all vertex and texture information resides in memory on the graphics
card, i.e. buffered in memory, which significantly improves memory performance.
Additionally, only three vertex points are required to compute the proposed rectangular
billboards which are then textured using a buffered normal map to appear like a smooth
cylinder surface, this technique significantly improves the computational complexity.
As a result, the proposed imposter approach leads to reduced memory consumption and
rendering times, and can scale well to systems with limited hardware resources.

Fig. 1. (a) white matter fiber tracts derived from DTI data visualized using 3D line strips and
SurfIce, (b) fiber tracts visualized using line strips that are one-pixel thick, and (c) complexity of
triangulated surface mesh that represents a 3D cylinder.
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2 Proposed Method

The proposed imposter approach is GPU centric, which mean it leverages the parallel
programmable graphics pipeline architecture shown in Fig. 2. Using a simple line
primitive as an example, i.e. two points, or vertices, connected by a straight line, a
shader-based graphics pipeline has three sequential pipeline steps:

(1) For each vertex, a shader-program is executed that determines how the two
vertices should be transformed (e.g. affine transformation matrix created on CPU
based on user input from mouse or keyboard),

(2) The transformed vertices are then assembled into a line primitive and rasterized
into multiple fragments (e.g. groups of pixels that represent the entire geometric
primitive), and

(3) For each fragment, a shader-based program is executed that applies texture (e.g.
texture map created on CPU), color, and/or lighting to the pixel values.

Throughout the remainder of this paper, we’ll refer to this diagram to indicated
were the operation is performed.

For each fiber tract, there are two basic processing steps:

(1) Create a cylinder imposter by applying a normal texture map to rectangular
billboard (see Sect. 2.1), and

(2) For only the first and last point on the fiber tract create an end imposter by
applying a normal map to a square billboard. This ensure the flat plane appears to
be a smooth cylinder for all camera angles (see Sect. 2.2).

2.1 Cylinder Imposter

A fiber tract is initially modeled as a 3D line p1; p2; . . .; pnð Þ that is represented by an
ordered set of n points like shown in Fig. 3(a), where pi ¼ ðxi; yi; ziÞ is a point location

Fig. 2. Schematic diagram that illustrates and basic functions performed by the CPU and GPU,
and the programmable graphics pipeline that loads and executes small vertex and fragment
shader-based programs related to vertex and fragment processing.
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in a 3D Cartesian coordinate system. Next, for every line segment defined by a fiber
tract a 3D rectangular billboard B ¼ b1; b2; b3; b4ð Þ is created as illustrated in Fig. 3(b),
where b ¼ ðx; y; zÞ is a billboard corner point location that are computed on the GPU by
the vertex-shader.

More specifically, as seen in Fig. 4(a–b), the vertex-shader first computes three
vectors that represent the magnitude and direction of the:

(1) line segment l ¼ piþ 1 � pi,
(2) camera relative to the start of the line segment ei ¼ piþ 1 � peye, and
(3) camera relative to the end of the line segment eiþ 1 ¼ piþ 1 � peye.

Next, a unit vector xi ¼ l
lk k � ei

eik k that is perpendicular to the start of the line

segment, and a unit vector xiþ 1 ¼ l
lk k � eiþ 1

eiþ 1k k that is perpendicular to the end of the line
segment are found, where � is the cross-product and �k k is the L2 norm. Lastly, using
the start and end point locations ðpi; piþ 1Þ and the offset locations vectors ðxi; xiþ 1Þ,
the four corner points are found that define the geometry of the rectangular billboard
illustrated in Fig. 4(c).

One drawback of this billboard approach is that a gap between adjacent rectangular
billboards will be created as shown in Fig. 4(d). In theory, the largest gap will occur
when angle u between adjacent billboard is 360°. However, such a condition is bio-
logically implausible for white matter fiber tracts, and u will most likely be between 0
and 90°4. To overcome this limitation, in addition to the two points pi; piþ 1ð Þ that
define the line segment, the next line segment point piþ 2 is also provided to the
vertex-shader. Using corner points for both line segments, the geometry of the billboard
is updated as seen Fig. 4(e) where b3 ¼ b̂1 and b4 ¼ b̂2.

Two different matrices that account for affine and perspective operations are
computed on the CPU (by user input from mouse or keyboard), and then applied to the
rectangular billboard corner points by the vertex-shader on the GPU. Specifically, a
4� 4 affine transformation matrix M that is based on the position of the camera using a
look-at positioning technique [3], and a 4� 4 perspective normalization [3] matrix P
that preserves the camera field of view and depth of the geometric object. These two
matrices are computed on the CPU and then provided to the vertex-shader.

Fig. 3. Basic billboard concept: (a) example white matter fiber tract modeled as a 3D line that is
defined by five 3D points and four line segments, and (b) a rectangular 3D billboard is created for
each line segment.

4 Even 90° is biologically not likely, however this is the upper limit for our implementation.
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The orientation of rectangular billboard is updated ~B ¼ PMB using matrix multipli-
cation to be relative to the camera position.

The fragment-shader then applies a normal texture map to the transformed billboard
fragments. At the completion of this step, the flat surface will appear to be a smooth 3D
cylinder, however no such cylinder exists. In actuality, this is a lighting trick where a
new set of unit normal vectors nh ¼ ðxh; yh; zhÞ, i.e. imposters, are intentionally created
that reflect light like the cylinder surface instead of a flat surface shown in Fig. 4(f). To
accomplish this, a 180� 180� 3 dimension normal texture map Nðh;/; aÞ is created,
where angle h is the row index, / is the column index, and a is the axis. For instance,
N 0; 0; 0ð Þ ¼ r cosð0Þ is the x-axis, N 0; 0; 1ð Þ ¼ 0 is the y-axis, and N 0; 0; 2ð Þ ¼
r sinð0Þ is the z-axis normal vector values5 when h ¼ 0 and / ¼ 0: An example normal
texture map is shown in Fig. 4(g) where the coordinate values have been converted to
an RGB image.

Using a linear interpolation technique, the fragment-shader resamples the normal
texture map to fit the rectangular billboard fragments, then the vector values fitted to
the rectangular billboard are transformed relative to the camera using the inverse

Fig. 4. Example billboard creation for line segment defined by pi and piþ 1: (a) computing the
corner point closest to the position of the camera (i.e. the eye point or peye), (b) computing the
corner point farthest from the position of the camera, and (c) the four corner points
b1; b2; b3; b4ð Þ. The gap between two adjacent billboards shown in (d) and the fix shown in
(e) where corner points b̂1b̂2 the derived from the line segment from piþ 1 to piþ 2 now become
the b3 ¼ b̂1 and b4 ¼ b̂2. Normal vector(s) for a cylinder and flat surface shown in (f), and (g) the
resulting normal texture map where the coordinate values are converted to RGB.

5 In our implementation, the radius r is always equal to 1, and the normal vector is computed relative
to the x-z plane.
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transpose of the upper-left 3� 3 sub-matrix of affine matrix M. Lastly, the Phong
lighting technique [4] is applied to the transformed vector normal and the shininess,
diffuse, and ambient light components are computed.

2.2 End Imposter

Because the rectangular billboard is a flat plane, if the position of the camera is directly
placed in front of, or behind, the rectangular billboard, the fiber tract would appear to
be very thin line (i.e. few pixels) as seen in Fig. 5(a). To overcome this limitation, the
square billboard in Fig. 5(b) is created and then appended at the beginning of the first
line segment, and at the end of the last line segment that defines the entire fiber tract.
The construction of the square billboard is quite simple, using the line l and offset

vectors xi a new unit offset vector si ¼ l
lk k � xi

xik k that is perpendicular to billboard plane

is found, and the square billboard corner points are computed as illustrated in Fig. 5(c).
It should be noted, the same procedure is used for the end of the last line segment,
however si is calculated using xiþ 1 instead of xi.

To reduce GPU memory requirements, the buffered normal texture map N applied
to rectangular billboard is also applied to the square billboard. However, in order to
resemble one-half of a smooth sphere the opacity value of normal vectors outside the
radius illustrated in Fig. 5(b) are set to zero making them invisible. Lastly, using the
same linear interpolation technique, the buffered normal texture map is fit to the square
billboard creating the end imposter, then the fitted normal vectors are transformed
relative to the camera, and the Phong lighting technique is applied.

3 Experiments

As illustrated in Fig. 6, the visual correctness (that include crossing, curvature and end
conditions) of the proposed imposter approach is tested using the OpenGL and WebGL
standards on two different data sets: a synthetic 3D helix data set that included four
random helix patterns shown in blue, red, yellow, and green, and a real white matter
fiber tract data set derived from a DTI scan where the color is related to the length of
the fiber tract. In particular, the real data set defines 10,000 different fiber tracts, and the

Fig. 5. Example end imposter: (a) camera placement makes billboard appear to be a very thin
line, (b) the orientation of the square billboard relative to the rectangular one, and inside the
dotted line (described by radius r) the normal map opacity (alpha) values set to one, and outside
the dotted line the opacity is set to zero (i.e. invisible), (c) corner points of square billboard.
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Operating System Graphics Card Graphics Card Memory
Mac OS X 10 Intel Iris Graphics 6100 1.5 GB

Approach Real Datset Test Average frame per second Memory used (in MB)
Triangular Mesh 360 degree rotation 19 FPS 40

Imposter 360 degree rotation 29 FPS 4
Imposter improvement > 50 % 1000%

Operating System Graphics Card Graphics Card Memory
Ubuntu 16.04 LTS GeForce GTX 970 4 GB

Approach Real Dataset Test Average frame per second Memory used (in MB)
Triangular Mesh 360 degree rotation 42 FPS 37

Imposter 360 degree rotation 67 FPS 3
Imposter improvement > 50 9% 00%

Fig. 6. Visual experiments using the proposed imposter approach that test three different
conditions: (1) Crossing, (2) Curvature, and (3) End. Top: 3D helix data set that has four different
helix patterns. Bottom: Real white matter fiber tract data derived from a DTI scan. Included with
real data is time and memory efficiency of imposter approach compared to fiber tracts rendered
using cylinder triangular mesh. (Color figure online)
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length of the smallest fiber tract is 3 points (2 line segments), and the length of the
largest fiber tract is 39 points (38 line segments). In addition to the visual tests, render
speed and memory efficiency performance tests are also provided on the real data set
using the OpenGL implementation. More specifically, all 10,000 tracts are rotated 360°
about the y-axis, and the average frame per second (fps) is recorded. As shown in
Fig. 6, when compared to fiber tracts rendered using a cylinder triangle mesh, our
imposter approach is over 50% faster on a GPU-based graphics cards, and requires
900% less memory. This is a significant savings in rendering speed and memory
consumption, that can be utilized by GPU capable mobile and tablet devices that have
less resources, but require the same processing and visual performance.

4 Limitations

As shown in Fig. 7(a) when two rectangular billboards cross each other at exactly the
same depth, and the position of the camera is orthogonal to the viewing plane, the
crossing artifact in Fig. 7(c) occurs. Even though the normal vectors reflect light like a
cylinder, because the billboard is flat, the depth cannot be accurately determined. In our
approach, the depth function uses a less than or equal pixel calculation, which is then
passed to a linear blending function seen in Fig. 7(b) that adjusts the opacity value. It is
important to note, the authors in [1] references a fragment-shader solution but never
provides any details, an [2] explains the approach is limited to tuboids with constant
radius, but never provide any experiments that show their overall approach works for
all camera angles. From our point of view, depth artifacts are still an open issue, and
we’re working with NVIDIA community to develop a suitable solution that fits into the
pipeline architecture.

5 Conclusion

We show that visualizing DTI fiber tracts using imposter approach decreases
CPU/GPU computation complexity and memory requirements. The proposed approach
is implemented using WebGL and OpenGL, and testing was performed on synthetic

Fig. 7. Imposter limitation (a) the camera is directly above two billboards crossing at the same
depth, (b) linear blending function, and (c) the visual result when depth and blending functions
are applied.
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and real data sets. Lastly, the proposed imposter approach produces a suitable visual
result for crossing, curvature, and end conditions common to white matter tractography
data.

6 Implementation

The proposed imposter approach is implemented in the publically available SurfIce
software application (https://www.nitrc.org/projects/surfice/). To enable fiber tract
visualization using our imposter approach, open the SurfIce preferences dialog, then
simply uncheck the better (but slower) tracks” check box illustrated in Fig. 8.
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Fig. 8. How to enable fiber tract imposter approach in SurfIce Application

A Simple and Efficient Cylinder Imposter Approach to Visualize DTI Fiber Tracts 97

https://www.nitrc.org/projects/surfice/


Revisiting Abnormalities in Brain Network
Architecture Underlying Autism Using
Topology-Inspired Statistical Inference

Sourabh Palande1,2(B), Vipin Jose1,2, Brandon Zielinski3, Jeffrey Anderson4,
P. Thomas Fletcher1,2, and Bei Wang1,2

1 Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, USA

sourabh@sci.utah.edu
2 School of Computing, University of Utah, Salt Lake City, USA

3 Pediatrics and Neurology, University of Utah, Salt Lake City, USA
4 Radiology, University of Utah, Salt Lake City, USA

Abstract. A large body of evidence relates autism with abnormal
structural and functional brain connectivity. Structural covariance MRI
(scMRI) is a technique that maps brain regions with covarying gray
matter density across subjects. It provides a way to probe the anatomi-
cal structures underlying intrinsic connectivity networks (ICNs) through
the analysis of the gray matter signal covariance. In this paper, we apply
topological data analysis in conjunction with scMRI to explore network-
specific differences in the gray matter structure in subjects with autism
versus age-, gender- and IQ-matched controls. Specifically, we investigate
topological differences in gray matter structures captured by structural
covariance networks (SCNs) derived from three ICNs strongly implicated
in autism, namely, the salience network (SN), the default mode net-
work (DMN) and the executive control network (ECN). By combining
topological data analysis with statistical inference, our results provide
evidence of statistically significant network-specific structural abnormal-
ities in autism, from SCNs derived from SN and ECN. These differences
in brain architecture are consistent with direct structural analysis using
scMRI (Zielinski et al. 2012).

1 Introduction

Autism is a complex developmental disorder characterized by impairment in
social interactions, difficulty in verbal and nonverbal communications and repet-
itive behaviors. Although the exact mechanism of its development remains
unclear, there is strong evidence relating autism to abnormal white matter and
functional connectivity between brain regions. Structural abnormalities can be
identified using voxel-based morphometry by comparing gray matter, white mat-
ter volumes, cortical thicknesses and their growth trajectories [11] across diag-
nostic groups. Although the gross brain differences have been well-documented
[5], investigations into specific regional abnormalities in brain structure have
c© Springer International Publishing AG 2017
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reported divergent results [14]. These inconsistent findings, however, may reflect
discrete abnormalities in the brain network. Research has revealed a finite set of
canonical domain-specific resting state or intrinsic connectivity networks (ICNs)
that organize the brain function [8]. Many of the regions with reported abnormal-
ities in autism lie within these ICNs. Network-specific differences could account
for seemingly contradictory findings from previous studies.

Structural covariance MRI (scMRI) maps brain regions with covarying gray
matter density across subjects, suggesting shared developmental or genetic influ-
ences. Seeley et al. [12] have used scMRI to demonstrate that specific brain dis-
orders affect distinct ICNs and the corresponding gray matter regions. Using a
similar technique, Zielinski et al. [16] have shown that there are network-specific
structural differences between autism and control groups which are consistent
with clinical aspects of the disease and that reported functional abnormalities
in autism have a structural bias. Several recent studies have applied the scMRI
technique to find network-specific structural abnormalities in other diseases such
as Alzheimer’s [10] and Huntington’s [9].

scMRI identifies regions of gray matter that have a statistically significant
correlation with a specific seed region of interest (ROI). We can model all pair-
wise correlations (across subjects) among the gray matter regions identified by
the seed-based covariance map as a network. Comparing these networks across
diagnostic groups may provide information not captured by direct comparisons
between individual regions.

Several graph-theoretic measures have been proposed previously to compare
networks [3]. However, a major drawback of these measures is their reliance on
a fixed network topology. That is, these measures are typically based on a graph
obtained by thresholding the connectivity matrix. The choice of threshold is
crucial in such analyses. Different heuristics have been suggested to determine
the threshold depending on which properties of the network are of interest.
However, it is often not possible to determine a unique optimal threshold.

In this paper, we apply topological data analysis to structural covariance net-
works (SCNs) derived from three ICNs strongly implicated in autism; the default
mode network (DMN), the salience network (SN) and the executive control net-
work (ECN). Our method is based upon a core technique from topological data
analysis known as persistent homology [6] where we extract topological features
across all thresholds from a given network. We make use of topology-inspired sta-
tistical inference first reported by Chung et al. [4] to compare the extracted topo-
logical features. By combining topological data analysis with statistical inference,
our results provide statistically significant evidence of structural abnormalities
underlying SN and ECN in autism. Our results are consistent with the obser-
vations of Zielinski et al. [16] and may offer new insights towards interpreting
fine-scale network-specific structural differences.
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2 Technical Background

2.1 Structural Covariance Network

We use scMRI to extract a network-specific set of brain regions with covarying
gray matter density across subjects. Given a seed ROI, separate condition-by-
covariate analysis is performed for each gray matter region, in which the mean
seed gray matter density is the covariate of interest and disease status is the
grouping variable. Total brain volume (TBV) is included as a covariate-of-no-
interest. This design enables us to determine the whole-brain patterns of seed-
based structural covariance in each group. One-sample t-tests are performed to
identify regions with significant groupwise gray matter density covariance with
the seed ROI across subjects.

All pairwise correlations between gray matter densities across subjects, for
pairs of identified regions, are modeled as a network. In what follows, we refer to
such a network as the structural covariance network (SCN). The SCN, therefore,
is a weighted, undirected graph G(V,E,W ), with gray matter regions as vertices
and absolute values of pairwise correlations as edge weights. In particular, we
compare SCNs generated with seed ROIs anchoring the three ICNs strongly
implicated in autism, the SN, the ECN and the DMN. In the context of this
paper, for simplicity (unless otherwise specified), we describe these SCNs by the
name of their corresponding ICNs, namely, SN-SCN, ECN-SCN and DMN-SCN.

2.2 Graph Filtration

We extract topological features at multiple scales from a structural covariance
network G by applying topological data analysis to a nested sequence of graphs
constructed from G, referred to as the graph filtration.

Let V = {vi | i = 1, . . . , n} be the vertex set with n vertices. Let E denote
the edge set and W denote the set of edge weights. The edge between vertices vi,
vj is denoted by eij and its weight is denoted by wij . |E| denotes the number of
edges. For a given threshold λ, we obtain a binary graph Gλ by removing edges
with weight wij ≤ λ. The adjacency matrix Aλ = (aij(λ)) is given by:

aij(λ) =

{
0 wij ≤ λ

1 o.w.

As λ increases, more and more edges are removed from the graph. We can
generate a sequence of thresholds, λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λq, where q ≤ |E|
by setting λi’s equal to edge weights arranged in ascending order.

Corresponding to the sequence of thresholds we get a nested sequence of
binary graphs, referred to as a graph filtration G:

Gλ0 ⊇ Gλ1 ⊇ Gλ2 ⊇ · · · ⊇ Gλq
.

We can measure the connectivity of a graph by its 0-th Betti number, β0, which is
the number of connected components in the graph. As the threshold λ increases,
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β0(Gλ) of the corresponding graph also increases. The β0(Gλi
) of the graphs in

filtration G form a monotonic sequence of integers,

β0(Gλ0) ≤ β0(Gλ1) ≤ β0(Gλ2) ≤ · · · ≤ β0(Gλq
).

Suppose we start with a connected graph G = Gλ0 . We have β0(Gλ0) = 1 and
β0(Gλq

) = |V | = n by construction. Given n nodes, there are at most
(
2n
n

)
unique edge weights; therefore q ≤ (

2n
n

)
. The number of all possible monotonic

integer sequences of length q, starting with 1 and ending with n, is finite.
Following the formulation of Chung et al. [4], the distance between two given

graph filtrations G and H can be defined as:

Dq(G,H) = sup
0≤i≤q

|β0(Gλi
) − β0(Hλi

)|. (1)

Intuitively, if we plot the two sequences of Betti numbers as a function of
λ (the graph of such a function is referred to as the β0 curve), this distance
Dq measures the largest gap between the two curves. Given that the number of
possible sequences is finite, Dq can take only a finite number of discrete integer
values. Computing the β0 curve for a given graph filtration could follow the
standard algorithm for persistent homology [6]; in practice, a simpler algorithm
can be used to capture the λ values when the number of components (clusters)
decreases during the filtration.

2.3 Statistical Inference

We model the structural covariance networks for autism and control groups as
weighted graphs G and H, respectively, with the corresponding graph filtrations
G (autism) and H (control). We would like to test the equivalence of the two
filtrations. In particular, we would like to test the null hypothesis H0 against
the alternative hypothesis H1, where

H0 : β0(Gλi
) = β0(Hλi

) for all λi;

H1 : β0(Gλi
) �= β0(Hλi

) for some λi.

By taking the supremum over all λi, Dq takes care of multiple comparisons
implied in the hypotheses. Chung et al. [4] have provided a combinatorial deriva-
tion of the exact probability distribution of Dq. The proof is based on the
Kolmogorov-Smirnov test [2]. This eliminates the need for numerically permut-
ing samples for the test of hypothesis. The asymptotic probability distribution
of Dq is given by:

lim
q→∞ P (Dq/

√
2q ≥ d) = 2

∞∑
i=1

(−1)i−1e−2i2d2
,

and the p-value under the null hypothesis can be computed as:

p = 2e−d2
0 − 2e−8d2

0 + 2e−18d2
0 + · · · ≈ 2e−d2

0 − 2e−8d2
0 + 2e−18d2

0 ,

where d0 is the smallest integer greater than Dq/
√

2q.
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3 Methods

3.1 Data Preprocessing

We derive our SCNs from the ICNs previously reported by Zielinski et al. [16,
17]. Here, we review the preprocessing pipeline. 49 male subjects with autism,
aged 3–22 years, are compared to 49 age-, gender- and IQ-matched typically
developing control subjects. Images are acquired using a Siemens 3.0 Tesla Trio
MRI scanner. Whole brain isotropic MPRAGE image volumes are acquired in the
sagittal plane using an 8-channel receive-only RF head coil, employing standard
techniques (TR = 2300 ms, TE median = 3 ms, matrix median = 256×256×160,
flip angle = 12◦, voxel resolution = 1 mm3, acquisition time = 9 min 12 s).

Customized image analysis templates are created by normalizing, segment-
ing and averaging T1 images using SPM5 according to the processing pipeline
proposed in [1,15]. First, images are transformed into standard space using a
12-parameter affine-only linear transformation and segmented into three tissue
classes representing gray matter, white matter and cerebrospinal fluid. Then
smoothly varying intensity changes as well as artifactual intensity alterations as
a result of the normalization step are corrected for using a standard modulation
algorithm within SPM5. Finally, the resulting segmented maps are smoothed
using a 12-mm full-width at half-maximum Gaussian kernel.

In performing the scMRI analysis, a two-pass procedure is utilized, wherein
study-specific templates are first created by segmenting our sample using a
canonical pediatric template. Then tissue-specific prior probability maps are cre-
ated from our sample. The tissue compartments are then re-segmented using this
sample-specific template, so that the age range of our sample precisely matches
that of the template(s) upon which the ultimate segmentations are based.

3.2 Structural Covariance Networks and Statistical Inference

The preprocessed images contain 7266 gray matter voxels. For each diagnostic
group, a whole-brain SCN is constructed by computing pairwise correlations
among all voxels.

To study network-specific structural covariance, 4-mm-radius spherical seed
ROIs are selected within the right frontoinsular cortex (R FI) [12], the right dor-
solateral prefrontal cortex (R DLPC) [13] and the right posterior cingulate cortex
(R PCC) [7]. These regions anchor the salience network (SN), the executive con-
trol network (ECN) and the default-mode network (DMN), respectively [7,12].

For each diagnostic group and each seed ROI, we generate SCNs following
the process described in Sect. 2. The structural covariance maps corresponding to
the seed ROI are shown in Fig. 1(a)-(c). The SCNs are composed of 4-mm-radius
spherical regions identified by these maps. Further comparisons in Fig. 2 show
that the two maps overlap in very few regions. Some regions present in the map
for the control group are absent in the map for the autism group. Conversely,
some regions are present only in the map for the autism group but not in the
map for the control group. Figure 1(d) lists the number of regions present in
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controls but not in autism, in autism but not in controls and in both as well as
in either autism or control.

We then construct and compare the SCNs derived from corresponding subsets
of regions for each seed ROI. For each comparison, SCNs are derived for both diag-
nostic groups (autism and controls) separately. Graph filtrations are constructed
for both networks. The distance Dq between the two resulting β0 curves and the
corresponding p-value for the test hypotheses is obtained accordingly.

Fig. 1. (a)-(c) Structural covariance maps with seed in R FI, R DLPC and R PCC,
anchoring SN, ECN and DMN, respectively. Red represents the autism group map,
blue represents the control group map. (d) Number of regions identified from scMRI
map for a given seed region. (Color figure online)

4 Results

We apply statistical inference and compare SCNs across groups of subjects
with autism and typically developing control subjects. We begin by compar-
ing the global SCNs composed of all 7266 gray matter voxels in the preprocessed
images. Applying the statistical inference detailed in Sect. 3, we obtain a p-value
of 6.6250179 × 10−19. The differences in whole-brain gray matter composition
between the autism and control groups have been well established in previous
studies [5]. The near-zero p-value shows that such differences can also be cap-
tured by the topological features extracted from the global SCNs.

For a closer analysis, we compare the SCNs generated with seed ROIs anchor-
ing the three ICNs (SN, ECN and DMN), referred to as SN-SCN, ECN-SCN
and DMN-SCN, respectively. Recall that the structural covariance maps for the
autism and the control groups overlap in very few regions. We construct and
compare SCNs derived from subsets of regions that are present in controls but
not in autism, present in autism but not in controls and present in both as well
as present in either.



104 S. Palande et al.

Fig. 2. scMRI maps are further illustrated here with red to yellow (autism) and dark
blue to light blue (control) color look up tables. The color gradation indicates increasing
statistical significance. The overlapping regions among the autism and control groups
are highlighted in green. Note for (c) and (d): Our data consists of subjects with
an average age of about 13 years. The underlying structure of the DMN is not fully
developed at this age. We include two DMN maps with different seeds to show that
the posterior part (c) is not yet integrated with the anterior part (d). In our analysis,
we use the posterior covariance map (c) which corresponds to the most common seed
for DMN in adults (R PCC). (Color figure online)

The β0 curves corresponding to comparisons among global SCNs, and seed-
specific SCNs generated from regions present either in autism or controls, are
shown in Fig. 3. Table 1 lists the p-values obtained by applying the statistical
inference procedure to the corresponding SCNs. By combining topological data
analysis with statistical inference, our results provide statistically significant
evidence of network-specific structural abnormalities in autism for both SN-
SCNs and ECN-SCNs.

Table 1. p-values for statistical inference on SCNs derived from ICNs; DMN-SCNs,
SN-SCNs and ECN-SCNs. Only one region in SN is present in autism but not in
controls where the inference procedure is not applicable.

Controls only Autism only Both Either

DMN-SCN 0.6271670 0.0815188 0.9538228 0.2369032

SN-SCN 0.0014932 NA 0.0366311 1.3269078× 10−6

ECN-SCN 0.0422562 0.9960098 0.0059460 1.7996732× 10−6
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Global SCN SN-SCN

ECN-SCN DMN-SCN

Fig. 3. β0 curves from Global SCNs as well as SN-SCNs, ECN-SCNs and DMN-SCNs,
generated from regions present in either autism (red) or controls (green) respectively.
(Color figure online)

5 Conclusion and Discussion

Using direct comparisons of structural covariance maps, Zielinski et al. have
shown the structural differences in gray matter regions underlying intrinsic con-
nectivity networks (ICNs) such as SN [16], DMN [16] and ECN (Brandon Zielin-
ski, personal communication, May 2017) between the autism and the control
groups. In contrast, our method compares the structural covariance networks
(SCNs), which are composed of all possible pairwise correlations between gray
matter regions and not just their covariance with a specific seed region.

Our inference procedure obtains statistically significant p-values among the
SCNs derived from SN and ECN (SN-SCNs and ECN-SCNs) when compar-
ing networks constructed from regions present in controls only, regions present
in both autism and controls, as well as regions present in either autism or con-
trols. Our results indicate statistically significant differences in the 0-dimensional
topological features of these SCNs; this result is consistent with the findings of
Zielinski et al. [16].

Our method, however, does not capture significant differences in the topol-
ogy of SCNs derived from DMN (DMN-SCNs). It is possible that considering
only pairwise interactions among gray matter regions (that is, 0-order topolog-
ical features encoded by the β0 curves, corresponding to the number of connected
components) may not be sufficient to capture the complex topological differ-
ences within these SCNs. Analyzing three-way or four-way interactions, capturing
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higher-order topological features such as tunnels and voids and focusing on specific
sites directly involved in merging components in the graph filtration may provide
further insights into these SCNs.

Final Remarks. A key insight from the work of Zielinski et al. [16] is that
structure enables function and functional collaboration enables structure. Our
work, in particular, helps summarize these multidimensional, structure-function
relationships by conceptualizing them as higher order topological relationships.
The SCNs are constructed using inputs from both the function, in form of the
seed ROI anchoring specific ICNs and the structure, in the form of gray matter
density signals.

The techniques in [16] compare covariance maps directly. Such a comparison
helps to identify whether a particular region is present or absent in the autism
vs the control group maps. The regions in these maps are assigned significance
measures using their covariance with respect to a specific seed region. Our work,
on the other hand, uses the SCNs to encode all pairwise associations among
regions, where the extent of an association is measured by the correlations across
subjects. Our results indicate that there are statistically significant differences
in the way networks are connected, which implies differences in the patterns of
pairwise association across diagnostic groups.

To illustrate the advantage, consider the regions present in the SN- or ECN-
specific covariance maps of both the autism and the control groups. Direct com-
parison of the covariance maps does not provide any further insight into these
regions. Our method on the other hand, shows that there are statistically signifi-
cant differences in the topological features derived from SN-SCN and ECN-SCN
composed of these regions (Table 1, p-values of 0.0366311 and 0.0059460 respec-
tively). However, it should be noted that the SCNs are abstract networks and do
not represent physical connectivity between the regions. This limits the inter-
pretability of our results to some extent. Further analysis is needed in order
to quantify and better interpret the differences in the SCNs suggested by the
statistical inference.
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2. Böhm, W., Hornik, K.: A Kolmogorov-Smirnov test for r samples. Fundam. Inf.
117(1–4), 103–125 (2012)

3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

4. Chung, M.K., Villalta-Gil, V., Lee, H., Rathouz, P.J., Lahey, B.B., Zald, D.H.:
Exact topological inference for paired brain networks via persistent homology.
bioRxiv:140533 (2017)



Revisiting Abnormalities in Brain Network Architecture Underlying Autism 107

5. Courchesne, E., Pierce, K., Schumann, C.M., Redcay, E., Buckwalter, J.A.,
Kennedy, D.P., Morgan, J.: Mapping early brain development in autism. Neuron
56(2), 399–413 (2007)

6. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28, 511–533 (2002)

7. Fair, D.A., Cohen, A.L., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Barch,
D.M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: The maturing architecture
of the brain’s default network. Proc. Natl. Acad. Sci. 105(10), 4028–4032 (2008)

8. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle,
M.E.: The human brain is intrinsically organized into dynamic, anticorrelated func-
tional networks. Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005)

9. Minkova, L., Eickhoff, S.B., Abdulkadir, A., Kaller, C.P., Peter, J., Scheller, E.,
Lahr, J., Roos, R.A., Durr, A., Leavitt, B.R., Tabrizi, S.J., Klöppel, S., Inves-
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Abstract. Resting-state functional MRI (rfMRI) correlates activity across brain
regions to identify functional connectivity networks. The Human Connectome
Project (HCP) for Early Psychosis has adopted the protocol of the HCP Lifespan
Project, which collects 20 min of rfMRI data. However, because it is difficult for
psychotic patients to remain in the scanner for long durations, we investigate here
the reliability of collecting less than 20 min of rfMRI data. Varying durations of
data were taken from the full datasets of 11 subjects. Correlation matrices derived
from varying amounts of data were compared using the Bhattacharyya distance,
and the reliability of functional network ranks was assessed using the Friedman
test. We found that correlation matrix reliability improves steeply with longer
windows of data up to 11–12 min, and ≥14 min of data produces correlation
matrices within the variability of those produced by 18 min of data. The reliability
of network connectivity rank increases with increasing durations of data, and
qualitatively similar connectivity ranks for ≥10 min of data indicates that 10 min
of data can still capture robust information about network connectivities.

Keywords: Resting state · Acquisition time · Bhattacharyya distance

1 Introduction

Resting-state functional magnetic resonance imaging (rfMRI) can be used to correlate
spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal across
regions of the resting brain in order to identify functional connectivity networks [1].
rfMRI is well suited to studying patient populations compared to task-based functional
MRI [2] because it does not require participants to perform any tasks, reducing patient
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burden and expanding the patient pool to those whose cognitive or physical impairment
would otherwise preclude them, and has good signal to noise ratio. rfMRI has potential
applications in studying group differences, evaluating treatment, and as a diagnostic
biomarker [2]. In recent years, it has increasingly been used to investigate changes in
functional networks arising from neurological and psychiatric disorders, including
stroke, Alzheimer’s disease, depression, and schizophrenia [3].

An open question in rfMRI methodology is how much data to acquire. Typical rfMRI
studies only acquire 5–10 min of data, but the reliability of estimating functional
networks improves with increased scan time. However, there are varying recommen‐
dations for how many minutes of data are sufficient. While Van Dijk et al. [4] reported
that connectivity estimates stabilized at ~5 min of rfMRI data, Anderson et al. [5]
suggested at least 25 min be collected, and recently, Laumann et al. [6] saw further gains
in reliability with up to 100 min of data. The Washington University-University of
Minnesota Human Connectome Project (HCP) [7] collected 60 min of rfMRI in four
runs of 15 min. The relatively long scan time was intended to counteract SNR loss due
to the high spatial resolution of the data [8].

Our study collects Connectome-like high quality imaging data in an early psychosis
population. We have adopted the protocol of the shorter HCP Pilot Lifespan Project [9],
which collects ~60 min total of imaging data and includes ~20 min of rfMRI data, to
make the scan time more tolerable for patients. However, because it is difficult for
psychotic patients to remain in the scanner for long durations, we here investigate the
reliability of connectivity estimates from less than 20 min of rfMRI data.

2 Methods

2.1 Participants

Eleven healthy male participants between the ages of 16 and 35 were recruited from
Indiana University, Beth Israel Deaconess Medical Center, Massachusetts General
Hospital, and McLean Hospital. The Structured Clinical Interview for DSM-5-RV
(SCID) [10] was administered to confirm that subjects did not meet criteria for psychi‐
atric diagnosis. All subjects gave written informed consent.

2.2 Data Acquisition

Imaging data were collected on two Siemens Prisma 3.0 T MRI scanners at Indiana
University and Brigham and Women’s Hospital with a 32-channel head coil using a
modified protocol based on the HCP LifeSpan Pilot project at the University of Minne‐
sota [9]. Structural, functional, and diffusion data were acquired, with a total scan time
of about 70 min. Structural data included a T1-weighted image (MPRAGE, 0.8 mm3

isotropic resolution, TR/TE = 2400/2.22 ms, TI = 1000 ms, flip-angle = 8°) and a T2-
weighted image (SPACE, 0.8 mm3 isotropic resolution, TR/TE = 3200/563 ms). Multi-
shell diffusion data were acquired four times, twice with anterior-posterior (A-P) phase
encoding and twice with posterior-anterior (P-A) phase encoding (1.5 mm3 isotropic
resolution, 92 directions, TR/TE = 3230/89.2 ms, multiband acceleration factor = 4,
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b = 1500 and 3000). rfMRI data were also acquired four times, twice with A-P phase
encoding and twice with P-A phase encoding (EPI, 2.0 mm3 isotropic resolution, TR/
TE = 800/37 ms, multiband acceleration factor = 8). Each functional run consisted of
420 time points, totaling 5.6 min. Subjects were instructed to keep their eyes open during
all functional scans. In addition, spin echo field maps were acquired to correct for inten‐
sity and geometric distortions.

2.3 Data Preprocessing

Structural and functional data were preprocessed with the HCP Minimal Preprocessing
Pipelines [11]. The structural pipeline entails registration of the T1w and T2w images,
bias field correction, registration to a MNI space template to allow comparison across
subjects, reconstruction of white and pial surfaces, and surface registration to a surface
atlas. Finally, the data are converted to the Connectivity Informatics Technology Initia‐
tive (CIFTI) file format, which combines surface cortical data and volumetric subcortical
data in a single “grayordinate” coordinate system.

rfMRI preprocessing includes echo planar imaging (EPI) distortion correction,
rfMRI to T1w image registration, motion correction, intensity normalization, and
conversion to CIFTI format. The rfMRI data were additionally processed with the
Oxford University Centre for Functional MRI of the Brain (FMRIB) group’s inde‐
pendent component analysis-based Xnoiseifer - FIX (ICA FIX) [12] pipeline to decom‐
pose the BOLD signal and regress out components of physiological noise and noise
caused by motion. The resulting time series were then de-meaned and normalized by
the standard deviation [13] and concatenated to produce a single time series of 1,680
time points (22.4 min).

Contiguous windows of varying durations, ranging from 5.6 to 18 min, were
randomly extracted from the full 22.4 min dataset. Durations above 18 min were not
extracted because the number of different windows that could be obtained would be
limited. One hundred windows were extracted for each duration (i.e. 100 of 5.6 min,
100 of 6 min, etc.). Three a priori parcellation schemes (Fig. 1) were then applied to
each window of data: the HCP Nature parcellation (360 regions) [14], Yeo’s 17-network
parcellation (100 regions), and Yeo’s 7-network parcellation (8 regions) [15]. Using
Pearson’s correlation coefficient, region-to-region functional correlation matrices were
generated for all parcellations of each window of data. Using the 17-network parcellation

Fig. 1. Different rfMRI parcellation schemes of varying granularity shown on an inflated surface.
Left: HCP Nature (360 regions), Center: Yeo 17-network (100 regions), and Right: Yeo 7-network
(8 regions).
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only, the mean within-network connectivities were calculated by averaging the corre‐
lations found between regions belonging to the same network. Each network was ranked
from lowest to highest mean within-network connectivity.

2.4 Statistical Analysis

Correlation Matrix Reliability. Each duration of data was directly compared to each
of the 18-minute windows within each parcellation to determine matrix reliability.
Correlation matrices were directly compared using the Bhattacharyya distance DB [16],
which measures the similarity of two probability distributions. The distance DB for two
multivariate normal distributions with means (𝜇1,𝜇2) and covariance matrices (Σ1,Σ2)
has the form

DB =
1
8
(
𝜇1 − 𝜇2

)T
Σ−1(

𝜇1 − 𝜇2
)
+

1
2

ln

(
|Σ|

√
|Σ1||Σ2|

)

, (1)

where Σ = (Σ1 + Σ2)∕2 and | | signifies the matrix determinant. In the current study, Σ2
was always a correlation matrix derived from an 18-minute window. Because the time
series have equal means as a result of de-meaning during preprocessing, Eq. 1 becomes

DB =
1
2

ln

(
|Σ|

√
|Σ1||Σ2|

)

. (2)

As Σ1 and Σ2 become more similar, DB approaches zero.

Network Connectivity Rank Reliability. Networks using the 17-Network parcella‐
tion were ranked from lowest to highest within-network connectivity. Changes in
network ranks across increasing durations of data were evaluated using the Friedman
test, a nonparametric repeated measures analysis, and results were corrected for multiple
comparisons.

3 Results

3.1 Correlation Matrix Reliability

A steep decrease in DB, indicating increasingly similar correlation matrices, was
observed up to the maximal curvature point observed at durations of 11.21 ± 0.74,
11.97 ± 0.89, and 12.38 ± 1.26 min for the HCP Nature, Yeo 17-network, and Yeo-7
network parcellations respectively (Fig. 2). Note that as the number of regions in the
parcellation decreases, the improvement in matrix similarity is less dramatic. DB then
more slowly approached zero. The middle 95% range of DB values comparing 18-minute
windows against other 18-minute windows for each parcellation represents the varia‐
bility of correlation matrices at the maximum duration. The upper limit of this range
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was taken as a threshold to determine at which duration correlation matrices became
comparable to a matrix derived from 18 min. The average durations where DB began to
fall within the variability of 18-minute vs 18-minute DB values were 14.63 ± 1.32,
14.08 ± 1.58, and 13.43 ± 1.97 min for the HCP Nature, Yeo 17-network, and Yeo-7
network parcellations respectively (Fig. 2).

3.2 Network Rank Reliability

The Friedman test was used to test for a significant difference in mean within-network
connectivity rank across varying durations of data. 93.58 ± 6.68% of networks had at
least one duration that significantly differed in rank (p < 0.029) from of 5.6 to 18 min
of data. This percentage decreased to 79.14 ± 6.64% for rank changes over the range of
10 to 18 min, and further to 62.57 ± 8.43% from 14 to 18 min.

Networks with high within-network connectivity (ranks 16 and 17) were highly reli‐
able even at durations as short as 5–6 min (Fig. 4). These ranks primarily corresponded

Fig. 2. Mean DB for each duration compared to 18 min of data from three parcellations of a
representative subject. Points of maximum curvature (star) and middle 95% ranges of 18 min vs
18 min DB values (dotted lines) are shown.
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to networks 1 and 2, the peripheral and central visual networks. This agrees with
Gonzalez-Castillo, et al. [17] who found the visual network as one of the most temporally
stable networks for within-network connections. Many other networks began to display
stable rankings at 10–12 min of data.

4 Discussion and Conclusion

Using the Bhattacharyya distance, we found that the reliability of functional correlation
matrices derived from rfMRI improves monotonically as more data is acquired. The
improvement reaches an inflexion point with windows of data around 11–12 min, at
which point acquiring more data is less beneficial. Fourteen minutes or more of data was
found to produce correlation matrices within the variability of those produced by 18 min
of data. Since all DB values were calculated as a comparison to 18-minutes of data, these
findings are specific to a study whose gold standard is ~ 20 min of rfMRI data. None‐
theless, our method of using the Bhattacharyya distance can be used by other studies to
determine how much data is necessary for a session to be usable in further analyses.
This is especially valuable for populations that may not tolerate the full scanning
protocol of the study.

-0.2 0 0.2 0.4 0.6 0.8

-0.2 0 0.2

Fig. 3. Top: Representative connectivity matrices derived from 5 min (left), 11 min (center), and
18 min (right) of data using the Yeo 17-network parcellation from a single subject. Bottom:
Connectivity differences between 18 and 5 min of data (left) and between 18 and 11 min of data (right).

Our results show that within-network connectivity rank reliability also increases with
increasing durations of data, although our statistical tests are not ideally suited for
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rankings with a zero variance (e.g. a network is always ranked the same in all experi‐
ments for a particular duration, as network 4 was for all durations except 5.6 min
(Fig. 4)). Indeed, we found that many networks qualitatively exhibited similar connec‐
tivity ranks starting at 10–12 min of data, indicating 10–12 min of data may be a suitable
amount for many network connectivity analyses. Our results also indicate that the dura‐
tion required is dependent on the network of interest, as some networks, such as the
central and peripheral visual network, are very reliable with as little as 5–6 min of data.

Fig. 4. Mean within-network connectivity ranks from a representative subject using 100
randomly sampled windows of data for each duration.
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Abstract. The human brain in the first 2 years of life is fascinating yet myste‐
rious. Whether its connectivity pattern is genetically predefined for neonates
and predictive to the later cognitive performance is unknown. Numerous
neurological/psychiatric diseases in adults with impaired cognitive functions
have been linked with deteriorated “triple networks” that govern the high-
level cognition. The triple networks are referred to salience network for
salient event monitoring and emotion processing, default mode network for
self-cognition and episodic memory, and executive control network for atten‐
tion control, set maintenance and task executions. We investigate the infancy
“triple networks” and their development in the pivotal period of the first two
years of life with longitudinal resting-state fMRI from 52 term infants (24
having cognitive performance scores tested at 4 years old). We found that the
triple networks harbor at the medial prefrontal cortex, an ideal brain region for
unveiling early development of the high-level functions. Further parcellation
of this area indicates consistent subdivisions from 0 to 2 years old, indicating
largely predefined functional segregation in this highly heterogeneous region.
Interconnectivity among the mediofrontal subdivisions reveals a significant
invert U-shape curve for modularity, with the inter-network functional connec‐
tivity (FC) peaking at 6–9 months, manifesting a developing functional inte‐
gration within the frontal region. Through long-range FC, we found the devel‐
opment of the high-level functions starts from salience monitoring, followed
by self-cognition, then to executive control. We extract both within-frontal
modularity index (reflecting short-distance FC), and outreaching index (meas‐
uring long-distance FC) for the newborns. Interestingly, these connectomics
features for the newborns well predict their later cognitive performance at 4
years old. These results converge to favoring a predefined genetic dominance
in the development of triple networks’ FC, which is essential for under‐
standing early high-level neuro-cognitive development and promising for
early abnormality detection.
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1 Introduction

Many psychiatric diseases and mental disorders occur at early adolescence [1]. The most
relevant central nervous system is the “triple networks” [2] which constitute three high-
level cognitive function related functional systems: salience network (SN) for salient
event monitoring and emotion processing, default mode network (DMN) for self-cogni‐
tion and episodic memory, and executive control network (ECN) for attention control,
set maintenance and task executions. While adult triple networks are the researching
hotspots, their infancy patterns and early developmental trajectories are, however,
largely unknown. Based on previous studies [3, 4], the triple networks, as all other high-
level cognitive function-related functional systems, are not well developed at birth; thus
both genetic and environmental factors may affect their prolonged developmental curves
and their dynamic interactions [5]. Understanding such a process is critical for early
diagnosis of grievous later consequences [6].

In this work, based on longitudinal resting-state fMRI (rs-fMRI) from healthy term
infants scanned at birth and every three months after birth, we developed a computational
framework and a set of new quantification metrics and characterized the functional
segregation and integration of such important triple networks in this pivotal early life
period. For the first time, we revealed developing associations between the early brain
functional connectivity (FC) architectures of the neonates and their later cognitive ability
tested at four years old. We will show in next sections how to (1) build an early devel‐
oping triple network model; (2) characterize its functional-anatomical profiles; (3)
investigate the association between later cognitive ability and the earlier developing
curve longitudinally; and (4) individually predict later cognitive ability based on the
newborns’ triple-network FC patterns. Although this is an early prediction study for
healthy infants, it is straightforward to apply this framework to high-risk population
screening and early diagnosis of neurodevelopmental diseases.

2 Methods and Results

2.1 An Early Developing Triple Network Model

The adult triple networks consist of the SN, DMN and ECN, which encompass a
large portion of the brain. However, we found that, with an overlapping analysis, the
triple networks highly overlap in the mediofrontal area that includes both dorsal
anterior cingulate cortex and other midline structures in the prefrontal cortex. In
other brain regions, the overlap is quite sparse (Fig. 1). This indicates that the medi‐
ofrontal area is functionally heterogeneous and densely interconnected. Therefore,
this area becomes an ideal model for investigating early development of brain func‐
tional segregation and integration. For this initial first study of triple networks in
longitudinal neonate data, we focus on the specific brain region where the three
networks are known to overlap. Based on the previous adult studies, this area
contains three major subdivisions: (1) The dorsomedial prefrontal part that connects
to the ECN, (2) the ventromedial prefrontal subregion that belongs to the DMN, and
(3) the dorsal anterior cingular gyrus where the SN anchors (Fig. 1). To answer the
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question that whether the mediofrontal area has already been functionally specific
to the three networks during infancy, we first conduct functional segmentation in
this area. We compare the result with that from adults to see if such a configuration
presents after birth and how it evolves during the first 2-year development.

Fig. 1. The triple network model with the highlighted mediofrontal portion. ECN: executive
control network; SN: salience network; DMN: default mode network; dmPFC: dorsomedial
prefrontal cortex; dACC: dorsal anterior cingulate cortex; vmPFC: ventromedial PFC; IPS:
intraparietal sulcus; dlPFC: dorsolateral PFC; Caud: caudate; vlPFC: ventrolateral PFC; MCC:
middle cingulate cortex; aINC: anterior insula; THL: thalamus; preSMA: pre-supplementary
motor area; IPL: inferior parietal lobule; MTG: middle temporal gyrus; Hippo: hippocampus;
PCC: posterior cingulate cortex.

We use the longitudinal 5-min rs-fMRI data (150 volumes, repetition time = 2 s,
voxel size = 4 × 4 × 4 mm3) of 52 infants, most of whom were scanned at birth and 3,
6, 9, 12, 18 and 24 months old. We have 33, 29, 31, 30, 35, 26 and 22 samples scanned
at the above seven time points, respectively. Data preprocessing is performed with
FMRIBs Software Libraries (FSL) according to previous studies [4], where image
registration is particularly conducted with a 4-D group-wise longitudinal registration
algorithm [7]. For each time point, within the predefined regions-of-interest including
bilateral superior medial frontal areas and anterior cingulate cortex from the Automated
Anatomical Labeling (AAL) template, group-level independent component analysis
(gICA) is conducted to decompose multi-subject data in this area into eight spatially
independent components based on the inherent spatiotemporal organizations. Of note,
we vary the component number from 2 to 15, the 8-component setting got the best
parcellation result. Then, we apply majority voting to generate non-overlapping subdi‐
visions. Finally, we obtain the functional parcellation for each of the above seven time
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points. With visual inspection, only the components with the mirrored spatial distribu‐
tions are merged into the same subregion.

We found that, even for the newborns, the functional subdivisions already exist in
the mediofrontal areas that resemble the adult pattern (Fig. 2A). The changes along
development in the subdivisions’ pattern are minimal (Figs. 2B-G), indicating that the
frontal subdivisions of the triple networks have already been formed and that the func‐
tional segregation is stable during the first two years of life. Of note, the parcellation
was also done with adult data; all the results are quite similar to the adult result. Next,
we examine the interconnectivity among the subdivisions to evaluate the functional
integration.

Fig. 2. Consistent parcellation of the mediofrontal area and its stable developmental pattern from
1 to 24 months (A-G). A dark blue area is part of the ECN, both red and purple areas belong to
the SN, and a green area is within the DMN. Only a white area is emerging since 12 months old.
(Color figure online)

We use the peak coordinates from the 24-month parcellation result as seeds for inter-
subregion Pearson’s correlation-based FC analysis for each subject at each time point.
The individual FC matrices are then averaged across the same time point to produce a
group-level FC matrix. To further examine the functional integration, based on all group-
level FC matrices, modularity analysis is conducted to detect the strongly interconnected
subregions as a module or community and separate those regions with weak FC into
different modules. Modularity index is calculated to measure the development of
community structure.

Similar to the stable spatial discreteness of the subdivisions in Fig. 2, these subdi‐
visions have a quite stable modular structure (Fig. 3A). This confirms the hypothesis on
the functional neuroanatomy of the triple networks in this area, that three dorsal medial
subregions and three cingular subregions are separated but each with strong internal
connections, and another subregion is singled out. As the infants grow up to 24 months
old, this modular pattern becomes the same as the adult’s (Fig. 3B).

Group-level modularity developmental trajectory indicates a non-monotonic, U-
shape trend (Fig. 3C). Further investigation of the FC pattern reveals a dip at ~6 months
old which is contributed by the overall FC increment at all links. After 9 months old,
inter-modular FCs are decreased, but intra-modular FCs are preserved (Fig. 3D). Such
overall early increased inter-modular FCs could be the consequence of myelination,
dendritogenesis as well as prolonged synaptogenesis in such a higher cognitive-related
area. These processes may be followed by a much dominant pruning process that helps
to shape efficient brain connectivities.
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Besides local FC, based on group-level long-range FC analysis, we discover that
different networks have distinct maturation speeds, with different timelines to reach their
respective far-end brain regions (in an order of SN, DMN, and ECN, as shown in Fig. 4).

Fig. 4. Developing triple networks in the first two years of life defined by different far-end FC
outreaching speeds. A: SN; B: DMN; C: ECN; and D: the proposed developing model.

Fig. 3. Changes of modular structure within the first two years of life. Subplots A and B show
the developing community structures among the mediofrontal area. The developmental trajectory
of the group-level modularity follows U-shape with a turning point at ~6 months (C-D).
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2.2 Individual Prediction of Later Cognitive Performance

In addition to proposing a developing model for the triple networks at the group level,
we further examine the feasibility of individualized prediction of the cognitive ability
at the later age (such as 4 years old in this study).

The uniqueness of our data is that, it consists of not only neuroimaging data, but also
various cognitive scores based on four scales evaluated after the infants grew up. These
scales measure (1) visual reception ability, (2) fine motor ability, (3) receptive language
ability, and (4) expressive language ability. They comprehensively measure a child’s
high-level visual, motor, language and memory abilities. Such wide spectrums of abil‐
ities are mediated by the high-level brain functional systems, particularly the triple
networks. We further use a unified metric (i.e., early learning composite, ELC) fusing
all the scores so that it generally indicates the overall cognitive performance. Individual-
level triple-network FC and its developmental trajectory are assessed with respect to
different ELC values.

There are totally 25 infants received the cognitive tests at 4 years old. There are no
significant differences (P > 0.05) in gender, gestation age, and birth weight (Table 1)
between the low and high ELC groups.

Table 1. Demographic information of all infants with the cognitive testing scores.

Variables Low High Total
Total 13 12 25
Male 7 5 12
Female 6 7 13
ELC Mean ± STD 98.8 ± 13.3 129.9 ± 7.8 113.8 ± 19.2
Range 70–114 117–142 70–142
Gestation Age Mean ± STD (d) 278.8 ± 7.1 275.6 ± 7.8 277.3 ± 7.5
Birth Weight Mean ± STD (g) 3393.1 ± 366.6 3480.8 ± 519.5 3435.2 ± 439.2

ELC: early learning composite score; Low: the children with ELC scores lower than the median level; High: those with ELC
scores higher than the median level.

To quantify short-range (within the mediofrontal area) and long-range FC (between
the mediofrontal area and the other part of brain regions), we develop two novel metrics,
namely, modularity index (MI) and outreaching index (RI). MI is defined by the
averaged intra-modular FC minus by the averaged inter-modular FC (Fig. 3B). RI is
defined for each of the triple networks corresponding to the seed region #1 (for SN), #2
(for ECN), and #3 (for DMN) (Fig. 3B), calculated by Pearson’s correlation of the whole
brain gray matter FC pattern between each individual’s FC map and the group-averaged
adult FC map (derived by seed correlation based on 30 healthy college students [8] (aged
24 ± 2.41, 15 females)).

We first investigate longitudinal developmental curves of the MI and RI (see Fig. 5)
for exemplary subjects with high or low ELC score. The curves for three infants (two
with high cognitive performance and one with low performance) with complete seven
scans are highlighted (for RI of the DMN only two infants were shown because the other
one was detected as the outlier). For MI, we found similar trends with early decreased
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functional specialty at ~6 months, and the subject with lower cognitive performance has
a delayed MI curve (Fig. 5A). For RI, SN has less individual variability than that for
ECN and DMN (Fig. 5B), but they all have generally nonlinearly increased patterns.
ECN’s RI curves have larger individual variability (Fig. 5C). DMN’s RI curves for two
infants with high and low cognitive performance respectively show quite different trends
(Fig. 5D). Collectively, these results demonstrate that individualized longitudinal anal‐
ysis is important for understanding the highly heterogeneous cognitive ability in later
time. The curve shape analysis with the newly proposed metrics (MI and RI) can reveal
valuable predictive information.

Fig. 5. Individual developmental trajectories of the MI and RI. RI curves are plotted for triple
networks, separately. The outliers (outside 3 × STD) are removed. MI: modularity index; RI:
outreaching index; ELC: early learning composite score.

We then investigate whether early brain connectomics can predict later behavior
performance. We use the proposed highly informative within-mediofrontal FC at birth
to individually predict the ELC score at 4-years old. We specifically use the neonatal
brain connectomics to predict later high-level cognitive performance because it is more
important to detect any abnormality as early as possible. Specifically, we extract inter-
regional FC within the medial frontal region as features and use high and low ELC scores
as labels, with a simple classification framework based on a linear support vector
machine (SVM) and leave-one-out cross-validation, to conduct individual cognitive
ability prediction. We further calculate the area under a receiver operating characteristic
curve (AUC) to evaluate the predictability at each time point. We found that the early-
stage prediction achieved high accuracy (with AUC of 0.72). This indicates that,
although high-level cognitive-related brain region is less developed in neonates
compared with other primary functions, the early high-level cognitive-related FC pattern
within the medial frontal region could have predictive ability to indicate later cognitive
performance. Both genetic and environmental factors during the period of gestation
could contribute to such a finding.

122 H. Zhang et al.



3 Discussion and Conclusions

This is the first in vivo developmental study on healthy infants’ three most important
high-level brain functional systems. The functionally and clinically important triple
network model has been, for the first time, extended from adulthood to early infancy. A
novel developing triple network model, with the three high-level cognition-related
networks having different maturation trajectories, is thus proposed. This is the first report
on different high-level networks maturing with different trajectories. The SN may be
related to attention to the salient stimulus; an infant may such abilities quite quickly. In
addition, from the evolutional viewpoint, alertness and fast responses to the salient
(mostly aversive) events could be one of the most necessary basic abilities for animals
to survive. On the other hand, consciousness, self-recognition, executive control, atten‐
tion maintenance and working memory abilities mediated by the DMN and ECN are
believed to be a human privilege, which could have prolonged learning processes. From
the neuroanatomical viewpoint, the DMN and ECN involve more long-range connec‐
tions, while the SN is mostly located at insulo-frontal areas containing shorter connec‐
tions. This could also be a reason for their different developmental trajectory. With
gradual long-range myelination, long-range FCs will become more efficient.

We discovered a U-shape modular structure developmental curve which suggests
that 6–9 months old is a pivotal period for the early development of high-level cognitive
functions, during which numerous microscopic processes simultaneously occur. Inter‐
estingly, 6–9 months old is the same period as T1-weighted MRI contrast reversion
occurs. During this period, within-mediofrontal FCs largely increase and result in a
dense FC pattern; after that, the “redundant FC pattern” becomes more structured
towards efficient information processing and functional specialization.

At last, we design a framework that utilizes both individual triple-network develop‐
mental trajectory and two quantitative metrics (MI and RI); and have conducted a
preliminary individual cognitive performance prediction for neonates. The early FC
patterns were found to be informative to predict later cognitive ability, which emphasizes
the importance of early monitoring of the triple networks, especially their converging
area, i.e., medial prefrontal region. Collectively, we suggest that the functional segmen‐
tation and integration in the medial prefrontal cortex might be largely determined at
birth, while the relatively heterogeneous triple-network developmental trajectories may
indicate a non-trivial environmental effect. This paper will broaden our knowledge on
early neurodevelopment; most importantly, it demonstrates a promising future for indi‐
vidualized development monitoring for early intervention.

4 Future Works and Clinical Implications

The limited sample size due to the initial phase of baby connectome project can be
alleviated when more infants are involved. Nevertheless, this work provides a feasible
framework and indicates promising future for early individualized prediction of later
cognitive ability based on baby connectomics. Although such prediction is currently
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based on a healthy cohort, in the future, the developing triple network model can be
easily applied to screening high-risk infants or early detection of psychiatric disorders.
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Abstract. We present a shape matching approach for functional mag-
netic resonance imaging (fMRI) time course and spectral alignment. We
use ideas from differential geometry and functional data analysis to define
a functional representation for fMRI signals. The space of fMRI functions
is then equipped with a reparameterization invariant Riemannian met-
ric that enables elastic alignment of both amplitude and phase of the
fMRI time courses as well as their power spectral densities. Experimen-
tal results show significant increases in pairwise node to node correlations
and coherences following alignment. We apply this method for finding
group differences in connectivity between patients with major depression
and healthy controls.

1 Introduction

Patterns of activation in the brain arising from task-based or resting state func-
tion magnetic resonance imaging (rfMRI) acquisitions are actively being inves-
tigated as potential biomarkers for pathology and healthy development of the
brain. Often, network structures in the brain are defined using correlations in
spontaneous low-frequency activity from BOLD fMRI signal across different
brain areas, either targeting a given region’s fMRI timecourse [1,14] or, less
frequently, its power spectrum [12]. Implicit in the computation of correlations
and coherence is the linear, one-to-one correspondence between the time series
or the spectra, both across regions (i.e. for node to node correlations) and across
subjects. This zero-lag assumption may not always hold true due to confound-
ing effects by neuronal processes, synchronicity between different brain states,
physiological noise, or even motion across subjects. Conversely, improved esti-
mation of phase lags may also be informative when inferring directionality in
network connections using fMRI data or in comparing the spectral content of
fMRI timecourses across different brain regions. Recently researchers have pro-
posed several ideas that compute the extremum of the cross-covariance [8] or
perform a frequency-phase analysis [3] to discover this lag structure in rfMRI
connectivity.

In our work, we adopt a functional data analysis approach to account for
both the amplitude (peaks/valleys) changes and phase (time or frequency) delays
c© Springer International Publishing AG 2017
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when inferring brain connectivity. Here, we would like to define functional rep-
resentations of time courses or their spectra and use the functional shape infor-
mation to align or match them across regions of interests or nodes, or across
subjects. This shape alignment or matching is performed under a Riemannian
metric that naturally gives rise to the connectivity measure that takes both the
amplitude and phase into account. Specifically, we use the square root velocity
function (SRVF) [4,5,10] to perform functional shape registration [11] of fMRI
data. The novelty of our work includes two aspects; a new application of the
functional data analysis framework to rfMRI signals, and for the first time we
perform functional registration of rfMRI time courses and spectra using the non-
linear geometry of a function manifold. To our knowledge this has not been done
before. To summarize, the contributions of this paper are as follows: (i) analysis
of fMRI time courses and spectra using a functional data analysis framework,
(ii) elastic shape matching of fMRI signals that enables the analysis of both
amplitude and phase changes in fMRI across regions, and lastly (iii) the use
of group level connectivity analysis for detecting changes in patterns of aligned
fMRI signals across populations.

2 FMRI Shape Analysis of Time Courses and Spectra

In this section we describe the functional data analysis approach for analyz-
ing fMRI signals and their spectra. Briefly, functional data analysis (FDA) has
been widely applied to several problems in both computer vision and statis-
tics [7,9,13]. The main idea is to define an object by a functional represen-
tation f : I → R, where I is the domain of the function. The function f is
assumed to be square-integrable and thus is considered as an element of an
infinite-dimensional Hilbert space. This Hilbert space naturally allows the L

2

inner product 〈f1, f2〉 =
∫

I
f1(t)f2(t)dt that also serves as a metric for find-

ing distances between functions. This framework can then be used to perform
statistical modeling including regression, prediction and classification.

2.1 Elastic Functional Data Analysis of fMRI Signals Using SRVFs

fMRI signal representation: Here, we describe the functional representation for
fMRI signals in brief. For more details the reader is referred to [11]. For a given
fMRI time course signal f : I ≡ [0, 1] → R, and its velocity ḟ(t) = df

dt and mag-
nitude |ḟ(t)|, we define its functional representation by the square-root velocity
field (SRVF) map q given by,

q : [0, 1] → R, q(t) =
ḟ(t)

√
|ḟ(t)|

. (1)

For an absolutely continuous f , the SRVF transformation ensures that q is square
integrable. The set of SRVFs is then given by L

2([0, 1],R), which is a Hilbert
space. The original fMRI signal can be recovered by f(t) = f(0)+

∫ t

0
q(τ)|q(τ)|dτ .
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The SRVF mapping is invertible up to a given f(0). We assume f(0) = 0 as the
initial condition of the fMRI signal at time t = 0. It is noted that the domain I
is defined as the interval [0, 1] for all signals in the population. We will use the
same notation for denoting the frequency domain spectrum of the fMRI signal
given by its power spectral density (PSD) estimate. In this case, the notation for
time domain t is changed to that of the frequency domain ν. Then using q for
the SRVF mapping, we have q : [0, 1] → R, q(ν) = ṗ(ν)√

|ṗ(ν)| , where p is the PSD

function of f . With a slight abuse of notation, we will denote q for the SRVF
mapping of both the fMRI time course and the PSD.
fMRI temporal domain and spectral domain reparameterization: To account for
temporal shifts and spectral phase lags, we now define the notion of time and
frequency reparameterization. This idea is closely related to the parameterization
(speed) of the underlying domain on which the function f or ν is defined. For
example, increasing the speed of the parameterization results in local shrinking
of the domain, whereas reducing the speed of the parameterization results in
local expansion of the parameterization domain. This behavior can be modeled
by a warping function γ : I → I, where γ̇ > 0,∀t ∈ I; γ being a diffeomorphism.
Thus to change the temporal parameterization, one can simply compose f with
γ as f ◦ γ. In the SRVF domain, this is given by

q · γ =
(ḟ ◦ γ)γ̇

√
|(ḟ ◦ γ)γ̇|

=
(ḟ ◦ γ)

√
|(ḟ ◦ γ)|

√
γ̇ = (q ◦ γ)

√
γ̇. (2)

We denote the set of all possible γ functions as Γ and emphasize that incorpo-
rating domain warping via γ functions enables elastic shape matching of fMRI
functions.
Elastic Riemannian metric for SRVFs of fMRI signals: To compare functions
and compute distances between them, we define the notion of a metric on the
space of q functions. Before analysis of fMRI signals, one usually standardizes
the signal by obtaining a z score of f as given by f̃ = f−f̄

σ , where f̄ is the mean
value of f and σ is the standard deviation. One can impose an analogous unit
length constraint on the q function by obtaining q̃ = q

||q|| . This unit length trans-
formation forces q to lie on a Hilbert sphere denoted by Q. Formally, the space Q
is defined as Q ≡

{
q ∈ L

2| ∫ 1

0
(q(s), q(s))R2ds = 1, q(s) : [0, 1] → R

2
}

. Then one
can define the Riemannian metric on the tangent space of this sphere Tq(Q).
An important feature of the SRVF representation for fMRI signals is that an
elastic Riemannian metric, which is invariant to the domain reparameterization,
is reduced to the L

2 metric [11] and given by d(f1, f2) = ‖q1−q2‖. Therefore, for
any two SRVFs given by q1, q2 ∈ L

2 and γ ∈ Γ , we have ‖q1 ·γ−q2 ·γ‖ = ‖q1−q2‖.
This property allows us to solve the problem of registration in an efficient,
invariant manner.
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2.2 fMRI Alignment and Registration:

Next, we enable comparisons between functions via elastic geodesics between
them. Since the space Q is a Hilbert sphere, the geodesic between two points
(shapes) q1 and q2 can be expressed analytically as,

χt(q1; v) = cos
(
t cos−1〈q1, q2〉

)
q1 + sin

(
t cos−1〈q1, q2〉

)
v, (3)

where t ∈ [0, 1] and the initial tangent vector v ∈ Tq1(Q) is given by v =
q2 − 〈q1, q2〉q1. Then the geodesic distance between the two shapes q1 and q2 in
Q is given by

d(q1, q2) =
∫ 1

0

√
〈χ̇t, χ̇t〉dt. (4)

To find the elastic geodesic distance, we simply minimize Eq. 4 as
delastic(q1, q2) = minγ∈Γ d(q1, q2 · γ). In estimating the elastic geodesic, the
optimal reparameterization γ̂ can be efficiently found as the minimizer γ̂ =
argminγ

(∫ 1

0
||q1 − γ · q2||2dt

)
. In practice, we use dynamic programming to find

the optimal γ̂. The phase difference between two functions is encoded by the
warping function γ̂ resulting from the alignment.
Group analysis and statistics of fMRI signals: For statistical analysis of fMRI
signals and spectra, we introduce the notion of the Karcher mean [6]. Given
a collection of functions f1, f2, · · · , fn, let q1, q2, · · · , qn denote their SRVFs,
respectively. The Karcher mean is then computed by an iterative procedure:
initialize the mean function μk at an iteration k and solve for

γ̂k+1
i = arg inf

γ∈Γ
‖μk − (qi ◦ γ)

√
γ̇‖, i = 1, 2, · · · , n, (5)

μk =
1
n

n∑

i=1

(qi ◦ γ̂k−1
i )

√
˙̂γk−1
i . (6)

One can use this mean function as a template for aligning all the functions in
the group. This enables one to compare fMRI signals across population.

3 Results

In this section we describe experimental results that show improvement in pair-
wise node-to-node correlation and coherence as well as group differences in con-
nectivity between healthy controls and patients with major depressive disorder
(MDD). 70 patients (34M/36F, mean age 43 years) with MDD and 36 healthy
volunteers (17M/19F, mean age 39 years) underwent fMRI imaging on a 3T
Siemens Allegra scanner (TR = 2 s, TE = 30 ms, flip angle = 70, 3.4×3.4×5mm3

resolution). We used FSL [4] to perform slice-timing correction, motion correc-
tion, and high pass filtering. The fMRI scans were then filtered using ICA based
denoising and registered to the T1-weighted anatomical MPRAGE scan. All
images were normalized to the MNI standard space using SPM [1]. We parcel-
lated the fMRI images using the Craddock functional atlas [2] and focused our
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analysis on 18 seed regions chosen based on their relevance to depression. They
included the subgenual, rostral, and dorsal anterior cingulate cortex (ACC),
bilateral amygdala and overlapping anterior hippocampus (am hp), bilateral
dorsolateral prefrontal cortex (DLPFC), bilateral thalamus (Th), posterior cin-
gulate cortex (PCin), and bilateral precuneus (PreCun). Additional regions less
relevant to depression were chosen as control nodes; these included bilateral
primary visual cortex along the calcarine sulcus (Visual 1 & 2).

3.1 Visualization of Elastic Functional Alignment

Figure 1 shows examples of time course and spectral alignment of fMRI signals
across regions and within-subject. In Fig. 1, left, non-elastic (Panels A, C, and E
γ = identity = t) and elastic matching (Panels B, D, and F) of two time courses
and PSDs are compared. In non-elastic matching (Panel A), the two curves are
analyzed at each time or frequency, as represented by the vertical black lines.
In contrast, in elastic matching (Panel B), similar features of the two curves are
aligned. As a result, the peaks and valleys of the two time series in panel F are
aligned after elastic matching.
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Fig. 1. Within-subject registration of resting state time courses (Left), and power
spectral densities (PSDs, Right). A: non-elastic matching between the top and bottom
fMRI signals. B: elastic matching shown by corresponding lines. C: non-elastic and D:
elastic geodesics between the two time signals (Left), and PSDs (Right). E: overlay of
top and bottom signals before matching. F: overlay after matching.

Alignment across subjects allows estimation of a template, which can serve as
a reference for group analyses. Figure 2 shows the mean PSDs of the population
(N = 106) in 18 regions of interest without and with alignment. While the non-
elastic mean seems to capture a single low-frequency feature, the elastic mean
identifies features across the frequency range. Finally, Fig. 3 shows PSDs of the
dorsal anterior cingulate and dorsolateral prefrontal cortex aligned to the average
PSD for those ROIs for N = 50 randomly selected subjects. Elastic alignment
yields spectra with distinct peaks at both low and high frequencies, mirroring
the mean spectra displayed in Fig. 3.
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Fig. 2. Mean PSDs for 18 regions of interest.
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Fig. 3. Left panel: Unaligned PSDs overlaid; each line corresponds to data from a single
subject. Right panel: PSDs after elastic alignment to the mean shape. ROIs shown are
the left and right dorsal anterior cingulate and the left and right prefrontal cortex.

3.2 Measuring Brain Connectivity After Elastic fMRI Alignment

Pairwise node to node connectivity measures were obtained by computing the
Pearson correlation between time series, coherence between power spectra, and
elastic geodesic distances between time series. We remind the reader that the
elastic geodesic distance measures the difference between the fMRI signals,
whereas measures such as correlation and coherence measure the closeness or
agreement between the fMRI signals.

Increases in Measures of Correlation and Coherence. As expected we
observed increases in correlation and coherence after elastic functional align-
ment. The effect of alignment was evaluated by comparing correlations of time
series and coherences of the PSDs for each pair of nodes across all subjects with
and without alignment. Figure 4 shows a signed value of Cohen’s d computed as
d(x, xaligned) =

μx−μxaligned

σx,xaligned
at each node, where x and xaligned represent the
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correlations or coherence before and after alignment. The measures were found
to be consistently higher in majority of connections following alignment. Con-
nectivity among visual cortex was high prior to alignment; therefore changes in
these connections were modest.

Population Analysis of Connectivity Patterns. Lastly, group differences
in functional connectivity between patients and controls were examined using
a linear model covaried with age and gender. In addition to the widely used
correlation and coherence, we also used the geodesic distances between nodes and
the deviation of the warping function γ from the identity as potential measures
of connectivity. Figure 5 shows connectivity differences between patients with
MDD and healthy controls.
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Fig. 4. Signed Cohen’s d shown at each node, with a white asterisk denoting
significance at p < 0.05 (uncorrected). ACC-Anterior Cingulate Cortex; Am A
hp-Amygdala/Anterior hippocampus; Cin-Cingulate; D-Dorsal; L-Left; P-Posterior;
PreCun-Precuneus; R-Right; Rost-Rostral; Sg-Subgenual.

Several features in group analysis were observed with alignment. Some con-
nections represented by correlation or coherence were maintained with align-
ment, for example, between anterior cingulate and dorsal prefrontal cortex.
Importantly, effect sizes of the group differences increased for existing connec-
tions after alignment. Not all connections were preserved after alignment. For
example, the correlations between the precuneus and thalamus were weakened
after alignment. On the other hand, the correlation and coherence between pos-
terior cingulate and thalamus were increased after alignment.

4 Discussion

We proposed an elastic shape matching approach for the analysis of fMRI time
series and PSDs. It is worth noting that several significant inter-node connections
shown by elastic geodesic and gamma distances coincided with those shown by
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Fig. 5. Group differences between patients with MDD and healthy controls. Colormap
shows the t-statistic with controls > patients. The white asterisk denotes pairwise
significance at p < 0.05 (uncorrected).

correlation or coherence. For example, significantly higher correlation after align-
ment, and coherence before and after alignment between thalamus and medial
anterior cingulate are captured by lower geodesic and gamma distances. On the
other hand, the lower correlation in controls between precuneus and thalamus
is encoded by a higher gamma distance, whereas lower coherence in controls
between posterior cingulate and thalamus is encoded by higher geodesic dis-
tances. This suggests that the geodesic and gamma distances from elastic align-
ment may serve as additional representations of connectivity. While we observed
an increase in correlation and coherence between fMRI signals following align-
ment, further validation will be necessary to explore the clinical utility of this
approach. In addition, we anticipate enhanced effect of alignment in task-based
fMRI where neurobiological signals are coherent with tasks.
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Abstract. Meditation practice is a non-pharmacological intervention
that provides both physical and mental benefits. It has generated much
neuroscientific interest in its effects on brain activity. Spontaneous brain
activity can be measured by electroencephalography (EEG). Spectral
powers of EEG signals are routinely mapped on a topographic layout of
channels to visualize spatial variations within a certain frequency range.
In this paper, we propose a node-based network filtration to model the
spatial distribution of an EEG topographic power map via its dynamic
local connectivity with respect to a changing scale. We compare topo-
logical features of the network filtrations between long-term meditators
and mediation-näıve practitioners to investigate if long-term meditation
practice changes power patterns in the brain.

1 Introduction

Meditation is a set of mental training regimes widely practiced for its claimed
benefits to physical and mental health. The investigation of spontaneous brain
activity during resting state or practice, is a sensitive approach to identify neuro-
plastic changes induced by meditation practice [2]. Electroencephalogram (EEG)
is an important imaging modality for exploring the neuroplastic effects of med-
itation under various experimental conditions. In these studies, spectral powers
of EEG signals are routinely mapped on a topographic layout of channels to
visualize spatial variations within a certain frequency range. Topographic dif-
ference in spectral powers indicates configuration change in the brain’s active
neuronal sources. It is thus important to establish a statistical framework for
comparing topographic power maps in the study of neuroplastic effect of long-
term meditation practice.

Statistical inference of EEG topographic power maps is typically based on
the mass univariate approach with multiple node-level testing [7]. This app-
roach does not account for the network topology in the topography of the power
map. Alternative statistical methods more commonly applied to electric poten-
tial maps include microstate analysis [1] and cluster-based inference [8]. But
microstate analysis uses a global dissimilarity index based on node-level mean
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difference and variance rather than network topology in the topography. Cluster-
based methods often require threshold selection which may result in bias and
inconsistency [5,9].

In this paper, we propose a node-based network filtration for modeling the
spatial distribution of an EEG topographic power map. Each EEG power map
is modeled as an undirected network on a triangulation of the map, with node
weights defined from denoised frequency powers. We binarize the network by
thresholding the node weights, and obtain the network filtration - a nested
sequence of binary networks - as we vary the threshold. A topological feature
of the filtration is then incorporated in a permutation test for group difference
between the maps. Simulation studies show evidence that the proposed frame-
work is robust to scaling and translation of maps and sensitive to translation in
opposite directions resulting in map spatial difference. The proposed framework
is also applied to compare the topographic power maps of long-term meditators
and meditation näıve practitioners.

The methodological contributions of this paper are: (1) we propose a node-
based network filtration for quantifying the spatial distribution of an EEG topo-
graphic power map; (2) we use the node-based network filtration to make spatial
comparison of two groups of EEG power maps.

2 Methods

Our goal is to compare spatial distribution of EEG power maps in meditators
and novices. We first briefly describe a spatial denoising procedure on a power
map. We then characterize the spatial distribution of the denoised power map
through a sequence of binary networks constructed on the map.

EEG topographic power map. Signal at each of the c observed EEG channels
v1, v2, . . . , vc is decomposed into frequency components by Fourier transform.
The strengths of the frequency components within a certain range are measured
by integrating the power spectral density (PSD). Here we estimate the PSD of the
EEG signal at each channel by Welch’s method of modified periodogram: divide
a signal into overlapping segments and then average the modified periodograms
computed on all the segments to obtain a PSD estimate with reduced variance
than the usual periodogram [10]. We denote the topographic map of the PSDs
at c EEG channels by f = (f1, . . . , fc), where the index follows the EEG channel
labels.

Spatial denoising. We then spatially denoise the topographic power map f of
each subject at a particular frequency band. We model the topography of f as
an undirected graph G = {V, E} with the node set

V = {vi : i = 1, . . . , c}

of the c EEG channels and the edge set with no orientation

E = {(vi, vj) : vi, vj ∈ TV , vi ∼ vj , i, j = 1, . . . , c},
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where TV is the Delaunay triangulation built on V and ∼ denotes neighbors in
TV . Defining the graph Laplacian L = (lij) on G by

lij =

⎧
⎨

⎩

−aij , vi �= vj and vi ∼ vj∑
k �=i aik, vi = vj

0, otherwise

with the adjacency matrix A = (aij), there are up to c unique eigenvectors
ψ1, ψ2, · · · , ψc satisfying

Lψj = γjψj (1)

with 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γc. These eigenvectors are orthonormal, i.e., ψ′
iψj = δij

- the Kronecker’s delta. The first eigenvector is trivial: ψ1 = 1/
√

c(1, . . . , 1)′. All
other eigenvalues and eigenvectors are analytically unknown and need to be
numerically computed.

Once we obtain eigenvectors ψj satisfying (1) on the Delaunay triangulation
TV , the heat kernel estimate for the power map f is given by

f̂ = (f̂1, . . . , f̂c) = Kσ ∗ f =
c∑

j=1

e−γjσζjψj , (2)

where Kσ =
∑c

j=1 e−γjσψjψ
′
j is the discrete heat kernel and ζj = f ′ψj =

ψ′
jf , j = 1, . . . , c, are the Fourier coefficients with respect to the basis

{ψ1, . . . , ψc}. The parameter σ is the heat kernel bandwidth and it modulates
the extent of denoising.

Quantifying the spatial distribution of a power map. We define a node-weighted
network on the map through G = {V, E}, with the node weights

wi = f̂i, i = 1, . . . , c,

assumed to be unique. With respect to an arbitrary threshold λ ∈ R, we define
a binary network

Gλ = {Vλ, Eλ}
on G, where

Vλ = {vi ∈ V : wi ≤ λ}
and

Eλ = {(vi, vj) ∈ E : max(wi, wj) ≤ λ}.

Now let
λ1 = w(1) < λ2 = w(2) < · · · < λc = w(c)

be the order statistics of the unique node weights w1, w2, . . . , wc of G. Setting λ
in the order of λ1, λ2, · · · , λc yields a sequence of subsets of G:

Gλ1 ⊂ Gλ2 ⊂ · · · ⊂ Gλc
, (3)
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which we call a node-based network filtration.
Note that the filtration (3) is not affected by relabeling of the EEG channels,

since the order statistics λi = w(i), i = 1, . . . , c, remain the same regardless of
the channel labels. Each Gλ in (3) consists of clusters of nodes; as λ increases,
clusters appear and later merge with existing clusters. The pattern of changing
clusters in (3) has the following key properties.

(1) For all λi < λ < λi+1, Gλ = Gλi
, i = 1, . . . , c − 1; in other words, the filtra-

tion (3) is maximal in the sense that no more Gλ can be added to it.

(2) As λ increases from λi to λi+1, only the node v′
i+1 that corresponds to the

weight λi+1 is added in Vλi+1 .

(3) Define a local minimum (maximum) λi as

λi < λj (λi > λj),∀ v′
j ∼ v′

i,

where v′
i and v′

j are nodes that correspond to the weights λi and λj . New cluster
of nodes emerge in Gλi

at a local minimum λi and merge with other clusters at
a local maximum λi. Here we assume that we do not encounter the case where

λi < λj some v′
j ∼ v′

i and λi > λj the other v′
j ∼ v′

i.

Properties (1) and (2) hold because the λi, i = 1, . . . , c account for all the
unique node weights wi, i = 1, . . . , c. Property (3) holds for local minimum λi

because all the neighboring nodes v′
j of v′

i are not included in Gλi
, hence v′

i

emerges as a standalone cluster in Gλi
; for local maximum λi, clusters to which

the v′
j are connected are joined by v′

i in Gλi
.

We illustrate the filtration (3) on a 6-channel EEG layout in the international
10–20 system (Fig. 1). We first build up the Delaunay triangulation over the 6-
channel layout (Fig. 1). Node weights are the powers at the EEG channels. At
each filtration value λ, we include the nodes and edges with weights less than or
equal to λ. The clusters change as λ increases.

Topological permutation test. We use a topological feature to summarize the
changing connectivity in the sequence of binary networks. The 0th Betti number
β0 counts the number of clusters in a network [4]. In this paper we define the
0th Betti function at λ1 < · · · < λm as the sequence of 0th Betti numbers
(β1

0 , . . . , β
m
0 ). For instance, the 0th Betti function in Fig. 1 corresponding to

λ = −1, 0, 0.5, 1, 2, 3 is (1, 1, 2, 1, 1, 1).
Same spatial distribution implies the same node-based network filtration,

hence the same 0th Betti function. To statistically compare the spatial distri-
bution of two groups of denoised power maps, we test the null hypothesis that
there is no difference between the respective mean 0th Betti functions β̄1

0 and
β̄2
0 of the node-based network filtrations of maps in Group 1 and 2:

H0 : β̄1
0(λ) = β̄2

0(λ),H1 : β̄1
0(λ) �= β̄2

0(λ), (4)
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Fig. 1. Schematic of the filtration (3) on 6 weighted EEG channels in the international
10–20 system. (a) Large figure on left: The 6-channel layout with the corresponding
Delaunay triangulation indicated by dashed lines. Node weights are the powers at the
EEG channels. (b) Small figures on right: At each filtration value λ, we include the
nodes and edges with weights less than or equal to λ. As the λ increases, more nodes
and edges join in the filtration.

at fixed m filtration values λ1, . . . , λm. To test the null hypothesis (4), we first
compute the 	2 distance

	2(β̄1
0 , β̄

2
0) =

√
√
√
√

m∑

i=1

(β̄1
0(λi) − β̄2

0(λi))2, (5)

between the respective group means

β̄1
0 = (β̄1

0(λ1), . . . , β̄1
0(λm)) and β̄2

0 = (β̄2
0(λ1), . . . , β̄2

0(λm))

of the 0th Betti functions of the node-based network filtrations characterizing
the denoised power maps in Group 1 and 2. Then the labels of the two groups
undergo repeated random exchanges. At each label exchange, the 	2(β̄1′

0 , β̄2′
0 )

distance between the respective mean Betti functions β̄1′
0 and β̄2′

0 of the relabeled
power maps. We take the proportion of the distances 	2(β̄1′

0 , β̄2′
0 ) exceeding that

of the observed distance 	2(β̄1
0 , β̄

2
0) is taken as the p-value for the permutation

test.

3 Simulations

We use simulations to evaluate how well the proposed topological permutation
test detects difference in the spatial distribution of two groups of power maps.
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A scaled or translated map has identical filtration as the original map after
normalization. So the proposed test should stay robust under map scaling and
translation with moderate noisy perturbations. It should also be sensitive to
spatial difference between maps caused by translation in opposite directions.

We simulate two groups of noisy power maps by first defining the underlying
function z = (z1, . . . , z100) by

zi = 3(1 − xi)2e−(x2
i+y2

i ) + 3e−((xi−2)2+y2
i ), i = 1, . . . , 100, (6)

with the Cartesian coordinates (x1, y1), . . . , (x100, y100) sampled uniformly from
the four quadrants of the [−3,3] × [−3,3] grid. We then define a transformation
z′ = (z′

1, . . . , z
′
100) of z through one of the following functions:

1. (scaling)
z′
i = 5zi;

2. (translation)
z′
i = (zi + 5);

3. (translation in opposite directions)

z′
i = (zi ± 5)

(+ for 1 ≤ i ≤ 50 and − for 51 ≤ i ≤ 100), which translates two halves of the
map in opposite directions.

We add independent Gaussian noises N(0, 0.12) to z and z′ at the (xi, yi), i =
1, . . . , 100, to create two groups of power maps {z1, . . . ,z5 : zj =
(zj1, . . . , zj100)} and {z′

1, . . . ,z
′
5 : z′

j = (z′
j1, . . . , z

′
j100)}.

Under each transformation setting, this simulation procedure is repeated 500
times; for each simulation, the null hypothesis (4) is tested on the 2 groups of
5 samples through the proposed permutation test with 252 exact permutations.
We reject the null when a p-value falls below 0.05. The rejection rates are 5%,
3% and 98% in each setting. The results provide numerical evidence that the
proposed procedure for testing the difference between topographic maps stays
robust under some scaling and translation and meanwhile is sensitive to trans-
lation in opposite directions. In comparison, the maximum t-statistic test has
rejection rates of 9%, 6% and 99% in each setting. It is more sensitive than the
proposed topological inference procedure in picking up non-topological difference
between power maps.

4 Real Data Application

Data description. The aim of this application is to compare topological differ-
ence between frequency variations in the EEG signals of 24 meditation-näıve
participatns (MNPs) and 24 long-term meditators (LTMs) of Buddhist medita-
tion practices (approximately 8700 mean hours of life practice) during whole-
night non-rapid eye movement (NREM) sleep divided into 3 cycles. The EEG
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Fig. 2. Left: Filtrations of mean normalized power maps in the beta band in sleep
cycle 1 under the baseline condition. Right top: Group mean β0 functions with the
p-value from the β0 permutation test. Right bottom: The p-values of β0 and maximum
t-statistic permutation tests comparing MNPs and LTMs in the baseline session. The
p-values below the Bonferonni threshold 0.05/6 = 0.0083 corrected over 2 (frequency
bands)× 3 (sleep cycles) = 6 tests for each method are shaded in gray.

signals were recorded with a 256-channel hdEEG system (Electrical Geodesics
Inc., Eugene, OR). Signals bandpass filtered (1–50 Hz), and independent com-
ponent analysis was used to remove ocular and muscle artifacts in the signals.
More pre-processing details can be found in [3]. The participants undergo 3 ses-
sions of recording: a baseline session, and one session each after two days of
Vipassana (mindfulness) and Metta (compassion) meditations. We analyze the
baseline session for unconfounded effect of long-term meditation practice. Also,
we focus on the high-frequency bands β and γ of the EEGs since high frequency
has been shown to positively correlate with meditation experience [6].

Topological permutation test. After heat kernel denoising with a moderate band-
width σ = 0.5 for the noise level in the data, we normalize each power map by
a z-score transformation across all channels. We then compare the normalized
denoised power maps of the LTMs and MNPs in the high-frequency β (15–25 Hz)
and γ (25–40 Hz) bands by the proposed permutation test. For β band in sleep
cycle 1, the node-based network filtrations of the average normalized maps in
both groups are shown in Fig. 2 (left). The closure of clusters is distinctly faster
in the average LTM map as λ increases. Figure 2 (right top) shows the aver-
age β0 functions of LTMs and MNPs in the β band of sleep cycle 1. The LTM
function is below the MNP function throughout the range of λ values, meaning
that on average the LTMs have fewer clusters than the MNPs. This implies that
the LTM power maps having more coherent spatial distribution, as nodes with
similar powers get connected in a smaller window of λ than those with more
varied powers.
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Comparison with maximum t-statistic test. The table of p-values in Fig. 2 pro-
vides comparison between results of the proposed and maximum t-statistic per-
mutation test. The only place where the proposed test shows significant topologi-
cal difference is the β band in sleep cycle 1, whereas the maximum t-statistic test
shows significant difference between LTM and MNP in four out of six categories.
Due to sensitivity shown by the maximum t-statistic approach in simulations, it
is possible that we are getting signals from non-topological difference between
the two groups of power maps.

5 Discussion

In this paper, the spatial distribution of an EEG topographic power map is
quantified through a novel node-based network filtration. We use the network
filtration to compare the spatial distribution of EEG power maps in long-term
meditators and meditation näıve practitioners. The results show that the medi-
tators have on average fewer clusters, thus a more coherent spatial distribution,
than novices in the early stage of NREM sleep.

In EEG analysis, a general concern is that the scalp signal at each electrode
is a weighted sum of the signal generated by all cortical sources. For future
research, we will also explore an unmixing procedure such as working in source
space after applying a distributed solution and analyzing selected independent
components. It will provide deeper insight into the underlying neurophysiologi-
cal dynamics that the topological network analysis has the potential to capture.
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Abstract. Many studies in the literature have validated the use of
resting-state fMRI (rs-fMRI) for brain disorder/disease identification.
Unlike the existing methods that mostly first estimate functional con-
nectivity and then extract features with a graph theory, in this paper,
we propose a novel method that directly models the temporal stochastic
patterns inherent in BOLD signals for each Region Of Interest (ROI)
individually. Specifically, we model temporal BOLD signal fluctuation
of an individual ROI by means of Hidden Markov Models (HMMs), and
then compute a regional BOLD signal likelihood with the trained HMMs.
By regarding the BOLD signal likelihood of ROIs over a whole brain as
features, we build a classifier that can discriminate subjects with Autism
Spectrum Disorder (ASD) from Normal healthy Controls (NC). In addi-
tion, we also devise a method to further investigate the characteristics
of temporal dynamics in rs-fMRI estimated by HMMs. For group com-
parison, we use the metrics of state occupancy rate and lifetime of the
optimal hidden states that best represent the temporal BOLD signals.
In our experiments with ABIDE cohort, we validated the effectiveness
of the proposed method by achieving the highest diagnostic accuracies
among competing methods. We could also identify the group differences
in temporal dynamics between ASD and NC in terms of state occupancy
rate and lifetime of individual states.

1 Introduction

Recent studies have witnessed that functional connectivity during resting, i.e.,
not performing any cognitive task, is changing over time [2]. Since those findings,
various attempts have been made to effectively investigate intrinsic functional
dynamics of the brain network [9,11,16,17]. However, many existing studies
considering brain dynamics depend mostly on a sliding window approach [1].
A fixed length of window is shifted over time resulting in time-varying covariance
matrices between brain regions for each sliding window and the measures are
clustered to construct intrinsic brain networks [10,12]. But this approach has a
limitation that the size of the sliding window and the number of clusters are
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Fig. 1. An overview of the proposed framework for ASD identification with rs-fMRI
and analysis of the trained model.

often chosen in an arbitrary manner, which may lead to inaccurate estimation
of the underlying functional dynamics.

An alternative approach, which we also utilize in this work, is based on the
general framework of probabilistic generative models, which enable quantitative
analysis about key properties of temporal BOLD fluctuations. To assess tem-
poral dynamics, we use Hidden Markov Models (HMMs) [14], which assume
that observations are combined through a set of time-dependent hidden-state
variables represented as a first-order Markov chain. Thus, unlike the sliding win-
dow approach that requires exact window length, HMMs systematically evalu-
ate long-term dependencies by modeling transitions among states, which can be
inferred from observation stochastically. Earlier, Eavani et al. [6] used HMMs
to infer dynamic functional connectivities based on temporal BOLD signals by
explicitly introducing sparse inverse covariance matrices in an HMM. Despite
their sound modeling for dynamic functional connectivity estimation, due to
the large number of parameters, mostly involved in inverse covariance matrices,
that should be learned from samples, it showed very limited performance in brain
disease diagnosis [17].

In this work, we propose a novel framework of modeling temporal dynamics
inherent in rs-fMRI with HMMs, based on which we further devise a method
of discriminating Autism Spectrum Disorder (ASD) from Normal healthy Con-
trols (NC). The framework of the proposed method is schematized in Fig. 1.
To overcome the limitation of previous application of HMMs in rs-fMRI, we
explicitly model dynamic characteristics of ROIs from regional mean time series
of rs-fMRI, which we thus call as an ‘ROI-Wise HMMs’. Based on the trained
HMMs, we then compute ‘goodness-of-fit ’ of regional mean time-series, i.e., like-
lihood, from the corresponding HMM. We define a whole-brain feature vector
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by concatenating regional likelihoods, which is then fed into a classifier for ASD
diagnosis. Along with the ASD diagnosis, motivated by significant evidences in
recent study [19] that patients with ASD exhibit different temporal dynamics,
we also present a novel method of estimating temporal dynamics in terms of
state occupancy rate and lifetime of individual states in the whole brain as a
way to evaluate group differences.

2 Materials and Image Processing

We acquired preprocessed rs-fMRI data from the University of Michigan (UM)
open to the public in the Autism Brain Imaging Data Exchange (ABIDE)1 [5].
The samples are 120 subjects in total, including 47 ASD, and 73 NC. During
preprocessing, the first four volumes of each subject were initially discarded
prior to further processing to ensure magnetization equilibrium. The remaining
volumes were then spatially normalized to the MNI space with a voxel size of
3 × 3 × 3 mm3. Regression of nuisance signals including ventricle, white matter,
and global signals was performed by applying Friston 24-parameter model [8].
The regressed rs-fMRI images were parcellated into 116 ROIs using the Auto-
mated Anatomical Labeling (AAL) atlas [18], and the mean time series of the
BOLD signals in voxels of each ROI were computed. The mean signals were band-
pass filtered from 0.01 to 0.1 Hz to exploit the characteristics of low frequency
fluctuation in rs-fMRI, resulting in 116-dimensional vectors for each subject.

3 ROI-Wise Temporal Dynamics Estimation

3.1 ROI-Wise HMMs Modeling

Assume that we are given a sequence of T -length mean time-series of rs-fMRI
from the r-th ROI, i.e., Xr =

[
(xr

1)
�; · · · ; (xr

n)�; · · · ; (xr
N )�

]
∈ R

N×T , where

r = {1, ..., R}, xr
n =

[
xr

n,1, · · · , xr
n,t, · · · , xr

n,T

]� ∈ R
T , R and N denote, respec-

tively, the number of ROIs and the number of subjects. We hypothesize that
(i) the temporal BOLD fluctuations of ROIs has their own stochastic patterns
and (ii) such temporal stochastic patterns between NC and ASD may be dif-
ferent, which could thus be useful to exploit temporal stochastic patterns for
ASD and NC discrimination. Based on these hypotheses, we model region-wise
temporal dynamics with HMMs individually, which we call as ROI-Wise HMMs.

Let sr
t and or

t denote random variables of a hidden state and an observation
for an HMM of an ROI r at time t, respectively. With a first-order Markov chain
assumption, the hidden state sr

t at time t is dependent on the hidden state sr
t−1

1 ABIDE (http://fcon 1000.projects.nitrc.org/indi/abide) provides pre-
processed rs-fMRI datasets for ASD and NC by performing four different
preprocessing pipelines. In this work, we used datasets preprocessed by the Data
Processing Assistant for Resting-State fMRI (DPARSF), a convenient plug-in
software based on SPM and REST.
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at time (t − 1). Meanwhile, the observable variable or
t at time t is dependent on

the hidden state sr
t at the same time. Then, in HMM, there are two underlying

stochastic processes, namely, a hidden state process P
(
sr

t |sr
t−1

)
and an obser-

vation process p (or
t |sr

t ) over t ∈ {1, . . . , T}. When we consider a K number of
hidden states, the unobservable inherent dynamics in rs-fMRI is modeled by the
hidden state process, i.e., a state transition probability Ar =

[
ar

ij

]
i,j∈{1,...,K},

where ar
ij ≡ P

(
sr

t = j|sr
t−1 = i

)
denotes the probability of changing from one

hidden state (sr
t−1 = i) to another hidden state (sr

t = j), and an initial state
probability Πr = [πr

i ]i∈{1,...,K}, where πr
i ≡ P (sr

1 = i) denotes the probability
of starting from a specific hidden state at time t = 1. We define an ergodic
topology for the state transition, which allows the temporal BOLD fluctuation
to change from one state to any other. The observable process is represented
by an emission probability density function (pdf) Br = {br

i }i∈{1,...,K}, where
br
i ≡ p

(
or

t = xr
n,t|sr

t = i
)

denotes the likelihood of observing the specific obser-
vation xr

n,t when staying at the hidden state of i. As for an emission pdf br
i , a

univariate Gaussian distribution is used. Thus, we completely define an ROI-
Wise HMM with the parameter set of λr = (Πr, Ar, Br).

With regard to the number of hidden states, K, we allow different ROIs
to have different number of states. In our experiments, we utilized Bayesian
Information Criterion (BIC) [20] to select the optimal value of Kr for each ROI.
By training ROI-Wise HMMs with a Baum-Welch algorithm [14], we use them
as a way to represent the goodness-of-fit for the given mean time-series of the
corresponding ROI.

3.2 Feature Extraction and Classifier Learning

Given a mean time-series of the r-th ROI for a subject n, i.e., xr
n, we compute

how likely the sequence xr
n is generated from the corresponding trained HMM

λ̂r as follows:
p

(
xr

n|λ̂r
)

=
∑
srn

p
(
xr

n|sr
n, λ̂r

)
P

(
sr
n|λ̂r

)
(1)

where ŝr
n =

[
ŝr

n,1, · · · , ŝr
n,t, · · · , ŝr

n,T

]� denotes a sequence of the hidden states.
Equation (1), which can be efficiently computed by forward algorithm [14], basi-
cally calculates the goodness-of-fit of the HMM λ̂r to represent the observation xr

n.
Note that the HMM λ̂r is learned by taking into account the mean time-series of the
r-th ROI over all subjects in a training dataset. Hence, for those who have different
temporal patterns in their mean time-series, it is expected to have low likelihoods
obtained from the corresponding model.

In this paper, we utilize the regional goodness-of-fit over a whole brain of a
subject n, computed with the respective ROI-wise HMMs, as features:

fn =
[
p

(
xr

n|λ̂r
)]R

r=1
∈ R

R. (2)

The feature vector fn can be also regarded as a likelihood map, representing
the regional abnormality over a whole-brain in terms of temporal dynamics.
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For ASD identification, we use a linear Support Vector Machine (SVM), one
of the most widely used classifiers for brain disease diagnosis in the literature
[3,4,7]. In particular, we consider two different SVM models, namely, standard
SVM and an �1-norm SVM. The �1-norm SVM has the effect of automatically
selecting class-discriminative features by explicitly introducing a �1-penalty term
over the parameter values in the loss function as follows:

min
β0,β

n∑
i=1

⎡
⎣1 − yi

⎛
⎝β0 +

R∑
j=1

βjhj(xi)

⎞
⎠

⎤
⎦
+

s.t. ‖β‖1 = |β1| + · · · + |βq| ≤ γ (3)

where [·]+ denotes a hinge loss function, yi ∈ {+1,−1} indicates a class label of
the i-th sample, γ is a tunable hyperparameter, and h(x) is a basis function, for
which we use an identity function in this paper.

3.3 Measuring Temporal Dynamics

We also propose a method of quantifying the temporal dynamics probabilistically
from the trained HMMs as a way of identifying group differences. We first decode
the optimal state sequence of an observation with a Viterbi algorithm [14], where
each hidden node produces the maximum likelihood of the observation sequence
from time 1 to T . Based on these decoding results, we provide quantitative
information of characterizing the temporal dynamics over BOLD signals in a
brain. Specifically, inspired by the work of [15], we consider occupancy rate and
lifetime of hidden states, with which we attempt to find out the group differences
in region-wise temporal dynamics.

The occupancy rate of the hidden state i for a subject n is defined as follows:

O(n, i) =
1
T

T∑
t=1

δ(sn,t, i) × 100(%) (4)

where δ(sn,t, i) is the Dirac delta function, whose value is one if the current state
at time t is equal to i or zero otherwise. In the mean time, the mean lifetime of
a state is defined as the average time that a given state i continues to last before
transitioning to another state.

4 Experimental Settings and Results

4.1 Choosing Optimal Number of States in HMMs

To build an ROI-wise HMM, we used mean time-series of a respective ROI from
all subjects in our dataset in an unsupervised manner. In order to choose the
number of states Kr for an HMM of the r-th ROI, we used the BIC, which is
defined for our case as follows:

BIC (λr) = log P (Xr;λr) − D

2
log N (5)
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where P (Xr;λr) denotes a marginal likelihood of the training data Xr, which
represents how well the model λr represents the data, and D and N denote,
respectively, the number of parameters in λr and the number of training samples
in Xr. As for the Kr, we varied the values in {1, . . . , 25} and selected the one
whose BIC score is the largest. The statistics of the number of states chosen by
BIC across all ROIs were 23(mean) ± 2.3(std) and 15(min)−25(max).

4.2 Performance Comparison

In regard to performance evaluation, we took a 10-fold cross-validation tech-
nique. Specifically, we partitioned samples of each class, i.e., ASD and NC, into
10 folds and used samples of one fold for test and those of the remaining folds
for training. We repeated the process 10 times and reported the average of the
results as performance below.

To validate the effectiveness of the proposed method, we compared our
method with two existing methods in the literature, which estimate functional
connectivity with (i) Pearson correlation [13], and (ii) sliding window-based
Dynamic Functional Network (sDFN) [10]. For both methods, we extracted
weighted clustering coefficients based on a graph theory as features. All the
competing methods commonly used standard and �1-norm SVM for classifica-
tion. Concisely, a linear kernel was used with the model parameter C chosen in
the set of

{
10−5, 10−4, ..., 104

}
by nested cross-validation.

Table 1 shows the performance of the competing methods. It is remarkable
that the proposed method outperformed the other methods by 35.02% (vs.
Pearson), and 25.31% (vs. sDFN) with standard SVM and 30.91% (vs. Pearson),
and 25.8% (vs. sDFN) with �1-norm SVM. It is also noteworthy that the proposed
method achieved the AUC of 0.97 and 0.94 with standard SVM and �1-norm SVM,
respectively, suggesting the great potential for practical use in the clinic.

Table 1. Performance comparison with the competing methods by standard and �1-
norm SVM. (AUC: Area Under the receiver operator characteristic Curve)

Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC

Standard SVM Pearson [13] 55.07± 22.32 48.50 59.29 0.58

sDFN [10] 64.78± 6.12 22.50 91.79 0.65

Ours 90.09± 6.51 85.50 93.21 0.97

�1-norm SVM Pearson [13] 57.58± 12.78 62.50 55.00 0.60

sDFN [10] 62.69± 12.62 66.00 60.54 0.64

Ours 88.49± 9.02 87.50 89.29 0.94

4.3 Regional Importance and Temporal Dynamics Analysis

For regional importance analysis in discriminating between ASD and NC, we
first calculated the statistical significance of the features, i.e., goodness-of-fit or
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Fig. 2. Statistical map of p-values obtained by conducting permutation tests between
ASD and NC with goodness-of-fit features. For unclustered, regions of low p-values
(smaller than 0.1) are only marked.

likelihood, by means of permutation tests between ASD and NC. The resulting
p-value map projected into a brain is shown in Fig. 2, where regions with p-value
smaller than 0.1 are marked only for uncluttered.

While the proposed method showed its superiority in discriminating ASD
from NC in Sect. 4.2, it doesn’t provide any insight into the temporal dynamic
characteristics inherent in rs-fMRI. In this regard, we further conducted to ana-
lyze the learned HMMs by focusing on those ROIs, i.e., marked in Fig. 2. Specif-
ically, we obtained a single state sequence that best represents the observation
sequence by Viterbi algorithm. Based on the decoded state sequences, we com-
puted occupancy rate and lifetime of individual states described in Sect. 3.3.
Figure 3 shows their histograms for ASD and NC, respectively. Occupancy rate
varies between 5.77% and 18.72% with average of 5.00 ± 3.12% in ASD, and
between 5.57% and 16.53% with average of 5.00 ± 2.40% in NC. Meanwhile,
mean lifetime varies between 0.14 s and 2.84 s, with average of 1.13± 0.52 s in
ASD, and between 0.15 s and 2.88 s with average of 1.23± 0.41 s in NC. There-
fore, we could identify different patterns between ASD and NC in the dynamic
characteristics.
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Fig. 3. Occupancy rate (left) and mean lifetime (right) of the decoded state sequences
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5 Conclusion

In this paper, we proposed a novel framework for rs-fMRI based ASD diagno-
sis and temporal dynamics analysis. Specifically, we exploited likelihoods of a
BOLD sequence computed from ROI-wise HMMs as features by hypothesizing
that the dynamic patterns of BOLD signal may be different between ASD and
NC. Experimental results showed that the proposed method achieved higher
performance than the competing methods considered in this work. In addition,
we found the statistically significant ROIs and identified the group differences
in temporal dynamics between ASD and NC by means of quantitative analysis
with the decoded hidden state sequences.
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Abstract. With the advance of connectome imaging techniques, there
is a great need of robust methods for modeling the distribution of fiber
orientations from multi-shell diffusion imaging. Existing tools for fiber
orientation distribution (FOD) reconstruction, however, predominantly
solves this problem on a voxel-by-voxel basis, disregarding the spatial
regularity in brain anatomy. In this work, we propose a novel compu-
tational framework for the joint reconstruction of FODs over the whole
brain volume. Our framework takes into account compartment modeling
from multi-shell imaging data and uses an operator splitting scheme to
decouple the whole-brain reconstruction problem into a series of local
computations. Within this framework, we can investigate both isotropic
and anisotropic regularizations. In the experiments, we conduct extensive
simulations to compare the performance of both types of regularizations
and show that anisotropic regularization produces more robust results
across various fiber configurations. We also apply our method to in vivo
data from 80 HCP subjects and evaluate the impact of FOD model-
ing methods on the reconstruction of the challenging fiber bundles from
the locus coeruleus (LC) nuclei. Our results indicate that the proposed
whole-brain approach for FOD modeling leads to more robust LC fiber
bundle reconstruction than results from voxel-wise modeling.

1 Introduction

With the success of the Human Connectome Project (HCP) [1], cutting-edge
multi-shell imaging is becoming increasingly popular [2], which has motivated the
development of novel algorithms for processing these sophisticated imaging data.
In particular, the multi-shell imaging data has enabled the joint estimation of
FOD and compartment parameters [3–5]. Popular FOD reconstruction methods,
however, remains tackeling this problem in a voxel-wise fashion while ignoring
the 3D geometry and regularity across the human brain. In this work, we develop
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a whole-brain approach for FOD reconstruction from multi-shell imaging data
by incorporating both compartment modeling and spatial regularity.

Several previous methods based on either post-processing or regularized
reconstruction were proposed to introduce spatial regularization into the estima-
tion of FODs. After the voxel-wise reconstruction of FODs, smoothing can be
applied across the 3D space to improve regularity [6,7]. During the FOD recon-
struction stage, isotropic regularization of the spherical harmonics (SPHARM)
coefficients of FODs were used in [8,9] for improving the smoothness of FOD
fields. An orientation-specific, fiber continuity (FC) model was introduced in [10]
to selectively penalizing FOD differences along different angles. Overall these pre-
vious methods were developed in single-shell imaging and have been evaluated
on mostly very small number (typically 1) of subjects.

In this work, we propose a novel, whole-brain FOD reconstruction method
from multi-shell imaging data. At each voxel, we leverage a multi-compartment
model proposed recently [5] to characterize the multi-shell imaging signal. For the
incorporation of spatial regularization, we develop an iterative algorithm moti-
vated by the operator splitting schemes in energy minimization [11]. Our compu-
tational framework is also flexible and can utilize both isotropic and anisotropic
regularization. In our experiments, we conduct extensive simulations to com-
pare the performance of voxel-wise reconstruction and whole-brain reconstruc-
tion with these two types of regularizations. We demonstrate that anisotropic
regularization achieves more robust performance in different fiber configurations.
After that, we apply our method to in vivo data from 80 HCP subjects for the
reconstruction of the challenging bundles from the locus coeruleus, which is
emerging as a critical area of Alzheimer’s disease research [12]. We show that
FODs computed by our whole-brain reconstruction method leads to more robust
fiber bundle extraction than FODs from voxel-wise reconstruction.

2 Method

2.1 Voxel-Wise FOD Modeling from Multi-Shell Imaging

Let Ω denote the image volume. Following [3,5], we model each voxel p ∈ Ω as
composed of three compartments that contribute to the diffusion imaging signal:
intra-axonal compartment, extra-axonal compartment and the DOT model with
negligible diffusion. Let s̄ denote a vector of signals from N gradient directions
distributed over multiple b-values. We can define its compartmental formulation
as:

s̄ = Ax̄ + αβ̄ + γē + n̄. (1)

For the intra-axonal compartment, the matrix A represents the spherical convo-
lution of the FOD with a stick kernel, where x̄ is the vector of SPHARM coeffi-
cients for the FOD. The second term on the right side models the extra-axonal
compartment with isotropic diffusion, where β̄ = [e−b1λisoe−b2λiso · · · e−bNλiso ]T .
Both the diffusivity λiso and volume fraction α are unknown and should be esti-
mated from the data. In the third term, γ is the volume fraction of the DOT



154 W. Sun et al.

model to be estimated, and ē = [11 · · · 1]T is a vector of length N . Finally, n̄
is the vector of noise. For voxel-wise reconstruction, we can solve the following
constrained energy minimization problem [5]:

minimize E(x̄, α, λiso, γ) =
1
2

∥
∥
∥
∥
∥
∥

s̄ − [
A β̄ ē

]

⎡

⎣

x̄
α
γ

⎤

⎦

∥
∥
∥
∥
∥
∥

2

+ ξIx̄

subject to Ix̄ + α + γ = 1, CM x̄ ≥ 0, α ≥ 0, λiso ≥ 0, and γ ≥ 0.

(2)

The first term in the energy is a data fidelity term, the second term is a spar-
sity penalty term for FOD, and ξ is the weighting factor of sparsity term. The
constraints include the normalization condition of the volume fractions of the
three compartments, and non-negativity of the FOD and the volume fractions
α and γ. More specificially, Ix̄ denotes the volume fraction of the intra-axonal
compartment with I = [

√
4π 0 · · · 0]. The matrix CM represents an adaptively

selected constraint matrix to guarantee the non-negativity of FOD.

2.2 Whole-Brain FOD Modeling with Spatial Regularity

For the joint reconstruction of the FODs over the whole image volume, we define
an energy function with spatial regularization as:

E∗ =
∑

p∈Ω

(

Ep +
ω

2
‖∇v(p)‖2

)

(3)

where Ep denote the energy in (2) at each voxel p, v(p) = [x̄(p) α(p) γ(p)]T ,
ω is a weighting factor, and ∇ is a gradient operator for each element of v over
Ω. The gradient operator couples FODs over neighboring voxels and henceforth
encourages their smoothness spatially for more robust reconstruction over the
whole image volume.

To solve this high dimensional optimization problem on the order of 108 vari-
ables (around 1 million voxels times approximately 100 SPHARM coefficients),
we develop an iterative algorithm based on operator splitting. Let vk denote the
solution of v at the k-th iteration. In the first step of each iteration, we compute
an auxiliary variable vs

k from the current solution of vk via a Laplacian diffusion:

vs
k(p) = vk + τΔvk(p), (4)

where k ∈ [0,K] represents the iteration number, the auxiliary variable vs
k(p)

denote the value at the voxel p ∈ Ω, τ is the Gaussian diffusion duration and Δ
represents the Laplace operator applied to each element of vk independently. In
the second step, we minimize the auxiliary energy function Eq. (5) at each voxel
using

E∗
k+1(p) = Ek+1(p) +

ω

2τ
‖vk+1(p) − vs

k(p)‖2 ,

=
1
2

∥
∥s̄(p) − [

A β̄ ē
]

vk+1(p)
∥
∥
2 + ξIx̄(p) +

ω

2τ
‖vk+1(p) − vs

k(p)‖2 .

(5)
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The last term in Eq. (5) decouples the computational complexity of FOD esti-
mation and spatial regularization. Note that its weight is inversely proportional
to the diffusion time τ in (4). This is intuitively easy to understand that less
weight should be put on the auxiliary term if it is overly smoothed. In contrast
to Eq. (3), Eq. (5) is a voxel-wise operation because the spatial regularization
has been split into Eq. (4). Thus the computational cost is expected to only
increase linearly with respect to the number of iterations as compared to voxel-
wise reconstruction.

2.3 Spatial Regularization via Hyper-spherical Smoothing

We describe next the numerical implementation of the diffusion operation in Eq.
(4) on the FODs and compartment parameters. For the smoothing of FODs, we
utilize a hyper-spherical smoothing technique to preserve their energy and avoid
shrinkage. Let x̄nc and x̄nn denote the normalized coefficients of SPHARMs
located at a center voxel and one of its neighbor voxels, respectively. We first
project x̄nn to the tangent plane at x̄nc as

x̄′
nn = rx̄nn − (1 − r)x̄nc, (6)

where scalar r = 2/(x̄nc · x̄nn +1). On this tangent plane, the diffusion of x̄nc is:

x̄′
nc = x̄nc + τ

4∑

i=1

g(‖x̄′
nni − x̄nc‖)(x̄′

nni − x̄nc). (7)

where x̄′
nni denotes the stereographic projection from the i-th neighbor (i =

1, · · · , 4). The function g(‖·‖) = 1 for isotropic diffusion and g(‖·‖) = e−(‖·‖/σ)2

for anisotropic diffusion. The parameter σ controls the effect range of anisotropic
smoothing, and ‖ · ‖ is the L2-norm.

After the smoothing process, x̄′
nc should be mapped backward to the sphere

surface. The backward mapping is expressed as:

x̄s
nc = r′x̄′

nc − (1 − r′)x̄nc, (8)

where scalar r′ = 2(x̄′
nc · x̄nc + 1)/(x̄′

nc · x̄′
nc + 2x̄′

nc · x̄nc + 1), and x̄s
nc stands for

smoothed x̄nc using spherical smoothing. The original magnitude of x̄c should
be multiplied back to recover the magnitude of x̄s

c. Through spherical smoothing
we can preserve the energy of original FOD and avoid shrinkage.

For the scalar compartment fractions α and γ in vk, we apply similar isotropic
or anisotropic smoothing using Eq. (7) but without spherical projection.

3 Experiments

In this section, we present experimental results to demonstrate the proposed
whole-brain FOD reconstruction method on simulated and in vivo multi-shell
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imaging data from HCP. Three candidate approaches were compared: the base-
line method of voxel-wise reconstruction in [5] without spatial regularization; the
proposed reconstruction method with isotropic or anisotropic regularizations. We
fixed the following parameters for all experiments on simulation and real data.
For the energy in Eqs. (2) and (5), we fixed weighting factor of sparsity term
ξ to 0.2. In Eq. (7), Gaussian smoothing duration τ controls the convergence
and stability of the algorithm. For both isotropic and anisotropic diffusion, the
largest allowable value is selected for τ that still ensures numerical stability.
More specifically, τ is chosen as 0.1 and 0.25 for isotropic and anisotropic regu-
larizations, respectively. For anisotropic regularization, σ is fixed to 0.5. We set
the weighting coefficient of spatial regularization term ω = 20. For the iteration
numbers of algorithms, we set K = 20 on simulated data and K = 10 on HCP
data.

3.1 Simulation

We followed the LifeSpan protocol of HCP that consists of 98 gradient direc-
tions distributed over two b-values 1500s/mm2 and 3000s/mm2 to generate the
simulated data. The simulated intra-axonal, extra-axonal, and trapped water
fractions were fixed as: 0.35, 0.5, and 0.15. The diffusivity of the extra-axonal
compartment is fixed as 0.0012 mm2/s in the simulation. Two fiber patterns are
used in our simulation experiments. In the first experiment, we use the pattern in
Fig. 1(A) to simulate the multi-shell imaging data and evaluate the performance
of FOD reconstruction algorithms when there are sharp turning angles between

Fig. 1. FOD on simulated data with SNR = 2: (a) simulated fiber directions; (b)
baseline method; (c) isotropic and (d) anisotropic spatial regularization.
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neighboring voxels. The fiber direction Rangle of each voxel in Fig. 1(A) is :

Rangle = (i − 1)θ + jθ, (9)

where i is row number, j is column number. We used θ ∈ {10◦, 20◦, 30◦, 40◦} to
generate four sets of simulated data. Rician noise was added to generate data
with SNR = 2. In the second experiment, we used the pattern in Fig. 1(B) to
compare the performance of FOD reconstruction algorithm for resolving fiber
crossings. By varying the noise level, we also generated four sets of simulated
data with SNR=2,3,4,5. For each voxel, the angular error of each fiber direction
on the unit sphere is computed as its angle to the nearest true fiber direction.
The overall AAE at each voxel is then a weighted average of angular errors from
all directions with the FOD value as the weight. To measure the reconstruction
accuracy, we computed the average angular error (AAE) for all the 121 voxels
in Fig. 1(A) or (E).

In Fig. 1(B), the AAE measures of the three FOD reconstruction methods for
the first fiber pattern are shown. We can clearly see that the whole-brain recon-
struction method with anisotropic diffusion achieved the best performance in all
four sets of simulation data. For data simulated with θ = 10◦, reconstruction
results from the baseline and whole-brain method with anisotropic regulariza-
tion are shown in Fig. 1(C) and (D), respectively, where we can see the latter
genereates much cleaner FOD reconstruction without spurious fiber directions
as compared to the true fiber pattern in Fig. 1(A). For the second experiment,
the overall AAE mesures from the three algorithms are presented under different
SNR levels. We can see that both whole-brain reconstruction methods outper-
formed the voxel-wise method, especially at low SNR levels. Whole-brain recon-
struction methods with isotroic and anisotropic regularization achieved similar
level of performance in this experiment. For data with SNR=2, reconstruction
results from the baseline and the whole-brain method with anisotropic regular-
ization are plotted in Fig. 1(G) and (H), respectively. Clearly the whole-brain
method produces much more accurate reconstruction of the fiber pattern shown
in Fig. 1(E). Considering the overall performance of these two whole-brain recon-
struction methods, we will choose the anisotropic regularation in our large-scale
experiments with HCP data.

3.2 HCP Data for Locus Coeruleus Bundle Reconstruction

In this experiment, we will apply both voxel-wise and whole-brain FOD recon-
struction to 80 subjects from HCP and evaluate their impact on the reconstruc-
tion of challenging bundles from the locus coeruleus (LC) to amygadala. This
is a critical problem because the LC nuclei in the brain stem is considered the
earliest location with tau pathology in the latest Braak staging. It is receiving
increasing interesting interests in aging and Alzheimer’s disease (AD) research.
For studying transynaptic propoation of tau tangles from LC to medial tem-
poral lobe, it is thus critical to robustly reconstruct the LC fiber bundles. For
voxel-wise FOD reconstruction, we apply the baseline method without spatial
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Fig. 2. A comparison of FOD reconstruction results in a brain stem ROI of an HCP
subject. The brainstem ROI (red rectangle) is shown in (B), where the LC nuclei is
highlighted with the green ellipse. Reconstructed FODs with the voxel-wise and whole-
brain approach are shown in (A) and (C), respectively. (Color figure online)

regularization [5]. For whole-brain FOD reconstruction, we apply anisotropic dif-
fusion in the operator splitting algorithm because it achieved overall the most
robust performance in our simulations. For LC bundle reconstruction with trac-
tography, we nonlinear warped an LC atlas to generate the seed region in each
HCP subject and the amygdala segmentation from HCP as the arget ROI.

As a demonstration, we show in Fig. 2 the FOD reconstruction results in a
brainstem ROI from both methods. Clearly we can see the whole-brain recon-
struction method generates a more regular field of FODs with much less spurious
fiber directions. To test the effect of the FODs on fiber bundle reconstruction,
we apply the exact same parameters and ROIs to run FOD-based probabilis-
tic tractography from the MRTrix software [13] from the LC seed region to the
amygdala. The specific parameters are as follows: curvature=1.5; FOD thresh-
old=0.05; maximum number of tracts = 200K. Results from four representative
subjects are shown in Fig. 3. We can see that the fiber bundles based on whole-
brain FOD reconstruction provide a more robust representation of the LC to
amygdala bundle as indicated by the larger number of tracts and smoother tra-
jectories. In Fig. 4, we plotted the total number of fiber tracts constained in
the LC bundles reconstructed from both methods. We can see that the same
trend holds for all subjects used in our experiment. While tract number is not
a biologically meaningful indicator, these results show that whole-brain FOD
reconstruction can improve the robustness of fiber bundle reconstruction, espe-
cially for challenging cases such as the LC fiber bundle.
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Fig. 3. LC bundles from four HCP subjects (left: red; right: blue). For each subject,
the bundles computed from voxel-wise and whole-brain reconstruction methods are
plotted on the top and bottome row of each column, respectively. (A)-(D): LC bundles
based on FODs from voxel-wise reconstruction; (E)-(H): LC bundles from whole-brain
FOD reconstruction methods. (Color figure online)

Fig. 4. The number of fiber tracts in the LC bundle reconstructed from FODs based
on voxel-wise and whole-brain reconstruction methods.

4 Discussion and Conclusion

In this work, we develop a novel computational framework for whole-brain FOD
reconstruction from multi-shell imaging data. Promising experimental results
from numerical simulations and large-scale HCP data have been presented. In par-
ticular, we applied the proposed method to large-scale HCP data for the recon-
struction of the challenging fiber bundles from the LC nuclei in the brainstem,
which are emerging as a critical area for AD research. We demonstrate that more
robust fiber bundle reconstruction can be achieved with the proposed whole-
brain approach for FOD reconstruction. To the best of our knowledge, this is the
first large-scale evaluation of FOD reconstruction with spatial regularization. For
future work, we will further validate our novel methods on the reconstruction of
challenging fiber bundles and graph-based connectivity analysis.
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Abstract. Many existing brain network distances are based on matrix
norms. The element-wise differences may fail to capture underlying topo-
logical differences. Further, matrix norms are sensitive to outliers. A few
extreme edge weights may severely affect the distance. Thus it is neces-
sary to develop network distances that recognize topology. In this paper,
we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS)
distances. GH-distance is often used in persistent homology based brain
network models. The superior performance of KS-distance is contrasted
against matrix norms and GH-distance in random network simulations
with the ground truths. The KS-distance is then applied in characterizing
the multimodal MRI and DTI study of maltreated children.

1 Introduction

There are many similarity measures and distances between networks in literature
[2,7,14]. Many of these approaches simply ignore the topology of the networks
and mainly use the sum of differences between either node or edge measurements.
These network distances are sensitive to the topology of networks. They may
lose sensitivity over topological structures such as the connected components,
modules and holes in networks.

In standard graph theoretic approaches, the similarity and distance of net-
works are measured by determining the difference in graph theory features such
as assortativity, betweenness centrality, small-worldness and network homogene-
ity [4,17]. Comparison of graph theory features appears to reveal changes of
structural or functional connectivity associated with different clinical popula-
tions [17]. Since weighted brain networks are difficult to interpret and visualize,
they are often turned into binary networks by thresholding edge weights [11,20].
However, the choice of thresholding the edge weights may alter the network
topology. To obtain the proper optimal threshold, the multiple comparison cor-
rection over every possible edge has been proposed [16,18,20]. However, depend-
ing on what p-value to threshold, the resulting binary graph also changes. Others
tried to control the sparsity of edges in the network in obtaining the binary net-
work [11,20]. However, one encounters the problem of thresholding sparse para-
meters. Thus existing methods for binarizing weighted networks cannot escape
the inherent problem of arbitrary thresholding.
c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): CNI 2017, LNCS 10511, pp. 161–170, 2017.
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Until now, there is no widely accepted criteria for thresholding networks.
Instead of trying to come up with an optimal threshold for network construc-
tion that may not work for different clinical populations or cognitive condi-
tions [20], why not use all networks for every possible threshold? Motivated by
this question, new multiscale hierarchical network modeling framework based on
persistent homology has been developed recently [7,14]. In persistent homology
based brain network analysis as first formulated in [14], we build the collec-
tion of nested networks over every possible threshold using the graph filtration,
a persistent homological construct [14]. The graph filtration is a threshold-free
framework for analyzing a family of graphs but requires hierarchically build-
ing specific nested subgraph structures. The graph filtration shares similarities
to the existing multi-thresholding or multi-resolution network models that use
many different arbitrary thresholds or scales [11,14]. Such approaches are mainly
used to visually display the dynamic pattern of how graph theoretic features
change over different thresholds and the pattern of change is rarely quantified.
Persistent homology can be used to quantify such dynamic pattern in a more
coherent mathematical framework.

In persistent homology, there are various metrics that have been proposed
to measure network distance. Among them, Gromov-Hausdorff (GH) distance
is possibly the most popular distance that is originally used to measure dis-
tance between two metric spaces [19]. It was later adapted to measure distances
in persistent homology, dendrograms [5] and brain networks [14]. The proba-
bility distributions of GH-distance is unknown. Thus, the statistical inference
on GH-distance has been done through resampling techniques such as jack-
knife, bootstraps or permutations [7,14,15], which often cause computational
bottlenecks for large-scale networks. To bypass the computational bottleneck
associated with resampling large-scale networks, the Kolmogorov-Smirnov (KS)
distance was introduced in [6,8,15]. The advantage of using KS-distance is its
easiness to interpret compared to other less intuitive distances from persistent
homology. Due to its simplicity, it is possible to determine its probability distri-
bution exactly [8].

Many distance or similarity measures are not metrics but having metric dis-
tances makes the interpretation of brain networks easier due to the triangle
inequality. Further, existing network distance concepts are often borrowed from
the metric space theory. Let us start with formulating networks as metric spaces.

2 Matrix Norms

Consider a weighted graph or network with the node set V = {1, . . . , p} and
the edge weights w = (wij), where wij is the weight between nodes i and j. We
may assume that the edge weights satisfy the metric properties: nonnegativity,
identity, symmetry and the triangle inequality such that

wi,j ≥ 0, wii = 0, wij = wji, wij ≤ wik + wkj .
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With theses conditions, X = (V,w) forms a metric space. Although the metric
property is not necessary for building a network, it offers many nice mathematical
properties and easier interpretation on network connectivity.

Example 1. Given measurement vector xi = (x1i, · · · , xni)� ∈ R
n on the node i.

The weight w = (wij) between nodes is often given by some bivariate function f :
wij = f(xi,xj). The correlation between xi and xj , denoted as corr(xi,xj), is a
bivariate function. If the weights w = (wij) are given by wij =

√
1 − corr(xi,xj),

it can be shown that X = (V,w) forms a metric space.

Matrix norm of the difference between networks is often used as a measure
of similarity between networks [2,21]. Given two networks X 1 = (V,w1) and
X 2 = (V,w2), the Ll-norm of network difference is given by

Dl(X 1,X 2) =‖ w1 − w2 ‖l=
( ∑

i,j

∣∣w1
ij − w2

ij

∣∣l
)1/l

.

Note Ll is the element-wise Euclidean distance in l-dimension. When l = ∞,
L∞-distance is written as

D∞(X 1,X 2) =‖ w1 − w2 ‖∞= max
∀i,j

∣∣w1
ij − w2

ij

∣∣.

The element-wise differences may not capture additional higher order similarity.
For instance, there might be relations between a pair of columns or rows [21].
Also L1 and L2-distances usually surfer the problem of outliers. Few outlying
extreme edge weights may severely affect the distance. Further, these distances
ignore the underlying topological structures. Thus, there is a need to define
distances that are more topological.

3 Gromov-Hausdorff Distance

GH-distance for brain networks is first introduced in [14]. GH-distance measures
the difference between networks by embedding the network into the ultrametric
space that represents hierarchical clustering structure of network [5]. The dis-
tance sij between the closest nodes in the two disjoint connected components
R1 and R2 is called the single linkage distance (SLD), which is defined as

sij = min
l∈R1,k∈R2

wlk.

Every edge connecting a node in R1 to a node in R2 has the same SLD. SLD is
then used to construct the single linkage matrix (SLM) S = (sij) (Fig. 1). SLM
shows how connected components are merged locally and can be used in con-
structing a dendrogram. SLM is a ultrametric which is a metric space satisfying
the stronger triangle inequality sij ≤ max(sik, skj) [5]. Thus the dendrogram
can be represented as a ultrametric space D = (V, S), which is again a met-
ric space. GH-distance between networks is then defined through GH-distance
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Fig. 1. (a) Toy network, (b) its dendrogram, (c) the distance matrix w based on Euclid-
ean distance, (d) the single linkage matrix (SLM) S.

between corresponding dendrograms. Given two dendrograms D1 = (V, S1) and
D2 = (V, S2) with SLM S1 = (s1ij) and S2 = (s2ij),

DGH(D1,D2) =
1
2

max
∀i,j

|s1ij − s2ij |. (1)

For the statistical inference on GH-distance, resampling techniques such as jack-
knife or permutation tests are often used [14,15].

4 Kolmogorov-Smirnov Distance

Recently a new network distance based on the concept of graph filtration has
been proposed in [8]. Given weighted network X = (V,w), the binary network
Bε(X ) = (V,Bε(w)) is a graph consisting of the node set V and the edge weight
Bε(w) = (Bε(wij)) given by

Bε(wij) =

{
1 if wij ≤ ε;
0 otherwise.

(2)

Note Bε(w) is the adjacency matrix of Bε(X ). Then it can be shown that

Bε0(X ) ⊂ Bε1(X ) ⊂ Bε2(X ) ⊂ · · ·

for 0 = ε0 ≤ ε1 ≤ ε2 · · · . The sequence of such nested multiscale graph struc-
ture is called the graph filtration [7,14]. The sequence of thresholded values
ε0, ε1, ε2 · · · are called the filtration values.

The graph filtration can be quantified using monotonic function f satisfying

f ◦ Bεj (X ) ≥ f ◦ Bεj+1(X )

for εj ≤ εj+1. The number of connected components, the zeroth Betti number β0,
satisfies the monotonicity property (3). The size of the largest cluster, denoted
as γ, satisfies a similar but opposite relation of monotonic increase [7].
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Given two networks X 1 = (V,w1) and X 2 = (V,w2), Kolmogorov-Smirnov
(KS) distance between X 1 and X 2 is defined as [7,15]

DKS(X 1,X 2) = sup
ε≥0

∣∣f ◦ Bε(X 1) − f ◦ Bε(X 2)
∣∣.

The distance DKS is motivated by Kolmogorov-Smirnov (KS) test for determin-
ing the equivalence of two cumulative distribution functions [8,10].

Example 2. Consider network with edge weights rij = 1 − corr(xi,xj). Such
network is not a metric space. To make it a metric space, we need to scale the
edge weight to wij = √

rij (Example 1). However, KS-distance is invariant under
such monotonic scaling since the distance is taken over every possible filtration
value.

The distance DKS can be discretely approximated using the finite number
of filtrations:

Dq = sup
1≤j≤q

∣∣f ◦ Bεj (X 1) − f ◦ Bεj (X 2)
∣∣.

If we choose enough number of q such that εj are all the sorted edge weights,
then DKS(X 1,X 2) = Dq [8]. This is possible since there are only up to p(p−1)/2
number of unique edges in a graph with p nodes and f ◦ Bε increases discretely.
In practice, εj may be chosen uniformly.

The probability distribution of Dq under the null is asymptotically given by

lim
q→∞

(
Dq/

√
2q ≥ d

)
= 2

∞∑

i=1

(−1)i−1e−2i2d2
. (3)

The result is first given in [8]. p-value under the null is then computed as

p-value = 2e−d2
o − 2e−8d2

o + 2e−18d2
o · · · ,

where the observed value do is the least integer greater than Dq/
√

2q in the
data. For any large value d0 ≥ 2, the second term is in the order of 10−14

and insignificant. Even for small observed d0, the expansion converges quickly
and 5 terms are sufficient. KS-distance method does not assume any statistical
distribution on graph features other than that they has to be monotonic. The
technique is very general and applicable to other monotonic graph features such
as node degrees.

5 Comparisons

Five different network distances (L1, L2, L∞, GH and KS) were compared in
simulation studies with modular structures. The simulations below were inde-
pendently performed 100 times and the average results were reported.

There were four groups and the sample size was n = 5 in each group and
the number of nodes was p = 100 (Fig. 2). We follow notations in Example 1.
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Fig. 2. Randomly simulated correlation matrices. Group I and Group II were generated
independently and identically. Group III was generated from Group I but additional
dependency was added to introduce modular structures. Group IV was generated from
Group III (10 modules) by adding small noise.

In Group I, the measurement vector xi at node i was simulated as multivariate
normal, i.e., xi ∼ N(0, In) with n by n identity matrix In as the covariance
matrix. The edge weights for group I was w1

ij =
√

1 − corr(xi,xj). In Group II,
the measurement vector yi at node i was simulated as yi = xi +N(0, σ2In) with
noise level σ = 0.01. The edge weight for group II was w2

ij =
√

1 − corr(yi,yj).
Group III was generated by adding additional dependency to Group I:

yi = 0.5xci+1 + N(0, σIn).

This introduce modules in the network. We assumed there were total k = 4, 5, 10
modules and each module consists of c = p/k number of points. Group IV was
generated by adding noise to Group III: zi = yi + N(0, σ2In).

No network difference. It was expected there was no network difference
between Groups I and II. We applied the 5 different distances. For the first
four distances, permutation test was used. Since there were 5 samples in each
group, the total number of permutations was

(
10
5

)
= 272 making the permutation

test exact and the comparisons fair. All the distances performed well and did
not detect network differences (1st row in Table 1). It was also expected there
is no network difference between Groups III and IV. We compared 4 module
network to 4 module network. All the distances performed equally well and did
not detect differences (2nd row in Table 1).



Topological Distances Between Brain Networks 167

Table 1. Simulation results given in terms of p-values. In the case of no network differ-
ences (0 vs. 0 and 4 vs. 4), higher p-values are better. In the case of network differences
(4 vs. 5 and 5 vs. 10), smaller p-values are better. ∗ and ∗∗ indicates multiplying 10−3

and 10−4.

L1 L2 L∞ GH KS (β0) KS (γ)

0 vs. 0 0.93± 0.04 0.93± 0.04 0.93± 0.04 0.87± 0.14 1.00± 0.00 1.00± 0.00

4 vs. 4 0.89± 0.02 0.89± 0.02 0.90± 0.03 0.86± 0.17 0.87± 0.29 0.88± 0.28

4 vs. 5 0.14± 0.16 0.06± 0.10 0.03± 0.06 0.29± 0.30 (0.07± 0.67)∗∗ (0.07± 0.67)∗∗

5 vs. 10 0.47± 0.25 0.19± 0.18 0.10± 0.10 0.33± 0.30 0.01± 0.08 (0.06± 0.53)∗

Network difference. Networks with 4, 5 and 10 modules were generated using
Group III models. Since the number of modules were different, they were con-
sidered as different networks. We compared 4 and 5 module networks (3rd row
in Table 1), and 5 and 10 module networks (4th row in Table 1). L1, L2, L∞ dis-
tances did not performed well for 5 vs. 10 module comparisons. Surprisingly,
GH-distance performed worse than L∞ in all cases. On the other hand, KS-
distance performed extremely well.

The results of the above simulations did not change much even if we increased
the noise level to σ = 0.1. In terms of computation, distance methods based on
the permutation test took about 950 s (16 min) while the KS-like test procedure
only took about 20 s in a computer. The MATLAB code for performing these sim-
ulations is given in http://www.cs.wisc.edu/∼mchung/twins. The results given
in Table 1 may slightly change if different random networks are generated.

6 Application

The methods were applied to multimodal MRI and DTI of 31 normal controls
and 23 age-matched children who experienced maltreatment while living in post-
institutional settings before being adopted by families in US. The detailed decep-
tion of the subject and image acquisition parameters are given in [7]. Ages range
from 9 to 14 years. The average amount of time spend in institutional care was
2.5 ± 1.4 years. Children were on average 3.2 years when they were adapted.

For MRI, a study specific template was constructed using the diffeomorphic
shape and intensity averaging technique through Advanced Normalization Tools
(ANTS) [1]. White matter was also segmented into tissue probability maps using
template-based priors, and registered to the template [3]. The Jacobian deter-
minants of the inverse deformations from the template to individual subjects
were obtained. DTI were corrected for eddy current related distortion and head
motion via FSL (http://www.fmrib.ox.ac.uk/fsl) and distortions from field inho-
mogeneities were corrected [12] before performing a non-linear tensor estimation
using CAMINO [9]. Subsequently, iterative tensor image registration strategy
was used for spatial normalization [13]. Then fractional anisotropy (FA) were

http://www.cs.wisc.edu/~mchung/twins
http://www.fmrib.ox.ac.uk/fsl
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Fig. 3. The plots of β0 (left) and γ (right) over
√

1 − corr. showing structural network
differences between maltreated children (dotted red) and normal controls (solid black)
on 1856 nodes. (Color figure online)

calculated for diffusion tensor volumes diffeomorphically registered to the study
specific template. Jacobian determinants and FA-values are uniformly sampled
at 1856 nodes along the white mater template boundary.

Correlation within modality. The correlations of the Jacobian determinant
and FA-values were computed between nodes within each modality. This results
in 1856×1856 correlation matrix for each group and modality. Using KS-distance,
we determined the statistical significance of the correlation matrix differences
between the groups for each modality separately. The statistical results in terms
of p-values are all below 0.0001 indicating the very strong overall structural
network differences in both MRI and DTI.

Cross-correlation across modality. Following the hyper-network framework in
[8], we also computed the cross-correlation between the Jacobian determinants
and FA-values on 1856 nodes. This results in 1856×1856 cross-correlation matrix
for each group. The statistical significance of the cross-correlation matrix differ-
ences is then determined using KS-distance (p-value < 0.0001). The KS-distance
method is robust under the change of node size and we also obtained the similar
result when the node size changed to 548.

7 Discussion

The limitation of GH- and KS-distances. The limitation of the SLM is the inability
to discriminate a cycle in a graph. Consider two topologically different graphs with
three nodes (Fig. 4). However, the corresponding SLM are identically given by

⎛

⎝
0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

⎞

⎠ and

⎛

⎝
0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

⎞

⎠ .
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Fig. 4. Two topologically distinct graphs
may have identical dendrograms, which
results in zero GH-distance.

The lack of uniqueness of SLMs makes
GH-distance incapable of discriminat-
ing networks with cycles [6]. KS-
distance also treat the two networks in
Fig. 4 as identical if Betti number β0

is used as the monotonic feature func-
tion. Thus, KS-distance also fail to dis-
criminate cycles.

Computation. The total number of
permutations in permuting two groups
of size q each is [8]

(
2q
q

)
∼ 4q√

2πq
. Even

for small q = 10, more than tens of
thousands permutations are needed for
the accurate estimation the p-value.
On the other hand, only up to 10 terms
are needed in the KS-distance method.
The KS-distance method avoids the computational burden of permutation tests.
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