
Chapter 1
Artificial Intelligence for Modeling
and Control of Nonlinear Phenomena
in Internal Combustion Engines

Artificial intelligence techniques allow to solve highly nonlinear problems offering
an alternative way to deal with complex and dynamic systems with good flexibility
and generalization capability. They are widely used in several areas ranging from
power system modeling and control to medicine and social sciences. Because of
their good ability to model nonlinear phenomena together with their relatively
simple application procedure, artificial intelligence systems have found an
increasing usage in the modeling, diagnosis, and control of internal combustion
engines. The most used techniques include Artificial Neural Networks (ANNs),
Genetic Algorithms, Expert Systems, fuzzy logic and hybrid systems, with several
combinations of two or more of these.

The present chapter aims to describe the use of artificial intelligence in some engine
applications where the inherent nonlinear nature of the process dynamics requires
alternative approaches to guarantee a more accurate control action. A special focus
will be kept on the use of Artificial Neural Networks and fuzzy logic techniques.

1.1 Neural Networks Architectures for Engine
Applications

Neural networks provide a wide range of functions that can be used in the field of
engine control. They can be used for example to train black box process models of
various engine subsystems with few a priori theoretical knowledge. In this way,
difficulties that appear when applying classical techniques on complex nonlinear
systems are suppressed.

A basic characteristic of neural networks is that of emulating the structure of
human brain and, in particular, its ability to learn from experience without actually
modeling the physical and chemical laws that govern the system [1–3]. In general
terms, an Artificial Neural Network is a computational system able to store and

© The Author(s) 2018
F. Taglialatela Scafati et al., Nonlinear Systems and Circuits in Internal
Combustion Engines, SpringerBriefs in Nonlinear Circuits,
https://doi.org/10.1007/978-3-319-67140-6_1

1



utilize knowledge acquired through experimenting [4] and it can be defined as an
interconnected assembly of simple computational elements called neurons or nodes.
Each element receives the inputs from neighboring nodes, sums all these contri-
butions, and produces an output that is a nonlinear function of the sum. The signals
flowing on every connection are appropriately scaled by programmable parameters
called weights. In Fig. 1.1, an example of neuron model is depicted. In Fig. 1.1, xi
represents the ith input (i.e. the ith component of the vector X), wi is the relative
weight at the ith input (ith component of the vector W), and f(WT, X) is a function,
known as activation function whose value, calculated as weighted sum of the
inputs, represents the neuron outputs.

An important part of the modeling with neural networks is the so-called training of
the network (learning procedure). This latter is the process that, using different learning
algorithms chosen according to the network structure and type, assigns values to the
network parameters (in particular, to the connection weights) in order to minimize the
error between the outputs of the neural model and the correct or desired outputs.

The most popular learning algorithms are the back-propagation and its variants,
which are generally applied to multi-layer feedforward networks having differen-
tiable activation functions. The back-propagation algorithm is an iterative algorithm
that updates the values of the network interconnections such that a total square error
is optimized on a set of input/output data. The error can be expressed by:
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where p is the number of data supplied during the learning, i is the number of
outputs (i.e. of neurons in the last layer), t is the desired output value, and y is the
corresponding value calculated by the network. Initially, the training is performed
by assigning random values to the weights wi,j. With every iteration, one of the
training set samples is provided to the neural network and the error committed by
each neuron output is calculated. Then, the gradient algorithm for back-propagation
of the output error is applied backward through the network updating the value of
the weights, according to the formula:

DWijðtÞ ¼ �e
@Ep

@Wij
; ð1:2Þ

where e is a parameter chosen by the user and called speed of the learning.

Fig. 1.1 Example of a
neuron model
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The training of all the patterns of a training data set is called an epoch. The
learning procedure uses a number of epochs that allows to obtain a sufficiently low
error or an error that no longer decreases. This latter case indicates the incapacity of
the network to solve the problem.

The learning procedure must be carefully designed. The training data should
cover all nonlinearities and should contain information spread evenly over the
entire range of the system. This allows to avoid significant model failure if the
neural network model is used in a region where an insufficient amount of data is
supplied. Moreover, for a good predictive ability of an ANN, it is important that the
training and the validation are done using experimental and independent data.

An important basic operation that has to be followed to successfully handle a
problem with Artificial Neural Networks is the selection of a suitable network
architecture, which is a choice that mainly depends on the problem.

One of the most frequently employed neural architectures, also in engine
applications, is the multi-layer perceptron (MLP). MLP networks consist of suc-
cessive layers of adaptive weights, with a layer of input neurons, some internal
layers (also called hidden layers), and a layer of output neurons. The neurons of
each layer have connections that run from every unit in one layer to those in the
next layers, creating a feedforward architecture with no feedback loops (see
Fig. 1.2). Therefore, an MLP structure is characterized by the number of neurons of
each layer and the number of hidden layers. The number of hidden layer can be
increased depending on the problem; however, the most frequent configuration is
that with one internal layer only, which is suitable for the majority of the engine
modeling and control problems to be handled. On the other hand, big growing
networks can be ill-posed for overtraining and be difficult to implement in real time.

Recurrent Neural Networks (RNN) are neural networks with one or more global
feedback loops, usually with a unit time delay (often denoted by z−1). The presence
of feedback loops introduces a dynamic effect in the computational system and
makes them suitable for black box nonlinear dynamic modeling and for input–
output mapping. This feature is of a particular interest in engine applications.

Fig. 1.2 Structure of an MLP
neural network model
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The architectural layout of a recurrent network can take many different forms
mainly dependent on the feedback typology. In nonlinear auto regressive with
exogenous input (NARX) models, the input of a generic multi-layer perceptron is
applied to a tapped delay-line memory of q units, whereas the output is fed back to
the input via another tapped delay-line memory, also of q units. The contents of
these two tapped-delay-line memories are used to feed the input layer of the
multi-layer perceptron [3]. A typical structure of NARX model is shown in Fig. 1.3.

In Fig. 1.3, the present value of the model input is denoted by u(n) and the
corresponding value of the output is denoted by y(n + 1), which is ahead of the
input by one time unit. The formulation of the NARX model can be described as:

yðnþ 1Þ ¼ F yðnÞ; . . .; yðn� qÞ; uðnÞ; . . .; uðn� mþ 1Þ½ �; ð1:3Þ

where q is the number of past output terms used to predict the current output, m is
the number of input terms used to predict the current output, and F is a nonlinear
function of regressors that are transformations of past inputs and past outputs.
Therefore, NARX neural network structure allows the user to define how many
previous output and input time steps are required for representing the system
dynamics best. This feature can be used in all engine applications where input and
output variables show related dynamics, such as in the case of EGR systems or in
turbocharged engines where turbine and compressor have a strict connection of
process dynamics. However, many other applications, such as Air–Fuel Ratio
(AFR) or exhaust emissions prediction, can be effectively modeled and controlled
using a recurrent network architecture.

A learning algorithm used for recurrent neural networks is the back-propagation
through time algorithm (BPTT), which is a modification of the back-propagation

Fig. 1.3 General structure of
a NARX neural network
model
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learning algorithm used for feedforward neural networks. In BPTT training, the
network weights are adjusted also on the basis of the network state at previous time
steps. For a recurrent neural network trained for a time interval ranging from t1 to tn,
the total cost function E(t) can be represented as:

EðtÞ ¼
Xtn
t¼t1

EpðtÞ; ð1:4Þ

where the E(t) is the sum of the errors Ep(t) calculated at each time step, and the
network weights are adjusted on the basis of the equation:

DWijðtÞ ¼ �e
@EðtÞ
@Wij

¼ �e
Xtn
t¼t1

@EpðtÞ
@Wij

: ð1:5Þ

1.2 Use of ANNs for Modeling and Control of Internal
Combustion Engines

The ANNs have been applied to predict the performance of various thermal sys-
tems. Their use for modeling the operation of internal combustion engines is more
recent. Typically, a neural approach is used to predict the performance and exhaust
emissions as well as the specific fuel consumption and fuel–air equivalence ratio of
both gasoline and diesel engines [5–9]. For spark ignition engines, ANNs were
originally applied to predict the effects of valve-timing on the engine performance
and fuel economy [10]. The use of ANN was also proposed to determine torque,
brake specific fuel consumption, and emissions in engines using alternative fuels,
such as different gasoline–ethanol blends and diesel–biofuel blends [11–13].

In the following paragraphs, some examples concerning the use of neural networks
in the modeling and control of some specific engine applications will be presented.

1.2.1 Air–Fuel Ratio Prediction and Control

In order to achieve the optimal functioning of a three-way catalytic converter
(TWC), i.e., its maximum efficiency, a spark ignition engine has to operate within a
narrow band around the stoichiometric air–fuel ratio (14.7:1), with mean deviations
that cannot exceed 0.1% (see Fig. 1.4).

In current technology for gasoline engines, AFR control currently relies on a
mean value engine model (MVEM) representation [14, 15]. Such a controller
estimates in a feedforward way the actual airflow rate in the cylinder and provides
the correspondent amount of fuel to be delivered in the next engine cycle.

1.1 Neural Networks Architectures in Engine Applications 5



Moreover, the signal of an oxygen sensor placed at the exhaust is used as a
feedback control signal to correct the previously calculated mass of fuel to be
injected, ensuring a steady state stoichiometry of the mixture.

The fast (but approximate) feedforward component is important to handle
transient operating conditions and to compensate the slow dynamics of the feedback
loop. There are in fact three time delays included in the value of air–fuel ratio
(AFRo) measured by means of the oxygen sensor: injection delay, combustion
delay, and transport delays from the exhaust valve to the oxygen sensor. So:

AFRoðtÞ ¼ AFRcðt � tDÞ; ð1:6Þ

where

tD ¼ tinj þ tcomb þ ttrans:

The transport delay ttrans depends on factors such as engine speed, exhaust air
mass flow rate, exhaust manifold geometry, etc. [16].

Mean value models for the prediction of airflow rate in the cylinder have some
significant limitations, such as the high experimental burden requested for parameters
identification and the intrinsic non-adaptive features. To overcome this latter problem,
adaptive methodologies (based, for example, on observers, sliding mode controllers, or
Kalmanfilters) havebeenproposed inorder to estimate thestatesand tune theparameters.

Traditional mean value models for AFR prediction have also to include com-
pensation terms for fuel path dynamics and wall-wetting phenomena. In fact, the
liquid fuel injected into the intake port only partially enters the cylinder in the
current engine cycle. Some of it is collected in fuel films on the walls of intake
manifold and close to the back face of the intake valves. The fuel, then, partially
evaporates later from these films. A model for this phenomenon was proposed by
Aquino [14].

Fig. 1.4 Efficiency of a
TWC as a function of air–fuel
ratio
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The fuel film dynamics model is highly nonlinear: the fuel fraction and the delay
strongly depend nonlinearly on several engine variables (e.g., load, speed, and
temperature). Only a good knowledge of these parameters can assure achievement
of significant range compensation and hence effective transient control.

The residual gas fraction dynamics together with the mixing dynamics are also
highly nonlinear phenomena that have to be modeled for a correct prediction of
AFR.

Artificial Neural Networks, which are a powerful tool for modeling highly
nonlinear and dynamic systems, can be considered a good candidate for AFR
process modeling or for the realization of virtual AFR sensors.

Several approaches have been proposed for AFR modeling and control using
neural networks. Input parameters to the neural models are generally variables such
as engine angular speed, throttle valve opening, absolute manifold pressure, fuel
injection time, etc. In [17], AFR was estimated on the basis of spark plug voltage
waveform. This latter signal, in fact, is considered to be influenced by the com-
bustion inside the cylinder, which in turn depends, among other factors, on the
value of air–fuel ratio. The neural network architecture chosen in this case was a
multi-layer perceptron with a cumulative back-propagation learning algorithm. Raw
data were firstly pre-processed in order to achieve a satisfactory convergence of the
network. To this aim, data points corresponding to regions of the spark signal
known to contain poor information about AFR were removed. Moreover, in order
to enhance the SNR and reduce the effect of cyclic variation on the spark signal, a
filtering was applied to the input data. With regard to the optimal number of training
data (input–output vectors pairs), it was stated that a number of training vectors
comparable with the number of weights in the net leads to a good generalization
capability of the neural network.

In [18], the application of a multiple MLP architecture for adaptive air–fuel ratio
(AFR) control is discussed. In this work, the slow AFR process dynamics were
represented in the input parameters of the model. In particular, the variable time
constant aspects of the process were considered by presenting input parameters to
the ANN model as combinations of delayed and filtered sample data values. The
filter time constants were designed to span the range of corresponding variable time
constants in the system. The approach used to model the variable exhaust transport
delay was to configure the ANN model with multiple delayed AFR outputs span-
ning the full range of speed and load-dependent delays. Of course, this approach is
effective if the delays are known or can be calculated. However, when the delays
are unknown and variable, a different strategy is required and a further model of the
delay itself has to be developed. In this case, the authors propose to train a second
supervisory ANN to attribute relevancies to each of the ANN model output pre-
dictions. In particular, at high engine speeds, the supervisor attributes more rele-
vance to the shorter time delay model predictions and vice versa.

In [19], neural networks with feedback connections in a recursive architecture
were used to model and control the nonlinear air–fuel ratio process dynamics. In
particular, the authors used an RNN known in the literature as nonlinear output
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error model (NOE) [20] with one output variable, one hidden layer, and two output
delays, which had a structure like in Fig. 1.5, where the output ŷðtÞ represents the
actual AFR.

The general form of the NOE model can then be written as:

ŷ t hjð Þ ¼ F ŷ t � 1 hjð Þ; ŷ t � 2 hjð Þ; . . .; ŷ t � m hjð Þ; uðt � 1Þ; . . .; uðt � nÞ½ �; ð1:7Þ

where h is the adjustable parameter, u(t) are reference inputs, the indices m, n define
lag space dimensions of external inputs and feedback variables, and F is a nonlinear
mapping function. The input variables, like in most AFR models, included the
intake manifold absolute pressure (MAP), the engine speed (RPM), and the fuel
injection pulse width (FPW).

The network training is performed by minimizing a cost function estimated as
function of the mean squared error. As for other neural network architectures, the
learning process of a RNN model has to be a compromise between precision and
generalization. High generalization cannot be guaranteed if the training data set
does not provide sufficient information. These latter, in the case of AFR models,
have to cover most of the system operating conditions, providing at the same time a
good knowledge of the dynamic behavior. For this reason, the experimental profiles
of AFR models generally include, other than engine steady state operations, also
sharp accelerations and decelerations. The learning process should also avoid
overtraining that occurs when the minimization task includes many iterations: this
leads to a better precision but to a generalization loss due to overfitting.

A neural controller of injection time based on the information coming from an
AFR neural network model is proposed in [21]. Like in traditional controls, neural
controllers require an identification phase of the process to be controlled that is
known as the learning control phase. In case of AFR control, the learning control
phase might use the AFR estimated by a neural model, using the stoichiometric
AFR value and the AFR value measured as output of the engine process by means
of a dedicated sensor.

Fig. 1.5 General structure of
an NOE model
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In order to take into account also process aging effects and to tune the control to
the specific engine, the controller configuration can also be done online (online
training) during the normal functioning of the engine, even if this could require a
high computational effort to the ECU. For this reason, an extremely simple, from a
computational point of view, learning algorithm is requested.

Once the controller has been configured, it can commute to the normal operation
modality, in which it receives the AFR value measured by the oxygen gas sensor
and provides the control variable injection time.

The AFR neural controller proposed in [21] had as inputs the engine angular
speed, the intake manifold absolute pressure and the angle of throttle opening.
A one-step delay was also introduced to take into account all the delays in the
measured value of AFR.

In [22], the signal coming from an in-cylinder pressure sensor is used as an input
for an injection time control architecture based on a neural AFR virtual sensor. The
feedforward part of the control system relies on engine control maps, whereas the
feedback part is composed of four subsystems:

• a features selector block, which extracts some parameters from pressure curve to
be used for AFR prediction;

• a virtual AFR sensor, based on an MLP neural network model;
• a block that evaluates both the error and the error variation obtained by com-

paring the AFR value estimated by the virtual sensor and a reference AFR value
(i.e., stoichiometric value);

• a soft computing controller, which modifies the injection pulse duration cal-
culated by the feedforward section on the basis of the output of the above block.

The features selector block (see Fig. 1.6) performs a pre-processing of the
in-cylinder pressure signal in order to extract the features most relevant to AFR
prediction. In other words, it selects the best inputs for the virtual sensor. From an
algorithmic point of view, the action of this block is based on clustering analysis
techniques.

Fig. 1.6 AFR control based on the use of a neural virtual sensor
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Moreover, the block allows to find an optimal sampling of the inputs, i.e., the
number of consecutive pressure cycles that have to be averaged to improve AFR
prediction.

Figure 1.7 illustrates the block scheme of the virtual AFR sensor. One of the
model inputs is Pr50, i.e., the combustion pressure value at 50 crank angles
(CA) degrees after combustion top dead center divided by the value that the same
pressure signal assumes at 50 CA before top dead center (Pr50 = P(50)/P(−50)).
Other inputs are Pr value at 40 CA (Pr40 = P(40)/P(−40)) and the maximum
pressure value (Pmax). These inputs have been chosen, among others, by the fea-
tures selector subsystem.

The Edge Detector in Fig. 1.7 is devoted to the synchronization of the model
components with the incoming data. It samples the data and provides an enabling
signal to the following blocks. The Pre-Proc block performs a pre-processing of the
incoming data in order to reduce the cycle-by-cycle variation of the input data. To
this aim, it carries out a moving average of the input data. The user can modify the
number of averaged cycles but, in this case, the optimal value has been chosen by
the feature selector.

The heart of the virtual AFR sensor is represented by a multi-layer perceptron
neural network. All the endogenous parameters of the neural network, such as the
regularization parameter, the number of hidden layers, the number of neurons for
each hidden layer, the type of activation function for the neurons, etc., have been set
in order to maximize the “generalized forecast capability” of the learning machine.
To this aim, a modified version of the ordinary cross-validation estimate of the
endogenous parameters has been used as fitness function.

The searching of the minimum of this function has been performed by using a
stochastic searching algorithm known as particle swarm optimization algorithm
(PSOA) (see [23]).

Error and error variation between output of virtual AFR sensor (AFRmodel) and
reference AFR (AFRstech) are calculated at time t in the subsystem shown in
Fig. 1.8. To this aim, input signals are suitably dealt with sum blocks and a time
delay:

Fig. 1.7 Block scheme of a virtual AFR sensor
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EðtÞ ¼ N1 � AFRstech � AFRmodelð Þ
c EðtÞ ¼ N2 � ðEðtÞ � Eðt � DTÞÞ;

where N1 and N2 are two normalization factors.
The variables E(t) and c_E(t) represent the input to the AFR control system.

AFR soft computing control was implemented by means of fuzzy techniques. In
particular, the following fuzzy sets of the input variable E(t) were considered:

• E_P “positive error,”
• E_N “negative error,”
• E_Z “zero error,”

with the corresponding membership functions shown in Fig. 1.9.
The following fuzzy sets have been considered for the variable c_E(t):

• CE_P “variation of the positive error”;
• CE_N “variation of the negative error”;
• CE_Z “variation of the zero error”;

with the corresponding membership functions depicted in Fig. 1.10.

Fig. 1.8 Subsystem for calculation of E(t) and c_E(t)

Fig. 1.9 Membership functions of the variable E(t)
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The fuzzy controller is a fuzzy system having as antecedents the fuzzy sets of E
(t) (error) and c_E(t) (error variation), and as consequents the fuzzy sets of the
output variable D_DI (injection time).

• I_N “positive injection,”
• I_P “negative injection,”
• I_Z “zero injection,”

whose membership functions are shown in Fig. 1.11.
The fuzzy algorithm conceived for the controller was composed by nine rules

having the following traditional form:

• IF E_P AND CE_P THEN output IS I_P
• IF E_N AND CE_N THEN output IS I_N
• IF E_P AND CE_Z THEN output IS I_P
• IF E_N AND CE_Z THEN output IS I_N
• IF E_P AND CE_N THEN output IS I_Z
• IF E_N AND CE_P THEN output IS I_Z

Fig. 1.10 Membership functions of the variable C_E(t)

Fig. 1.11 Membership functions of the output variable D_DI
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• IF E_Z AND CE_Z THEN output IS I_Z
• IF E_Z AND CE_N THEN output IS I_N
• IF E_Z AND CE_P THEN output IS I_P

The aim of the fuzzy algorithm described by the previous rules is to provide for
each value of input variables a correspondent value of the control variable D_DI
(injection time). Figure 1.12 illustrates the tridimensional map summarizing the
way of functioning of the controller.

Finally, to estimate the update of the control variable induced by the feedback
part of the air–fuel control system the output of the controller is processed in the
following way:

ti FB ¼ N3 � D DIðtÞþD DIðt � DTÞ;

where N3 and DT are two factors to be tuned.
The proposed approach allowed to obtain a strict control of AFR with an error,

with an error below of 1% both in steady state and during fast transients.

1.2.2 Use of Neural Networks to Predict Combustion
Pressure Parameters

Real-time combustion process monitoring in internal combustion engines may
provide a strong tool regarding engine operation and may be profitably used for
closed-loop electronic engine controls that allow internal combustion engines to
comply with the severe normative on pollutants emission and fuel consumption.
One of the most important parameters used for the evaluation of the combustion
quality is the in-cylinder pressure. However, this kind of measure requires an
intrusive approach to the cylinder and a special mounting process. Moreover, the
combustion pressure transducers used for this kind of applications still have a high

Fig. 1.12 Tridimensional
map of AFR fuzzy controller
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cost for mass production automotive engines and still remains some problems of
robustness and performances. Due to the disadvantage of direct pressure mea-
surement, several non-intrusive techniques have been proposed to reconstruct the
cylinder pressure and obtain information about the combustion quality [24–26]. The
non-intrusive diagnostics offer several advantages: the sensors are generally placed
externally the engine and no engine structural modifications are required. Moreover,
the non-intrusive sensors are quite cheap, as they are not requested to resist very
high pressures and temperatures.

Artificial Neural Networks can have a role in estimating several combustion
pressure parameters on the basis of information coming from sensors already
present on engine. An example of this is combustion pressure monitoring using the
engine crankshaft speed.

Cylinder pressure reconstruction on the basis of instantaneous crankshaft speed
is considered to be a successful approach both for its simplicity and its low cost
[27–32]. Crankshaft angular speed, in fact, contains information to reconstruct
cylinder pressure, and hence, it can be chosen as an input to a neural network model
for cylinder pressure estimation. In particular, the following correlation can be
written:

_x ¼ 1
JðhÞ � 1

2
dJðhÞ
dh

x2 þ Tind � Tfric � Tload

� �
; ð1:8Þ

where x is the crankshaft velocity, J(h) is the moment of inertia of the engine, Tind,
Tfric, and Tload are the indicated torque, frictional torque, and load torque, respec-
tively. The indicated torque is strictly correlated to the in-cylinder pressure P(h),
and for a single cylinder engine, it is given by:

Tind ¼ PðhÞ � Pmanð ÞAp
dsðhÞ
dh

; ð1:9Þ

where Ap is the piston head surface area, Pman is the intake manifold pressure, and s
(h) is the piston stroke from top dead center (TDC). Therefore, Eq. (1.8) can be
re-written as:

_x ¼ f ðh;P;xÞ ¼ 1
JðhÞ � 1

2
dJðhÞ
dh

x2 þ PðhÞ � Pmanð ÞAp
dsðhÞ
dh

� Tfric � Tload

� �
:

ð1:10Þ

Equation (1.10) illustrates clearly the nonlinear correlation existing between
engine crankshaft speed and in-cylinder pressure.

In [31], cylinder pressure reconstruction was carried out using a RNN with
instantaneous crankshaft speed fluctuations and motored pressure as input signals.
In addition, spark advance was chosen as another input, since the values of peak
pressure and its location and the rate of pressure rise are significantly affected by the
ignition time value. Equivalence ratio also has a significant influence on the
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cylinder pressure peak, hence it was chosen as one of the inputs. On the basis of
these inputs, the regression vector for neural network was given by:

P t wjð Þ ¼ NN P t � 1ð Þ; . . .;P t � að Þ;x t � 1ð Þ; . . .;x t � bð Þ;Pmot t � 1ð Þ;ð
Pmot t � cð Þ; SA t � 1ð Þ;£ t � 1ð Þ;wÞ ð1:11Þ

where a, b, and c are the number of past cylinder pressure output, the number of
past speed, and past motored pressure data given to the neural network as feedback
variables.

The authors demonstrated that the minimum mean square error in pressure
prediction was obtained for a = 3, b = 7, c = 7, and with 13 neurons in the hidden
layer. By using the above-described RNN model, the residuals between the
experimental pressure curve and the simulated one lay in the range ±0.5 bar for all
the investigated operating conditions.

In [32], a radial basis function (RBF) neural network model having as input the
instantaneous angular speed was used for pressure waveform reconstruction. Using
an RBF, the correlation between cylinder pressure P and engine angular speed is
given by:

PkjðhÞ ¼
Xn
i¼1

hkiðhÞwij:

Therefore, the pressure can be expressed as a linear combination of the output of
the hidden neurons, that is, as a linear combination of a set of n fixed basis functions
hkið�Þ; the coefficients of the linear combinations, wij, are the weights or model
parameters.

The results of the proposed approach showed that the measured and estimated
pressure traces matched well over all stages of the pressure process: compression,
onset of combustion, peak pressure, and the rise and fall of the combustion.

The maximum deviation interval between the predicted and measured pressures
resulted less than 0.46 bar. This is the same quantitative order as that of the
cycle-to-cycle variation and, therefore, the prediction can be judged to be accurate
enough for averaged analysis over the cyclic variation. Deviation of peak pressure
was less than 3 bar, whereas the deviation of the angular location of pressure peak
was ±1 crank angle.

In [33], a neural network approach for real-time prediction of in-cylinder pres-
sure peak value (PP) and its angular location (LPP) has been proposed. The trained
network, which can be viewed as a nonparametric model of the engine process, had
as inputs the engine angular crankshaft speed and the crankshaft speed derivative
(i.e., crankshaft acceleration) (see Fig. 1.13).

In order to train and validate the neural network model, measurements were
carried out over the engine speed range 1000–2000 rpm, with steps of 200 rpm, and
absolute intake pressure values ranging from 1000 to 1600 mbar.
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The overall data set was, then, divided into two groups. One group was used as
training data set, i.e., to train the neural network model and to set the internal model
parameters. The other group was used as testing data set, i.e., to validate the trained
network.

As neural model, a multi-layer perceptron (i.e., MLP) neural network was
chosen. The MLP had only a hidden layer with 30 neurons and arctan as activation
function. In order to train the network, a Bayesian regularization back-propagation
was used. This latter is a process that minimizes a combination of squared errors
and weights and then determines the correct combination so as to produce a net-
work that generalizes well. Use of this process guaranteed a satisfactory general-
ization capability of the neural network model and, at the same time, allowed to
avoid overfitting issues. The tuning of internal parameters (e.g., the value of the
regularization parameter, neuron biases) of the neural network model was optimized
by using an evolutionary algorithm. In Table 1.1, the main features of neural net-
work model are shown.

The overall Relative Error in the prediction of pressure peak (PP), obtained from
scaling the root mean square error (RMSE) by the maximum of the peak pressure of
the experimental data set, was 4% at 1000 rpm, 5% at 1500 rpm, and 7% at
2000 rpm. The model also showed a good capability of predicting the angular
location of pressure peak (LPP) with a RMSE ranging from 1.38 to 5.2 crank angles
degrees.

The results confirmed that the neural model can be effectively used for PP and
LPP estimation. Moreover, the model also revealed its capability to predict pressure
peak reductions due for example to inefficient combustions, misfiring events, and
other combustion abnormalities. As a consequence, it can be used as a non-intrusive
tool for real-time diagnosis of engine combustion quality in advanced closed-loop
control systems.

Fig. 1.13 Neural network model for prediction of LP and LPP

Table 1.1 Main features of the neural model for PP and LPP prediction

Neural network structure feedforward MLP

Neuron model tanh(x)

# Neurons in hidden layer 30

Training algorithm Trainbr with 0.3 as regularization factor
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Location of pressure peak, as it is strictly connected to the ignition angle, rep-
resents a promising control variable for gasoline engine spark advance control.
A possible engine controller could estimate the LPP from the crankshaft speed
information and could use it as a feedback variable in an ignition timing controller.
This allows to maintain the LPP close to its reference value modifying, if requested,
the spark advance value stored in the engine control maps. For each engine speed
and engine load, the LPP set-point can be defined as the optimal value to obtain the
desired engine behavior. In high load ranges, for example, late pressure peak
locations could be requested to hold down the NOx emissions.

A block scheme of a possible engine closed-loop control is shown in Fig. 1.14.
The architecture includes a proportional–integral controller for LPP control.

A similar controller was proposed in [34]. Also in this work, a spark advance
control strategy based on the location of peak pressure (LPP) is presented.
A feedforward MLP neural network is introduced in this study to predict LPP by
using only few samples (five) extracted from in-cylinder pressure voltage signal
(the entire acquisition of pressure curve was not required).
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