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Abstract. This paper discusses some feasibility conditions for fuzzy lin-
ear programming problems. The selection of different membership func-
tions in a fuzzy linear programming problem can lead to different solu-
tions, including unbounded and infeasible solutions, so in this paper we
generalize concepts of weak and strong solutions for this kind of prob-
lems. An application example is provided to illustrate our results.

1 Introduction and Motivation

Fuzzy Linear Programming (FLP) problems are among the most popular fuzzy
optimization techniques, so its analysis provides valuable information to prac-
titioners. The classical FLP model was proposed by Zimmermann [1], Zimmer-
mann and Fullér [2], and Fiedler et al. [3]; Černý and Hlad́ık [4], Hlad́ık [5] have
extended his results to two main families of fuzzy LPs: problems with fuzzy para-
meters/constraints, and problems with fuzzy parameters and crisp constraints.
Hernández-Pérez and Figueroa-Garćıa [6] discussed some sensitivity issues for
the Zimmermann’s soft constraints model, and Figueroa-Garćıa et al. [7] have
defined some feasibility conditions for fuzzy/crisp LPs.

Hlad́ık [5] has defined basic concepts of weak/strong feasibility for interval-
valued equations which we extend to FLPs. This way, we propose similar fea-
sibility conditions for FLPs with fuzzy costs, parameters and constraints with
nonlinear membership functions, which is a different problem of the issued by
Zimmermann on his seminal work [1]. The FLP addressed here refers to an LP
structure whose coefficients can be fuzzy sets with any linear/nonlinear shape
(e.g. exponential, gaussian, quadratic, sigmoidal, etc.), including its constraints.
To do so, we define feasibility over FLPs in two instances: feasibility regarding
the support of all fuzzy parameters, and feasibility regarding α-cuts. The case
of infeasible FLPs is discussed as well.

This paper focuses on the analysis of weak/strong feasibility conditions for
a general FLP model with nonlinear costs, technological coefficients, and con-
straints. Some examples are provided and its results are discussed. The paper is
divided into six sections. Section 1 introduces the problem. In Sect. 2, some basics
on fuzzy numbers are provided; in Sect. 3, description of the FLP model used
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here and concepts of weak/strong feasibility, are introduced. Section 4 presents
and explains some application examples (including feasible/infeasible examples);
and Sect. 5 presents the concluding remarks of the study.

2 Basics on Fuzzy Numbers

FLP models are composed by three sets of fuzzy parameters: costs, technological
coefficients, and constraints which are commonly defined as convex fuzzy sets
(or fuzzy numbers) for which we provide some basic notations. P(R) is the class
of all crisp sets of X and F(R) is the class of all fuzzy sets defined over the reals.
A fuzzy set Ã, Ã : X → [0, 1] can be represented as a set of ordered pairs of an
element x and its membership degree, μÃ(x), i.e.,

Ã = {(x, μA(x)) |x ∈ X} (1)

The support of Ã, supp(Ã), is composed by all the elements of X that have
nonzero membership in Ã, this is:

supp(Ã) = {x |μÃ(x) > 0} ∀ x ∈ X (2)

The α-cut of μÃ(x) namely αÃ represents the interval of all values of x which
has a membership degree equal or greatest than α, this means:

αÃ = {x |μÃ(x) � α} ∀ x ∈ X (3)
αÃ ∈

[
inf
x

αμÃ(x), sup
x

αμÃ(x)
]

=
[
Ǎα, Âα

]
(4)

A fuzzy number is then a convex fuzzy set. Let Ã ∈ G(R) where G(R) ∈ F(R)
is the class of all normal, upper semicontinuous, and fuzzy convex sets. Then, Ã
is a Fuzzy Number (FN) iff there exists a closed interval [a, b] �= 0 such that

μÃ(x) =

⎧
⎨
⎩

1 for x ∈ [a, b],
l(x) for x ∈ [−∞, a],
r(x) for x ∈ [b,∞]

(5)

where l : (−∞, a) → [0, 1] is monotonic non-decreasing, continuous from the
right, and l(x) = ∅ for x < ω1, and r : (b,∞) → [0, 1] is monotonic non-
increasing, continuous from the left, and r(x) = ∅ for x > ω2.

A graphical display of a nonlinear fuzzy set is given in Fig. 1. Its universe of
discourse is the set of all values x ∈ R, the support of Ã, supp(Ã) is the interval
x ∈ [Ǎ, Â] and μÃ is a triangular function with parameters Ǎ, Ā and Â. α is the
degree of membership that an specific value x has regarding A and the dashed
region is an α-cut done over Ã.

Note that any α-cut done over a fuzzy number is monotonically increas-
ing/decreasing, so for α1 < α2, α ∈ [0, 1] then α2Ã ⊆ α1Ã and αÃ ⊆ supp(Ã),
∀α ∈ [0, 1].
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Fig. 1. Fuzzy set Ã

3 Linear Programming with Fuzzy Parameters

The classical Linear Programming (LP) problem relates a set of Ax � b inequal-
ities to a desired goal z = c′x for which we want to find a maxima of z through
a set of decision variables x, this is Max{z = c′x : Ax � b, x � 0}, for short.
In this model, all parameters c ∈ R

+
n , A ∈ R

+
mn, b ∈ R

+
m are deterministic (e.g.

constants).
Fuzzy LPs regard to a problem where its parameters cannot be defined as

constants or singletons but as fuzzy sets which come from human like uncer-
tainty. Most of available methods for FLPs are based on the fuzzy decision
making principle (see Bellman and Zadeh [8]) and use linear membership func-
tions and/or symmetrical shapes. A mathematical representation of an FLP is
given as follows:

Max
x

z̃ = c̃′x

s.t.

Ãx � b̃ (6)
x � 0

where c̃ ∈ F(R), Ã ∈ F(R), and b̃ ∈ F(R).
The binary relation � for classical fuzzy sets has been proposed and investi-

gated by Ramı́k and R̆imánek [9], and the binary relation (fuzzy max order) �
has been extended to Interval Type-2 fuzzy numbers by Figueroa-Garćıa et al.
[10]. In this paper we analyze solutions for FLPs aside from the shapes of c̃, Ã
and b̃.

3.1 Weak and Strong Solutions for FLPs

A fully solvable system Ãx � b̃ implies that the fuzzy max order relation � holds
for all αÃx � αb̃, which is a strong supposition since there is no any guarantee
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Fig. 2. Fuzzy constraint b̃

that the system is feasible for some α ∈ [0, 1], so we can say that the system
Ãx � b̃ is α-feasible if there exists an α ∈ [0, 1] for which the system αÃx � αb̃
is feasible. Finding a feasible α could be a hard task, so we propose a way to
find a feasible solution for an FLP.

Now, the system Ãx � b̃ needs to be defined before solving (6). To do so, we
use concepts of weak/strong feasibility for interval equations (see Fiedler et al. [3],
Černý and Hlad́ık [4], and Hlad́ık [5]). In this paper, we only refer to weak/strong
feasibility of fuzzy equations since the vector x in (6) is defined as non-negative,
this is x ∈ R

+
n , so hereinafter we refer to x as the set of non-negative solutions

x ∈ R
+
n .

Definition 1. Let Ã be a fuzzy matrix, and b̃ a fuzzy vector, {Ã, b̃} ∈ F(R).
Then the system Ãx � b̃ is said to be weak α-feasible if ∃x (Ǎαx � b̂α) for
α ∈ [0, 1].

This means that given a value α ∈ [0, 1], a crisp coefficient matrix Ax ∈ [Ǎα,

Âα], and αb̃ ∈ [0, b̂α] for which Ǎαx � Axx � Âαx, so if ∃x(Axx � b̂α) then

0 � Ǎαx � Axx � Âαx � b̂α

and the binary order Ǎαx � b̂α holds. This also implies that all possible values
of A ∈ [Ǎα, Ax] satisfies Ax � b̂α and x is said to be a weak solution of Ǎαx � b̂α

since x only solves the system for Ǎα, b̂α.

Definition 2. Let Ax ∈ [Ǎα, Âα] be a crisp coefficient matrix. An FLP is said
to be α-infeasible if �x(Ǎαx � b̂α). This also implies that �x(Axx � b̂α).

Definition 3. Let Ã be a fuzzy matrix, and b̃ a fuzzy vector, {Ã, b̃} ∈ F(R).
Then the system Ãx � b̃ is said to be strong α-feasible if only if ∃x (Âαx � b̌α)
for α ∈ [0, 1].
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Definition 3 means that if ∃x(Axx � b̌α) given α ∈ [0, 1] and Ǎαx � Axx �
Âαx, then we have that

Ǎαx � Axx � Âαx � b̌α

implies that the only solution x′ for Axx′ � b̌α ∀Ax ∈ [Ǎα, Âα] is Âαx′, and x′

is then a strong solution for [Ǎα, Âα]x′ � b̌α since it solves Axx′ � b̌α ∀Ax ∈
[Ǎα, Âα].

3.2 Compact, Unbounded Solutions

Nonlinear gaussian, exponential, quadratic membership functions, etc. are
among the most popular membership functions in decision making. This kind
of membership functions have unbounded support, so they cannot provide a
global solution of the problem. Thus, if Ã has unbounded support, this is
supp(Ã) ∈ [−∞,∞], then the system Ãx � b̃ is untractable.

Feasibility of an FLP is constrained by the condition that supp(Ã) and
supp(b̃) must be compact sets for which inf{supp(Ã)} = Ǎ, sup{supp(Ã)} = Â,
inf{supp(b̃)} = 0, sup{supp(b̃)} = b̂, so supp(Ã) = [Ǎ, Â] and supp(b̃) = [0, b̂]
should be compact (see Fig. 2). This leads us to the following results.

Definition 4. Let Ã be a matrix of fuzzy sets and b̃ a vector of fuzzy sets,
{Ã, b̃} ∈ F(R). Then the linear system Ãx � b̃ is said to be compact if and only
if both supp(Ã) and supp(b̃) are compact sets.

Definition 5. Let Ãx � b̃ be compact. It is said that Ãx � b̃ is weak feasible
if ∃x(Ǎx � b̂). Otherwise if �x(Ǎx � b̂), it is said that Ãx � b̃ is infeasible.

Definition 6. Let Ãx � b̃ be compact. It is said that Ãx � b̃ is strong feasible
if ∃x(Âx � b̌).

Note that Eq. (6) is fuzzy max ordered (see Ramı́k and R̆imánek [9]) only
for fully solvable FLPs, so

∑
j Ãijxj � b̃i, ∀ i ∈ Nm holds for every α-cut. Then,

Definitions 5 and 6 imply that the system
∑

j
αÃijxj � αb̃i, ∀ i ∈ Nm should be

feasible at every boundary of αÃij and αb̃i, and this condition is ensured unless
the problem is not feasible.

A more generalized concept about feasibility over FLPs comes from the idea
that Max{z = c̃′x : Ãx � b̃, x � 0} is feasible if there exists a combination of
parameters into the supports of Ã, b̃ that conforms a feasible solution, as shown
as follows.

Definition 7. Let Ã be a fuzzy matrix, b̃ be a fuzzy vector, {Ãij , b̃i} ∈ F(R), Ax

be a crisp matrix and bx be a crisp vector such that Ax ∈ supp(Ã), bx ∈ supp(b̃).
Then the system Ãx � b̃ is said to be feasible if ∃x {Axx � bx}.

Feasibility in FLPs can be seen from a crisp point of view based on α-cuts.
Most of commercial optimizers such as CPLEX, AMLP, Gurobi, MATLAB,
Xpress, etc. provide efficient routines to check feasible LPs (mostly based on
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duality conditions) that can be applied to check feasibility of FLPs. What we
recommend to readers is to check for weak feasibility before solving the entire
problem.

Another important case to cover is unboundedness. It is clear that compact
systems lead to bounded solutions as stated in Definition 4 unless the problem
is infeasible, so unbounded FLP come from two sources: unbounded fuzzy para-
meters, or negative column vectors in the system A � b. Both conditions are
considered in the following definitions.

Definition 8. Let Ã be a matrix of fuzzy sets and b̃ a vector of fuzzy sets,
{Ã, b̃} ∈ F(R). Then the linear system Ãx � b̃ is said to be unbounded if one
of the following conditions are satisfied:

(i) ∃ j(supp(Ã·j) ∈ [−∞,∞]),
(ii) ∃ j(Ǎα ∈ R

− ∀ i ∈ Nm),
(iii) supp(b̃i) ∈ [−∞,∞]∀ i ∈ Nm.

In Definition 8, (i) means that an FLP is unbounded if jth column vector is
composed by unbounded sets, this is supp(Ã·j) ∈ [−∞,∞]; (ii) means that an
FLP is unbounded if the jth column vector is composed by bounded sets whose
supports contain non-negative elements, this is inf{supp(Ã·j)} = Ǎα ∈ R

−; and
(iii) means that if the constraints of an FLP are unbounded fuzzy sets, then the
FLP is unbounded as well.

Other unboundedness conditions derived from (iii) can be defined for partic-
ular values Ax ∈ supp(Ã) and bx ∈ supp(b̃). The linear system Axx � bx is said
to be unbounded if:

∃ y(A′
xy � 0, b′

xy < 0, y � 0).

This means that a convex combination of the dual variables y can obtain
a negative column of A in its primal problem (see Farkas and Clark’s lemmas)
leading to a unbounded primal LP. Also the linear system Axx � bx is unbounded
if a convex combination of the columns of Ax leads to a negative value. This is:

∃λ

⎛
⎝λ1ai1 + · · · + λjaij + · · · + λnain � 0, λj � 0,

∑
j∈Nn

λj = 1

⎞
⎠ ∀ i ∈ Nm,

where λ = {λ1, · · · , λj , · · · , λn}, λj ∈ P(R), and aij is the i, j element of Ax.
Fiedler et al. [3], Černý and Hlad́ık [4], and Hlad́ık [5] have proposed some

algorithms to find solutions to unbounded problems. Although they proposed
methods based on interval-valued LPs, their results can be applied without any
restriction to FLPs since a fuzzy number can be decomposed into α-cuts (a.k.a
horizontal slices of Ã).
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4 Application Examples

FLP with Weak and Strong Solutions. Consider the following FLP:

Max
x

z = 2̃x1 + 3̃x2 + 4̃x3

s.t.

1̃x1 + 4̃x2 + 2̃x3 � 1̃0

3̃x1 + 2̃x2 + 5̃x3 � 1̃2

3̃x1 + 3̃x2 + 4̃x3 � 1̃5
x � 0

The complete description of Ã is shown next:

c̃1 = T (1, 2, 5) c̃2 = T (2, 3, 5) c̃3 = T (2, 4, 7)
Ã11 = T (0, 1, 3) Ã12 = T (2, 4, 7) Ã13 = T (1, 2, 4)
Ã21 = T (1, 3, 5) Ã22 = T (0, 2, 5) Ã23 = T (2, 5, 7)
Ã31 = T (1, 3, 6) Ã32 = T (1, 3, 7) Ã33 = T (2, 4, 7)
b̃1 = T1(0, 10, 12) b̃2 = T1(0, 12, 15) b̃3 = T1(0, 15, 18)

where T (a, b, c) denotes a triangular membership function, and T1(a, b, c) denotes
a linear semi-trapezoidal membership function.

To check strong feasibility (see Definition 6) we solve the following LP:

Max
x

z = x1 + 2x2 + 2x3

s.t.

3x1 + 7x2 + 4x3 � 10
5x1 + 5x2 + 7x3 � 12
6x1 + 7x2 + 7x3 � 15

x � 0

This problem has an optimal solution at x1 = 0, x2 = 0.7586, x3 = 1.1724
that reaches z = 3.8620. Note that this solution is called strong because it solves
all possible combinations of supp(Ã) and supp(b̃) (please do the calculus).

To check for weak feasibility (see Definition 5) we solve the following LP:

Max
x

z = 5x1 + 5x2 + 7x3

s.t.

2x2 + x3 � 10
x1 + 2x3 � 12

x1 + x2 + 2x3 � 18
x � 0

This problem has an optimal solution at x1 = 12, x2 = 6, x3 = 0 that reaches
z = 90. This solution is called weak because it does not solve other possible
combinations of supp(Ã) and supp(b̃), it only solves the system Ǎx � b̂.
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FLP with Infeasible Solutions. Consider the following FLP:

Max
x

z = 2̃x1 + 3̃x2 + 4̃x3

s.t.

1̃x1 + 4̃x2 + 2̃x3 � 1̃0

3̃x1 + 2̃x2 + 5̃x3 � 1̃2

3̃x1 + 3̃x2 + 4̃x3 � 1̃5
x � 0

The complete description of Ã, b̃, c̃ are shown next:

c̃1 = T (1, 2, 5) c̃2 = T (2, 3, 5) c̃3 = T (2, 4, 7)
Ã11 = T (0, 1, 3) Ã12 = T (2, 4, 7) Ã13 = T (1, 2, 4)
Ã21 = T (1, 3, 5) Ã22 = T (0, 2, 5) Ã23 = T (2, 5, 7)
Ã31 = T (1, 3, 6) Ã32 = T (0, 3, 7) Ã33 = T (1, 4, 7)
b̃1 = T1(0, 10, 12) b̃2 = T1(0, 12, 15) b̃3 = T1(15, 18,∞)

To check strong feasibility (see Definition 6) we solve the following LP:

Max
x

z = x1 + 2x2 + 2x3

s.t.

3x1 + 7x2 + 4x3 � 10
5x1 + 5x2 + 7x3 � 12

x1 + x3 � 18
x � 0

In this case, the problem is infeasible. This leads us to check for weak feasi-
bility (see Definition 5). To do so, we have to solve the following LP:

Max
x

z = 5x1 + 5x2 + 7x3

s.t.

2x2 + x3 � 10
x1 + 2x3 � 12

6x1 + 7x2 + 7x3 � 15
x � 0

This problem has an optimal solution at x1 = 15, x2 = 6, x3 = 0 that reaches
z = 105. Remember that this solution is called weak because it does not solve
other possible combinations of supp(Ã) and supp(b̃), it only solves the system
Ǎx � b̂.
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FLP with Unbounded Solutions. Consider the following FLP:

Max
x

z = 5̃x1 + 4̃x2 + 5̃x3

s.t.

3̃x1 + 4̃x2 + 2̃x3 � 1̃5

4̃x1 + 5̃x2 + 3̃x3 � 1̃8

3̃x1 + 4̃x2 + 3̃x3 � 1̃6
x � 0

The complete description of Ã is shown next:

c̃1 = E(5, 2) c̃2 = E(4, 1) c̃3 = E(5, 1.5)
Ã11 = G(3, 1) Ã12 = G(4, 1) Ã13 = G(2, 0.5)
Ã21 = G(4, 2) Ã22 = G(5, 2) Ã23 = G(3, 1)

Ã31 = G(3, 0.5) Ã32 = G(4, 2) Ã33 = G(3, 1.5)
b̃1 = QE(0, 15, 2) b̃2 = QE(0, 18, 3) b̃3 = QE(0, 16, 2)

where E(a, b, c) denotes an exponential membership function, G(a, b) denotes
a Gaussian membership function, and QE(a, b, c) denotes a quasi-exponential
membership function, as shown as follows:

E(a, b) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

exp
−

(x − a)
b for x < a,

exp
−

(a − x)
b for x > a,

G(a, b) = exp
−

1
2

(
x − a

b

)2

∀x ∈ (−∞,∞),

QE(0, a, b) =

⎧
⎪⎨
⎪⎩

1 for x < a,

exp
−

(a − x)
b for x > a.

Since all fuzzy sets are unbounded, it is clear that the problem is unbounded
(see condition (i) in Definition 8). So we will check for α-feasibility. To check
strong α-feasibility (see Definition 3) we select α = 0.5 to solve the following LP:

Max
x

z = 6.38x1 + 4.69x2 + 6.03x3

s.t.

4.17x1 + 5.17x2 + 2.58x3 � 16.38
6.35x1 + 7.35x2 + 4.17x3 � 20.07
3.58x1 + 6.35x2 + 4.76x3 � 17.38

x � 0
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This problem has an optimal solution at x1 = 1.5083, x2 = 0, x3 = 2.5122
that reaches z = 24.80. Note that this solution is called α-strong because it
solves all possible combinations of αÃ and αb̃ (please do the calculus). At this
point, no need for checking weak feasibility of this problem since it has at least
an α-strong solution for α = 0.5.

5 Concluding Remarks

We analyzed some necessary conditions to ensure feasibility of an FLP, using the
supports of all fuzzy sets involved in the problem, or at least α-feasibility. Note
that our results apply to any kind of membership functions, and we have gener-
alized some important results known for interval-valued optimization problems.

Some FLPs can use unbounded fuzzy sets, but it does not mean that the
problem is always unbounded. In fact, it can be bounded for a given α level, as
shown in the examples. The proposed results also show that there is a chance
of having elements Ax ∈ supp(Ã) and bx ∈ supp(b̃) that could lead to infeasible
solutions, but other elements can lead to feasible solutions.

We recommend to check weak feasibility of an FLP before finding any other
kind of solutions of the problem. If a robust solution is needed, then a strong
feasible solution will solve any combination of Ax and bx.
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4. Černý, M., Hlad́ık, M.: Optimization with uncertain, inexact or unstable data:
linear programming and the interval approach. In: Němec, R., Zapletal, F., (eds.)
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