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Resources             
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Abstract The ability to combine heterogeneous data distributed across the globe is 
critically important to boost research on rare diseases, but it presents a number of 
methodological, representational and automation challenges. In this scenario, bio-
medical ontologies are of critical importance for enabling computers to aid in infor-
mation retrieval and analysis across data collections.

This chapter presents an approach to preparing rare disease data for integration 
through the application of a global standard for computer-readable data and knowl-
edge. This includes the use of common data elements, ontological codes and 
computer- readable data. This approach was developed under a number of domain- 
relevant requirements, such as controlled access to data, independence of the origi-
nal sources, and the desire to combining the data sources with other computational 
workflows and data platforms.
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9.1  Introduction

Rare diseases present a driving use-case for the development of methods that help 
to efficiently combine data from disparate and dispersed resources (clinical and 
physiological data such as blood pressure and phenotype; molecular data such as 
gene expression and genotype; biobank data; and model organism/disease model 
information). The ability to do this efficiently with data distributed across the globe 
is critically important to boost research on rare diseases (RD).

Correctly combining data from disparate, heterogeneous sources presents a num-
ber of challenges that broadly split into three types: methodological challenges, 
representational challenges, and automation challenges.

With respect to methodological challenges, these generally relate to the act of 
gathering the original data. For example, what measurements were performed and 
how? Were the same methods or instruments used in all locations? Do instruments 
share identical calibrations? Were survey results collected using the same ques-
tions? If measurements were not exactly the same, at what level may they still be 
compared? For instance, if smoking habits were measured differently, is there a 
unifying measure of smoking that the datasets can be mapped-to for comparison?.

Representational challenges relate mainly to the data’s “transparency” and encod-
ing. For example, is it clear what data from each source is, in fact, comparable? Which 
spreadsheet columns contain which type of data? If a clinical coding system is used, 
is that same coding system used by both datasets? For example, can a data analyst be 
absolutely sure that a ‘2’ under the column header ‘smoking habit score’ in one data 
file is equivalent to the ‘2’ in another data file under the header ‘smoking score’? This 
may seem trivial, but is a source of many errors. Data analysts lose a lot of time cor-
recting mistakes and redoing analyses because they misinterpreted the meaning of the 
data in disparate datasets. It is important to see that if the encoding between data sets 
is ambiguous, the harmonization of data gathering methods is rendered futile.

The methodological challenge and the representational challenge are both 
aspects that relate to data quality, and high-quality data will meet both of these chal-
lenges. We might use the Orphanet database as an example. Orphanet is curated 
according to a set of Standard Operating Procedures (SOPs) to ensure optimal and 
consistent quality of its data about rare diseases [13, 15]. These SOPs address both 
the methodological and the representational challenge. However, if Orphanet had 
not focused on the representational challenge, and its curators had chosen to use 
French disease names to represent diseases in their database, then the data would be 
nearly unusable for many data scientists. Orphanet addressed this representational 
challenge by providing orphacodes linked to the Orphanet Rare Disease Ontology 
(ORDO) to uniquely identify diseases for applications across the globe. Thus, this 
database is both methodologically rigorous, as well as representationally transpar-
ent, and as such, is highly reusable by other researchers.

The third challenge relates to the need to combine numerous data sets. To achieve 
the scale of data integration required by the rare disease case, the number of datasets 
that must be interpreted and parsed quickly scales beyond the ability for manual 

M. Roos et al.



167

manipulation. In that case we need computers to ‘know’ what the structures and 
values in the data represent, in order to combine them correctly. For example, a row 
in a table with motor score, phenotype, and gene expression, does not explicitly 
state how motor score, phenotype, and gene expression are related to a person and 
to each other. This may be obvious when an expert inspects a table, and a data ana-
lyst can ask the expert who drafted a table, but that is too time consuming and error- 
prone for more than two or three data sets. Achieving clarity on what data means for 
both humans and computers is therefore a critical challenge in speed and quality- 
control in rare disease research. Lack of such clarity can even entirely block the 
reuse of the data if the person who created and managed a data set is no longer 
available for assistance. As such, this third challenge requires that the data be com-
puter readable (structurally) and computer interpretable (semantically). It extends 
the representational challenge by requiring that all data and their interrelationships 
are available in a form that conforms to a global framework for data linking.

Fortunately, the technology experts of the World Wide Web have had to address this 
challenge before and created such a framework: the Resource Description Framework 
(RDF). This framework enables, for example, linkage of the information in a special-
ized registry on ring-14 syndrome in Italy to the curated information in Orphanet in 
Paris, and to relevant biobank information stored in Graz. This occurs when all three 
sites use the Web address of the code for ring-14 disease, defined by Orphanet. Sharing 
common codes, based on their Web addresses, also referred to by as Uniform Resource 
Locators (URLs), enables a study on the symptoms of epileptic attacks across all three 
data sources without the need to explicitly coordinate between them. In this way, we 
‘virtually augment’ the potentially sparse ring-14 data in the specialized registry with 
the highly curated and detailed information in two remote knowledge bases. We note 
that in practice, this layer of interoperability is often added as a complement to a more 
local data representation. It is also important to point out that RDF reuses Web tech-
nology, but without any implication that this makes data open or public. Data encoded 
by URLs is still data, and is as safely stored as it was without URLs.

It is our observation that while the first challenge is well-understood by the rare 
disease researcher or registry/biobank host, and the second challenge is becoming 
increasingly recognized as ‘best practice’ by this community, the third challenge 
poses problems that are unfamiliar to rare disease domain experts. Nevertheless, the 
interlinking between related Web data and knowledge resources, and the ‘virtual 
augmentation’ that results, ensures that each participating data host is maximally 
useful, both for their local users, and for the broader rare disease research commu-
nity. As such, we have worked with the rare disease community to establish some 
guidelines and workflows that will simplify this third challenge, hopefully to the 
point that the data hosts are comfortable undertaking this challenge on their own.

In summary, in this chapter we present an approach to prepare data for integra-
tion by enabling rare disease data to be exchanged on the basis of a global standard 
for computer-readable knowledge and data. We explain how this enables cross- 
resource research and creation of a robust infrastructure of rare disease data 
resources that are Findable, Accessible, Interoperable, and Reusable for humans 
and computers – FAIR [24] – at the source.

9 Preparing Data at the Source to Foster Interoperability across Rare Disease Resources
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9.2  The Bio-ontology Forest

Ontologies play an important role in the scenario described above. ‘Ontology’ is an 
ancient concept in philosophy that has been adopted by computer scientists to 
describe a particular approach to making knowledge computer-readable. Real- 
world concepts are represented by a concept hierarchy where each concept is called 
a “class” and the subclasses – those further down the hierarchy – become increas-
ingly more specific (e.g. humans are a more specific subclass of mammals). It is a 
best practice to publish ontologies that cover a specific part of reality. For instance, 
the Human Phenotype Ontology (HPO) covers only human phenotypes. As such, 
there are numerous ontologies; effectively, one for every top-level concept in the 
domain. For example, in the rare disease domain there would be ontologies describ-
ing disease symptoms, genetics, hospital staff, diagnostic equipment, etcetera. 
Things in the real-world – for example, individual researchers, or individual pieces 
of equipment, are called “instances” of these classes. Properties (also referred to as 
relations or predicates) describe how instances of these classes relate to each other. 
For example: one of the authors of this chapter is an instance of the class ‘Researcher’ 
and has a relation ‘hasSurname’ with ‘Roos’, which is an instance of the class 
‘Family Name’. Thus, a machine could, without human intervention, find these two 
instances in the database, and know that one instance is a ‘Researcher’, and that the 
researcher has the family name ‘Roos’. A full record of the researcher ‘Roos’ would, 
therefore, have facets encoded by a wide range of ontologies, spanning multiple 
kinds of data such as medical history, address information, and various identifica-
tion numbers. Globally defined and shared properties enable these ontologies to be 
unambiguously connected, such that a functionally interlinked knowledge network 
can arise. It is important to realize that the current consensus is that an ontology 
should cover a facet of reality in depth, and be linkable to other ontologies to cover 
the breadth of an application. For example, it makes little sense to expect concepts 
for drugs or genes in HPO, as they are not human phenotypes. Thus, so-called 
‘application ontologies’ or ‘semantic archetypes’ select a subset of terms and prop-
erties from a number of ontologies to cover the breadth of an application [9].

Numerous ontologies already exist for the biomedical community. Although gen-
eral search engines such as Google may be used to create a list of existing biomedical 
ontologies, the easiest way to locate them is the use of public ontology repositories. 
Ontology repositories are usually more specific than search engines and they offer 
tools that may be focused on the type of applications the repository was designed for. 
The leading repository of biomedical ontologies is the BioPortal (http://bioportal.
bioontology.org/) [23], developed by the National Center for Biomedical Ontology 
(NCBO), which is one of the National Centers for Biomedical Computing funded 
under the NIH Roadmap Initiative. BioPortal provides access to a library of biomedi-
cal ontologies and terminologies via the NCBO services. Ontologies from a number 
of different groups are published in BioPortal, including the Consultative Group on 
International Agriculture Research, the Open Biomedical Ontologies (OBO) Foundry 
(http://www.obofoundry.org) [20], the WHO Family of International Classifications, 

M. Roos et al.

http://bioportal.bioontology.org
http://bioportal.bioontology.org
http://www.obofoundry.org


169

the Cancer Biomedical Informatics Grid, the Proteomics Standards Initiative, the 
Clinical and Translational Science Awards, the Biodiversity Information Standards 
and the Unified Medical Language System. The Web services allow multi-layered 
access to the ontology content, spanning functionality such as getting all terms in a 
ontology to retrieving the definition of a single term.

Two of the most important domains of ontology for RD clinical medicine and 
research are those defining phenotypic or clinical features (signs, symptoms, and find-
ings of diseases), and ontologies defining specific disease classifications or groups. 
Beyond these critical core ontologies, additional ontologies and standards will be 
required for various RD data repositories depending on their data collection process, 
potentially including ontologies or standards for mutation nomenclature, biobanking, 
clinical trials, natural history, as well as for RD medications and treatments [4].

Given the large number of ontologies which currently exist, and given that RD 
data hosts will generally lack experience in exploring ontologies and selecting 
terms, it would be useful to highlight a set of reference ontologies to facilitate the 
selection of ontological codes to use in the registry/biobank. The OBO Foundry is a 
collaborative experiment involving developers of science-based ontologies who are 
establishing a set of principles for ontology development, and creating a suite of 
reference ontologies in the biomedical domain. Ontology developers have agreed to 
work together on an evolving set of design principles that can foster interoperability 
between ontologies, and ensure a gradual improvement of quality and formal rigor, 
in ways designed to meet the increasing needs of data and information integration 
in the biomedical domain. The OBO Foundry also works to minimize overlap and 
redundancy between ontologies, encouraging members to share and reuse termi-
nologies within their specialist domains, rather than creating new, but redundant 
ontological classes. In so doing, there is community convergence on a single refer-
ence ontology that already assists in finding and selecting the best ontological term. 
Nevertheless, it would be useful to undertake an additional filtering step to more 
precisely define the optimal ontologies for the rare disease domain. This is an area 
of active investigation in this field. For example, we propose to share ‘semantic 
archetypes’: small models comprised of terms and properties from different ontolo-
gies that are selected by ontology experts for encoding a specific set of related data 
elements, such as for the data gathered by a case report form [17].

9.3  Preparing Data at the Source for Analysis 
Across Resources

Preparing data for integration can be viewed from different perspectives. For 
instance, health professionals may see this as a matter of harmonizing operating 
procedures and/or clinical measurement protocols (the methodological challenge), 
while IT (“Information Technology”) professionals may wish to agree on data ele-
ments and their exchange format (the representational challenge). Attention to both 
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of these is critical for accurate integration, but here we will focus on the latter, as the 
former perspective is best managed by health experts.

From the IT perspective, we divide the problem into three distinct considerations, 
according to the aforementioned challenges: (i) what is measured or observed and 
how (methodological challenge), (ii) how measurements (observations) are encoded 
in data collections (representational challenge), (iii) how we make data computer- 
readable (automation challenge). We note that these three considerations pertain 
only to preparing data for integration. Downstream analyses will likely require 
additional data transformations (e.g. R will require data in the form of R data frames 
for statistical analysis); however, analyses can often not begin until the data from 
multiple sites has been accurately located, retrieved, and integrated, so that is our 
focus in this chapter. We also note that the considerations are, in effect, hierarchical, 
and we will present them as such.

9.3.1  Consideration 1: Consensus on Common Data Elements

It is typical for specialist communities to reach consensus on what should be mea-
sured and how, but the importance of this step cannot be understated. Deciding on 
common data elements (CDEs) across resources is mostly a social process, and is 
common practice in consortia that are formed to perform a large study, for instance 
a GWAS (Genome-Wide Association Study) consortium. It is the first step towards 
integrative analyses within the consortium for the duration that it is funded.

Consensus, however, has limitations with respect to reusing the data outside of 
the consortium and/or beyond its lifespan, which is usually coupled to a grant. For 
instance, if a consortium of cystic fibrosis researchers reaches consensus on measur-
ing forced expiratory volume in 1 s (and how), this may differ from the consensus 
of measurements and methodology in a primary ciliary dyskinesia consortium. 
Nevertheless, comparison of these very similar diseases could lead to significant 
insights.

Striving for global consensus between all researchers in all domains to accom-
modate all future uses of data is unrealistic and overly rigid (different domains 
legitimately have different requirements). While lack of widespread consensus does 
limit the ease and power of cross-resource data comparisons and analyses, it does 
not thwart it completely. Applying the solution proposed in Consideration 2, below, 
mitigates this problem by moving the requirement from consensus to compromise 
with respect to the way that these common data elements are encoded. This will 
clearly be more acceptable, and therefore effective, than attempting to enforce a 
rigid set of common data elements that all resources must have.
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9.3.2  Consideration 2: Ontological Encoding

Health research has a long history of the use of nosologies (classifications of dis-
eases). Similarly, healthcare organizations use coding systems both for patient care 
as well as for billing and other administrative tasks. Biomedical ontologies are very 
similar to these familiar approaches to knowledge capture and classification, with 
the extension that contemporary ontologies utilize formal logics in their code defini-
tions, and are thus able to be processed and interpreted by machines. Consideration 
2, therefore, proposes the use of globally unique identifiers [10] and ontologies 
when exchanging data elements. For instance, when HPO identifiers are used as the 
codes for phenotypes in disparate disease databases, then phenotypic features in 
these databases can be unambiguously compared and, when commonalities are 
found, the data may be selected for integration. Resources in different countries 
may have used different terms or languages, but the agreement to use HPO codes as 
the unifying descriptor – the “Rosetta Stone” – can easily reveal that two entries are 
referring to the same concept, regardless of language. Ontologies, therefore, play a 
key role in rare disease data collections. They provide standard terms by which the 
common data element values can be compared. ‘HP:0002072’, the identification 
number for the concept which is, in English, called “chorea”, is the same in all 
resources that use the HPO to define phenotypes. One caveat remains: codes for 
phenotypes such as HPO codes are by themselves not necessarily uniquely identifi-
able across the globe if the codes do not conform to some globally defined schema. 
For instance, without the context of knowing that we are discussing diseases, we 
cannot tell if the string of characters “HP:0002072” refers to the HPO term for ‘cho-
rea’ or perhaps to some Hewlett and Packard component number. This particular 
requirement is addressed in the next level of the hierarchy, Consideration 3. The 
technology that we add to ontological encoding enables data to be made unambigu-
ous. The positive consequence of this is that, if a data element is unambiguous, and 
shared between multiple resources, it becomes unambiguously linkable with those 
resources, much like the shared keys between database tables. Thus, it eliminates 
the need/desire to explicitly combine data in one central warehouse separately from 
the sources, an undertaking that is costly in terms of finances, human effort, and 
risks to privacy.

9.3.3  Consideration 3: Machine Readable Data 
and Knowledge

This consideration pertains to making data, and the meaning of the data, computer- 
readable using a structured data representation model combined with a more formal 
approach to representing ontological (and other) concepts. The purpose is to enable 
computers to aid in combining data from multiple rare disease resources across the 
globe.

9 Preparing Data at the Source to Foster Interoperability across Rare Disease Resources
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To prepare data for integration at the source, we advise the framework that is 
recommended by the Semantic Web initiative and the ‘Linked Data’ principles – 
Resource Description Framework (RDF). Both of these integrative initiatives reuse 
the core technology that underlies the World Wide Web itself (i.e. the HTTP proto-
col). The use of RDF together with HTTP allows machines to “surf” the Web in a 
meaningful way; much like how grammatical rules define how words can be assem-
bled into meaningful sentences, RDF explains how to structure ontological con-
cepts, and other entities such as individual patients and their specific interventions 
or treatments, into relationships whose meaning can then be interpreted by soft-
ware. This requires, simply, that all aforementioned codes (for specific phenotypes, 
diseases, genes, etc.), but also data types such as the general class ‘Human pheno-
type’ for all human phenotypes, patient identifiers, and relation types such as ‘binds 
to’, are represented by a Uniform Resource Identifier (URI). Biologically and clini-
cally meaningful statements are then constructed using “Triples” of URIs. For 
example, in RDF ‘chorea is-a-manifestation-of Huntington’s Disease’, becomes an 
unambiguous statement  – a Triple  – understood by both humans and machines, 
because each element of that Triple is represented as a URI, and all parties, globally, 
use the same URI to refer to the same concept or relationship. If the ontological 
concepts and relationships within these “sentences” are further formalized in 
description logics, they can be even more powerfully processed by computers, 
where, for example, a computer could automatically define the category for a new 
data entry, or could infer consequences from certain combinations of data points 
that were not explicitly entered into the database. Defining relations between data 
elements in terms of these Triples further mitigates the need for a rigid set of glob-
ally common data elements. The encoding by description logics allows any infer-
able commonality at any level to be exploited, instead of only the values of 
pre-defined common data elements. Nevertheless, it does not replace the solutions 
for Considerations 1 and 2. URIs and Triples of URIs only represent what research-
ers have decided to measure, encode and define relations between, such that com-
puters can help to perform accurate analysis across any number of data sets. The 
stack of solutions is most powerful when all three levels are addressed.

9.4  Requirements for Preparing Rare Disease Data 
for Integration

We constrain our pursuit of an integrative solution by the following requirements 
and desiderata [17]:

 1. When access to data is granted, ‘linkable data’ must be trivial to query and/or 
analyze across (large numbers of) independent data sources, by both humans and 
machines.

 2. All originating sources must retain their independence; i.e. the solution-space 
cannot depend on centralized data warehouses or portals.
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 3. Data sources should be easily combined with existing computational workflows 
and data platforms such as those developed by the RD-Connect project [21]. The 
solution should avoid proprietary or de novo interfaces and formats (data silos).

 4. The technology that we propose to make rare disease data linkable should com-
plement existing technologies and protocols being used at-source, and not inter-
fere with them.

These desiderata and requirements impose certain challenges. The first require-
ment –the ability to dynamically integrate large numbers of potentially linkable 
resources- poses significant demands on the knowledge representation that we 
apply, confirming the aforementioned representation and automation challenges. 
Effectively, at larger scales, human assessment of the meaning of the data in each of 
the resources should not (and cannot) be required. The second desiderata, that all 
sources should remain independent, does not exclude the use of global services to 
facilitate data integration scenarios, such as initiatives that make it easier to find and 
access registries and biobanks through creating centralized indexes [7]. It does, 
however, exclude the wholesale warehousing and en masse integration of the data, 
as has been the norm in the biomedical domain for many years, in lieu of retaining 
the data at its original source.

We point-out, in addition, that these requirements surpass simply finding data. 
Making data discoverable is often considered lower-hanging fruit, because it 
requires only the information about the data source in a standard form (‘metadata’). 
Examples are the disease that a data set pertains to, how many subjects it contains, 
the type of material that was collected, etcetera. Our driving research questions, 
however, require more than information about data. For instance, finding tissue 
samples of patients with ring-formation in chromosome 14 (the defining feature of 
ring-14 syndrome) requires interrogation of the specific karyotype of a patient, 
which goes beyond simply knowing that karyotype information was collected. 
Furthermore, we need to enable researchers to exploit relevant biomedical informa-
tion. For example, information associated with the ring-14 karyotype may be the 
link to rich sets of information about model systems that researchers can exploit to 
find new treatments for the disease.

9.5  Backbone: Linkable Data and Ontologies

The backbone for our approach to make data linkable and computer readable at the 
source is, as we noted in Consideration 3, provided by the recommendations of the 
World Wide Web Consortium (W3C): Linked Data principles [1], Ontologies, and 
the Resource Description Framework (RDF). RDF is a generic data model that was 
designed with the objective of creating qualified networks of data, upon which 
increasingly complex domain models can be overlaid to assist with interpretation of 
that data. For instance, the Human Phenotype Ontology and the Orphanet Rare 
Disease Ontology are available in RDF, as are most ontologies in the biomedical 
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domain. We therefore consider this the best way to facilitate integrative biological 
and translational research across rare disease resources. In addition to tools that 
exploit the use of ontologies, such as the Exomizer [19], MatchMaker Exchange 
(MME; [14]), and Monarch [11], we see an increasing amount of life science data 
resources that use RDF to support data linking, such as the RDF platform of the 
European Bioinformatics Institute (EBI; [6]) and the Open Phacts [25]. RDF is 
capable of representing disease specimen identifiers, patient/disease personal and 
clinical information, and molecular data, thus the choice of this singular technologi-
cal framework helps reduce the overall cost of data integration for rare disease 
resources.

9.6  Building on the Backbone: A Reference Model for Data 
Integration

The process to prepare data for analysis across resources entails recoding values by 
ontology codes, adding ontology terms to describe the meaning of values, and add-
ing relation terms (also from ontologies) to define how values are related and what 
they represent. This is not a trivial process. While many ontologies exist in the bio-
medical domain, choosing the appropriate ontology terms requires substantial 
understanding of ontologies, and substantial understanding of what the data repre-
sents. We recommend consulting an ontology expert to collaboratively choose the 
correct terms. However, this in itself does not guarantee that the same ontology 
terms will be used by all resource providers. There are often multiple ontologies that 
appear to have appropriate, even identical terms. Moreover, to increase efficiency 
for the large amount of data resources in the rare disease domain, it is important that 
we can reuse the ontology choices of one resource for other resources with similar 
data.

To mitigate these issues, our approach entails the development of reusable refer-
ence models for data integration (‘semantic archetypes’) that are composed of terms 
from recommended ontologies. These models differ from typical ontologies in that 
their purpose is to provide a common schema for multiple types of data for a par-
ticular application, not to conceptualize a particular part of reality. Publishing these 
semantic archetypes, for instance via FAIRsharing.org, allows reuse of previous 
effort and thereby stimulate greater commonality between ontology-based data sets.

As an example, we have created a first version of a semantic archetype for a 
subset of identifier types in rare disease databases for the purpose of enabling 
answering questions across patient registries and biobanks. We constructed the 
model as a stack of modules to cater for increasingly complex applications of the 
archetype (Fig. 9.1; [17]). The model and our selection of ontologies can subse-
quently serve as reference for new cases that involve similar data.
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9.7  Composition of the Prototype Reference Model

The starting point for crafting the semantic reference model was to list the core set 
of identifiers that will likely exist in RD registries/biobanks (the dark grey semicir-
cle at the center of Fig. 9.1). These are:

• Biobanks
• Patients
• Sample donors
• Experiments
• Samples (biological specimens)

The next task (‘rdc-meta’ in Fig. 9.1) was to provide a model that describes the 
meaning of these identifiers and their interrelationships in computer readable terms. 
The following ontologies contain classes that could be used to add meaning to the 
kinds of identifiers above:

Ontology for BIoBanking (OBIB; [2]):

• Human being
• Patient/donor role
• Identifier
• Object properties

Open Archives Initiative Object Reuse and Exchange (OAI-ORE; [8]):

• Aggregation
• Aggregate properties

EMBRACE Data and Models, an ontology of bioinformatics operations, types of 
data, data identifiers, data formats, and topics (EDAM*; [5]):

• Specific types of identifiers (e.g. biobank ID, stock accession ID, person ID)
• Standard terms for genes, proteins, DNA, and other biological entities
• Standard terms for analytical methodologies

Information Artefact Ontology (IAO*; [3]):

• Specific types of identifiers (e.g. biobank ID, stock accession ID, person ID)

* EDAM and IAO both provide an identifier class. Including them both in the 
semantic archetype increases the reusability of the model. While EDAM is widely 
used, IAO provides the convenient link to the OBO Foundry suite of ontologies.

Dublin Core ontology (DC; [22]):

• Identifier properties
• Authorship and other contact information
• Basic descriptive information

Simple Knowledge Organization System (SKOS; [12]):

• Mappings (for instance, to SNOMED terms)
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From these ontologies, the following semantic modules were created (see the 
layers in Fig. 9.1):

 1. rdc-core: the minimal set of classes and properties to map to the data in the 
sources. Because of the task at hand the focus is on identifiers. Rdc-core repre-
sents little more that the lowest level types of the identifiers.

 2. rdc-meta: the minimal semantic model, defined as much as possible using the 
aforementioned ontologies (Fig. 9.2). Ontology experts will note that this mod-
ule lacks the complete set of logical definitions (so-called axioms) to be able to 
use the concepts.

 3. rdc-meta-extended: this module includes the axioms and the extra subclasses 
and properties that are required to reason over the semantic archetype if and 
when required by computational scientists [18].

These modules (and others currently under construction) provide support for the 
stepwise migration of data in RD registries/biobanks. Each module provides a con-
strained set of ontological choices, based on the task-at-hand, and on the most prev-
alent data types encountered in RD data repositories. For example, in Fig.  9.2, 
“Phenotips patient ID” is one of only six options provided for the data-type 
“Identifier”; however, the original ontology from which these six options were 
derived (EDAM) has many dozens of additional options. We believe that constrain-

Fig. 9.1 Semantic archetype for rare disease data integration. The model is constructed hierarchi-
cally from modules that can be used for increasingly complex cases. From bottom to top: ‘Values’ 
represent data in multiple resources; ‘rdc-core’ provides simple classes for database identifiers; 
‘rdc-meta’ supplies immediately relevant classes and properties to denote the meaning of identifi-
ers and their interlinks; ‘rdc-meta-extended’ provides logical definitions from the reused ontolo-
gies as needed for computational reasoning; the top semi-circle represents the ‘foundational 
ontologies’ that the reused ontologies refer to (they are not directly part of the semantic 
archetype)
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ing the choices to only a few possibilities specific for RD data sources will dramati-
cally ease the burden of making RD data interoperable. We hope that, with proper 
tools, we can arrive at the point where RD registry/biobank owners can undertake 
this task without expert assistance.

9.8  Summary

What we present here is a general approach for preparing data for integration that 
enables to address the current driving research questions, but also future applica-
tions beyond the scope of a single project. Compared to projects where, for instance, 
data is prepared for integrative analysis in R or SPSS, it adds an intermediate step. 
This is undeniably extra work, but it makes the harmonization effort of a project 
reusable. It quickly becomes the more efficient approach when we desire data col-
lections to be used many times, realizing that without preparation at the source, the 
harmonization step is carried out by each user of the data again and again with high 
risk of errors.

Ontologies are of critical importance for enabling computers to aid in informa-
tion retrieval and analysis across data collections. They play a key role in speeding 

Fig. 9.2 Semantic archetype for enabling questions across registries and biobanks (the class hier-
archy). The call-outs indicate the ontologies from which the classes were used. The complete ORE 
can be found on https://www.openarchives.org/ore/. The complete versions of the other ontologies 
can be found on http://bioportal.bioontology.org/
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up the overall research process towards better understanding of a disease, new treat-
ments, and diagnostic biomarkers.

Linked Data with strong ontological underpinnings, and a clear model for achiev-
ing proper access control, is our first ambition for preparing the relatively small, but 
numerous and disparate, rare disease data sets for wide-scale data integration. 
Sharing and reusing semantic archetypes developed by ontology experts mitigates 
an immediate and major bottleneck: the current sparsity of expertise in the commu-
nity to make informed decisions about which ontological concepts to use for their 
data annotations. Searching for a concept, e.g. in NCBO’s bioportal or EBI’s ontol-
ogy lookup service, typically returns too many “hits” for a non-ontologist to choose- 
from. Specific ontologies may be advised by experts, but the breadth of data types 
across data sets is large. For example, in a recent workshop [16] organized for RD 
patient registries owners and computer experts, we could easily list at least 10 ontol-
ogies relevant for just a subset of a registry’s data, and not all of these are included 
in the BioPortal or EBI search services. Here, we propose finding a middle-ground 
and providing an early workflow towards that goal. Domain experts first select a 
subset of the most appropriate and common ontological classes used for each of the 
data types encountered in a rare disease resource that we need to make FAIR, such 
as for the data types of a typical rare disease registry. Only these limited (but rele-
vant) options are presented to the data curator, in a stepwise, and contextually- 
sensitive manner, as they undertake their data transformation.
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