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Abstract. This work presents a scheme based on a discrete recurrent high order
neural network identifier and a block control based on sliding modes for non-
linear discrete-time systems with input delays in real-time. The identifier is
trained with an extended Kalman Filter based algorithm and the block control is
used for trajectory tracking. Experimental results are included using a linear
induction motor prototype with added delays to its input signals.
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1 Introduction

Delays in systems are a source of instability and poor performance, also, they make
system analysis a more complex task [1, 2]. Time delay systems mainly inherit delay
from their components and examples can be found easily in areas like chemical
industry, hydraulic systems, metallurgical processing and network systems [1, 2].

System identification is a process to obtain a mathematical model of a system from
data obtained from a practical experiment with the system [3]. Among the many
techniques for system identification, neural networks stand up [3, 4].

Recurrent high order neural networks (RHONNs) internal connections allow them
to capture the response of complex nonlinear systems and to have characteristics like
robustness against noise, on-line and off-line training, and the possibility of incorpo-
rating a priori information about the system to identified [5–7]. On the other hand,
training of neural networks with Kalman filter algorithms has proved to be reliable and
practical, also, it offers advantages for the improvement of learning convergence and
computational efficiency compared to backpropagation methods [5, 6].

Neural block control is a methodology which uses a neural identifier of the block
controllable form of a system, then, based on this model a discrete control law is
designed combining discrete-time block-control and sliding modes technique [5].

There are a number of methodologies which work with systems with input delay
[8–11]. The main disadvantages of these methodologies are that they need a lot of
information about the system, in our methodology, there is not necessary to know the
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model of the system because it works with the model obtained in the neural identifi-
cation process. Moreover, most of them work in continuous-time which could be seen
as a disadvantage due to the tendency towards digital rather than analog systems [12].
In this way, we present a rather simple to work with a scheme for discrete-time systems
with input delays which can be used in real time even if the model of the system is
unknown or incomplete.

On the other hand, compared with some of our previous works [13–15] this paper
differs in that none of them treat the case of input delay in the system and some do not
even consider any kind of delay.

The paper outline: Sect. 2 is dedicated to neural identification using RHONNs and
extended Kalman filter (EKF) training. Then, the block control is in Sect. 3, results are
shown in Sect. 4. Finally, the conclusions are included in Sect. 5.

2 Neural Identification

Neural identification is a process to obtain a mathematical model of a system by
selecting a neural network and an adaptation law, in a way that the neural network
responds in the same way to an input as the system to be identified [3].

2.1 Recurrent High Order Neural Network Identification

In this work, we use the following RHONN series-parallel model:

bxi kþ 1ð Þ ¼ xT
i zi x kð Þ; u k � 1ð Þð Þi ¼ 1; � � � ; n ð1Þ

where n is the state dimension, bx is the neural network state vector, x is the weight
vector, x is the plant state vector, and u is the input vector to the neural network, l is the
unknown time delay and zi �ð Þ is defined as follows:
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with Li as the respective number of high-order connections, I1; I2; � � � ; ILif g is a col-
lection of non-ordered subsets of 1; 2; � � � ; nþmf g, dij kð Þ being non-negative integers
and 1= 1þ e�bv

� �
with b[ 0 and v is any real value variable.

EKF Training Algorithm. The training goal is to find the optimal weight vector
which minimizes the prediction error. In this way, the weights x become the states to
be estimated by the Kalman filter, and the identification error between x and bx is
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considered as additive white noise [4]. The training algorithm is based on the EKF due
to the nonlinearity of the neural network (1) and is defined in (4).

xi kþ 1ð Þ ¼ xi kð Þþ gKi kð Þ xi kð Þ � bxi kð Þð Þ
Ki kþ 1ð Þ ¼ Pi kð ÞHi kð Þ Ri kð ÞþHi kð ÞTPi kð ÞHi kð Þ� ��1

Pi kþ 1ð Þ ¼ Pi kð Þ � Ki kð ÞHi kð ÞTPi kð ÞþQi kð Þ
ð4Þ

where xi 2 RLi is the adapted weight vector, g 2 R is the learning rate, bxi is the i -th
state variable of the neural network, Ki 2 RLi is the Kalman gain vector, Ri 2 R is the

error noise covariance, Hi 2 RLi is vector with entries Hij ¼ @bxi xð Þ=@xij kð Þ� �T
and

Pi 2 RLi�Li is the weight estimation error covariance matrix, Qi 2 RLi�Li is the esti-
mation noise covariance matrix. Pi and Qi are initialized as diagonal matrices with
entries Pi 0ð Þ and Qi 0ð Þ, respectively.
RHONN Identification. Consider the following Nonlinear Discrete-Time System
with input delay:

x kþ 1ð Þ ¼ F x kð Þ; u k � lð Þð Þ
y kð Þ ¼ h x kð Þð Þ ð5Þ

where x 2 Rn, u 2 Rm, F 2 Rn �Rm ! Rn is a nonlinear function and l ¼ 1; 2; � � �
is the unknown delay. Then, our identification process consists of approximating the
system (5) with the RHONN (1) trained online with the EKF algorithm (4).

This identification process is validated achieving a small error between the system
outputs and the identifier outputs for the same inputs.

3 Neural Block Control

The model of many practical nonlinear systems can be transformed in the block
controllable form [5]:

xj kþ 1ð Þ ¼ fj xj kð Þ� �þBj xj kð Þ� �
xjþ 1 kð Þþ dj kð Þ

xr kþ 1ð Þ ¼ fr x kð Þð ÞþBr x kð Þð Þu kð Þþ dr kð Þ
y kð Þ ¼ x1 kð Þ

ð6Þ

where j ¼ 1; . . .; r � 1, x 2 Rn is the state variable vector with xðkÞ ¼ x1ðkÞ � � � xr½
ðkÞT �, �xj ¼ ðkÞ x1ðkÞ � � � xjðkÞ

� �T
, r� 2 is the number of blocks, u 2 Rm, dðkÞ ¼

d1ðkÞ � � � djðkÞ � � � drðkÞT
� �

is the bounded unknown disturbance vector and fj �ð Þ and
Bj �ð Þ are smooth nonlinear functions. Consider the following transformation [5]:
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v1 kð Þ ¼ x1 kð Þ � xd1 kð Þ
v2 kð Þ ¼ x2 kð Þ � xd2 kð Þ

¼ x2 kð Þ � B1 x1 kð Þð Þ½ ��1 K1z1 kð Þ � f1 x1 xð Þð Þ � d1ð Þð Þ
..
.

vr kð Þ ¼ xr kð Þ � xdr kð Þ

ð7Þ

where xd1 is the tracking reference, xdi is the desired value for xi; and K is a Shur matrix.
Using (7) and selecting SD kð Þ ¼ vr kð Þ ¼ 0 system (6) can be rewritten as (8):

v1 kþ 1ð Þ ¼ K1v1 kð ÞþB1v2 kð Þ
..
.

vr�1 kþ 1ð Þ ¼ Kr�1vr�1 kð ÞþBr�1vr kð Þ
vr kþ 1ð Þ ¼ fr x kð Þð ÞþBr x kð Þð Þu kð Þþ dr kð Þ � xdr kþ 1ð Þ

ð8Þ

then, u kð Þ is defined in (9), where ueq is calculated from SD kþ 1ð Þ ¼ 0 and u0 it is the
control resources that bound the control.

u kð Þ ¼
ueq kð Þ if ueq kð Þ�� ��� u0

u0
ueq kð Þ
ueq kð Þk k if ueq kð Þ�� ��[ u0

(
Ueq kð Þ ¼ Br x kð Þð Þ½ ��1 �fr x kð Þð Þþ xdr kþ 1ð Þ � dr kð Þ� � ð9Þ

Hence, the first step of the process is to design a RHONN identifier in a block
controllable form for the system to be identified and then obtained the u kð Þ as in (9).

4 Results

Test Description. Using the Lineal Induction Motor prototype (Fig. 1) which is based
in a dSPACE® board RTI1104 and a MATLAB®/Simulink® interface the neural
block control is implemented in a Simulink model with communication to the proto-
type by the dSPACE® tools. A subsystem to induce delays in the system input is
created in Simulink®. The subsystem consists of that 4 s after the prototype starting the
control signal is switched to a version with random time-delay. This is achieved using
the block “Variable Transport Delay” with the configuration variable time delay

Fig. 1. Linear induction motor prototype
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which receives as input at each time a random number from 0 to 10 multiplied by the
sampling time set to 0:0003 s.

Experimental Results. Table 1 shows the identification errors for all variable states
and Fig. 2 shows two graphs the first one shows the velocity tracking, the second one
shows the tracking of the flux magnitude which is defined as:

flux magnitude ¼ Alpha Flux2 þBeta Flux2

5 Conclusions

In general, it is seen that the proposed scheme adapts itself quickly even in the presence
of real-time disturbances and the added delays in the input to the system. More
specifically, the errors shown in Table 1 are small for all variable states, even for alpha
and beta currents considering that they real values can be as high as 30 A. Figure 2
shows the velocity tracking with a good performance and a flux magnitude which is
maintained around its reference. Also, when the added time delay starts at 4 s it is
noticeable that the performance changes, however, the presented RHONN identifier –
control scheme is still capable of maintaining the dynamic of the desired trajectory.
Moreover, it is important to note that for real-time tests a series of external parameters

Table 1. Root mean square errors of identification

State variable RMSE State variable RMSE

Position 5:86� 10�5 Beta flux 4:91� 10�5

Velocity 1:43� 10�4 Alpha current 1:46

Alpha flux 4:78� 10�5 Beta current 1:005

Fig. 2. Tracking reference real-time performance
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are involved like imperfections of the prototype components which induce noise to the
lecture of the signals. We are working on improving our scheme and available
equipment to test it.
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