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Preface

We describe in this book recent advances on the use of fuzzy logic in design of
hybrid intelligent systems based on nature-inspired optimization and their appli-
cation in areas such as intelligent control and robotics, pattern recognition, medical
diagnosis, time series prediction, and optimization of complex problems. The book
is organized into nine main parts, which contain a group of papers around a similar
subject. The first part consists of papers with the main theme of theoretical aspects
of fuzzy logic, which basically consists of papers that propose new concepts and
algorithms based on type-1 fuzzy systems. The second part contains papers with the
main theme of type-2 fuzzy logic, which are basically papers dealing with new
concepts and algorithms for type-2 fuzzy systems. The second part also contains
papers describing applications of type-2 fuzzy systems in diverse areas, such as
time series prediction and pattern recognition. The third part contains papers that
present enhancements to meta-heuristics based on fuzzy logic techniques describing
new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of
parameters. The fourth part presents emergent intelligent models, which range from
quantum algorithms to cellular automata. The fifth part contains papers describing
applications of fuzzy logic in diverse areas of medicine, such as diagnosis of
hypertension and hearth diseases. The sixth part contains papers describing new
computational intelligence algorithms and their applications in different areas of
intelligent control. The seventh part contains papers that present the use of fuzzy
logic in different mathematic models. The eight part deals with a diverse range of
applications of fuzzy logic, ranging from environmental to autonomous navigation.
The ninth part deals with theoretical concepts of fuzzy models.

In the first part of theoretical aspects of type-1 fuzzy logic, there are four papers
that describe different contributions that propose new models, concepts, and
algorithms centered on type-1 fuzzy systems. The aim of using fuzzy logic is to
provide uncertainty management in modeling complex problems.

In the second part of type-2 fuzzy logic theory and applications, there are four
papers that describe different contributions that propose new models, concepts, and
algorithms centered on type-2 fuzzy systems. There are also papers that describe
different contributions on the application of these kinds of type-2 fuzzy systems to
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solve complex real-world problems, such as time series prediction, medical diag-
nosis, and pattern recognition.

In the third part of fuzzy logic for the augmentation of nature-inspired opti-
mization meta-heuristics, there are six papers that describe different contributions
that propose new models and concepts, which can be considered as the basis for
enhancing nature-inspired algorithms with fuzzy logic. The aim of using fuzzy logic
is to provide dynamic adaptation capabilities to the optimization algorithms, and
this is illustrated with the cases of the bat algorithm, harmony search, and other
methods. The nature-inspired methods include variations of ant colony optimiza-
tion, particle swarm optimization, the bat algorithm, as well as new nature-inspired
paradigms.

In the fourth part of emergent intelligent models, there are six papers that
describe different contributions on the application of these kinds of models to solve
complex real-world optimization problems, such as time series prediction, robotics,
and pattern recognition.

In the fifth part of fuzzy logic applications in medicine, there are three papers
that describe different contributions on the application of these kinds of fuzzy logic
models to solve complex real-world problems, such as medical diagnosis.

In the sixth part of intelligent control, there are six papers that describe different
contributions that propose new models, concepts, and algorithms for designing
intelligent controllers for different plants. The aim of using these algorithms is to
provide methods and solution to some real-world problem control areas, such as
scheduling, planning, and robotics.

In the seventh part, there are five papers that are presenting the application of
fuzzy logic in different mathematical models. There are also papers that describe
different contributions on the application of these kinds of fuzzy models to solve
complex real-world problems, such as in intelligent control.

In the eighth part, there are four papers dealing with applications of fuzzy logic,
like in diagnosing air quality or vehicle navigation. In addition, theoretical con-
tributions are presented in regard to how we can apply fuzzy logic.

Finally, in the ninth part, there are six papers presenting theoretical concepts of
fuzzy models. The concepts range from fuzzy linear programming to fuzzy
restricted Boltzmann machines.

In conclusion, the edited book comprises papers on diverse aspects of fuzzy
logic, neural networks, and nature-inspired optimization meta-heuristics and their
application in areas such as intelligent control and robotics, pattern recognition,
time series prediction, and optimization of complex problems. There are theoretical
aspects as well as application papers.

June 2017 Patricia Melin
Oscar Castillo

Janusz Kacprzyk
Marek Reformat
William Melek
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Can Multi-constraint Fuzzy Optimization
Bring Complex Problems in Selecting Optimal
Solar Power Generating System into Focus?

Akash Dand1(&), Chetankumar Patil1, and Ashok Deshpande2,3

1 Department of Instrumentation and Control,
College of Engineering Pune, Pune, India

akash.dand@gmail.com, cyp.instru@coep.ac.in
2 Berkeley Initiative Soft Computing (BISC)-Special Interest Group (SIG),

Environment Management System (EMS),
University of California, Berkeley, USA
ashok_deshpande@hotmail.com

3 College of Engineering Pune (COEP), Pune, India

Abstract. The debate on greenhouse gases (GHS), emissions from polluting
sources & its health effects, climate Change, increased energy needs, and the use
of non-conventional/renewable energy sources has reached a steady state. In
country like India, apart from solar, high energy wind sources could also be used
in selected locations. Therefore, not only renewable energy but energy mix is a
viable proposition to meet increased energy needs. Though solar panels are
installed all over the world to meet ever increasing energy needs and reduce
carbon footprints, selection of Optimal Solar Power Generating System is a
complex issue and could be labeled as multi constraints fuzzy optimization
problem. The paper presents a novel method with a case study to address the
issue of the optimal election strategy of solar energy system.

Keywords: Energy needs � Solar power generating system � Experts’
knowledgebase � Cosine amplitude method � Goal � Multi-constraint fuzzy
optimization

1 Introduction

Ever increasing energy needs and progressive depletion of natural resources, call for
the use of renewable and nonpolluting energy. In country like India, apart from solar,
high energy wind source could also be used in selected locations. In summary, not only
renewable energy but energy mix is a viable proposition to meet increased energy
needs. There are concerted efforts being made globally on solar energy. In this paper,
we have made an attempt to address the issue based on optimal ranking of solar power
generating system.

© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
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1.1 Commentary on Solar Power Generating System and Selection

Installation of solar panels is practiced all over the world. It has been observed that if
solar panel faces sun perpendicularly, then it might gain the best power output. To face
the panels throughout the day, there is a need of sun tracking systems (STS). Some of
the researchers [1–4] are in favor of sun tracked solar panels which might give better
power generation over fixed panels installation. Broadly speaking, STS [4–6] can be
classified as single axis or dual axis and could be sensor based or time based. Should
we go for sun tracking or not? The debate is on in the researcher community and
industry experts. It is largely believed that for different longitude and latitude, different
sun tracking system could be used [1, 3]. The selection process of STS invariably
depends on multiple constraints such as cost, complexity, amount of power generation
in different seasons of the year and area required for the installation, and alike. It can be
argued in no uncertain terms that most of the constraints in decision making of such
systems are imprecise/fuzzy. Decision processes with which fuzziness can be evaluated
from many point of views [7–9]. The authors present the application of fuzzy logic
based algorithm proposed by Bellman-Zadeh in their seminal paper [10] for the
selection of optimal solar power generating system.

1.2 Objective

The overall objective is application of multi-constrain fuzzy optimization formalism in
selecting optimal solar power generating system, while sub objective is to workout
similarity of the domain experts as their belief/perception is used in fuzzy optimization
algorithm.

2 Case Study

The case study relates to arrive at the optimal solar power generating system based on
the experimental set up is installed at out the College of Engineering Pune (COEP)
Pune India, located on longitude 18.5204° N and latitude 73.8567° E.

Figure 1 shows a dome like structure with 45 solar cells in series solar panels. in
addition, there are traditional fixed solar panels and single axis tracking system.

Single axis sun tracking system is design with 25 solar cells of size 165 mm *
165 mm in series. Due to more area requirement in single axis, 36 solar cells are
mounted as fixed panel in same footprint area.

All experimental solar power generating systems are connected to same quantity
load. Voltage across load (V) and current flowing through load (I) is measured. From
voltage and current, power generation calculations could be made using:

P ¼ V � I ð1Þ

Power generation for one complete day was measured and is referred as a Goal in
fuzzy optimization while the constraint could be cost, complexity in operation and

4 A. Dand et al.



maintenance and area required for the installation are the constraints used in Bellman -
Zadeh formulation. Figure 1 shows the Installed Experimental setup.

2.1 Expert Knowledgebase

Authors have created domain expert’s knowledgebase (assumed it as membership
value based on partial belief concept used in fuzzy set theory for the constraints (cost,
operation & maintenance, complexity and footprint area, and season independency).
Out of 11 experts, 3 are from industry, 3 energy consultants and 5 research scholars
working in field of solar power.

In summary, the opinion of all the experts will be considered as the constraints in
Optimal ranking of solar power generating system using Bellman-Zadeh formalism. For
dome structure, in the absence of bba/perception (membership values) for constrains, the
authors have assumed the following values: 1. Cost 0.45, 2. Operation Maintenance 0.5,
3. Complexity 0.4, 4. Footprint area 0.65, 5. Season Independency 0.7.

3 Results and Discussion

3.1 Similarity Between Experts

Table 1 presents the membership grade of domain experts which is on two universes
(membership value in row while column vector is expert). In order to compute simi-
larity within and between the experts, the authors have used Cosine amplitude method
[11], rij is similarity between expert i and j; k = 1…n are expert.

Fig. 1. Experimental setup – (a) Fixed panel, (b) Single axis STS and (c) Dome structure

Table 1. Experts data as constraints in fuzzy optimization

Fixed panels Single axis
1 2 3 4 5 1 2 3 4 5

Expert1 0.1 0.45 0.2 0.5 0.45 0.45 0.55 0.5 0.45 0.6
Expert2 0.2 0.5 0.15 0.4 0.6 0.7 0.35 0.5 0.45 0.8
Expert11 0.4 0.45 0.2 0.7 0.45 0.6 0.55 0.7 0.5 0.65

Can Multi-constraint Fuzzy Optimization Bring Complex Problems 5



rij ¼
Pn

k¼1 xik � xjkp Pn
k¼1 x

2ik
� � Pn

k¼1 x
2jk

� �� � ð2Þ

The results in matrix form is invariably fuzzy tolerance relation which has been
transformed to fuzzy equivalence relation using transitivity closure using (3) and
dendrogram for various a cut values was drawn.

Rn�1 ¼ R � R � R � R ¼ R ð3Þ

It can be inferred all experts agrees at 0.96 possibilities (Fig. 2).

3.2 Multi Constraint Fuzzy Optimization

Optimization result will give optimal sun tracking system. Consider fuzzy sets G (goal)
and C (constraint) with membership function lG (x); and lC (x), where x is an element
of the crisp set of alternatives. Let fuzzy set D as decision with membership function
lD (x). This will result in multiple decision from alternatives. Using the membership
functions as an operation-intersection [10].

lDðxÞ ¼ minðlGðxÞ; lCðxÞÞ ð4Þ

Mostly decision need to be in crisp and this requires defuzzification of D. It is
natural to adopt for that purpose the value x from the selected set [d1; d2] with the
highest degree of membership in the set D. That is maximizing decision lD (x).

xmax ¼ fxjmax lDðxÞ ¼ maxmin ðlGðxÞ; lCðxÞÞg ð5Þ

The experiments were carried out from 24 May 2017 to 2 June 2017. Power
generation of 25 cell fixed panels, 36 cells fixed panels, Dome and single axis sun
tracking system was measured for 10 days. Power generation values were normalized
and membership grade for the Goal (G) was worked out. Table 2 represents the sta-
tistical analysis of 10-day power generation in watts. In fuzzy optimization, authors
have use 36 cells fixed panel system as footprint area is the constraint (Fig. 3).

Fig. 2. (a) Dendrogram for various alpha cut values (b) Fuzzy goal G, constraint C, decision D,
optimal decision Xmax

6 A. Dand et al.



A typical computation for optimal ranking (based on observation May 29, 2017) is
C1 = {0.31, 0.45, 0.52}, C2 = {0.46, 0.5, 0.50}, C3 = {0.07, 0.4, 0.55}, C4 = {0.57,
0.65, 0.32}, C5 = {0.47, 0.7, 0.66} and G = {0.55, 0.52, 0.5}

max
min 0:55; 0:31; 0:46; 0:5; 0:57; 0:47ð Þ;
min 0:52; 0:45; 0:5; 0:25; 0:65; 0:7ð Þ;
min 0:5; 0:52; 0:50; 0:54; 0:2; 0:66ð Þ

0
@

1
A ¼ max

0:31;
0:25;
0:2

 !
¼ 0:31 ð6Þ

0.31 refers to membership value of fixed panel. It can be stated that in this particular
case optimal sun power generation system is Fixed panel.

According to geographical location of Pune, in a year, 60 days are assumed to be
cloudy or partially cloudy days. In all conditions Dome gives better results than single
axis sun tracking system. Single axis sun tracking system generates 322 W in a day in
which it consumes 48 W in rotation of panels, so all over it power output is 20% to
40% less then Dome. Comparing from cost point of view; Single axis system is costlier
as cost of motor and rotating design is more which is approximately twice of the panel
cost. But Dome is less costly, due to no rotating parts and with much lesser mainte-
nance. Dome requires 20% extra solar cells, but as cost of solar cells are decreasing
every day, the total cost of design will come down in future - this may not be a case
with single axis system as cost of motor, bearing and allied mechanical components

Table 2. 10 days total power generation data

25 cell Fixed
panel

36 cell Fixed
panel

Dome Single axis sun
tracker

Minimum 251 324 288 299
Maximum 295 381 335 351
Mean (µ) 269.7 349.4 308.5 322.5
S.D. (r) 12.6 16.4 14.1 15.2
95% confidence level
µ ± 2r

244–295 316–382 280–
337

292–353

Fig. 3. Power generation 29 May 2017, 36 cell, 25 cell, Dome and Single axis sun tracker
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have reached steady state and will tend to increase in future. Because of more area
requirement for Dome configuration, Fixed panel system is preferred to Dome. If we
consider same footprint area in which 25 cell Single axis sun tracking system is
designed; Dome can accommodate 45 solar cells. while in fixed panel system 36 cells
can be installed. Cost of fixed system is less and maintenance is very low.

Concluding Remarks
Decision making in fuzzy environment is demonstrated in possible selection of optimal
solar power generating system. The Authors believe that more studies in this regard
should be carried out. However, approach delineated in the paper can be used in any
other system having different goals and constraints.
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Abstract. Measuring similarity is an important task in many domains such as
psychology, taxonomy, information retrieval, image processing, bioinformatics,
and so on. The diversity of domains has led to many different definitions of and
methods for determining similarity. Even within fuzzy set theory, how to
measure similarity between fuzzy sets presents a wide variety of approaches
depending on what characteristic of a fuzzy set is emphasized, for example,
set-based, logic-based or geometric-based views of a fuzzy set. First similarity is
examined from a psychological viewpoint, and how that perspective might be
applicable to fuzzy set similarity measures is explored. Then two fuzzy set
similarity measures, one set-based and the other geometric-based, are reviewed,
and a comparison is made between the two.

Keywords: Fuzzy set similarity � Set-based similarity � Geometric-based
similarity � Dissemblance index

1 Introduction

Comparing two concepts or objects is a necessary process in many domains such as
biology, psychology, taxonomy, statistics and artificial intelligence. This comparison
operation attempts to determine a relationship between the two concepts. One such type
of relationship that is frequently determined is their similarity. Because of the diversity
of domains, the general meaning of similarity is ambiguous with many different def-
initions and approaches to measuring similarity. As presented in psychological theory
[1], a warning on assessing similarity is given, “Like most powerful and widespread
ideas, it [similarity] is not amendable to a ready and precise definition; indeed, this very
resistance to definition probably goes far to explain its usefulness as a supposed
explanatory principle. Ideas that are imprecise are also dangerously versatile when it
comes to accounting for the complexities of human behavior.”

Even within one domain such as fuzzy set theory, a wide variety of methods exist
for assessing similarity [2], many of which are extensions of similarity measures that
are well-known in their respective research domains. The more recent research area of
ontological knowledge representation for the Semantic Web has also had a proliferation
of semantic similarity measures for various tasks such as ontology alignment, infor-
mation extraction, and semantic annotation. The objective of a semantic similarity
measure, also referred to as an ontological similarity measure, is to calculate the degree
to which one concept is similar to another concept within the context of an ontology.

© Springer International Publishing AG 2018
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Although several major categories of semantic similarity measures exist such as
path-based, information content-based and feature-based, those measures using infor-
mation content have been the emphasis of much study and evaluation especially in the
bioinformatics and biomedical domains. In [3] many of these semantic similarity
measures are shown as related to fuzzy set similarity measures if a concept is repre-
sented as a fuzzy set consisting of itself and all its ancestor concepts and the mem-
bership degrees are based on the information content of each concept within the context
of the ontology.

The focus of this paper is that of similarity in fuzzy set theory. This paper examines
some “respects for similarity” [4] from the domain of psychological theory and their
general applicability to the measurement of similarity in fuzzy set theory. “Respects for
similarity” refers to the ways in which two things can be similar. The term frame of
reference [5] is also used for respects for similarity. The comparison process has
intrinsic factors that determine the respects. As pointed out in [4], asking “How similar
are X and Y?” can be viewed as asking a slightly different question, “How are X and Y
similar? The process for fixing the respects is a crucial facet of similarity comparisons.

Correspondingly, similarity in other domains is investigated to better understand
how fuzzy set similarity measures have been extended from these domains. Two
specific similarity measures, one used very early in taxonomy and the other used in
calculating distances between intervals on the real line are reviewed and their fuzzy set
extensions analyzed. These two similarity measures are compared to determine any
relationships between them. To begin, Sect. 2 looks at similarity as an empirical and
theoretical psychological construct and attempts to elicit correspondences to fuzzy set
similarity. These correspondences might suggest other views and uses for fuzzy set
similarity measures. Just like different characteristics of a concept in the context of an
ontology are considered important to constructing a semantic similarity measure, a
variety of characteristics of a fuzzy set are considered in the construction of a fuzzy set
similarity measure. Section 3 presents the taxonomic related fuzzy set similarity
measures and its relation to Tversky’s psychological model of similarity. The fuzzy
extension of the distance between real number intervals to the similarity between fuzzy
set intervals is described in Sect. 4. Section 5 compares and contrasts these two fuzzy
set similarity measures and establishes a relationship between them. A summary and
plans for future research are provided in Sect. 6.

2 Respects for Similarity

In [4] the researchers examine similarity as an explanatory construct in psychological
theory where humans are comparing two objects or things. The things being compared
ranged from two simple linguistic terms to two visual forms. Their experiments indicate
that similarity is highly flexible and in some ways troublingly flexible. Their experi-
mental observations, however, are used to argue that the flexibility is reasonable as long
as systematic changes in the process of similarity assessment can be established.

The research of Tversky [5] has played a major role in shaping the understanding of
similarity in psychological research. Tversky’s research informs the research in [6]
where it is noted that “the relative weighting of a feature (as well as the relative
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importance of common and distinctive features) varies with the stimulus context and
the task; so that there is no unique answer to the questions of how similar is one object
to another.” This quote on similarity again emphasizes its “resistance to definition” and
that its assessment method is “dangerously versatile.”

The argument [4] is made that instead of viewing similarity assessment as con-
strained by the perceptual process, similarity assessment is flexible and the comparison
process itself methodically sets the respects. Assessing similarity is assumed to be based
on matching and mismatching of properties. Things are similar to the degree they share
properties and dissimilar to the degree that properties apply to one but not the other. The
issue is that two things share a subjective number of properties and likewise they differ
in a subjective number of properties. Before similarity can be computed, a prior process
must occur that determines what properties are to be used in the similarity computation.

Others [7] argue that the respects for determining how two things are judged as
similar are set not by the comparison process but by the goals motivating the com-
parison process. This view is the result on research to determine the requirements for a
similarity measure for use in the automatic generation of textual comparisons. Com-
parison between objects is categorized into six different types. For example, a clarifi-
catory comparison is a domain-based comparison with the goal of distinguishing one
object from another object that is highly similar to it. Domain-based comparisons are
used to establish explicit relationships between an object and other objects existing in
the same domain.

Regardless of how and when respects are established, most agree that similarity
assessment cannot be performed without them. The problem still remains as to the
process of selecting the respects as so aptly described by Tversky [5], “When faced
with the a particular task (e.g. identification or similarity assessment) we extract and
compile from our data base a limited set of relevant features on the basis of which we
perform the required task.”

Another important issue discussed in [4] is the effect of context in similarity
assessment. Setting the context for comparison contributes to the selection of the
respects to which similarity is being assessed. Two objects may be judged less similar
when no explicit context is given than when one is given because the context tends to
make salient the context-relevant properties to be used in the similarity assessment. The
similarity of the two objects is increased based on the degree to which the two objects
share values for these now salient properties.

The extension effect of context is also important in similarity assessment. When in
one context, properties that are shared by all objects are not useful in similarity
assessment; however, if the context is extended or broadened to include objects not
sharing these properties, then these properties become more salient. In the extended
context, two objects sharing those properties are perceived as more similar than they
were in the original context. To summarize, depending on the context, two objects may
vary in their similarity, but this variability becomes systematic when incorporated into
the specification of a similarity comparison.

Analogy also plays a role in similarity assessment. Instead of focusing on similarity
in values for simple properties of objects, it looks for relational or structural similar-
ities. An example given in [4] is “an atom is like the solar system” where the analogy
relies on relations such as “revolves around” and not property values such as “hot” or
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“yellow”. The research in [4] argues the importance of incorporating relational struc-
ture since relational structures can significantly affect the process of determining the
correspondences between objects when assessing similarity.

Similarity assessment involves comparing two objects but this comparison process
may be directional. The example given in [4] is very informative: “surgeons are like
butchers” as compared to “butchers are like surgeons”. The former is critical of sur-
geons whereas the latter is favorable of butchers. In the contrast model of similarity [5],
the less salient or less prominent object is compared to the more salient or prominent
object as evidence by the results of human experiments where the less salient object is
consider more similar to the more salient object than vice versa.

The direction of comparison also affects the properties selected for assessing
similarity as shown in their experimental results [4]. The selected properties may be
more closely related to the base object to which a comparison is being made. The
common properties used in comparing two objects may vary as a function of the
direction of a comparison and the bias is to select properties more strongly associated
with the base object. To summarize, similarity is more than identity since similarity
comparisons may encompass properties of one object becoming the candidate prop-
erties of the other in performing the similarity assessment.

Since similarity assessment usually involves multiple properties, research in cog-
nitive psychology has concentrated on how multiple pieces of information are inte-
grated into a single assessment of similarity. Similarity assessment is affected by both
the selection of the applicable properties and the constraints that the integration method
places on the process. As part of the integration method, weighting may be involved
that favors certain properties over others. In [4] experiments have shown that this
weighting procedure is not independent of the outcome of the comparison process.

One last interesting aspect brought out in [4] is the notion of experience and
learning affecting the process of similarity assessment. Children, for example, judge
similarity in a more holistic manner and are less like to analyze individual components,
but as they mature, they base their similarity judgements more on abstract, relational,
and less on superficial properties.

To summarize the research in [4] for the domain of psychology, similarity
assessment is dynamic and highly variable but connected to the details of the com-
parison process. The details that are focused on in their research are the fixing of the
properties or respects to which objects are similar, the context, the direction of the
comparison, the kind of properties whether simple attributes or relational structures, the
integration of multiple information and the weighting of this information in the process
and human experience. Many of these details of the comparison process in similarity
assessment can be found in fuzzy set similarity measurements.

In the following two sections, a set based fuzzy similarity measure from taxonomy
related its related measures and a then a geometric based fuzzy set similarity measure
from distance between real line intervals are described. Their details are examined from
the viewpoint of similarity assessment in the domain of psychology.
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3 Set-Based Similarity

One of the early set based similarity measures for crisp sets is the Jaccard index [8],
which was used in taxonomic classification. A specimen is represented by a set of
attributes describing it. Two specimens are judged to be similar based on the similarity
between their set of attributes. In taxonomy, the Jaccard index has also been referred to
as the “coefficient of similarity” [9] and in psychology, it is the unparameterized ratio
model of similarity [5]. Its formula where X and Y are sets is expressed as

Sjaccard X; Yð Þ ¼ f X \ Yð Þ
f X [ Yð Þ : ð1Þ

The function f is an additive function and is typically the cardinality of the set. The
Jaccard index is easily extended when X and Y are fuzzy sets by using fuzzy set
operators to perform the intersection and the union on the two fuzzy sets and the
function f is fuzzy set cardinality, which is simply the sum of the membership degrees
for all elements in the fuzzy set. A fuzzy Jaccard dissimilarity measure can be derived
by subtracting the Jaccard similarity from 1, i.e., DJ = 1 − Sjaccard(X,Y).

From the psychological analysis of similarity assessment, the fuzzy sets X and Y are
being compared based not only on the elements making up each set but the degree of
membership of each element in the set. The selection of properties in this similarity
measure is natural; that is, all elements in the support of a fuzzy set describe it. The
selected properties for the comparison process, therefore, include both the support of
X and the support of Y.

The correspondence or alignment between the properties of the two fuzzy sets is
automatic since each element in the fuzzy set is considered a property and the con-
straint on a fuzzy intersection is an exact match on each element in the intersection. The
weighting, however, for a property (element) in this comparison process is its degree of
membership or agreement with the fuzzy concept being represented by the fuzzy set. In
addition to the required exact match on the aligned property values is the constraint on
the integration between their two membership degrees using a fuzzy set intersection
operator, which is typically min. The result is that multiple pieces of information exist
since there are multiple elements (properties) and further integration, referred to as
aggregation in fuzzy set theory, must occur to assess the overall similarity of the two
fuzzy sets. With the Jaccard index, the aggregation operator is summation, that is, the
cardinality of the fuzzy set intersection.

The numerator of the Jaccard index provides an assessment of the agreement of
properties between the two fuzzy sets but does not take into consideration, properties in
one fuzzy set that are not contained in the other fuzzy set and vice versa. The
denominator, which is the union of the fuzzy sets, typically using the max operator,
does consider this and thus normalizes the overall similarity assessment in [0, 1].

Psychological similarity considers direction of comparison as a critical aspect in the
process. The Jaccard index does not account for presupposing a direction for the
comparison. An inclusion index, however, can and is a version of the parameterized
ratio model of similarity [5], which is given as
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STverksy�ratio X; Yð Þ ¼ f X \ Yð Þ
f X \ Yð Þþ af X� Yð Þþ bf Y � Xð Þ : ð2Þ

where (X − Y) is set difference operator. Setting a = 1, b = 1 produces the Jaccard
index. Setting a = 1, b = 0 produces the degree of inclusion for X, that is, the pro-
portion of X overlapping with Y, given as

Sinclusion X; Yð Þ ¼ f X \ Yð Þ
f Xð Þ : ð3Þ

In the parameterized ratio model, the value f(X) for object x is considered a measure
of the overall salience of that object. In psychology, the factors adding to an object’s
salience include “intensity, frequency, familiarity, good form, and informational con-
tent” [5]. Although the cardinality of a fuzzy set is a very simple way to measure the
“salience” of a fuzzy set, i.e., the larger the cardinality, the less salience, other ways
might be more useful depending on the application. Both fuzzy entropy [10] and a
function of the distance of a set to its complement [11] have been used as fuzziness
measures. One could consider that a fuzzy set is more salient than another fuzzy set if it
has less fuzziness.

For fuzzy rule-based reasoning systems, salience of the two fuzzy sets being
compared is not relevant. One approach that is used is to set the comparison direction
from the observation fuzzy set as compared to the rule antecedent fuzzy set, which
becomes the base for comparison to. The objective is to determine how certain is it that
the observation satisfies the antecedent. The more the observation is included within
the antecedent, the more certain that the antecedent is satisfied. If the observation fuzzy
set is a subset of the antecedent fuzzy set, the inclusion measure produces a one. Not
every fuzzy rule base system, however, uses an inclusion measure to assess agreement
between the rule antecedent and the observation fuzzy sets.

In fuzzy applications that are to mimic human directional comparison judgments,
the use of the more salient fuzzy set as the base for comparison might be more
appropriate. Here the properties of the more salient fuzzy set S become the selected
properties for the comparison process, and those properties in the less salient fuzzy
L set that are not in S are simply ignored. Here similarity is more than an identify as
described in [4]. In this use of similarity, the inclusion index measures the proportion of
the properties of S found in L to all the properties of S and is given as

Sinclusion S; Lð Þ ¼ f S\ Lð Þ
f Sð Þ : ð4Þ

Image processing applications [12] using fuzzy set theory tested two different ver-
sions of the inclusion index with other fuzzy set similarity measures in a shape classifi-
cation experiment. The denominator of the inclusion index is replaced by eithermin(f(X),
f(Y)) ormax(f(X), f(Y)). In the experimental results, the error rate for themax version of the
denominator were much smaller than that of the min version. The comparison direction
and how to choose that direction makes a difference and is application dependent.
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For an example of the extension effect discussed with psychological research on
similarity, consider another fuzzy set similarity measure used in [12] which follows the
formula of the Jaccard index but insteadmeasures the similarity between the complements
of the fuzzy sets, i.e.X’ and Y’. Themore the complements of the two sets are similar, then
themore the two fuzzy sets are similar.With this approach, if the context or the universe of
discourse for the two fuzzy sets is extended, i.e., its size increased, then the Jaccard index
for the two fuzzy sets would not be affected by the extension since the properties con-
sidered salient would still be those in the union of the two fuzzy sets. The Jaccard index as
measured using the complements of the two fuzzy sets, however, would be affected and
would be greater in the extended context than in the original context. Intuitively, in the
extended context the complements of the fuzzy sets share more properties.

4 Geometric-Based Similarity

Geometric based similarity relies on the dissemblance index, which provides a nor-
malized distance between two real intervals. If V = [v1, v2] and W = [w1, w2], the
dissemblance index is given as

D V ;Wð Þ ¼ v1� v2j j þ w1� w2j jð Þ
2 � b2 � b1ð Þ : ð5Þ

where [b1, b2] is the smallest interval that contains both the V and W intervals. The
factor 2 * (b2 − b1) is necessary to produce a normalized dissemblance in [0, 1].

The dissemblance index consists of two components, the left and right distance
between the two intervals and may be generalized to fuzzy intervals. A pair of
boundary functions LN and RN and parameters (r1, r2, k, q) define a fuzzy interval. The
core of N is [r1, r2] and k and q are parameters of the boundary functions LN and RN

such that the support of N is in the interval [r1 − k, r2 + q]. If LN and RN are positively
and negatively sloping linear functions, respectively, then N is represented by a
trapezoidal fuzzy set membership function. Figure 1 illustrates two fuzzy trapezoidal
fuzzy sets X and Y and labels for left and right boundaries.

To calculate the fuzzy dissemblance index between two fuzzy intervals X and Y, the
formula uses integration over the a-cuts of the fuzzy intervals as

fD X; Yð Þ ¼ 1
2 b2 � b1ð Þ

Z 1

0
LX að Þ � LY að Þj j þ RX að Þ � RY að Þj jð Þda: ð6Þ

where [b1, b2] is the smallest interval that contains both the support of the X and
Y fuzzy intervals. FD calculates a fuzzy dissimilarity measure between two fuzzy
intervals based on a normalized distance and can be converted into a fuzzy similarity
measure as SfD(X, Y) = 1 − fD(X, Y).

With the fuzzy similarity measure SfD, also referred to as a geometric fuzzy sim-
ilarity [2], the alignment between properties is not based on identical property values as
for the Jaccard fuzzy similarity measure but on identical a values. The comparison is
measured between the property values at the identical a values for the left and the right
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components of the fuzzy interval. This geometric similarity differs from the Jaccard
fuzzy similarity measure since the comparison is done on the a values and resolved
using a fuzzy set intersection operator. Correspondingly, both have a normalizing
factor that includes the support of both X and Y.

Some similarity research have been proposed to approximate fD to avoid the
computationally expensive integration over a, the value [13]. These approximations
use only the distance obtained from a single a-cut, for example, only the distance
between the core intervals of the fuzzy sets. This approximation does not incorporate
information about the proximity of the support intervals. Thus, the approximation result
may be much smaller than fD. A summarization technique was introduced in [14].
First, the distance between the support intervals is determined as

f D0 X; Yð Þ ¼ 1
2 b2 � b1ð Þ LX 0ð Þ � LY 0ð Þj j þ RX 0ð Þ � RY 0ð Þj jð Þ ð7Þ

and similarly for the core intervals, fD1. The summarized distance is the average core
and support distances given as

f D@ ¼ f D0 þ f D1

2
: ð8Þ

For trapezoidal fuzzy sets in which LX does not intersect LY and RX does not intersect
RY, this summarization technique produces equivalent results as fD. When LX does
intersect LY at aL the left distance for the support interval must be factored by aL and the
left distance for the core interval must be factored by (1 − aL) and similarly if RX does
intersect RY at aR. This factor represents the height of the triangle created at the
intersections.

The geometric fuzzy similarity measure Sdiss(X,Y) = 1 − fD(X,Y) and its use in
fuzzy reasoning is presented in [14] since using this distance based measure allows a
fuzzy conclusion to be determined using the left and right distances between the fuzzy
rule antecedent and the fuzzy observation even when there is no overlap between the
two. The details of this fuzzy reasoning approach are not examined here but instead a
relationship between the fuzzy Jaccard similarity and the fuzzy geometric similarity
measures are explored.

5 Relating Set and Geometric Similarity

When extending the similarity measures of psychology and taxonomy to similarity
measures for fuzzy sets, it is natural to see how features of objects are replaced by
elements of the fuzzy sets, crisp set cardinality replaced with fuzzy set cardinality and
set operators replaced with fuzzy set operators. However, not all equalities using crisp
set operators are true for all possible fuzzy set operators. For example, when X and
Y are crisp sets and not disjoint, f X [ Yð Þ ¼ f Xð Þþ f Yð Þ � f X \ Yð Þ. This equality is
true for fuzzy sets only when members of Frank’s family of dual t-norms and t-conorms
[15] are selected for the union and intersection operators. A more methodical method of
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creating a framework for fuzzy set similarity measures is based on developing a set of
properties that they should satisfy. In order to develop the relationship between the
Jaccard and geometric fuzzy similarity measures the theoretical foundation for the
fuzzy Jaccard similarity measure is first presented [16].

One of the properties established for a fuzzy set similarity measure between X and
Y is that S(X, Y) = 1 if and only if the symmetric difference between the two, XDYð Þ is
the empty set. Another property is if X and Y have disjoint sets, then S(X, Y) = 0. To
meet these conditions a fuzzy set similarity measure is derived using relative cardinality
on the negation of the symmetric difference between X and Y, g XDYð Þ0� �

where g is
relative cardinality and

XDY ¼ X [ Yð Þ \ X 0 \ Y 0ð Þ ¼ X \Y 0ð Þ \ X 0 \ Yð Þ

Here is another example of an equality being true for crisp sets but only true for
fuzzy sets when minimum is used for intersection and maximum is used for union.

The fuzzy similarity measure should be in the interval [0, 1] so the range for
g XDYð Þ0� �

must be found to produce a normalized value. The maximum value for
g XDYð Þ occurs when the two fuzzy sets are disjoint, which is g X [ Yð Þ. The minimum
value for g XDYð Þ0� �

, therefore, occurs for g X [ Yð Þ0� �
. The range for g XDYð Þ0� �

is
½ gð X [ Yð Þ0� �

; 1�. The fuzzy similarity measure can be derived as

S X; Yð Þ ¼ g XDYð Þ0� �� g X [Yð Þ0� �
1� g X [ Yð Þ0� � :

This equation can be rewritten as

S X; Yð Þ ¼ g X [ Yð Þ � g XDYð Þ
g X [Yð Þ ¼ 1� g XDYð Þ

g X [ Yð Þ

since g(X) = 1 − g(X’) for relative cardinality. From the above equation, the fuzzy
similarity measure produces a 0 if and only if g XDYð Þ ¼ g X [ Yð Þ, that is the fuzzy
sets X and Y are disjoint. The fuzzy set similarity measure produces a 1 if and only if
the symmetric difference produces the empty set. When X and Y are crisp and X = Y, all
the symmetric difference operators produce an empty set. When X and Y are fuzzy sets,
however, the only symmetric difference operator to produce an empty set when
X = Y is derived using X \ Y 0ð Þ [ X 0 \ Yð Þ with bold intersection, max 0; uX vð Þþð
uY vð Þ � 1Þ and bold union, minð1; uX vð Þþ uY vð Þ).

Using this symmetric difference operator and replacing relative cardinality with
fuzzy set cardinality since the cardinality of the universe of discourse may be cancelled
out in the numerator and denominator

g XDYð Þ
g X [Yð Þ ¼

P
v min 1; ðmax 0; uX vð Þ � uYðvð Þð Þþmax 0; uY vð Þ � uX vð Þð ÞÞÞ

X [ Yj j :
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Since the differences in the membership degrees cannot be larger than 1 the min
operation can be removed to produce

g XDYð Þ
g X [ Yð Þ ¼

P
v max 0; uX vð Þ � uY ðvð ÞÞþmax 0; uY vð Þ � uX vð Þð Þ

X [ Yj j

Since either the membership of v in X is greater than or equal to its membership in Y,

g XDYð Þ
g X [ Yð Þ ¼

P
uX vð Þ �minðuX vð Þ; uY vð ÞÞþ uY vð Þ �minðuX vð Þ; uY vð ÞÞ

X [ Yj j

Now rewriting by distributing the summation operator over each component in the
summation and using set intersection \ for minimum produces

g XDYð Þ
g X [ Yð Þ ¼

Xj j þ Yj j � 2 X \ Yj jð Þ
X [ Yj j ¼ X [ Yj j � X \ Yj jð Þ

X [ Yj j ¼ 1� X \ Yj j
X [ Yj j

since for the maximum and minimum operators, Xj j þ Yj j ¼ X [ Yj j þ jX \ Y , there-
fore, resulting in

S X; Yð Þ ¼ 1� 1� g X \ Yð Þ
g X [ Yð Þ

� �
¼ g X \Yð Þ

g X [Yð Þ

which is the original proposed “similarity of coefficient” used in taxonomic classifi-
cation. If the fuzzy Jaccard similarity measure is converted to a dissimilarity measure
by subtracting from 1, then

DJ X; Yð Þ ¼ g XDYð Þ
g X [ Yð Þ

which also incorporates the symmetric difference.
There is a strong relationship between the fuzzy dissemblance measure and the

Jaccard dissimilarity measure. The fuzzy distances calculated for the left and right
components of dissemblance dissimilarity measure when added together include the
symmetric difference between X and Y.

To establish the relationship between the two fuzzy dissimilarity measures, first
consider two cases, (1) the fuzzy sets X and Y do not intersect and (2) the fuzzy sets
X and Y do intersect. Case 1 is easier since when they do not intersect, DJ(X, Y) = 1
because the symmetric difference produces the same as the union of the two sets. Thus
fD(X,Y) � DJ(X, Y). Case 2 has two subcases: (1) the cores of the fuzzy sets intersect
and (2) the cores of the fuzzy sets do not intersect.

Subcase 1 is easier since with overlap in the cores of the fuzzy sets, the dissem-
blance dissimilarity only includes the symmetric difference as in DJ. Thus, fD(X,
Y) � DJ(X, Y) since both have the same numerator g XDYð Þ but the normalization
factor in the denominator for fD is 2 * (b2 − b1) which is always greater than or equal
to X [ Yj j.
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Subcase 2 is most difficult since when RX (a) intersect LY(a) at aI there is a distance
between [RX(1), LY(1)]. Figure 1 illustrates this. The dissemblance dissimilarity mea-
sure in addition to the symmetric difference, includes this distance as twice the area of
the top triangle T with base of (LY(1) − RX(1)) and height of (1 − aI) value since aI is
the point of intersection. The (1 − aI) value represents the height of triangle since the
triangle is formed above the aI intersection point. This triangle area is included twice
because both the distance between the left boundary functions of X and Y and between
the right boundary functions are include this triangle area. Rewriting the fuzzy dis-
semblance measure and using symbol T in the equation,

f D X; Yð Þ ¼ g XDYð Þþ 2 � T
2 � b2 � b1ð Þ

To analyze this, the starting point is when RX(a) intersect LY(a) at aI = 0. Since
X and Y are disjoint, fD(X,Y) � DJ(X, Y), the case 1 scenario. When RX(a) intersects
LY(a) at aI, two triangles are formed the top triangle T and the bottom triangle B. The
area of B is X \ Yj j. The area of T is at a maximum when aI = 0 since its height,
therefore, would be 1. However, this is case 1 and fD(X,Y) � DJ(X, Y) for this case. As
aI increases, the area of T shrinks. As the area of the intersection grows, the corre-
sponding area of T shrinks. In comparing to DJ(X, Y), even at the maximum area for T,
the fuzzy dissemblance similarity is still smaller than the fuzzy Jaccard dissimilarity
measure. Twice the area of triangle T cannot produce a large enough value to cause fD
(X, Y) to surpass DJ(X, Y).

Fig. 1. Trapezoidal fuzzy sets X and Y with B intersection area and T dissemblance overlap.
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6 Conclusions

Measuring similarity is an important task in many domains such as psychology and
taxonomy. Typically, similarity assessment is performed on crisp sets. In fuzzy rea-
soning, it is performed on fuzzy sets. Natural extensions to crisp set similarity have
been made for fuzzy set similarity. It is important to understand how the research in
psychology regarding important factors affecting human similarity judgements might
apply to fuzzy set similarity assessments. Examples of such important issue in psy-
chological research include selecting the “respects of similarity”, determining context
of comparison, understanding comparison direction, considering the difference in
properties whether simple attributes or relational structures, integrating multiple
information and the weighting of this information, and taking into account human
experience. Many of these issues of the comparison process in human similarity
assessment can be found in fuzzy set similarity measurements.

Two different measurements of similarity and correspondingly dissimilarity have
been reviewed and some of their theoretical foundations presented. The fuzzy Jaccard
similarity measure based on taxonomy’s “coefficient of similarity” and Tversky’s
non-parameterized ratio model of similarity and the fuzzy dissemblance dissimilarity
measure have been compared. In this paper, a fuzzy similarity measure can be used to
produce a fuzzy dissimilarity measure by subtracting it from 1.

The relationship between the fuzzy Jaccard dissimilarity measure DJ(X, Y) and the
fuzzy dissemblance measure fD(X, Y) is the fuzzy dissemblance measure always pro-
duces a value less than or equal to the fuzzy Jaccard dissimilarity measure. Corre-
spondingly the fuzzy Jaccard similarity measure SJ(X,Y) always produces a value less
than or equal to the fuzzy dissemblance similarity measure Sdiss(X,Y). Both DJ(X, Y)
and fD(X, Y) use the symmetric difference between X and Y.
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Abstract. We introduce new correlation measures for measuring similarity and
association of rating profiles obtained from bipolar rating scales. Instead of the
measurement based approach when the user’s rating is considered as a number
measured in ordinal, interval or ratio scales we use model based approach when
user’s rating is modeled by bipolar score function that can be nonlinear. This
approach can use different models of preferences for different users. The values
of utility function can be adjusted in machine learning procedure to obtain better
solutions on the output of recommender or decision making system. We show
that Pearson’s correlation coefficient often used for measuring similarity
between bipolar rating profiles in recommender systems has some drawbacks.
New correlation measures proposed in the paper have not these drawbacks.
These measures are obtained using general methods of construction of associ-
ation measures from similarity measures on sets with involutive operation.
Proposed measures can be used in recommender systems, in opinion mining and
in sociological research for analysis of possible relationships between opinions
of users and ratings of items.

Keywords: Rating scale � Bipolar scale � Recommender system � Opinion
mining � Sentient analysis � Correlation � Association measure

1 Introduction

Rating scales are widely used in psychology, sociology, medicine, and recommender
systems [1, 5, 10, 12, 13, 16, 17]. It is more common to consider rating scale to be a
linearly ordered set of 3–11 categories. Rating scales often have bipolar structure: two
poles and opposite categories symmetrically located at the opposite sides of the scale,
but in many applications of rating scales the symmetry or polarity of rating scales as
usually did not explicitly used. For example, the theory of measurement [14] studies
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the classes of operations allowed on the sets of ratings represented by numbers mea-
sured in ordinal, interval, and ratio scales but the symmetry of scales usually do not
considered.

Due to increasing interest in analysis of polarity of human opinions in recom-
mender systems and sentiment analysis [1, 6, 15–17], the problem of consideration of
scoring functions defined on bipolar rating scales and explicitly taking into account the
symmetry of these scales is of particular interest. Alternatively to the measurement
based approach to analysis of human attitudes, the model based approaches use models
of ratings or verbal evaluations that can be probabilistic, fuzzy etc. [1, 5–8, 11, 18].
These models can be adjusted by a machine-learning algorithm to obtain optimal or
reasonable solutions on the output of decision-making system using human evaluations
of attributes or opinions.

In recommender systems, to measure similarity between profiles of ratings it is
often used the Pearson’s correlation coefficient [16] or constrained Pearson’s coefficient
[17]. As it was shown in [5] the Pearson’s correlation coefficient can be misleading in
analysis of ratings from bipolar scales. To avoid the drawbacks of Pearson’s correlation
coefficient, in [5] it was proposed to use C-separable correlation measures on bipolar
rating scales with central or neutral category C and such parametric C-separable cor-
relation measure acting on bipolar utility functions of rating scores has been introduced.
This correlation measure includes the constrained Pearson’s correlation coefficient as a
particular case. In this paper, we introduce new C-separable correlation measures on the
set of rating profiles using the general methods of construction of association measures
considered in [2–4]. In this paper, the terms association and correlation are considered
as interchangeable.

The paper is organized as follows. In Sect. 2, we give the definitions of bipolar
rating scale and bipolar scoring function. In Sect. 3, we consider the general methods
of construction of association measures based on similarity measures and
pseudo-difference operations associated with t-conorms. Section 4 considers new
correlation measures on the set of bipolar rating profiles. Section 5 contains discussion
and conclusions.

2 Finite Bipolar Rating Scales and Bipolar Scoring Functions

The bipolar scale L with n ordered categories c1 < … < cn is defined in [5] as an
ordered set of indexes of these categories J = {1, …, n}, n > 1, with the negation
operation N: J ! J defined by

N jð Þ ¼ nþ 1� j for all j in J: ð1Þ

The negation (1) is involutive:

NðN jð ÞÞ ¼ j; for all j in J; ð2Þ

and strictly decreasing function:
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N ið Þ[N jð Þ if i\j: ð3Þ

We will suppose that the bipolar scale has an odd number of elements, i.e.
n = 2m + 1 for some positive integer m. In this case, the set J has the unique fixed point
C of the negation N, satisfying the property:

N Cð Þ ¼ C: ð4Þ

From (1) and (4) we obtain for n = 2m + 1:

C ¼ mþ 1: ð5Þ

This element is called the center, neutral or midpoint of the bipolar scale. For
example, the 5-point bipolar scale (never, seldom, sometimes, often, always) can be
given by the ordered set of indexes J = {1, 2, 3, 4, 5} and with the negation
N(j) = 6 − j, such that N(1) = 5, N(2) = 4, N(3) = 3, N(4) = 2, N(5) = 1. This scale
has the center C = 3.

From (1) and (3) it follows that the bipolar scale with even number of elements
n has not center. The bipolar scales without center can be obtained from the scales with
the center by deleting it.

From (1), n = 2m + 1 and (5) we obtain: N(j) + j = 1 + n, and

N jð Þþ j ¼ 2C; for all j in J: ðbipolarityÞ ð6Þ

The ordered set K = {−m, …, −1, 0, 1, …, m} will be considered as the centered
form of the bipolar scale J = {1, …, 2m + 1}, m > 0. The negation operation N:
K ! K on K will be defined by:

N kð Þ ¼ �k; for all k inK: ð7Þ

We use the same letter N for the negations on J and on K using arguments j or
k respectively. It is clear that Non K is strictly decreasing and involutive function. This
scale has the center C = 0 with N(C) = C = 0. From (7) it follows bipolarity (6) of the
scale K:

N kð Þþ k ¼ 2C; for all k inK: ð8Þ

Further, the scale K = {−m, …, m}, m > 0, with the negation (7) will be referred to
as the centered bipolar scale.

The bipolar scales J = {1, …, 2m + 1}, m > 0, and K = {−m, …, m} can be
transformed one to another as follows:

k ¼ j� m� 1; j ¼ kþmþ 1; for all j in J and for all k inK: ð9Þ

Below, I will denote any of bipolar scales J or K with n = 2m + 1, m > 0, cate-
gories. For J = {1, …, 2m + 1} we have C = m + 1, N(j) = n + 1 − j for all j in J,
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and for the scale K = {−m, …, −1, 0, 1, …, m} we have C = 0, N(k) = −k, for all
k in K. For both scales we have N(C) = C.

Definition 1. Let I be a bipolar scale with negation N. A strictly increasing real
function U: I ! R will be called a scoring or utility function on I. This function will be
called a bipolar scoring function (BSF) on I if it is fulfilled:

U N ið Þð ÞþU ið Þ ¼ 2U Cð Þ; for all i in I: bipolarityð Þ ð10Þ

A BSF will be called a centered bipolar scoring function (CBSF) if U(C) = 0.
From the definition of the centered bipolar scoring function, it follows:

U N ið Þð Þ ¼ �U ið Þ; for all i in I:

For the centered BSF defined on the centered bipolar scale K = (−m, …, m),
m > 0, we have: U(0) = 0, U(k) > 0 if k > 0, U(k) < 0 if k < 0, and

U �kð Þ ¼ �U kð Þ; for all k inK:

Centered bipolar scoring functions give the natural models of utility of categories of
bipolar verbal rating scales when these categories have negative and positive senti-
ments. For example, for the 5-point centered bipolar scale K = {−2, −1, 0, 1, 2}, one
can define the centered bipolar scoring function U(K) = {−10, −4, 0, 4, 10} preserv-
ing the sign and the symmetry of the bipolar scale K.

Proposition 1 [5]. If U is a bipolar scoring function on I then the function W:
I ! R defined by

W ið Þ ¼ pU ið Þþ q for all i in I; ð11Þ

where p, q, (p > 0) are real numbers, will be also the bipolar scoring function on I.
From Proposition 1 it follows that from any bipolar scoring function U one can

obtain the centered bipolar scoring function UC as follows:

UC ið Þ ¼ U ið Þ � U Cð Þ for all i in I: ð12Þ

From (1) it follows that the identity function: U(j) = j, for all j in J, will be the
bipolar scoring function. This function will be referred to as the standard bipolar
scoring function (SBSF). Most of the popular rating scales including Likert scales [12]
and the scales used in recommender systems [16, 17] use standard bipolar scoring
functions. In this paper, we interested mainly with nonlinear bipolar scoring functions.

Using transformations (9) of the indexes of the bipolar scales J = {1, …, 2m + 1}
and K = {−m, …, m} one can transform BSF UJ: J ! R defined on J into BSF UK:
K ! R defined on K and vice versa as follows:
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UJ jð Þ ¼ UK j� m� 1ð Þ; UK kð Þ ¼ UJ kþmþ 1ð Þ; for all j in J and for all k inK:

Both these functions will have the equal sets of values: UJ(J) = UK(K). For example
the CBSF UK(K) = {−10, −4, 0, 4, 10} defined on K = {−2, −1, 0, 1, 2} will be
transformed into CBSF UJ(J) = {−10, −4, 0, 4, 10} defined on J = {1, 2, 3, 4, 5}.

3 General Methods of Construction of Correlation Measures
on the Set with Involution

Consider some basic properties of the operations of fuzzy logic that will be used further
[3, 4, 7–9, 11, 18].

Definition 2. t-conorm is a function S: [0,1]2 ! [0,1] satisfying for all x, y, z 2 [0,1]
the properties of commutativity, associativity, monotonicity and boundary condition:
S(x,0) = x.

From the definition of t-conorm it follows for all a 2 [0,1]:

S 1; xð Þ ¼ S x; 1ð Þ ¼ 1:

Definition 3. A t-conorm S is nilpotent if there exist x, y 2 ]0,1[ such that S(x, y) = 1.

Definition 4. An element x 2 ]0,1[ is a nilpotent element of t-conorm S if there exists
y 2 ]0,1[ such that S(x, y) = 1.

It is clear that t-conorm S has no nilpotent elements if and only if for all x, y 2 [0,1]
it is fulfilled:

S x; yð Þ ¼ 1 implies x ¼ 1 or y ¼ 1:

Consider the simplest, basic, t-conorms:

SM x; yð Þ ¼ max x; yf g; maximumð Þ
SP x; yð Þ ¼ xþ y� x � y; probabilistic sumð Þ
SL x; yð Þ ¼ min xþ y; 1f g: Lukasiewicz t-conormð Þ

Maximum and probabilistic sum have no nilpotent elements but Lukasiewicz
t-conorm has.

Definition 5. Let S be a t-conorm.

(i) The S-difference S is defined for all a, b 2 [0,1] as follows:

a
S
b ¼ inf fc 2 0; 1½ � S b; cð Þ� agj ;

(ii) The pseudo-difference �S associated to S is defined for all a, b 2 [0,1] as follows:
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a�S b ¼
a S b if a[ b
� b S a
� �

if a\b
0 if a ¼ b

:

8<
:

The following pseudo-differences are associated to the basic t-conorms SM, SP and SL:

a�M b ¼
a if a[ b
�b if a\b
0 if a ¼ b

8<
: ; ð13Þ

a�P b ¼
a�b

1�min a;bð Þ ; if a 6¼ b
0; if a ¼ b

�
; ð14Þ

a�L b ¼ a� b: ð15Þ

Consider the definition of association measure and the methods of its construction
based on [2, 4].

Definition 6. Let X be a nonempty set. A reflection on X is a function N: X ! X, such
that for all x 2 X it is fulfilled involutivity: N(N(x)) = x and for some x 2 X it is
fulfilled N(x) 6¼ x. An element x 2 X, such that N(x) = x, is called a fixed point of N in
X and denoted by xFP. FP(N, X) denotes the set of all fixed points of N in X.

The set FP(N, X) can be empty or can contain more than one fixed points.

Definition 7. Let X be a set with a reflection operation N on X, V be a nonempty subset
of X closed under N which is a reflection on V. A function A: V � V ! [−1,1]
satisfying for all x, y 2 V the properties:

A x; yð Þ ¼ A y; xð Þ; symmetryð Þ;
A x; xð Þ ¼ 1; reflexivityð Þ;
A x;N yð Þð Þ ¼ �A x; yð Þ; inverse relationshipð Þ;

is called an association (correlation) measure on V.
The properties defining an association measure have been proposed in [4] as

generalization of the properties of the Pearson’s correlation coefficient and the terms
association measure and correlation measure used here as interchangeable.

Proposition 2. If A is an association measure on V � X then V � X\FP(N, X).

Definition 8. A function SIM: X � X ! [0,1] is a similarity measure on X if it sat-
isfies for all x, y 2 X the properties:

SIM x; yð Þ ¼ SIM y; xð Þ; symmetryð Þ;
SIM x; xð Þ ¼ 1: reflexivityð Þ:

A similarity measure SIM on X is co-symmetric if it satisfies the following property:
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SIM N xð Þ;N yð Þð Þ ¼ SIM x; yð Þ:

Theorem 1 [4]. Suppose X is a nonempty set with a reflection N, V � X\FP(N, X),
|V| > 1, V is closed under N which is a reflection on V, �S is a pseudo-difference
associated with a t-conorm Sand SIM is a co-symmetric similarity measure on X sat-
isfying the property:

SIM x;N xð Þð Þ\1 for all x 2 V ;

then the function ASIM,S: V � V ! [0,1] defined for all x, y 2 V by:

ASIM;S x; yð Þ ¼ SIM x; yð Þ�S SIM x;N yð Þð Þ; ð16Þ

is an association measure on V if at least one of the following is fulfilled:

1. the t-conorm S has no nilpotent elements,
2. SIM(x, N(x)) = 0, for all x 2 V.

4 Correlation Measures on the Set of Bipolar Rating Profiles

It is easy to check that the Pearson’s product-moment correlation coefficient

corr x; yð Þ ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � �yð Þ2
q ; ð17Þ

satisfies the properties of association measure from Definition 7 where V is a subset of
non-constant n-tuples x = (x1, …, xM) with the involution N defined by: N(x) = −x =
(−x1, …, −xM). Although this correlation coefficient is widely used in recommender
systems [16] for measuring similarity between bipolar rating profiles, it can be extre-
mely misleading. Suppose we have the following utility profiles x = (7, 5, 5, 7, 7, 7, 5,
7, 5, 5), y = (5, 7, 7, 5, 5, 5, 7, 5, 7, 7), z = (3, 1, 1, 3, 3, 3, 1, 3, 1, 1) with ratings of 10
items in 7-point bipolar scale J = {1, 2, 3, 4, 5, 6, 7} with the standard utility function
U(j) = j for all j in J. The profiles x and y have only “positive” (greater than neutral
C = 4) ratings and the reasonable correlation measure should give the positive corre-
lation between them: A(x, y) > 0, but the correlation coefficient gives: corr(x, y) = −1.
The profiles x and z have almost opposite (“positive” vs “negative”) ratings and the
reasonable correlation measure should give the negative association between them: A(x,
z) < 0, but the correlation coefficient gives: corr(x, z) = +1.

Therefore, we need to introduce correlation measures for bipolar rating profiles
without drawbacks of the Pearson’s correlation coefficient like in example above.

Let I be a bipolar rating scale (I = J or I = K) with the negation N and with the center
C. The vector x = (x1, …, xM), xs 2 I, s = 1, …, M, of elements from the scale I will be
referred to as a (bipolar)rating profile over I. The vector CX = (C, …, C) of the length
M will be referred to as the central profile of the set X of all bipolar rating profiles of the
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length M. Denote the negation of the rating profile x as follows: NX(x) = (N(x1), …,
N(xM)). It is clear that NX is an involution on X, i.e. NX(NX(x)) = x, for all profiles from X,
and CX is the unique fixed point of N, such that NX(CX) = CX. If on the bipolar scale I it is
defined the bipolar utility function U then the M-tuple UX(x) = (U(x1), …, U(xM)) will
be called a (bipolar)utility profile of the rating profile x.

Suppose we have two rating profiles x and y with the same length. We will define
below the correlation measure AU(x, y) as a function of utility profiles U(x) and U(y). In
applications, when the users profiles have different lengths, the vectors x and y will
contain only ratings of items presented in profiles of both users.

Definition 9. Let I be a bipolar rating scale with negation N and center C and let U be a
bipolar utility function defined on I. Let X be the set of all rating profiles of the length
M over I and NX is the negation of rating profiles. A correlation measure on the set
V � X\{CX} closed under NX is a function AU: V � V ! [−1,1] satisfying for all x,
y in V the properties:

AU x; yð Þ ¼ AU y; xð Þ; ð18Þ

AU x; xð Þ ¼ 1; ð19Þ

AU x;NXðyÞð Þ ¼ �AU x; yð Þ: ð20Þ

The correlation measure AU is C-separable if it satisfies the properties:

AU x; yð Þ[ 0; if for all s ¼ 1; . . .;M it is fulfilled xs; ys [C or xs; ys\C; ð21Þ

AU x; yð Þ\0; if for all s ¼ 1; . . .;M it is fulfilled ys [C\xs or xs\C\ys: ð22Þ

The properties (21) and (22) are introduced here to avoid the drawbacks of the
Pearson’s correlation coefficient considered above.

The Definition 9 can be extended from the set V on the set of all profiles X if the
properties (18), (20) will be fulfilled on X and (19) on V. In this case, for all x in X it is
fulfilled: AU(x, CX) = AU(CX, x) = 0.

To construct correlation measure on the set of bipolar rating profiles using Theo-
rem 1 let us adopt the methods of construction of association measures based on data
transformation and Minkowski distance considered in [2]. Consider the following
transformation F of the utility profiles UX(x) = (U(x1), …, U(xM)) of the length M from
the set V � X\{CX}: F(UX(x)) = (FU(x1), …, FU(xM)), where FU(xs) is defined for all
s = 1, …, M as follows:

FU xsð Þ ¼ U xsð Þ � U Cð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
s¼1 U xsð Þ � U Cð Þj jtt

q : ð23Þ

Consider Minkowski distance of order t between transformed utility profiles:
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Dt;F;U x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

s¼1
FU xsð Þ � FU ysð Þj jtt

r
:

Proposition 3. Suppose W: [0,1] ! [0,1] is a strictly increasing function such that
W(0) = 0 and W(1) = 1 then the function

SIM x; yð Þ ¼ 1� 1
2
Dr;F;U x; yð Þ

� �t

; ð24Þ

is co-symmetric similarity measure such that SIM(x, N(x)) = 0, for all x 2 V.
From Theorem 1 and Proposition 3 it follows

Proposition 4. Let I be a bipolar rating scale with negation N and center C and let U be
a bipolar utility function defined on I. Let X be the set of all rating profiles of the length
M over I and NX is the negation of rating profiles. Then the function (16) will be a
correlation measure on a nonempty subset V � X\FP(N, X) closed under NX which is a
reflection on V, if the similarity measure SIM is defined by (24) and �S is a
pseudo-difference associated with some t-conorm S.

Proposition 5. On the set V considered in Proposition 5 the function:

Au x; yð Þ ¼ 1
2t
XM

s¼1
FU xsð ÞþFU ysð Þj jt� FU xsð Þ � FU ysð Þj jt� �

; ð25Þ

will be the C-separable correlation measure.
Consider some particular cases of the introduced correlation measure. For t = 2 we

can obtain from (25):

AU x; yð Þ ¼
PM

s¼1 U xsð Þ � U Cð Þð Þ U ysð Þ � U Cð Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
s¼1 U xsð Þ � U Cð Þj j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
s¼1 U ysð Þ � U Cð Þj j2

q : ð26Þ

The correlation measure (26) generalizes the constrained correlation coefficient
considered in [17] (see formula (5)) using in (23) the standard 7-point utility function
U = J with the center C = 4 and U(C) = 4. Using in (26) the centered utility function
such that U(C) = 0 we obtain:

AU x; yð Þ ¼ cos U xð Þ;U yð Þð Þ ¼
PM

s¼1 U xsð ÞU ysð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
s¼1 U xsð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
s¼1 U ysð Þ2

q : ð27Þ

For t = 1 we obtain from (25) and (23):

Au x; yð Þ ¼ 1
2

XM

s¼1

U xsð Þ � U Cð ÞPM
s¼1 U xsð Þ � U Cð Þj j þ

U ysð Þ � U Cð ÞPM
s¼1 U ysð Þ � U Cð Þj j

�����
������ U xsð Þ � U Cð ÞPM

s¼1 U xsð Þ � U Cð Þj j �
U ysð Þ � U Cð ÞPM
s¼1 U ysð Þ � U Cð Þj j

�����
�����

 !
:

ð28Þ
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Using in (28) a centered utility function, we obtain:

Au x; yð Þ ¼ 1
2

XM

s¼1

U xsð ÞPM
s¼1 U xsð Þj j þ

U ysð ÞPM
s¼1 U ysð Þj j

�����
������ U xsð ÞPM

s¼1 U xsð Þj j �
U ysð ÞPM
s¼1 U ysð Þj j

�����
�����

 !
:

For standard utility function U(j) = j defined on J = {1, 2, 3, 4, 5, 6, 7} with
C = 4 we obtain from (28) the following C-separable correlation measure:

A x; yð Þ ¼ 1
2

XM

s¼1

xs � 4PM
s¼1 xs � 4j j þ

ys � 4PM
s¼1 ys � 4j j

�����
������ xs � 4PM

s¼1 xs � 4j j �
ys � 4PM
s¼1 ys � 4j j

�����
�����

 !
:

5 Conclusions

In this paper we considered the general method of construction of correlation measures
on the set of bipolar rating profiles with utility function that can be nonlinear. Such
function can be used for modeling preferences of different users or it can be adjusted by
some machine learning procedure to obtain optimal decisions on the output of
decision-making system based on bipolar ratings. These correlation measures are free
from the drawbacks of Pearson’s correlation coefficient often used as similarity or
association measure in recommender systems. According to Proposition 4 one can
construct more sophisticated correlation measures using pseudo-difference operations
associated to maximum or probabilistic sum t-conorms.
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240844 and 283778 of CONACYT, 15-01-06456 of RFBR and by the Russian Government
Program of Competitive Growth of Kazan Federal University.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6),
734–749 (2005)

2. Batyrshin, I.: Constructing time series shape association measures: Minkowski distance and
data standardization. In: 1st BRICS Countries Congress on Computational Intelligence,
BRICS-CCI 2013, pp. 204–212. IEEE (2013). https://arxiv.org/abs/1311.1958v3

3. Batyrshin, I.Z.: Association measures on [0,1]. J. Intell. Fuzzy Syst. 29(3), 1011–1020
(2015)

4. Batyrshin, I.Z.: On definition and construction of association measures. J. Intell. Fuzzy Sys.
29(6), 2319–2326 (2015)

5. Batyrshin, I. Monroy-Tenorio, F., Gelbukh, A., Solovyev, V., Kubysheva, N.: Bipolar rating
scales: a survey and novel correlation measures based on nonlinear bipolar scoring functions.
Acta Polytech. Hung. (2017)

Correlation Measures for Bipolar Rating Profiles 31

https://arxiv.org/abs/1311.1958v3


6. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for
collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)

7. Dubois, D., Prade, H.: Bipolar representations in reasoning, knowledge extraction and
decision processes. In: International Conference on Rough Sets and Current Trends in
Computing, pp. 15–26. Springer, Heidelberg (2006)

8. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge
University Press, Cambridge (2009)

9. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision
problems under linguistic information. Fuzzy Sets Syst. 115(1), 67–82 (2000)

10. Hjermstad, M.J., Fayers, P.M., Haugen, D.F., et al.: Studies comparing numerical rating
scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in
adults: a systematic literature review. J. Pain Symptom Manag. 41(6), 1073–1093 (2011)

11. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997)

12. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140), 5–55
(1932)

13. Osgood, C.E.: The nature and measurement of meaning. Psychol. Bull. 49(3), 197–237
(1952)

14. Pfanzagl, J.: Theory of Measurement. Physica, Heidelberg (1971)
15. Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.: EmoSenticSpace: a novel

framework for affective commonsense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)
16. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook.

Springer, Heidelberg (2011)
17. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of

mouth”. In: Proceedings of SIGCHI conference on Human Factors in Computing Systems,
pp. 210–217. ACM Press/Addison-Wesley Publishing (1995)

18. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

32 F. Monroy-Tenorio et al.



Solving Real-World Fuzzy Quadratic
Programming Problems by Dual Parametric

Approach

Ricardo Coelho(&)

Departamento de Estatística e Matemática Aplicada, Centro de Ciências,
Universidade Federal do Ceará, Av. Mister Hull, s/n, Campus do Pici, Bloco 910,

Fortaleza, CE 60400-900, Brazil
rcoelhos@dema.ufc.br

Abstract. Inaccuracies in mathematical formulations that represent real life
situations are found in a natural way and, mainly, when realistic solutions are
required. One of several ways to deal with the imprecision in these situations is
the Fuzzy Logic, which will be used in this work. The initiative to shape the
inaccuracies in real life optimization problems are applied in an increasing
variety of practical fields. Knowing the importance of this problem, the purpose
of this work is to present two dual approaches in fuzzy environment. The first
approach solves quadratic programming problems with uncertain order relation
in the set of constraints. The second one solves quadratic programming prob-
lems with fuzzy coefficients and uncertain order relation in the set of constraints.
The main of this work is to apply these proposed approaches in order to solve
the economic dispatch problem, which schedules a power generation in an
appropriate manner by satisfying the load demand. The efficiency of this pro-
posal is illustrated with this application.

Keywords: Fuzzy logic � Optimization � Duality theory � Power generation

1 Introduction

The mathematical formulation of some real-world problems can be based on human
perceptions where these data has lack of precision and/or vagueness. In this case, Soft
Computing (SC) is a good way to formulate the situation of measures and perceptions.
It is a set of methodologies that explore the tolerance of imprecision and uncertainty.
According to [1, 2], this set of methodologies combines the use of fuzzy logic,
neuro-computing, meta-heuristic, and probabilistic reasoning.

This work is focused on the optimization methods, which belong to the Mathe-
matical Programming (MP) field. One of its areas is Quadratic Programming (QP) that
has a quadratic objective function and linear constraints. However, the data of the
mathematical formulation of an optimization problem can be uncertain, which are dealt
with fuzzy set theory, developed by [3]. Based on [4], a quadratic programming
problem under fuzzy environment can be written as follows

© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6_4



min ~ctxþ 1
2 x

t ~Qx
s:t: ~Ax� f

~b
x� 0

ð1Þ

where c 2 R
n; b 2 R

m;A 2 R
mxn and Q 2 R

nxn a symmetric matrix. There are many
real-world problems that can be classified as quadratic programming problems and they
are used in game theory, planning and circuit analysis, signal processing, control
system, portfolio selection, facility location, among others.

With this in mind, the goal of this work is to illustrate the efficiency of two dual
approaches that solve quadratic programming problems under fuzzy environment. The
first approach solves the problems with uncertain order relation, while the second
solves the problems with fuzzy coefficients and uncertain order relation in the set of
constraints.

This paper is divided as follows: Sect. 2 presents two dual approaches to solve
quadratic programming problems under fuzzy environment, where the former deals
with the uncertain order relation in the set of constraints and the latter uses a ranking
function to treat the fuzzy coefficients in the set of constraints; Sect. 3 illustrates the
proposals applied in the economic dispatch problem in order to schedule a power
generation; Finally, some conclusions are presents in Sect. 4.

2 Dual Parametric Approach in Fuzzy Environment

In some cases in mathematical programming, a dual approach can be used to check
whether the obtained solution is the optimal. In addition, theoretical questions and
computational techniques can be much simpler when the dual mathematical formula-
tion from an optimization problem is used.

In this work, the uncertain data is treated by using fuzzy set theory and one way to
compare fuzzy numbers is to use a ranking function. According to [5], a large col-
lection of methods has been developed to solve it. In [6], some formulations with
imprecise data are presented and methodologies using different ordering methods
ranking fuzzy numbers, are proposed.

So, the Problem (1) can be reformulated as

min ctxþ 1
2 x

tQx
s:t: R ~A

� �
x� f R ~b

� �

x� 0
ð2Þ

where R ~aij
� � ¼ 1

2 aLij þ aUij
� �

þ 1
4 aij � bij
� �� �

and R ~bj
� � ¼ 1

2 bLj þ bUj
� �

þ 1
4 rj�
��

cjÞÞ. As the ranking function is linear, the value from R ~A
� �

x is equal the value obtained

by R ~Ax
� �

.
According to [7, 8], a quadratic programming problem under fuzzy environment

can be transformed into a parametric quadratic programming one. In this case, the
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parameter is a k-cut level belongs to the interval (0,1]. This k is the image of the
membership function

li : R ! 0; 1ð �; i ¼ 1; . . .;m:

Each membership function represents an uncertain information, which will have a
satisfaction level for each x 2 R: Therefore, the Problem (2) can be rewritten as a
parametric quadratic programming problem, as described in [7]. According to [9, 10],
the dual approach of this problem can be also parameterized. When the Lagrangian
duality is applied in the parametric quadratic programming problem, it obtains

L x; dð Þ ¼ ctxþ 1
2
xtQxþ dt R ~A

� �
x� r kð Þ� � ð3Þ

where r kð Þ ¼ R ~b
� �þ d 1� kð Þ and the vector d 2 R

m is the Lagrangian multipliers and
each component of this vector represents a constraint of the primal problem. Thus, the
following associated optimization problem is obtained

u dð Þ ¼ min
x2Rn

L x; dð Þ

¼ min
x2Rn

ctxþ 1
2
xtQxþ dt R ~A

� �
x� r kð Þ� � ð4Þ

By applyingrxL x; dð Þ ¼ 0, the minimum point x ¼ �Q�1 R ~A
� �t

dþ c
� �

is obtained

and, by replacing it in the Eq. (3), the following parametric dual quadratic problem is
obtained

max u dð Þ ¼ � 1
2 R ~A

� �t
dþ c

� �
Q�1 R ~A

� �t
dþ c

� �
� dt R ~b

� �þ d 1� kð Þ� �

d� 0; k 2 0; 1ð �:
ð5Þ

The main idea of the proposal dual approach is to use a parametric problem to reach
a set of satisfactory solutions, which is formed by different values of k, and then using
the Theorem of Representation to compose all these solutions reaching a fuzzy
solution.

3 Economic Dispatch Problem

The problem is focused on solving an economic dispatch problem, which schedules a
power generation in an appropriate manner to satisfy the load demand while mini-
mizing the total operational cost. In recent years, environmental factors such as global
warming and pollution have increased to critical levels in some places. In this context,
renewable energy resources like wind power have shown a wide potential to reduce
pollutant emissions, which were also formed by fuel consumption for thermal power
plants. Nevertheless, the expected generation output from a wind farm is difficult to
predict accurately because of the intermittent natural variability of the wind.
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Without loss of generality, an economic dispatch problem with wind penetration
consideration can be formulated by a quadratic programming problem. The objective
function represents the cost curves of differential generators and the total fuel cost can
be represented on the following way

min FC PGð Þ ¼ PM

i¼1
ai þ biPGi þ ciP2

Gi

s:t:
PM

i¼1
PGi þWav �PD

Pmin
Gi

�PGi �Pmax
Gi

; i ¼ 1; . . .;M:

ð6Þ

where M is the number of generators in the power generation system, the parameters
ai; bi; ci represent the costs of i-th generator, PGi is the amount energy generates in the
i-th generator, Wav represents the amount energy generates by wind farm, PD is the
power load demand, Pmin

Gi
and Pmax

Gi
are the lower and upper values of the amount energy

generates in the i-th generator.

3.1 Numerical Results and Analysis

In this paper, the economic dispatch problem is solved by the proposed dual parametric
approach, described above. This problem is based on a typical IEEE 30-bus test system
with six generators [11]. The system parameters including fuel cost coefficients and
generator capacities are listed in Table 1. The power load demand used in the simu-
lations is 2.834 GW and the available wind power is 0.5668 GW.

According to the mathematical formulation presented above, the first set of con-
straints can have uncertain information only in the order relation. So, this uncertainty
can be dealt with a fuzzy relation as follows

XM

i¼1
PGi þWav � fPD

where � f represents the uncertainty in the available wind power and the transmission
loss. It can be based on Kron’s loss formula but it is not the focus of this work.

Table 1. Fuel cost coefficients and generator capacities.

Generator i ai bi ci Pmin Pmax

G1 10 200 100 0.05 0.5
G2 10 150 120 0.05 0.6
G3 20 180 40 0.05 1.0
G4 10 100 60 0.05 1.2
G5 20 180 40 0.05 1.0
G6 10 150 100 0.05 0.6
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Table 2 shows the fuzzy dual solution obtained for the economic dispatch problem
with uncertain order relation in the set of constraints. The main point is that the fuzzy
solution of this dual fuzzy quadratic programming problem has the same value that the
fuzzy solution of the primal one. Another important analysis is that only two decision
variables of the fuzzy dual formulation are different from zero. This occurs because
only two constraints in the primal formulation are active.

Table 3 shows the fuzzy dual solution obtained for the economic dispatch problem
with uncertain coefficients in the set of constraints. The main point is that the fuzzy
solution of this dual fuzzy quadratic programming problem has the same value that the
fuzzy solution of the primal one.

Table 2. Energy generator problem with fuzzy order relation in the set of constraints

Level Decision variable Dual value

0.0 (203.3443;6.6557;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 419.1227
0.1 (203.4561;6.5439;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 420.0890
0.2 (204.1846;5.8154;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 426.3995
0.3 (204.9131;5.0870;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 432.7325
0.4 (205.6416;4.3584;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 439.0881
0.5 (206.3701;3.6299;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 445.4663
0.6 (207.0986;2.9014;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 451.8670
0.7 (207.8271;2.1730;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 458.2902
0.8 (208.5556;1.4445;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 464.7360
0.9 (209.2840;0.7161;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 471.2044
1.0 (210.0108;0.0042;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 477.6953

Table 3. Energy generator problem with fuzzy costs in the objective function

Level Decision variable Dual value

0.0 (205.6973;4.3029;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 439.5747
0.1 (206.3973;3.6026;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 445.7049
0.2 (207.1258;2.8741;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 452.1064
0.3 (207.8543;2.1457;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 458.5305
0.4 (208.5828;1.4172;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 464.9772
0.5 (209.3112;0.6888;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 471.4464
0.6 (210.0354;0.0017;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 477.9381
0.7 (210.6874;0.0000;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 484.4511
0.8 (211.3392;0.0002;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 490.9843
0.9 (211.9910;0.0002;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 497.5377
1.0 (212.6428;0.0000;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0;0.0) 504.1112
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4 Conclusion

Some practical problems can be formulated by quadratic programming problems. As
described above, they involve some degree of uncertainty or imprecision.

Specifically, the uncertainty in this work is presented in the coefficients and order
relation in the set of constraints. The proposal dual approaches are validated solving the
economic dispatch problem that schedule the power generation. In addition, the
obtained dual fuzzy solutions are equal to obtained fuzzy solutions by the primal
approach. The good obtained results support the continuation of this research line and
we will try to solve real-world and large scale problems. These proposals transform the
primal problem into a dual unconstrained quadratic problem.

Acknowledgment. The author wants to thank the financial support from the agency CNPq
(project number 484902/2013-0).
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Abstract. In this paper, an interval type-2 fuzzy hybrid expert system is pro-
posed for commercial burglary. This method is the combination of Sugeno and
Mamdani inference system. After identifying the system domain, the inputs and
output of the system are determined. Then the k-nearest neighborhood func-
tional dependency approach is used to select the most important variables for the
system. The indirect approach is used to fuzzy system modeling by imple-
menting the Kwon validity index for determining the number of rules in the
fuzzy clustering approach. Next, the output membership values are projected
onto the input spaces to generate the membership values of input variables, and
the membership functions of inputs and output are tuned. Then, the type-1 fuzzy
hybrid system has been implemented. After that, we transformed the type-1
fuzzy hybrid rule base into an interval type-2 fuzzy hybrid rule base for
enhancing the robustness of the system. For generating interval type-2 fuzzy
hybrid rule base, the Gaussian primary MF with an uncertain standard deviation
and a fixed mean is used. In order to validate our method, we developed two
system modeling techniques and compared the results with the proposed interval
type-2 fuzzy hybrid expert system. These techniques are multiple regression,
and type-1 fuzzy expert system. The results of this study show that the proposed
interval type-2 fuzzy hybrid expert system has a better performance in com-
parison to type-1 fuzzy and multiple regression models.

Keywords: Type-2 fuzzy modeling � Interval type-2 fuzzy hybrid system �
Commercial burglary

1 Introduction

Stores are first-choice striking targets for burglary and break-in robbery. Although
residential burglaries are more than non-residential burglaries, businesses generally
suffer higher rates of victimization. The first International Crimes against Business
Survey (ICBS), discovered that store burglary rates, comprising attempted burglary, ten
times those of households [1]. There is a little research on developing an expert system
for burglary specifically on commercial burglary. The crimes related to properties have
a remarkable proportion of recorded offending. Residential burglary is an issue that has
been researched for many times. Studies of burglary for the cognitive process have
been used in property selection at the scene of the crime [2]. A number of useful
American studies of burglary appeared in the 1970s [3]. Specific focus on the burglar’s

© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6_5



targets evaluation at the scene of the crime has appeared in the 1980s. In that decade a
valuable database has made up for building studies. Maguire and Bennett interviewed
40 convicted burglars and categorized them by distinguishing between their targets [4].
In this interview, burglars described which targets were attractive and which ones were
deterrent. Nee and Taylor experiments showed that burglars selected their targets by
evaluating some characteristic like ease, speed, etc. [2].

For commercial burglaries, Gavin Butler interviewed with burglars who were in
prison. His goal was establishing why people commit this type of offense and to rec-
ognize the type of choices associated in deciding how to perform it, with special ref-
erence to security systems [3]. At first, candidates were asked for their viewpoints on
location. They could select one of three stores, all belonging to a major high street. They
were on a high street, in a shopping mall, and the other was a superstore located in the
suburb and on the main road. The results are shown in Table 1 [3]. Table 1 shows that
the superstore was the most popular target because it located in the suburb and police
stations are in town. For the store on the high street and the shopping mall, because they
could have safety employees, high security, and they would be difficult to enter.

Expert systems, as a subset of AI, are computer programs that imitate the reasoning
process of a human expert [5]. Due to this ability, expert systems have been suc-
cessfully used for many real-world applications, including modeling, medical diag-
nosis, scheduling and controlling [6–8]. During the last decade, business owners have
come to rely upon various types of intelligent systems to make safety decisions. These
models, however, have their own limitations due to the noise and complex dimen-
sionality of data. Therefore, the result may not be convincing. It should be noted that
type-2 fuzzy sets can model and minimize the effects of uncertainties in these models.
The additional parameters of type-2 fuzzy sets over those in type-1 fuzzy sets provide
the former with additional design degrees of freedom that make it possible to minimize
the effects of uncertainties [9]. Moreover, the effects of uncertainties can be minimized
by optimizing the parameters of the type-2 fuzzy sets during a training process.

The aim of this research is to develop an interval type-2 fuzzy hybrid expert system
for commercial burglary. To achieve this objective, this paper proposes an IT2 fuzzy
hybrid system, which is the combination of Mamdani and Sugeno methods.

The paper is organized as follows: Sect. 2 reviews the fuzzy sets and systems.
Section 3 describes the problem statement of commercial burglary. Section 4 presents
the design approach of interval type-2 fuzzy hybrid system. In Sect. 5, the proposed
interval type-2 fuzzy hybrid expert system for commercial burglary is developed. In
Sect. 6, the evaluation of proposed system is presented. Finally, Sect. 7 concludes the
paper with some remarks about the contribution as well as future work possibilities.

Table 1. Choice a store for the purpose of commercial burglary [3]

Selections Percent

High street 1 14.3
Shopping mall 1 14.3
Superstore 5 71.4
Total 7 100.0
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2 Fuzzy Systems

Fuzzy set theory was first introduced by Zadeh in 1965. Fuzzy logic systems (FLSs) are
well known for their ability to model system uncertainties. A type-1 fuzzy set in the
universe X is determined by lA xð Þ which is a membership function that takes values
between [0, 1] [10]:

A ¼ x; lA xð Þð Þ x 2 Xjf g ð1Þ

In some problems, the vagueness of information is too high to model the problem
with type-1 fuzzy sets, so type-2 fuzzy sets are used to model these systems. The type-2
fuzzy theory was introduced by Zadeh as an extension of type-1 fuzzy theory [10]. In
type-2 fuzzy sets, each element is represented by two membership functions, which are
named primary and secondary membership functions.

Interval-valued type-2 and generalized type-2 fuzzy are two kinds of type-2
fuzziness. Interval-valued type-2 fuzzy is a special type-2 fuzzy, where the upper and
lower bounds of membership are crisp and the spread of membership distribution is
ignored considering the assumption that membership values between upper and lower
values are uniformly distributed (Fig. 1) [11].

A type-2 fuzzy set ~A can be defined as [11]:

~A ¼
Z
x2X

Z
u2Jx

leA x; uð Þ= x; uð ÞJx� 0; 1½ � ð2Þ

When all l~A x; uð Þ are equal to 1, then ~A is an interval type-2 FLS. The special case
of (2) might be defined for the interval type-2 FLSs [11]:

~A ¼
Z
x2X

Z
u2Jx

1= x; uð ÞJx� 0; 1½ � ð3Þ

The most important application of fuzzy sets theory is rule-based fuzzy logic
systems (FLSs). A rule-based type-2 fuzzy logic system is comprised of four elements:
rules, fuzzifier, inference engine and output processor (Defuzzifier and Type reducer)
that are inter-connected. The difference between T1 FLS and T2 FLS is in the output
processing module. Figure 2, represents the structure of a T2 FLS [11].

Fig. 1. Type-1 and type-2 fuzzy sets.
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3 Problem Description

Security and protection of properties have been important issues at all times. Stores
always have been an attractive target for burglars. Therefore, the owners of these
commercial buildings are willing to improve the safety of their properties. In this paper,
we have analyzed the safety situation of 120 branches of a chain store in an Asian
country which asked its name not to mention in this paper. The goal of this paper is
finding the branches which are susceptible to burglary using the type-2 fuzzy hybrid
expert system. After finding the susceptible branches, we can enhance their degree of
safety. We used 7 inputs and 1 output which are selected by negotiation with the
experts. The output is the total value of stolen properties (in thousands of dollars) and
the inputs are as follows:

(1) Employee: Number of safety employees in each branch,
(2) The degree of safety: we assigned 1, 2 or 3 for the degree of safety according to

safety situations of each region. The safety situations of each region are elicited
from police reports,

(3) Safety budget: The annual safety budget which assigned for each branch (in
thousands of dollars),

(4) Distance: Distance between each branch and nearest police stations (km),
(5) Sale: Total annual sales (million dollars),
(6) Assets: Total assets for each branch (million dollars),
(7) Customer: Number of customers (in thousands).

4 Designing the Type-2 FLS

There are two very different approaches for selecting the parameters of a type-2 FLS
[11]. The first one is the partially dependent approach. In this approach, at first a best
possible type-1 FLS is designed and then, used to initialize the parameters of a type-2
FLS. In the second method, all parameters of the type-2 FLS are tuned from scratch
without using an existing type-1 design. This approach is totally independent.

One advantage of the first approach is good initialization of the parameters of the
type-2 FLS. we need fewer parameters for tuning and smaller search space for each
variable since the baseline of type-1 fuzzy sets imposes constraints on the type-2 sets.

Fig. 2. Type-2 fuzzy logic system [11]
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Therefore, in this approach, the computational cost is less than the second approach.
Moreover, type-2 FLSs designed with the first approach are able to perform better than
the corresponding type-1 FLSs [12]. Furthermore, the type-2 FLS has a larger number
of degrees of freedom because it is more complex. The additional dimension provided
by the type-2 fuzzy set enables a type-2 FLS to produce more complex input–output
map without the need to increase the resolution. [13].

This paper is based on the partially dependent approach. After designing type-1
fuzzy system, we introduced a type-2 fuzzy rule base with uncertain standard deviation
and interval-valued membership function. This system uses the similar rules of the
type-1 FLS and the difference is just that the if-part and then-part are type-2.

The procedures of a development of the proposed system are as follows:

(1) Determination of input and outputs variables of the system.
(2) Feature selection.
(3) Determination of the number of rules and clustering the output space.
(4) Projection of membership values of the output onto the inputs.
(5) Tuning the parameters of the type-1 MFs of the inputs and output variables.
(6) Transforming type-1 fuzzy rule base to interval type-2 fuzzy rule base.
(7) Tuning the parameters of interval type-2 MF of the inputs and output variables.
(8) Performance evaluation.

4.1 Determination of Input and Output Variables

The identification of input and output variables is generally done by studying the
domain of a problem and also by negotiation with experts. There are an unbounded
number of possible candidates which should be restricted to definite numbers. In this
step, the designers and experts attempt to specify the most pertinent input and output
variables.

4.2 Feature Selection

Since many pattern recognition techniques were originally not designed to manage large
amounts of irrelevant features, using Feature Selection (FS) techniques has become a
necessity in many applications. The objectives of feature selection are numerous, the
most important ones are: (1) to avoid overfitting (b) to provide cost-effective models and
(c) to gain a deeper insight into the underlying processes that generated the data [14]. In
this paper, the k-nearest neighborhood functional dependency (KNN-FD) approach
proposed by Uncu and Türkşen [15] has been used. This FS algorithm combines features
wrapper and feature filter approaches in order to identify the substantial input variables
in system with continuous domains. This technique makes use of functional dependency
concept, correlation coefficients and K-nearest neighborhood (KNN) method to
implement the feature filter and feature wrappers. All of these methods independently
pick out the significant input variables and the input variable combination, which yields
the best result with respect to their corresponding evaluation function, is selected as the
winner [15]. The results of this FS method indicate that all of the input variables are
usable and we cannot omit any of them.
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4.3 Determination of the Number of Rules and Clustering the Output
Space

In the fuzzy clustering algorithms, we should use a cluster validity index to determine
the most suitable number of clusters. In this paper, Kwon validity index [16] is used.
This index is defined as:

VK U;V;Xð Þ ¼
Pc

i¼1

PN
j¼1 u

2
ij xj � vi
�� ��2 þ 1

c
Pc

i¼1 vi � �vk k2
min
i 6¼k

vi � vkk k2 ; ð4Þ

Where �v ¼
PN

j¼1
xj

N . An optimal cluster number is found by solving min2� c�N�1VK to
produce the best clustering performance for the dataset X. Kwon index is modified to
accommodate Mahalanobis distance norm instead of Euclidean one [13]. This cluster
validity index is implemented to determine the most suitable number of clusters (rules).
The best number of clusters based on this cluster validity index is obtained 3. So, the
proposed fuzzy system contains 3 rules.

The proposed system is a combination of Mamdani and Sugeno inferences. In the
Sugeno method, the observation is crisp. On the other hand, in Mamdani inference
system the antecedents and consequents of the rule-based system are fuzzy sets, and
there is no function. So, we clustered the output data and then generated the primary
membership grades of the output clusters. For this goal, we used Sugeno and Yasukawa
method [17]. We first partition the output space and then obtain the input space clusters
by ‘‘projecting’’ the output space partition onto each input variable space, separately.
We consider one of the most suitable and traceable fuzzy clustering algorithms, i.e.,
GK clustering for performing the process of encoding the output space.

4.4 Projection of Membership Functions of Output onto Input Spaces

After clustering the output space, the suitable membership functions should be deter-
mined for the input variables. One approach is to set the membership grade of each
input equal to its corresponding output membership grade acquired by the output data
clustering process [18]. Accordingly, for each output data, all the corresponding input
variables will have the similar membership grade. The problem with this method is that
the membership functions are not convex and for shaping the convex membership
functions, a further approximation is needed. In addition, the output membership grade
at each sample point is not necessarily the same as the input membership grades. For
these reasons, we have used the proposed approach of Fazel Zarandi [18] for projection
of membership functions of output onto input spaces. At first, we determined the
interval in which the input membership functions adopt value 1 (i.e. S1S2 Fig. 3). Next,
the optimum value of S�1 and S�2 are determined by classifying the data point using GK
clustering by given m and c and analyzing the objective function of the classification
algorithm. For more details please refer to [13].
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4.5 Tuning the Parameters of Type-1 Membership Functions

Type-1 FLSs contain parameters that can either be pre-specified or can be tuned during
a training process. Tuning the parameters of the fuzzy model is essential to reach better
results. As a matter of fact, as Liang and Mendel [19] state, a perfect FLS should have
f xð Þ ¼ d; where, d is the desired output, but generally there exist errors between the
desired and actual output. Therefore, tuning the parameters of the FLS for reducing the
system errors is necessary.

In this paper, the proposed tuning algorithm by Liang and Mendel [19] is used. This
method tunes all of the parameters related to a Gaussian type-1 FLS and uses a
steepest-descent as optimization method. Given an input–output training pair
x ið Þ; y ið Þ� �

; x ið Þ 2 RG and y ið Þ�R, a type-1 fuzzy is designed so that the following error
function is minimized [19]:

e tð Þ ¼ 1
2

f x ið Þ
� �

� y ið Þ
h i2

i ¼ 1; . . .;N ð5Þ

4.6 Transformation Type-1 to Interval Type-2 Membership Functions

For transforming a type-1 fuzzy set to an interval type-2 fuzzy set with uncertain
standard deviation, we consider the case of a Gaussian primary membership function
having a fixed mean mS

f and uncertain standard deviation that takes values in ½rSf1 ; rSf2 �;
[11], i.e.,

uSf xf
� � ¼ exp � 1

2

xf � mS
f

rSf

 !" #
; rSf 2 ½rSf1 ; rSf2 � ð6Þ

Where f ¼ 1; . . .;G;G is a number of antecedents; S ¼ 1; . . .;D; andD is number of
rules. The upper membership function is:

�usf xf
� � ¼ 1; xf ¼ ms

f

N ms
f ; r

s
f2 ; xf

� �
; otherwise

(
ð7Þ

and N ms
f ; r

s
f2 ; xf

� �
is defined as follows:

Fig. 3. Projection of output onto the input spaces [18]
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f2 ; xf

� �
ffi exp � 1
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 !" #
ð8Þ

Finally, the lower membership function is:

usf xf
� � ¼ 1; xf ¼ ms

f

N ms
f ; r

s
f1 ; xf

� �
; otherwise

(
ð9Þ

4.7 Tuning the Parameters of Interval Type-2 Membership Functions

Tuning the parameters of the interval type-2 FLS is essential for decreasing the system
errors. Since f xð Þ is determined by upper and lower membership functions and cen-
troids of IT2 fuzzy sets, we focus on tuning these parameters which are what we mean
by tuning IT2 FLS [19]. We used the proposed tuning algorithm by Liang and Mendel
[19] for tuning all of the parameters related to the Gaussian IT2 FLS. Since an interval
type-2 FLS can be characterized by two fuzzy basis function expansions, we can focus
on tuning the parameters of just these two type-1 FLSs.

5 The Proposed IT2 Fuzzy Hybrid Expert System

In this section, we present a hybrid type-2 fuzzy model for commercial burglary. After
identifying the structure of the problem, a hybrid reasoning method is developed. This
method is a combination of Mamdani and Sugeno inference. Furthermore, the ante-
cedents of hybrid reasoning method are interval type-2 fuzzy sets. We create an interval
type-2 FLS from the type-1 FLS. The hybrid interval type-2 FLS uses singleton
fuzzification, product t-norm, product inference, and center-of-sets type-reduction. It
also uses the same number of fuzzy sets and the same rules as the type-1 FLS. The only
difference now is that the antecedent and consequent sets (Only in Mamdani inference)
are type-2 which has a fixed mean and an uncertain standard deviation that takes on
values in an interval, i.e., [11].

While in Mamdani inference system the antecedents and consequents of the
rule-based system are fuzzy sets, in TSK inference method, consequents are functions.
Therefore, in TSK system, we have used Fazel Zarandi et al. [9] approach for deter-
mining the consequents of type-1 TSK fuzzy system.

The defuzzification step in Mamdani method is done at the end of inference,
whereas in TSK there is no defuzzification step. We use some defuzzification methods
such as centroid, bisector, mom and Yager for a custom operation. The best result of
this system is obtained by Yager defuzzification method. In TSK system, the model
output of each rule is aggregated by taking the weighted average of the output of each
rule for upper and lower bound in the fuzzy rule base. This step is used separately for
upper and lower membership functions for TSK system. After finding the output of
each inference, the final output of the model is obtained by combining the outputs of
TSK and Mamdani systems as follow:

48 M.H. Fazel Zarandi et al.



Outfinal ¼ b	 OutSugeno þ 1� bð Þ 	 OutMamdani ð10Þ

Where b 2 0; 1½ �:We have used the Gradient descent method for tuning this parameter.
The best result of proposed system is obtained by b ¼ 0:43.

In this research 120 data points have been selected which 96 data points are used
for generating rules and the rest for testing the model. Figure 4, shows the rule base and
inference mechanism for the proposed IT2F hybrid system, where the value of stolen
property is the output of the model. Table 2 shows the antecedent parameters of
interval type- 2 fuzzy hybrid expert system. In this table, �v11, �r11 and r11 are the fixed
mean, upper bound standard deviation and lower bound standard deviation, respec-
tively. Table 3 demonstrates the consequent parameters of the TSK and the Mamdani
system after tuning.

Fig. 4. The hybrid interval type-2 rule base

Table 2. The consequent parameters of the TSK and the Mamdani system after tuning.

Rules Mamdani TSK

Rule 1 v1c ¼ 303:61
r1c ¼ 46:26
r1c ¼ 18:51

a11 ¼ �2:28 a12 ¼ �29:87 a13 ¼ �22:25 a14 ¼ 0:48
a15 ¼ 1:03 a16 ¼ 9:47 a17 ¼ 0:08 b1 ¼ 324:37

Rule 2 v2c ¼ 180:17
r2c ¼ 58:01
r2c ¼ 23:20

a21 ¼ �2:07 a22 ¼ �29:65 a23 ¼ �22:03 a24 ¼ 0:37
a25 ¼ 1:01 a26 ¼ 9:38 a27 ¼ 0:06 b2 ¼ 315:10

Rule 3 v3c ¼ 397:29
r3c ¼ 57:78
r3c ¼ 23:11

a31 ¼ �2:37 a32 ¼ �30:84 a33 ¼ �22:57 a34 ¼ 0:64
a35 ¼ 1:23 a36 ¼ 9:73 a37 ¼ 0:23 b3 ¼ 355:46
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6 Performance Evaluation

For evaluating the performance of the proposed system, the entire dataset is divided
into two sets (training and test dataset). The training set consists of 96 samples. The test
set contains 24 samples. These samples are used to check the performance of the
proposed system. Moreover, for validation of the system, we compared our model’s
result with the result of multiple regressions model and T1 fuzzy model. We have used
Minitab for analyzing the regression model. The regression model is as follows:

y ¼ 344:36� 2:34x1 � 30:05x2 � 22:45x3 þ 0:57x4 þ 1:17x5 þ 9:62x6 þ 0:11x7 ð11Þ

The comparison of our proposed model with multiple regression approaches and
type-1 fuzzy model is shown in Table 4. We used the Root Mean Square Error (RMSE)
criteria. Where:

RMSE ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi � y�ið Þ2
vuut ð12Þ

Results show that our proposed IT2F hybrid expert system has less error and high
accuracy than other methods.

7 Conclusion

In this paper, an interval type-2 fuzzy hybrid rule-based expert system is developed for
commercial burglary. The proposed system is the combination of Sugeno and Mamdani
inference system. This model is tested on a chain store in an Asian country. The
experimental tests reveal that the model successfully estimates the value of stolen

Table 3. The antecedent parameters of the system after tuning

Rules Membership function parameters

Rule 1 v11 ¼ 32:46
r11 ¼ 5:49
r11 ¼ 4:39

v12 ¼ 1:51
r12 ¼ 0:58
r12 ¼ 0:38

v13 ¼ 2:98
r13 ¼ 0:51
r13 ¼ 0:43

v14 ¼ 41:89
r14 ¼ 3:59
r14 ¼ 2:15

v15 ¼ 28:06
r15 ¼ 3:67
r15 ¼ 2:93

v16 ¼ 4:28
r16 ¼ 1:46
r16 ¼ 0:87

v17 ¼ 405:86
r17 ¼ 34:71
r17 ¼ 24:29

Rule 2 v21 ¼ 43:92
r21 ¼ 7:01
r21 ¼ 5:60

v22 ¼ 2:47
r22 ¼ 0:71
r22 ¼ 0:46

v23 ¼ 4:01
r23 ¼ 0:65
r23 ¼ 0:51

v24 ¼ 37:12
r24 ¼ 3:59
r24 ¼ 2:15

v25 ¼ 21:87
r25 ¼ 4:02
r25 ¼ 3:22

v26 ¼ 2:02
r26 ¼ 1:46
r26 ¼ 0:87

v27 ¼ 359:85
r27 ¼ 46:56
r27 ¼ 32:59

Rule 3 v31 ¼ 21:51
r31 ¼ 7:92
r31 ¼ 6:34

v32 ¼ 1:44
r32 ¼ 0:65
r32 ¼ 0:42

v33 ¼ 2:09
r33 ¼ 0:61
r33 ¼ 0:47

v34 ¼ 50:05
r34 ¼ 4:82
r34 ¼ 2:89

v35 ¼ 35:57
r35 ¼ 5:16
r35 ¼ 4:13

v36 ¼ 6:96
r36 ¼ 2:12
r36 ¼ 1:27

v37 ¼ 506:58
r37 ¼ 51:63
r37 ¼ 36:14

Table 4. Root mean square error of the systems

Systems Multiple regression Type-1 fuzzy model Proposed model

RMSE 0.055 0.081 0.049
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properties for each branch. We developed a multiple regression, and type-1 fuzzy
system and compared their results with the proposed system. We concluded the pro-
posed IT2 fuzzy hybrid expert system has a better performance in comparison to type-1
and multiple regression models. For future works, this method in general type-2 fuzzy
hybrid expert system can be considered.
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Abstract. Medical field, especially in the diagnosis and treatment, is facing
with inherent uncertainty. Causes of leukemia can be different factors that
determining of them is with uncertainty. Owing to the high potential of the fuzzy
expert systems for managing uncertainty associated to the medical diagnosis, in
this paper, we propose a type-2 fuzzy expert system for Leukemia diagnosis. In
this system, we use Mamdani-style inference that has high interpretability to
clarify the results of system to experts. The classification accuracy of the type-2
fuzzy system for Leukemia diagnosis has obtained about 94% which demon-
strate its capability for helping experts to early diagnosis of the disease.

Keywords: Leukemia � Type-2 fuzzy � Expert system

1 Introduction

1.1 Leukemia

Leukemia is a cancer that affects the blood and bone marrow where blood cells are
made. Usually, Leukemia involves the production of abnormal white blood cells. The
cells are responsible for fighting infection. However, the abnormal cells in Leukemia
do not function in the same way as normal white blood cells. The Leukemia cells
continue to grow and divide, eventually crowding out the normal blood cells. The end
result is that it becomes difficult for the body to fight infections, control bleeding, and
transport oxygen. Leukemia is a general term for four types of malignant disease of the
blood and bone marrow [1].

Leukemia can be described as fast-growing (acute) or slow growing (chronic). The
different types of Leukemia have varied outlooks and treatment options. There are two
main types of acute Leukemia containing: acute myeloid Leukemia (AML) and acute
lymphoblastic Leukemia (ALL). Also, there are three main types of chronic Leukemia
containing: chronic myeloid Leukemia (CML), chronic lymphocytic Leukemia
(CLL) and hairy cell Leukemia (HCL).

Chronic Leukemias are generally slow-developing, long-term conditions. Hairy cell
Leukemia is a very rare type of chronic Leukemia. The most commonly diagnosed
Leukemia in adults is CLL and AML [2].
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1.2 Expert System

Expert systems are programs for reconstructing the expertise and reasoning capabilities
of qualified specialists within limited domains. Expert systems require detailed infor-
mation about a special domain and the strategies for applying the information to
problem solving. To construct an expert system, the knowledge should be formalized,
represented in the computer and manipulated according to some problem-solving
methods [3].

Any expert system consists of a knowledge base, a database and an inference
engine. These three units, together with some interface for communicating with the
user, form the minimal configuration that may still be called an expert system. The
knowledge base contains general knowledge related to the problem domain. The
purpose of the database is to store data for each specific task of the expert system. The
inference engine of an expert system operates on a series of production rules and makes
inferences [4] (Fig. 1).

Klir and Yuan [4] considered below architecture for an expert system:

1.3 Type-2 Fuzzy

It is known that type-2 fuzzy sets let us model and minimize the effects of uncertainties
in rule-based fuzzy logic systems (FLSs) [5]. There are at least four sources of
uncertainties in type-1 FLSs: (1) the meanings of the words that are used in the
antecedents and consequents of rules can be uncertain. (2) Consequents may have a
histogram of values associated with them, especially when knowledge is extracted from
a group of experts who do not all agree. (3) Measurements that activate a type-1 FLS

Fig. 1. Architecture of an expert system [4]
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may be noisy and therefore uncertain. (4) The data that are used to tune the parameters
of a type-1 FLS may also be noisy. All of these uncertainties translate into uncertainties
about fuzzy set membership functions. Type-1 fuzzy sets are not able to directly model
such uncertainties because their membership functions are totally crisp. On the other
hand, type-2 fuzzy sets are able to model such uncertainties because their membership
functions are themselves fuzzy [6] (Fig. 2).

Medical field, especially in the diagnosis and treatment, is facing with inherent
uncertainty. Causes of Leukemia can be different factors that determining the corre-
spondence between Leukemia and its causes are with uncertainty. In other words,
doctor diagnosis is with the uncertainty which it can affect diagnosis results and all
treatment process and if a mistake is made, it can result in irreparable damage to the
patient. Therefore, in this paper, we present a type-2 fuzzy intelligent system that is
capable of handling uncertainties in the diagnosis process of Leukemia.

2 Literature Review

Medical issues such as the diagnosis are always associated with uncertainty. Using the
expert systems by different logics can assist the experts in any time. There are
numerous expert systems in medical fields, for example, CREAM systems in the field
of cardiology, DIAS in the field of diabetes and MYCIN to diagnose bacterial infec-
tions. Because of the capability of fuzzy logic in uncertainty modeling we focus on the
papers which fuzzy logic has been used to inference.

Polat and Güneş detected on diabetes disease using principal component analysis
(PCA) and adaptive neuro-fuzzy inference system (ANFIS). The aim of their study is to
improve the diagnostic accuracy of diabetes disease combining PCA and ANFIS [8].
Muthukaruppan and Er presented a particle swarm optimization (PSO)-based fuzzy
expert system for the diagnosis of coronary artery disease (CAD) [9]. Keleş et al.
developed an expert system for diagnosis of breast cancer. In their system, the fuzzy

Fig. 2. Components of type-2 fuzzy logic system [7]
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rules which used in inference engine were found by using neuro-fuzzy method [10].
Hayashi proposed a fuzzy neural network and the learning method using fuzzy teaching
input. As an application, a fuzzy neural expert system (FNES) for diagnosing hepa-
tobiliary disorders has been developed [11]. Biyouki et al. presented a fuzzy rule-based
expert system for diagnosis thyroid’s disease. This proposed system includes three
steps: pre-processing (feature selection), neuro-fuzzy classification and system evalu-
ating [12]. Maftouni et al. designed a type-2 fuzzy rule-based expert system for
ankylosing spondylitis diagnosis. In this system, the medical expertise and evidences
are used for simulating the expert’s manner in diagnosis [13]. Zarandi et al. developed a
type-II fuzzy expert system for brain tumor imageprocessing. The main contributions in
this paper were the aggregation of the available image pre-processing methods,
development of a Type-II fuzzy cluster analysis for segmentation, and presenting a
Type-II fuzzy expert system for approximate reasoning [14].

In the field of Leukemia diagnosis some papers by using fuzzy expert systems have
been presented which we provide an overview of these papers. Obi and Imianvan
presented a hybrid neuro fuzzy expert system to help in diagnosis of Leukemia using a
set of symptoms. The designed system is an interactive system that tells the patient his
current condition as regards Leukemia [15]. Azar and Alizadeh proposed an expert
system to diagnose and recommend treatment method for Leukemia [16]. Latifi et al.
introduced a fuzzy inference system (FIS) for diagnosing of acute lymphocytic Leu-
kemia in children. The fuzzy expert system applies Mamdani reasoning model that has
high interpretability to explain system results to experts in a high level. The system has
been designed based on the specialist physician’s knowledge [17].

3 Methodology

3.1 Leukemia Dataset

The procedure of diagnosing a patient suffering from Leukemia is synonymous to the
general approach to medical diagnosis. The physician may carry out a precise diag-
nosis, which requires a complete physical evaluation to determine whether the patient
have Leukemia. The examining physician accounts for possibilities of having Leuke-
mia through an interview, physical examination and laboratory test. Many primary
health care physicians may require tools for Leukemia evaluation [15].

In this study, the Leukemia dataset obtained according to the Obi and Imianvan
[15]. The purpose of the dataset is to predict the presence or suspicion of presence or
absence of the Leukemia disease given the results of various medical tests carried out
on a patient. If the patient is having five or more of the symptoms, he is having severe
Leukemia and should go for treatment urgently. If it is approximately four of the
symptoms he is having, he might be suffering from Leukemia and hence should see a
physician right away, but if it is three or lesser of the symptoms, he may not be having
Leukemia. This dataset contains 14 attributes. The dataset contains 500 samples
belonging to three different classes (274 “with Leukemia” cases, 100 “Might be
Leukemia” cases, 126 “Not Leukemia” cases).
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To design our type-2 fuzzy system for diagnosis of Leukemia, we designed a
system which consists of a set of symptoms needed for the diagnosis. The Leukemia
symptoms have been shown in Table 1.

3.2 Determining the Number of Rules

We should use a cluster validity index to determine the most suitable number of
clusters. In this work, the validity index proposed by Zarandi et al. is applied. This
validity index VECAS (an Exponential compactness and separation index) can find the
number of clusters as the maximum of its function with respect to c. This index is
defined as [18]:

VECAS ¼ ECAS cð Þ ¼ ECcomp cð Þ
maxc ECcomp cð Þ� �� ESsep cð Þ

maxc ESsep cð Þ� � ; ð1Þ

where ECcomp cð Þ and ESsep cð Þ are Exponential compactness and Exponential separation
measures, respectively and are defined as follows [18]:

ECcomp cð Þ ¼
Xc

i¼1

Xn

j¼1

umij exp½�ð xi � vj
�� ��2

bcomp
þ 1

cþ 1
Þ�; ð2Þ

ESsep cð Þ ¼
Xc

i¼1

exp �mini6¼k
c� 1ð Þ vi � vkk k2

bsep

 !" #

: ð3Þ

bcomp is defined as the sample covariance for cluster i; i.e. [18]:

bcomp ¼
Pn

k¼1 xk � �vk k2
n ið Þ ; ð4Þ

where n ið Þ is the number of data in cluster i.
bsep is defined as the total average distance measure for all clusters, i.e. [18]:

Table 1. Leukemia symptoms [14]

No. Symptom No. Symptom

1 Paleness 8 Thrombocytopenia
2 Shortness of breath 9 Granulocytopenia
3 Nose bleeding 10 Asthenia
4 Frequent infection 11 Palpitations
5 Anemia 12 Digestive bleeding
6 Epistaxis 13 Enlargedspleen
7 Bone pain 14 Fatigue
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bsep ¼
Pn

l¼1 vl � �vk k2
c

; ð5Þ

with �v ¼
Pn

j¼1
xj

n .
We apply this cluster validity index to determine the most suitable number of

clusters or rules. The best number of clusters based on this cluster validity index is
obtained in three clusters.

3.3 The Proposed Type-2 Fuzzy Model

For many application problems, classifiers can be used to support a decision-making
process. In some areas like medical, it is not preferable to use black box approaches.
The user should be able to understand the classifier and to evaluate its results. Fuzzy
rule-based classifiers are especially suitable because they consist of simple linguis-
tically interpretable rules and do not have some drawbacks of symbolic or crisp
rule-based classifiers. Classifiers must often be created from data by a learning
process because there is not enough expert knowledge to determine their parameters
completely [19].

In the Type-2 fuzzy model, we obtain the model with three rules, fourteen inputs,
and one output. The inputs are Leukemia symptoms which presented in Table 1.
A universal set of symptoms of Leukemia disease is set up for diagnosis where the
patient is expected to pick from the set of symptoms fed into the system. We use
Mamdani-style inference, min–max operators and centroid defuzzification methods. In
the proposed model, Gaussian membership function was used for fuzzy sets descrip-
tion. The rule-based of the proposed system consists of three general rules. The rules of
the proposed system are as follows:

If (PALENESS is in1cluster c) and (SHORTNESS OF BREATH is in2cluster c)
and (NOSE BLEEDING is in3cluster c) and (FREQUENT INFECTION is in4cluster
c) and (ANEMIA is in5cluster c) and (EPISTAXIS is in6cluster c) and (BONE PAIN is
in7cluster c) and (THROMBOCYTOPENIA is in8cluster c) and (GRANULOCY-
TOPENIA is in9cluster c) and (ASTHENIA is in10cluster c) and (PALPITATIONS is
in11cluster c) and (DIGESTIVE BLEEDING is in12cluster c) and (ENLARGE
SPLEEN is in13cluster c) and (FATIGUE is in14cluster c) then (output is out1cluster
c), where c ¼ 1; 2; 3f g.

Figure 3 represents the fuzzy rules of the proposed system.

3.4 Performance Evaluation

For performance evaluation of the proposed system, the dataset divided into two sets
containing: The training set and the test set which include 400 and 100 samples,
respectively. These samples are applied to demonstrate the performance of the pro-
posed system. The classification accuracy of the type-2 fuzzy system for Leukemia
diagnosis has obtained about 94%.
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Fig. 3. Type-2 fuzzy rule based
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4 Conclusion

In this paper, we proposed a type-2 fuzzy expert system to Leukemia diagnosis. In this
system, for simulating the expert’s manner in diagnosis, the medical expertise and
evidences are used. Because of the structure and semantic of Leukemia diagnosis,
which is with uncertainty, we used the type-2 fuzzy for uncertainty modeling. By
relying on the results, the type-2 fuzzy expert system can diagnose Leukemia with the
average accuracy of about 94%.
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Abstract. A comparative study of different proposed methods using interval
type-2 fuzzy logic systems (IT2FLS) to find optimal a and b values in a Bee
Colony Optimization Algorithm (BCO) applied to the stabilization of the tra-
jectory in an autonomous mobile robot (AMR) is presented. Three metrics are
analyzed for finding the optimal values that affect in the efficiency of the BCO
algorithm. Perturbation is added in the model. Simulation results indicate that
the MSE error is an important metric for determine the optimal values in the
effective of the execution in the BCO algorithm.

Keywords: Interval Type-2 Fuzzy Logic System � Mean square error �
Adjustment dynamic � Bee algorithm

1 Introduction

The type-1 fuzzy logic system (T1FLS) is one method of computational intelligence that
actually is being used by different authors in various applications such as; Fuzzy Con-
trollers, and as technique to improve meta-heuristic algorithms; among its most noted
characteristics are the efficiency and simplicity implemented linguistic terms which are
similar how does think a human [36, 37]. An extension of T1FLS is the IT2FLS which,
with previous research have shown good results when the uncertainty is used to solve are
more complex, in this case controlling the trajectory in an AMR [3, 7, 23, 35].

Various researchers have been interested in improving the parameters that affect the
performance of the bio-inspired or evolutionary algorithms [1, 8, 13]. This has been
done with experimentation and exploration in each algorithm and is the way in which
they have been able to determine which parameters are important for that the execution
of the algorithm be the best. Empirically is necessary to realize various experiments for
found the optimal in each parameter. This research focuses on the idea of analysis three
metrics for finding a and b parameters through of IT2FLS in the BCO Algorithm to
controlling the trajectory in an AMR.

In the literature, various works have been presented using the technique of the
optimization (bio-inspired algorithm) to solve problems complex [4, 11, 14, 19, 25, 34].
The BCO algorithm has been implemented in some applications in which it has been
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demonstrated that is an effective technique to solve complex problems [2, 9, 20, 30]. In
this algorithm, the first idea to use the intelligent behavior presented by bees in their
collaboration of searching for food [30].

This paper focuses on the idea of analyzing three metrics that affect in the deter-
mination to find optimal a and b parameters in the BCO algorithms. Section 2 describes
a list of research where have modified bio-inspired algorithms and some works with the
used the fuzzy controllers. Section 3 shows the definition of the IT2FLS. Section 4
describes the proposed methods. Section 5 indicates the simulation results. In Sect. 6
the discussion are presented. Finally, Sect. 7 offers the important conclusions of this
work.

2 Background

Actually, many works have been presented in which through of the use of FLS dynamic
adaptation of the parameters is performed to improve bio-inspired and evolutionary
algorithms, just to mention some; in [1] a Fuzzy PSO is presented, in [3] different Fuzzy
Sets are used to determine the optimal values in the BCO Algorithm is presented, in [5]
an improved firefly algorithm for tuning parameters in a fuzzy controller is presented, in
[8] anew genetic algorithm through fuzzy logic system in different applications is
presented, in [12] a new improved Cuckoo Search Algorithm is presented, in [13] a
modified firefly algorithm through fuzzy logic system is presented, in [17] a fuzzy
adaptive differential evolution algorithm is presented, in [26] a Fuzzy harmony search
algorithm applied in security enhancement is presented, in [27] an improved bat
algorithm through fuzzy logic applied to fuzzy control is presented, in [28] a Fuzzy
gravitational search algorithm is presented, in [31] a fuzzy ACO algorithm applied in
different areas is presented, and in [33] a Fuzzy tabu search to improve a clustering
problem is presented.

Respect to the applications and used of the Fuzzy Controllers, in the literature exists
various works with good results in the stabilization of the models in plants linear, for
mention some; in [2] an Evolutionary algorithm applied to Fuzzy Control is presented,
in [3] an improved BCO applied to Fuzzy Control is presented, in [7] an Intelligence
Control for an Acrobat is presented, in [15] a fuzzy controller design and its FPGA
implementation using the ant algorithm is presented, in [16] a Fuzzy control using
genetic algorithms is presented, in [22] an implementation of the fuzzy algorithms in
simple dynamic plant is presented, and in [29] an implementation of the harmony
search algorithm applied to fuzzy controller is presented.

Thus, the hybridization of these two techniques (Meta-heuristic algorithms and
Fuzzy Logic Systems) is an indicator that the solution could be a powerful tool in
solving complex problems.

3 Interval Type-2 Fuzzy Systems

Zadeh was the first that introduced the idea of an interval type-2 fuzzy set (IT2FS) [36].
An IT2FS is represented by a fuzzy membership function (MF), i.e., the membership
grade for each element of this set is a fuzzy set in [0, 1] [23, 24]. The uses of an IT2FS
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can be in situations where there is a high uncertainty value. Figure 1 illustrates the
general structure of an IT2FS.

3.1 Fuzzy Logic Controller

Fuzzy Logic Controllers (FLCs) were introduced by Mamdani [21, 22]. Actually, The
FLCs have been implemented in different areas such as; in manufacturing, in the home,
to mention some cases [3, 7, 18]. Those fuzzy algorithms were implemented for
complex systems [35–37]. The general model of the FLC is represented in Fig. 2.

4 Proposed Methods

The BCO is an algorithm that contains artificial bees which are search the optimal
solution. The intelligent behavior it shows is a waggle dance, which is a communi-
cation tool among bees [6, 10, 32]. The problem statement is used with the reference
[3] and the following text indicates each step of the original BCO algorithm.

1. Initialization: each bee has an empty solution.
2. For every bee; //Forward pass starts.

(a) Set k = 1; //counter each moves;
(b) Evaluate all possible moves for each follower bee;

Fig. 1. General structure of an IT2FS.

Fig. 2. General model of a FLC.
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(c) choose on move using the roulette wheel;
(d) k = k + 1; if k � NC go to step b.

3. All bees are back to the hive; //backward pass stars.
4. Evaluate the objective function (MSE) value for each bee;
5. Choose the role of the each bee (1.- continue its own exploration, 2.- recruiter, or 3.-

follower);
6. For every follower bee, selection a new solution from recruiters;
7. If solutions have not completed go to step 2;
8. Evaluate all solutions and find the best one;
9. Output the best result.

The dynamics of the BCO algorithm are defined by [3], and Eqs. (1), (2) and (3)
define the input variables used to determine the optimal a and b values. For the
measure iterations, this variable represents a percentage of the all algorithm cycle, and
the idea is presented by Eq. (1) [3]:

Iteration ¼ Current Iteration
Maximum of Iterations

ð1Þ

Equation (2) represents the diversity, this variable represents an average in the
separation between the best with each bee in the space search [3].

DiversityðSðtÞÞ ¼ 1
ns

Xnx

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XijðtÞ � �XjðtÞÞ2

q
ð2Þ

The Mean Square Error (MSE) is shown by Eq. (3). This metric represents the
Fitness Function in the BCO algorithm, and is evaluated for each Follower Bee in the
execution of the algorithm.

MSE ¼ 1
n

Xn

i¼1

ð�Yi � YiÞ2 ð3Þ

Four Interval Type-2 FLSs were designed with triangular MFs; the first has Iter-
ation and Error as input identified as FBCO1, the second has Diversity and Error as
inputs called FBCO2, the third has Iteration, Diversity and Error as inputs called
FBCO3, and finally, the fourth has Iteration and Diversity as inputs called FBCO4. All
are Mamdani style, and the outputs are b and a. A total of 9 rules were designed with
the experimentation of the original BCO algorithm. The Iteration input has a range of
[0, 1], the Error input has a range of [0, 5] and the Diversity has a range of [0, 1]. b
output has a range of [3, 7] and the a output has a range of [0, 1]. Analyzing the
behavior of the original BCO algorithm, b affect in the exploration and a is a parameter
that affect in the exploitation, using that antecedent the fuzzy rules were designed and
the linguistic values are shown in Tables 1, 2, 3 and 4 of the proposed methods.
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Table 1. Fuzzy rules for the FBCO1

# Input Output
Iteration Error Beta Alpha

1 Weak Weak Weak Medium
2 Weak Medium Medium Medium-Good
3 Weak Good Good Weak
4 Medium Weak Medium-Weak Medium-Good
5 Medium Medium Medium Medium
6 Medium Good Medium-Good Medium
7 Good Low Medium Good
8 Good Medium Medium-Weak Medium-Good
9 Good Good Weak Good

Table 3. Fuzzy rules for the FBCO3

# Input Output
Iteration Diversity Error Beta Alpha

1 Weak Weak Weak Weak Good
2 Weak Weak Medium Medium-Weak Medium-Good
3 Weak Medium Good Medium-Weak Good
4 Medium Medium Weak Good Medium-Weak
5 Medium Good Medium Medium-Good Medium-Weak
6 Medium Good Good Medium Medium-Good
7 Good Weak Weak Medium-Weak Weak
8 Good Medium Medium Medium-Good Medium-Weak
9 Good Good Good Good Weak

Table 2. Fuzzy rules for the FBCO2

# Input Output
Diversity Error Beta Alpha

1 Weak Weak Good Weak
2 Weak Medium Medium Medium-Good
3 Weak Good Medium-Good Medium-Weak
4 Medium Weak Good Medium-Weak
5 Medium Medium Medium Medium
6 Medium Good Medium-Weak Medium-Good
7 Good Weak Medium Good
8 Good Medium Medium-Weak Medium-Good
9 Good Good Weak Good
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5 Simulations Results

A total of 30 experiments were execution with the following settings in the parameters
of the BCO algorithm which are; a number of the Follower Bee of 15, a Population of
30, and the number maximum of cycles of 20. Table 5 shows the behavior respect to
the best MSE used for each proposed IT2FLS in the model.

Table 5 shows that when the iteration and error is used to determine the a and b
parameters the average of the MSE is lower with a value of 1.783 and the best MSE to
find is of 0.015. Figure 3 shows the best MSE for each proposed IT2FLS.

The results indicate that the best convergence is shown for the FBCO1 when the
iteration and error are used as inputs. Figure 4 illustrates the behavior of the fitness
function (MSE).

The iteration and error are important in the controlling of the trajectory of an AMR.
Other metric that allow demonstrate that these parameters are offer good results is the
average of the MSE. Figure 5 shows the average of the MSE that has found each
proposed IT2FLS.

Figure 5 shows in the green line represented by FBCO2 which is using diversity
and error as inputs the best averages are found compare to the other proposed IT2FLS.
A comparative of the best trajectories found by each proposed IT2FLS is illustrated in
Fig. 6.

Table 4. Fuzzy rules for the FBCO4

# Input Output
Iteration Diversity Beta Alpha

1 Weak Weak Medium Low
2 Weak Medium Good Medium-Weak
3 Weak Good Good Medium-Good
4 Medium Weak Good Medium-Good
5 Medium Medium Medium-Weak Medium-Weak
6 Medium Good Medium-Good Good
7 Good Weak Medium-Weak Medium
8 Good Medium Medium-Good Good
9 Good Good Weak Medium

Table 5. Indice performance for each proposed IT2FLS.

Index Proposed interval Type-2 FLS
FBCO1 FBCO3 FBC03 FBCO4

Best MSE 0.015 0.012 0.003 0.020
Average 1.783 5.700 7.307 5.121
WORST 7.719 64.501 82.838 58.119
r 1.957 13.940 16.903 10.787
b 2.856 3.874 4.102 3.040
a 0.554 0.487 0.597 0.5413
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All the trajectories are good, its important highlight that the BCO algorithm is an
excellent tool for the controlling trajectories in an AMR.

Whit the goal of analyze better the uncertainty in the proposed IT2FLSs, the
perturbation was added, especially; the block called Band-Limited noise with a value of
1000 for the delay and a value of 0.01 is implemented to both wheels in the model.
Figure 7 shows a comparative with the best MSE found with perturbation in the model.

Fig. 3. Behavior of the best MSE for each proposed IT2FLS.

Fig. 4. Best Convergence for the FBCO1.
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With level of noise in the model the best trajectory is shown with the FBCO3;
which indicates that the four metrics analyzed affect in the efficiency of the BCO
algorithm for the stabilization of the trajectory in an AMR.

Fig. 5. Comparative of average of the MSE by each proposed IT2FLS.

Fig. 6. Comparative of best trajectories by each proposed IT2FLS, (a) FBCO1, (b) FBCO2,
(c) FBCO3 and (d) FBCO4.
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6 Discussion

Every proposed methodology that has been analyzed requires an optimal design of
parameters in the MFs. Thus, is necessary to find the optimal FIS design that minimizes
the simulation errors. The efficiency of the BCO algorithm is shown with the results
presented in this work. We realized an analysis the effect that each type of MFs with the
used the IT2FLS to improve the efficiency in the BCO algorithm in the study case
presented.

Based on an analysis of the experiments in Sect. 5, the proposed BCO algorithm is
an excellent methodology for the stabilization of Fuzzy Controllers, especially, when the
perturbation in the model is added, the stabilization in the model is good (See Fig. 7),
the reason is because the uncertainty is handled better, also the perturbations are min-
imized with the proposed IT2FLCs (See Fig. 6). The average of the fitness function
(MSE) for the 30 experiments is better with the IT2FLC using the Iteration and Error in
inputs with a value of 1.783 when compared to IT2FLC using the Diversity and Error
with a value of 5.700. Also, the best MSE shown in Table 5 shows the minimums errors
that are found by the proposed Fuzzy BCO with IT2FLS using the Iteration, Diversity
and Error in inputs represented by FBCO3 with a value of 0.003 compared to the best
MSE of the IT2FLS using Diversity and Error with an error of 0.012.

Fig. 7. Comparative of best trajectories by each proposed IT2FLS applied perturbation in the
model, (a) FBCO1, (b) FBCO2, (c) FBCO3 and (d) FBCO4.
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7 Conclusions

With the obtained results, the main conclusion is that the error is an import metric in the
determination of optimal a and b parameters in the BCO algorithm. The efficiency the
IT2FLS allows to analyze better the uncertainty with perturbation is added in the
model. The average of the 30 experiments is lower when the iteration and the error help
to determine the optimal b and a value in the BCO algorithm. The iteration and error
metrics demonstrate that the stabilization of the trajectory in an AMR is better with an
average of 1.783 and standard deviation of 1.957. The optimal b value to found by the
better proposed IT2FLS is of 2.856 and the optimal a value is of 0.554. This work is
important because allows performing a generalization of the used of metrics that show
an excellent performance of the BCO algorithm.

The first contribution in the future in this work is the optimization of the BCO
algorithm for dynamic trajectories, which would explore the efficiency of the IT2FLS.
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Abstract. The use of fuzzy linguistic expressions in group decision making
process has been considered by several authors. However, to the best of our
knowledge, none have applied Type2 Fuzzy Multi Attribute Group Decision
Making (T2F-MAGDM), where referees are weighted based on their credibility
and the level of their knowledge in the specific area by linguistic terms. In this
paper, a T2F-MAGDM model, with the capability of considering different lin-
guistic weights for the credibility of the experts, is presented.
This model is designed in three stages, including collecting data from experts,

aggregating the data and ranking the alternatives. Stage2 carries out the pro-
cesses of Linguistic Weighted Averaging (LWA) using type-2 fuzzy sets.
Finally, the effectiveness of the proposed T2F-MAGDM model has been eval-
uated for the FMEA problem.

Keywords: Type2 fuzzy sets � Linguistic weighted averaging � Multi attribute
group decision making � FMEA

1 Introduction

Group Decision Making (GDM) is a decision situation, where two or more experts take
part to provide their opinions or preferences to reach an aggregated result [1, 2].
However, in some cases the aim of GDM is to reach a solution which is satisfactory for
the experts involved [1]. With regard to imprecise and vague knowledge of experts, in
some cases, linguistic terms can be helpful for group decision making [3]. For this
reason the concept of group decision making has received an increasing attention and
specially based on fuzzy sets theory. Type2 Fuzzy Sets (T2-FSs), by concerning fuzzy
membership function, represents the uncertainty and the vagueness of the real world
situation such as group decision making problem [4].

Zhang and his colleague in [4] with the use of trapezoidal interval type2 fuzzy soft
sets, proposed a novel approach to multi attribute group decision making under interval
type-2 fuzzy environment. Also Qin and his colleague in [5] proposed a new method
for multiple attribute group decision making (MAGDM) problems concerning com-
bined ranking value under interval type-2 fuzzy environment.

Based on the research need, recognized through the literature review, this paper
proposes a T2F-MAGDM model, which is capable for considering different level of
linguistic credibility weights for the experts. The first stage of this model is designed in
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three stages, including collecting data from experts, aggregating the data and ranking
the alternatives. Stage2 carries out the processes of LWA using type2 fuzzy sets.
Finally, the effectiveness of the proposed T2F-MAGDM model has been proved for the
FMEA problem.

2 Basic Concepts of Type2 Fuzzy Sets

In 1975 Zadeh [6] introduced Type2 Fuzzy Sets (T2-FSs) to model and minimize the
effect of uncertainties, including vagueness, ambiguity and randomness. In comparison
to an ordinary Type1 Fuzzy sets (T1-FSs) that has a grade of Membership Function
(MF), which is crisp, the type-2 fuzzy sets have grades of MFs, which are themselves
fuzzy [7]. This section is organized to review theoretical aspect related to the proposed
model for group decision making solution method, including: Linguistic Weighted
Averaging (LWA) for type2 fuzzy sets.

2.1 Linguistic Weighted Averaging for T2-FSs

The linguistic weighted average for T2-FSs is introduced by Wu and Mendel in [8, 9]
which is an extension of the Fuzzy Weighted Average (FWA) [10] for T1-FSs.
The LWA is defined as below:

~YLWA ¼
Pn
i¼1

~Xi ~Wi

Pn
i¼1

~Wi

ð1Þ

where ~Xi and ~Wi are words modeled by Interval Type2 Fuzzy Sets (IT2-FSs). Con-
sidering the use of ~Xi and ~Wi in computing ~Y LWA, with regard to wavy slice repre-
sentation, Eqs. (2 and 3) are defined as below [9]:

~Xi ¼ 1=FOUð~XiÞ ¼ 1=½Xi; �Xi� ð2Þ
~Wi ¼ 1=FOUð ~WiÞ ¼ 1=½W i; �Wi� ð3Þ

where Xi and �Xi (W i and �Wi) are lower and upper MFs of ~Xið ~WiÞ, respectively.
Considering that ~Xi and ~Wi which are modeled by IT2-FSs, the ~Y LWA is also

IT2-FSs (Eq. (4)),

~YLWA ¼ 1=FOUð~YLWAÞ ¼ 1=½Y LWA; �YLWA� ð4Þ

where Y LWA and �Y LWA are LMFs and UMFs of ~YLWA, respectively [9].
Noted that all UMFs are T1-FSs normal, so the height of the UMFs of �YLWA is one

ðh�Y LWA
¼ 1Þ.
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And the height of Y LWA which is the lower bound of MFs of FOU (~Y LWA) is
calculated by hmin which is defined as the smallest height of all FWAs resulted from
T1-FSs of the height of Xi as hXi

and W i as hW i in Eq. (5) [7].

hmin ¼ minfmin
8i

hXi
;min

8i
hW i

g ð5Þ

Let ½aiðaÞ; biðaÞ� be an a-cut on an embedded T1-FSs of ~Xi; and ½ciðaÞ; diðaÞ� be an
a-cut on an embedded T1-FSs of ~Wi (Figs. 1 and 2). The statements of
yLlðaÞ; yLrðaÞ; yRlðaÞ ; and yRrðaÞ are calculated based on Eqs. (6, 7, 8 and 9) respec-
tively in order to structure the Upper Membership Functions (UMFs) and the Lower
Membership Functions (LMFs) [7, 8]:

yLlðaÞ ¼
PL�l

i¼1 ailðaÞdirðaÞþ
Pn

i¼L�l þ 1 ailðaÞcilðaÞPL�l
i¼1 dirðaÞþ

Pn
i¼L�l þ 1 cilðaÞ

a 2 ½0; 1� ð6Þ

yLrðaÞ ¼
PL�r

i¼1 airðaÞdilðaÞþ
Pn

i¼L�r þ 1 airðaÞcirðaÞPL�r
i¼1 dilðaÞþ

Pn
i¼L�r þ 1 cirðaÞ

a 2 ½0; hmin� ð7Þ

yRlðaÞ ¼
PR�

l
i¼1 bilðaÞcirðaÞþ

Pn
i¼R�

l þ 1 bilðaÞdilðaÞPR�
l

i¼1 cirðaÞþ
Pn

i¼R�
l þ 1 dilðaÞ

a 2 ½0; hmin� ð8Þ

yRrðaÞ ¼
PR�

l
i¼1 birðaÞcilðaÞþ

Pn
i¼R�

l þ 1 birðaÞdirðaÞPR�
l

i¼1 cilðaÞþ
Pn

i¼R�
l þ 1 dirðaÞ

a 2 ½0; 1� ð9Þ

In these equations, L�l ; L
�
r ; R

�
l and R�

r are switch points that are computed using KM or
EKM algorithms as introduced in [11]. Observe from Eqs. (6 and 9) and Figs. 1 and 2
that yLlðaÞ and yRrðaÞ only depend on the UMFs of ~Xi and ~Wi, which are only computed
from the corresponding a-cuts on the UMFs of ~Xi and ~Wi, (so the expressive Eq. (10)) [8],

�YLWA ¼
Pn
i¼1

�Xi �Wi

Pn
i¼1

�Wi

ð10Þ

Fig. 1. ~Xi and an a-cut. The dashed curve is an embedded T1-FS of ~Xi [9]
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Because all �Xi and �Wi are normal T1 FSs, �YLWA is also normal as shown in Fig. 3.

Fig. 2. ~Wi and an a-cut. The dashed curve is an embedded T1-FS of ~Wi [9]

Fig. 3. ~Yi and an a-cut [9]

Similarly, observe from Eqs. (7 and 8) and Figs. 1 and 2 that yLrðaÞ and yRlðaÞ only
depend on the LMFs of ~Xi and ~Wi; (hence the expressive Eq. 11) [8],

Y LWA =

Pn
i¼1

XiWi

Pn
i¼1

W i

ð11Þ

Unlike �YLWA; which is a normal T1 FS, the height of Y LWA is hmin, the minimum height
of all Xi and W i as defined in Eq. (5).

3 Proposed Type-2 Fuzzy Multi Attribute Group Decision
Making

This section aims to prioritize the alternatives based on the multi attribute group
decision making model capable of dealing with the weights of the defined attributes
and the judgment credibility of the experts.

Let Ai ¼ a1; a2; . . .; azf g be a set of alternatives that need to be prioritized based on
the defined attributes and experts’ judgments. A set of experts Ef ¼ fe1; :e2::; emg is
considered with respect to their judgment credibility weights
EWf ¼ ew1; ew2; . . .; ewmf g, where Pm

f¼0 EWf ¼ 1. Also Ch ¼ c1; c2; . . .; cnf g is a set
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of attributes, with respect to their weights CWh ¼ cw1; cw2; . . .; cwnf g, wherePn
h¼1 CWh ¼ 1.
The process of the T2F-MAGDM, consists of three main stages as follow:

• Stage 1 - Collecting data from experts: Different methods exist to gather and collect
data and information from experts, which is not the issue of this paper.

• Stage2 - Aggregating data: Once the judgments of the experts for all alternatives
based on the defined attributes are collected, the aggregation process as LWA
proposed by Wu and Mendel in [7–9] is applied, shown in Fig. (4).

• This aggregation is arranged in two steps as defined below:
– Satge2-step1: LWA operator is applied to aggregate the all experts’ judgment

for the hth attribute of the ith alternative.
– Satge2-step2: LWA is applied to combine the aggregated data (from

satge2-step1) for all attributes of the ith alternative.
• Stage 3 - Ranking the alternatives: Different approaches for ranking type-2 fuzzy

sets exist. In this paper, a method proposed by Asan and his colleagues in [12]
which is used in [13] is applied to rank alternatives based on a� cuts in form of
IT2-FNs whose UMFs and LMFs are normal T1-FSs.

Fig. 4. Flowchart of computing LWA [8]

Type-2 Fuzzy Approach in Multi Attribute Group Decision Making Problem 77



Let GM
i ðaÞ in Eq. (12), denotes the overall mean of the end points of a� cuts on

the lower and upper membership function.

GM
i ðaÞ ¼

yLlðaÞþ yLrðaÞþ yRlðaÞþ yRrðaÞ
4

ð12Þ

Also GiðaÞj j, as a weighting factor, considered as the length of the a� cuts of the
embedded average T1-FN (Fig. 3)

GiðaÞ ¼ yRlðaÞþ yRrðaÞ
2

� yLlðaÞþ yLrðaÞ
2

ð13Þ

Then the ranking value ri of the IT2-FN ~Gi is calculated as Eq. (14) [12]:

ri ¼
R 1
0 G

M
i ðaÞ GiðaÞj jdaR 1
0 GiðaÞj jda

¼
R 1
0

yLlðaÞþ yLrðaÞþ yRlðaÞþ yRrðaÞ
4

� �
yRlðaÞþ yRrðaÞ

2 � yLlðaÞþ yLrðaÞ
2

� �
da

R 1
0

yRlðaÞþ yRrðaÞ
2 � yLlðaÞþ yLrðaÞ

2

� �
da

ð14Þ

In this case higher ranking value ðriÞ indicates more suitable supplier based on trust
criteria compared to others.

4 An Illustrative Example

In order to demonstrate the applicability and effectiveness of the proposed linguistic
group decision making method, the example provided in [14] is adopted for Failure
Mode Effect Analysis (FMEA) of manufacturing facility in an automotive industry.

In general, FMEA is used to rank corrective actions to be taken in design or
production processes for the potential failure or abnormal modes that have been
identified by a collective data by experts or historical data. Traditionally, failure modes
are ranked based on the Risk Priority Number (RPN), regard to the Occurrence (O),
Severity (S), and likelihood of Detection (D). Fuzzy approaches in FMEA uses the
fuzzy linguistic terms of experts’ judgments to evaluate the three risk factors O, S, and
D (considered as three attributes).

In the illustrative example, the potential failure modes (FMs), as non-conforming
material (FM1), wrong die (FM2), wrong program (FM3), excessive cycle time (FM4),
wrong process (FM5), damaged goods (FM6), wrong part (FM7), and incorrect forms
(FM8), are identified by a group of three experts. Fuzzy linguistic approach is con-
sidered to evaluate failure modes based on the qualitative aspects (Fuzzy triangular
membership function of linguistic terms is presented in Table 1).

Concerning Stage1 the data collection of the risk factors (S, O and D) of each
failure mode are collected from experts (as presented in Table 2). Also the credibility
weight of experts is assigned by the operations manager, as shown in Table 3.

Based on the Stage2 the two step aggregation is applied and the result of the Stage3
is presented in Table 4.
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Table 1. Fuzzymembership functions for linguistic terms.

Importance of the FMS and
risk factors

Credibility weight of
experts

Fuzzy
type 1

Fuzzy type 2
Upper fuzzy
scores

Lower fuzzy
scores

Very Poor (VP) Very Low (VL) (0.1, 0.5,
1)

(0.06, 0.5,
1.05)

(0.14, 0.5,
0.95)

Poor (P) Low (L) (0.5, 1,
3)

(0.45, 1, 3.2) (0.55, 1, 2.80)

Medium Poor (MP) Medium Low (ML) (1, 3, 5) (0.80, 3, 5.2) (1.20, 3, 4.80)
Fair (F) Moderate (M) (3, 5, 7) (2.80, 5, 7.2) (3.20, 5, 6.80)
Medium Good (MG) Medium High (MH) (5, 7, 9) (4.80, 7, 9.2) (5.20, 7, 8.80)
Good (G) High (H) (7, 9, 10) (6.80, 9, 10) (7.20, 9, 9.90)
Very Good (VG) Very High (VH) (9, 9.5,

10)
(8.95, 9.5,
10)

(9.05, 9.5,
9.95)

Table 2. Linguistic judgments of experts concerning failure modes based on risk factors

Risk factors Importance weight
of risk factors

Experts Failure Modes (FMs)
FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8

Severity (S) MH Exp1 F P MP MP F MG P VP
Exp2 F MP P F F MG MP VP
Exp3 MP MP MP MP MP F VP P

Occurrence
(O)

L Exp1 F VG VG F MG MG VG VP
Exp2 MG G G MG MG G VG VP
Exp3 MG VG G MG G MG VG VP

Detection
(D)

M Exp1 G MP VP G G MP VP VP
Exp2 MG MP MP MG VG MP MP VP
Exp3 G P P G G F P VP

Table 3. Linguistic credibility weight that is assigned to experts

Potential failure modes (FM) Credibility weight of
experts
(Exp1) (Exp2) (Exp3)

FM1 Non-conforming material M MH MH
FM2 Wrong die MH VH M
FM3 Wrong program MH MH H
FM4 Excessive cycle time M M M
FM5 Wrong process M VH H
FM6 Damaged goods M L H
FM7 Wrong part M M H
FM8 Incorrect forms M H H
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Based on the ranked final failure modes in Table 4, it can be seen from the table
that FM8 has been evaluated to be the critical mode with the rank value of 0.728. This
is followed by FMs Fm7, FM3, FM2, FM6, FM4, FM1 and FM5 which are ranked
with scores of 2.400, 2.879, 3.297, 5.401, 5.604, 5.907 and 6.331 respectively.

5 Conclusion

Fuzzy Linguistic expressions in group decision making has been considered by several
authors.

However, the review of the group decision making literature identified research
need for the provision of the capability of linguistic credibility weights for the experts’
opinions. In this regard, a T2F-MAGDM model, capable of considering different level
of linguistic credibility weights of experts, is presented in this paper. This model is
considered in three stages, including collecting data from experts, aggregating the data
and ranking the alternatives. Finally, the effectiveness of the proposed T2FLGDM
model has been evaluated by FMEA problem.
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Abstract. We have been working previously with the Differential Evolution
algorithm by dynamically adapting the mutation parameter using a simple fuzzy
system where we have one input as the generations and one output as the
mutation, and we have obtained good results with this modification for simple
problems. However, our new goal is to include diversity as another the input to
the fuzzy system, this is an Euclidean distance, which will help us to know if the
individuals of the population are separated or near in the search space in other
words is the exploration and the exploitation in the search space. This work is
the beginning of an investigation to be able to adapt the diversity variable in the
best form in the Differential Evolution algorithm just as our previous work the
output of the new fuzzy system will be the mutation variable of the Differential
evolution algorithm. For this article we work with a set of simple benchmark
functions in order to observe the behavior of this new fuzzy system.

Keywords: Differential evolution algorithm � Fuzzy differential evolution �
Diversity and mutation

1 Introduction

In the literature there are numerous works in which the algorithm of Differential
Evolution (DE) is used in different areas of study. We in particular use the Differential
Evolution algorithm and make dynamic one of its parameters, in this case mutation
with the help of fuzzy logic and thus apply it to benchmark functions as the first field of
research.

The use of fuzzy logic in metaheuristics has recently become an important field of
investigation, as there are numerous works that demonstrate this contribution, and next
we mention some cases in which fuzzy logic is included to dynamically make some
parameter of the algorithm: Imperialist Competitive Algorithm with Fuzzy Logic for
Parameter Adaptation [2], Fuzzy finite element model updating using metaheuristic
optimization algorithms [3], Recent advances on the use of meta-heuristic optimization
algorithms to optimize the type-2 fuzzy logic systems in intelligent control [4], Recent
advances on the use of meta-heuristic optimization algorithms to optimize the type-2
fuzzy logic systems in intelligent control [5], Fuzzy Dynamic Adaptation of Parameters
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in the Water Cycle Algorithm. In Nature-Inspired Design of Hybrid Intelligent Systems
[7], Dynamic fuzzy logic parameter tuning for ACO and its application in TSP
problems [8], An Adaptive Fuzzy Control Based on Harmony Search and Its Appli-
cation to Optimization [10], A New Fuzzy Harmony Search Algorithm Using Fuzzy
Logic for Dynamic Parameter Adaptation. Algorithms [11], A Study of Parameters of
the Grey Wolf Optimizer Algorithm for Dynamic Adaptation with Fuzzy Logic [12], A
Review of Dynamic Parameter Adaptation Methods for the Firefly Algorithm [13],
Evolutionary method combining particle swarm optimization and genetic algorithms
using fuzzy logic for decision making [14] and Performance analysis of researchers
using compensatory fuzzy logic [15].

On the other hand we have as inspiration to our work some works where the
diversity variable was used to improve the performance of the respective algorithm, to
mention some we have: Optimal design of fuzzy classification systems using PSO with
dynamic parameter adaptation through fuzzy logic [6], Statistical Analysis of Type-1
and Interval Type-2 Fuzzy Logic in dynamic parameter adaptation of the BCO [1] and
Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy
dynamic parameter adaptation [4].

Our paper is organized the following form: Sect. 2 describes the Differential
Evolution algorithm. Section 3 describes the methodology using the fuzzy logic
approach. Section 4 presents the experimentation with the Benchmark function.
Section 5 finally offers some Conclusions.

2 The Differential Evolution Algorithm

Differential Evolution (DE) is an optimization method belonging to the category of
evolutionary computation that can be applied in solving complex optimization prob-
lems. Differential Evolution is basically composed of 4 steps [9]:

• Initialization
• Mutation
• Crossing
• Selection

This is the mathematical form of the DE algorithm:

Population Structure

Px;g ¼ xi;g
� �

; i ¼ 0; 1; . . .;Np; g ¼ 0; 1; . . .; gmax ð1Þ

xi;g ¼ xj;i;g
� �

; j ¼ 0; 1; . . .;D� 1 ð2Þ

Pv;g ¼ vi;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð3Þ
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vi;g ¼ vj;I;g
� �

; j ¼ 0; 1; . . .;D� 1 ð4Þ

Pv;g ¼ ui;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð5Þ

ui;g ¼ uj;I;g
� �

; j ¼ 0; 1; . . .; D� 1 ð6Þ

Initialization

xj;i;0 ¼ randj 0; 1ð Þ � bj;U�bj;L
� �þ bj;L ð7Þ

Mutation

vi;g ¼ xr0;g þ F � xr1;g�xr2;g
� � ð8Þ

Crossover

ui;g ¼ uj;i;g
� � ¼ vj;i;g if randj 0; 1ð Þ�Cr or j ¼ jrand

� �
xj;i;g otherwise

�
ð9Þ

Selection

xi;gþ 1 ¼ ui;gif f ui;g
� �� f xi;g

� �
;

xi;g otherwise:

�
ð10Þ

3 Methodology

We work in this paper on the Fuzzy Differential Evolution algorithm (FDE) with which
it worked previously, but now a new fuzzy system was implemented in which a new
input variable is included, which is the diversity measure. The main idea is to be able to
use the diversity to be able to control the exploration and exploitation of individuals in
the search space in the differential evolution algorithm.

Figure 1 shows the form in which the fuzzy system is implemented in the flow
diagram of the Differential Evolution algorithm to make the mutation parameter
dynamic.

The fuzzy system is constructed by two inputs which are the generations which are
calculated in Eq. 11 and the diversity is the second input, which is calculated with
Eq. 12.
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Generations ¼ Current Generations
Maximun of Generations

ð11Þ

Diversity S tð Þð Þ ¼ 1
nS

XnS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1
ðxij tð Þ � xj tð ÞÞ2

r
ð12Þ

where Eq. 1, is the current generations and is defined by the number of generations
elapsed and maximum number of generations is defined by the number of generations
established for DE to find the best solution. In Eq. 2, S is the population of the DE; t is
the current time, ns is the size of the individuals, i is the number of the individual, nx is
the total number of dimensions, j is the number of the dimension, xij is the j dimension
of the individual i, xj is the j dimension of the current best individual of the individuals.
The structure of the fuzzy system is shown in Fig. 2.

Fig. 1. Scheme of the proposed method
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The inputs and the output are granulated into three membership functions which are
triangular, Fig. 3 represents the membership functions and the parameters of each are
described below:

Generations:

• M. F.1 = Low [−0.5 0 0.5]
• M. F.2 = Medium [0 0.5 1]
• M. F.3 = High [0.5 1 1.5]

Fig. 2. Structure of the fuzzy system

Fig. 3. Representation of the membership functions
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Diversity:

• M. F.1 = Low [−0.5 0 0.5]
• M. F.2 = Medium [0 0.5 1]
• M. F.3 = High [0.5 1 1.5]

Mutation F parameter:

• M. F.1 = Low [−0.5 0 0.5]
• M. F.2 = Medium [0 0.5 1]
• M. F.3 = High [0.5 1 1.5]

Figure 4 represents the rules of the fuzzy system and Fig. 5 shows the surface of
the interval-type 2 fuzzy logic system.

Fig. 4. Rules for the fuzzy system

Fig. 5. Surface of the fuzzy system
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4 Results of the Experiments

For this paper we work with a set of 6 Benchmark functions, the global minimum is
zero. Table 1 represents the set of functions used to perform the experiments, the search
domain, the global minimum and equation for the function.

The parameters for the performed experiments are shown in Table 2, where NP is the
size of the population, D is the dimension of each individual, F ismutation and is dynamic
by the fuzzy system, CR is the crossover and GEN are the generations which we only use
1000 and 2000 since from these generations we see difference in the results [9].

Experiments were performed with the new fuzzy system, which we will call DEFS2
(Differential Evolution Fuzzy System 2), since it is the second version of the algorithm
using a fuzzy system, we take as reference the previous work [12] that we performed
where experiments were performed with the original algorithm and the first fuzzy
system which we will call DEFS1 (Differential Evolution Fuzzy System 1).

In Table 3 we can note that in all case for the set of benchmark functions the
performance has been improved when the diversity input variable is used in the fuzzy

Table 1. Characteristics of Benchmarks functions

Function Search domain f min Equation

Sphere [−5.12, 5.12]n 0
f ðxÞ ¼ Pn

i¼1
X2
i

Griewank [−600, 600]n 0
f ðxÞ ¼ 1

4000

Pn
i¼1

X2
i �

Qn
i¼1

cosð xiffi
i

p Þþ 1

Schwefel [−500, 500]n 0
f ðxÞ ¼ Pn

i¼1
�xi sinð

ffiffiffiffiffiffijxij
p Þ

h i
Rastringin [−5.12, 5.12]n 0

f ðxÞ ¼ 10nþ Pn
i¼1

½x2i � 10 cosð2pxiÞ�

Ackley [−15, 30]n 0
f ðxÞ ¼ a � expð�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

X2
i Þ

s
� expð1n

Pn
i¼1

cosðcxiÞÞþ aþ expð1Þ

Rosenbrock [−5, 10]n 0
f ðxÞ ¼ Pn�1

i¼1
½100ðxiþ 1 � x2i Þ2 þð1� xiÞ2�

Table 2. Parameters of the experiments

Parameters

NP = 250
D = 50
F = dynamic
CR = 0.1
GEN = 1000 and 2000
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system (DEFS2), compared to original algorithm and the first fuzzy system (DEFS1)
which contains only one input and one output.

5 Conclusions

From the results summarized in Table 3 we can conclude that the use of the diversity
variable gives an improvement to the results obtained for the set of benchmark func-
tions. Of course we cannot yet say that this fuzzy system is the optimal one for the
Differential Evolution algorithm, as we cannot say that the rules, membership functions
or input and output variables we have in EDFS2 are optimal. We need more experi-
mentation, but it is a good start, we just need to test this new fuzzy system in more
complex functions such as the ones in the CEC2015 set.

What we can affirm is that the realization of a more complete fuzzy system
improves the results obtained for this set of functions.
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Functions Using the Fuzzy Harmony Search
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Abstract. At present the use of fuzzy systems applied to problem solving is
very common, since the use of linguistic variables is less complex when solving
a problem. This article presents a study of the use of Type-1 and interval Type-2
fuzzy system applied to the solution of problems of optimization using meta-
heuristic algorithms. There are many types of algorithms that mimic social,
biological, etc. behaviors. In this case the work focuses on the metaheuristic
algorithms in specific the fuzzy harmony search algorithm (FHS), the meta-
heuristic algorithms use a technique to obtain a suitable exploration in a definite
space to finish with exploitation around the best position found; with this it is
possible to obtain a good solution of the problem. In particular, it was applied to
11 mathematical reference functions using different numbers of dimensions.

Keywords: Metaheuristic algorithms � Harmony search � Type-1 fuzzy logic �
Type-2 fuzzy logic � Dynamic parameter adaptation

1 Introduction

The use of fuzzy system at present is increasing as they take advantage of the concepts
of fuzzy sets, these sets use terms and concepts that are easily understood by people and
in turn these apply them to solve all kinds of problems of life real. According to [16,
19, 20], fuzzy logic was conceived by Zadeh in 1965, on the basis of a theory of fuzzy
sets, which differ from traditional ones, because they considered the degree of mem-
bership. The membership degree of is represented by a membership function, or
membership, which evaluates the input, and certain predefined rules, assigns the degree
of membership to a fuzzy set. These values range from 0 to 1, with 0 none and 1 total
membership. There is another classification called Type-2 fuzzy system, which were
theoretically proposed by Zadeh in 1975 [7–10]. The reason for the original fuzzy
system to evolve is to consider levels of uncertainty, expanding its scope. In Type-2
fuzzy system the membership functions can nowreturn a range of values that varies
depending on the uncertainty involved, not only in the input but also based on the same
membership. Type-2 fuzzy system use a footprint of uncertainty and it is the value of
the function at each point in the two-dimensional space. In Type-1 we have uncertainty
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only in the antecedent of the rule, whereas in Type-2 we have uncertainty both in the
antecedent and in the consequent of the sentence.

This work is based on metaheuristic algorithms which are used a lot to solve real
life problems using evolutionary computation techniques, system, neural networks,
data mining, etc. as can be observed in [1, 2, 15, 17, 18]. In this case we used the
metaheuristic called the harmony search algorithm [4], which is inspired by the music
and its aim is to imitate jazz improvisation, some of the most relevant works of the
present time with this method are the following [3, 5, 6, 11, 12].

In previous works [13, 14] a fuzzy harmony search algorithm was developed
applied to benchmark mathematical functions, achieving with this the control of
internal parameters of the algorithm by Type-1 and interval Type-2 fuzzy system,
removing the update of these parameters manually. It is worth mentioning that in these
works only the parameters are updated as the number of iterations advance.

The objective of this research is to analyze changes in the fuzzy harmony search
algorithm to improve it, mainly with new input parameters and with techniques that
allow an improvement to the method to obtain better solutions.

The document is structured as follows: Sect. 2 describes the problem description
and the proposed method, Sect. 3 presents the benchmark functions and the results of
the simulation, Sect. 4 presents the statistical test and finally in Sect. 5 the conclusions
are presented.

2 Proposed FHS Algorithm

This section describes the main contribution of this work, as mentioned above this
paper focuses on a metaheuristic based on music, in specific we refer to the fuzzy
harmony search algorithm (FHS), which is based on the original algorithm. FHS
dynamically adjusts internal parameters of the previous algorithm to a detailed study of
the original method using a Type-1 fuzzy system as the number of iterations pro-
gresses. The difference with previous work is to incorporate a second input to the
Type-1 and interval Type-2 fuzzy system and combine the two parameters in the
outputs to achieve a more complex method, with which problems are solved more
effectively. In this case the proposed method focused on the minimization of bench-
mark mathematical functions. In the Fig. 1 the diagram of the proposed method can be
observed, in the part of the process of improvisation is executed the adjustment of
dynamic parameters.

Figure 1 described the proposal, in the improvisation step the dynamically adjusted
parameters are the harmony memory accepting (HMR) and pitch adjustment (PArate)
parameters, are responsible for achieving a control of exploitation and exploration
within a specified range.

To achieve the control of exploration and exploitation within a specified range the
proposed method uses two measures in the inputs of the fuzzy system, the first are the
iterations shown in Eq. 1 and the second is the diversity shown in the Eq. 2, with the
purpose of achieving the overall optimum.
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Iteration ¼ Initial Iteration
Final Iterations

ð1Þ

Diversity S tð Þð Þ ¼ 1
nS

XnS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1
ðxij tð Þ � xj tð ÞÞ2

r
ð2Þ

Where Eq. 1, the initial iteration is the current iteration and final iterations are the
maximum iterations. In Eq. 2, S is the harmonies or the population of HS; t is the
current improvisation or time, ns is the size of the harmonies, i is the number of the
harmony, nx is the total number of dimensions, j is the number of the dimension, xij is
the j dimension of the harmony i, xj is the j dimension of the current best harmony of
the harmonies.

The fuzzy system that one used are illustrated in Fig. 2 (Type-1 fuzzy system) and
Fig. 3 (Interval Type-2 fuzzy system). In the two proposed fuzzy system we use as
input the iterations and the diversity and as output the HMR and PArate parameters. In
this case used triangular membership functions were used in all fuzzy system and all
are granulated in three membership functions. The size of the footprint used in the

Start

Add New 
Harmony to 

HM?

Initialization

Update the 
HM

Stop

HMR

PArate

Evaluate New 
Harmony

Termination Criteria 
Satisfied?

No

YES

YESNo

Improvisation
Process

Fuzzy
System

Type-1 and 
Type-2

Fig. 1. Schema of the proposed method
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interval Type-2 fuzzy system was designed symmetrically in each of the membership
functions.

In Fig. 4 there are inputs that are used by each fuzzy system, Fig. 4a and b show
the inputs of Type-1 fuzzy system, Fig. 4c and d show the inputs of the interval Type-2
fuzzy system.

Iterations (3)

Diversity (3)

HMR (3)

PArate (3)

Type-1 FHS

(mamdani)

9 rules

Fig. 2. Type-1 fuzzy system (FHS1).

Iterations (3)

Diversity (3)

HMR (3)

PArate (3)

Type-2 FHS

(mamdani)

9 rules

Fig. 3. Interval Type-2 fuzzy system (FHS2)
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In Fig. 5 shows the outputs used in each fuzzy system, Fig. 5a and b show the
outputs of the Type-1 fuzzy system, it can be observed that granulated three triangular
type membership functions. Figure 5c and d show the outputs of the interval Type-2
fuzzy system.

The rules used in fuzzy system proposed, were created in base knowledge about the
behavior of the algorithm and its parameters, thus achieving explore in low iterations
and exploiting in high iterations (Fig. 6).

3 Simulation Results

The simulations obtained are shown in this section; the proposed method was tested
using the mathematical functions shown in Table 1. For the experiments used the
dimensions between 2, 6 and 1. In maximum of the functions their global optimum is

a) Input 1 (Type-1)   b) Input 2 (Type-1)

c) Input 1 (Type-2)   d) Input 2 (Type-2)
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a) Output 1 (Type-1)  b) Output 2 (Type-1)

c) Output 1 (Type-2)  d) Output 2 (Type-2)
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Fig. 6. Rules for the Type-1 and interval Type-2 fuzzy system
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zero, except for the Shubert and trid function. 1000 iterations and 50 runs were used for
each Type-1 and interval Type-2 method.

In Table 1, the benchmark functions with which the proposed method was tested
this article, also the range used, dimensions, and its global minimum for each function
is shown.

50 runs were performed for each mathematical function using the original HS,
Type-1 FHS and interval Type-2 FHS methods. The average was obtained for each
function as shown in Table 2.

In Table 2 the averages of the 50 experiments applied to each function are shown,
note the improvement in the use of the intervalType-2 FHS compared to the original
and the Type-1 FHS algorithms, in most cases better results are achieved.

Table 1. Benchmark functions and parameters

Function Dimension Search domain Global minimum

Rosenbrock 10 [−5, 10] 0
Sphere 10 [−5.12, 5.12] 0
Hump 10 [−5, 5] 0
Rastrigin 10 [−5.12, 5.12] 0
Schwefel 10 [−500, 500] 0
Shubert 2 [−10, 10] −186.7309
Sum square 10 [−10, 10] 0
Zakharov 10 [−5, 10] 0
Griewank 10 [−600, 600] 0
Powel 10 [−4, 5] 0
Trid 6 [−36, 36] −50
Trid 10 [−100, 100] −200

Table 2. Values obtained in each function

Function HS Type-1 FHS Type-2 FHS

Rosenbrock 2.57E−02 9.16E−03 5.67E−08
Sphere 1.00E+01 1.07E−02 0.00E+00
Hump −1.02E+00 6.49E−01 0.00E+00
Rastrigin 1.07E+00 1.59E−02 6.44E−08
Schwefel 1.87E+01 4.82E+00 1.27E−07
Shubert −1.85E+02 −1.86E+02 −1.86E+02
Sum square 1.47E−01 8.35E−03 3.86E−10
Zakharov 1.65E−01 2.38E−03 8.64E−10
Griewank 3.90E−01 2.11E−01 1.05E−10
Powel 2.66E+00 0.00E+00 0.00E+00
Trid −1.51E+01 −1.98E+00 −3.31E+01
Trid 6.83E−01 −7.10E−03 −6.03E+00
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4 Statistical Test

In this section the Z test was performed, comparing the results obtained from the 50
experiments in the 11 mathematical functions presented in Sect. 3. This test demon-
strates that the Type-2FHS method obtains significant evidence in comparison to the
Type-1FHS method. The parameters used are shown in the Table 3.

The alternative hypothesis indicates that the Type-2 FHS method is smaller than the
Type-1 FHS method and the null hypothesis indicates otherwise, with rejection region
for the lower values of −1.645. The equation of the z-test is as follows:

Z ¼ ðX1 � X2Þ � ðl1 � l2Þ
rX1�X2

ð3Þ

Table 4 show the Z values, “S” means that is found evidence of significant and “N.
S” refers to which not is found evidence of significant. The results shown in this table
are an average of 50 experiments in each mathematical function applied to each method.
The mean and standard deviation of each function and the Z value obtained are shown.

Table 3. Parameters for the statistical test

Parameter Value

Level of significance 95%
Alpha 0.05%
Ha µ1 < µ2
H0 µ1 � µ2
Critical value −1.645

Table 4. Results for the statistical test with Type-1 FHS and Type-2 FHS

Function Type-1 FHS Type-2 FHS Z-value Evidence
Mean Standard

deviation
Mean Standard

deviation

Rosenbrock 9.16E−03 2.58E−02 5.67E−08 1.71E−07 −2.51 S
Sphere 1.07E−02 1.09E−02 0.00E+00 0.00E+00 −7.04 S
Hump 6.49E−01 5.00E−01 0.00E+00 0.00E+00 −9.17 S
Rastrigin 1.59E−02 4.52E−02 6.44E−08 1.24E−07 −2.47 S
Schwefel 4.83E+00 1.32E+01 1.27E−07 0.00E+00 −2.57 S
Shubert −1.86E+02 1.39E+00 −1.86E+02 1.44E−13 0 N.S
Sum square 8.35E−03 1.48E−02 3.86E−10 9.81E−10 −3.97 S
Zakharov 2.38E−03 3.48E−03 8.64E−10 1.99E−09 −4.78 S
Griewank 2.11E−01 2.73E−01 1.05E−10 1.85E−10 −5.41 S
Powel 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0 N.S
Trid −1.98E+00 9.34E−02 −3.31E+01 6.57E+00 −23.68 S
Trid −7.10E−03 3.45E+00 −6.03E+00 6.00E+01 −0.70 N.S
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5 Conclusions

In this paper the Type-1 and interval Type-2 FHS algorithm is proposed. This method
applies to 11 mathematical reference functions for validation, achieving in most cases
to obtain better results when using interval Type-2, only in the trid function is not
achieved reach the global minimum, therefore the future were to test this feature with
more iterations and optimizing FOU since in this case was created symmetrically
manually. It can be verified that the greater complexity interval Type-2 manages to
maintain better results in some cases. Unlike the previously created methods based on
this same algorithm, this proposal uses two inputs the “iterations” and “diversity” and
two outputs the HMR and PArate to achieve total control over the exploration and
exploitation of the algorithm.
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Abstract. In this paper a new Modular Neural Network (MNN) optimization is
proposed, where a particle swarm optimization with a fuzzy dynamic parameter
adaptation designs optimalMNNs architectures. This design consists in to find the
number of hidden layers for each sub module with their respective number of
neurons, learning method, error goal and the percentage of data used for the
training phase. The proposedmethod is applied to pattern recognition based on the
iris biometrics and has as objective function to minimize the error of recognition.
The proposed fuzzy adaptation seeks to avoid stagnation of error of recognition
during iterations updating some PSO parameters such as w, C1 and C2.

1 Introduction

The automated recognition of individuals based on their biological and behavioral
characteristics such as face, iris, ear, voice or gait is known as biometric recognition
[10]. This area allows having a greater control about who has access to information or
area. System using biometric recognition give some advantages over traditional
authentication, for example a biometric measure cannot be forgotten, stolen, and are
difficult to falsify as a password or a credential [15, 19]. The intelligent techniques are
divided into two categories: traditional hard computing techniques and soft computing
techniques. Within soft computing category, there are techniques such as fuzzy logic,
neural networks, genetic algorithms, particle swarm optimization, ant colony system,
bat algorithm and data mining among others [3, 5, 6]. A hybrid intelligent system is
combination of two or more of these techniques, this kind of systems emerge because
each individual technique has limitations, for example a neural network can simulate a
human brain but for its proper operation its architecture should be design by an opti-
mization technique [1]. These systems have been proposed in a lot of works where the
effectiveness that they provide is demonstrated [8, 9, 21]. In this paper modular neural
networks, fuzzy logic and particle swarm optimization are combined and its effec-
tiveness is proved. This paper is organized as follows: Sect. 2 contains the basic
concepts used in this research work. The general architecture of the proposed method is
shown in Sect. 3. Section 4 presents experimental results and the conclusions of this
work are presented in Sect. 5.
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2 Basic Concepts

In this section to understand the proposed method, the basic concepts used in this
research work are presented.

2.1 Modular Neural Networks

A mathematical representation of the human neural architecture is an artificial neural
network (ANN) which can acquire, store, and utilize experimental knowledge [22, 25].
An ANN reflects human abilities such as learning and generalization. This technique
belongs to the field of artificial intelligence and is widely applied in research because it
can model non-linear systems [2]. A modular neural network (MNN) emerges when the
computation performed by the network can be decomposed into two or more modules
each module is an artificial neural network which carries out a distinct identifiable
subtask, these modules are integrated together via an integrating unit [4, 20]. Different
works have used MNNs showing sufficient evidence that the learning improve com-
pared with a single ANN [14, 16].

2.2 Fuzzy Logic

The concept of fuzzy logic (FL) was first proposed by Zadeh in 1965. Fuzzy logic
allows to computers in making decisions in a way which resembles human behaviors
[23, 24]. Fuzzy logic is a useful tool for modeling complex systems and deriving useful
fuzzy relations or rules. However, it is often difficult for human experts to define the
fuzzy sets and fuzzy rules used by these systems. The basic structure of a fuzzy
inference system consists of three conceptual components: a rule base, which contains
a selection of fuzzy rules, a database (or dictionary) which defines the membership
functions used in the rules, and a reasoning mechanism that performs the inference
procedure [11, 17].

2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995
[13], this optimization technique is formerly inspired by simulation of the social
behavior of animals such as fish schooling and bird flocking. This algorithm doesn’t
have any leader in their group or swarm, unlike other algorithms. The flocks achieve
their best condition simultaneously through communication among members who
already have a better situation or position. The member of the flock with better con-
dition or position will inform it to its flocks and the others will move simultaneously to
that place. Particle swarm optimization consists of a swarm of particles, where particle
represent a potential solution [18]. The PSO essentially is based on animal’s behavior
to solve optimization problems [12]. The pseudo code of this algorithm can be rep-
resented as Fig. 1 shows.
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3 Proposed Method

The proposed method design optimal MNNs architectures to pattern recognition based
on iris biometric measure. The proposed method consists in the division of information
(database) into 3 sub modules. Different number of persons will be learned by each sub
module, besides of changing number of images for training and percentage of data for
the training phase. To perform an optimal division of the information previously
described and other MNNs parameters a particle swarm optimization with a fuzzy
dynamic parameters adaptation is proposed. Figure 2 shows the architecture of the
proposed method for the modular neural network. For the integration of responses the
winner takes all method was used.

Fig. 1. Pseudo code of PSO

Fig. 2. Architecture of proposed method for MGNN optimization
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3.1 Particle Swarm Optimization with Fuzzy Dynamic Parameters
Adaptation

As any optimization technique, PSO has parameters that allow moving its population to
find optimal results. This work is focused in w, C1 and C2. The value w can facility
exploration and exploitation. The values of C1 and C2 are the cognitive and social
components that influence the velocity of each particle. These parameters are usually
initialized: to trial and error, depending of our experience or depending area of
application. The proposed particle swarm optimization uses a fuzzy inference system
(FIS) to update these PSO parameters updating them before update velocity and
position of the particles. In a PSO without this fuzzy adaptation C1 and C2 remain fixed
throughout the evolution, meanwhile w is a decreasing value during an evolution. If the
parameters are not set correctly the evolution can have a stagnation in a local minimum,
for this reason the proposed method also seeks to update these parameters to improve
the performance of the PSO during its evolution. In Fig. 3 the pseudo code of the
proposed PSO is shown, where the proposed update of parameters can be observed.

The initial parameters for the PSO can be observed in Table 1, as it was previously
mentioned C1, C2 and w are updated before update velocity and position of the particles
but at the start of the evolution they have these values.

Fig. 3. Pseudo code of proposed PSO

Table 1. Initials parameters of the PSO

Parameter Number

Particles 10
Maximum iterations 30
C1 2
C2 2
w 0.8
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The proposed fuzzy inference system is shown in Fig. 4. This fuzzy inference
system has 2 inputs: iterations (number of iterations without changing the recognition
error) and the actual value of inertia weight (w), as outputs: update values for C1, C2

and w. This FIS has 9 fuzzy rules. The fuzzy variables are shown in Fig. 5.

The range of each variable of the fuzzy inference system is shown in Table 2.

To evaluate the proposed optimization as objective function the minimization of the
error recognition is used. The fitness function can be expressed as:

Fig. 4. Fuzzy inference system for the PSO with dynamic parameters adaptation

Fig. 5. Variables of the fuzzy inference system

Table 2. Range of variables for the fuzzy inference system

Variable Range

Iteration 1 to 5
ActualW 0.1 to 1
C1 0.5 to 2
C2 0.5 to 2
UpdateW 0.1 to 1
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i¼1

Xni

j¼1

Xj

 !
=ni

 !
ð1Þ

Where m is 3 (number of sub modules), Xj is 0 if the module provides the correct result
and 1 if not, and ni is total number of data points used for testing in the corresponding
module. As it mentioned above, the fitness function of the PSO is to minimize the error
recognition and to achieve this objective some parameters such as percentage of data
for training phase, error goal, learning algorithm and number of hidden layers with their
number of neurons are optimized. The minimum and maximum parameters used to
establish the search space are shown in Table 3.

3.2 Iris Database

The benchmark database used to prove the proposed method is of human iris from the
Institute of Automation of the Chinese Academy of Sciences was used [7]. In this
database each person has 14 images (7 for each eye). Each image has dimensions of
320 � 280, JPEG format. The first 77 persons were used. Figure 6 shows examples of
the human iris images from CASIA database.

4 Experimental Results

To prove the advantages of the proposed PSO, the achieved results are compared with a
PSO without a fuzzy dynamic parameters adaptation. For each PSO, 20 evolution
where performed. The Images that were used for the training phase are shown in the

Table 3. Search space

Parameters of MNNs Minimum Maximum

Modules (m) 1 10
Percentage of data for training 50 80
Error goal 0.000001 0.001
Learning algorithm 1 3
Hidden layers (h) 1 5
Neurons for each hidden layers 20 300

Fig. 6. Examples of the human iris images from CASIA database
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column called “images for training”. In the column called “Number of neurons”, the
number of neurons for each hidden layer of each sub module is shown. In the column
called “Persons per module” is shown how our method changes the size of each sub
module (number of persons for sub module). The percentage and the error of recog-
nition obtained are shown in the column called “Recognition rate”. As it was previ-
ously mentioned, for the integration of responses the winner takes all method was used.

4.1 PSO Without Fuzzy Dynamic Parameters Adaptation

In this test, the MNNs architectures are optimized using a particle swarm optimization
without a fuzzy dynamic parameters adaptation. This PSO optimize the same param-
eters as the proposed PSO (percentage of data for training phase, error goal, learning
algorithm and number of hidden layers with their number of neurons). 20 evolutions
were performed using also as initial parameters those shown in the Table 1. The 5 best
results for this test are shown in Table 4. The best evolutions are #7 and #13 using 77%
of the images for the training phase (11 images), with a rate of recognition of 98.27%.

In Fig. 7 the graph of the convergence of the evolution #13 is shown. Table 5
shows a summary of this optimized test.

4.2 PSO Without Fuzzy Dynamic Parameters Adaptation

In this test, the particle swarm optimization with a fuzzy dynamic parameters adap-
tation is used. This PSO optimize the same parameters as the simple PSO (with a fuzzy
adaptation). Also 20 evolutions were performed using as initial parameters those shown
in the Table 1 but updating them before update velocity and position of the particles.

Table 4. The best results for iris (simple PSO)

Ev. Images for training Num. of neurons Persons per module Rec. Rate/error

2 75%
(1,2,3,4,5, 6,7,8,9,13 and 14)

43,124,54,47
44
238,29,73

Module #1(1 to 4)
Module #2(5 to 75)
Module #3(76 to 77)

97.84%
(0.0216)

3 75%
(1,2,3,4,5, 6,7,8,9,13 and 14)

125,50
22,57,77
134,111

Module #1(1 to 31)
Module #2(32 to 54)
Module #3(55 to 77)

97.84%
(0.0216)

5 77%
(1,2,3,5, 6,8,11,12,13 and 14)

148
123,60
63,50

Module #1(1 to 3)
Module #2(4 to 20)
Module #3(21 to 77)

97.84%
(0.0216)

7 77%
(1,2,3,5,6,7,8,9,11,13 and 14)

132
69
46,81,173,69,59

Module #1(1 to 37)
Module #2(38 to 54)
Module #3(55 to 77)

98.27%
(0.0173)

13 77%
(1,2,3,4,5, 6,8,10,11,13 and 14)

114
28,80,40
247,30

Module #1(1 to 38)
Module #2(39 to 63)
Module #3(64 to 77)

98.27%
(0.0173)

110 D. Sánchez et al.



The 5 best results for this test are shown in Table 6. The best evolutions are #3 and
#20, using 11 images for the training phase, with a rate of recognition of 98.70%.

Fig. 7. Convergence evolution #13

Table 5. Summary of optimized results (PSO without fuzzy adaption)

Recognition rate

Best 98.27%
Average 97.52%
Worst 96.97%

Table 6. The best results for iris (simple PSO)

Ev. Images
for training

Num. of neurons Persons
per module

Rec. Rate/Error

2 79%
(1,2,3,4,5, 6,7,8,11,13 and 14)

80,20
91
36,98,42

Module #1(1 to 22)
Module #2(23 to 38)
Module #3(39 to 77)

98.27%
(0.0173)

3 77%
(1,2,3,4,5, 6,8,10,11,13 and 14)

215,111
116,50
224,60,78

Module #1(1 to 37)
Module #2(38 to 56)
Module #3(57 to 77)

98.70%
(0.0130)

5 79%
(1,2,3,4,5, 6,8,10,12,13 and 14)

95,40
202
134,23,30

Module #1(1 to 36)
Module #2(37 to 40)
Module #3(41 to 77)

98.27%
(0.0173)

7 75%
(1,2,3,4,5,6,8,10,11,13 and 14)

69
100,145
218,100,30

Module #1(1 to 16)
Module #2(17 to 50)
Module #3(51 to 77)

98.27%
(0.0173)

20 78%
(1,2,3,4,5,6,8,11,12,13 and 14)

80,110
69,50,75
153

Module #1(1 to 13)
Module #2(14 to 51)
Module #3(52 to 77)

98.70%
(0.0130)
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In Fig. 8 the graph of the convergence of the evolution #20 is shown. Table 7
shows a summary of this optimized test.

As Tables 5 and 7 shown, best results are obtained when the proposed PSO is used
and the proposed PSO also allows not to stagnant for many iterations with the same
error of recognition.

5 Conclusions

In this paper, a particle swarm optimization with a fuzzy dynamic parameters adap-
tation was proposed. This optimization has as fitness function to minimize the error of
recognition and design optimal MNN architectures. The parameters optimized were
percentage of data for training phase, error goal, learning algorithm and number of
hidden layers with their number of neurons.

Two optimized tests were performed to compare the proposed method. In the first
test a PSO without a fuzzy adaptation were used, and in the second test, the proposed
PSO with a fuzzy adaptation were used. The achieve results shown that the proposed
method achieves better results (best, average and worst) and allows not to stagnant for
many iterations with the same error of recognition as the PSO without fuzzy adaptation.

Fig. 8. Convergence evolution #20

Table 7. Summary of optimized results (PSO with fuzzy adaption)

Recognition rate

Best 98.70%
Average 98.05%
Worst 97.40%
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As future work other designs of fuzzy inference systems for the parameters adaptation
will be proposed to significantly increase the difference between optimizations results.
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Abstract. In this paper a new metaheuristic based on coping strategies of plants
with a fuzzy approach is presented. In this work the authors propose a variant of
the original algorithm of the plants with a fuzzy approach, The new proposal
consists of adding fuzzy logic to adapt the parameters of the algorithm
dynamically. In this work, a fuzzy controller is responsible of find the optimal
values of the variables a, b, d, k, in order to help the algorithm to have a greater
performance in solving problems, in the previous works the authors apply the
original algorithm to optimization problems, and the parameters of the variables
are moved manually, however the results obtained are acceptable in some cases,
but we consider that they can be improved using the intelligent technique for the
adaptation of parameters.

Keywords: Fuzzy logic � Lotka and Volterra model � Mechanism � Plants �
Self-defense � Lévy flights

1 Introduction

In the literature, there are many optimization algorithms that have been applied to
multiple problems in some cases are successful and in others not, each algorithm is
selected depending on the problem to solve, the meta-heuristics proposed use as basis
the predator-prey model, these equations are used to model the behavior of two
interacting populations [2, 4–7, 9, 11, 12, 15].

The main contribution of this work is a variant of the algorithm [6, 9, 10, 14, 16] we
propose to use an intelligent technique to help us to find the optimal values for the
variables of the predator prey equations. The dynamic adjustment of parameters has
been a technique highly recommended by the authors who use it, the algorithms that
use the fuzzy logic have increased the level of performance and stability.

In recent years, the fuzzy logic in bio-inspired algorithms had a very relevant
impact, these are some of the algorithms that have used it in optimization problems.
Ant Colony Optimization (ACO), Bee Colony Optimization (BCO) [3], Particle Swarm
Optimization (PSO) [21], Genetic Algorithm (GA), Gravitational Search Algorithm
(SGA) [11]. Also fuzzy logic has been used to optimize some parameters in neural
networks for optimal learning.
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2 Coping Techniques of the Plants in the Nature

In nature, plants and animals have different techniques of coping, in this case we are
only considering the mechanisms of self-defense of the plants, these techniques of
self-defense are techniques developed with the objective of protecting the individual
from different threats such as: climatic conditions, natural enemies as predators.

In [6], the authors describe some of the mechanisms of self-defense of plants, in
special ones used as inspiration for this proposal, all living beings have different types
of biological reproduction, in this case we only three (clone, graft, pollination). In [6]
we can observe the results obtained using different biological reproduction methods
used in this algorithm. In Fig. 1 we can see a process illustration of the plants when
attacked by a predator.

In Fig. 1 we can observe the behavior of the prey species when attacked by the
predatory species, when the plant detects the presence of an aggressor organisms, can
use some of these strategies of defense, see Fig. 1.

3 Model Equations

The predator-prey [23] equations are a biomathematical model that models the growth
of two populations interacting with each other, the model is formed by the following
Eqs. (1) and (2) [13].

dx
dt

¼ ax� bxy ð1Þ

Fig. 1. Self-defense process
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dy
dt

¼ �dxyþ ky ð2Þ

The definition of the variables (a, b, d, k) can be observed in: [6, 22, 23].

4 Case Study

In this papers the authors of the algorithm of plant defense mechanisms propose a new
variant of this metaheuristic, the proposed new variant is used to optimize a set of
benchmark mathematical functions CEC 2015 [8, 20], the functions are shown in
Table 1.

Table 1. Mathematical functions

Type No. Function name

Unimodal 1 Rotated high conditioned elliptic function
Functions 2 Rotated Cigar function
Simple 3 Shifted and rotated Ackley’s function
Multimodal 4 Shifted and rotated Rastrigin’s function
Functions 5 Shifted and rotated Schwefel’s function

Fig. 2. Fuzzy controller
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The authors propose to use fuzzy logic to find the best values of the variables of the
model of prey predator automatically. Fuzzy logic is a novel technique to help algo-
rithms solve complex optimization problems [1, 17–19].

The goal of using fuzzy logic in the algorithm is to improve its exploration and use
the exploit at appropriate times, the fuzzy logic controller used in this work is of type
Mamdani, with 2 input variables and 4 output variables. In Fig. 2 we can observe the
characteristics of the fuzzy logic controller used in this work.

Figure 2 shows the characteristics of the controller used, the controller has two
inputs, with three Gaussian type membership functions, granulation in, low, medium
and high, in a range of 0–1, The controller used has four outputs of triangular type,
granulated in three membership functions, high medium and low. This controller is
used to dynamically change the values of the variables (a, b, d, k). These variables
represent the birth rate and mortality of the plants and the birth rate of predators and the
amount of depredation.

5 Simulation

The proposal with fuzzy approach is tested with functions CEC2015 [8, 20] for 2 and
10 variables, these functions have a high level of complexity, the name of the functions
used in this work are shown in Fig. 1. In Table 1 we consider it important to show the
following data, size of the population of plants (prey) = 300, predators = 250, number
of iterations = 500. In Tables 2 and 3 we can observe the 30 experiments performed for
the set of functions shown in Table 1. The authors consider it important to show the
following data obtained from the simulations, the best, the worst, standard deviation
and average for each function evaluated.

Table 2. Results for 2 dimensions

Function Results
a b k d Best Worse r Average

F1 Dynamic 9.07E−02 2.36E+01 6.40E+00 6.280E+00
F2 Dynamic 9.07E−02 2.36E+01 6.40E+00 6.280E+00
F3 Dynamic 1.10E−02 1.81E−01 4.94E−02 7.94E−02
F4 Dynamic 8.42E−06 3.22E−03 8.77E−04 7.858E−04
F5 Dynamic 1.13E−04 8.14E−02 2.25E−02 1.90E−02

Table 3. Results for 10 dimensions

Function Important results of the algorithm
a b k d Best Worse r Average

F1 Dynamic 1.72E+06 1.04E+07 2.16E+06 5.87E+06
F2 Dynamic 3.74E+08 2.23E+09 4.28E+08 1.20E+09
F3 Dynamic 2.01E+01 2.05E+01 1.00E−01 2.03E+01
F4 Dynamic 2.50E+01 4.95E+01 6.67E+00 4.01E+01
F5 Dynamic 5.66E+02 1.11E+03 1.31E+02 9.11E+02
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In Table 1, we can observe the performance of the algorithm using fuzzy logic, we
can observe that the results improved considerably. Our proposal achieves acceptable
results in functions F3, F5. In Table 2 we can observe the results obtained for 10
dimensions, where the best results were obtained in the functions F3, F4, F5. This
algorithm is recent however we have achieved favorable results, we consider that these
results can be improved considering the following data: Perform more experiments and
change the type of membership function of the controller, Change the reproduction
operators, use other combinations of fuzzy rules in the controller and test the algorithm
in other optimization problems such as: optimization of neural networks, fuzzy logic
for mention some.

6 Conclusions

To conclude this work we consider important to mention that the use of intelligent
techniques in bioinspired algorithms has had a great success in recent years, we con-
sider it important to use it in the proposed algorithm and observe the behavior, where
our main contribution is the use of fuzzy logic to automatically adjust the values of the
variables (a, b, d, k) that are responsible for maintaining a balance between the two
populations, controlling the percentage of birth and mortality of the prey and predators,
and other important data. It is important to emphasize that the use of fuzzy logic in this
work considerably improves the performance of the method, achieving favorable
results. This algorithm is recent however we have achieved favorable results, we
consider that these results can be improved considering the following data: Perform
more experiments and change the type of membership function and change the com-
bination of fuzzy rules of the fuzzy controller, Change the reproduction operators, for
mention some.
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Abstract. In this research work, we used the Chemical Reaction Algorithm
(CRA) for solving optimization problems. The used optimization algorithm is
based on an abstraction of chemical reactions. The main goal of the method is to
dynamically adjust the parameters of the reactions in the range from 0.1 to 1.
The impact of using fixed parameters in the CRA is discussed and then a
strategy for efficiently tuning these parameters using fuzzy logic is presented.
The Fuzzy CRA algorithm was successfully applied on different benchmarking
optimization problems. The results of simulations and comparison studies
demonstrate the effectiveness and efficiency of the proposed approach.

1 Introduction

Lofti Zadeh proposed fuzzy logic and rule-based procedures as a means to capture the
human experience and deal with uncertainty. These methods have been applied to
ill-defined industrial processes, since these methods are usually based on experienced
persons who usually obtain good results, regardless of whether they receive imprecise
information [7–10, 13]. The origin of these inaccuracies can be a variation of behavior
in time concerning the application of a control signal and the warning of its effect [2],
nonlinearities in the dynamics of the system or sensor degradation [12]. The processes
in which the fuzzy rule-based approximation has been applied include the automated
process of Operation of a Public Transport System, water tank [1, 11] and sewage
treatment plants [8], among others.

We use the word fuzzy, because fuzzy systems have to be precisely defined and
fuzzy control operates as a non-linear control that is defined with precision. Essentially
what we want to emphasize is that although the phenomenon described by this theory
may be fuzzy, the theory itself is accurate.

The CRA optimization algorithm was proposed by Astudillo et al. [5], and this
algorithm is based on a metaheuristic of a population that does not change, in addition
to applying a generalization of chemical reactions as exploration and exploitation
mechanisms. The algorithm uses chemical reactions by changing at least one of the
substances (element or compound), changing their com-position and sets of properties.
The main scientific contribution of the present work is the application of CRA with
dynamic adjustment of the parameters using fuzzy logic.
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The remaining of this work is organized as follows: Sect. 2 describes the Chemical
Optimization Paradigm used in the present paper. Section 3 define the fundamental
methodology of this work and the benchmark functions used. Section 4 shows the
results of the simulations and comparisons and Sect. 5 presents the conclusions.

2 The CRA Paradigm

The algorithm of chemical reactions was developed by Astudillo et al. in 2011 [6], and
is an algorithm of recent creation. This algorithm is a new paradigm which is inspired
by the nature of the chemical reactions. This algorithm makes the population come
together to find an optimal result in the search space supported by intensifier/diversifier
mechanisms.

One might think that chemical theory and its descriptions are difficult and that have
no relation with the optimization theory, but only the general scheme is taken as the
basis of the chemical reaction optimization algorithm.

Astudillo et al. [3–6], defined the elementary terminology for characterizing and
classifying artificial chemicals. Because the laws of reaction and representation of the
elements/compounds are of statistical and qualitative character, then the algorithm is a
representation of the procedure of the chemical reactions. The initial description of the
elements/compounds depends on the problem. These elements/compounds can be
symbolized as binary, integer, floating, numbers etc.

The relationship between the elements/compounds is indirect: The interaction does
not take into account the rules of interaction and molecular structure and based on this
does not include values of temperature, pH, pressure, etc.

The Chemical reaction algorithm is a metaheuristic that explores all possible
solutions that exist for a defined search space. This optimization algorithm uses an
element (or compound) to represent a possible solution for a problem and the objective
function measures the performance capacity of the element. The algorithm ends when
the objective is achieved or the number of scheduled iterations has been reached.

The CRA does not use the external values (conservation of masses, thermodynamic
characteristics, etc.), and this represents an advantage when compared to other opti-
mization algorithms, as it is a very direct method which takes into account the main
features of chemical reactions (synthesis, decomposition, substitution and double
substitution) to obtain the optimal search space.

2.1 Elements or Compounds

The algorithm is an analogy to natural chemical reactions, therefore it represents a
possible solution to the problem using an element, which is initialized with values that
depend on the problem to solve, and these values can be binary numbers, integers,
floating, etc. These elements will interact with each other indirectly. That is, the
interaction is independent of the actual molecular structure; this approach does not take
into account other molecular properties such as potential and kinetic energies, among
others.
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2.2 Chemical Reactions

A Chemical reaction is a chemical process in which the two substances, the so-called
reactants, by the action of an energy factor, become other substances designated as
compounds. Taking this process into account, chemical reactions as intensifying
(substitution, double substitution reactions) and diversification (synthesis, decompo-
sition reactions) mechanisms can be used. These four chemical reactions considered in
this approach are synthesis, decomposition, single and double substitution. With these
operators new solutions within a defined search space can be explored.

2.2.1 Combination Reactions
In this type of reactions, two of the substances that can be elements or compounds are
combined to form the product. Reactions of this type are classified as combining
synthesis, and are generally represented as follows:

BþX ! BX ð1Þ

2.2.2 Decomposition Reactions
In a decomposition reaction, a single substance decomposes or breaks, producing two
or more distinct substances. The starting material must be a compound and the products
can be elements or compounds. The general form of this equation is the following:

BX ! BþX ð2Þ

2.2.3 Substitution Reactions
In a simple substitution reaction an element reacts with a compound and takes the place
of one of the elements of the compound, producing a different element and an also
different compound. The general formula for this reaction is:

XþAB ! AXþB ð3Þ

2.2.4 Double-Substitution Reactions
In a double substitution reaction, two compounds exchange pairs with each other to
produce distinct compounds. The general form of these equations is [5]:

ABþCD ! ACþBD ð4Þ

The flowchart for this optimization method can be found in Fig. 1, and the fol-
lowing list of steps is presented:

• We start by generating an initial set of elements/compounds.
• We evaluate the original population.
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• Based on the above evaluation, we select some of the elements/compounds to
“induce” a reaction.

• Taking into consideration the result of the reaction, evaluations of the news
element/compounds are obtained.

• Repeat the steps until the algorithm meets the terminating criteria (the desired result
in the maximum number of iterations is reached) [6].

This algorithm consists of a metaheuristic based on a static population, and applies
an abstraction of chemical reactions as intensifying and diversification mechanisms. It
also uses an elitist reinsertion strategy which allows for the perpetuity of the best
elements and, therefore, the average fitness of the whole set of elements increases with
each iteration.

The reactions of synthesis and decomposition are used for exploration in the search
space of the solutions: These procedures demonstrate to be effective and promptly lead
to the results of a desired optimal value.

Single and double substitution reactions allow the algorithm to search for obtaining
optimal values around a previously found solution.

We start the algorithm by randomly generating a set of elements/compounds under
the uniform distribution space of possible solutions, and this is represented as follows:

X ¼ x1; x2; . . .; xnf g; ð5Þ

where xn is used to represents the element/compound.
The total number and the representation of the original elements depend on the

complexity of the problem that is solved.
In order to find the best possible controllers we use a metaheuristic strategy, which

has proven to produce good results, and this is achieved by applying the CRA, in this
case the algorithm will search the solution space of the problem to be solved. Com-
bining the values of the best controllers and generating new controllers. The goal is to
optimize the parameters of the membership functions and fuzzy rules.

Fig. 1. Flowchart of the CRA.
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3 Simulations and Tests

Normally the algorithm uses fixed parameters for each of the reactions: synthesis,
decomposition, substitution and double-substitution, we propose the idea of adapting
the parameters of the reactions, to control the ability of exploration and exploitation,
these parameters will be used as outputs of the fuzzy system (Fig. 2) and as input the
level of diversity Eq. 6 which is in the population and the percentage of iterations
defined by Eq. 7 [1].

Diversity S tð Þð Þ ¼ 1
ns

Xns

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1
xij tð Þ � xj tð Þ
� �2

r
ð6Þ

Iteration ¼ CurrenIteration
MaximumofIterations

ð7Þ

where current iteration is the number of iterations elapsed and maximum iterations is
the number of iterations established for the CRA to find the best solution. In Eq. 6, S is
the population of the CRA; t is the current iteration or time, ns is the size of the
population, i is the number of the element, nx is the total number of dimensions, j is the
number of the dimension, xij is the j dimension of the particle i, j is the j dimension of
the current best particle of the population.

Figure 3 shows the adaptation of the CRA using a fuzzy system for adjusting the
parameters of the chemical reactions, which change at every iteration, before per-
forming the chemical reaction of the elements, then the elements are evaluated, this in
order that they can adapt to every possible circumstance.

We obtain the rule set for the fuzzy system used to adapt the parameters of CRA,
using knowledge about the effects of the parameters as intensifiers (substitution,
double substitution reactions) and diversifying (synthesis, decomposition reactions)

Fig. 2. Fuzzy system for parameter adaptation
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mechanisms, for example: when we use a synthesis higher than decomposition reac-
tions and substitution lower than double substitution reactions the effect is that the
population will explore the space of search, and when we use a synthesis lower than
decomposition reactions and substitution higher than double substitution reaction the
effect is that the population will exploit the best area of the space of search found.

With the fuzzy rule set shown in Fig. 4, we want that in early iterations the CRA
will explore the space of search and in final iterations the CRA will exploit the best area
of the search space found so far.

4 Simulation Results

To validate the proposed approach we performed some tests with benchmark functions,
and these functions are described below in the Table 1.

Fig. 3. CRA flowchart with fuzzy system

Fig. 4. Fuzzy rules set

Table 1. Summary of the benchmark funtions

No. Functions F�
i = Fiðx�Þ

Unimodal functions 1 Rotated high conditioned elliptic function 100
2 Rotated Cigar function 200

Simple multimodal functions 3 Shifted and rotated Ackley’s function 300
4 Shifted and rotated Rastrigin’s function 400
5 Shifted and rotated Schwefel’s function 500

(continued)
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Testing was performed using 10 dimensions. Table 2 shows the mean, min value,
max value and standard deviation obtained for each function using CRA.

Testing was performed using 10 dimensions. Table 3 shows the mean, min value,
max value and standard deviation obtained for each function using Fuzzy CRA.

Table 2. Summary of the results CRA with 10 dimensions.

FUNC GOAL MEAN MIN MAX DEV STD

F1 100 182,979,240.43 13,766,402.29 631,035,914.33 176,051,838.99
F2 200 4,251,615,839 538,673,005 11,165,727,079 2,793,768,828
F3 300 320.35 320.13 320.61 0.10
F4 400 448.79 431.45 472.30 10.28
F5 500 2,214.97 1,532.06 2,863.49 280.17
F6 600 6,503,346.65 15,975.83 40,406,730.40 13,343,677.20
F7 700 735.72 710.31 804.50 20.83
F8 800 2,126,528.31 2,489.44 4,456,828.97 1,543,297.44
F9 900 1,111.67 1,053.06 1,141.64 22.19
F10 1,000 1,995,010.19 2,736.84 7,518,114.19 2,253,462.91
F11 1,100 1,559.67 1,425.05 1,782.81 102.72
F12 1,200 1,354.39 1,321.83 1,396.41 14.72
F13 1,300 1,637.41 1,632.14 1,646.38 3.14
F14 1,400 8,459.24 6,774.89 10,576.02 646.13
F15 1,500 1,655.05 1,549.06 1,973.69 66.90

Table 1. (continued)

No. Functions F�
i = Fiðx�Þ

Hybrid functions 6 Hybrid function 1 (N = 3) 600
7 Hybrid function 2 (N = 4) 700
8 Hybrid function 3(N = 5) 800

Composition functions 9 Composition function 1 (N = 3) 900
10 Composition function 2 (N = 3) 1000
11 Composition function 3 (N = 5) 1100
12 Composition function 4 (N = 5) 1200
13 Composition function 5 (N = 5) 1300
14 Composition function 6 (N = 7) 1400
15 Composition function 7 (N = 10) 1500

Search range: [−l00, 100]D
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5 Conclusion

This work proposes a fuzzy system for the CRA, for dynamic parameter adaptation
CRA is a new algorithm for optimization problem inspired by the nature of chemical
reactions, therefore it represents a possible solution to the problem using an element,
based on a static population, and applies an abstraction of chemical reactions as
intensifying mechanisms and diversification. It also uses an elitist reinsertion strategy
which allows for the perpetuity of the best elements and, therefore, the average fitness
of the whole set of elements increases with each iteration. We improve this algorithm
using a fuzzy system in adapting parameters of chemical reactions. Normally, the
parameters of the algorithms are set by trial and error. In this research, we propose an
adaptation of the parameters in the algorithm to achieve better convergence and
exploration, to achieve this we measure the diversity of the elements and, depending on
the execution time, a parameter adjustment is done in each iteration. To test the
operation we use Benchmark mathematical functions.
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of Technology for the facilities and resources granted for the development of this research.
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Abstract. This paper describes the work done on the methodology for the
optimization of a fuzzy controller using a bio-inspired optimizationalgorithm.
The fuzzy controlller which uses a fuzzy inference system that has angular
velocity error, linear velocity error as inputs respectively and as outputs torque 1
and torque 2, to evaluate the tracking performance of the robot in simulation to
the desired reference trajectory. For the optimization of the fuzzy system the
algorithm of the fireflies was used, which is based on the behavior on the
blinking fireflies.

Keywords: Firefly algorithm � Methodology � Fuzzy systems � Optimization

1 Introduction

To apply the methodology we must analyze the information we have to create a series
of steps which lead us to find the best solution to the problem that we want to solve.
These steps, are developed taking into account the tools that are available, to optimize a
fuzzy controller, we can use a bio-inspired algorithm which aims to find the best overall
solution in a given search space [1–3]. To implement the methodology for the opti-
mization of a fuzzy controller [4], we use as a tool the fireflies algorithm. Fuzzy
controllers are advanced controllers that allow us to control processes by taking
information as humans do, generating linguistic variables, and if-then rules to evaluate
input information for generating an output.

The rest of the article is structured as follows. The second Section of theoretical
framework describes the fundamental concepts to understand the methodology. The
third Section explains the used bio-inspired algorithm, the fourth Section describes the
development of the methodology, the fifth Section shows the results obtained and
finally the sixth section the conclusion.

2 Theoretical Framework

Optimization
Nowadays things evolve very fast, and there are more things to do and create, human
beings have many plans, little time to realize them, and hence the need for optimization,
finding the best solution in time and quality, optimizing Time, work, results, costs, etc.
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In this regard as Xin She Yang says [5] it is no exaggeration to say that optimization is
everywhere from routing the internet, to planning the holidays.

Fuzzy Logic
The basics of fuzzy logic were proposed by Lotfi A Zadeh [6–8] where he describes
that it is possible to model human reasoning with this logic, since with this one can
carry out an approximate reasoning and this way to take into account the uncertainty
that exists in the problem and to give solutions in the real world [9].

Fuzzy Systems
The fuzzy systems are based on fuzzy models which are made of human-like reasoning,
creating linguistic variables to be evaluated by fuzzy rules, and these fuzzy systems are
constructed of this data, that serve for applications like data mining, pattern recogni-
tion, etc. [10–13].

3 Firefly Algorithm

The firefly algorithm is inspired by the behavior of blinking fireflies, where the fireflies
emit a luminescent light to attract a couple or food, and fireflies with less brightness are
attracted by the brighter firefly.

The author [14] of the firefly algorithm proposed three rules for the algorithm:

• All the fireflies are unisex so that one firefly can be brought by any other.
• Less bright fireflies will be attracted to the brighter firefly.
• The search space of the fireflies is determined by the space of the objective function.

4 Methodology

In this section we will describe the development of the main contribution made in this
work, which is the methodology for the optimization of a diffuse inference system
using a bio-inspired algorithm.

The proposed methodology consists of 4 modules as shown in Fig. 1:
The module of the firefly algorithm [15–18] performing the optimization of the

parameters of the fuzzy system membership functions.
The next module of the fuzzy model, where the linguistic variables are represented

by their membership functions are evaluated, using the if - then rules.
The plant module, where the necessary equations are executed and components

with the values given by the optimized fuzzy system, to send the results of the sim-
ulation to the module of the desired path.

And finally the module of the desired path or reference, which performs the final
result, providing a visualization of the desired reference path against the path of the
robot using the optimized fuzzy system.
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FireFly (FA)
The firefly algorithm [19–21] has proven to be better than other bio-inspired algorithms
for solving optimization problems [22–25] since it is a metaheuristic based on the
behavior of fireflies, which in nature emit a luminescent light to find their food, couple,
among others. Helping in this way, to have a better evaluation of its global optima
thanks to the randomness that is generated in a certain population when the male and
the female emit the flashing light to attract each other, the brighter attracts at least
bright, and so much better chance of finding the best solution. For this reason, this
algorithm is used for the optimization of the parameters of the membership functions of
the fuzzy system, which takes these parameters as the objective function.

The modification of the parameters of the membership functions is carried out by
the fireflies, each firefly represents an optimized fuzzy systems, simulated in the plant
and in the desired reference trajectory. Thus, if we have a population of 20 fireflies, this
means that 20 fuzzy Systems are created and simulated, which are ranked by the
algorithm of the fireflies, from the worst to the best solution, for this problem the
minimum error value is Best solution, using the mean squared error as the metric.

Fuzzy Model
The construction of the fuzzy model [26] is based on fuzzy logic [27–29], which forms
thresholds of uncertainty among the evaluated linguistic variables, to begin with, the
problem is analyzed which is the optimization of a fuzzy controller for a mobile
autonomous robot, which has a redundant wheel, which is not reflected in the fuzzy
model Mamdani type, and two rear wheels of which is obtained as linear velocity error
(ev) inputs and an angular velocity error (ew), assigning the linguistic variables,
Negative (N), zero (Z) and positive (P) respectively to the trapezoidal, triangular and
trapezoidal membership functions. As outputs the torque 1 (t1) of the left rear wheel
and torque 2 (t2) of the right rear wheel, using triangular membership functions for
each of the linguistic variables negative (N), zero (Z) and positive (P) respectively. The
fuzzy inference model is composed of 9 if-then rules, which are represented in the form
if (antecedent) then [consequent] [30–32].

Fig. 1. Proposed methodology
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1. If (ev is N) and (ew is N) then (T1 is N) (T2 is N)
2. If (ev is N) and (ew is Z) then (T1 is N) (T2 is Z)
3. If (ev is N) and (ew is P) then (T1 is N) (T2 is P)
4. If (ev is Z) and (ew is N) then (T1 is Z) (T2 is N)
5. If (ev is Z) and (ew is Z) then (T1 is Z) (T2 is Z)
6. If (ev is Z) and (ew is P) then (T1 is Z) (T2 is P)
7. If (ev is P) and (ew is N) then (T1 is P) (T2 is N)
8. If (ev is P) and (ew is Z) then (T1 is P) (T2 is Z)
9. If (ev is P) and (ew is P) then (T1 is P) (T2 is P)

5 Results

The problem was that the simulation of the robot to follow the desired path, generated
very high errors in its results, therefore, was lost from the objective, this led to perform
the methodology explained above, to optimize the fuzzy controller since With the
if-then rules (antecedent and consequent) the threshold can be improved between each
of the membership functions, thus helping the robot to have a better behavior by
following the path and thus improving the results obtained.

Here are the results obtained using this methodology:
The first evaluations of the methodology for the optimization began with the

experimentation of the modification of the parameters of the firefly, alpha, beta,
gamma, population and iterations algorithm. The authors suggest [33] the modification
of these, and declare certain values, with which the algorithm gives better results.
According to Xin-She Yang in its article [34], the alpha has to be executed in a range of
0 a 1, beta of 0 a 1, gamma of 0 a 1, the appropriate population is the 25 the iterations
are recommended in this range 100, for a good algorithm performance in action.

The evaluations were performed manually, that is, manually modifying the values
for each experiment. Each experiment was executed 30 times, to have an average error
per experiment.

As can be noted in the Table 1 below, 5 experiments of the 30 performed.

As stated previously, the objective of this methodology is to optimize the param-
eters of membership functions of a fuzzy controller for a mobile autonomous robot,

Table 1. Experiments using the Firefly Algorithm

Experiments Fireflies Iterations α β γ Error
1 30 500 0.6 1 0.1 0.075920
2 25 100 0.5 1 0.1 0.26
3 40 300 0.8 0.3 0.1 0.073915
4 35 550 0.7 0.4 0.2 0.004817
5 50 680 0.6 0.6 0.1 0.0759
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since its minimum error in comparison with the desired reference trajectory is 3.8541e
+03 which is very high. Once the 30 experiments were finished, an average of
0.212335 was obtained as the minimum error, which demonstrates that the optimization
of the fuzzy controller gives better results on average compared to the unmanaged
controller.

In Figs. 2 and 3 below we can find the fuzzy controller error not optimized and the
fuzzy controller error optimized.

Fig. 2. Fuzzy system without optimization

Fig. 3. Optimized fuzzy system
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It was previously observed the difference of results obtained with the diffused
controller, optimized and not optimized, so that it can be validated that the method-
ology carried out contributes good results in the fuzzy controller used.

6 Conclusions

In this work a methodology was proposed for the optimization of parameters of
membership functions using a bio-inspired algorithm.

We began by explaining the problem to be solved, analyzing the steps to create this
methodology, giving a description of the diffuse model, also specified the bio-inspired
algorithm used, giving a brief review of its behavior and the inspiration for which it
was created.

We performed 30 experiments, resulting in an average of error to compare the
non-optimized fuzzy, with the obtained results. Giving a significant difference between
means, thus improving the behavior of the fuzzy controller using the proposed
methodology.
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Abstract. The developing of techniques for image processing based on
quantum-inspired algorithms is a recent subject of study with promising results.
Quantum-inspired edge detecting algorithms are a novel approach to detect fine
details, especially in medical images. Since quantum inspired algorithms based on
quantum measurement are susceptible to some noise related to their probabilistic
nature their output can be degraded. This work proposes a quantum-inspired edge
detection algorithm with an enhancement stage using cellular automata to reduce
the degradation of the detected edges. The proposed method uses gradient oper-
ators applied to grayscale images that will be the input for a quantum-inspired
measurement stage. After the measurement, a cellular automaton is used to
eliminate noise and to obtain thinner edges. Comparative results are presented.

Keywords: Edge detection � Quantum inspired � Quantum measurement �
Image enhancement � Cellular automata

1 Introduction

Most image processing algorithms begin with the identification of relevant features in
images such as edges. Edges are big changes in intensity and give information of the
boundaries of regions in the image, which makes them extremely important for seg-
mentation algorithms and image recognition [1–3].

Classical methods for edge detection include the Robert, Sobel, Prewitt and Canny
operators [2], in which the gradient magnitude of a region is calculated. New tech-
niques for edge detection are being researched given the importance of the topic. This
includes fuzzy c-means [1], type-1 and type-2 fuzzy logic systems [3, 4], neural net-
works [5, 6], and cellular automata [7].

Novel techniques using quantum-inspired algorithms for edge detection have been
presented recently. One of the early works was presented by Fu [8, 9] for medical appli-
cations. This work was later expanded by Fu [9] and a qualitative method for quantum
enhancement images in edge detection was proposed by Mutiara [10]. Another work
related with quantum inspired edge detectionwas presented byYuan [11], in which quan-
tummeasurement is applied to detect regions with the higher probabilities of being edges.

In this paper, we present a quantum-inspired edge detector based on Yuan’s edge
detection with an enhancement in the measurement stage and in the thinning algorithm
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using cellular automata. The work is divided as follows: in the second and third section a
brief description of quantum signal processing and cellular automata is given; in the fourth
section themethodology and experiments are explained; in the fifth section the results and
metrics are showed; and finally, discussion and future work are explored in section six.

2 Quantum Signal Processing

Quantum Signal Processing (QSP) is a quantum-inspired research area that uses the
mathematical framework of quantum mechanics and creates or modifies established
signal processing algorithms [9–12]. QSP follows three quantum mechanics principles:

Measurement. In QSP, a signal is measured when an algorithm is applied to them.

Measurement consistency. If a signal that was measured is remeasured, the new out-
come will be the same as the originally measured signal. This can be expressed as:

M M xð Þð Þ ¼ M xð Þ; ð1Þ

where M xð Þ is the measurement of the original signal x, assuming that the signal can be
remeasured.

Quantization. This principle refers that M xð Þ is part of a specific set of signals that are
part of the measurement M, the output will always be part of a subspace conformed by
elemental states of the quantum system. In QSP, the elemental processing unit is the
qubit [21] (quantum bit), composed by to quantum states 0j i and 1j i as follows:

wj i ¼ a 0j i þ b 1j i; ð2Þ

where a and b are the probabilities amplitudes associated to their respected state, and
aj j2 and bj j2 are the probability of each state of being measured. Both, 0j i and 1j i are
called ground states, and the sum of the measurement probabilities must satisfy
aj j2 þ bj j2¼ 1. Before the measurement, the states of a qubit are in superposition and
only have probabilities of being measure in any of the states existing in both states
simultaneously, after the measurement, the qubit collapses to one of the ground states.

I. Image Processing Using QSP.
Quantum Image processing (QIP) algorithms use quantum signal processing princi-
ples to process images. In a similar way that traditional image processing algorithms
use the pixel to process the images, in QIP, a mapping of the traditional pixel is
needed to make measurements. This elemental unit is named pixel qubit, which maps
a pixel in position m; nð Þ to the quantum signal space as follows:

jf m; nð Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f m; nð Þ

p
0j i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f m; nð Þ

p
1j i; ð3Þ

where f m; nð Þ is a function applied to the pixel m; nð Þ using QSP principles, and 0j i
and 1j i are corresponding black and white states of the pixel.
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3 Cellular Automata

Cellular Automata (CA), are arrays of cells with a specific geometry and dimension-
ality, Zd , in which each cell has a state of a finite amount of states, S, and the state of
each cell evolves in discrete steps of time. Considering a cell in position g, the state of
this cell at time t depends in the value of the states of all the cells that are part of the
neighborhood N at an immediate prior time t � 1 [13, 14].

The neighborhood N can be defined as a function of the position of each cell, g gð Þ,
and their state, u gð Þ. For the position, the function is defined as g gð Þ ¼ g; gþf
d1; . . .; gþ dng, where g 2 Z

d , and di i ¼ 1; 2; . . .; nð Þ 2 Z
d . In the case of the state of

each cell in N, the function can be defined as u gð Þ ¼ S gð Þ; S gþ d1ð Þ; . . .; S gþ dnð Þf g,
where g 2 Z

d , Sðgþ diÞ i ¼ 1; 2; . . .; nð Þ 2 S. To update the value of each cell, a local
rule L defined as v u gð Þð Þ ¼ S gtð Þ is applied, which acts depending of the values of
u gð Þ. Using this parameters, a CA can by defined by its descriptors:

Z
d;N; L; S

� � ð4Þ

4 Methodology

The proposed method is a variation of the one proposed by Yuan et al. [11]. The input
grayscale image is normalized in the range [0, 1] and then a median filter is applied.
After that, the same kernels used in the Sobel operator are implemented, the gradient of
each pixel m; nð Þ is calculated and stored in G m; nð Þ.

The next step is to set to zero all the elements inG m; nð Þ that are bellow threshold kq.
In this work, we use the histogram ofG m; nð Þ to calculate kq, this value is the label of the
histogram that have the 75% of the elements below this point. The next step is to obtain
the quantum pixel qubit q m; nð Þj i for every element of the gradient matrix. For this, if the
value of the gradient is set to zero, then a is set to one, andb to zero. Otherwise, if the value
ofG m; nð Þ is different of zero, then the function a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f m:nð Þp
; b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f m; nð Þp
, where

f m; nð Þ ¼ 1
1þ exp� x�að Þ=b, x ¼ G m; nð Þ, and a ¼ b ¼ 0:5.

For the quantum measurement stage, we proposed to modify Yuan algorithm as
follows. Set c and d to 0.1, r as random generated value, and z ¼ cþ d � r. If the z\b,
then o m; nð Þ ¼ 1, if not, o m; nð Þ ¼ 0. Repeat one hundred measurements and store
them in matrix M m; n; ið Þ, after all the measurments are over, if most (around 90%) of
the measured values of o m; nð Þ are equal to 1, then the pixel is an edge and
Io m; nð Þ ¼ 1, otherwise Io m; nð Þ ¼ 1.

After the edges of the images are obtained, a thinning algorithm is needed. For this,
we use a CA based algorithm. The thinning algorithm is based on the fact that if a cell
is surrounded by elements that are part of an edge it is possible the center of the edge
and it has to survive to the next generation. Each cell has a 3� 3 Moore neighborhood
and an associated state S. The state of S gð Þ will be one if an edge is present and zero if
not. The sum of every element N excluding g is represented with SN gð Þ. The amount of
changes in between the elements of the N are represented by Sc, this changes are the
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amount of bit changes divided by two in N. The description of the CA algorithm can be
seen in Fig. 1.

5 Results

To evaluate the performance of the proposed algorithm and compare them to classic
edge detection algorithm we use images provided by the Berkeley Segmentation
Dataset and Benchmark [15]. In this database, images were evaluated by human
subjects to detect edges and segment the most important elements of an image. Using
the human evaluation as a ground truth five images were evaluated with the proposed
method and compared with Sobel, Canny and Roberts edge detection in Matlab.

The metric used to measure the accuracy of each method was Pratt’s FOM defined
as follows:

FOM ¼ 1
max Ni;Ndð Þ

XNd

i¼1

1
1þ ad2i

; ð5Þ

where Ni is the amount of ideal edges in the reference image, Nd is the number of
detected edges by the test algorithm, di is the distance from each detected edges and the
nearest ideal edge, and a is a penalty constant usually 1/9 [16].

The results are shown in Table 1. As the results show, in all the test images the best
algorithm was the proposed method, followed by the Canny edge detector, these two
algorithms give similar results in most cases (Fig. 2).

Fig. 1. Pseudocode of cellular automaton for noise elimination and edge thinning
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6 Discussion and Future Work

The proposed system show better performance than the classical methods without any
other modifications. Although Pratt’s FOM is not as higher as desired, the results
obtained are promising and better results in the future are expected. Of the five methods
used, the Canny operator had better results in some continuous regions with edges and
better adjustment capabilities for images with different contrast. With this in mind, a
contrast enhancement stage is proposed to solve the problems for the quantum mea-
surement edge detectors. Future work also is expected to be related to the design of a
link connector to get better edges and FOM, and the exploration of other thinning
algorithms for the last step of the methodology.

Acknowledgements. We thank Instituto Politécnico Nacional (IPN), to the Comisión de
Fomento y Apoyo Académico del IPN (COFAA), and to the Mexican National Council of
Science and Technology (CONACYT) for supporting our research activities.

Table 1. Figure of merit of each edge detector

Image Canny Sobel Roberts Proposed

24077 76.01 51.08 47.92 80.51
78004 70.64 63.09 56.15 73.61
101085 76.06 63.21 56.31 76.42
119082 83.43 60.06 57.10 83.70
126007 68.81 53.08 47.80 72.61

Fig. 2. Edge detection of image 119082. (a) The input image, (b) ground truth, (c) Canny,
(d) Sobel, (e) Roberts, (f) proposed method.
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Abstract. A group of experts can offer a more-informed opinion than any
individual expert. In machine learning, the ensemble algorithm mirrors this
real-world approach by combining predictions of multiple models, yielding
higher performance than any individual model. However, having many models
does not ensure optimal performance, the challenge is to choose the best set of
models that are both diverse and accurate. In this paper, we propose an ensemble
model selection algorithm for a hybrid ensemble, called competitive hybrid
ensemble (CHE). CHE first creates a population of models, and then ranks the
performance of each model on the validation set. From this ranking, CHE
assembles the ensemble candidates and evaluates them on the training set.
Finally, the best performing candidate is selected as the final hybrid ensemble.
We tested our algorithm using neural network and decision tree as the base
models. We compared CHE with random forest, a simple hybrid ensemble
without the proposed method, and four types of neural network ensembles.
Results show that CHE significantly outperforms or is on-par with most of the
other methods.

Keywords: Ensemble � Hybrid � Neural network � Decision tree

1 Introduction

When making important decisions, we tend to seek advice from many experts and
generate our decisions based on these opinions. In machine learning, the ensemble
learning algorithm mimics this type of decision-making approach. Rather than solely
relying on one algorithm, it collectively combines the predictions of multiple algo-
rithms. Numerous research has shown that this ensemble learning technique yields
more accurate predictions than any individual model [1, 2] and its prediction is optimal
when the models in the ensemble are both diverse and accurate [3, 4].

Ensemble learning is used to solve three types of problems: statistical, computa-
tional, and representational problems [5]. The statistical problem is referred to when the
hypothesis space is larger than the available training data. In this case, an ensemble
model solves this problem by generating many hypotheses using bootstrap resampling.
Ensemble algorithm also solves computational problems which relates to the opti-
mization of unstable learning algorithms, such as Neural Network (NN) and Decision
Tree (DT). Training these models can cause the algorithm to get stuck in local minima,
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resulting in poor or unstable performance. Additionally, escaping these minima can be
a computationally intensive task. Ensemble learning alleviates this by creating models
that reside in various local minima and averaging the predictions of these different
models. When combined, these models at different local minima can accurately capture
the true function. Hence, it reduces the computational cost of searching for the global
minimum. The third problem that ensemble learning solves is representational problem.
By generating an ensemble with models that are both diverse and accurate, the col-
lective influence of these models can offer the best representation of the actual function.

One type of ensemble methods is hybrid ensemble which is constructed by com-
bining models of different families. Variations of these combinations include: NN with
support vector machine (SVM) [6], NN with clustering [7], bagging with random
subspace using SVM as the base learner [8], and NN with DT [9–11]. Moreover,
Hybrid ensemble has been applied to different problems, including medical databases
[7], credit risk assessment [8], load forecasting problem [6], and kidney transplant
outcome prediction [11].

In ensemble learning, having many models in the ensemble does not guarantee
optimal performance, thus, the biggest challenge is to develop an algorithm that can
choose the optimal set of models that are both diverse and accurate. In this paper, we
present a hybrid ensemble model selection algorithm called competitive hybrid
ensemble (CHE). CHE initially creates a population of NN and DT models using
bagging, then ranks the individual NN and DT models based on their performance on
the validation dataset. Afterwards, it assembles the ensemble candidates from this
ranking and measures their performances on the training data. From this assessment, it
chooses the ensemble with the highest performance. We compared this approach to
three types of ensemble: a naïve hybrid ensemble method that simply combines an
equal proportion of NN and DT, random forest, and neural network ensembles. Our
method performs significantly better than the naïve hybrid ensemble in four out of six
datasets and random forest in three out of six datasets. Furthermore, our method
outperforms four types of neural network ensembles in two out of three benchmark
datasets.

The rest of the paper is organized in the following manner: Sect. 2 provides the
background information, Sect. 3 discusses the CHE algorithm, Sect. 4 details the
experimental setup which is followed by the results and discussion in Sect. 5, and
lastly, Sect. 6 offers the concluding remarks.

2 Background

2.1 Diversity and Accuracy in Ensemble Models

The key to designing the best ensemble is to include models that are both diverse and
accurate. Krogh and Vedelsby [3] defined diversity as the ensemble ambiguity, which is
the variance of each hypothesis prediction f jð Þ with respect to the mean of the weighted
wð Þ hypotheses predictions, represented as:
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�a ¼
X

j

wj f
j xð Þ � �f xð Þ� �2 ð1Þ

Using this ambiguity, Krogh and Vedelsby derived the ensemble generalization error
as:

E ¼ �E � �A ð2Þ

where �E is the average error of the individual models and �A as the weighted average of
the ambiguity. Brown [12] later use this concept to define diversity by measuring the
mean squared error of an ensemble MSEensð Þ using the Bias-Variance-Covariance
decomposition:

MSEens ¼ bias2 þ 1
N
varþ 1� 1

N

� �
cov ð3Þ

where N is the number of members in the ensemble, bias; var; and cov are the average
bias, variance, and covariance of the ensemble members.

Figure 1 provides an illustration of how diversity and accuracy play major roles in
determining the performance of the model. Suppose we have the true function, X, and
our objective is to build an ensemble of hypothesis functions, O, that best estimate X.
The circle surrounding X represents the hypothesis space that is accurate. The error is
represented by the distance from the true function to mean of the ensemble of
hypothesis functions. In the case of a non-diverse and inaccurate ensemble (top left),
the error would be high. This is similar for the ensemble that is diverse and inaccurate
(bottom left). For the ensemble that is non-diverse and accurate (top right), the error is
lower, however, it still does not approximate the true function to the best of its ability.
Lastly, when the ensemble is both diverse and accurate (bottom right), it can best
approximate the true function.

Fig. 1. Both diversity and accuracy influence the performance of an ensemble model
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2.2 Methods for Generating Diverse Models

There are various techniques used to generate diverse models in an ensemble. Some of
these techniques involve manipulating the training data and target variable, while others
induce randomness in the model itself. For the manipulation of the training data, bagging
[13] and boosting [14, 15] are frequently used. As of the target variable manipulation,
error-correcting output coding [16] is a technique that can be applied to classification
problems. The randomization technique can be applied to neural network ensemble by
arbitrarily selecting initial weights and decision tree by selecting random splits in the
decision nodes. In our algorithm, we used bagging to generate diverse models.

Bagging [13] is a method that samples from the training data with replacement.
Each sample is referred to as a bootstrap sample and these samples are used to create
diverse models. Bagging works well for unstable algorithms as the small changes
caused by bagging can generate diverse models.

2.3 Decision Tree, Neural Network, and Hybrid Ensemble

As previously mentioned, ensemble works best when using unstable algorithms such as
DT and NN. DT is used to construct a very popular ensemble algorithm called random
forest. The origin of this algorithm began when Ho [17] first introduced random
decision forests which construct diverse decision tree models using randomly selected
subspaces of feature space. Building on this concept, Breiman [19] later introduced
“random forest” which combines Breiman’s bagging idea with Ho’s idea.
Fernandez-Delgado et al. [19] later conducted an experiment using 121 datasets from
UCI Machine Learning repository [20] and concluded that random forest is the best
family of classifiers out of 17 families of classifiers.

Constructing an ensemble using neural networks has also shown strong perfor-
mance. Various techniques are used to construct this type of ensemble. One of these
techniques involves adding a correlation penalty term in the error function to enforce
negatively correlated networks [21], thus creating a diverse set of networks. Extending
this technique, Chen and Yao incorporated a regularization term to reduce overfitting
when creating individual models. Another neural network ensemble approach applies
genetic algorithm to search for the optimal set of models [22, 23]. Clustering algorithm
is also used to cluster the predictions of the network models and select a set of diverse
models from these clusters [24, 25].

Other researchers combine decision tree and neural network models to create a
Hybrid ensemble. Langdon et al. [6] does this using genetic algorithm. Zhou and Jiang
[10] generates new training datasets from neural network ensemble and uses this
dataset to fit C4.5 ensemble. Hsu [26] develops an algorithm to build neural network
and decision tree models in an alternating manner after a given number of iterations.

3 Competitive Hybrid Ensemble

We now introduce our competitive hybrid ensemble algorithm using NN and DT as the
base models. Prior to implementing our algorithm, we preprocessed our datasets by
cleaning and normalizing the continuous attributes. We then partitioned the data into
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training, validation, and testing sets. After the dataset is cleaned, normalized, and
partitioned, we applied CHE as detailed in Algorithm 1. CHE first generates N boot-
strap samples and uses them to construct diverse NN with half of the sample set N=2ð Þ
and DT with the remaining half, we call these models Ei. It then assesses the perfor-
mances of these models, Ei, on the validation set, V, by computing the mean squared
error (MSE) of the predictions, we refer to this validation error as eV . Using this error,
the algorithm produces a ranking of their performances, R CHE then generates the
ensemble candidates Cj using the top jþ 1 models based on the R scores, where j varies
from 1 to N � 1ð Þ. It further generates the ensemble candidate predictions on the
training set by taking the mean of the models’ predictions in the candidate. Afterwards,
CHE compares the ensemble candidate predictions with the response variable of the
training set using MSE, eD. Finally, the algorithm selects the candidate, Cj, that gen-
erates the lowest eD as the final Hybrid ensemble, H.

4 Experimental Setup

4.1 Datasets

We used six datasets (Table 1) to assess our algorithm. Two of the six datasets were
simulated (Friedman #1 and #2). Table 1 details the data dimensions and the number of
hidden neurons used in the neural network models. We used the mlbench package in R
to import Boston, Friedman #1, and Friedman #2 datasets. The other datasets, Energy,
Ozone, and Concrete, were extracted from UCI Machine Learning repository [20].
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4.2 Implementation Details

All datasets were preprocessed using mean normalization and partitioned into training,
validation, and testing sets in ratio: 8:1:1. We set N to 20 and applied CHE to all data
sets, computed the MSE, and repeated for 100 iterations. We compared the MSE’s of
CHE with naïve hybrid ensemble and random forest using two sample t-test. For the
naïve hybrid ensemble, we constructed an ensemble of 10 NN and 10 DT. We used 500
trees to construct the random forest model. We also compared CHE with 4 types of
neural network ensembles using the errors reported in their papers. We used “neural-
net” and “rpart” packages in R for neural network and decision tree.

5 Results

Table 2 outlines the mean of 100 MSE’s and Table 3 outlines the standard deviation of
100 MSE’s. The double asterisks (**) denote significance differences from CHE at
95% confidence interval.

We also compared CHE with different Neural Network ensembles (Table 4) using
the MSE reported in their papers as referenced in the table heading. Val [28] algorithm
and RNCL [27] did not use Boston and Ozone data sets in their respective experiments.
Table 4 shows that CHE performs better than these Neural Network ensembles for two
of the three data sets (Boston and Ozone).

As shown in Tables 2 and 4, CHE outperforms or is on-par with most of the
algorithms. The only exception is GASEN for Friedman #1 simulated data set. From

Table 1. Dataset description and number of neurons used

Data set # Observations # Variables # Hidden neurons

Boston 506 13 12
Friedman #1 1000 10 10
Friedman #2 1000 4 3
Energy 768 8 8
Ozone 330 11 8
Concrete 1030 8 8

Table 2. Mean of MSE’s for 100 iterations

Data set Single DT Single NN Random forest Naïve hybrid CHE

Boston 22.7** 12.7** 10.1 9.82 10.4
Friedman #1 10.2** 1.28 4.36** 3.86** 1.24
Friedman #2 28900** 15500 22400** 16800** 15500
Energy 6.87** 0.409** 1.21** 1.78** 0.245
Ozone 23.4** 26.0** 16.5 16.5 16.7
Concrete 84.6** 30.9** 27.8 34.1** 25.9
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Table 3. Standard deviation of MSE’s for 100 iterations

Data set Single DT Single NN Random forest Naïve hybrid CHE

Boston 10.9 7.76 5.61 5.38 5.70
Friedman #1 1.39 0.163 0.612 9.84 0.156
Friedman #2 4300 2120 3200 2240 2000
Energy 1.46 0.263 0.275 0.391 0.0525
Ozone 6.18 10.8 4.74 5.38 5.05
Concrete 15.3 6.85 7.01 6.33 6.37

Table 4. Comparison of CHE with neural network ensembles: GASEN [23], clustering-based
selective neural network ensemble (CSNNE) [25], regularized negative correlation learning
(RNCL) [27], and a selective method using the validation set (Val) [28]

Data set GASEN CSNNE RNCL Val CHE

Boston 10.68 32.47 10.86 N/A 10.1
Friedman #1 0.5 1.162 0.82 1.33 1.24
Ozone 19.99 18.81 N/A 17.83 16.7

(a) Boston (b) Friedman #1 

(c) Friedman #2 (d) Energy 

(e) Ozone (f) Concrete 

Fig. 2. Increasing the number of models N does not show superior performance in naïve hybrid
model than CHE for the following datasets: Boston (a), Friedman #1 (b), Friedman #2 (c),
Energy (d), Ozone (e) and Concrete (f)
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this experiment, we can conclude that firstly, an ensemble algorithm (random forest,
naïve hybrid or CHE) generates better predictions than any individual model, NN or
DT. Secondly, CHE and the naïve hybrid approach show superior results than the
popular state-of-the-art algorithm, random forest, suggesting that a hybrid approach
using both NN and DT can strengthen the diversity and accuracy of the ensemble,
resulting in better performance. Our third finding is that CHE generates stronger per-
formance than the naïve hybrid approach. As we vary N and observe the squared error
for one iteration using CHE and naïve hybrid (Fig. 2), it is evident that CHE outper-
forms or has similar performance to the naïve hybrid approach. This further suggests
that a naïve hybrid ensemble does not guarantee the optimal set of hybrid ensemble
model, therefore, a method such as CHE can help select for an enhanced hybrid model.
Lastly, our comparison of CHE with variations of neural network ensembles (Table 4)
shows that CHE produce more accurate results than popular neural network ensembles
for two of the data sets (Boston and Ozone).

6 Conclusion

In this paper, we introduced the competitive hybrid ensemble (CHE) for selecting the
optimal set of models in a hybrid ensemble of neural networks and decision trees. CHE
first constructs a population of neural network and decision tree models using bagging.
It then assembles the ensemble candidates based on the individual model’s perfor-
mance on the validation data. Lastly, it tests the candidates on the training data and
selects the final candidate from this assessment. A comparison of CHE with the naïve
hybrid ensemble approach, random forest, and neural network ensembles shows that
our algorithm performs significantly better or is on-par with these models. Further
research can investigate the theoretical underpinnings of this algorithm as well as its
applications to other intelligent systems such as fuzzy logic.
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Abstract. Quantum computing is inspired in quantum mechanical phenomena
and uses superposition and entanglement to process data at very high speeds
outperforming conventional computers on some tasks. At present, the access for
testing algorithms in commercial quantum computers is too expensive for most
institutions; hence, it is very important to have alternatives for testing quantum
algorithms. In this paper, we present the results obtained when optimizing a two
variables multimodal function when it was optimized through the Quack_GPU
v1, which is a modification of the original software Quack! We show that it is
possible to obtain speedups up to 8.4� using a Graphic Processing Unit
(GPU) computer card with thousands of cores, saving hours of processing time.
Performance comparative results of the Quack! vs. the Quack_GPU are
presented.

Keywords: Quantum genetic algorithm � QGA � High-performance

1 Introduction

Quantum computing is a field of study centered on developing computer technology
based on the principles of quantum-mechanical phenomena such as superposition and
entanglement, to perform data calculation [1].

Since Benioff [2] and Feynman [3] showed that quantum-systems could be used to
compute, there has been much expectation about the viability of constructing quantum
computers that follow the law of quantum physics to gain processing power.

After 27 years of the Benioff and Feynman findings and lots of effort of different
scientist research groups, finally, on May 2011 the Canadian company D-Wave Sys-
tems, Inc., published its research on quantum annealing [4], which is the theoretical
base of the first commercial quantum computer, containing 128 qubits. After that, the
company has launched two improved models on May 2013 and August 2014, the
D-Wave two with 512 qubits and the D-Wave 2X with 1152 qubits, respectively.

At present, acquiring this new technology is too expensive for most of researchers
groups and institutions because it costs several millions of dollars.

Computer technology and software development go hand in hand, examples of
these are today desktop computers shifted to be heterogeneous systems containing
high-end processors with several cores and the General Processing Units
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(GPU) technology with thousands of central processing units, for which specialized
software was developed, such the OpenCL and the CUDA.

The aforementioned technological advances make possible to develop quantum
computer simulators to allow the scientific to explore the quantum-computing world
without the necessity of having a real quantum computer. Evidently, many limitations
exist because it is not possible to emulate a quantum computer without any cost to pay;
therefore many simplifications need to be achieved, as well as a high detrimental in
computer time must be expected.

The aim of this paper is to show the progress of our work in speeding-up quantum
algorithms focused on running in Matlab [5]. We present the Quack_GPU version 1,
which is a modified version of the well-known Software named Quack! The Quack_GPU
v1 runs in a heterogeneous computer system achieving a noticeable speed-up.

The organization of the paper is as follows: In Sect. 2, a brief theoretical quantum
computing overview is presented. In Sect. 3, the quantum simulator architecture is
explained. In Sect. 4, we provide the pseudo-code of the QGA used in the experiments,
as well as the experiments and results. In Sect. 5, the conclusions are given.

2 Quantum Computing Overview

A remarkable idea of quantum computing (QC) is that computations should be per-
formed through the evolution of a quantum system; differently to computing using a
digital computer, where the computations are the interpretation of a symbolic machine.

A pure state in quantum mechanics is represented as a normalized vector wj i in a
complex Hilbert space H. jwi is usually named as a ket, w is the label of the vector, and
the �j i is the Dirak notation that indicates that the object is a vector.

The qubit is the simplest representation of a quantum information system, it has a
two-dimensional state space where j0i and j1i constitute the orthonormal basis
(computational basis space). An arbitrary state vector in the state space, where a and
b are complex numbers known as probability amplitudes, can be written as (1),

wj i ¼ a 0j i þ b 1j i ð1Þ

The vector dual to wj i (conjugate transpose) is hwj known as a bra, in such a way
that the inner product of the bra-ket is wjwh i ¼ 1, and it is equivalent to
a2
�� ��þ b2

�� �� ¼ 1, which is the normalization condition of the state vectors. Any linear
combination of the states of (1) is called superposition.

The complex coefficients, a and b, of j0i and j1i give classical probabilistic
information about the states. For example, the value aj j2 is the probability of finding the
system in the state j0i after a measurement. Two vectors in H, say jwi and jui,
represent the same state if they differ only by a global phase factor, i.e., wj i ¼ eihjwi,
the probabilities described by the coefficients remain the same [6].

It is known that simulation of quantum systems by classical computers is viable yet
inefficiently. The evolution of an isolated quantum system from one state (initial) to
another state (final) is governed by the Schrödinger Eq. (2),
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i�h
@

@t
w tð Þi ¼ H tð Þj jw tð Þi ð2Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

and the constant term �h ¼ h=2p named as the “reduced Planck con-
stant”, and H is a fixed Hermitian operator known as the Hamiltonian of the closed
system. Knowing the Hamiltonian of a system implies that we understand its system
dynamics, but this is a very difficult problem.

Simulating quantum systems is a challenge because the exponential number of
differential equations that must be solved, i.e., according to (2), for one qubit a system
of 21 differential equations must be solved; for two qubits, 22 equations, and for
n qubits, 2n equations; therefore, smart approximations to reduce the effective number
of equations involved must be achieve, however, there are many physically interesting
quantum systems for which no such approximation are known [7].

A known solution of (2) is (3), where w 0ð Þj i is the state at time t ¼ 0, and if H does
not depend of time is, then we have (3)

H w tð Þj i ¼ e
�iHt
�hð Þ w 0ð Þj i ¼ u w 0ð Þj i ð3Þ

where u is known as the evolution operator, it has the property uuy ¼ uyu ¼ I (I is the
identity matrix). A first observation about the evolution of the quantum states, is that
the Schrödinger equation is linear, which means that the superposition principle is
valid, hence the states are able to interfere among them. When we apply the 1-qubit
operator u to the qubit wj i; it means that we transformed the qubit to obtain the new
state ujwi; i.e. we have applied a 1-qubit gate to the qubit jwi.

A quantum register is a set of qubits, which is similar to classical computing when
eight bits form a byte, in quantum computing, we have a qubyte, which is a set of eight

qubits. In general, a quantum register is defined as W ¼ P2n�1

i¼0 aijii, where ai 2 C.
Similarly, to the 1-qubit case, if we applied the operator U to the register Wi, it means
that we have applied an n-qubit gate to the register to obtain the new register state
UjWi.

Considering a system with two or more qubits, each one living in a different Hilbert
space, i.e., for two qubits with Hilbert spaces HA and HB. Now, these two qubits are
combined to form WiAB to form a new Hilbert space H ¼ HA �HB; therefore, a state
jwi in H can be written as WiAB ¼ wAi�j jwBi, which can be generalized for n-qubits.
For example, for a register containing 3-qubits we have 23 computational basic states,
like 100j i which is equivalent to 1j i � 0j i � 0j i, but if the first and third qubits are in

the superposition state; i.e., 1ffiffi
2

p 0þ 1ffiffi
2

p
���

���1
� �

� 0j i � 1ffiffi
2

p 0þ
ffiffi
3

p
2

���
���1

� �
, where after

achieving the tensorial product and reducing, we obtain Wj i ¼ 1
2
ffiffi
2

p 000j i þ
ffiffi
3

p
2
ffiffi
2

p 001j i þ
1

2
ffiffi
2

p 100j i þ
ffiffi
3

p
2
ffiffi
2

p 101j i.
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3 The Quantum Simulator Architecture

At present, a quantum computer is considered as a hardware accelerator of the classical
computer system from which it receives the instructions to solve a concrete problem, as
shown in the upper part of Fig. 1. The quantum computer modifies a quantum register
containing first, a classical initial state that will be modified by the successive appli-
cation of a network of quantum gates, the results are sent back to the classical computer
after the quantum measurements were performed. In the lower part of the same figure,
the simulation model of the quantum computer is sketch; in the model, most of the
quantum operations that should be performed by the quantum computer are emulated
through classic mathematical operations conditioned for GPU execution. The main
quantum program, in our case the quantum genetic algorithm QGA [8] as well as the
Quack! and the Quack_GPU v1 are “*.m” files. The original Peter P. Rohde’s Quack!
Quantum Matlab library does not use the GPU; our modified version, the Quack_GPU
v1 exploits the massive parallelism power that offers the use of the GPU.

According to Fig. 1, our experimental platform to simulate a quantum computer is
a desktop computer based on the Intel Core i7 Processor (i7-3930K) with 6 cores (12
threads), equipped with a GeForce GTX Titan X Nvidia GPU computer card with
Maxwell architecture. We are using the Matlab R2015 with the Parallel Computing
Toolbox, which is used only with the Quack_GPU v1. The operating system is the
Ubuntu 16.04.02 LTS GNU/Linux distribution.

Fig. 1. Matlab quantum computer simulation
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4 Speeding Up QGA Through the Quack_GPU

We performed several experiments to show the advantages of the QGA using the
experimental platform explained in Sect. 3. The experimental suite was settled around
the optimization of a multidimensional test function with the aim of exploring the
advantages of using the Quack_GPU_v1 vs. the original Quack! Figure 2 shows the
pseudocode of the implemented QGA.

The goal of the experiments was to find the global minimizer of the Rastrigin’s
function, localized at (0, 0), for two independent variables given by (4),

R as x ¼ 20þ x12þ x22� 10 cos 2px1þ cos 2px2 ð4Þ

where x1;2 2 �2:1; 2:1½ �. In the experiments, we used a quantum register size of
10 qubits to represent real numbers, and a population size of 35 individuals.

Experiment 1. Stop Condition: The QGA During 1000 Generations
Here, the stop condition of the QGA was to accomplish 1000 generations, the idea was
to measure the total time that each quantum library last—Quack! and Quack_GPU v1
—notwithstanding that the optimal value could be found before. We used a quantum
register size of 10 qubits.

With the aim to provide some statistical values, we run 10 times the QGA with the
Quack_GPU v1, the algorithm in average last 23181 s (�6.44 h) with a standard
deviation of 580, finding always the minimal value possible according to the resolution,
in this case, 0.001672. The QGA with the Quack! Lasted in average 195682 s
(�54.36 h) with a standard deviation of 5626. The minimal value was not found in any
case.

Fig. 2. QGA pseudocode. The symbol # indicates ascending order because the bigger cost
function values will be at the end of the list. Some values used in our implementation are shown.
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Experiment 2. Stop Conditions: Minimal Desired Precision
Here, we set as the stop condition to achieve a minimal precision of 0.0017 or 1000
generations. After running both algorithms the Quack_GPUv1 and the Quack! the
former lasted to found the minimal value an average of 5284 s (�1.47 h) with a
standard deviation of 5137, finding always the minimal value of 0.001672; whereas the
latest was not able to find the minimal value.

5 Conclusions

In the experiments, we used the multimodal Rastrigin’s test function. The searching
space for the two variables was big enough to contain several local minimums to
evaluate the exploration capability of the QGA, and remarkable observations supported
by statistical values were obtained. The experiments show that the Quack_GPU can
speed up the GA for two 10-bits variables (i.e., the register size is two) by a factor of
�8.4� with respect to the times obtained with the original Quack! In all the experi-
ments, only the Quack_GPU v1 could find the most closed values to the global min-
imizer located at (0.0, 0.0).
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Fomento y Apoyo Académico del IPN (COFAA), and to the Mexican National Council of
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Abstract. This paper suggests an evolving granular min-max regression
algorithm for fuzzy rule-based system modeling. The algorithm starts with an
empty rule base, but adds or modifies the rule base as stream data are input.
Granulation of data is done by partitioning the input space using hyperboxes and
associating to each hyperbox a fuzzy set and a fuzzy functional rule with affine
consequent. The model output is produced combining the affine consequents
weighted by the normalized membership degrees of the active fuzzy rules. The
parameters of the consequents are adjusted using the recursive least squares with
a forgetting factor. The algorithm has an incremental nature, and learns with
one-pass processing of the data. The recursive form of the algorithm allows
gradual model changes using simple maximum, minimum, and comparison
operations, an appealing feature when handling high-dimensional data. Com-
putational experiments concerning time series forecasting and system identifi-
cation show that the evolving granular fuzzy min-max algorithm is fast, memory
efficient, and competitive with current state of the art approaches.

Keywords: Fuzzy min-max regression � Evolving systems � System modeling

1 Introduction

Real-world complex dynamics exhibits high nonlinear and non-stationary behavior.
Learning in such environments demands fast and efficient online processing of high
dimensional data streams. Storing all data is unpractical as computational demand
become high while resources are limited [2]. This is especially important when online,
real-time processing is required. In this context, evolving systems emerge as an
appealing alternative because they have the ability to simultaneous learn the structure
and functionality of models from data streams. Evolving modeling is equipped with
incremental algorithms to build the model structure, and to learn model parameters.
Structural adaptation of a model to catch shifts in data caused by abrupt system changes
(data shifts) is just as important as parametric adaptation to track gradual changes in
data (data drifts). Likewise, evolving granular systems are self-adaptive structures with
learning and summarization abilities.

Fuzzy min-max systems were originally developed as two classes of neural fuzzy
networks aiming at classification [13] and clustering [14]. Several papers have sug-
gested modifications to the pioneering classification and clustering algorithms [4, 6, 10,
12, 16]. However, few papers address regression and system modeling in general, and
fuzzy rule-based models in particular. An exception is the min-max regression

© Springer International Publishing AG 2018
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technique, with a gradient descent algorithm to tune the consequent parameters,
developed in [15]. Another regression approach was introduced in [11] using the
min-max network to cluster input data, and an ANFIS network to generate the output.
These are offline techniques and are not suited to online processing of data streams,
especially when the data space is high dimensional.

This paper introduces a novel evolving min-max regression algorithm (eFMR) for
fuzzy rule-based system modeling from data. It departs from the original min-max
approach in that eFMR processes stream data to simultaneously learn the rule base
structure and parameters of the local rule consequent models with a single pass on the
data. The learning algorithm uses simple operations such as maximum, minimum, and
comparison, an important feature for high dimensional data processing. The efficiency
of the algorithm is shown using two benchmark nonlinear modeling and time series
forecasting problems. The results show that eFMR is highly efficient and competitive
with state of the art evolving algorithms.

The paper is organized as follows: Sect. 2 details the eFMR algorithm, Sect. 3
addresses the computational experiments, and evaluates the performance of eFMR
against alternative evolving, neural, and neural fuzzy evolving modeling approaches.
Section 4 concludes the paper summarizing its contributions and listing issues for
further research.

2 Evolving Fuzzy Min-Max Modeling

This section details the evolving granular fuzzy min-max regression algorithm. The
algorithm has two main steps. The first step develops the structure of the model using a
hyperbox-based input data space granulation procedure to determine the number of
fuzzy rules. To each hyperbox corresponds a functional fuzzy rule. The second step
learns the coefficients of affine rule consequents assigned to each hyperbox, or
equivalently, to each fuzzy rule, using the recursive least squares with forgetting factor
approach.

2.1 eFMR Modeling

The first step in evolving fuzzy min-max regression modeling consists in granulating
the input data space using hyperboxes. In this paper we assume that the data space is
the n-dimensional Euclidian space <n. A hyperbox in <n is an n-dimensional rectangle
defined by a maximum (W) and a minimum (V) points, as shown in Fig. 1(a). Figure 1
(b) illustrates how a collection of hyperboxes granulates the data space. The maximum
and minimum points, regardless of the dimension, uniquely define a hyperbox. For-
mally, a hyperbox Bi is defined as follows:

Bi ¼ fX;Vi;Wi; biðx;Vi;Wi; ciÞg ð1Þ

where X denotes the input data space, bi is the membership function associated with the
i-th hyperbox, x 2 X �<n is an input data point, and Vi, Wi, ci 2 X are the minimum,
maximum, and the centroid points, respectively.
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eFMR assumes a fuzzy rule-based modeling approach with rules endowed with
local models forming their consequents, referred to as fuzzy functional models. We
consider Takagi-Sugeno [1] type of fuzzy model with affine functions as rule conse-
quents. These models are a set of R fuzzy rules of the following form:

Ri : If x isBi then�yi ¼ h0i þ
Xn

j¼1
hjixj ð2Þ

where Ri is the i-th fuzzy rule, �yi is the rule output, hji, i = 1,…, R, j = 0, 1,…,n are the
consequent parameters, and R is the number of fuzzy rules in the rule base.

The collection of the R fuzzy rules assembles the model as a weighted combination
of the local affine models. The contribution of each local model to the overall output is
proportional to the normalized membership value of each rule, referred to as the firing
degree of the rule. eFMR uses antecedent fuzzy sets that are an aggregation of ele-
mentwise Gaussian membership functions:

bi ¼
Yn

j¼1
�bji; �bji ¼ exp

ðxj � cjiÞ2
2r2ji

 !
; rji ¼ maxðminðwji � cji; cji � vjiÞ; r0Þ ð3Þ

where �bji and rji are the j-th component of the i-th rule membership function and width,
respectively, xj is the j-th component of the n-dimensional input data x, wji, vji, cji are
the components of the i-th rule maximum point, minimum point, and centroid,
respectively, and r0 is the initial rule width. The initial rule width avoids new rules to
have null initial influence.

The eFMR model output at step k is computed as the weighted average of the
individual rule contributions, that is

ŷk ¼
XR

i¼1
wih

T
i �x

k;wi ¼
biPR
l¼1 bl

;�xk ¼ ½1; xk1; xk2; . . .; xkn�T ð4Þ

where Wi is the normalized firing degree of the i-th rule,ŷk is the model output at step k,
and �xk is the extended input vector.

iV
(a)                                                                (b)

f(x)iW

x 

Fig. 1. (a) Hyperbox in <2, (b) granulation of the data space and local models
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The second step of eFMR updates the parameters of the affine functions of the rule
consequents using the recursive least squares with forgetting factor (RLS) [3]. Let
hki ¼ ðhki0; hki1; . . .; hkinÞ be the vector of parameters of the i-th rule at step k. Then, the
processing steps of the RLS can be summarized as follows:

K ¼ Pk�1
i

cþð�xkÞTPk�1
i �xk

�xk ð5Þ

hki ¼ hk�1
i þKðyk � �yki Þ ð6Þ

Pk
i ¼

1
c

I � Kð�xkÞT� �
Pk�1
i ð7Þ

where c 2 ½0; 1� is the forgetting factor, �yki is the i-th rule output at k, I 2 <nþ 1�nþ 1 is
the identity matrix, and P is initially set as P0 ¼ xI, x 2 ½103; 105�.

2.2 Learning Algorithm

The eFMR is an online algorithm, and can learn on-the-fly using a stream of input data
without any retraining or storing past data. Initially, there are no fuzzy rules. As the
algorithm receives input data, rules are created, or existing ones modified. Rule
modification means to displace the maximum and/or minimum points until input data is
accommodated within the boundaries of a hyperbox. Every hyperbox has a centroid,
computed as the average of all data points lying within its boundary. Each hyperboxes
also have a counter Mi to store the number of the data samples they encompass.

Parameters d, Mmin and e are user defined. The value of d specifies the maximum
width a hyperbox may reach in each dimension. Mmin is the minimum number of data
samples required to accept a hyperbox as valid granule of information. A valid
hyperbox is assumed to have a consistent local model. Even though it is not strictly
guaranteed that the model is locally consistent, setting a minimum number of samples
could prevent initial condition issues regarding the recursive least squares during
parameter estimation of the affine rule consequents in the second learning step. A sim-
ilar procedure is done in [5].

The parameter e is the maximum allowed distance between a valid local model and
a desired output required by a hyperbox to include a sample. This constraint translates
in the following expression:

yk � �yki
�� ��� e;�yki ¼ hTi �x

k ð8Þ

where yk is the desired output at step k and �yki is the i-th rule output at k.
The first input data x1 becomes the first rule centroid, minimum, and maximum

points, that is, V1 = W1 = c1 = x1. The counter of the first hyperbox B1 is set asM1 = 1.
Whenever a new data sample is input, its membership degree to all existing

hyperboxes is computed using (3). Next, the hyperbox with the highest membership
value undergoes the following tests:
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maxðwji; x
k
j Þ �minðvji; xkj Þ� d; j ¼ 1; . . .; n ð9Þ

yk � hTi �x
k

�� ��� e or Mi � Mmin ð10Þ

Conditions (9) and (10) are the requirements needed by the most active hyperbox to
include current input data xk. Thus, if (9) and (10) hold, then the hyperbox Bi is
expanded to include sample xk, that is, the values of Wi and Vi become:

Wi ¼ max xk;Wi
� �

;Vi ¼ min xk;Vi
� � ð11Þ

Figure 2 illustrates the expansion of hyperbox Bi.

Whenever a hyperbox Bi includes input data xk, the corresponding hyperbox cen-
troid and counter are updated as follows:

cki ¼
Mk�1

i

ðMk�1
i þ 1Þ c

k�1
i þ 1

ðMk�1
i þ 1Þ x

k; Mk
i ¼ Mk�1

i þ 1 ð12Þ

After the update operations (11) and (12), the affine function of the corresponding
hyperbox has its parameters adjusted using the recursive least squares with forgetting
factor. Only the winning hyperbox Bi is updated at each processing step k.

If conditions (9) and (10) do not hold, then the hyperbox with the second highest
membership value undergoes the same tests. If conditions (9) and (10) are satisfied,
then the second hyperbox is expanded to include the data, otherwise the next hyperbox
with the highest membership value is evaluated until all current existing hyperboxes are
checked. If there is no hyperbox for which conditions (9) and (10) hold, then a new one
is created.

The model output is produced at every at step k using (4). The algorithm generates
the output for the current processing step, and uses the actual output of the previous
step to update the parameters of the rule consequent with RLS.

1−k
iV

Expansionkx

k
iV

k
iW

kx

1−k
iW

1−k
iB

k
iB

Fig. 2. Hyperbox expansion
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The detailed steps of the eFMR algorithm are summarized next.
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3 Computational Experiments

This section evaluates the performance of the eFMR using classic benchmarks, the
Mackey-Glass time series forecasting, and the Box & Jenkins Gas Furnace system
identification. Comparisons with alternative evolving and batch modeling approaches
are reported considering root mean squared error and the non-dimensional error
indexes as performance measures. The number of rules, for fuzzy rule-based methods,
or the number of neurons, for neural-based approaches, gives model complexity.

3.1 Mackey-Glass

The Mackey-Glass chaotic time series is a benchmark used to evaluate the predicting
power of fuzzy, neural, and hybrid models. Data and model parameters are the same as
the ones adopted in [9] which assumes x0 = 1.2, s = 17, xk = 0 for k < 0. The task is to
predict xk+85 as a function of the input xk = [xk−18 xk−12 xk−6 xk]. A collection of 3000
samples were produced for k = 201,…,3200 for training, and another 500 test samples
collected for k = 5001,…,5500 to compute the NDEI (Non-Dimensional Error Index).
The recursive least squares uses a forgetting factor c = 0.94. The data samples were
normalized to fit in the interval [0,1]. The parameters of eFMR are d = 1, e = 0.03, and
Mmin = 3.5(n + 1) = 17.5.

Table 1 summarizes the results and Fig. 3 shows the forecasts produced by eFMR
against the actual values. The remaining results reported in Table 1 were taken from
[8]. The eFMR algorithm achieves the highest performance with the fewest number of
rules. The value of the root mean square error achieved by eFMR was, in this case,
RMSE = 0.0079.

168 A. Porto and F. Gomide



3.2 Box and Jenkins Gas Furnace

The Box & Jenkins gas furnace data is composed of 296 pairs of input–output data
taken from a laboratory furnace [7]. The goal is to predict the current output yk as a
function of past values of the outputs and inputs uk. Current literature indicates that a
good model structure for the furnace is:

yk ¼ f ðyk�1; uk�4Þ ð13Þ

We adopted the same experimental set up as in [8]: 200 training data samples to learn
and the remaining 92 data pairs to test. Model evaluation is performed considering the
root mean square error (RMSE) and the NDEI. The recursive least squares uses the
forgetting factor c = 0.7. The data samples were normalized to fit in the interval [0, 1].
The parameters of the eFMR are d = 1, e = 0.03, and Mmin = 3.5(n + 1) = 10.5.
Table 2 summarizes the results, and Fig. 4 depicts the model output against the actual
output. The results of the remaining algorithms were taken from [8]. We notice that
eFMR uses fewer rules, but its error performance does not surpass ePL.

Table 1. Forecasting performance for the Mackey-Glass time series

Algorithm NDEI Number of rules/neurons

DENFIS 0.404 27
eTS 0.373 9
exTS 0.320 12
eTS+ 0.438 8
FLEXFIS 0.206 69
eFMR 0.053 1

k

xk

Fig. 3. Mackey-Glass time series prediction
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4 Conclusion

This paper has introduced a novel evolving fuzzy min-max regression algorithm. The
algorithm uses hyperboxes to granulate the data space and functional fuzzy rules
associated with each hyperbox to develop models from stream data. The algorithm also
uses computationally fast operations such as maximum, minimum, and comparison.
Because of its recursive, one-pass learning nature, it is memory efficient. Computa-
tional experiments show the efficiency of the algorithm. Future work shall address the
issue of how to remove rules that become obsolete for recent input data, how to merge
existing rules, and how to automatically select the parameters currently chosen by the
user.

Acknowledgement. The authors thank the Brazilian National Council for Scientific and
Technological Development (CNPq) for a fellowship, and grant 305906/2014-3, respectively.

Table 2. Prediction performance for the Box & Jenkins gas furnace dataset

Algorithm RMSE NDEI Number of rules/neurons

MLP 0.0211 0.1319 5
ANFIS 0.0207 0.1294 7
FuNN 0.0226 0.1408 7
HyFIS 0.0205 0.1278 15
eTS 0.0490 0.3057 5
Simpl_eTS 0.0485 0.3023 3
xTS 0.0375 0.2397 6
ePL 0.0191 0.1189 4
eFMR 0.0273 0.1707 2

k

yk 

Fig. 4. Box & Jenkins gas furnace identification
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Abstract. In this paper an optimization approach with genetic algorithms for a
deep neural network is applied. We optimize some parameters for the deep
neural network that allowed optimize the results of the recognition of persons,
like the number of neurons in the first and second hidden layer, and others. We
work with the human iris like the biometric measure for the recognition of
persons. Before give like input the human iris images to the deep neural net-
work, pre-processing methods for eliminate the noise around the iris are applied.
The proposed optimization allowed to the deep neural network increase the
performance of recognition.

Keywords: Genetic algorithm � Deep neural network � Person recognition �
Human iris

1 Introduction

The optimization of parameters of neural network methods with bio-inspired methods
are an area of investigation that has been very exploited, having the particularity of
almost always obtain optimal results for the proposed problems. In the literature, the
bio-inspired methods most utilized are the genetic algorithm [1, 2], particle swarm
optimization [3, 4], genetic programming [5], ant colony optimization [6], etc.

The security of access to some site or security box is a problem with many years of
investigation. The use of biometric measures present a high robustness for the problem
before mentioned, like the characteristics of the ears, the human iris, the fingerprint, the
face of the humans, the hand palm, etc.

In this paper, we performed the recognition of individuals using the human iris
biometric measure, the recognition is achieved with the deep neural network model
architecture that allowed to obtain good results for the recognition of persons. This work
is implementedwith deep neural networkmodels at taking in consideration the robustness
and effectivity with which this method has performs in many works of distinct areas of
intelligent systems, like in prediction, pattern recognition, and others [7, 8].
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This investigation is accomplished with the human iris biometric measure keeping
in mind that in literature, the possibilities of that the pattern of two human iris are the
same is very low and the human iris don’t change with the years, allowing a high
robustness and performance [9].

The optimization of parameters of the deep neural network using genetic algorithm
for increase the percent of identification of persons is the principal contribution of this
paper.

The next section explains background of research about recognition with human
iris biometric measure, use of genetic algorithm for optimization and deep neural
network applications. Section 3 presents the proposed method and the problem
description. Section 4 describes the scheme of optimization of the deep neural network
with genetic algorithm (GA). Section 5 shown the simulation results for the deep
neural network without optimization and the optimized with GA proposed in this paper.
Finally, in Sect. 6, some conclusions are presented.

2 Historical Development

Daugman [10], developed an algorithm that performed the identification of persons
using texture phase structure as encoded by multi-scale quadrature wavelets. Risk et al.
[11], used the particle swarm optimization (PSO) and gravitational search algorithm
(GSA) to optimize the weights and biases of a forward neural network. Cruz et al. [12],
implemented the algorithm developed by Daugman on Raspberry pi. Birajadar et al.
[13], performed the recognition using the monogenic wavelets and the Gabor wavelets.

In addition, recent works in deep neural network have been developed, like
Simonyan and Zisserman [14], used deep convolutional neural network in the recog-
nition for large-scale images. Rhee et al. [15], that presented a deep convolutional
neural network for face recognition using synthesized three-dimensional (3-D) shape
information together with two-dimensional (2-D) color; Hinton et al. [16], works with
deep neural network for speech recognition;

3 Proposed Method and Problem Description

The recognition of individuals is the main objective of this paper. In this problem
numerous investigations have been developed, allowing for the utilization of different
biometric measure to accomplish the identification of the persons, like the voice, ear,
face, fingerprint, human iris, etc. and applying different methods with the goal of obtain
a high percent of proof of identity, of which this work is focused in deep neural
network applications.

The particular problem measured in this work is: “obtain a high percent of
recognition of individuals when used a deep neural network optimized with genetic
algorithm by the implementation of the human iris biometric measure”.

In base to test the effectivity of the proposed method, we chose to use the database of
human Iris from the Institute of Automation Chinese Academy of Sciences (CASIA) (see
Fig. 1). The database contains a total of 462 images, which are obtained of 33 persons and
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each person have 14 images, 7 of the right eye and 7 of the left eye.We use 8 images of the
eyes for the inputs to utilize in the training the deep neural network for a total of 264
images, and 6 images of the eyes for test the proposed method for a total of 198 images.
The images have dimensions of 320 pixels per 280 pixels, and in JPEG format.

4 Optimization of Deep Neural Network with Genetic
Algorithm

The deep neural network architecture used for the recognition of persons with the
human iris biometric measure is show in Fig. 2.

Fig. 2. Deep neural network architecture used for the recognition of persons with human iris
biometric measure.

Fig. 1. Illustrations by the database of human iris (CASIA)
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The method developed by Masek and Kovesi [17] to obtain the coordinates of the
center and radius of the iris and pupil is applied for the pre-processing of the images of
the human iris. The coordinates of the center of the iris is used to make a cut around the
human iris allowed eliminate noise of the images, like the eyelid, eyelash and cornea.
This pre-processing allows obtaining better results for the recognition of persons
(Fig. 3).

We optimized the deep neural network with the bio-inspired algorithms: Genetic
algorithm (GA).

We optimized the number of neurons in the first and second hidden layer, and the
parameters weight regularization, sparsity regularization and sparsity proportion for the
two hidden layers. In the weight regularization, we delimited the values in the interval
of 0.001 to 0.01 because in literature this value must be very low. In the sparsity
regularization, the values are in the interval of 2 to 10. In the sparsity proportion, the
values are in the interval of 0 to 1.

We optimized the deep neural network with a genetic algorithm using the
parameters show in Table 1 and Fig. 4.

Fig. 3. Illustration about the cut around the human iris image

Table 1. Parameters used in the genetic algorithm for optimization the deep neural network.

Individuals 50
Genes 8 (real)
Generations 50
Assign fitness Ranking
Selection Stochastic universal sampling
Crossover Single-point (0.8)
Mutation 1/genes
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5 Simulation Results

Experiments were achieved with the deep neural network architecture described in the
previous section. We work with a deep neural network with two hidden layers and we
performed experiments for optimize the deep neural network with genetic algorithm.

The results of the deep neural network without any optimization found that the best
result was achieved with 336 neurons in the first hidden layer and 168 neurons in the
second hidden layer with a 95.45% of identification rate (189/198) (see Table 2 and
Fig. 5).

In the optimization of the deep neural network with genetic algorithm, the optimal
results of identification rate is 96.46% (191/198). The parameters optimized are 914 in
the first hidden layer, 1435 in the second hidden layer, for the first hidden layer:

Table 2. Results for deep neural network without optimization

No. Neurons in hidden
layer 1

Neurons in hidden
layer 2

Identification Percent of
identification

E1 336 168 189/198 95.45%
E2 664 332 189/198 95.45%
E3 892 446 189/198 95.45%
E4 1126 563 189/198 95.45%
E5 1536 768 189/198 95.45%
E6 1342 671 188/198 94.95%
E7 1422 711 188/198 94.95%
E8 1490 745 188/198 94.95%
E9 1554 777 188/198 94.95%
E10 1688 844 188/198 94.95%

Fig. 4. Illustration of the chromosome representation
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0.00697771620631144 in the weight regularization, 7 in the sparsity regularization and
1 in the sparsity proportion, for the second hidden layer: 0.00469146862470693 in the
weight regularization, 8 in the sparsity regularization and 0.764107530019614 in the
sparsity proportion (see Table 3 and Fig. 6).

In Table 4, the comparison between the results for the deep neural network without
optimization (DNN) and optimized with genetic algorithm (DNNGA) is shown.

Fig. 5. Illustration of the results for the deep neural network without optimization

Table 3. Results for deep neural network optimized with genetic algorithm.

No. Neurons in hidden
layer 1

Neurons in hidden
layer 2

Identification Percent of
identification

E1 914 1435 191/198 96.46%
E2 692 1368 190/198 95.95%
E3 890 843 188/198 94.95%
E4 1700 873 188/198 94.95%
E5 1697 1550 187/198 94.45%
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6 Conclusions

In this paper we presented a deep neural network architecture and the optimization of
this architecture with genetic algorithm, which has as input the database of human iris
images. The images are used for training the deep neural network. In this paper,
pre-processing methods were used to make a cut around the iris utilizing the coordi-
nates of the center and radius of the iris to allow eliminate noise of the images outside
of the iris.

Fig. 6. Illustration of the results for the deep neural network optimized with genetic algorithm.

Table 4. Comparison of results for deep network without and optimized with genetic algorithm.

Model Identification Percent of identification

DNN 189/198 95.45%
DNNGA 191/198 96.46%
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The results reaching of 96.46% identification rate (191 images of 198 test images)
with the deep neural network optimized with genetic algorithm is better than the results
achieving with the deep neural network without optimization (see Table 4).

These results evidence that the use bio-inspired algorithms for optimization, in this
case genetic algorithm, increase the performance of the deep neural network allowed to
obtain an optimal results for identification of person with the human iris biometric
measure.
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Abstract. We show that the correlation coefficient, often used for analysis of
co-movements of financial time series, can be misleading because it does not
take into account the time ordering of time series values. We propose the new
method of analysis of time series comovements based on dynamic local trend
association measure. This measure can capture the dynamic change of the sign
of association between time series. The advantage of the new method is
demonstrated on examples of financial time series. The associations between
time series dynamics and related events are also considered.

Keywords: Time series � Comovement � Association measure � Stock market �
Event � Correlation

1 Introduction

Last years the development of new methods for time series analysis has attracted much
attention [1–13]. Many methods have been developed addressing the problem of time
series similarity [3, 6], however some applications and studies require not a measure of
similarity but a measure of association between dynamics of time series. The task of
analysis of dynamic associations of time series is to find the time intervals where two
time series moving together or in inverse direction. Dynamic association analysis has
different applications such as the identification of competitors in the stock market that
can be allies or enemies at different time periods [2], portfolio optimization [4], stock
market movement forecasting [7] etc. Different methods have been proposed to analyze
the comovements of financial time series [1, 2, 5, 7–13] and many of such approaches
are based on the concept of correlation. In [8], comovement is considered as positive
correlation of returns among different traded securities. In [13], correlation is used to
analyze comovement of commodity prices. In [9], time series are considered as
zero-mean real stochastic processes and dynamic correlation between them based on
spectral density functions and co-spectrum is used in analysis of comovements. Local
correlations are considered in [12]. Most of the methods applied to analysis of financial
time series comovements are usually based on traditional statistical or signal processing
methods including correlation analysis, and often there is no rationale for application of
these methods to analysis of financial time series. In many cases, the assumptions for
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application of these methods like normal distribution of time series values are not
fulfilled. There is usually no rationale to apply signal processing technique to financial
time series for which the concept of the frequency has not much sense but more
important the concept of the trend. The correlation coefficient does not take into
account the time ordering of time series values so the application of the correlation
coefficient to analysis of comovements of time series can be misleading. In the next
section, we discuss the examples when the correlation coefficient cannot detect
comovement of time series.

The methods of analysis of time series comovements based on the analysis of time
series trends have been considered in several works. In [10, 11], the nonparametric tests
for comovements between time series are considered. In two neighboring time points,
two time series have positive comovement when both time series increase, negative
comovement when both decrease and contra-movements when one of them increases
and another decrease. In these works, the comovement of time series is based on the
comparison of the signs of the change of time series values in neighboring time points.
A more general approach was considered in [1, 2] where time series values are replaced
by series of local trends obtained as slope values of linear regressions of time series in
sliding windows of a given size. In [1, 2], the association between two time series is
considered as positive if the local trends of these time series in the same windows have
the same signs, and association is interpreted as negative if they have opposite signs.
Comparing the terminology of the works [1, 2] and [10, 11], in two neighboring time
points two time series are positively associated if they have positive or negative co-
movement and they are negatively associated if they have contra-movement. Based on
the local trend association measure (LTAM) [1], the work [2] proposed the method of
construction of association patterns in two time series defined as the longest sequences
of windows having the same sign of associations for these time series, i.e. patterns of
positive associations and patterns of negative associations. This method was used for
detecting competitive companies based on the analysis of their stock prices.

In [5], the dynamic correlation model, called DCC-GARCH-GJR, is proposed to
investigate how worldwide oil-related events impact the correlation between oil price
and the stock market price of oil-importing/exporting countries. The explanation is
given by clustering events that cover a periods of time greater than one year.

This paper proposes the method of dynamic local trend associations of time series
based on the local trend associations measure considered in [1]. LTAM measures
global associations between time series based on comparisons of all local trends of time
series [1]. The method proposed in this paper allows to measure time series associations
dynamically in changing time intervals where comparing time series can show different
associations.

The paper has the following structure. Section 2 shows that the correlation coef-
ficient can be useless or misleading in measuring time series comovements. Section 3
gives the theoretical background of the new method and describes it. Section 4 shows
the results of application of the new method to analysis of financial time series. Last
section contains discussion and conclusion.
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2 Correlation Coefficient and Time Series Comovements

Pearson’s correlation coefficient

r x; yð Þ ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2�Pn

i¼1 yi � �yð Þ2
q ;

plays the fundamental role in analysis of relationships between variables but it can be
useless or misleading in measuring of comovements of time series because it does not
take into account the time ordering of time series values. Consider example given in
Table 1 and Fig. 1. The pairs of time series xa, ya show excellent comovement, Fig. 1
(a), and pairs of time series xb, yb show excellent contra movement. The reasonable
measure of time series comovements should have positive value in the first case and
negative value in the second case. Both pairs of time series are composed from the
same pairs of points but ordered in different manner. For example, the pair (2,7) located
in time series xa, ya in the column i = 2, and in time series xb, yb in the column i = 6.
The correlation coefficient does not take into account the time ordering of time series
values and gives for both cases corr(xa, ya) = corr(xb, yb) = 0.

This example shows that the correlation coefficient and its modifications can be
useless or misleading in analysis of time series comovements.

Table 1. The values of time series shown in Fig. 1

t = i 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) xa 1 2 3 2 3 2 3 4 3 4 3 4 5
ya 6 7 8 6 7 5 6 7 5 6 4 5 6

(b) xb 1 2 3 2 3 2 3 4 3 4 3 4 5
yb 6 5 4 6 5 7 6 5 7 6 8 7 6

Fig. 1. Examples of the positively (a) and negatively (b) associated time series x and y
composed from the same pairs of points of Table 1 with correlation corr(x,y) = 0.
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3 Theoretical Background

A time series of length n, ðn[ 1Þ, is a sequence of real numbers x ¼ x1; x2; . . .; xnð Þ
corresponding to time points t ¼ 1; 2; . . .; nð Þ. A time window Wi of length k[ 1 is a
sequence of indices Wi ¼ i; iþ 1; . . .; iþ k � 1ð Þ; i 2 1; . . .; n� kþ 1f g. Denote xWi ¼
xi; xiþ 1; . . .; xiþ k�1ð Þ the corresponding sequence of time series values. A sliding
window of size k; ðk ¼ 2; . . .; n) is a sequence of windows J ¼ W1;W2; . . .;Wn�kþ 1ð Þ.

A function fi ¼ aitþ bi with parameters ai; bif g that minimizes the criteria:

Q fi; xWið Þ ¼
Xiþ k�1

j¼i
fi tj
� �� xj

� �2 ¼
Xiþ k�1

j¼i
aitj þ bi � xj
� �2

;

is a least square approximation of xWi , or linear regression. The values ai; bif g; i 2
1; . . .; n� kþ 1f g are calculated as follows [1]:

ai ¼ 6
k k2 � 1ð Þ

Xk�1

j¼0
2j� kþ 1ð Þxjþ i; bi ¼ �xi � ai�ti;

where

�ti ¼ 1
k

Xiþ k�1

j¼i
tj; �xi ¼ 1

k

Xiþ k�1

j¼i
xj:

The Moving Approximation Transform (MAT) [1] is the transformation of time
series values x ¼ x1; x2; . . .; xnð Þ into the sequence of slope (local trend) values cal-
culated in sliding window of length k:

MATk xð Þ ¼ a1; a2; . . .; an�kþ 1ð Þ:

For time series x we will denote it also as follows: MATk xð Þ ¼ ðax1 ; ax2 ; . . .; axmÞ,
where m ¼ n� kþ 1. The local trend association measure (LTAM) is calculated for
time series x and y of the same length n as cosine of the corresponding MATs:

LTAMk x; yð Þ ¼ cos MATk xð Þ;MATk yð Þð Þ ¼
Pi¼m

i¼1 axiayiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼m
i¼1 a2xi

Pi¼m
i¼1 a2yi

q :

The new association measure proposed in this paper is called a dynamic local trend
association measure (DLTAM). It is defined as a sequence of LTAMs calculated for
subsequences of MATk(x) of length L < m:

DLTAMk;L;s x; yð Þ ¼
Pi¼sþ L�1

i¼s axiayiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼sþL�1
i¼s a2xi

Pi¼sþL�1
i¼s a2yi

q ;

where s ¼ 1; . . .;m� Lþ 1.
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LTAMk x; yð Þ calculates local trend association between time series x and y for all
time domain and gives as result one number. DLTAMk;L;s x; yð Þ calculates local trend
associations calculated for smaller time domains showing dynamics of these associa-
tions. For better visual correspondence to the original points DLTAMk;L;s x; yð Þ values
are assigned to the time points sþ kþ L

2 � 1.

4 Results

First, we show the results of application of LTAMk x; yð Þ and DLTAMk;L;s x; yð Þ to time
series from Table 1. Using LTAMk x; yð Þ for sliding window sizes k = 2 and k = 3 we
obtain positive associations between xa and ya: LTAM2 xa; yað Þ ¼ 0:94 and
LTAM3 xa; yað Þ ¼ 0:77 and negative associations between xb and yb:
LTAM2 xb; ybð Þ ¼ �0:94, LTAM3 xb; ybð Þ ¼ �0:77. These results correspond to our
perception about comovement of time series xa and ya and contra-movement of time
series xb and yb. Remember that Pearson’s correlation coefficient cannot capture this
information about comovement and contra-movement of these time series giving value
corr(xa, ya) = corr(xb, yb) = 0.

Figure 2 (from below) depicts DLTAM values for time series xa and ya calculated
for parameter values k = 3 and L = 2, 3. As one can see DLTAM has high positive
dynamic local trend association values corresponding to our perceptions about
comovement of these time series.

Fig. 2. Time series xa and ya and DLTAM values between them
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Figure 3 (from below) depicts DLTAM values for time series xb and yb calculated
for parameter values k = 3 and L = 2, 3. DLTAM has high negative local trend
association values corresponding to our perceptions about contra-movement of these
time series.

Using the dynamic local trend association measure we analyzed two time series: the
daily closing prices of the companies BlackBerry Limited (NASDAQ:BBRY) and
Apple (NASDAQ:AAPL) between February 19, 2013 and February 14, 2014, see
Fig. 4. We found the time periods of positive dynamic local trend associations between
these time series mainly in the first part of the time series (until point 150 except around
point 100) and negative local trend associations on the second part (after point 150).
Blackberry and Apple can be considered as competitive companies during the time
period after time point 150. As it was mentioned in [2], the negative associations
between financial time series can give more adequate information about possible
mutual relationship between competitive companies because the positive association
can be caused by general tendency of stock market when many companies have similar
comovements. As it can be seen from Fig. 4 the found negative associations between
two time series correspond to contra-movements of time series (in windows of size
k = 30), and positive associations correspond to comovement of time series. This
example shows that the proposed measure of dynamic local trend associations can
capture local comovements and contra-movements of time series.

Fig. 3. Time series xb and yb and DLTAM values between them
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Additionally, we retrieved some events from Google news related to these com-
panies during the same time period. The events are the following: E1 - Apple launched
new 16 GB iPod Touch, E2 - BBRYs Q1 earnings below expectations, E3 - Black-
Berry Puts Itself Up for Sale, E4 - BlackBerry getting bought, E5 - Apple shows off
iPad Air, E6 - BlackBerry is replacing its CEO, E7 - BlackBerry launched Z30 in USA.

The negative association around point 100 may be explained by the low earnings
report of Blackberry’s, after which its price plunges, while its competitor’s price rises.
The beginning of the second negative association period also has a possible explanation
because at the same time Blackberry is being bought, Apple is releasing the iPhone 4S,
5C and 5S on September 20, 2013. The events that occur later, while the negative
association is maintained, are positive for Apple, the announcement of the iPad Air,
and negative for Blackberry, the replacement of its CEO. Note that the negative
associations in time periods 150–200 and after 210 are caused by different
contra-movements of time series: increasing of APPL price in the first period and
decreasing in the second one, and, on contrary, decreasing of BBRY price in the first
period and increasing in the second one. The last can be caused by event E7 - launching
Z30 in USA by BlackBerry.

5 Conclusion

We show that the correlation coefficient can be misleading in analysis of comovements
of time series. The paper proposes the dynamic local trend association measure that
captures the dynamically changed positive and negative associations between time
series. This method was tested using real time series from the stock market. A brief set
of news related to them was considered. We showed that the dynamic local trend
associations of the two rival companies are associated with the related news.

A future work is to expand our set of rival companies, analyze their associations
and their relationship with news events, to develop a method for finding the parameters
k and L, since for the present work they were chosen manually.

Fig. 4. DLTAM between daily close price of Blackberry and Apple with the most relevant
events using windows k = 30, L = 16.
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Abstract. In this paper, a Bayesian (belief) network with fuzzy probabilities is
proposed for heart disease diagnosis. Due to the complexity of relations between
the features we used the Bayesian belief network. The fuzzy probabilities are
also used because of the multiplicity of initial probability and belonging each of
features to their related class. We have used the classification methods for
determining the heart diseases class. For depicting the Bayesian network, we
applied the K2 algorithm. We comprised the results of our network with the
result of the Bayesian network, naive Bayesian, multi-Support vector machine,
multilayer perceptron, radial basis function, and k-nearest neighbors. The result
showed that our model is more accurate than others.

Keywords: Bayesian belief network � Fuzzy probabilities � Heart disease �
Classification methods

1 Introduction

The concept of expert systems was first developed by Barr and Feigenbaum [1]. The
expert system is defined as a computer program and it uses artificial intelligence
(AI) technologies to solve problems which are difficult enough to require remarkable
human expertise for their solution. Expert systems have played an important role in
various industries including in finance services, healthcare, manufacturing, etc. Expert
systems have been studied widely in human medicine. For example, it is useful in
diagnosing the diseases. The diseases, which we studied in this paper is heart disease.

Heart disease kills one person every 34 s in the United States [2]. The term car-
diovascular disease applies to a number of illnesses that affect the circulatory system. It
consists of heart and blood vessels [3] and is the major cause of death worldwide.
Coronary heart disease (CHD) occurred when the coronary arteries become narrow,
and it causes a reduction in blood pressure and oxygen. When the heart muscles receive
insufficient blood, the chest pains arise. Coronary artery disease, stroke, high blood
pressure, etc. are the various forms of cardiovascular disease. Cardiovascular disease
(CVD) can lead to severe illness, disability, and death. There are some major causes of
cardiovascular disease, for example, physical inactivity, an unhealthy diet, tobacco use,
and harmful use of alcohol [4].

Several types of research have used the data mining tools in the diagnosis of heart
disease [5]. The different predictive/descriptive data mining techniques proposed in
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recent years for the diagnosis of heart disease is analyzed in [2]. Prognostication
models prognosticate continuous-valued functions but classification models prognos-
ticate categorical labels (discrete, unordered) [6]. Several techniques are used in the
diagnosis of heart disease such as Naive Bayes, fuzzy inference system, neural net-
work, support vector machine, and some other data mining methods and they represent
various levels of accuracies.

The paper is structured as follows. Section 2 reviews the Bayesian network.
Section 3 describes fuzzy set with defining the fuzzy operators. Section 4 reviews the
fuzzy Bayesian networks. In Sect. 5 our proposed model is developed. Section 6 is
about performance evaluation between our model and some other models, and Sect. 7
concludes the paper.

2 Bayesian Networks

One of the unresolved issues in many fields to which expert systems have been applied
is the problem of dealing enough with uncertainty [7].

Bayesian networks appeared in the 1980s as a normative method for uncertain
reasoning [8] which represents a compact diagram of joint probability distributions.
They are usable for many areas, such as diagnosis, search, information recovery, etc.

A Bayesian network is a Directed Acyclic Graph (DAG) that encodes probabilistic
relations between different variables. Nodes in this network represent random variables
h ¼ h1; h2; . . .; hnf g; and the arcs (or lack of them) represent the direct dependence
relations among the variables. The relations can be conditional independence [9]. Each
variable hi in h associated with a conditional probability table which quantifies the
relation between the variables and their parents: P hi Pa hið Þjð Þ where Pa hið Þ are the
parents of node hi.

The joint probability distributions of variables are elicited by the conditional
probability table in the Bayesian network.

P h1; h2; . . .; hnð Þ ¼
Yn

i¼1
P hijPa hið Þð Þ ð1Þ

where n is the number of variables in the Bayesian network [9].
One of the main advantages of Bayesian networks is that they are built up by a

mathematical theory, in which all the assumptions of conditional independence are
explicit, and they create a causal model fromwhich it is likely to gain all sound inferences,
performing abductive, deductive and conclude causal reasoning at the same time [10].

There are many Bayesian expert systems which have been developed in the field of
medicine. There are some programs like Internist-l/QMR [11, 12] and Iliad [13] which
have been converted into Bayesian Networks.

The studies show that the Bayesian network model has proper reliability and also
has more positive influence on doctor’s diagnosis. Bayesian networks conclude better
solutions than other approaches to expert systems [14–17]. Also one of the most
important reasons for using Bayesian Networks as Expert Systems in human medicine
is the interpretability of the outcome: doctors can understand the reasoning behind the
prediction made by the expert system.
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3 Fuzzy Set

Fuzzy and hybrid fuzzy systems are frequently used in many areas. Fuzzy sets were
first introduced by Zadeh as a mathematical way to represent vagueness and uncer-
tainties [18]. In a fuzzy system, a set of fuzzy values is used for describing a variable’s
status.

In fuzzy set theory, a set is described as a collection of different objects. Each of
these sets is characterized by a related membership function. The membership function
is defined in a domain of discourse U and it expresses the degree of membership of
some object u2U within a set. A definition of a membership function in crisp set
theory and fuzzy sets are represented in 2 and 3, respectively:

lA : U ! 0; 1f g ð2Þ

lA : U ! 0; 1½ � ð3Þ

Similar to a crisp set theory, union and intersection operators can be defined in a fuzzy
set theory. According to it, the fuzzy union is known as the s-norm and the fuzzy
intersection is known as the t-norm [19]. One of the definitions of these operators are as
follows:

lA[B xð Þ ¼ lA xð Þþ lB xð Þ � lA xð Þ � lB xð Þ ð4Þ

lA\B xð Þ ¼ lA xð Þ � lB xð Þ ð5Þ

4 Fuzzy Bayesian Networks

Bayesian networks are a helpful and well-set procedure for showing joint probability
distribution. In addition, the fuzzy sets theory is a known tool for development and
analysis of imprecise and mental concepts. The concept of combination between these
two methods can be hard because of differences among a probability and a fuzzy
membership value.

There is some research which combined the Bayesian methods and the fuzzy set
theory. Fuzzy-Bayes decision rule was formulated by [20–22] to simplify the identi-
fication of the loss function of a Bayes decision rule in a fuzzy situation. Bayes theorem
for fuzzy data was generalized by [24, 25]. Different techniques were introduced for
integrating these two methods. We present some of these methods as follows:

4.1 Fuzzy Bayesian Equation

According to [26] three situations are considered for incorporating fuzzy membership
values into the inference process. In the first procedure, query variable and evidence
variable are used in the form of fuzzy and crisp random variable, respectively. Then,
Bayesian equation is
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P eAjB
� �

¼
P

i2I leA Aið ÞPðBjAiÞP Aið Þ
P Bð Þ ð6Þ

The second uses a crisp variable as a query variable and a fuzzy variable as an
evidence. Then, Bayesian equation is

P AjeB� � ¼
P

i2I leB Bið ÞPðBjAiÞP Að Þ
P eB� � ð7Þ

The third method uses query and evidence variables in form of fuzzy variables. Then,
Bayesian equation is

P eAjeB
� �

¼
P

i2I
P

j2J leA Aið ÞleB Bj
� �

PðBjjAiÞP Aið Þ
P eB� � ð8Þ

The marginal fuzzy probability is:

P eB� � ¼
X

i2I leB Bið ÞP Bið Þ ð9Þ

In these Equations, I is the set of all states for the given random variable.

4.2 Virtual Evidence

Virtual evidence is another method for incorporating fuzzy parameters (uncertainty of
evidence) into a Bayesian network [21]. The probability of the evidence is called
virtual evidence. This method is used when a virtual evidence node adds in a network,
fuzzy evidence is combined directly.

For describing this method, we use an example network given in Fig. 1 [19]. In this
simple Bayesian network, we have two nodes which are resistor short and current test.
We represent the virtual evidence on the current test node by adding a new node to the
network. The node virtual evidence Current Test is child of Current Test.

In this figure, the ellipse, square, and diamond nodes represent query/diagnosis,
hidden, and evidence nodes, respectively.

This method is similar to the method which we described in pervious part. Virtual
evidence method shows that the fuzzy membership value can be combined with the
probabilities in the network.

Fig. 1. Simple example Bayesian network with a virtual evidence node [19]
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The difference between these two methods is that the membership value in Fuzzy
Bayesian Equation method is used as a weight. But in this method, the value is
considered as a probability. It is necessary to say that the fuzzy membership represents
the uncertainty level of the state assignment, not the uncertainty of the evidence [19].

4.3 Fuzzy Probability Distribution

Fuzzy probability distribution is another method for implementing a fuzzy Bayesian
network. We use this method to represent our fuzzy Bayesian network. The fuzzy
probability distribution is formed by a probability distribution and a fuzzy state.

A fuzzy state is constructed by one or more components which each component has
its variables degree of membership (l). For instance, a variable (H) with two com-
ponents is shown in (10). Assume H has two states high and normal. It has membership
0.7 in the component high and 0.3 in the component normal.

H ¼ high0:7; normal0:3½ � ð10Þ

If the state ordering does not change forever, it can be represented:

H ¼ 0:7; 0:3½ � ð11Þ

Fuzzy membership values of an analogous example to variable H, could be
lS¼high ¼ 0:6 and lS¼normal ¼ 0:4. Similar (10) we can define (12):

S ¼ high0:6; normal0:4½ � ð12Þ

If the state does not change, we have:

S ¼ 0:6; 0:4½ � ð13Þ

Finally, for determining a fuzzy probability distribution X, we can combine the
probability distribution and the fuzzy state, which:

X ¼ 0:7; 0:3f g0:6; 0:2; 0:8f g0:4
� � ð14Þ

This notation is presented in [22].

5 Model

In this model, we used the naive Bayesian and Bayesian belief network classification
methods. For this method we used an UCI dataset in heart diseases which covered 14
features for 303 patients [23]. The latest feature shows the number of each patient
classes S = {1, 2, 3, 4, 5}.

At first, The K2 algorithm is used to depict the Bayesian network.
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5.1 K2 Algorithm

The K2 algorithm is a greedy algorithm which we have used for creating our Bayesian
Network from a database of records. This algorithm begins with a node which it has no
parents and the parents whose addition most increases the probability of the resulting
structure will add incrementally.

The adding parents to the node will stop when no single parent can increase the
probability [27].

This method Use the following functions:

g i; pið Þ ¼
Yqi

j¼1

ri � 1ð Þ!
Nij þ ri � 1
� �

!

Yri

k¼1
Nijk! ð15Þ

where the Nijk are relative to pi being the parents of xi and relative to a database D

pred xið Þ ¼ x1; . . .; xi�1f g ð16Þ

It returns the set of nodes that precede xi in the node arrangement.

5.2 Pseudo Code of K2 Algorithm

The first Bayesian network which drawn by this algorithm has shown in Fig. 2.
After drawing the network, the conditional probabilities are calculated by consid-

ering the probability of belonging to each range of features to each related class.
Because of the excessive number of conditional probabilities, we have used fuzzy

rules for unification the probabilities. The Fig. 3 shows the fuzzy probability of feature
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10. For demonstrating how this network work, we depicted the Fig. 4. In this figure, the
probability of assigning each feature to class 1 is calculated and after that, one other
feature will be added in prior probability and then new probability will compute.

We depicted the network of the initial probability which determined from the
database for both the naive Bayesian (NB, orange line) and Bayesian belief network
(BBN, blue line) methods. The accuracy of each state is the result of mean between 40
calculated states of a set.

The Fig. 6, shows that at first, the naive Bayesian has more accuracy than belief
Bayesian network. But by increasing the number of test data (In Figs. 5 and 6, the
x-axis represents the number of test patterns ranging), the belief Bayesian network has
accuracy around 70% while the naive Bayesian has accuracy around 58%.

The accuracy of the two methods by using fuzzification of the probability is
demonstrated in Fig. 6. In this figure, we conclude the same result which at first, the
naive Bayesian is upper than the belief Bayesian network in accuracy diagram. But by

Fig. 2. Bayesian network of dataset

Fig. 3. Fuzzy probabilities of feature 10
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increasing the test data, it concludes reversely. Due to the multiplicity of initial
probability and belonging the features to each class, fuzzification of the probability will
make the network more accurate in diagnosis. It should be noted that this method is not
usable for any network with any data structures and it is not deterministic to achieve a
high accuracy in any model [28].

6 Performance Evaluation

In this section, we want to evaluate our method with others classification method so at
first we will provide a brief explanation of this methods and finally we will show the
results in a table.

6.1 Multi SVM

Support vector machine (SVM) is a useful classification method but it usually usable
for two classes in classification method. To improve this method and to make usable for
more than two classes, we offered two well-known methods: OAA and OAO.

Fig. 4. Condotional probabilities with evidence of 2 features

Fig. 5. Compare accuracy of BBN and
NB

Fig. 6. Compare accuracy of BBN and NB after
fuzzy probabilities
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One-against-all (OAA) SVMs were first introduced by Vapnik [29]. In OAA, for
separating each class, an SVM classifier is used. So for classification of C class, we
require C-SVM classifier. The number of each class of data will be determined
accordingly with the maximum output of classifiers.

One against one (OAO) is also known as “pairwise coupling”. In OAO, there is a
classifier for each pair classes which are trained to distinguish data from each other.
Therefore, for a problem with c classes, c(c−1)/2 SVMs are trained.

In this paper, we used the OAO method since it needs less time for training than
OAA.

6.2 MLP

A multilayer perceptron (MLP) is a network of simple neurons called perceptron that
maps sets of input data onto a set of suitable outputs. The perceptron calculates a single
output from multiple real-valued inputs. It would be done by making a linear combi-
nation of input weights and then possibly placing the output through some nonlinear
activation function.

6.3 RBF

Radial basis function (RBF) networks are feedforward neural networks which are
usually used as function estimation and demonstrating the non-linear relations. These
networks commonly have three layers: an input layer, a hidden layer with an RBF
function, and a linear output layer.

The RBF function which is used in this method is as follows:

gi xð Þ ¼ ri
x� vij jj j
ri

� 	
ð17Þ

Which x is the vector of input data, vi is the vector of centers, and ri is dispersion
parameter.

6.4 KNN

K-Nearest Neighbors (KNN) is based on distances between input data and the k
determined centers. In this method, each data assign to nearest center and the center
will update. Finally, the distances between test data and the nearest center will consider
the base of their class definition.

Table 1 shows the obtained accuracy of 8 different methods which implemented on
the dataset. We use cross-validation for the evaluation of the obtained classifiers and
divide the data into training and test data.
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7 Conclusion

In this paper, due to the importance of heart diseases and determining the diseases
class, we have used the classification methods. We have used the Bayesian belief
network since the complexity of relations between the features. The fuzzy probabilities
are also used because of the multiplicity of initial probability and belonging each of
features to their related class. We deeply analyze the network configuration from the
heart disease diagnosis point of view.

After implementing our model and comparison between the mentioned methods,
we conclude that our model is more accurate than others. We note that this method is
adaptive with the expert’s viewpoint and with any suitable dataset.
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Abstract. A hybrid intelligent system is made of a powerful combination of soft
computing techniques for reducing the complexity in solving difficult problems.
Nowadays hypertension (high blood pressure) has a high prevalence in the world
population and is the number one cause of mortality in Mexico. It is sometimes
referred to as the silent killer because it often has no symptoms. We design in this
paper a hybrid model using modular neural networks, and as a response inte-
grator we use a fuzzy systems to provide an accurate diagnosis of hypertension,
so we can prevent a future disease in people based on the systolic pressure,
diastolic pressure and pulse of patients with ages between 15 to 95 years.

Keywords: BP (blood pressure) � Hypertension � ABPM (ambulatory blood
pressure monitoring) � Fuzzy system � Modular neural network � Systolic
pressure � Diastolic pressure � Pulse

1 Introduction

A hybrid intelligent system can be built from a prudent combination of two or more
soft computing techniques for solving complex problems. The hybrid system is formed
by the integration of different soft computing subsystems, each of which maintains its
representation language and an inferring mechanism for obtaining its corresponding
solutions. The main goal of hybrid systems is to improve the efficiency and the power
of reasoning and expression of isolated intelligent systems [1, 2].

In this work, we used some recently developed soft computing techniques, such as
modular neural networks and fuzzy inference systems.

We want to provide a timely diagnosis of hypertension in patients and thus start a
treatment as soon as possible, and also provide the medical doctor with a tool that is of
great support to carry out its work, for this, we used modular neural networks, where
each module works independently. Each of the neural networks is built and trained for
a specific task [3]. We used a response integrator of the modules and for providing the
risk diagnosis, a traditional fuzzy rule system.

This paper has been organized as follows: in Sect. 2 the literature review is presented,
in Sect. 3 the proposed method is presented, in Sect. 4 a methodology description is
presented, in Sect. 5 the results and discussions are presented and in Sect. 6 the con-
clusions obtained after finishing the work with the modular neural network are offered.
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2 Literature Review

This section presents basic concepts necessary to understand the proposed method:

2.1 Blood Pressure and Hypertension

Blood pressure is the force exerted by the blood against the walls of blood vessels,
especially the arteries [4]. Then we understand as high blood pressure, (called
hyper-tension), as the sustained elevation of blood pressure (BP) above the normal
limits [5–8]. The normal blood pressure levels are those below 120 in systolic pressure
(when the heart contracts and pushes the blood around the body) and over 80 in
diastolic pressure (when the heart relaxes and refill with blood), and is measured in
millimeters of mercury (mmHg) [4, 9, 10]. The heart rate is the number of times the
heart beats per minute, and this is well known to vary by ages, for example, the heart
rate in a child is normal around 160 beats per minute, but in an adult at rest, the normal
is between 50 to 90 beats per minute, also can change for some illness, in this case the
change is abnormal.

For collecting the BP measurements of patients we used a device called Ambula-
tory blood pressure monitoring, described below:

A 24-h blood pressure measurement is just the same as a standard blood pressure
check: a digital machine measures the blood pressure by inflating a cuff around your
upper arm and then slowly releasing the pressure. The device is small enough to be
worn on a belt around the waist while the cuff stays on your upper arm for the full 24 h.
The monitors are typically programmed to collect measurements every 15 to 20 min
during the daytime and 30 min at night. At the end of the recording period, the readings
are downloaded should be uploaded. This device can provide the following types of
information, an estimate of the true or mean blood pressure level, the diurnal rhythm of
blood pressure, and blood pressure variability [11, 12].

Studies with the Ambulatory blood pressure monitoring (ABPM) device have
shown that when more than 50% the readings of blood pressure are higher than
135/85 mmHg during the awake hours, and 120/80 mmHg for the sleep hours, there
are signs of target organ damage (kidney, blood vessels, eyes, heart and brain), so that
this blood pressure level is already pathogenic and, therefore, has been concluded that
the above-mentioned numbers should be considered abnormal [4, 13].

2.2 Neural Network for a Hypertension Diagnosis

Sumathi and Santhakumaran [14] used artificial neural networks for solving the
problems of diagnosing hypertension using the Back-Propagation learning algorithm.
They constructed the model using eight risk factors, such as if the person consumes
alcohol, smoking, if they are obese, or if they have stress just to mention a few.

For the evaluation of artificial neural networks in prediction of essential hyper-
tension Samant and Rao [15] investigate the ability of neural networks to predict the
probability of occurrence of hypertension, training the artificial neural network with
different architectures, considering 13 inputs and an output which will classify if the
patient is healthy or hypertensive. The neural network was trained with a large number
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of patients. The maximum accuracy in classification was 92.85%, for the test set, which
was considered as quite satisfactory by the medical experts.

2.3 Fuzzy Logic and Hypertension

For diagnosis of hypertension, Guzman et al. [13, 14] have proposed a Mamdani fuzzy
system model, based on the European Hypertension classification [5], which is shown
in Table 1.

The model has two inputs, the first is the systolic blood pressure and the second is
the diastolic blood pressure and this is done by taking into consideration all ranges of
blood pressure, and the model has one output that is for the blood pressure level.

Das et al. [18] develops an expert fuzzy system for the diagnosis of the risk of
hypertension based on a set of factors such as age, body mass index, blood pressure and
heart rate, also design a neuro fuzzy system using the factors mentioned above and
make a comparative between the two models, which conclude by supporting the expert,
that the neuro fuzzy model generates more accurate results.

2.4 Fuzzy Logic and Pulse

For measuring health parameters of patients, Patil and Mohsin [19] have proposed a
wireless sensor network system for continuous monitors pulse and temperature of
patients at remote or in the hospital, and it transmits the bio-signals to the Doctor and
Patient mobile phone. Data stored in a database is passed to the fuzzy logic controller
(FLC) to improve accuracy and amount of data to be sent to the remote user. The FLC
system receives context information from the sensor as input (the patient age and
pulse), and output is the status of the patient pulse.

3 Proposed Method

Measurements of the blood pressure are obtained by the ABPM for 200 people, and
these data have been obtained from students of the master and doctorate in computer
science from Tijuana Institute of Technology. In addition, the Cardio-Diagnostic

Table 1. Definitions and classification of office blood pressure levels (mmHg)

Category Systolic Diastolic

Optimal < 120 and < 80
Normal 120–129 and/or 80–84
High normal 130–139 and/or 85–89
Grade 1 hypertension 140–159 and/or 90–99
Grade 2 hypertension 160–179 and/or 100–109
Grade 2 hypertension � 180 and/or � 110
Isolated systolic hypertension � 140 and < 90
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Center of Tijuana has provided blood pressure data of its patients for this research, a
database with corresponding data to the systolic pressure, diastolic pressure and pulse
is created.

The modular neural network is trained with 47 records of 40 patients (100% for
training phase because we want the neural network learn in the best way the behavior
of blood pressure and pulse throughout the study) in the database. More specifically,
the first module was trained with the records of systolic pressure, the second module
with the diastolic pressure and the third module with the pulse, the network is modeling
the data for learning the blood pressure and pulse behavior the output of each module
corresponds to the trend over 24 h.

The parameters for the modular neural network were changed in each experiment,
showing the better results with the next parameters, for each module the same are used:

• Training method: Levenberg-Marquardt
• Hidden Layers per module:

– Module 1: 2
– Module 2: 3
– Module 3: 2

• Neurons per module:
– Module 1: 10, 12
– Module 2: 6, 8, 10
– Module 3: 17, 5

• Error goal: 1.00 E−5
• Epochs: 1000.

In Table 3 all experiments are shown.
We used fuzzy inference systems as integrators, the fuzzy model develops by

Guzman et al. [16, 17] is taken to obtain a blood pressure classification and the second
fuzzy inference system to obtain the pulse level, this because there is no numerical
relationship between blood pressure and pulse, but if there is a connection with some

Fig. 1. Proposed method
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diseases. On the other hand, the age enters independently in the fuzzy system because
it’s an important variable to determinate the variation of the pulse, the output of the two
integrators will be evaluated by traditional system rules, for provide a risk diagnosis of
a cardiovascular disease which the patient could have, in Fig. 1 the proposed method is
illustrated.

4 Methodology

In this work, we propose a Mamdani fuzzy inference system for finding the pulse level,
as shown in Fig. 2, it was designed based on the table published in the Guidelines for
Exercise Testing and Prescription [20] and in the expert’s experience. This has two
inputs including the age and the pulse and has one output, which corresponds to the
Pulse level. The membership functions used on the age input are trapezoidal for
“children” and “elder”, and triangular for “young” and “middle”, the membership
functions used for the pulse input are trapezoidal for “low’ and “very high”, and
triangular for “low”, “normal” and “high” linguistic terms.

For the output trapezoidal membership functions are used for low and very low,
and triangular for below normal, excellent and above normal.

Figure 3 shows the input and output variables; we can analyze the input for age and
has a range of 0 to 100, and the pulse has a range of 0 to 220 because is the maximum
level of the pulse in a person.

For the output of the fuzzy system, this is considered in a range from 0 to 100%
because this is the level of it well or how badly the patient is, taking into account ranges
from low to very high.

The rule set of the fuzzy system contains 20 rules, which depends on the age and
pulse for determining which pulse level the patient has. In Table 2 we present the rule
set for this case.

Fig. 2. Pulse fuzzy system
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4.1 Graphical User Interface

A graphical user interface for the diagnosis of cardiovascular risk was designed, and is
shown in the Fig. 4(a), for which the final user can search for the appropriate file where
they have saved the patient’s record, the interface plots the behavior of the pressure and
pulse obtained by ABPM and shows the patient information as name and age.

The medical doctor can make questions about risk factors, this means, which bad
habits the patient has, and this it will be evaluated together the records of ABPM and
the fuzzy rules.

Figure 4(b) shows an example of the search for a file in which the information of a
patient is obtained by the device.

When the final user presses the evaluation button it will display the results obtained
by the fuzzy inference systems and the result of the fuzzy rules for cardiovascular risk
diagnosis that the patient may have (see Fig. 4(c) for an example).

Fig. 3. (a) Input for age, (b) input for pulse, (c) output for pulse level.

Table 2. Fuzzy rules set

Age/pulse VeryLow Low Normal High VeryHigh

Child Low Low Excellent Excellent AboveAV
Young Low BelowAV Excellent AboveAV VeryHigh
Adult Low BelowAV Excellent AboveAV VeryHigh
Elder Low BelowAV Excellent AboveAV VeryHigh
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5 Results and Discussion

The modular neural network was trained with different architectures to efficiently
model the data behavior and find the best possible results. In Table 3 we show some
experiments, can be noted the training methods, which were the Levenberg-Marquardt
(LM) and Gradient descent with momentum and adaptive learning rate backpropaga-
tion (GDX), with different number of layers and neurons.

It can be observed in Table 3 that the cells highlighted with green color indicates
the architecture that produced better result, whereas the row marked with red was the
worst result, and these are based on the actual blood pressure trend and the pulse in a
time interval of 24 h that has been learned by the modular neural network.

Each training time was between 1 and 40 s and for all experiments we used 1000
epochs. The error goal is 1.00 E−5. We need to perform more tests to the neural
network, try with another hidden layer, and maybe use delays for improving and obtain
better results.

a) b) 

c)

Fig. 4. Graphical user interface
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In Table 4 we are presenting the percentage of success in the test data, it can be
observed that there is no significant difference between the percent of the different

Table 3. Neural network training

No Train Layers Neurons Systolic Diastolic Pulse

Syst Diast Pulse Error Error Error

1 LM 3 18,16,20 14,8,19 15,11,21 1.58E-06 2.54E-07 9.43E-06

2 GDX 3 18,16,20 14,8,19 15,11,21 3.00E-03 2.00E-02 1.30E-03

3 LM 3 30,25,19 18,14,8 22,16,7 3.41E-08 1.18E-06 8.22E-08

4 GDX 3 30,25,19 18,14,8 22,16,7 2.40E-03 1.70E-03 1.10E-03

5 LM 3 15,10,5 10,8,6 19,10,5 9.15E-06 7.55E-06 9.41E-06

6 GDX 3 15,10,5 10,8,6 19,10,5 1.90E-03 2.20E-03 8.95E-04

7 LM 3 20,22,28 19,22,26 17,21,25 8.88E-06 9.74E-06 9.21E-06

8 GDX 3 20,22,28 19,22,26 17,21,25 1.30E-02 1.90E-03 8.29E-04

9 LM 3 5,10,15 6,8,10 5,10,19 9.34E-06 3.76E-06 7.55E-06

10 GDX 3 5,10,15 6,8,10 5,10,29 3.10E-03 2.60E-03 1.70E-03

11 LM 2 32,25 25,19 22,18 7.14E-06 7.01E-08 8.44E-06

12 GDX 2 32,25 25,219 22,18 2.70E-03 1.30E-03 1.20E-03

13 LM 2 28,15 32,17 20,12 4.74E-06 7.16E-07 6.57E-06

14 GDX 2 28,15 32,17 20,12 1.70E-03 1.80E-03 7.66E-04

15 LM 2 20,10 18,9 17,5 7.68E-06 7.34E-06 9.34E-06

16 GDX 2 20,10 18,9 17,5 1.20E-03 1.90E-03 8.59E-04

17 LM 2 5,21 7,19 9,20 8.63E-06 3.88E-06 8.34E-07

18 GDX 2 5,21 7,19 9,20 1.20E-03 1.90E-03 8.59E-04

19 LM 2 10,12 9,13 6,14 7.70E-06 8.74E-07 9.15E-06

20 GDX 2 10,12 9,13 6,14 2.20E-03 1.60E-03 1.10E-03

21 LM 1 34 28 26 7.80E-06 3.94E-06 7.91E-08

22 GDX 1 34 28 26 1.90E-03 2.00E-03 1.30E-03

23 LM 1 28 24 20 1.12E-08 1.40E-07 7.39E-07

24 GDX 1 28 24 20 5.75E-06 5.29E-06 8.74E-08

25 LM 1 15 19 25 4.68E-07 1.27E-06 2.11E-06

26 GDX 1 15 19 25 2.60E-03 1.80E-03 1.10E-03

27 LM 1 10 8 5 3.79E-07 7.04E-06 5.87E-06

28 GDX 1 10 8 5 2.30E-03 1.80E-03 1.90E-03

29 LM 1 26 23 21 2.35E-08 2.57E-07 2.88E-06

30 GDX 1 26 23 21 1.50E-03 1.80E-03 9.91E-04
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training methods having only a slight improvement with the LM method. However,
when compared graphically the real data with the one learned by the modular neural
network, for longer the LM method is better.

We performed tests of the pulse fuzzy system with different patients, based on their
age and the pulse trend obtained throughout the study, obtaining good results, which
are presented in Table 5.

In Table 6 simulations of 15 patients is presented, where we can see the comparison
of the real trend of blood pressure with the simulated by the neural network, the
numbers in green represent the difference of 10% of allowed error. If there is no

Table 4. Neural network test

No. % of success
Syst Diast Pulse

1 92.53 92.31 92.17
2 94.36 91.42 91.33
3 88.08 87.24 93.83
4 92.99 91.76 91.58
5 95.34 94.39 92.66
6 93.66 92.80 87.99
7 94.23 92.24 85.06
8 92.19 92.17 94.43
9 94.78 94.92 93.50
10 92.38 91.13 92.70
11 89.86 94.09 93.34
12 93.86 91.98 90.94
13 94.28 87.17 88.56
14 93.88 92.82 93.00
15 92.87 92.97 95.38
16 86.88 92.36 92.76
17 91.90 94.56 93.83
18 93.81 91.58 92.74
19 95.22 94.36 94.28
20 92.98 90.99 92.76
21 94.10 93.24 92.46
22 92.35 90.82 90.38
23 91.65 90.12 89.62
24 94.50 89.53 90.39
25 89.42 90.05 93.99
26 93.01 91.32 91.97
27 94.11 92.74 91.68
28 94.67 92.59 88.97
29 92.56 93.20 93.96
30 94.47 87.72 94.65
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Table 5. Pulse fuzzy system test

Patient Age/pulse Fuzzy model
results

P001 53/66.55 35.1 Excellent
P002 53/73.61 35.1 Excellent
P003 55/83.74 35.1 Excellent
P004 59/70 35 Excellent
P005b 27/74.61 35.1 Excellent
P005 45/95 48.1 AboveAV
P006 26/88 35.1 Excellent
P007 29/69.3 35.1 Excellent
P008 31/59 32.5 Excellent
P008b 73/60 35 Excellent
P009 71/71.70 35.1 Excellent
P010 58/72.4 35 Excellent
P011 31/80 35.1 Excellent
P012 53/76.44 35.1 Excellent
P013 69/70.73 35.1 Excellent

Table 6. Simulations whit different patients

Real Simulated

Patient Age Syst Diast Pulse Syst Diast Pulse
BP fuzzy 

model
Pulse fuzzy

model

P014 45 116 75 69 123 76 66 Normal Excellent

P015 25 108 66 71 109 67 70 Optima Excellent

P016 32 124 74 71 118 75 66 Optima Excellent

P017 26 126 68 87 123 72 83 Normal Excellent

P018 46 141 81 75 140 81 75 ISH(Grade1) Excellent

P019 25 130 80 107 126 80 94 Normal Excellent

P020 25 114 65 95 113 72 73 Optima Excellent

P021 60 130 86 74 122 82 61 Normal Excellent

P022 48 129 82 72 130 82 72 Normal Excellent

P023 71 134 62 72 129 62 74 Normal Excellent

P024 58 135 81 72 132 77 84 High Normal Excellent

P025 30 123 78 72 119 74 78 Optima Excellent

P026 32 96 61 67 97 68 68 Optima Excellent

P027 29 129 77 74 127 74 65 Normal Excellent

P028 27 122 77 73 127 82 59 Normal BelowNormal
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difference between the real values and the simulated values with the neural network we
represent them in purple, while the numbers in red exceed the 10% allowed error.

6 Conclusions and Future Work

This paper has presented a hybrid intelligent system for providing a risk diagnosis in
patients with hypertension, and this type of system can be helpful for reducing the
complexity of the problem to be solved.

We used a modular neural network with a fuzzy response integrator for being able
to give an accurate result.

So far, we have achieved good results, but more experiments will be conducted,
this with the intention that the modular neural network learns better and the results
obtained are closer to the blood pressure and pulse trend over time covered by the
study, in regards to the fuzzy system, based on the expert’s experience we have good
results.

Other factors will be added to the model to make improvements, such as more risk
factors to give a diagnosis more accurate and to seek together with the expert the
systems of rules that will give us the diagnosis of risk of suffering hypertension.

As future work is intend to optimize both the modular neural network and the pulse
fuzzy system, this, to specify the architecture of each module of the neural network, in
addition, in the fuzzy system find the membership functions and ranges that are optimal
for this problem.

We will also study different medical studies that help us to diagnose hypertension,
as well as design a fuzzy inference system to provide the patient with their nocturnal
blood pressure profile.

The fuzzy systems proposed in type 2 will be tested and a comparison of results
will be made.
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Abstract. Nowadays, there is need to analyze data in such a way as to consider
the interrelationships between variables that describe the behavior of such data.
The analysis of multivariate data refers precisely to a wide variety of methods of
description or inference for the analysis of these data so that the inter-
relationships between the variables can be quantified and evaluated. One of the
most useful methods is the nonlinear mixed effects modeling. Nonlinear mixed
effects models have been implemented in a wide variety of disciplines such as
social sciences, physics, and life sciences where complex data structures such as
multivariate observations or longitudinal data are present. Implementing a
nonlinear mixed effects model is an arduous and complicated task. This is
because the estimation of the parameters is performed solving maximum like-
lihood functions that usually have no analytical solution. In this work, we
presented an example of an implementation of nonlinear mixed effect modeling
for the development of a population pharmacokinetic model using a genetic
algorithm to improve the estimation of the population pharmacokinetic param-
eters. At the end of this work, we conducted the comparison between a classical
estimation method and an estimation method using a genetic algorithm.

Keywords: Multivariate data � Nonlinear mixed effects models � Longitudinal
data � Maximum likelihood functions � Population pharmacokinetic model �
Genetic algorithm

1 Introduction

Most of the phenomena from a target population are nondeterministic, that is, the
outcomes of interest generated by the phenomena E will not be predictable [1]. Usually
a collection of n random variables X1; . . .;Xn defined on the same space Ω are for-
mulated in an attempt to comprehend the causes of stochasticity of an E. These random
variables have the same probabilistic model f X hjð Þ for instance they are independent
and identically distributed. The difficulty lies when we do not know the parameters h
and we should perform inferences over these parameters.

Furthermore, if we look for partially explaining the nondeterministic reason of the
phenomena or model inter and intra-population variability, then is important to
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P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6_23



consider the parameters h as random. This means that inferences are made on features
of experimental unit profiles and how these vary in the population. That is, multivariate
statistical methods are used to evaluate differences in populations under study based on
measurements made on sample individuals (experimental units). Once differences are
found, parameter estimates are performed to provide estimations of central tendency in
the population [2].

Nonlinear mixed effects modeling is a statistical framework to analyses the above,
because of that, it has been widely implemented in a variety of studies, especially in
drug development where Nonlinear mixed effects modeling helps to efficiently use data
to support decisions regarding the treatment of patients [3].

Population pharmacokinetics (PopPK) models are a good example of those above;
they are designed to study the drug behavior into a population of individuals. Nonlinear
mixed effects models take advantage of tools that allow identifying (estimating) the
overall population effects (fixed effects parameters) from drug effects or individual
characteristics (random-effects parameters). The estimation of fixed and random
parameters in nonlinear mixed effects models is based on maximum likelihood esti-
mation methods where a likelihood function should be optimized. The optimization
methods used to optimize the likelihood function are often based on calculating
derivatives of the likelihood function. The problem arises because, although the opti-
mization methods based on derivatives are easy to perform, these methods were
designed to give better results in unimodal search spaces. On the other hand, the search
spaces in PopPK models are multimodal, and the optimization methods based on
derivatives may get trapped in a local optimal. The aim of this work is to use a genetic
algorithm (GA) to optimize the likelihood function in a PopPK model in a straight-
forward manner without calculating derivatives and by avoiding optimization methods
to be trapped in a local optimal.

2 Population Pharmacokinetics Models

Clinical measurements of plasmatic concentration CPð Þ of the form yij; i ¼ 1; . . .;m; j ¼
1; . . .; ni where the vector yij; symbolize the jth observation for the ith individual have
demonstrated that the efficiency and toxicity of a drug depend CP [3]; for this reason,
mathematical models have been designed to describe the relation among Dose – Cp –

Effect in an individual.
PopPK is a branch of pharmacology, and its primary purpose is the quantitative

evaluation among a group of individuals of pharmacokinetic parameters, as well as the
inter-individual and intra-individual variability in drug absorption, distribution, and
elimination. PopPK along, with simulation methods, provide a tool to develop the
administration of drug doses by estimating the expected range of drug concentrations
[4]. PopPk’s models are comprised of three main components: a structural model, a
covariate model, and a statistical model, Fig. 1, [5].

As we mentioned, Nonlinear mixed effects modeling is the main approach for the
development of PopPKs; the term ‘mixed’ refers to the effects of random quantities
(e.g. between subject variability, residual variability), and ‘fixed’ effects (e.g. popu-
lation parameters) which are typical values of parameters.
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To derive these parameters, we need to choose a structural PK model:

yij ¼ fij tij; b
� �þ eij; eij � N 0; r2

� � ð1Þ

the model (1) is defined for all individuals. The function is a nonlinear structural
function for predicting the drug measurement for the individual in a time point
depending offixed effects. The random errors eij is the residual error that refers to the
deviation of measured drug concentration from the predicted level in a specific time,
and it is considered a variable with e � N 0; r2ð Þ [4].

A structural PK model refers to a specific compartmental PK model, where com-
partmental models represent the body as a number of well-stirred compartments. An
example of a structural model is shown in (2).

Cp ¼ D
Vd

� e�Cl
Vd
�t
; ð2Þ

The model represents the relationship between the dependent variable drug con-
centration ðCpÞ, and the independent variable time tð Þ, whereas volume of distribution
Vdð Þ and clearance Clð Þ are fixed parameters that describe the effect of a given dose Dð Þ
[5, 6].

The covariate model represents relationships between covariates and model
parameters using fixed effects parameters, that is, we can explain population PK
parameters in terms of covariates, for example:

Cl ¼ h1 þ h2Age þ g; ð3Þ

where Cl is defined in terms of linear function of Age; h1; h2 are the intercept and slope
respectively; g is considered to be a variable that describes inter individual variability
with g � N 0;x2ð Þ.

3 Estimation of Population Parameters

As we have seen, the random effects act as parameters, and for instance, they need to be
estimated together with fixed b; hð Þ ¼ H effects parameters. These parameters are

Fig. 1. Components of a population model
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estimated by maximum likelihood estimation based on marginal distribution of
Y ¼ yij; i ¼ 1; . . .;m; j ¼ 1; . . .; ni

� �

p Y H;X;Rjð Þ ¼ Z
p Y H;X; gjð Þp g H;Xjð Þdg ð4Þ

In this case, X contains the of all x20s and the variance matrix R contains the set of
all r20s. The p Y H;X;Rjð Þ is the conditional probability density of observed data and
p g H;Xjð Þ is the conditional density of g. The integral (4) does not have a closed form,
so that different approximation methods can be applied (e.g. first order methods). The
objective functions for each approximation method is numerically minimized with
regard to the parameters ðH;X;RÞ [7, 8].

4 Genetic Algorithms

The GAs are algorithms that are used for optimization, search, and learning tasks,
which are inspired by the natural evolution processes. The concept of GAs was pro-
posed first by Holland in the 1960s [9]. The main components of a genetic algorithm
can be summarized as follows [10]:

• Initial population: Usually consist of a random generation of solutions to the given
problem.

• Representation: Correspondence between the feasible solutions (phenotype) and the
coding of the variables or representation (genotype).

• Evaluation function: Determines the quality of the individuals of the population.
• Operators: To promote evolution.

4.1 Genetic Algorithm Operators

The GAs are probabilistic methods that get new individuals; they tend to be dependent
on the representation. Usually, the operators are used for selection, crossover, and
mutation [10].

Selection
The selection is a method that allows choosing a set of individuals of the population
with higher fitness as parents of the next generation. The selection criterion is usually
assigned to individuals with a probability proportional to its quality [10]. Examples of a
selection type include roulette-wheel selection which can be visualized as spinning a
one-armed roulette wheel, where the sizes of the holes reflect the selection probabilities
[11].

Crossover Operator
Crossover exchanges and combines a set of genes from the parents to generate new
individuals (offspring), according to a crossover probability. The simplest way to
perform crossover is to choose some crossover point randomly, and copy everything
before this point, from the first parent and then copy everything after the crossover
point from the other parent [10, 12].
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Mutation Operator
This operator is used to maintain genetic diversity among generations. The idea is to
alter one or more gene values in the chromosome randomly. This operator provides to
the algorithm with exploratory properties.

5 Methodology

The PopPK model and its analysis were achieved in Matlab to use a GA to optimize the
likelihood function in the PopPK model. The first step was to simulate data for 50
individuals, see Table 1. The purpose of this analysis was to characterize the popu-
lation pharmacokinetics of given medicine.

The database consists of the following information:

• ID: Is the number that identifies each individual.
• TIME: Time in hours (hrs)
• DOSE: Dose in milligrams (mg)
• CP: Plasmatic concentration
• WT: Weight kgð Þ
• AGE: yearsð Þ

After that, a structural and covariate model were selected, the resulting PopPK
model has the form:

Cp ¼ D
Vd

� e � h0 þWTi þ h2 �Agei þ gð Þti
Vd

h i
þ ei ð5Þ

The covariate model for parameter Cl and Vd were defined as linear. The initial
values of the fixed effects were 0.01 for Cl, and 0.01 for Vd . Additionally, an exponential
error model was used to model random effects parameters including interindividual
variability and residual error. The final model was estimated using restricted maximum
likelihood (REML) and quasi-Newton algorithm for the optimization process con-
ducting 150 iterations. Then, a continuous GA was implemented to maximize directly
REML for the covariance parameters Ω without calculating derivatives.

Table 1. Database sample from the individual 21. After importing the data for the individual 21,
only one concentration was obtained. Note that we have written a dash where no information was
available.

ID TIME CP DOSE WT AGE

21 0 1.97 100 71.3 39
21 0.5 1.21 71.3 39
21 2 0.79 71.3 39
21 4 0.43 71.3 39
21 8 0.086 71.3 39
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To achieve this, we generate a population of N = 50 individuals in the context of
our GA. Each individual ith is denote as xi for i 2 1; 2; . . .;N½ � for i 2 1; 2; . . .;N½ �,
where Eth element of xi is expressed as:

for i ¼ 1 : N

forE ¼ 1 : n

xi Eð Þ ¼ randð xmin 0:1ð Þ;xmax 1:1ð Þ½ �
Eþ 1

iþ 1

From here, REML is used as the fitness function, and roulette wheel selection is
used for selecting potentially useful solutions for recombination. Only a single cross-
over point in the third position was used with a probability of 0.8 and a Gaussian
mutation operator.

6 Results

The estimation of the REML along with a quasi-newton Q-N algorithm for the opti-
mization process required 100 to 150 iterations to ensure convergence in the estimation
of the parameters see Fig. 2. In another hand, the convergence in the estimation of the
parameters is achieved in less iteration when using the GA for the same purpose see
Fig. 3.

Finally, the results of both Q-N optimization method and the continuous GA are
shown in Table 2.

Considering the accomplishment of the normal assumption for the random errors
eij, the proposed GA optimized the log REML function by almost 58 units in com-
parison with the classic optimization algorithm Q-N.

Fig. 2. Evolution of the REML parameter estimates over iterations using Q-N algorithm.
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7 Conclusion

The optimal estimation of the parameters of a probability distribution function is
indispensable to be able to make probabilistic inferences from any phenomena under
study. In this particular work, the phenomenon under study was the pharmacokinetic
behavior of a given drug in a population of individuals, where multivariate data is
handled, and the estimation of the parameters is carried out using the restricted max-
imum likelihood (REML) method. In this paper, we present the comparative results
between the implementation of a deterministic algorithm for the estimation of the
parameters of the REML function and the implementation of a genetic algorithm to find
the parameters that correspond to the optimum of the REML function. The obtained
results indicate that genetic algorithms can be used to help estimate parameters of a
maximum likelihood function avoiding optimization methods that could be trapped in a
local optimal.
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Abstract. This paper presents an approach to perform local navigation in
outdoor environments using a bio-inspired algorithm. The proposed approach
uses the Particle Swarm Optimization (PSO) to perform the robot navigation.
The PSO particles represent a possible new position in the navigation task. The
best PSO particle is chosen and is transformed into latitude and longitude val-
ues. Finally, given the desired latitude and longitude values a controller is used
to move the robot from its current position and orientation to the valid and best
PSO particle in each iteration until reaching the goal given in latitude and
longitude.

Keywords: GPS � Mobile robots � Outdoor navigation � Particle swarm
optimization

1 Introduction

Navigation can be roughly described as the process of determining a suitable and safe
path between a starting and a goal point for a robot traveling between them [1]. Taking
a path as a sequence of points called goals is possible to reach the next point with one
of the solutions of a multidimensional bio-inspired algorithm given with every itera-
tion. This paper presents a local navigation in outdoors approach for mobile robots with
nonholonomic constraints. In unstructured environments, the mobile robots are sus-
ceptible to slide, for this reason, we cannot trust in robot’s encoders to determine its
position and orientation, then we propose to use a GPS and an orientation sensor. The
bio-inspired algorithm used in this work is Particle Swarm Optimization (PSO) because
it has low computational cost and generally with a better performance than other
algorithms in terms of success rate and solution quality [2].

The rest of the paper is organized as follows: The next section will give an
introduction to PSO. Section 3 describes the changes to PSO. Section 4 is the
description of the controller used to drive the robot. Section 5 shows the results.
Finally, in Sect. 6 the conclusions.

© Springer International Publishing AG 2018
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2 Particle Swarm Optimization

The particle swarm optimization is a population-based stochastic algorithm for opti-
mization that does not use selection [3]. PSO is one of the most used optimization
techniques to solve global optimization problems. The first step of the original PSO
algorithm is a random distribution of the particles in the search space, each particle
represents a possible solution. In each iteration of PSO, the particles move in the search
space for an optimal solution.

Given a N-dimensional search space:

• The position of the particle is represented as Xi ¼ xi1; xi2; . . .; xiNð Þ.
• The local best of each particle is represented as Pi ¼ pi1; pi2;...;piN

� �
.

• The global best is represented as Pg ¼ pg1; pg2; . . .; pgN
� �

• The velocity of each particle is represented as Vi ¼ vi1; vi2; . . .; viNð Þ
The algorithm starts with the particles in random positions with velocity equals to

zero and in the next iterations, the velocity and position are calculated based on the next
equations.

vij tþ 1ð Þ ¼ vij tð Þþ c1r1 pij tð Þ � xij tð Þ
� �þ c2r2 Pgj tð Þ � xij tð Þ

� � ð1Þ
xi tþ 1ð Þ ¼ xi tð Þþ vi tþ 1ð Þ ð2Þ

i ¼ 1; 2; 3; . . .; n

j ¼ 1; 2; 3; . . .;N

The first component in (1) is sometimes referred to as inertia, it models the tendency of
the particle to continue in the same direction it has been traveling. The second com-
ponent called self-knowledge is a linear attraction towards the best position ever found.
The third component called social knowledge is a linear attraction towards the best
position found by any particle [4]. Where c1 and c2 are called accelerations constants,
r1 and r2 are random numbers in the range of [0, 1], n is the number of particles used in
the algorithm and N is the dimension of search space.

3 Proposed Approach

Defining each particle as a new position, thus at each iteration, the particles will move
to minimize the fitness function which is defined as Euclidean distance. We use two test
to check if a particle is valid, in past works three validations were performed [5].

The first validation consists in check if the position of the particles does not collide
with an obstacle, this is done defining a circle with radius d equal to robot’s radius plus
a security value, the center is in the position of the particle, then if there is a reading of
the camera inside the defined circle, the particle will be considered invalid.

The second validation consists in check if the position is not behind of an obstacle.
We assume that the robot is in the origin of the inertial frame, then a line is traced from
the robot’s center to the new position, this line can be found using (3)
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l1 ¼ 0; 0; 1ð Þ � xi1; xi2; 1ð Þ ð3Þ

With the line l1 ¼ a; b; cð Þ we define four new lines

l2 ¼ a; b; qð Þ ð4Þ

l3 ¼ � a; b;�qð Þ ð5Þ

l4 ¼ b;�a; 0ð Þ ð6Þ

l5 ¼ �b; a; dð Þ ð7Þ

where l2 and l3 are parallel to l1 with a distance equals to the radius of the circle from
the first validation, l4 and l5 are orthogonal to l1 passing through the origin and the new
position respectively. To calculate q and d we use (8) and (9).

q ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð8Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i1 þ x2i2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð9Þ

The lines l2; . . .; l5 form a rectangle, then to test if there is obstacle p ¼ x; y; 1ð Þ inside
the rectangle we use the dot product between the position of the obstacle and each line,
this can be defined as

inside pð Þ ¼ step p � l2ð Þþ step p � l3ð Þþ step p � l4ð Þþ step p � l5ð Þ ð10Þ

step að Þ ¼ 1 if a � 0
0 otherwise

�
ð11Þ

If the value of inside pð Þ is 4 then the obstacle is inside of the rectangle (see Fig. 1).
After validating all the positions the algorithm tries to use the global best, if it is

invalid then use the local best from the current iteration, if local best is also invalid the
algorithm restarts the particles to random positions [5] (Fig. 2).

Fig. 1. Graphical description of the second test
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4 Mobile Robot Navigation

To move the robot to the best position obtained by PSO, the distance between the robot
and the goal positions in latitude and longitude must be calculated, this is done using
the Vincenty’s direct method [6] with World Geodetic System 84 (WGS 84) datum, the
last revision was in 2004. The WGS 84 has been the DoD standard coordinate refer-
ence system since its release in 1987 [7]. The parameters of WGS 84 ellipsoid are
a = 6378317 m and b = 6356752 m.

The linear velocity v will be the distance between both positions q calculated with
the Vincenty’s inverse method [6], the angular velocity x is the difference b – h respect
of horizontal with values in the range of [−p, p] been positive in the counter-clockwise
direction and negative in the opposite (Fig. 3).

To calculated h is used (12) with the values of the rotation matrix returned by the
orientation sensor MTi-G-710 [8].

Fig. 2. Block diagram of modified PSO algorithm.

Fig. 3. Robot kinematics
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R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5

h ¼ atan2 R21;R11ð Þ ð12Þ

The angular velocity needs an adjustment, to prevent the robot from taking too long
to reach the desired angle b is used (4).

x ¼ �2pþx x[ p
2pþx x\� p

�
ð13Þ

The next step is to know angular velocities xr, xl represent the angular velocity of
the right wheel and left wheel respectively [9].

xr ¼ 2vþxL
2R

ð14Þ

xl ¼ 2v� xL
2R

ð15Þ

where L refers the distance that separates the wheels and R refers the radius of robot’s
wheel.

5 Results

5.1 Simulation Results

The algorithm was simulated with different goals and obstacles in different positions
and sizes. To get the best combination of parameters we run multiple simulations with
the same map and goal just changing the values of acceleration constants and number
of particles (Table 1).

5.2 Experimental Results

The experiments were performed using a robot with continuous tracks, a GPS sensor,
and an inertial sensor. The type of terrain was cement, grass, and mud; with different
small elevations that the robot could cross.

Table 1. Comparison table changing weights and numbers of particles

Priority to local best Equal priority Priority to global best
Iterations Resets Iterations Resets Iterations Resets

30 particles 100.86 12.63 94.6 8.1 97.1 6.9
40 particles 98.8 13.63 80.86 7.3 93.7 6.1
50 particles 94.73 11.53 73.6 5.8 82.13 4.7
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In Fig. 4 the robots start at the point A with a heading of two degrees respect from
the equator and positive in the counter-clockwise, the main goal is the B point. The
circle in green represents a zone where the robot can stop because the GPS could give a
no accurate reading it has a radius of 1.5 m, and the red circles represent obstacles. The
algorithm tends to give sub-goals with more distance between each other with each
iteration until the robots reach the main goal.

6 Conclusion

In this work, the authors presented an approach for local navigation using a
bio-inspired algorithm, in this PSO. The best particle of the PSO algorithm estimates
the next valid position. The values of the PSO particle are transformed into longitude
and latitude values. Using the desired coordinates a controller is used to move the robot
from its current position to the desired position. From the simulations and experimental
results, we can observe that the proposed approach is able to solve the problem of local
navigation for mobile robots in outdoor environments.
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Abstract. This work uses the metaheuristic Bat Algorithm, and the main reason
for its use is its speed of convergence, giving us the advantage of solving prob-
lems of optimization in a short time in comparison with other metaheuristic. We
apply the Bat Algorithm in optimizing the trajectory of a unicycle mobile robot,
which is the model considered in this work based on two wheels mounted on the
same axis and a front wheel and the algorithm is responsible for building the best
Type-1 fuzzy system once selected the best applied to the mobile robot model
with the objective of following an established path with the least margin of error.

Keywords: Type-1 fuzzy logic � Optimization � Bat algorithm (BA) � Mobile
robot

1 Introduction

The bat algorithm (BA) is classified as a metaheuristic, which is based on the behavior
of micro-bats and in this paper we applied it to the optimization for the trajectory in
autonomous mobile robot. The main reason for using this algorithm is its speed of
convergence which in comparison other algorithms is faster and offers good results in
less time compared other algorithms. The main contribution is demonstrate the effec-
tiveness of applying the BA to a specific problem [21] in this case the autonomous
mobile robot the objective follow an established path we analyze the ability of the
algorithm to obtain the lowest error in the tracking of the desired trajectory that other
algorithms have been able to solve, in our case BA can solve various problems in faster
speed comparison to other metaheuristics [8, 9, 16, 17].

This work is organized in different sections: Sect. 2 describes the original method
in this case BA, in Sect. 3 describes the unicycle mobile robot, Sect. 4 describes the
methodology and results and Sect. 5 presents the conclusions and the future work.

2 Bat Algorithm

The BA is classified a metaheuristic, it was inspired in the behavior of the micro-bat,
the principal mechanism using for the bat is the echolocation, all bats implemented
echolocation for the pursuit of prey and evade obstacles in the search space. The
parameters in BA are:

© Springer International Publishing AG 2018
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vi Velocity of the bat i.
xi, Position of the bat i.
fmin The frequency
A0 Loudness, The frequency and Loudness the value is fixed or varying [8, 16].

In the advanced of iterations according the proximity to target and positions all bats
adjust the frequency of their emitted pulses and adjust the pulse rate denoted for
r 2 [0, 1], in the algorithm. The stop criteria use the loudness value positive A0 to a
minimum value Amin in this case the values is decreasing and finish in a constant value.

The movements of the bat algorithm are denoted by the updating equations for xti
and velocities vti [11, 12, 18, 19]:

fi ¼ fmin þðfmax � fminÞb; ð1Þ

vti ¼ vt�1
i þðxt�1

i � x�Þfi; ð2Þ

xti ¼ xt�1
i þ vti; ð3Þ

Equation 1 denotes the update of frequency, where b 2 [0, 1] and in the experiment
implementation is assumed to be fmin = 0 and fmax = 0(1) depending the problem
interest the domain size is changed.

Equation 2 represents the update of velocities for the bats with x* represented in the
best solution according to the global best location, and this solution is compared to all
the solutions among the whole bats.

Equation 3 represents the update of the new position, and the new position xti is
given by the position in the previous step xt�1

i more the new velociti vti [10, 22].

Initialize the bat population xi(i=1, 2,..., n) and vi 
Initialize frequency fi, pulse rates ri and the loudness Ai 
While (t<Max numbers of iterations) 

Generate new solutions by adjusting frequency  
and updating velocities and locations/solutions [equations (1) to (3)] 
if(rand>ri) 

Select a solution among the best solutions 
Generate a local solution around the selected best solution 

end if 
Generate a new solutions by flying randomly 
if (rand <Ai& f(xi) < f(x*)) 

Accept the new solutions  
Increase ri and reduce Ai 

end if  
Rank the bats and find the current best x* 

end while 

Fig. 1. Pseudo code for the bat algorithm
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The pseudo code assigned for the BA is shown in Fig. 1 where the stopping criteria
is to finalize the iterations or current the best solution [13–15, 20].

3 The Model Unicycle Mobile Robot

The model is of a unicycle mobile robot mounted of the same axis formed by three
wheels: two driving wheels and from the free wheel the model is shown in Fig. 2 [6, 7].

The movement of the free wheel can be ignored according to Eq. (4) and the
kinematic system is represented by Eq. (5) [1–3]:

M qð Þ _vþC q; _qð ÞvþDv ¼ sþP tð Þ ð4Þ
Equation (4) is composed of:
q ¼ x; y; hð ÞT denoted the configuration coordinates,
t ¼ v;wð ÞT denoted of velocities,
s ¼ s1; s2ð Þ consisted of torques applied to the wheels of the robot where s1 denote
the torque of the right and s2 denoted the torque of the left wheel.
P 2 R2 corresponding a the uniformly bounded disturbance,
M qð Þ 2 R2�2 is the inertia matrix,
C q; _qð Þ# is the centripetal and Coriolis forces,

Fig. 2. Model unicycle mobile robot
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D 2 R2�2 is a diagonal positive-definite damping matrix.

_q ¼
cos h
sin h
0

0
0
1

2
4

3
5

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
J qð Þ

v
w

� �

|ffl{zffl}
t

ð5Þ

Equation (5) is composed of: the value theta (h) corresponding is the angle between
the heading direction and the axis in position x, v and w is a reference the linear and the
angular velocities respectively.

Equation (6) represents the modification of the direction (non-holonomic) in the
autonomous mobile robot, which corresponds to a no-slip wheel condition preventing
the robot from moving sideways.

_y cos h� _x sin h ¼ 0 ð6Þ

4 Methodology and Results

For the unicycle autonomous mobile the main problem consists in controlling the
stability of the desire trajectory, and to solve this problem we proposed to apply the bat
algorithm in optimization of the trajectory of a unicycle mobile robot, and in Fig. 3 we
show the general diagram for the optimization this problem.

In Fig. 3 the bat algorithm is responsible for building the best Type-1 FLS once
selected and the best fuzzy system applied to the mobile robot model with the objective
of following an established path with the minimal margin of error.

Fig. 3. Proposed optimization for the trajectory
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The Type-1 FLS for the autonomous mobile robot is of Mamdani type with two
inputs and two outputs as shown in Fig. 4 [4, 5].

The two inputs: angular velocity (ev) granulated into three membership functions
using trapezoidal in the extremes denoted N for value Negative and P for value positive
in the center using triangular denote Z for value zero in linguistics terms, linear velocity
(ew) granulated in three membership function using trapezoidal in the extremes
denoted N for value Negative and P for value positive in the center using triangular
denote Z for value zero in linguistics terms.

The two outputs: Torque 1 (T1) and Torque 2 (T2) both granulated in three
membership function using triangular with the following linguistic values N, Z, and P,
and Fig. 5 represents the two inputs and the two outputs.

The fuzzy rules in the Type-1 FLS are a total of 9 and are show in Fig. 6, in this
case these are not optimized rules.

We proposed using the bat algorithm for parameterizing the membership functions
in the Type-1 FLS and implement the best fuzzy system in the autonomous mobile
robot, for this the metric we that is used to measure effectiveness is the Mean Square
Error of Eq. (7) and we use this measure because it is the one that will tell us how far
we are from the desired trajectory.

Fig. 4. Type-1 FLS in autonomous mobile robot
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MSE ¼ 1
n

Xn
i¼1

ðYi � YiÞ2 ð7Þ

Table 1 shows the parameters that are used in the bat algorithm and in this case the
values for the parameters are constant and were established in accordance with the
literature.

In this case the parameter dimension value is 40 because the bat is responsible for
constructing the membership functions in the Type-1 FLS, and the Fig. 7 represents the
configuration for one bat.

Figure 8 shows an example of constructing membership functions in the Type-1
FLS, and implements the fuzzy system in autonomous mobile robot and according of
the MSE selects the best fuzzy system, if MSE is low the fuzzy system remains in this
case MSE is high fuzzy system is discarded.

Fig. 6. Rules for the Type-1 FLS

Fig. 5. Inputs and outputs for the Type-1 FLS
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Fig. 8. Example of constructing the membership functions

Table 1. Parameters for the bat algorithm

Parameter Values

Population bats 20
Frequency minimum −1
Frequency maximum 1
A0 0.5
ri 0.5
Beta [0,1]
Dimension 40

Fig. 7. Configuration of one bat for constructing the membership function
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Table 2 shows the results of 30 tests in the implementation of the BA for opti-
mization of the Type-1 FLS in the application autonomous mobile robot. The column
Best represents the MSE error more low and the column Average represents the
average MSE and error the population bats in this case 20 Bats.

Experiment number 6 shows the best MSE, but the Average is high, and these
results show the application original bat algorithm without any modification in

Fig. 9. Comparison of trajectory simulations with respect to the desired trajectory

Table 2. Experiments application of the bat algorithm in the autonomous mobile robot

No Best MSE Average MSE No Best MSE Average MSE

1 0.5345 44.2831 16 21.6224 47.2196
2 1.1082 99.1151 17 0.0229 9.995
3 5.1368 97.8093 18 0.0831 23.315
4 0.0209 2.3281 19 20.1922 46.8008
5 0.1526 16.9149 20 0.052 11.8854
6 0.004 4.0223 21 0.9478 6.5688
7 0.5623 3.1499 22 0.0242 4.8902
8 0.1854 15.7658 23 23.4965 79.3327
9 31.7969 40.9957 24 3.9446 51.2064
10 23.3301 50.3594 25 0.5375 44.4143
11 31.7969 49.7585 26 0.1974 8.0475
12 23.3301 50.3594 27 0.0262 1.3105
13 48.9523 60.4793 28 20.4414 70.5149
14 38.5676 64.7679 29 24.3553 65.8278
15 0.008 0.6645 30 3.0953 33.85
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parameters obtained the MSE low and this means that the robot follows the ideal path
very close to the trajectory shown in Fig. 9 with best MSE 0.004 with respect to desired
trajectory.

Analyzing the other results in the Table 2 respect the test number 6 some results are
high on the side of the algorithm used the parameters are established based on expe-
rience, the parameter in the bat algorithm are no optimized we can deduce that this
could be the reason for obtaining high MSE results.

The trajectory obtained with bat algorithm respect the original trajectory in the
mobile robot autonomous is very similar whit this analysis the original method it is
recommended to be applied to referential problems that involve monitoring of previ-
ously established patterns.

5 Future Work and Conclusion

The implementation of the bat algorithm for modification in the parameters for con-
struction membership function in the Type-1 FLS for a mobile robot autonomous for a
desired trajectory based the MSE obtained the trajectory acceptable whit advantage the
velocity of convergence in the bat algorithm. The main contribution is obtained with
the best fuzzy system in low time and the autonomous mobile robot would not have to
wait long to make his move.

In the introduction mentioned the principal objective the capacity of the algorithm
to obtain the lowest error in the tracking of the desired trajectory, as already seen in the
results and explained in the previous paragraph it is demonstrated that the algorithm is
apt to be applied to complex problems.

Results obtained in Table 2 can be improved by modification of the parameters
manually or using another Type-1 FLS for modification of the parameters in the
algorithm according of the MSE, we can also include optimization of the rules with
fuzzy system as future work.
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research.
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Abstract. This work presents a scheme based on a discrete recurrent high order
neural network identifier and a block control based on sliding modes for non-
linear discrete-time systems with input delays in real-time. The identifier is
trained with an extended Kalman Filter based algorithm and the block control is
used for trajectory tracking. Experimental results are included using a linear
induction motor prototype with added delays to its input signals.

Keywords: Extended Kalman filter training � Neural block control � Neural
identification � Real-time � Time-delay

1 Introduction

Delays in systems are a source of instability and poor performance, also, they make
system analysis a more complex task [1, 2]. Time delay systems mainly inherit delay
from their components and examples can be found easily in areas like chemical
industry, hydraulic systems, metallurgical processing and network systems [1, 2].

System identification is a process to obtain a mathematical model of a system from
data obtained from a practical experiment with the system [3]. Among the many
techniques for system identification, neural networks stand up [3, 4].

Recurrent high order neural networks (RHONNs) internal connections allow them
to capture the response of complex nonlinear systems and to have characteristics like
robustness against noise, on-line and off-line training, and the possibility of incorpo-
rating a priori information about the system to identified [5–7]. On the other hand,
training of neural networks with Kalman filter algorithms has proved to be reliable and
practical, also, it offers advantages for the improvement of learning convergence and
computational efficiency compared to backpropagation methods [5, 6].

Neural block control is a methodology which uses a neural identifier of the block
controllable form of a system, then, based on this model a discrete control law is
designed combining discrete-time block-control and sliding modes technique [5].

There are a number of methodologies which work with systems with input delay
[8–11]. The main disadvantages of these methodologies are that they need a lot of
information about the system, in our methodology, there is not necessary to know the
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model of the system because it works with the model obtained in the neural identifi-
cation process. Moreover, most of them work in continuous-time which could be seen
as a disadvantage due to the tendency towards digital rather than analog systems [12].
In this way, we present a rather simple to work with a scheme for discrete-time systems
with input delays which can be used in real time even if the model of the system is
unknown or incomplete.

On the other hand, compared with some of our previous works [13–15] this paper
differs in that none of them treat the case of input delay in the system and some do not
even consider any kind of delay.

The paper outline: Sect. 2 is dedicated to neural identification using RHONNs and
extended Kalman filter (EKF) training. Then, the block control is in Sect. 3, results are
shown in Sect. 4. Finally, the conclusions are included in Sect. 5.

2 Neural Identification

Neural identification is a process to obtain a mathematical model of a system by
selecting a neural network and an adaptation law, in a way that the neural network
responds in the same way to an input as the system to be identified [3].

2.1 Recurrent High Order Neural Network Identification

In this work, we use the following RHONN series-parallel model:

bxi kþ 1ð Þ ¼ xT
i zi x kð Þ; u k � 1ð Þð Þi ¼ 1; � � � ; n ð1Þ

where n is the state dimension, bx is the neural network state vector, x is the weight
vector, x is the plant state vector, and u is the input vector to the neural network, l is the
unknown time delay and zi �ð Þ is defined as follows:

zi x kð Þ; u k � lð Þð Þ ¼ zi1 zi2 � � � ziLi
� �T

¼ Q
j2I1 n

dij 1ð Þ
ij

Q
j2I1 n

dij 2ð Þ
ij

� � � Q
j2ILi n

dij Lið Þ
ij

h iT ð2Þ

ni ¼ ni1 � � � nin ninþ 1
� � � ninþm

� �T¼ S x1ð Þ � � � S xnð Þ u1 � � � um½ �T
ð3Þ

with Li as the respective number of high-order connections, I1; I2; � � � ; ILif g is a col-
lection of non-ordered subsets of 1; 2; � � � ; nþmf g, dij kð Þ being non-negative integers
and 1= 1þ e�bv

� �
with b[ 0 and v is any real value variable.

EKF Training Algorithm. The training goal is to find the optimal weight vector
which minimizes the prediction error. In this way, the weights x become the states to
be estimated by the Kalman filter, and the identification error between x and bx is
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considered as additive white noise [4]. The training algorithm is based on the EKF due
to the nonlinearity of the neural network (1) and is defined in (4).

xi kþ 1ð Þ ¼ xi kð Þþ gKi kð Þ xi kð Þ � bxi kð Þð Þ
Ki kþ 1ð Þ ¼ Pi kð ÞHi kð Þ Ri kð ÞþHi kð ÞTPi kð ÞHi kð Þ� ��1

Pi kþ 1ð Þ ¼ Pi kð Þ � Ki kð ÞHi kð ÞTPi kð ÞþQi kð Þ
ð4Þ

where xi 2 RLi is the adapted weight vector, g 2 R is the learning rate, bxi is the i -th
state variable of the neural network, Ki 2 RLi is the Kalman gain vector, Ri 2 R is the

error noise covariance, Hi 2 RLi is vector with entries Hij ¼ @bxi xð Þ=@xij kð Þ� �T
and

Pi 2 RLi�Li is the weight estimation error covariance matrix, Qi 2 RLi�Li is the esti-
mation noise covariance matrix. Pi and Qi are initialized as diagonal matrices with
entries Pi 0ð Þ and Qi 0ð Þ, respectively.
RHONN Identification. Consider the following Nonlinear Discrete-Time System
with input delay:

x kþ 1ð Þ ¼ F x kð Þ; u k � lð Þð Þ
y kð Þ ¼ h x kð Þð Þ ð5Þ

where x 2 Rn, u 2 Rm, F 2 Rn �Rm ! Rn is a nonlinear function and l ¼ 1; 2; � � �
is the unknown delay. Then, our identification process consists of approximating the
system (5) with the RHONN (1) trained online with the EKF algorithm (4).

This identification process is validated achieving a small error between the system
outputs and the identifier outputs for the same inputs.

3 Neural Block Control

The model of many practical nonlinear systems can be transformed in the block
controllable form [5]:

xj kþ 1ð Þ ¼ fj xj kð Þ� �þBj xj kð Þ� �
xjþ 1 kð Þþ dj kð Þ

xr kþ 1ð Þ ¼ fr x kð Þð ÞþBr x kð Þð Þu kð Þþ dr kð Þ
y kð Þ ¼ x1 kð Þ

ð6Þ

where j ¼ 1; . . .; r � 1, x 2 Rn is the state variable vector with xðkÞ ¼ x1ðkÞ � � � xr½
ðkÞT �, �xj ¼ ðkÞ x1ðkÞ � � � xjðkÞ

� �T
, r� 2 is the number of blocks, u 2 Rm, dðkÞ ¼

d1ðkÞ � � � djðkÞ � � � drðkÞT
� �

is the bounded unknown disturbance vector and fj �ð Þ and
Bj �ð Þ are smooth nonlinear functions. Consider the following transformation [5]:
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v1 kð Þ ¼ x1 kð Þ � xd1 kð Þ
v2 kð Þ ¼ x2 kð Þ � xd2 kð Þ

¼ x2 kð Þ � B1 x1 kð Þð Þ½ ��1 K1z1 kð Þ � f1 x1 xð Þð Þ � d1ð Þð Þ
..
.

vr kð Þ ¼ xr kð Þ � xdr kð Þ

ð7Þ

where xd1 is the tracking reference, xdi is the desired value for xi; and K is a Shur matrix.
Using (7) and selecting SD kð Þ ¼ vr kð Þ ¼ 0 system (6) can be rewritten as (8):

v1 kþ 1ð Þ ¼ K1v1 kð ÞþB1v2 kð Þ
..
.

vr�1 kþ 1ð Þ ¼ Kr�1vr�1 kð ÞþBr�1vr kð Þ
vr kþ 1ð Þ ¼ fr x kð Þð ÞþBr x kð Þð Þu kð Þþ dr kð Þ � xdr kþ 1ð Þ

ð8Þ

then, u kð Þ is defined in (9), where ueq is calculated from SD kþ 1ð Þ ¼ 0 and u0 it is the
control resources that bound the control.

u kð Þ ¼
ueq kð Þ if ueq kð Þ�� ��� u0

u0
ueq kð Þ
ueq kð Þk k if ueq kð Þ�� ��[ u0

(
Ueq kð Þ ¼ Br x kð Þð Þ½ ��1 �fr x kð Þð Þþ xdr kþ 1ð Þ � dr kð Þ� � ð9Þ

Hence, the first step of the process is to design a RHONN identifier in a block
controllable form for the system to be identified and then obtained the u kð Þ as in (9).

4 Results

Test Description. Using the Lineal Induction Motor prototype (Fig. 1) which is based
in a dSPACE® board RTI1104 and a MATLAB®/Simulink® interface the neural
block control is implemented in a Simulink model with communication to the proto-
type by the dSPACE® tools. A subsystem to induce delays in the system input is
created in Simulink®. The subsystem consists of that 4 s after the prototype starting the
control signal is switched to a version with random time-delay. This is achieved using
the block “Variable Transport Delay” with the configuration variable time delay

Fig. 1. Linear induction motor prototype
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which receives as input at each time a random number from 0 to 10 multiplied by the
sampling time set to 0:0003 s.

Experimental Results. Table 1 shows the identification errors for all variable states
and Fig. 2 shows two graphs the first one shows the velocity tracking, the second one
shows the tracking of the flux magnitude which is defined as:

flux magnitude ¼ Alpha Flux2 þBeta Flux2

5 Conclusions

In general, it is seen that the proposed scheme adapts itself quickly even in the presence
of real-time disturbances and the added delays in the input to the system. More
specifically, the errors shown in Table 1 are small for all variable states, even for alpha
and beta currents considering that they real values can be as high as 30 A. Figure 2
shows the velocity tracking with a good performance and a flux magnitude which is
maintained around its reference. Also, when the added time delay starts at 4 s it is
noticeable that the performance changes, however, the presented RHONN identifier –
control scheme is still capable of maintaining the dynamic of the desired trajectory.
Moreover, it is important to note that for real-time tests a series of external parameters

Table 1. Root mean square errors of identification

State variable RMSE State variable RMSE

Position 5:86� 10�5 Beta flux 4:91� 10�5

Velocity 1:43� 10�4 Alpha current 1:46

Alpha flux 4:78� 10�5 Beta current 1:005

Fig. 2. Tracking reference real-time performance
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are involved like imperfections of the prototype components which induce noise to the
lecture of the signals. We are working on improving our scheme and available
equipment to test it.

Acknowledgments. The authors thank the support of CONACYT Mexico, through Projects
CB256769 and CB258068 (“Project supported by Fondo Sectorial de Investigación para la
Educación”).
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Abstract. Neural networks are a tool that can be used for the modelling of
many systems and process behavior. The artificial neural networks can “un-
derstand” the information from health care processes. For the estimations
between these two concepts we use intuitionistic fuzzy sets. Here, for the
learning process of the neural networks, we will use 60 heavy oils that have been
characterized for their distillation characteristics by ASTM D-5236 and ASTM
D-1160 in the Research laboratory of LUKOIL Neftochim Burgas. The aim is to
recognize the type of crude oil based on six of their properties.

Keywords: Intuitionistic fuzzy set � Health-related quality of life � Neural
networks

1 Introduction

Oil characterization is an essential step in the design, simulation, and optimization of
refining facilities. Crude oils, heavy oils and their fractions are undefined mixtures with
compositions that are not well known (volume, weight, and molar fractions of all the
present components). For that reason, in refinery applications, the oil is typically
characterized based on a distillation assay. This procedure is reasonably well-defined
and is based on the representation of the mixture of actual components that boil within
a boiling point interval by hypothetical components that boil at the average boiling
temperature of the interval [13, 20]. The crude oil assay typically includes TBP dis-
tillation according to ASTM D-2892, which can characterize this part of oil that boils
up to 4000C atmospheric equivalent boiling point [2], and vacuum distillation
according to ASTM D-5236 [3] which characterizes the heavy oil obtained as a residue
from the ASTM D-2892 distillation [17–19]. ASTM D-1160 vacuum distillation is also
used to characterize the distillation curve of high boiling materials [1, 7, 12, 15].
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However, it was determined that the ASTM D1160 vacuum distillation did not provide
well established saturated bubble temperatures. On the other hand, the ASTM D5236
methodology was found to provide well-defined saturated bubble temperatures that
correspond to actual thermodynamic state points [16]. The developed by Satyro and
Yarranton methodology allows the use of ASTM D-5236 distillation data to convert
them into TBP and estimate the entire distillation curves for heavy hydrocarbons.

The use of modern intelligent methods gives us an opportunity to recognize dif-
ferent types of crude oils. In this paper we will use intuitionistic fuzzy sets and neural
networks for the recognition of the different types of the crude oils. The outputs of the
neural network are not so correct if we use the data from the regular measurement
process with standard hardware and standard errors. The combination of the neural
networks and intuitionistic fuzzy set gives us the estimations based on the error of the
neural networks and measurements errors.

Artificial Neural Networks
The artificial neural networks [8, 10, 11] are one of the tools that can be used for object
recognition and prognosis. In the first step it has to be learned and after that we can use
it for the recognition and predictions of the properties of the materials. Figure 1 shows
an abbreviated notation of a classic two-layered neural network.

In the two-layered neural networks, one layer’s exits become entries for the next
one. The equations describing this operation are:

a2 ¼ f 2 w2f 1 w1pþ b1
� �þ b2

� �
;

where:

• am is the exit of the m-th layer of the neural network for m = 1, 2;
• wm is a matrix of the weight coefficients of the each of the entries of the m-th layer;
• b is neuron’s entry bias;
• f1 is the transfer function of the 1-st layer;
• f2 is the transfer function of the 2-nd layer.

The neuron in the first layer receives outside entries p. The neurons’ exits from the
last layer determine the neural network’s exits a.

Fig. 1. Abbreviated notation of a two-layer multi-layer perceptron
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Since it belongs to the learning with teacher methods, to the algorithm are sub-
mitted training sets (an entry value and an achieving aim – on the network’s exit)

p1; t1f g; p2; t2f g; . . .; pQ; tQ
� �

;

Q 2 (1,…, n), n – numbers of learning couple, where pQ is the entry value (on the
network entry), and tQ is the exit’s value corresponding to the aim. Every network’s
entry is preliminary established and constant, and the exit has to correspond to the aim.
The difference between the entry values and the aim is the error e = t − a.

The “back propagation” algorithm [14] uses mean-quarter error:

F̂ ¼ ðt � aÞ2 ¼ e2:

In learning the neural network, the algorithm recalculates network’s parameters
(W and b) in order to achieve mean-square error.

When the multilayer neural network is trained, usually the available data has to be
divided into three subsets. The first subset is named “Training set” and is used for
computing the gradient and updating the network weighs and biases. The second subset
is named “Validation set”. The error of the validation set is monitored during the
training process. The validation error normally decreases during the initial phase of
training, so does the training set error. Sometimes, when the network begins to over fit
the data, the error of the validation set typically begins to rise. When the validation
error increases for a specified number of iterations, the training stops, and the weights
and biases at the minimum of the validation error are returned [21]. The last subset is
named “test set”. The sum of these three sets has to be 100% of the learning couples.

The classic condition for the learned network is when
e2\Emax, where Emax is the maximum square error.

Intuitionistic Fuzzy Sets
Intuitionistic Fuzzy sets [4–7] are defined as extensions of ordinary fuzzy sets. All
results which are valid for fuzzy sets can be transformed here too. Also, all research,
for which the apparatus of fuzzy sets can be used, can also be used to describe the
details of IFL.

On the other hand, there have been defined over IFL not only operations similar to
those of ordinary fuzzy sets, but also operators that cannot be defined in the case of
ordinary fuzzy sets.

Let a set E be fixed. An IFS A in E is an object of the following form:

A ¼ f\x; lAðxÞ; vAðxÞ[ x 2 Ej g

where functions lA : E ! [0, 1] and mA : E ! [0, 1] define the degree of membership
and the degree of non-membership of the element x 2 E, respectively, and for every
x 2 E:
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For every x 2 E, let

pAðxÞ ¼ 1� lAðxÞ � vAðxÞ:

Therefore, the function p determines the degree of uncertainty.
Obviously, for every ordinary fuzzy set pA(x) = 0 for each x 2 E, these sets have

the form:

A ¼ f\x; lAðxÞ; 1� lAðxÞ[ x 2 Ej g:

Let a universe E be given. One of the geometrical interpretations of the IFL uses
figure F on Fig. 2:

In this paper we introduce a neural network for the recognition of some types of
crude oil based on six of their properties. Here we use a neural network in order to
understand the behavior of the process. We will describe the precisions of the output
with intuitionistic fuzzy estimation.

For clarifying we use 60 heavy oils for the learning process of the neural networks,
which have been characterized for their distillation characteristics by ASTM D-5236
and ASTM D-1160 in the Research laboratory of LUKOIL Neftochim Burgas.

2 Discussion

60 heavy oils were analyzed for their distillation characteristics in the LUKOIL Nef-
tochim Burgas (LNB) Research laboratory in accordance with the methods ASTM
D-5236 and ASTM D-1160 [22]. The analyses were carried out in Potstill Euro Dist
System from ROFA Deutschland GmbH according to ASTM D-5236 requirements and
in Euro Dist MPS (ROFA) according to ASTM D-1160 requirements. The pressure

Fig. 2. Intuitionistic fuzzy triangle
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profile in the ASTM D-5236 Potstill apparatus was the following: the fraction boiling
up to 430 °C was separated from the atmospheric residue at pressure 1 mm Hg, and the
other narrow cuts (up to 540 °C) – at pressure of 0.2 mm Hg [9]. The pressure in the
Euro Dist MPS ASTM D-1160 apparatus during the whole analysis was 0.5 mm Hg.
Densities of some of the heavy oils were measured at 20 °C according to ASTM
D-4052. The heavy oil atmospheric equivalent boiling point (AEBP) distillation data of
ASTM D-5236 and ASTM D-1160 are summarized in Table 1. Having in mind that the
distillations finished at 560 °C for ASTM D-5236 and at 550 °C for ASTM D-1160
and the per cent of evaporation was between 46 and 95%, and to obtain the full
distillation curve Riazi’s distribution model was applied.

For the preparation we use MATLAB and neural network structure 13:25:1 (13
inputs, 25 neurons in hidden layer and one output (Fig. 4). For the inputs data we use
IBP, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95% and R2. For the output we use the
number of the type of the crude oil. The other three outputs obtain intuitionistic fuzzy
estimation of the correctness of the output number (Fig. 3).

For the test we use 6 test vectors.
The outputs a of the neural network are shown in the table below:
For the learning of the neural network we use intuitionistic fuzzi values as follows:

Fig. 3. The learning process Fig. 4. The neural network structure
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r ¼ a2 � i
�� ��

where:

– r is standard deviation
– i is a number of the cluster of the output of the neural network.

In this case the degree of membership is l ¼ 1� 2r. The degree of uncertainty p is
for the error of the learning of the neural network (tipicaly 1.10−4).

The degree of non-membership m ¼ 1� l� p ¼ 1� 1� 2r� p ¼ p� 2r.
The obtained information is represented by ordered pairs <l, m> of real numbers

from set [0, 1] � [0, 1].
Within the neural network learning error, there are some results that are adjusted to

allow the use of target vectors as follows:

m ¼ l1
l1 þ m1 þ p1

m ¼ m1
l1 þ m1 þ p1

p ¼ p1
l1 þ m1 þ p1

where l1; m1; and p1 are the current values for the membership, non-membership and
the degree of uncertainty.

At the beginning, statistics of the 60 values that we used for learning the neural
network is done. Initially when no information has been obtained yet, all estimations
are given initial values of <0, 0>. When k � 0, the current (k + 1)-st estimation is
calculated on the basis of the previous estimations according to the recurrence relation

Table 1. Testing of the neural network’s results

N: Test vectors Type µ m

1 [3.107 3.609 3.865 4.175 4.408 4.667 4.942 5.252 5.539 5.917 6.467
6.939 0.998]

6 .58 .32

2 [3.280 3.600 3.830 4.120 4.340 4.560 4.800 5.100 5.412 5.786 6.337
6.816 0.996]

3 .78 .15

3 [3.425 3.752 3.863 4.014 4.128 4.224 4.326 4.453 4.574 4.746 5.015
5.198 0.998]

4 .18 .81

4 [3.265 3.724 3.945 4.232 4.452 4.689 4.942 5.254 5.516 5.878 6.406
6.860 0.998]

1 .55 .35

5 [2.934 3.737 4.025 4.438 4.788 5.128 5.429 5.753 6.110 6.540 7.150
7.664 1.000]

2 .98 .01

6 [3.338 3.769 3.984 4.342 4.613 4.882 5.177 5.643 6.113 6.729 7.695
8.587 0.997]

3 .64 .32
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lkþ 1 þ mkþ 1
� � ¼ lkkþm

kþ 1
;
lkkþ n
kþ 1

	 

;

where lk; mkh i is the previous estimation, and <l, m> is the estimation of the latest
measurement, for m, n 2 [0, 1] and m + n � 1.

3 Conclusion

The authors investigate the possibility to analyze properties of crude oils with Intu-
itionistic fuzzy set and neural networks.

In the paper intuitionistic fuzzy estimations are calculated in order to assess the
quality of the designed neural network. This estimates how the real data corresponds to
the predicted values. For the estimations between these two concepts we use intu-
itionistic fuzzy sets for the learning process of the neural networks. In the paper 60
heavy oils have been used and characterized for their distillation characteristics by
ASTM D-5236 and ASTM D-1160 in the Research laboratory of LUKOIL Neftochim
Burgas. The aim is to recognize the type of the crude oil based on 13 of their properties.
The approach proposed in this work can be employed for modelling in other oil
refining applications where objects like crude oils and oil fractions are characterized by
multiple variables.
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Abstract. Two different types of benchmarking proportional-integral-derivative
PID controllers are used to compare the proposed methodology. In the first
controller the proportional gain KP, the integral gain KI, and the derivative gain
KD, are offline calculated based on the dynamics of the process under control
using the Ziegler Nichols method. The second controller uses three type-1 fuzzy
logic systems to estimate each one of the gains every control cycle. This paper
proposes a fuzzy self-tuning PID controller: it has three singleton type-1 fuzzy
logic systems to calculate each gain of the controller every control cycle, with the
novel characteristics that each fuzzy rule base is updated and tuned each feedback
cycle using the back-propagation (BP) algorithm. This proposal is named
T1 SFLS PID-BP. The results show that the proposed controller presents better
performance than the two benchmarking controllers: the PID and the T1 SFLS
PID.

1 Introduction

The first contribution of this proposal is the online update of the gains for a PID
controller which is a fundamental part due the values of the fuzzy sets of each rule are
tuned using ideal values through the increase of the variables of each gain which
minimize the error signal of control and still the stability for the plant response, many
researches were made for improve the signal of control, between them can be found
some as mentioned below.

In [1] a fuzzy controller is used to reduce the overstress that arise in the plant so as
improve the speed of response. The work done in [2] considers different variables that
influence directly or indirectly in the process by which different types of controllers are
implemented to counter the effects of these variables. The usage of a T1 SFLS PID
controller based on two fuzzy logic controllers (FLC) acting as inputs, where the PID
gains are calculated using the Ziegler-Nichols are presented in both [3, 4]. It can use the
simulation to make comparisons between a classic PID controller and a T1 SFLS PID
controller, and also evaluate the results of both controllers and observe the differences
between them. A control of a single process that uses a T1 SFLS PID and a type-2
SFLS PID is presented by [5]. In this case, three different PID controllers are obtained
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using a genetic algorithm (GA), named linear PID controller, T1 SFLS PID, and type-2
SFLS PID. The type-2 SFLS PID offers the best control for the application. The work
done in [6] processes a type-2 FLS to control the position of an actuator in order of few
millimeters, and uses the parameters with uncertainty. In [7] an interval type-2
SFLS PID controller with two inputs and one output is used for switching control. Has
been presented a hybrid algorithm for interval type-1 non-singleton type-2 TSK fuzzy
logic system [8] that is capable of compensate for uncertain measurements, on this
algorithm is used the back-propagation (BP) method for calculate the backward pass,
the error propagates backward and the antecedent parameters. In [9] is used an Interval
type-1 non-singleton type-2 fuzzy logic system for control the strip head end thickness
calculating the roll gap however not is presented any method for update the controller
gains like Back-propagation. In [10] a fuzzy self-tuning PID Smith is proposed, the
error and change of error are the inputs, which enter to the fuzzification, then to fuzzy
inference based and after the parameters of PID control are obtained when add these to
the gains. A Non-singleton type-1 fuzzy logic system is used like an input that update
each gain of a PID controller [11] which is applied on an Atmega 2560 for controlling a
stepper motor. In [12] is used a PID control and a fuzzy system for longitudinal control
of an air craft where a type-1 fuzzy system and a PID controller are used for
comparison.

The present work introduce a novel methodology that update the rule base of a
type-1 fuzzy logic system for the gains of a PID controller through an BP algorithm
with the purpose of improve the output signal.

2 Mathematical Models

The PID algorithm is able to work in a very reliable manner even when undesirable
conditions occur. This thanks to the use of any information that is omitted.

The Eq. (1) shows the mathematical representation of the proposed PID version,
which has already been implemented in different jobs with excellent results [13].

u tð Þ ¼ Ru
Bp

� en tð Þ � TdDy tð Þ
TcRy

� �
þ Int tð Þ ð1Þ

where Ru is the actuator range, Bp is the proportional band, en tð Þ is the normalized
error, Td is the derivative time, Dy tð Þ is the increase output of the process, Tc is the
control period, Ry is the transmitter range with which the variable is measured in
physical units, Int tð Þ represents the integral mode in the PID algorithm. The Eq. (2)
shows how to calculate the normalized error for (1) where yrf tð Þ is the reference value,
yf tð Þ is the filtered output value. The calculation for Int tð Þ variable is performed using
(3) where Int t � 1ð Þ is the previous integral mode of the PID, Tc is the control period,
Ti is the integral time. The Eq. (4) represents the mathematical model of a first order
plant with one delay.
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en tð Þ ¼ yrf tð Þ � yf tð Þ
Ry

ð2Þ

Int tð Þ ¼ Int t � 1ð Þþ TcRu
TiBp

en tð Þ ð3Þ

y tð Þ ¼ k1u t � pð Þþ ay t � 1ð Þ ð4Þ

where: k1 ¼ KTs
T1 , u t � pð Þ is the signal delay, a ¼ e�

Ts
T1ð Þ, y t � 1ð Þ is the control signal

with one delay time.
Type-1 FLS (5) shows the mathematical representation for the fuzzifier of the

T1 SFLS where l is the number of M-rules, i is the number of singleton inputs, l kð Þ is
the membership function centered at the measured input x�l

i and rli is the standard
derivation. The equation for the deffuzifier is shown in (6) with this equation is cal-
culated the output signal of the system.

l kð Þ ¼
Yn

i¼1
exp � 1

2
x�i � x�l

i

rli

� �2
 !

ð5Þ

f xð Þ ¼
Pm

l¼1 y
�l Qn

i¼1 exp � 1
2

x�i �x�l
i

rli

� �2� �� �
Pm

l¼1

Qn
i¼1 exp � 1

2
x�i �x�l

i
rli

� �2� �� � ð6Þ

Equations (7, 8 and 9) show how to combine the gains were entered to PID, where
KP0 is the initial gain of the PID controller and DKP is the updated gain calculated by
the FLS, likewise, in (8) KI0 initial gain and the estimated DKI and KD0 with DKD to
estimate the total derivative gain for KD is represented by (9).

KP ¼ Ru
Bp

¼ KP0 þDKP ð7Þ

Ti ¼ KI0 þDKI ð8Þ

Td ¼ KD0 þDKD ð9Þ

To start using the BP method begins with specifying the structure of the FLS to be
implemented. Here we choose the FLS with singleton fuzzifier, center average
defuzzyfier, Gaussian membership function (GMF) and the product inference engine
[14]. Taking into account these factors, mathematical representation of the type-1 FLS
is as (10) in which it is included the above parameters where: Xi is the input of the
system, Xl

i is the fuzzy set and rli is the standard deviation. To calculate the error of the
type-1 FLS the (11) is used:
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f xð Þ ¼
PM

l¼1 y
l Qn

i¼1 exp � xi�xli
rli

� �2� �� �
PM

l¼1

Qn
i¼1 exp � xi�xli

rli

� �2� �� � ð10Þ

ep ¼ 1
2

f xp0
� 	� yp0


 �2 ð11Þ

The gradient descent algorithm is used to determine the system parameters such as
y�l, x�l

i , and rli. (12) is the product of the GMF. The input of the system is passed
through a product GMF operator [9] where: xpoi is the input of the system xli qð Þ is the
fuzzy set and rli qð Þ is the standard deviation. (12) is passed through a summation
operator and a weighted summation operator to obtain the (13):

zl ¼
Yn

i¼1
exp � xpoi � xli qð Þ

rli qð Þ
� �2

 !
ð12Þ

b ¼
Xm

l¼1
zl ð13Þ

The Eq. (14) represents the sum of the product resulting from the multiplication of
yl qð Þ by zl where: yl qð Þ is the estimator and zl is the product of all membership
functions. The output of the fuzzy system is calculated using the (15), where the
numerator is (14) and the denominator is (13).

a ¼
Xm

l¼1
yl qð Þzl ð14Þ

f ¼ a
b

ð15Þ

To determinate y�l, it is part of the (16). From the (16) the (17) is obtained by the
chain rule.

y�l qþ 1ð Þ ¼ yl qð Þ � a
@e
@yl

ð16Þ

@e
@y�l

i
¼ f � yð Þ @f

@a
@a
@y�l

¼ f � yð Þ 1
b
zl ð17Þ

Then proceeds to substituting the (17) in the (16) to obtain the (18) which repre-
sents the training algorithm for y�l for each type-1 fuzzy rule base. To determinate x�l

i
it is part of the (19). (20) is obtained from the (19) by the chain rule.
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y�l qþ 1ð Þ ¼ y�l qð Þ � a
f � y
b

zl ð18Þ

x�l
i qþ 1ð Þ ¼ x�l

i qð Þ � a
@e
@x�l

i
ð19Þ

@e
@x�l

i
¼ f � yð Þ @f

@zl
@zl

@x�l
i

¼ f � yð Þ y
�l � f
b

zl
2 xp0i � x�l

i

� 	
rl2i

ð20Þ

Once obtained the (20) proceeds to perform value substitution presented in (20),
these values are substituted in (19), whereby there is obtained the (21) which represent
the training algorithm for x�l

i of each fuzzy rule base:

x�l
i qþ 1ð Þ ¼ x�l

i qð Þ � a
f � y
b

y�l qð Þ � f
� 	

zl
2 xp0i � x�l

i qð Þ� 	
rl2i qð Þ ð21Þ

To calculate rli the same procedure was used to calculate the (22) and (23). That is
to say to the (22) that arises is applied the chain rule, the resulting equation is sub-
stituted into (22), whereby there is obtained the (23) which represents the training
algorithm for rli.

rli qþ 1ð Þ ¼ rli qð Þ � a
@e
@rli

ð22Þ

rli qþ 1ð Þ ¼ rli qð Þ � a
f � y
b

y�l qð Þ � f
� 	

zl
2 xp0i � x�l

i qð Þ� 	2
rl3i qð Þ ð23Þ

3 Proposed Methodology

Using (1) [13], type-1 SFLS, and the BP algorithm, aFL PID controller is proposed.
The implementation of each of the three SFLS [14] uses three fuzzy rules previously
established for the calculation of DKP, DKI and DKD, [15]. The design of these fuzzy
rules represented in Table 1 depends on the process under the control. These are three
important variables used to create the tuning of the three controller gains: the error (E),
the change of error (EC), and the increment of the gain (DK). The error and the change
of error have seven fuzzy sets: NB, NM, NS, ZO, PS, PM and PB are respectively
Negative Big, Negative Medium, Negative Small, Zero, Positive Small, Positive
Medium, Positive Big. Each gain has a different output but the data of error and change
of error are the same. Table 1 shows the fuzzy rules designed for the DKP gain
estimation, the fuzzy rules designed for the DKI gain and the fuzzy rules designed for
the DKD gain. Each fuzzy rule base has an array of 49 fuzzy rules for the output signal
DKP, DKI and DKD respectively.
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4 Results

Were trained three different controllers for compare the response of its signals with the
final purpose of see the performance of the proposed methodology.

In this section, the results are shown with the implementation of the proposed
T1 SFLS PID controller with the BP training where it can see the done iteration for the
BP algorithm between the fuzzy inference engine (FIE) and the fuzzy rule bases (FRB),
here basically the BP update the FRB which in turn update the FIE and the same
procedure is done in the three gains KP, KI and KD for improve the response of the
PID signal. Figure 1 shows the basic structure of the T1 SFLS PID-BP controller. The
learning criterion used for the BP algorithm is Eu ¼ 0, DEu ¼ 0. The steady-state error
(Fig. 2c) is a measure of the accuracy and performance of the proposed controller.

In the Fig. 2 the pointed line shows the response of the PID controller. As
observed, occurs an overrun set by set-point. Intermittent line shows the PID singleton
type-1 which apply fuzzy logic behavior, and as can be seen, an improvement is
obtained in the output response. The fuzzy logic implemented in this case use the fuzzy

Table 1. (a) Fuzzy Rules for DKI, (b) Fuzzy Rules for DKP, (c) Fuzzy Rules for DKD.

Fig. 1. Structure of T1 SFLS PID-BP.
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rules generated for the gains of KP, KI and KD. And, continues line shows the response
signal behavior of the PID singleton type-1 using the BP method for the online update
of the fuzzy rules.

As observed in Fig. 2 the T1 SFLS PID represented by the intermittent line has a
better response to the output in comparison with the PID represented by the pointed
line, due the signal in T1 SFLS PID has a more low overshooting, however the
response in the time and the stabilization are more slow than the PID. Now the
T1 SFLS PID-BP represented for continue line shows a response in the output with the
most minimal overshooting, an average stabilization and with a bad point in the
maximum time in the overshooting. Table 2 shows the values obtained from the
behavior of the three controllers: (a) the maximum overshooting, (b) the time in which
the maximum overshooting is presented, and (c) the time in which the system
stabilizes.

5 Conclusions

According to the experimental results, the T1 SFLS PID-BP presents the better per-
formance in comparison with the two benchmarking controllers due that have a
smoother signal of response that the PID and the T1 SFLS PID controllers. This was
achieved due the implementation of the mechanism to update the fuzzy rules. Further,
the overshooting for the behavior of the plant is reduced until 0.3 which is much better
for the control of actuators in T1 SFLS PID-BP, and the velocity of the response is

Fig. 2. Comparison between (a) PID, (b) T1 SFLS PID and (c) T1 SFLS PID-BP

Table 2. Time for stabilization max overshooting, and the time for the max overshooting

Type of
Controller

Maximum
over-shooting

Time to max.
over-shooting

Time for
stabilization

PID 128.3 15 79
FPID 104.6 29 110
FPID-BP 100.3 44 93
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faster. Although the speed is not very good in comparison with the others controller the
stability in stationary state is better because it present a smaller damping.
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Abstract. This paper proposes the control of a second-order plant using a type 1
(T1) non-singleton fuzzy logic system (NSFLS) to update proportional (Bp),
integral (Ti) and derivative (Td) of a proportional-integral-derivative (PID) con-
troller gains. The performance of this controller was compared with two con-
trollers: classic PID and the T1 singleton fuzzy logic system (SFLS) that updates
the PID gains. The results of this proposal show a fast response time and better
stability than the other two, allowing its application to control real time industrial.

Keywords: Fuzzy logic � PID � Singleton � Non-singleton

1 Introduction

At present there is a more complex machine that requires more efficient drivers to make
them more productive. In order to comply with the improvement demanded by the
latest generation machinery [1] the key point is the correct management of the actu-
ators, based on the information on real time, in order to improve the performance have
an excellent control, in which tune the gains as required in the process. The application
of intelligent algorithm for online-tuning the gains of the classical PID controller are
accepted in the industrial process control [2]. In other areas, it is possible to apply this
methodology, not only for very fast updates, but also the combination of variables that
depend on the actuators to control, as can be the temperature control [3]. In this paper
the gains of the classical PID controller are updated each control cycle using three
T1 NSFLS systems, one for each Bp, Ti and Td gains. The proposal is named as
T1 NSFLS PID controller [4]. Due, do not have a mathematical model of second order
for the machine it proves that with a few data, a control can be made, at the same time
control the disturbances that can break down the established reference parameters [5].
In an economic approach is too important to have the a good controller, due is reduced
the waste of energy that could be very costly and does the energy transmission more
efficient by reducing the cost [6] and these controllers will be simulated in MATLAB
software where the response will be compared between these controllers and the
improvement of apply each of them according to the situation present.
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2 The Logic Scheme of the Used PID Controller

With the aim [7] of using a fuzzy controller, is to improve the design as soon as control
strategies, applying the knowledge of the control rules found in the literature [1], thus it
is controlled in real time the state of the actuators to control. The version of PID
controller used in this proposal is widely accepted in practice, because it includes the
proportional-integral and derivative actions, which accelerates the stability and reduces
the error. The PID is developed under an algorithm of Eqs. (1) and (2), in which the
different gains of a classic PID controller are used with different meanings. The pro-
portional gain Kp = Ru/Bp, Ru is the range of the actuator, in most cases it is 0–100%
and the Bp is the proportional band. Kp should adjust with Bp because Ru is constant.
Ti is the integral time gain that considers the previous errors. The derivative time gain
Td, is in charge of the future system. The Tc is the control period. Dy(t) is the
instantaneous change in the system, and Ry is the transmitter range, where magnitudes
may be different, it is Ry = maximum sensor value – minimum value of the sensor. The
normalized error E(t) is calculated using Eq. (3). Yref(t) is the reference value, and Y(t)
is the measured or feedback value of the output, this last value generally is obtained
using a filter. The structure of this new version is shown in Fig. 1.

The standard deviation is one of the filters that can be applied, which consists on
taking different samples and get the arithmetic meaning.

uðtÞ ¼ Ru
Bp

enðtÞ � TdDyðtÞ
TcRy

� �
þ IntðtÞ ð1Þ

IntðtÞ ¼ Intðt � 1Þþ TcRu
TiBp

enðtÞ ð2Þ

enðtÞ ¼ Yref ðtÞ � YðtÞ
Ry

ð3Þ

3 The Type-1 SFLS Coupled with the PID Controller

Two inputs are used to implement fuzzy logic, these inputs are error (E) and error
change (EC). Adapter fuzzy inputs are calculated by (4) and (5).

Fig. 1. Scheme of the feedback control of a plant of second order
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EðtÞ ¼ Yref � YðtÞ ð4Þ
EC ¼ EðtÞ � Eðt � 1Þ ð5Þ

To apply fuzzy logic in the PID control, [8] the selection of fuzzy sets was done as
shown in Fig. 2. A Gaussian type fuzzifier is used as in Eq. (6). Where Xi* is the value
measured by the sensor,XL

i is themean value of the fuzzy set, rLi is the standard deviation.

lðAÞ ¼
Yn
i¼1

exp � X�
i � X

L
i

rLi

 !2
0
@

1
A ð6Þ

The T1 NSFLS online calculates corrections for the PID controller gains and
improves the system response. The Eqs. (7), (8) and (9) [1] update the new value of the
PID gains as shown in Fig. 3.

Bp ¼ Bp0 þDBp ð7Þ

Ti ¼ Ti0 þDTi ð8Þ

Td ¼ Td0 þDTd ð9Þ

Fig. 2. Gaussian membership-function inputs: error (E(t)), and change of error (EC(t)).

Fig. 3. Scheme of T1 NSFLS PID
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Using the knowledge of the experts the proposal [9] present the next rules used for
different gains and different states as shown in the Fig. 4. The if-then rules can be
expressed as:

4 Results

The experiment was performed using the three controllers; PID, T1 SFLS and the
proposed T1 NSFLS PID. The normalized error and current change of error were used
to calculate the both: the PID controller output and the adjustment of each gains of the
PID controller. The results are shown in Fig. 5. The PID controller shows a quick
response but has difficulty settling in its reference point. While the fuzzy PID

Fig. 4. Tables to calculate the adjustment of the three gains during each control cycle [10].

Fig. 5. Comparison of the three controllers
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controllers can be set in the reference point, both controllers reduce shock. The
T1 NSFLS PID controller present the better stabilization behavior, it tends to stabilize
faster than the other two controllers. Also it presents a better stability.

Figure 6 shows the behavior of the controllers before a positive perturbation of two
units and a negative one of equal magnitude. It is observed that IT1 NSFLS PID is the
fastest that stabilizes towards an error equal to zero. But the IT1 SFLS PID does not
generate overshoot. A combination of these two controllers would be ideal.

5 Conclusions

According to the experimental results, the proposed T1 NSFLS PID controller presents
the best performance compared to the two reference controllers, the PID and the PID
T1 SFLS controllers. Using the proposed controller, the override of the behavior of the

Fig. 6. Positive and negative disturbance
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second order plant is eliminated and the speed of the response is faster. We will
continue to work on make a combination of these two controllers using the parts that
best respond to the noise caused in real time.
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Abstract. In the current scenario, everyone is very possessive to buy the most
suitable automobile for them. The choice to buy an automobile is governed by a
large number of features like budget/price, mileage, exteriors, interiors, security
features and so on. In this paper an automotive recommender system is proposed
which uses the multidimensional criteria to select the best alternatives from a
large pool of choices. In this paper, firstly, a feature vector is constructed for
each automobile; secondly, a fuzzy information gain is computed for each cri-
teria. This fuzzy gain is used as the weight of the criteria in fuzzy multidi-
mensional decision making. Thus, the choice of automobiles in descending
order of preference is recommended.

Keywords: Automobiles � Information gain � Multi-criteria decision making �
Recommender system � Fuzzy TOPSIS

1 Introduction

Recommender systems are an integral part of many e-commerce sites like Amazon,
eBay, CDNOW, etc. (Schafer et al. 1999; Shardanand and Maes 1995). It guides the
user to find useful alternatives from a large pool of options (Adomavicius and Tuzhilin
2005) based on various criteria. A recommender system decides among the various
options in a multi-dimensional environment. The recommender system uses the
algorithm on data to find the best set of alternatives (Resnick et al. 1994; Ali et al.
2016). So, in this scenario, Multi-Criteria Decision Making (MCDM) techniques play a
vital role. MCDM techniques explicitly evaluate multiple conflicting criteria in deci-
sion making (Qu and Chen 2008)

Today people are very possessive about automobiles1. There is a strong need of
automotive recommender system which outputs the results based on multidimensional

1 Frankfurt Motor Show: Findings by OICA, Published by Kim Hjelmgaard, USA TODAY on Sept.
16, 2015 http://www.usatoday.com/story/money/cars/2015/09/16/survey-people-cant-imagine-life-
without-cars/32489283/.

© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6_30

http://www.usatoday.com/story/money/cars/2015/09/16/survey-people-cant-imagine-life-without-cars/32489283/
http://www.usatoday.com/story/money/cars/2015/09/16/survey-people-cant-imagine-life-without-cars/32489283/


criteria. The criteria are the parameters used to describe a product. They are also called
as features/attributes. Each criterion has either a qualitative or quantitative value. This
value is an indicator of the utility of the criterion. In automotive domain, criteria like
mileage, interiors, and exteriors do not have crisp values as they are linguistic variables.
For example, the value of mileage depends upon the driving condition, style of driving,
weather conditions etc. Similarly other features like interiors, exteriors, space (leg
room, head room, boot space) etc. are also fuzzy variables. These variables are
dependent upon the perception of the customer. In this scenario there is a need for
fuzzy logic based automotive recommender system which can properly guide the
customer. In this paper, for simplicity, only four wheelers are considered as automo-
biles. Fuzzy Multi Criteria Decision Making (F-MCDM) techniques like Fuzzy Ana-
lytic Hierarchy Process (F-AHP), Fuzzy Technique for Order of Preference by
Similarity to Ideal Solution (F-TOPSIS) enable a decision maker to select the best
alternative under uncertain criteria (Mehtap and Ertugrul 2010).

In this paper, F-TOPSIS is used to explore and illustrate the potentiality of
F-MCDM techniques. A fuzzy weighting criterion is used in the proposed model. It is
called as Fuzzy Information Gain (FIG). The weight is represented by a fuzzy trian-
gular number. It depicts the utility of a particular criterion in a fuzzy environment. FIG
gives fuzzy weights to criteria like mileage, power, torque, turning radius to capture the
vagueness of these criteria.

In this work, the results, thus, obtained are used for designing an automotive
recommender system (item-item collaborative filtering). Developing a recommender
system (Herlocker et al. 2004; Lu et al. 2015) is an exciting & rich problem area as it
involves applications to real world problems (Deviran et al. 2008; Bobadilla et al.
2013; Lu et al. 2015). FIG has not been used for designing an automotive recommender
system using F-MCDM approach.

The remainder of this paper is organized as follows: Sect. 2 gives the motivation
behind choosing the automotive sector for recommender system. Section 3 highlights
the working of F-TOPSIS using Fuzzy Information Gain. Section 4 presents the pro-
posed methodology. Lastly, Sect. 5 provides the conclusion and outlook to future
goals.

2 Motivation

According to a recent survey (see footnote 1) conducted by International Organization
of Motor Vehicle Manufacturers (OICA), show that people find life hard to survive
without access to four wheels. Figure 1, shows the percentage of people in Africa,
America, Europe and Asia who cannot live without automobiles (findings of OICA).
Today the automotive companies are paying a lot of attention in carefully designing an
automobile with most desired features. The customers are more inclined towards
purchasing automobiles based on their desired feature set (Ahmad et al. 2014; Hill et al.
1995). This brings the need for designing a recommender system which is
feature-driven.

As stated in the above section, the use of F-MCDM technique provides a good
answer in choosing the alternatives based on linguistic criteria. In this paper, a proposal
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of using F- MCDM using fuzzy gain has been given. The framework is explained in
later sections.

3 Fuzzy Topsis (F-TOPSIS) and Fuzzy Information Gain
(FIG) for Automotive Recommender System

Multi-criteria decision making techniques have been used to understand the conceptual
intricacy of a model (Hu et al. 2009). This study analyses the approach of F-MCDM
and observe the results for full filling the need of recommendation. This section dis-
cusses the techniques used to design the proposed model. For the sake of brevity, the
details of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
are not included and can be studied in (Yoon and Hwang 1995; Mehtap and Ertugrul
2010; Behzadian et al. 2012). In the proposed approach, triangular fuzzy numbers are
used since a triangular fuzzy number is easier for decision-makers to use. The weighted
criteria are represented as triangular fuzzy number (Zadeh 1975).

For more definitions on triangular fuzzy numbers readers can refer (Zadeh 1965b).
F-TOPSIS is based on the principle that the alternative which is chosen should have

the maximum distance from negative ideal solution and minimum distance from
positive ideal solution (Gumus 2009; Vahdani et al. 2011). The weights given to the
criteria are determined using Fuzzy Information Gain (FIG).

In (Zadeh 1965a) defined for a fuzzy set m, in the universe of discourse U and
U ¼ fu1; u2; . . .ung with respect to probability distribution P ¼ fp1; p2; . . .png, the
fuzzy entropy measure is defined as:

H mð Þ ¼ �
Xn
i¼1

lðuiÞ p ið Þ log p ið Þ

where, µ(ui) represents the membership of ui in set m, µ(ui) Ɛ [0, 1]. The probability of
ui is shown by p(i); 1 � i � n, where n is the number of elements in the universe of
discourse U. FIG measures the expected reduction in entropy caused by separating the
training set of instances according to a specific criterion. FIG evaluates a criterion with
respect to a set of training instances (Chen and Shie 2008). The use of weighting factor

Fig. 1. International percentage of people who cannot live without automobiles
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in MCDM is a crisp value. FIG can be used as a fuzzy measure to better understand the
value of a particular criterion. The method of F-TOPSIS using FIG for designing the
automotive recommender system is explained as follows:
——————————————————————————————————

————————————

/*F-TOPSIS with FIG for Automotive Recommender System*/

Step 1: Choose the linguistic values ðxij� ; i ¼ 1; 2; . . .; n; J ¼ 1; 2; . . .; JÞ for alter-

natives with respect to criteria. The fuzzy linguistic rating ðxij� Þ preserves the
property that the ranges of normalized triangular fuzzy numbers belong to
[0, 1]. Thus, there is no need for normalization.

Step 2: Calculate the weighted normalized fuzzy decision matrix. The weighted

normalized value ðvij� Þ calculated. The weighted normalized vector is con-
structed through Fuzzy Information Gain.

Step 3: Determine the fuzzy positive ideal and fuzzy negative ideal solutions.

Fuzzy positive ideal solution-

A� ¼ v�1; . . .; v�n
� �

;where ð1Þ

v�i ¼ max
i
ðvijÞ if j 2 J; min

i
ðvijÞ if j 2 J 0Þ

�

Fuzzy negative ideal solution-

A
0 ¼ v

0
1; . . .; v

0
n

n o
;where ð2Þ

v
0
i ¼ min

i
ðvijÞ if j 2 J; max

i
ðvijÞ if j 2 J 0Þ

�

where, J is associated with benefit criteria and J 0 is associated with cost criteria.

Step 4: Calculate the distance of each alternative from A� and A
0
using the following

equations:

D�
j ¼

Xn
j¼1

dðvij� ; v�i
�
Þ j ¼ 1; 2; . . .; J ð3Þ

D�
j ¼

Xn
j¼1

dðvij� ; v0
i

�
Þ j ¼ 1; 2; . . .; J ð4Þ

Step 5: Calculate similarities to ideal solution.
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CCj ¼ D�
j = D�

j þD�
j

� �
j ¼ 1; 2; . . .; J ð5Þ

Step 6: Rank preference order. Choose an alternative with maximum CCj or rank
alternatives according to CCj in descending order.

——————————————————————————————————

————————

4 Proposed Methodology

As explained in Sect. 3, F-TOPSIS with FIG is used to design an automotive rec-
ommender system. Figure 2 shows the proposed architectural framework. The method
can be understood in two steps: first, the feature vector, based on automobile criteria, is
used as the distinguishing linguistic criteria for F-TOPSIS and second, the use of FIG
to F-TOPSIS.

The step wise proposed methodology can be explained as follows:

Step 1: The linguistic criteria for automobiles are enlisted and a feature vector for
the automobile is constructed. These criteria are represented in Fig. 3. It can
be used to study the overlapping feature vector for various alternatives
shown by coloured bars.

Step 2: The linguistic criteria/features for automobiles are represented by fuzzy
triangular numbers. Table 1 shows the sample fuzzy payoff matrix. The
table shows a sample matrix of automobiles (Ai……An), where, 1 � i

Step 1

Step 2

Fig. 2. Proposed architectural framework
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n and n is the total number of automobiles; and for criteria (Cj……….Cm)
where 1 � j � m and m is the total number of criteria. The criteria are
represented by a triangular fuzzy number (a1, b1, c1).

Step 3: As shown in Table 2, the criteria are given fuzzy weights using Fuzzy
Information Gain. These weighted criteria are used in F-TOPSIS for
determining the ranked alternatives.

Step 4: The ranked alternatives are used by recommendation system to recommend
the alternatives to customer.

Fig. 3. Criteria used in designing automotive recommender system

Table 1. Sample fuzzy payoff matrix

Criteria Price (c1) Mileage
(c2)

Exteriors
(c3)

Cm

Alternatives a1 b1 c1 a1 b1 c1 a1 b1 c1 a1 b1 c1
A1 3 4 5 3 4 6 3 5 7 … … …

A2 1 3 5 2 4 6 4 5 6 … … …

… .. .. .. .. .. .. .. .. .. … … …

An 2 4 6 4 5 7 3 4 6 … … …

Table 2. Sample weighted criteria using fuzzy information gain

Criteria Fuzzified weights

C1 (.25, .30, .45)
C2 (.40, .55, .60)
C3 (.60, .65.70)
…. ……

Cm ……
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Further, the use of FIG is to understand the close boundaries of the criteria for
which it is difficult to decide on crisp values. This can help in better design evaluation.
The empirical validation can also be constructed, as a useful path, for judging the
best/optimum criteria of alternatives.

5 Conclusion and Future Work

In this paper, the need for analysing uncertain criteria for F-MCDM approach is
understood. The application of these criteria is studied for an automotive recommender
system. In this study, Fuzzy TOPSIS using Fuzzy Information Gain (FIG) gives an
ordered set of choices. The features/criteria of automotive domain are better modelled
using fuzzy information gain and F-TOPSIS. To summarize, this study highlights the
following points: Firstly, the criteria in automotive domain are linguistic variables.
Secondly, construction of a feature vector for an automobile using fuzzy weight is
required, thirdly, use of fuzzy multi criteria decision making technique with fuzzy
information gain, and lastly, an automotive recommender system which outputs the
ranked results using the aforementioned method.

As a future work, it would be interesting to handle MCDM problems using other
techniques namely, Similarity analysis, composite programming, fuzzy compromise
programming, and using type-2 fuzzy set. The use of evolutionary computation can
also be investigated more deeply for such problems.
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Abstract. We investigate the shape of the optimal value of a linear
programming problem with fuzzy-number coefficients. We build on the
classical and also very recent results from interval linear programming
as well as from parametric programming. We show that under general
assumptions the optimal value is a well-defined fuzzy number. Its shape
is piecewise polynomial provided the shape of the input fuzzy coefficients
are polynomial. We also show in particular that the optimal value shape
is triangular as long as the following conditions are satisfied: the input
fuzzy numbers are triangular and affect only the objective function or
the right-hand side, and the problem is so called basis stable.

1 Introduction

Consider a fuzzy linear program

˜f := min c̃T x subject to ˜Ax = ˜b, x ≥ 0, (1.1)

where ˜A is a matrix of fuzzy numbers of size m × n, and ˜b, c̃ vectors of fuzzy
numbers of sizes m and n, respectively. Such problems are often solved by incor-
porating a suitable ordering and reducing to the ordinary case [2]. In this paper,
we investigate the optimal value fuzzy number ˜f in particular and do not consider
the problem of computing the optimal solution x̃. In contrast to the majority,
we use the (natural) definition of ˜f based on α-cuts.

Throughout the text, a fuzzy number z̃ is understood as a family of nested
α-cuts zα, and by the shape of z̃ we mean the shape of the function α �→ zα =
[zα, zα]. In particular, α �→ zα is the left part and α �→ zα the right part of the
shape. So, when we say, for instance, that z̃ has a convex shape, then it means
that both the left and right parts are convex. The purpose of this paper is to
give new views on the shape of the fuzzy optimal value ˜f of (1.1).

We will tackle this problem by using techniques from interval linear program-
ming [2,4]. This is a natural approach since the α-cut of the fuzzy problem has
the form of an interval linear programming (LP) problem
c© Springer International Publishing AG 2018
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Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 31
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min cT
αx subject to Aαx = bα, x ≥ 0. (1.2)

By fα = [fα, fα] we denote the α-cut of ˜f , that is, the range of optimal values
over all realizations. More precisely,

fα := min f(A, b, c) subject to A ∈ Aα, b ∈ bα, c ∈ cα,

fα := max f(A, b, c) subject to A ∈ Aα, b ∈ bα, c ∈ cα,

where f(A, b, c) is the optimal value of the ordinary LP problem

f(A, b, c) := min cT x subject to Ax = b, x ≥ 0. (1.3)

For this type of LP problems, computing fα is a polynomial problem, whereas
computing fα is NP-hard [2]. The question which intermediate values in fα are
attained for which realizations was recently discussed in [1,7].

We say that the interval program (1.2) is basis stable [5,9] if there is a basis B
that is optimal (i.e., the corresponding vertex is an optimal solution) for all real-
izations A ∈ Aα, b ∈ bα and c ∈ cα. It is NP-hard to check for basis stability of
a given basis, but basis stability has convenient properties regarding the optimal
solution set and optimal value range. For each realization, the optimal value and
optimal solution simply read f(A, b, c) = cT

BA−1
B b and x = A−1

B b, respectively,
where the subscript B denotes restriction to the basic columns.

It may happen that the optimum of an LP problem is infinite due to infeasi-
bility or unboundedness. Thus, we will consider throughout the paper that this
is not the case by assuming that the interval fα=0 is bounded.

2 Results

Proposition 1. The optimal value ˜f is a well-defined fuzzy number.

Proof. Simply α ≤ α′ implies fα′ ⊆ fα. In addition, fα=1 is a crisp real value. �	
Proposition 2. If the shape of the input coefficients in ˜A, ˜b, c̃ is polynomial,
then the shape of ˜f is determined by a piecewisely rational polynomial function.

Proof. Consider the shape of the left part of ˜f , which can be considered as a
function of fα with respect to α ∈ [0, 1]. For a particular α ∈ [0, 1], the lower
bound of the optimal value range fα is attained for some realization (1.3) and
some basis B. Utilizing ideas from parametric programming [3,8], consider the
largest neighborhood of this α for which B remains optimal. Then the optimal
value on this neighborhood reads f(A, b, c) = cT

BA−1
B b. Herein, the ranges of cB

and b depend polynomially on α, whereas the entries of A−1
B = 1

det(AB) adj(AB)
depend rational polynomially on α. Thus the range of f(A, b, c) depends rational
polynomially on α.
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Notice that there are finitely many bases. Further, the set SB of all α ∈ [0, 1],
for which a given basis B is optimal, is characterized by the system

det(AB) 
= 0, A−1
B b ≥ 0, cT

N ≥ cT
BA−1

B AN ,

where N denotes the nonbasic indices. This system is a rational polynomial
system, so the set SB consists of finitely many closed/open/semiopen intervals.
Therefore ˜f is a piecewisely rational polynomial function of α. �	

If the optimal value f(A, b, c) is continuous on (α = 0)-cut, then the piecewise
polynomial segments are continuously connected; some continuity conditions
were presented in [7]. Otherwise, there may be jumps as Example 1 below illus-
trates. In the following examples. we consider triangular fuzzy numbers denoted
by [n1, n2, n3], where [n1, n3] is the support and n2 the number with membership
value 1.

Example 1. Consider the fuzzy LP problem with one triangular fuzzy coefficient

min x subject to x ≥ −1, x ≤ 0, [−1, 0, 1]x ≥ 0.

Then the (α = 1)-cut of the optimal value is fα=1 = −1, but for every α ∈ [0, 1)
the α-cut reads fα = [−1, 0]. So, ˜f is still an ordinary fuzzy number, even though
it has an unusual shape.

Example 2. Consider the LP problem minx∈R6 cT x s.t. ˜Ax = b, x ≥ 0. Here,
fuzzy numbers are in the constraint matrix ˜A only. We assume that (some)
entries of ˜A are triangular numbers parametrized by a real-valued variable Δ in
the form

˜A =

⎛

⎜

⎜

⎝

[1 − Δ, 1, 1 + Δ] [2 − Δ, 2, 2 + Δ] 1 0 0 0
[1 − Δ, 1, 1 + Δ] [1 − Δ, 1, 1 + Δ] 0 1 0 0
[2 − Δ, 2, 2 + Δ] [1 − Δ, 1, 1 + Δ] 0 0 1 0
[3 − Δ, 3, 3 + Δ] [1 − Δ, 1, 1 + Δ] 0 0 0 1

⎞

⎟

⎟

⎠

.

The crisp-valued coefficients are

c = (−0.8,−1.5, 0, 0, 0, 0)T , b = (12, 7, 10, 12)T .

Observe that the higher Δ, the higher level of uncertainty in the fuzzy coef-
ficients. The fuzzy optimal values ˜fΔ are depicted in Fig. 1 for

Δ ∈ {0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9}.

In the figure we can see that the fuzzy optimal values ˜fΔ are piecewise
smooth, but there exist nonsmooth points.

Proposition 3. Suppose that the interval LP problem (1.2) is basis stable for
α = 0. Suppose that ˜A, ˜b are crisp and the shape of c̃ is described by a polynomial
of degree d. Then the shape of ˜f is determined by a polynomial of degree d.
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Fig. 1. (Example 2) fuzzy numbers are triangular and in the constraint matrix ˜A only.

Remark 1. The result holds analogously for the case with ˜A, c̃ crisp and ˜b fuzzy.

Proof. Let B be the optimal basis. Then the optimal value reads c̃T x = c̃T
BA−1

B b
and it depends linearly on c̃. �	

Notice that checking basis stability for a problem with interval objective
coefficients only is an easy task [5].

Corollary 1. Under assumptions of Proposition 3, if c̃ has a triangular shape,
then ˜f has a triangular shape. Moreover, if c̃ has a symmetric triangular shape,
then ˜f has a symmetric triangular shape.

So, it suffices just to solve two problems (1.2) with α = 0 and with α = 1
(which is crisp) and we known the whole ˜f .

Corollary 2. Suppose that the interval LP problem (1.2) is basis stable for α =
0. Suppose that ˜A is crisp and the shape of ˜b, c̃ is described by a polynomial of
degree d. Then the shape of ˜f is determined by a polynomial of degree 2d.

Notice that in the above case evaluating ˜f is computationally expensive, even
when ˜b, c̃ have a triangular shape. It is NP-hard just to find the interval fα=0

since determining the range of the bilinear form (cα=0)T
BA−1

B bα=0 is NP-hard [6].

Proposition 4. If ˜A,˜b are crisp and c̃ is fuzzy triangular, then ˜f has a concave
piecewise linear shape.

Proof. There are finitely many vertices of the feasible set. For each vertex v, the
range of the objective function cT

αv is a linear function with respect to α. The
optimal value is the minimum of them, so ˜f is characterized as a minimum of
finitely many linear functions, which is concave. �	
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Similarly, if ˜A, c̃ are crisp and ˜b fuzzy triangular, then ˜f has a convex piece-
wise linear shape. To avoid confusion, notice again that we consider the shape
of ˜f as a function of α ∈ [0, 1]. On the Figs. 1, 2 and 3, α is on the vertical axis.

Example 3. Now we consider the case with A crisp and ˜b, c̃ fuzzy:

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

0
12

3
5

7

6

4

Fig. 2. (Example 3) fuzzy numbers are triangular and in the vectors ˜b and c̃ only.

A =

⎛

⎜

⎜

⎝

1 2 1 0 0 0
1 1 0 1 0 0
2 1 0 0 1 0
3 1 0 0 0 1

⎞

⎟

⎟

⎠

, ˜b =

⎛

⎜

⎜

⎝

[12 − Δ, 12, 12 + Δ]
[7 − Δ, 7, 7 + Δ]

[10 − Δ, 10, 10 + Δ]
[12 − Δ, 12, 12 + Δ]

⎞

⎟

⎟

⎠

, c̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[−8,−0.8,−0.1]
[−1.6,−1.5,−0.1]

0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where Δ is a parameter. The resulting optimal values ˜fΔ are shown in Fig. 2 for
Δ ∈ {0, 1, . . . , 7}. The figure shows that the membership of ˜fΔ is a nonsmooth
function of α, which by Corollary 2 means that the underlying LP is not basis
stable.

Observe also that for Δ = 0, Proposition 4 applies; indeed, in that case the
membership function of ˜fΔ=0 is piecewise linear, while for Δ > 0 it is not.

Example 4. Now we consider the case of A, b crisp and c̃ fuzzy triangular depend-
ing on parameter Δ. Here, A is the same as in Example 3 and

b = (12, 7, 10, 12)T , c̃ = ([−Δ,−0.2,−0.1], [−1.55,−1.5,−0.1], 0, 0, 0, 0)T .

According to Proposition 4, the resulting membership function of ˜fΔ

is piecewise linear and concave in α; see Fig. 3. We plot ˜fΔ for Δ ∈
{0.8, 1.5, 2, 4, 6, 8, 12, 15}. Observe that for α → 1, fα is a constant function
of α (for every Δ).
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−60 −50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

0.8

1.5

2
4

68

12

15

Fig. 3. (Example 4) fuzzy numbers are triangular and in the objective vector c̃ only.

3 Conclusion

In this paper, we addressed the problem of what is the shape of the optimal value
of a fuzzy linear program. Depending on the particular shape of the input fuzzy
numbers, we discussed the resulting shape of the optimal value and whether it
is polynomial, linear or concave. This question is of interest of decision makers
since the shape provides them by the detailed information how various types of
uncertainty in the input data affect the resulting optimal value. This question
was addressed in crisp LP via parametric programming and sensitivity analysis,
but so far was not investigated in fuzzy LP.

Acknowledgements. M. Hlad́ık was supported by the Czech Science Foundation
Grant P402/13-10660S, and M. Černý by the Grant P403/16-00408S.
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7. Mostafaee, A., Hlad́ık, M., Černý, M.: Inverse linear programming with interval
coefficients. J. Comput. Appl. Math. 292, 591–608 (2016)
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Abstract. Fuzzy control is based on approximate expert information,
so its recommendations are also approximate. However, the traditional
fuzzy control algorithms do not tell us how accurate are these recommen-
dations. In contrast, for the probabilistic uncertainty, there is a natural
measure of accuracy: namely, the standard deviation. In this paper, we
show how to extend this idea from the probabilistic to fuzzy uncertainty
and thus, to come up with a reasonable way to gauge the accuracy of
fuzzy control recommendations.

1 Formulation of the Problem

Need to Gauge Accuracy of Fuzzy Recommendations. Fuzzy logic (see,
e.g., [1,4,6]) has been successfully applied to many different application areas.

For example, in control – one of the main applications of fuzzy techniques –
fuzzy techniques enable us to generate the control value appropriate for a given
situation.

A natural question is: with what accuracy do we need to implement this rec-
ommendation? In many applications, this is an important question: it is often
much easier to implement the control value approximately, by using a simple
approximate actuator, but maybe a more accurate actuator is needed? To answer
this question, we must have a natural way to gauge the accuracy of the corre-
sponding recommendations.

Such Gauging is Possible for Probabilistic Uncertainty. In a similar case
of probabilistic uncertainty, there is such a natural way to gauge the accuracy;
see, e.g., [5].

Namely, probabilistic uncertainty means that instead of the exact value x,
we only know a probability distribution – which can be described, e.g., by the
probability density ρ(x). In this situation, if we need to select a single value x,
a natural idea is to select, e.g., the mean value x =

∫
x · ρ(x) dx.

c© Springer International Publishing AG 2018
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A natural measure of accuracy of this means is the mean square deviation
from the mean, known as the standard deviation:

σ
def=

√∫
(x − x)2 dx.

What We Do in This Paper. In this paper, we provide a similar way to
gauge the accuracy of fuzzy recommendations, i.e., a recommendations in which,
instead of using a probability density function ρ(x), we start with a membership
function μ(x).

2 Main Idea

How We Elicit Fuzzy Degrees: A Brief Reminder. To explain our idea, let
us recall how fuzzy degrees μ(x) corresponding to different values x are elicited
in the first place.

At first glance, the situation may look straightforward: for each possible value
x of the corresponding quantity, we ask the expert to mark, on a scale from 0 to
1, his/her degree of confidence that x satisfies the given property. For example, if
we are eliciting the membership function describing smallness, we ask the expert
to specify the degree to which the value x is small.

In some cases, this is all we need. However, in many other cases, we get a
non-normalized membership function, for which the largest value μ(x) is smaller
than 1. Most fuzzy techniques assume that the membership function is normal-
ized. So, after the elicitation, we sometimes need to perform an additional step
to get an easy-to-process membership function: namely, we normalize the origi-
nal values μ(x) by dividing them by the largest of the values μ(y). Thus, we get
the function

μ′(x) def=
μ(x)

max
y

μ(y)
.

Sometimes, the Original Fuzzy Degrees Come from Subjective Proba-
bilities. Sometimes, the experts have some subjective probabilities assigned to
different values x. In this case, when asked to indicate their degree of certainty,
they may list the values of the corresponding probability density function ρ(x).

This function is rarely normalized. After normalizing it, we get the member-
ship function

μ(x) =
ρ(x)

max
y

ρ(y)
. (1)

Let Us Use This Idea to Gauge the Accuracy of Fuzzy Recommen-
dations. Formula (1) assigns, to each probability density function ρ(x), an
appropriate membership function μ(x). Vice versa, one can easily see if we know
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that the membership function μ(x) was obtained by normalizing some proba-
bility density function ρ(x), then we can uniquely reconstruct this probability
density function ρ(x): namely, since μ(x) = c·ρ(x) for some normalizing constant

c, we thus have ρ(x) = C · μ(x), for another constant C =
1
c
. So, all we need to

find the probability density function is to find the coefficient C.
This coefficient can be easily found from the condition that the overall proba-

bility be 1, i.e., that
∫

ρ(x) dx = 1. Substituting ρ(x) = C ·μ(x) into this formula,

we conclude that C · ∫
μ(x) dx = 1, thus C =

1
∫

μ(y) dy
and therefore,

ρ(x) = C · μ(x) =
μ(x)

∫
μ(y) dy

. (2)

Our idea is then to use the probabilistic formulas corresponding to this artificial
distribution.

This Makes Sense. Does this make sense? The probabilistic measure of accu-
racy is based on the assumption that we use the mean, but don’t we use some-
thing else in fuzzy?

Actually, not really. The mean of the distribution (2) is

x =
∫

x · ρ(x) dx =
∫

x · μ(x) dx
∫

μ(x) dx
.

This is exactly the centroid defuzzification – one of the main ways to transform
the membership function into a single numerical control recommendation.

Since the above idea makes sense, let us use it to gauge the accuracy of the
fuzzy control recommendation.

Resulting Recommendation. For a given membership function μ(x), in addi-
tion to the result x of its centroid defuzzification, we should also generate, as a
measure of the accuracy of this recommendation, the value σ which is defined
by the following formula

σ2 =
∫

(x − x)2 · ρ(x) dx =
∫

(x − x)2 · μ(x) dx
∫

μ(x) dx
=

∫
x2 · μ(x) dx
∫

μ(x) dx
−

(∫
x · μ(x) dx
∫

μ(x) dx

)2

. (3)

3 But What Should We Do in the Interval-Valued Fuzzy
Case?

But What Do We Do for Type-2 Fuzzy Logic? For the above case of
type-1 fuzzy logic, this is just a simple recommendation.
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But what do we do if we use a more adequate way to describe uncertainty –
namely, type-2 fuzzy logic? In this paper, we consider the simplest case of type-2
fuzzy logic – the interval-valued fuzzy logic (see, e.g., [2,3]), where for each possi-
ble value x of the corresponding quantity, we only know the interval [μ(x), μ(x)]
of possible value of degree of confidence μ(x)?

Challenge. In this case, we have a challenge:

• just like to defuzzification, we need to find the range of possible values of x
corresponding to different functions μ(x) from the given interval [2,3],

• similarly, we need to find the range of possible values of σ2 when each value
μ(x) belongs to the corresponding interval.

Analysis of the Problem. According to calculus, when the maximum of a
function f(z) on the interval [z, z] is attained at some point z0 ∈ [z, z], then we
have one of the three possible cases:

• we can have z0 ∈ (z, z), in which case
df

dz
= 0 at this point z0;

• we can have z0 = z, in this case, we must have
df

dz
≤ 0 at this point (otherwise,

the function would increase even further when z increases, and so there would
no maximum at z), or

• we can have z0 = z, in which case
df

dz
≥ 0.

Similarly, when the minimum of a function f(z) on the interval [z, z] is attained
at some point z0 ∈ [z, z], then we have one of the three possible cases:

• we can have z0 ∈ (z, z), in which case
df

dz
= 0 at this point z0;

• we can have z0 = z, in this case, we must have
df

dz
≥ 0 at this point, or

• we can have z0 = z, in which case
df

dz
≤ 0.

Let us apply this general idea to the dependence of the expression (3) on each
value μ(a).

Here, taking into account that for
∫

μ(x) dx ≈ ∑
μ(xi) · Δxi, we get

∂(
∫

μ(x) dx)
∂(μ(a))

= Δx,
∂(

∫
x · μ(x) dx)
∂(μ(a))

= a · Δx and

∂(
∫

x2 · μ(x) dx)
∂(μ(a))

= a2 · Δx.

Now, by using the usual rules for differentiating the ratio, for the composition,
and for the square, we conclude that:

∂(σ2)
∂(μ(a))

= Δx · S(a),
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where we denoted

S(a) def=
a2

∫
μ(x) dx

−
∫

x2 · μ(x) dx
(∫

μ(x) dx
)2 − 2 · a ·

(
x

∫
μ(x) dx

−
∫

x · μ(x) dx
(∫

μ(x) dx
)2

)

. (4)

We are only interested in the sign of the derivative, so we can as well consider the

sign of the expression S(a) instead of the sign of the desired derivative
∂(σ2)

∂(μ(a))
.

Similar, the sign of the expression S(a) is the same as the sign of the expres-
sion s(a) def= S(a) · ∫

μ(y) dy which has a simpler form

s(a) = a2 − ((x)2 + σ2) − 2 · x · (a − x).

If we know the roots x < x of this quadratic expression, we can conclude that
this quadratic expression s(a) is:

• positive when a < x and
• negative when a > x.

Here, the value a = x is between x and x, since for this value a, we have

s(x) = −σ2 < 0.

Thus, in accordance with the above fact from calculus:

• when a < x or a > x, then to find the upper bound for σ2, we must take
μ(a) = μ(a) and to find the lower bound, we must take μ(a) = μ(a);

• when x < a < a, then, vice versa, we need to take μ(a) = μ(a) to find the
upper bound for σ2 and we must take μ(a) = μ(a) to find the lower bound.

This mathematical conclusion makes perfect sense: to get the largest standard
deviation, we must concentrate the distribution as much as possible on values
outside the mean, and to get the smallest possible standard deviation, we con-
centrate it as much as possible on values close to the mean.

Thus, we arrive at the following algorithm.

Resulting Algorithm. For all possible values x < x, we use the formula (3)
to compute the values σ2(μ−) and σ2(μ+) for the following two functions μ−(x)
and μ+(x):

• μ+(x) = μ(x) when x < x or x > x, and μ+(x) = μ(x) when x < x < x;
• μ−(x) = μ(x) when x < x or x > x, and μ−(x) = μ(x) when x < x < x.

Then:

• as the upper bound for σ2, we take the maximum of the values σ2(μ+) cor-
responding to different pairs x < x, and

• as the lower bound for σ2, we take the minimum of the values σ2(μ−) corre-
sponding to different pairs x < x.
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Abstract. Computer simulations of dynamic systems are really impor-
tant to better understand some processes or phenomena without having
to physically execute them, and/or to make offline decisions, or decisions
that do not need immediate, “on-the-fly” answers in general. However,
given a set of equations describing a dynamic phenomenon, wouldn’t it
be nice to be able to exploit them more? Instead of simulating a situation,
could we gear it or even veer it to a predefined performance? This paper is
concerned with the identification of parameters of dynamic systems that
ensure a specific performance or behavior. We propose to carry such
computations using intervals and constraint solving techniques. How-
ever, realistically, aiming to enable such identification and decision on
an on-going process or phenomena requires being able to conduct very
fast computations on possibly very large systems of equations. We fur-
ther propose to combine interval and constraint solving techniques with
reduced-order modeling techniques to guarantee results in a practical
amount of time.

1 Introduction

Computer simulations of dynamic systems are really important to better under-
stand some processes or phenomena without having to physically execute them,
and/or to make offline decisions, or decisions that do not need immediate, “on-
the-fly” answers in general. These simulations use models derived from observa-
tions of natural phenomena, which are often very complex and involving millions
of variables. Running simulations on these high-fidelity models yields significant
CPU time issues. However, given a set of equations describing a dynamic phe-
nomenon, wouldn’t it be nice to be able to exploit them more? Instead of simu-
lating a situation, could we gear it or even veer it to a predefined performance?

We propose to carry such computations using interval computations and
constraint solving techniques. By using intervals, we account for the uncertainty
from observations that are never 100% accurate. However, realistically, aiming
to enable such identification and decision on an on-going process or phenomena
requires being able to conduct very fast computations on possibly very large
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 33
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systems of equations. We further propose to combine interval and constraint
solving techniques with reduced-order modeling techniques to guarantee results
in a practical amount of time.

2 Background

Modeling real-life phenomena can result in very large (most likely) nonlinear sys-
tems of equations. One way to solve these problems is to find the zeroes of large-
dimensional functions using some real-valued solvers, e.g. Newton’s method. The
convergence of the real-valued solvers depends on several factors: selection of the
initial point, continuity of the partial derivatives, condition on the Jacobian or
the Hessian matrix, among others. To overcome these issues, the solution can
be sought on a subspace where the convergence conditions are met, hence also
reducing the size of the problem to be solved: such general approach is called
Reduced-Order Modeling. We review it in what follows (Subsect. 2.1).

Another challenge with solving dynamic systems is that we often assume
that the models are 100% accurate. This is seldom the case. Moreover, in the
specific case that we tackle in this article, where we aim to react to observations
(possibly a disruption) of an unwinding dynamic phenomenon by identifying new
parameters to adapt it “on the fly”, observations are not 100% accurate and such
uncertainty needs to be taken into account. As a result, if we are to solve such
problems, we need to be able to handle uncertainty, and to quantify it, to be
able to assess the quality of our solutions. Techniques that allow handling and
quantifying uncertainty are reviewed in Subsect. 2.2.

2.1 Reduced-Order Modeling (ROM)

The models used in simulations of real-life phenomena often consist in very large
(most likely) nonlinear systems of equations: F (X) = 0, where F : Rn → R

n.
Such systems are called the Full-Order Model (or FOM) of a given problem.
As very large problems can yield significant solving time, a common approach
consists in decreasing/reducing the size of FOM, while remaining truthful to its
original aim: this process is called Model-Order Reduction (MOR) and results
in a Reduced-Order Model (ROM).

The main idea of ROM is to find an approximation to a solution X̃ such
that ||F (x̃)|| is sufficiently small in a k-dimensional subspace W of Rn, where
k � n. Common techniques for Model-Order Reduction consist of two stages:
(1) finding the referred subspace and its corresponding basis Φ, here represented
as an n×k matrix [9,10]1; and (2) finding Y ∗, the solution of the overdetermined
(n × k) system F (Φ · Y ) = 0, i.e., Y ∗ = min

W
{Y : F (Φ · Y ) = 0}, where W is the

spanned subspace of the columns of Φ. Once Y ∗ is found, the approximation X̃
of X such that ||F (X)|| = 0 is determined by X̃ = Φ · Y ∗, see Fig. 1 [11,12].

1 In this paper, we assume that the basis Φ is given.
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Fig. 1. Representation of ROM. The red vector represents the solution X. The approx-
imation X̄, in green color, lies on the spanned subspace W of Φ, here represented by a
plane

2.2 Interval Computations

In this article, we aim to address situations in which an unfolding dynamic
phenomenon, for which we know F as well as all input parameters and other
properties, is perturbated and requires recomputation of some parameters so as
to ensure that some properties be satisfied (e.g., the below helicopter example
where the landing zone is guaranteed even after perturbation, see Fig. 2). In
general, if we priori restrict ourselves to a lower- dimensional space, we only get
an approximation solution.

Fig. 2. Parameters of the flight are reliably recomputed to reach the landing zone after
perturbation

In the event of a perturbation, observations are essential to understanding
the perturbation but observations are inherently inaccurate. As a result, if we
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are to solve such problems, we need to handle and quantify uncertainty to assess
the quality of our solutions. We use interval computations to handle uncertainty.

In this paper, we propose to handle uncertainty as intervals. Whenever a
quantity is not known for sure, e.g., observed value v ± ε, we will represent this
uncertainty as a closed interval: [v − ε, v + ε], where given any real value r, r
is the largest floating-point number ≤ r, and r is the smallest floating-point
number ≥ r. Such floating-point-bounded intervals are carried in any computa-
tion originally involving seemingly 100% accurate real values, following interval
arithmetic rules, generally described as follows:

∀ interval X, Y,∀ ��∈ {+,−, ∗, /}, X �� Y = Z ⊇ �{x �� y | x ∈ X, y ∈ Y } (1)

where �A stands for the hull of set A, and Z is the smallest floating-point-
bounded interval including �{x �� y | x ∈ X, y ∈ Y }.

How to Solve Nonlinear Equations with Intervals? The premise of our
approach is to replace all real-valued computations with interval-based com-
putations by abstracting real-valued parameters into interval parameters, and
using interval constraint solving techniques to find solutions [3]. In our case,
each of our nonlinear equations fi(x1, . . . , xn) = 0 of the system to be solved
is a constraint and our system of nonlinear equations a system of constraints.
Our goal is to find values of its variables {x1, . . . , xn} ∈ R that are such that:
∀i, fi(x1, . . . , xn) = 0.

Constraint solving techniques allow us to identify all values of the parameters
that satisfy the constraints. Interval constraint solving techniques [4,5] produce
a solution set (set of the solutions of the constraint system) that is interval in
nature: it is a set of multi-dimensional intervals (or boxes whose dimension is n,
the number of variables): this set is guaranteed to contain all the solutions of
the constraint problem (in our case, of the nonlinear system of equations).

Most importantly, if the solving process returns no solution, we know for sure
that it is because there is no solution. This guarantee of completeness provided by
interval constraint solving techniques comes from the underlying solving mode: a
branch-and-bound [6] approach (or branch-and-prune for faster convergence [7])
that uses the whole search space as a starting point and successively assess the
likeliness of finding solutions in the given domain (via interval computations)
and possibly (if Branch and Prune) reduce it, and discard domains that are
guaranteed not to contain any solution.

Using ICST, it is possible to determine if F (Φ · P ) = 0 has no solution, a
unique solution, or many solutions in the subspace W defined by Φ (see [2,3]).

3 Problem Statement and Proposed Approach

Let us recall the problem we want to solve. Using the model of a dynamic system,
we aim to find certain parameter values that guarantee a specific outcome of the
modeled dynamic phenomenon.
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Assuming this phenomenon is modeled as a parametric differential equation
(ODE/PDE), the parameters that lead to a certain outcome can be found as
follows:

1. Discretize the ODE/PDE equation leading to a parametric system of equa-
tions F (X,P ) = 0, where X = (x1, x2, . . . , xn) is the approximation of
the solution and P are the parameters of the ODE/PDE equation, and
F : Rn → R

n.
2. Let [i1, i2, . . . , im] a subset of [1, 2, . . . , n] where n is the dimension. Fix the

values of xij = [xij , xij ], with j = 1, 2, . . . ,m representing the expected out-
comes. Solve for P using ICST the following system:

Φ(i1, :)Y = xi1 = [xi1 , xi1 ]
Φ(i2, :)Y = xi2 = [xi2 , xi2 ]

. . . . . .
Φ(im, :)Y = xim = [xim , xim ]

F (ΦY, P ) = 0

Where Φ(ij , :) is the ij-row of Φ. The solutions P correspond to the sought
parameters.

4 Experimental Results and Analysis

In this section, we report on preliminary experiments of our approach on one
well-known problem: a particular case of the Lotka-Volterra problem. The Lotka-
Volterra problem models a predator-prey system. We use the following equations
to describe this problem:

{
v′ = θ1v(1 − w), v(0) = v0 = 1.2
w′ = θ2w(v − 1), w(0) = w0 = 1.1 (2)

where v and w respectively represent the number of preys and predators repre-
sented in thousands. The system was integrated from time t0 = 0 to tm = 10
with a constant step size h = 0.1. We used θ1 = 3 and θ2 = 1. Let us assume
that at t = 5, a perturbation occurs, which changes the number of predators
and preys. Since, it is not possible to know the new real number of animals
of each species, the new number of both species is handled with uncertainty,
i.e. v(t = 6) = [0.8062, 0.8116], w(t = 6) = [1.0834, 1.0884]. Using ICST, it is
possible to determine that, with θ1 = [2.964, 3.039] and θ2 = [0.9863, 1.014], we
reach a balance of the two species at time t = 10, v(t = 10) = [0.7675, 0.7738],
w(t = 10) = [0.9903, 1.0086], see Fig. 3.

In a similar setting, we were able to conclude that it is impossible to reach
1000 animal of each species by time t = 10, i.e., v(t = 10) = w(t = 10) = 1000.
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Fig. 3. Recomputation of θ1 and θ2 after perturbation at time t = 6

5 Conclusions

In this article, we aimed to design a technique that allows to identify parameters
of a given (known and observed) dynamic system that has been perturbated,
in such a way that some final conditions still hold. We used Reduced-Order
Modeling and interval constraint solving techiques to determine such values of
the phenomenon’s parameters.

We were able to identify reliable intervals in which the desired parameters’
values lie. We improved the runtime of this method by using ROM.

Future work includes taking into account the recomputation time and not
assuming that new behavior can be “plugged” directly from where perturba-
tion happened. As a result, more uncertainty needs to be taken into account,
which includes time uncertainty. Additionally, we plan to consider perturbations
as fuzzy numbers. This will require us to consider our dynamic system with
uncertainty differently (e.g., with fuzzy derivatives). But most importantly, this
is expected to help us make more informed decision: if we can label our input
uncertainty with fuzzy values, how does this inform us about labels on uncertain
solutions to focus on the best ones? [13].

Acknowledgment. This work was supported by Stanford’s Army High-Performance
Computing Research Center funded by the Army Research Lab, and by the National
Science Foundation award #0953339.
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Abstract. In engineering practice, usually measurement errors are
described by normal distributions. However, in some cases, the distri-
bution is heavy-tailed and thus, not normal. In such situations, empir-
ical evidence shows that the Student distributions are most adequate.
The corresponding recommendation – based on empirical evidence – is
included in the International Organization for Standardization guide. In
this paper, we explain this empirical fact by showing that a natural fuzzy-
logic-based formalization of commonsense requirements leads exactly to
the Student’s distributions.

1 Formulation of the Problem

Traditional Engineering Approach to Measurement Uncertainty.
Traditionally, in engineering applications, it is assumed that the measurement
error is normally distributed; see, e.g., [12].

This assumption makes perfect sense from the practical viewpoint, it has
been shown that for the majority of measuring instruments, the measurement
error is indeed normally distributed; see, e.g., [10,11]. It also makes sense from
the theoretical viewpoint, since in many cases, the measurement error comes
from a joint effect of many independent small components, and, according to
the Central Limit Theorem (see, e.g., [14]), for the large number of components,
the resulting distribution is indeed close to Gaussian.

Yet another explanation for the normal distribution comes from the fact that
usually, we only have partial information about the distribution. For example,
for the measurement error, we only know the first and the second moments of
the corresponding distributions. The first moment – mean – represents a bias. If
we know the bias, we can always subtract it from the measurement result, and
thus re-calibrated measuring instrument will have 0 mean. Thus, we can always

c© Springer International Publishing AG 2018
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safely assume that the mean is 0. In this case, the second moment is simply the
variance V = σ2.

There are many different distributions with 0 mean and given standard devi-
ation σ. For example, we can have a distribution in which we have σ and −σ
with probability 1/2 each. However, such a distribution creates a false certainty
– that no other values of x are possible. Out of all such distributions, it therefore
makes sense to select the one which maximally preserves the original uncertainty.
Uncertainty can be naturally measured by the average number of binary ques-
tions needed to determine the value with a given accuracy. It is described by
entropy S = − ∫

ρ(x) · log2(x) dx, where ρ(x) is the probability density function
(pdf); see, e.g., [4,8]. One can easily check that out of all distributions ρ(x) with
mean 0 and given standard deviation σ, the entropy is the largest exactly for
the normal distribution.

Sometimes, We Encounter Heavy-Tailed Distributions. For the Gaussian

(normal) distribution, the probability density function ρ(x) =
1√

2π · σ
·

exp
(

− x2

2σ2

)

gets to practically 0 very fast when |x| increases. In other words,

the “tails” of this distribution – i.e., values corresponding to large |x| – are very
light, practically negligible.

In practice, however, we sometimes encounter distributions with heavy tails,
for which ρ(x) decreases much slower, often as a power of x: ρ(x) ∼ c · x−α; see,
e.g., [6,13].

Power Law is not a Probability Distribution. At first glance, we may
want to have ρ(x) = c · x−α for all x. However, the integral of such a function
is always infinite – for small α, it is infinite at infinity; for larger α, it is infinite
at 0. So, we need expressions for the probability density function ρ(x) which are
asymptotically equal to c · x−α but for which

∫
ρ(x) dx = 1.

In Such Cases, Student Distributions Work Well. Our experience of geo-
detic applications shows that in many such cases, the distribution of the mea-
surement error is well-represented by a Student distribution ρ(x) = (a+b ·x2)−ν

for some a, b, and ν. This empirical observation clearly applies to other applica-
tion areas as well, since the use of the Student distributions is recommended by
the International Organization for Standardization (ISO) [3].

What We Do in This Paper. In this paper, we explain this empirical fact by
showing that a natural fuzzy-logic-based ([5,9,15]) formalization of commonsense
requirements leads exactly to the Student’s distributions.

2 Let Us Use Normalization-Invariant Fuzzy Logic
Operations

Our Main Idea. Informally, uncertainty means that the first value is possible,
and the second value is possible, etc. So, when we select a distribution, it makes



302 H. Alkhatib et al.

sense to select a one for which the degree to which all the values are possible is
the largest. Let us describe this idea in precise terms.

Fuzzy Logic and Normalization: A Brief Reminder. Fuzzy logic was moti-
vated by the fact that many expert statements are formulated by using imprecise
(fuzzy) words from natural language, such as “small” (or, in our case, “possible”).
To describe such terms, for every possible value x of the corresponding quantity,
we ask the expert to estimate the degree μ(x) to which this value satisfies this
quantity (e.g., “is small”). An expert can mark his/her degree of confidence by
selecting a number from the interval [0,1], so that 1 means full confidence, 0
means no confidence, and intermediate values indicate partial confidence. The
resulting function μ(x) is called a membership function.

For properties like “small”, there are values (e.g., x = 0) for which are
absolutely sure that this value is small. For such values, we have μ(x) = 1,
so the maximum of the corresponding membership function is equal to 1.

For other properties – e.g., “medium” – we may not have such values. In this
case, the maximum of μ(x) may be smaller than 1. A usual way to deal with
such property is to normalize the corresponding membership function, i.e., to

consider a new function μ′(x) =
μ(x)

max
y

μ(y)
for which max

x
μ′(x) = 1.

Normalization is also performed when we get an additional information about
the property. For example, we knew that x is small, now we learn that x ≥ 5.
In this case, if simply keep the previous values of μ(x) for x ≥ 5 and set all the
values μ(x) for x < 5 to 0, we get a new membership function whose maximum
is smaller than 1. So, we normalize it.

Finally, normalization is a must when experts use the available information
about probabilities to come up with the corresponding degrees. Indeed, if we
know the probability density function ρ(x), this means that the large ρ(x), the
more probable it is to observe a value close to x. Thus, in this case, it is reason-
able to take, as degrees μ(x), either the values ρ(x) themselves, or some values
proportional to ρ(x): μ(x) = c ·ρ(x) for some constant c. In this case, normaliza-

tion leads to the membership function μ(x) =
ρ(x)

max
y

ρ(y)
. Vice versa, if we have

the result μ(x) of normalizing a pdf, we can reconstruct the original pdf ρ(x) if
we multiply μ(x) by an appropriate constant - the constant to be determined

from the requirement that
∫

ρ(x) dx = 1; thus: ρ(x) =
μ(x)

∫
μ(y) dy

.

Fuzzy Logic Operations: A Reminder. The need for logical operations
comes from the fact that answers to questions of interest often depend on several
expert’s statements. This is exactly our case: we are interested in knowing to
what extent the first value is possible and the second value is possible, etc.

Thus, in addition to knowing the experts’ degrees of confidence in different
statements A, B, etc., we also need to know the expert’s degree of confidence in
different logical combinations of these statements, such as A&B and A ∨ B.
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In our case, we do not just want to know to what extend each value is possible,
we also want to know to what extend the value is possible and the second value
is possible, etc.

Ideally, we should elicit these degrees from the experts, but there are expo-
nentially many such combinations, so such an elicitation is not feasible. Thus,
we need to estimate the expert’s degree of confidence d(A&B) in a compos-
ite statement like A&B based only on his/her degrees of confidence a and b
in statements A and B. The corresponding estimate for d(A&B) is called an
“and”-operation (or a t-norm) and is denoted by f&(a, b).

Since A&B and B &A mean the same, it makes sense to require that our
estimates for these two statements are the same, i.e., that the operation f&(a, b)
is commutative: f&(a, b) = f&(b, a).

Similarly, the fact that A& (B &C) and (A&B)&C mean the same encour-
ages us to require that f&(a, f&(b, c)) = f&(f&(a, b), c), i.e., that the operation
f&(a, b) is associative.

For associative operations, we can define f&(a, b, . . . , c) by induction,
as the result of applying the “and”-operation in any order: e.g., as
f&(. . . (f&(a, b), . . . , c)).

It also makes sense to require that if A is false, then A&B is false, i.e., that
f&(0, b) = 0 for all b, and that if we increase our degree of confidence in A and/or
in B, our confidence in A&B will not decrease, i.e., that the function f&(a, b)
is (non-strictly) increasing in each of its variables.

Since 1 is usually interpreted as full confidence, if A is absolutely true, then
A&B is equivalent to B for all B, i.e., f&(1, b) = b for all b.

From Traditional Fuzzy Operations to Normalization-Invariant Ones.
In some cases, the degree 1 means absolute confidence, but in other cases the
degree 1 comes from normalization and thus, corresponds to less-than-absolute
confidence. In such cases, it does not make sense to require that f&(1, b) =
b, since our degree of confidence in A&B may be smaller than our degree of
confidence in the original statement B.

It therefore makes sense to consider a more general class of “and”-operations:
we still keep commutativity, associativity, monotonicity, and the property that
f&(0, b) = 0, but we no longer require that f&(1, b) = b for all b.

What should we require? A natural requirement is that the “and”-operation
should be preserved under normalization. To be more precise, we can compute
the normalized degree of confidence in a statement A&B in two different ways:

• we can take the original degree f&(a, b) and normalize it, by multiplying it
by an appropriate constant λ;

• alternatively, we can first normalize the degrees of confidence in A and B,
getting λ ·a and λ · b, and then apply an “and”-operation to the new degrees,
resulting in the value f&(λ · a, λ · b).

It is reasonable to require that these two ways lead to the same estimate. Thus,
we arrive at the following definition.
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Definition 1. By a normalization-invariant “and”-operation, we means a func-
tion f&(a, b) which is commutative, associative, (non-strictly) increasing in each
of the variables, and satisfies the properties f&(0, b) = 0 and

f&(λ · a, λ · b) = λ · f&(a, b)

for all λ ≥ 0, a ≥ 0, and b ≥ 0.

Let Us Describe All Possible Normalization-Invariant “and”-
Operations. Similar to the case of the usual “and”-operations [7], one can
prove that for every normalization-invariant “and”-operation and for every
ε > 0, there exists a normalization-invariant “and”-operation of the type
f&(a, b) = f−1(f(a) + f(b)) for some strictly decreasing function f(x). Thus,
for all practical purposes, we can safely assume that our operation has this
form.

For such functions, c = f&(a, b) is equivalent to f(c) = f(a) + f(b). Thus,
scale-invariance means that f(c) = f(a)+f(b) implies f(λ·c) = f(λ·a) + f(λ·b).
Thus, for every λ, the transformation T from f(a) to f(λ · a) is additive: if C =
A+B, then T (C) = T (A)+T (B), i.e., in other words, T (A+B) = T (A)+T (B). It
is known (see, e.g., [1,2]) that every monotonic additive function is linear. Thus,
f(λ · a) = c(λ) · f(a) for all a and λ. For monotonic functions f(a), the only
solution for this functional equation is f(a) = C · a−α for some C and α [1,2].

For this function, the equality f(c) = f(a)+f(b), i.e., C · c−α = C ·a−α +C ·
b−α, is equivalent to c−α = a−α + b−α, i.e., to c = f&(a, b) = (a−α + b−α)−1/α.

3 Resulting Derivation of the Student Distributions

We want to select a membership function μ(x) which is the best fit with our
requirement that all possible values x are indeed possible. In other words, we
want to maximize the degree to which x1 is possible, and x2 is possible, etc. For
each value xi, the degree to which this value is possible is equal to μ(xi).

Now that we have a general formula for the normalization-invariant “and”-
operation, we can describe the degree to which x1 is possible and x2 is possible
as

f&(μ(x1), μ(x2), . . .) = ((μ(x1))−α + (μ(x2))−α + . . .)−1/α.

Maximizing this degree is equivalent to minimizing the sum (μ(x1))−α +
(μ(x2))−α + . . . In the limit, when we take a denser and denser grid of val-
ues xi and make them cover a longer and longer interval, this sum turns into an
integral

∫
(μ(x))−α dx.

We need to find the smallest possible value of this integral under the con-
straints that the mean is 0 and that the variance is equal to a given value
σ2. These constrains have the form

∫
x · ρ(x) dx = 0 and

∫
x2 · ρ(x) dx = σ2,

where ρ(x) =
μ(x)

∫
μ(y) dy

, i.e., the form
∫

x · μ(x)
∫

μ(y) dy
dx = 0 and

∫
x2 ·

μ(x)
∫

μ(y) dy
dx = σ2. These equalities can be simplified into

∫
x · μ(x) dx = 0 and
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∫
x2 · μ(x) dx − σ2 · ∫

μ(x) dx = 0. Thus, we arrive at the following constraint
optimization problem:
Minimize

∫
(μ(x))−α dx under the constraints

∫
x · μ(x) dx = 0 and

∫
x2 · μ(x) dx − σ2 ·

∫
μ(x) dx = 0.

Lagrange multiplier method reduces this constraint optimization problem to the
unconstrained optimization one

∫
(μ(x))−α dx+λ1 ·

∫
x·μ(x) dx+λ2 ·

(∫
x2 · μ(x) dx − σ2 ·

∫
μ(x) dx

)

→ min .

Differentiating the left-hand side with respect to μ(x) and equating the deriv-
ative to 0, we conclude that

−α · (μ(x))−α−1 + λ1 · x + λ2 · x2 − λ2 · σ2 = 0,

i.e., that μ(x) = (a0 + a1 · x + a2 · x2)−ν for some ai and ν, i.e., equivalently, the
form μ(x) = c · (1 + a1 · x + a2 · x2)−ν .

The pdf ρ(x) =
μ(x)

∫
μ(y) dy

differs from the membership function by a multi-

plicative constant, so we also have ρ(x) = const · (1 + a1 · x + a2 · x2)−ν . The
quadratic expression inside can be described as a2 ·(x−x0)2+const for some x0.
This formula is symmetric with respect to x0 thus its mean is x0. Since we know
that the mean should be 0, we get x0 = 0, hence ρ(x) = const · (1 + a2 · x2)−ν .

Taking into account that we should have
∫

ρ(x) dx = 1, we get exactly Stu-
dent distributions – so we indeed get the desired justification!
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Abstract. Fuzzy sets are naturally ordered by the subsethood relation
A ⊆ B. If we only know which set which fuzzy set is a subset of which –
and have no access to the actual values of the corresponding membership
functions – can we detect which fuzzy sets are crisp? In this paper, we
show that this is indeed possible. We also show that if we start with
interval-valued fuzzy sets, then we can similarly detect type-1 fuzzy sets
and crisp sets.

1 Formulation of the Problem

Fuzzy Sets: A Brief Reminder. A fuzzy set is usually defined as a function
μ : U → [0, 1] from some set U (called Universe of discourse) to the interval
[0, 1]; see, e.g., [1–3]. This function is also known as a membership function.

A fuzzy set A with a membership function μA(x) is called a subset of a
fuzzy set B with a membership function μB(x) if μA(x) ≤ μB(x) for all x.
The subsethood relation is an order in the sense that it is reflexive (A ⊆ A),
asymmetric (A ⊆ B and B ⊆ A imply A = B), and transitive (A ⊆ B and
B ⊆ C imply A ⊆ C).

Traditional (crisp) sets S can be viewed as particular cases of fuzzy sets,
with their characteristic functions playing the role of membership functions:
μS(x) = 1 if x ∈ S and μS(x) = 0 if x �∈ S.

A Natural Question: Can We Detect Crisp Sets Based Only on the
Subsethood Ordering of Fuzzy Sets? If we have a class F of all fuzzy sets,
and for each fuzzy set A and for each element x ∈ U , we know the value μA(x)
of the corresponding membership function, then we can easily detect which of
the fuzzy sets are crisp: a fuzzy set is crisp if for every x ∈ U , we have either
μA(x) = 0 or μA(x) = 1.

c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 35
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Suppose now that we have a class F of all fuzzy sets with the subsethood
ordering A ⊆ B – but we have no access to the actual values of the corresponding
membership functions. Based only on this ordering relation A ⊆ B, can we then
detect crisp sets?

What If We Only Consider Interval-Valued Fuzzy Sets. A similar
question can be asked if we consider interval-valued fuzzy sets, for which
the value of the membership function is a subinterval of the interval [0, 1]:
μ(x) = [μ(x), μ(x)] ⊆ [0, 1], and A ⊆ B means that μ

A
(x) ≤ μ

B
(x) and

μA(x) ≤ μB(x) for all x.

What We Do in This Paper. In this paper, we prove that in both cases –
when we consider fuzzy sets and when we consider interval-valued fuzzy sets – we
can indeed detect crisp sets and type-1 fuzzy sets based only on the subsethood
relation A ⊆ B.

2 What If We Consider [0, 1]-Based Fuzzy Sets

Our Plan. To describe crisp sets in terms of the subsethood relation A ⊆ B,
we will follow the following four steps:

• first, we will prove that the empty set ∅ can be uniquely determined based
on the subsethood relation;

• second, we will show that 1-element crisp sets, i.e., sets of the type {x0}, can
be thus determined,

• third, we will prove that 1-element fuzzy sets, i.e., fuzzy sets A for which for
some x0 ∈ U , we have μA(x0) > 0 and μA(x) = 0 for all x �= x0, can be
determined based on the subsethood relation, and

• finally, we prove that crisp sets can be uniquely determined based on the
subsethood relation.

First Step: How to Detect an Empty Set? An empty set ∅ is a fuzzy set
for which μ∅(x) = 0 for all x ∈ U . The detection of an empty set can be made
based on the following simple result:

Proposition 1. A fuzzy set A is an empty set if and only if A ⊆ B for all fuzzy
sets B.

Proof.
1◦. Let us first prove that when A = ∅, then A ⊆ B for all fuzzy sets B.

Indeed, for every fuzzy set B, we have 0 ≤ μB(x) for all x and thus, μ∅(x) =
0 ≤ μB(x) for all x, i.e., we indeed have ∅ ⊆ B.
2◦. Let us now prove that, vice versa, if for some fuzzy set A, we have A ⊆ B
for every possible fuzzy set B, then A = ∅.

Indeed, in particular, the property A ⊆ B is true for the case when B is
the empty set. In this case, from the fact that μA(x) ≤ μB(x) = μ∅(x) = 0, we
conclude that μA(x) = 0 for all x, i.e., that A is indeed the empty set.

The proposition is proven.
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Second Step: How to Detect 1-element Crisp Sets Based on the Sub-
sethood Relation. Let us prove the following auxiliary result.

Proposition 2. A non-empty fuzzy set A is a one-element crisp set if and only
if the following two conditions are satisfied:

• the class {B : B ⊆ A} is linearly ordered and
• for no proper superset A′ of A, the class {B : B ⊆ A′} is linearly ordered.

Proof.
1◦. Let us first prove that every 1-element crisp set, i.e., every set of the type
A = {x0}, satisfies the above two properties.
1.1◦. Let us prove the first property: that the class {B : B ⊆ A} is linearly
ordered.

Indeed, for the given set A, we have μA(x0) = 1 and μA(x) = 0 for all x �= x0.
So, if B ⊆ A, i.e., if μB(x) ≤ μA(x) for all x, this means that μB(x) = 0 for
all x �= x0. Thus, for such sets B, the only non-zero value of the membership
function may be attained when x = x0.

So, if we have two sets B ⊆ A and B′ ⊆ A, then for these two sets, μB(x) =
μB′(x) = 0 for all x �= x0. Thus:

• if μB(x0) ≤ μB′(x0), then, as one can easily check, we have μB(x) ≤ μB′(x)
for all x, i.e. we have B ⊆ B′, and

• if μB′(x0) ≤ μB(x0), then, as one can easily check, we have μB′(x) ≤ μB(x)
for all x, we have B′ ⊆ B.

Thus, for every two fuzzy sets B and B′ from the class {B : B ⊆ A}, we have
either B ⊆ B′ or B′ ⊆ B. So, this class is indeed linearly ordered.
1.2◦. Let us now prove that no proper superset A′ of the 1-element set A = {x0}
has the property that the class {B : B ⊆ A′} is linearly ordered.

For the set A = {x0}, we have μA(x0) = 1 and μA(x) = 0 for all other x. If
A′ is a superset of A, this means that μA′(x) = 1. The fact that A′ is a proper
superset means that A′ �= A, thus we have μA′(x′) > 0 for some x′ �= x0. In this
case, we can define the following fuzzy set B: μB(x′) = μA′(x′) and μB(x) = 0
for all x �= x0. Then, we have B ⊆ A′, A ⊆ A′, but B �⊆ A (since μB(x′) > 0
and thus, μB(x′) �≤ μA(x′) = 0) and A �⊆ B (since 1 = μA(x0) �≤ μB(x0) = 0).
Thus, the class {B : B ⊆ A′} is indeed not linearly ordered.
2◦. Let us prove that, vice versa, if a fuzzy set A has the above two properties,
then it is a one-element crisp set.
2.1◦. Let us first prove, by contradiction, that we can only have one element x
for which μA(x) > 0. Indeed. if μA(x1) > 0 and μA(x2) > 0 for some x1 �= x2,
then we can take the following fuzzy sets B1 and B2:

• μB1(x1) = μA(x1) and μB1(x) = 0 for all other x, and
• μB2(x2) = μA(x2) and μB2(x) = 0 for all other x.
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Here, B1 ⊆ A and B2 ⊆ A, but B2 �⊆ B2 and B2 �⊆ B1 – which contradicts to
our assumption that the class {B : B ⊆ A} is linearly ordered.

2.2◦. Due to Part 2.1, we have μA(x0) > 0 for at most one element x0; for all
x �= x0, we have μA(x) = 0. Let us prove, by contradiction, that μA(x0) = 1,
i.e., that A is indeed a one-element crisp set.

Indeed, if μA(x0) < 1, then we can consider the following proper superset
A′ ⊇ A: μA′(x0) = (1 + μA(x0))/2 < 1 and μ′

A(x) = 0 for all other x. Similarly
to Part 1.1 of this proof, we can prove that for this superset A′, the class {B :
B ⊆ A′} is linearly ordered – which contradicts to our assumption that such a
proper superset does not exist.

The proposition is proven.

Third Step: How to Detect 1-element Fuzzy Sets Based on the Subset-
hood Relation. We say that a fuzzy set is a 1-element set if for some x0 ∈ X,
we have μA(x0) > 0 and μA(x) = 0 for all x �= x0. Let us prove the following
auxiliary result.

Proposition 3. A non-empty fuzzy set A is a one-element fuzzy set if and only
if the class {B : B ⊆ A} is linearly ordered.

Proof.
1◦. Arguments similar to Part 1.1 of the proof of Proposition 2 show that if A
is a one-element fuzzy set, then the class {B : B ⊆ A} is linearly ordered.
2◦. Vice versa, if A is not an empty set and not a one-element fuzzy set, this
means that there exist at least two values x1 �= x2 for which μA(x1) > 0 and
μA(x2) > 0. We can then take the following fuzzy sets B1 and B2:

• μB1(x1) = μA(x1) and μB1(x) = 0 for all x �= x1, and
• μB2(x2) = μA(x2) and μB2(x) = 0 for all x �= x2.

Then B1 ⊆ A and B2 ⊆ A, but B1 �⊆ B2 and B2 �⊆ B1. Thus, the class
{B : B ⊆ A} is not linearly ordered.

The proposition is proven.

Final Result: How to Detect Crisp Sets Based on the Subsethood
Relation. Let us prove the following auxiliary result.

Theorem 1. A fuzzy set A is crisp if and only if every one-element fuzzy subset
B ⊆ A can be embedded in a one-element crisp subset of A.

Comment. In other words,

A is crisp ⇔ ∀A (B is a one-element fuzzy subset of A ⇒

∃C ((B ⊆ C ⊆ A)& (C is a 1-element crisp set))).
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Proof.
1◦. Let A be a crisp set, and let B ⊆ A be a 1-element fuzzy set. By definition,
this means that for some x0, we have μB(x0) > 0 and μB(x) = 0 for all other x.

Since the set A is crisp, the only possible values of μA(x0) are 0 and 1. From
μB(x0) ≤ μA(x0), we conclude that μA(x0) > 0 and thus, that μA(x0) = 1. So,
x0 ∈ A and hence B ⊆ {x0} ⊆ A.
2◦. Vice versa, if A is not a crisp set, this means that for some element x0, we
have 0 < μA(x0) < 1. In this case, we can take the following 1-element fuzzy set
B ⊆ A: μB(x0) = μA(x0) and μB(x) = 0 for all x �= x0. Here, B ⊆ A, but the
only 1-element crisp set C containing B is the set C = {x0}, and this 1-element
crisp set is not a subset of the original set A: C �⊆ A.

The theorem is proven.

3 What If We Consider Interval-Valued Fuzzy Sets

First Step: How to Detect an Empty Set. An empty set ∅ is an interval-
valued fuzzy set for which μ∅(x) = [0, 0] for all x ∈ U . The detection of an empty
set can be made based on the following result:

Proposition 4. An interval-valued fuzzy set A is an empty set if and only if
A ⊆ B for all interval-valued fuzzy sets B.

Proof is similar to proof of Proposition 1.

Second Step: How to Detect Special 1-element Interval-Valued Fuzzy
Sets Based on the Subsethood Relation. Let’s introduce an auxiliary
notion. We say that an interval-valued fuzzy set A is special if for some ele-
ment x0, we have μA(x0) = [0, a] for some number a > 0 and μA(x) = 0 for all
x �= x0.

Proposition 5. A non-empty interval-valued fuzzy set A is special if and only
if the class {B : B ⊆ A} is linearly ordered.

Proof.
1◦. For special sets (in the sense of the above definition), the fact that the class
{B : B ⊆ A} is linearly ordered can be proven similarly to Part 1.1 of the proof
of Proposition 2.
2◦. Let us now prove that, vice versa, if for some non-empty interval-valued fuzzy
set A, the class {B : B ⊆ A} is linearly ordered, then the set A is special.
2.1◦. Since A is non-empty, there exists an element x0 for which μA(x0) �= [0, 0].
Let us prove, by contradiction, that for every other element x �= x0, we have
μA(x) = [0, 0].

Indeed, if we had μA(x1) �= [0, 0] for some x1 �= x0, then we would be able to
take the following two sets B0 and B1:
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• μB0(x0) = μA(x0) and μB0(x) = [0, 0] for all x �= x0, and
• μB1(x1) = μA(x1) and μB1(x) = [0, 0] for all x �= x1.

In this case, B0 ⊆ A and B1 ⊆ A, but B0 �⊆ B1 and B1 �⊆ B0. This contradicts
our assumption that the class {B : B ⊆ A} is linearly ordered.
2.2◦. To complete the proof of the proposition, we need to prove that the
value μA(x0) = [μ

A
(x0), μA(x0)] has the form [0, a] for some a > 0, i.e., that

μ
A
(x0) = 0.
We will prove it by contradiction. Suppose that, vice versa, μ

A
(x0) > 0. In

this case, we can take the following sets B1 and B2:

• μB1(x0) = [0.5 · μ
A
(x0), 0.5 · μ

A
(x0)] and μB1(x) = 0 for all x �= x0, and

• μB2(x0) = [0, μ
A
(x0)] and μB2(x) = 0 for all x �= x0.

Then, B1 ⊆ A and B2 ⊆ A, but B1 �⊆ B2 and B2 �⊆ B1. This contradicts our
assumption that the class {B : B ⊆ A} is linearly ordered.

The proposition is proven.

Third Step: How to Detect 1-element type-1 Fuzzy Sets Based on the
Subsethood Relation. We say that an interval-valued fuzzy set is a 1-element
type-1 fuzzy set if there exists an element x0 for which μA(x0) = [a, a] for some
a > 0 and μA(x) = [0, 0] for all x �= x0.

Proposition 6. A non-empty interval-valued fuzzy set A is a 1-element type-1
set if and only if it is satisfies the following three properties:

• the set A is not special (in the sense of the above definition),
• there exists a special set B ⊆ A for which the class {C : B ⊆ C ⊆ A} is
linearly ordered, and

• for no proper superset A′ of A, the class {C : B ⊆ C ⊆ A} is linearly ordered.

Proof is similar to the proof of Proposition 2.

Final Result. Since we have subsethood, we also have union: the union of Aα

is the ⊆-smallest set that contains all A − α. We can thus define type-1 fuzzy
sets as unions of 1-element type-1 fuzzy sets. Once we can detect type-1 fuzzy
sets, we can use techniques from the previous section to detect crisp sets. Thus,
we can indeed detect type-1 fuzzy sets and crisp sets based only on subsethood
relation between interval-valued fuzzy sets.
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Abstract. Air pollution is a common problem in areas with high popu-
lation density such as big cities. The mega city of Tehran which is capital
city of Iran is suffering from poor air quality. In Tehran, Traditional air
quality assessment is realized using air quality indices which are deter-
mined as max values of selected air pollutants which is mostly base on
PM2.5. Thus, air quality assessment depends on strictly describe with-
out taking into account specific other Environmental parameters. In this
paper, To demonstrate the application, common air pollutants like CO,
O3, NO2, SO2, PM10 and PM2.5 are used as air pollutant parameters,
also we were studied over an 2-year period (2015–2017) on daily data of
the air quality index (AQI) in Tehran. The artificial intelligence based on
neural network and fuzzy inferences methods allows assessing air quality
parameters, providing a partial solution to this problem. Accordingly,
this study proposes two fuzzy logic system for assessing accurate air
quality evaluations, also proposed Seven score stages: Good, Moderate,
Unhealthy for Sensitive Group, Unhealthy, Very Unhealthy, Hazardous
for evaluating air quality index. Our experimental results show a good
performance of the proposed air quality index against other system that
those in literature.

Keywords: AQI · Air pollution · Expert system

1 Introduction

Nowadays air pollution has become a crisis in people’s daily lives and had many
adverse effects on human health, so when air quality is poor in terms of the
number of people referred to treatment centers significantly increased. For people
with chronic bronchitis, emphysema, asthma high concentrations of pollution can
cause breathing difficulties. In addition, for older people with heart problems and
respiratory diseases, increasing pollutants particles levels can cause premature
death. Therefore, pollutants such as CO, O3, NO2, SO2, PM10 are major factors
that affected on Air Quality Index. PM10 is one of the major factors contributing
to problems caused by air pollution [1]; another factors are NO2, CO, O3, SO2
that the damage of each pollutant causes separately is known [2] thus, it appears
c© Springer International Publishing AG 2018
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that obtaining measurements of air pollutants based on all factors observations
in urbanized regions is essential. In Tehran approximately 600 thousands cars are
used daily, According to recent research percentage of emissions matter such as
NO2, SO2, CO2, CO 64.3, 29.3, 27.5, 98.6% respectively. And 79.2% of hovering
particles is produced in country Originate from the Transportation Industry,
whereas, cars have a significant share of the total pollution So that in Tehran 52%
of CO and 41% of hovering particles (particulate matter) comes these cars. In
2010, CO was the most important pollutants, after that in the next rank O3 and
PM were most polluted days of the year. The Rest of this research is organized
as Sect. 2 explain the Background pollutants and their main characteristics in
air quality assessment. In Sect. 3, our method that is a Fuzzy Inference System
for air quality assessment is proposed, also this section shows the performance
and efficiency of our system. In Sect. 4, describe and show result of the validity
of the fuzzy system. Finally, Sect. 5 reported the conclusion of the study.

2 Background

According to this problem, international organizations have implemented similar
methodologies for air pollutant assessment and monitoring such as the Environ-
mental Protection Agency in United States [2] and the Pan American Health
Organization [3]. Human permissible limits, are in a ranges set and are used
to calculate the AQI index in Iran. Artificial neural networks [4]; support vec-
tor machines [5], amongst others. Alternatively, other methodologies have been
proposed for evaluating air quality using computational models such as fuzzy
logic [6]; Mishra and Goyal [7]. Olvera-Garćıa et al. [1] air quality assessment
using fuzzy logic and combining an Analytic Hierarchy Process (AHP) have been
developed, providing different solutions, Upadhyay et al. [8], Akkaya et al. 2015
[8]. In the present study, the proposed models are applied for analyzing the air
quality Index of Tehran City and proposed a fuzzy logic system base on TSK.
In Tehran Some area has special indicator for diagnose Air Quality Index about
40 station that send data to central station. In Fig. 1, we indicate some station
in Iran like Region 2, Shadabad, Fath, Piroozi, respectively.

2.1 AQI Index

The United States Environmental Protection Agency (EPA) has developed an
Air Quality Index that is used to report air quality. This AQI is divided into six
categories indicating increasing levels of health concern. The EPA has established
National Ambient Air Quality Standards (NAAQS) for each of these pollutants
in order to protect public health. Tables 1 and 2 indicate pollutants and their
health impacts Based on the measured ambient concentrations.

2.2 Case Study

Iran is located in the Middle East, between Iraq and Pakistan bordering the Gulf
of Oman, the Persian Gulf, and the Caspian Sea that is the Coastline of Iran
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Fig. 1. Some stations measuring air pollution in Tehran

Table 1. The range of pollutants

AQI
category
(Range)

CO (8 h) O3
(8 h)

NO2
(1 h)

SO2
(24 h)

PM10
(24 h)

PM2.5
(24 h)

Good 0–4.4 0–0.059 0–0.053 0–0.034 0–54 0–15.4
Moderate 4.5–9.4 0.060–

0.075
0.054–
0.1

0.035–
0.144

55–154 15.5–
35

Unhealthy
for
sensitive
groups

9.5–12.4 0.076–
0.095

0.101–
0.360

0.145–
0.224

155–254 35.1–
65.4

Unhealthy 12.5–15.4 0.096–
0.115

0.361–
0.640

0.225–
0.304

255–354 65.5–
150.4

Very
unhealthy

15.5–30.4 0.116–
0.374

0.65–
1.24

0.305–
0.604

355–424 150.5–
250.4

Hazardous 30.5–40.4 0.405–
0.504
(1 h)

1.25–
1.64

0.605–
0.804

425–504 250.5–
350.4

40.5–50.4 0.505–
0.604
(1 h)

1.65–
2.04

0.805–
1.004

505–604 350.5–
500.4

Table 2. categories of AQI index

AQI Associated health impacts
Good
(0–50)

Minimal impact

Moderate
(51–100)

May cause minor breathing
discomfort to sensitive people

Unhealthy
for sensitive
groups
(101–150)

May cause breathing discomfort
to people with lung disease
such as asthma, and discomfort
to people with heart disease,
children and older adults

Unhealthy
(151–200)

May cause breathing discomfort
to people on prolonged
exposure, and discomfort to
people with heart disease

Very
unhealthy
(201–300)

May cause respiratory illness to
the people on prolonged
exposure. Effect may be more
pronounced in people with lung
and heart diseases

Hazardous
(301–400),
(401–500)

May cause respiratory impact
even on healthy people, and
serious health impacts on
people with lung/heart disease.
The health impacts may be
experienced even during light
physical activity

is 2,440 km. Tehran is the capital city of Iran and is located at the foot of the
towering Alborz mountain range also, a bustling metropolis of 14 million people,
it’s the largest urban city in Western Asia. The common environmental threats
to the geography of Iran is air pollution. In this study, air quality monitoring
data for different areas of Tehran. The issue is very sensitive to air pollution
and the preference is to be taken advantage of all available data. The system
architecture used C-means clustering [9] and definition fuzzy inference system
desired. In Fig. 2 illustrate our variables which should include CO, O3, NO2,
SO2, PM10, PM2.5.
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Fig. 2. Data analysis

3 Method

3.1 The Structure of Fuzzy System

To deal with monitoring air quality, especially in urban areas has become an
essential and vital. For accurate monitoring of air quality standards are often
defined by international and domestic institutions and to observe any contami-
nants of health determined, Most methods of measuring air pollution cites the
recommendations of these institutions. To determine the level of contamination
is defined as the extent to which any emissions As well as qualitative terms are
defined linguistic variables to define air pollution Are ambiguities that some-
times change a small amount of a pollutant, air pollution is on another level
interpretation. This uncertainty and confusion in the field of air pollution mon-
itoring in the form of fuzzy systems, fuzzy logic can apply to a large extent be
covered. Fuzzy inference system with fuzzy input variables in the input certainty
with ambiguity and error is rejected And by combining inputs and outputs using
fuzzy inference that is more reliable Because a large extent eliminates the uncer-
tainty and ambiguity of input values and their effect on the final result looked
more closely. In this study two fuzzy system is designed to monitor air quality
based on certain concepts to classify air quality at different times. Both systems
use the data to monitor the amount of pollutants contributing to air pollution
in Tehran (winter 2015 to winter 2017) are designed. The first simulation system
for AQI standard behavior data used in calculating the level of air pollution in
Tehran. The main purpose of this study is determining the level of air quality
present based on a number of language variables, so we are facing a problem of
categorization. These variables are as following. Good, Moderate, Unhealthy
for Sensitive Groups, Unhealthy, Very Unhealthy, Hazardous, also in
the design of their systems of 6 input variables that we use the same contami-
nants. Fuzzy input variables which should include CO, O3, NO2, SO2, PM10,
PM2.5 are For fuzzy inference in this study have chosenSugeno Fuzzy Infer-
ence System. In previous studies used Mamdani fuzzy system for determining
rules, Defuzzification and direct separation of data. We use Sugeno fuzzy infer-
ence system that show in Fig. 3.
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Fig. 3. TSK system

3.2 Fuzzy Rules

Fuzzy rules in the fuzzy inference systems are used for rule if - then defined
Various methods for extracting rule. In both systems designed fuzzy clustering
method to extract rules (subtractive clustering). For clustering method of fuzzy
is used Sugeno fuzzy rules in the system as defined in Fig. 4. In this phase systems
are faced with MISO rules as to the number of air pollutants that are 6 to input
variable And only the output of our system is the same label Output Sugeno
fuzzy rules in relationships based on input variables that must be set coefficients
Classification issues can be considered zero coefficients input variables and the
output of each rule is equal to the label that it displays.

Rule 1: IF CO isr MFCO,1 AND O3 isr MFO3,1 AND NO2 isr MFNO2,1 AND
SO2 isr MFSO2,1 AND PM10 isrMFPM10,1 AND PM2.5 isrMFPM2.5,1

THEN AQIC isr F11(u).
Rule 2: IF CO isr MFCO,2AND O3 isrMFO3,2AND NO2isr MFNO2,2 AND
SO2 isrMFSO2,2 AND PM10 isrMFPM10,2 AND PM2.5 isr MFPM2.5,2 THEN
AQIC isr F12(u).
Rule 3: IF CO isrMFCO,3 AND O3 isr MFO3,3 ANDNO2 isrMFNO2,3

ANDSO2 isrMFSO2,3AND PM10isrMFPM10,3 AND PM2.5 isr MFPM2.5,3

THEN AQIC isr F13(u).
Rule 4: IF CO isrMFCO,4 AND O3isr MFO3,4 AND NO2 isr MFNO2,4 AND
SO2 isrMFSO2,4 AND PM10 isrMFPM10,4 AND PM2.5 isr MFPM2.5,4 THEN
AQIC isr F14(u).
Rule 5: IF CO isr MFCO,5 AND O3 isr MFO3,5 AND NO2 isr MFNO2,5

AND SO2 isr MFSO2,5 AND PM10 isr MFPM10,5 AND PM2.5isr MFPM2.5,5

THEN AQIC isr F15(u).
Rule 6: IF CO isr MFCO,6 AND O3 isrMFO3,5 AND NO2 isr MFNO2,6AND
SO2isr MFSO2,6 AND PM10isr MFPM10,6 AND PM2.5 isr MFPM2.5,6 THEN
AQIC isr F16(u).

In this study, fuzzy sets has been considered according to final data Labels.
Six labels must be calculated in the series for each variable as fuzzy set member-
ship function. Linguistic variables synonymous with the six sets are as follows:
Very low, low, medium, high, very high, bulky, corresponding to the labels are
output.
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(a) surface of rules (b) rules of sugeno

Fig. 4. Rules of sugeno

3.3 Membership Functions

In type 1 for each variable fuzzy logic membership functions defined fuzzy mem-
bership value taken by the variable (in the system at any given moment) in
the fuzzy set of pre-defined number between 0 and 1 to indicate In fuzzy logic
membership functions can have different states depending on the nature of the
problem and its parameters must be set. In a fuzzy system and fuzzy vari-
able is considered that the amount of these pollutants. This level of pollutants
Unlike previous systems by assigning different values for member states fuzzy
sets. With this approach, there may be a certain amount of pollutants to also
have a large collection of membership And in the middle set, but with a differ-
ent membership levels and complement each other, this approach increases the
accuracy and transparency of future decisions. In the first system of Gaussian
membership functions we have used to define fuzzy numbers Gaussian member-
ship function has two parameters, the mean and variance Experience has shown
that the variables With the continuous high degree of this type of membership
functions provide better coverage of uncertainty Since we have 6 input variables
and each variable in each of the rules are to define 36 different membership func-
tion; To do this it is necessary that we set the parameter 72. In the case of setting
the parameters of membership functions of the system do the work. Once we set
the parameters using ANFIS system that show in Fig. 5, and gain accuracy of
the system. Using Genetic Algorithm optimization parameters of membership
functions to configure again and we calculate the final accuracy of the system.
Finally, each of the sets of parameters that have to provide more accuracy Picking

Fig. 5. ANFIS
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out. In the second system to determine the membership functions according to
PSO algorithm. Using PSO Algorithm optimization parameters of membership
functions to configure again and we calculate the final accuracy of the system.
The second system diagnosis AQI index better than first system. Since these
two systems have been designed using Sugeno we do not need Defuzzification,
Because the output Sugeno rules as well as the entire system is an absolute
number to each variable output.

4 Validation System

Designing Sugeno fuzzy system by Fuzzy c-means clustering, also use Neural
network for setting parameters of sugeno system for improving performance of
the system. In during training parameters with ANFIS and GA, and the sec-
ond system improved parameters with PSO. Accuracy of the output’s system is
increased. Figures 6 and 7 illustrate, the comparison between AQI and output
of the two system that is designed for training and testing data. According our

(a) The result of AQI and output
by ANFIS with GA

(b) Error of training data by AN-
FIS with GA

Fig. 6. First system

(a) The result of AQI and output
by ANFIS with PSO

(b) Error of training data by AN-
FIS with PSO

Fig. 7. Second system
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analysis, system could create suitable AQI on real output, although error of the
system is reduced.

5 Conclusion

In this study, Two new model for air quality assessment has been built as a way
to evaluate Air Quality Index in urban cities. First model was created according
to the environment dynamic located in the Tehran City, where the high density
population. In order to generate more complete air quality analyses, six major
pollutants were measured, AQI-ANFIS with GA provided a good integration
all of particular evaluations; however, the priority assessment is focused on the
air quality assessment to those parameters that represent the major problem
on human health. The AQI-ANFIS with PSO can be adjusted to define other
parameters that represent critical problems in urban areas. An analysis about a
fitted membership function type for a Sugeno (TSK), specific parameter is tuned.
Additionally, a knowledge base which introduces new rules based on parameter
behaviors is a good idea for having an improved computational model.
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Abstract. On time diagnosis of chronic Kidney disease problems is
essential because of patient pain and cost of treatment. To alleviate this
hazard, in this research a type-1 fuzzy inference system is proposed to
diagnosis chronic Kidney disease. The knowledge representation of this
system is provided from high level, based on lifestyle of the patient and
historical data about his/her problem and some of the clinical examina-
tion. We use nine features for diagnosis disease these are age, FBS (Fast-
ing Blood Sugar), Blood urea, Serum creatinine, Na, K, Hemoglobin, rbc
(red blood cells), wbc (white blood cells). First we generate type-1 fuzzy
inference system then improve our FIS with ANFIS. We generate type-1
fuzzy system for diagnosis chronic kidney disease with real data.

Keywords: Fuzzy rule based · Chronic kidney disease · ANFIS

1 Introduction

Chronic kidney disease is a worldwide public health problem with an increasing
incidence, prevalence, and high cost. Approximately 2.5–11.2% of the adult pop-
ulation across Europe, Asia, North America, and Australia are reported to have
chronic kidney disease [1]. Pair of kidneys is a vital organ for proper functioning
of human body. They filter the blood, removes wastes, control the bodys fluid
balance and create urine. Chronic kidney disease (CKD) is a condition in which
kidneys decreases their shape and ability to perform their functions properly
resulting in high amount of waste in blood which makes a human body sick in
the long run. People having high blood pressure, diabetes and those who have
family members suffering from CKD are likely to be at risk of kidney diseases.
CKD caused 956,000 deaths in 2013 from 409,000 deaths in 1990 [2]. The uncer-
tainty in the knowledge base is usually represented as linguistic variables or
vague numeric values in the rule’s antecedents, consequences, or both [3]. Fuzzy
logic has brought a drastic change in handling these uncertainties and vagueness
in our systems [4]. Fuzzy rule based system is a mathematical tool for dealing
with the uncertainty and the imprecision typical in medical field. The reasoning
is based on compositional rule of fuzzy inference and the knowledge of specialists
is important to determine the parameters [5]. Zadeh basically provides approxi-
mate reasoning to deal with uncertainties in knowledge [6]. Using fuzzy methods
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 37
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in medical expert systems started with modeling of medical diagnosis systems
for malaria [7,8], viral hepatitis [7], Asthma [9] and heart disease diagnosis [10],
etc. In the present study an expert fuzzy system is designed for chronic kidney
disease that could diagnose patient problems.

The rest of the paper is organized as follows, Sect. 2 is background about
the chronic kidney problems, fuzzy expert systems. Section 3 is description of
data set and features that use in fuzzy system. Section 4 is architecture of the
proposed system and compare first fuzzy system with final fuzzy system (ANFIS)
and Sect. 5 is conclusion.

2 Background

Early studies of artificial intelligence in medicine application started in the
end of the 1960’s and led to the emergence of experimental systems such as:
MYCIN, INTERNIST, CASNET, EXPERT and ONCOCIN [11]. These systems
are placed in rule-based expert system and used for diagnosis and treatment
of complex problems in several domain including blood infections, glaucoma
disease, rheumatology and endocrinology, and oncology protocol management,
Castanho et al. [5].

Expert System (ES) is an intelligent interactive computer based decision tool
that uses facts and rules to solve difficult real life problems based on the knowl-
edge acquired from one or more human expert(s) in a particular eld. ESs have
user friendly interfaces which make them highly interactive in nature and pro-
vide accurate and timely solutions to difficult real life problems [12]. Fuzzy expert
systems use fuzzy rules to inference about uncertain problem. In recent research
works related to CKD are Prevalence of chronic kidney disease in an adult pop-
ulation [13] Increased hip fracture and mortality in chronic kidney disease [14].

3 Chronic Kidney Disease (CKD) Data Set

We used CKD data set that was taken from Chamran Hospital in Iran [15]. This
data set contains 400 samples, 2 classes and nine features for each sample. These

Table 1. Features in data set

Features Range of normal

Age 0–150

FBS 75–110

Blood urea 6–23

Serum creatinine 0.7–1.4

Sodium (NA) 135–148

Potassium (K) 3.5–5.2

Hemoglobin 12–16

Red blood cells 4.5–6.3

White blood cell 4–10
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classes are assigned to the values that named as CKD, not CKD(healthy). The
features of each sample and the normal range of them are determined in Table 1:

4 Method

4.1 Design of Fuzzy Expert System

At first we generated fuzzy inference system (Mamdani) with real data that
show result in section. Then we generated Adaptive Neural Fuzzy Inference
System (ANFIS) for improving membership functions and number of rulers. We
decreased error of system and increased our performance fuzzy expert system
for diagnosis chronic kidney disease. At first, triangular membership function
was used for fuzzy sets description and Mamdani inference method to get fuzzy
results. By applying first system to CKD data set, many rules was generated
that increased calculation of system. The Mamdani system represent in Fig. 1.

Fig. 1. Mamdani inference system

Finally we generated ANFIS for CKD data set. FCM algorithm was used
to generate initial fuzzy rules for determination the values of parameters. By
applying proposed neuro-fuzzy classifier to CKD data set, gaussian membership
function and two rules was generated which are shown in Fig. 2. Figure 2 demon-
strates the structure ANFIS constructed for the proposed system. By entering
the features of chronic kidneys data as input data, this network will determine
the class of CKD function. This structure shows the number of rules which are 2.

Rule base is the main part in fuzzy inference system and quality of results in a
fuzzy system depends on the fuzzy rules. The rule-based of the proposed system
consists of two general rules. Antecedent part of all rules has nine sections and
consequent part of all rules has one section. The rules of the proposed system
are as follows:

Rule 1: IF Age isr MFAge,1 AND FBS isr MFFBS,1 AND Urea isr MFUrea,1

AND Creatinine isr MFCreatinine,1 AND Na isrMFNa, 1 AND K isr MFK, 1
AND Hemoglobin isr MFHemoglobin,1 AND rbc isr MFrbc,1 AND wbc isr
MFwbc,1 THEN diagnosis isr F11(u).

Rule 2: IF Age isr MFAge,2 AND FBS isr MFFBS,2 AND Urea isr MFUrea,2

AND Creatinine isr MFCreatinine,2 AND Na isrMFNa, 2 AND K isr MFK, 2
AND Hemoglobin isr MFHemoglobin,2 AND rbc isr MFrbc,2 AND wbc isr
MFwbc,2 THEN diagnosis isr F12(u).
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Fig. 2. ANFIS

Figure 3 represents the fuzzy rules of the proposed system.

Fig. 3. Rules of ANFIS and function of system

In this study, we used classification accuracy as a criteria for evaluating the
performance of the proposed system. For this purpose, we divided the CKD data
set to training data and testing data. Training data consists of 320 sample data
for modeling and developing the system and 80 sample data as testing data
for evaluating the proposed system. By using confusion matrix method, the
classification accuracy of the proposed system for diagnosis of chronic kidney
disease was obtained about 80%. Table 2 represents the test results of 80 testing
data.

Table 2. Test result with confusion matrix

Class1 (not CKD) Class2 (CKD)

Class1 (not CKD) 30 10

Class2 (CKD) 6 34
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Figure 4 represents the surface of ANFIS constructed for the proposed sys-
tem. By entering the features of chronic kidneys data as input data, these surfaces
will represent the relations and Interactions of CKD function and features.

Fig. 4. Surface of ANFIS

5 Conclusion

This paper represents a fuzzy rule-based expert system as an assistance system
for diagnosing chronic kidneys function disease. This system uses the results of
the prescribed measurement of chronic kidney as input data and by entering
the input data, the output of the system will be a crisp value. In this study,
we focused on identifying the rules and the parameters of the fuzzy system.
Although the classification accuracy is a feature of a system. Concentrating on
rules and determination of the parameters values of the system is an another
important feature of a system. So, we used a new neuro-fuzzy classification based
on FCM algorithm for determining the values of parameters. For future study, we
suggest using the other effective factors in diagnosis such as: bacteria, diabetes
and etc. Increasing data set for training and testing system. In generating rules
and determining the parameters values, type-2 fuzzy can be used for handling
imprecise diagnosis.
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Abstract. A previous paper by the author introduced a procedure for
computing the possibility of an event based on the notion of context,
where the context of an event consists of prerequisites for the event
to occur and constraints that may prevent it from occurring. It was
proposed to compute the possibility of the event as a function of the
probabilities that the prerequisites hold and the constraints do not. The
function adopts the conventional rules of possibility theory, so the over-
all procedure involves a combination of probability and possibility. The
present paper briefly recounts those ideas and provides an example appli-
cation, this being a hypothetical case of navigating a car through city
streets.

Keywords: Possibility theory · Possibilistic event · Real-world event ·
Waypoint navigation · Autonomous vehicles

1 Introduction

Possibility theory was introduced by Zadeh [5] and subsequently developed at
length by Dubois and Prade [1]. Other related works have appeared in the collec-
tion edited by Yager [4]. Zadeh himself has returned to the topic several times,
and the subject now enjoys a rich literature.

That work consists primarily of theoretical studies, however, with virtually no
applications. A reason for this seems to be that there currently is no established
procedure for computing the degree of possibility for a real-world event. Existing
approaches use only subjective evaluations. This may be contrasted with proba-
bility theory which provides both subjective and computational methods, where
the latter are based on the notion of statistical sampling.

The paper [3] proposed an approach to dealing with this issue. The key idea
is that the notion of possibility for a real-world event may be regarded as being
context dependent, where the context of the event consists of some prerequisites
that must be satisfied for the event to occur and/or some constraints that serve
to inhibit its occurrence.

It is proposed to compute the degree of possibility for an event as a function
of the probabilities that the prerequisites will be satisfied and/or the constraints
will not obtain, where this function employs the established logic of possibility
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 38
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theory. In this manner, the proposed computational procedure entails a hybrid
of probability theory and possibility theory that exploits the computational fea-
tures of the former for the purposes of the later.

2 Intuitive Rationale

To illustrate, consider the possibility that Jane will travel to Europe next sum-
mer, and suppose that her doing this depends on her having sufficient time and
money. Then time and money are prerequisites. It is proposed to compute the
degree of possibility for Jane’s travel as a function of the probability that she
has the necessary time and money, to wit,

Poss(travel) = min[Prob(time),Prob(money)]

where Prob is a standard probability measure such as given by the well-known
Kolmogorov axioms [2]. The min operation represents the logical “and” in pos-
sibility theory.

In this spirit, the proposed approach uses the methods of probability theory
to determine the likelihood that the prerequisites will be satisfied and then uses
the logic of possibility theory to give the degree of possibility for the event. Note
that in the example regarding Jane we are here considering only the possibility
that she may choose to travel to Europe and not the probability that she actually
will go.

Now suppose Jane has learned that a relative is ill and might need her assis-
tance during the same time that Jane plans to travel. This would be a constraint.
In this case the foregoing computation becomes

Poss(travel) = min[Prob(time),Prob(money),
Prob(¬assistRelative)]

or equivalently

Poss(travel) = min[Prob(time),Prob(money),
1 − Prob(assistRelative)]

using the probability theory representation of the logical “not”. In effect, 1−Prob
(assistRelative) measures the degree to which the constraint “assistRelative” is
mitigated. Note that this amounts to regarding the mitigation of the constraint
as a precondition. In general, any constraint c can be construed as specifying a
corresponding precondition having the form ¬c.

This example illustrates an intuitively plausible means for working with con-
junctions of contextual elements (prerequisites and constraints). Illustrations of
disjunctions and other more complex logical combinations have appeared in [3].

3 Formalization

These considerations motivate the following formal definitions. For an event E,
any proposition p can serve as a prerequisite, and any proposition c can serve as
a constraint. Let us define the contextual constructs for event E by:
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1. If p is a prerequisite for E, then p is a contextual construct for E.
2. If c is a constraint for E, then (¬c) is a contextual construct for E.
3. If C1 and C2 are contextual constructs for E, then so are (C1 ∧ C2) and

(C1 ∨ C2).
4. Nothing is a contextual construct for E except as required by the items 1

through 3.

Outermost surrounding parentheses will be omitted when not required for disam-
biguation. A contextual construct either of the form p where p is a prerequisite
or of the form ¬c where c is a constraint will be an atomic contextual construct.

Given an event E, we may define the possibility valuation v for contextual
constructs for E by:

1. If C is an atomic contextual construct for E, then v(C) = Prob(C).
2. If C is of the form (C1 ∧ C2) where C1 and C2 are contextual constructs for

E, then v(C) = min(v(C1), v(C2)).
3. If C is of the form (C1 ∨ C2) where C1 and C2 are contextual constructs for

E, then v(C) = max (v(C1), v(C2)).

Let us say that a contextual construct for an event E is complete if it is
considered to be a full description of the relevant context for E in terms of
the event’s prerequisites and constraints. Then if C is a complete contextual
construct for E, set

Poss(E) = v(C)

This formalism can be illustrated in terms of the foregoing example. Consider
E as the event of Jane traveling to Europe next summer. The prerequisites are
p1 = sufficient time and p2 = sufficient money , and both are required, so a
complete contextual construct for E is

C = p1 ∧ p2

and the foregoing definitions give

Poss(E) = v(C)
= min(v(p1), v(p2))
= min(Prob(p1),Prob(p2))

Thus one obtains the same result as described in the foregoing intuitive rationale.
Given that there can be more than one complete contextual construct for the

same event, the question arises whether all such constructs will evaluate to the
same possibility degree. It turns out that there is no guarantee that this will be
the case, even given that they employ the same prerequisites and constraints,
since the formation of the complete contextual construct depends on how a
particular user envisions the logical interrelationships between the prerequisites
and constraints.

For this reason it would make sense to define a context for an event E as
a complete contextual construct for E. In this way, the notion of context is
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taken to include not only the prerequisites and constraints for E, but also the
manner in which these are viewed as being interrelated. Thus the above question
becomes one of determining what conditions might be placed on contexts that
would ensure that they evaluate to the same possibility degree. This issue is
addressed in [3].

In a more complex case where an event E is a composite of some other events,
i.e., E can be given as a logical combination of the other events, it is natural
to extend the above mapping v to E again using the principles of possibilistic
logic, namely, by taking min, max and 1−, for ∧, ∨, and ¬.

4 Vehicle Waypoint Navigation

These ideas may be illustrated with a hypothetical real-world application. Con-
sider the task of navigating a vehicle (with or without a driver) through a network
of city streets. Suppose that, as depicted in Fig. 1, it is desired to travel from
point A to point H, and some mapping service has identified several alternative
routes, also as shown in Fig. 1. Each node in the graph is a waypoint and each
link between two waypoints is a leg. Further suppose that this is taking place in
a “smart city”, which provides the vehicle with real-time information concern-
ing traffic conditions on all the indicated legs of the journey. The objective is to
determine the degree of possibility that the vehicle can reach waypoint H at a
speed of at least the designated speed limits for the various legs.

A

B C

D E F

G

H

1 2

3 4 5

6 7 8

9

Fig. 1. Example street network.

For the purposes of this example, assume also that the vehicle reassesses this
possibility at each waypoint where it must make a decision regarding which way
to proceed. Thus, at point A the vehicle may decide to proceed to either B or
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C. If it chooses B, then is it committed to the path A, B, D, G, H, whereas, if
it chooses C, then at waypoint C it must choose between E and F.

Let the preconditions for all legs be p1 = “the vehicle is in proper operating
condition” and p2 = “the driver (human or robot) is competent”, and assume
that these are constant throughout the journey. Constraints that may apply
to each leg are possible causes of traffic congestion that impede the vehicle’s
progress. These may include c1 = “high traffic volume (rush hours)”, c2 = “bad
weather (rain, snow, ice)”, c3 = “traffic accidents”, and c4 = “road construction”.
Constraints may vary throughout the trip, e.g., a traffic accident can suddenly
occur, or the daily rush hour can come into effect. For the sake to this example
assume that a complete contextual construct for each leg is C = p1 ∧ p2 ∧ ¬c1 ∧
¬c2 ∧ ¬c3 ∧ ¬c4. To identify these items for each leg i = 1, . . . , 9 shown in Fig. 1,
add the subscript i, e.g., write Ci = p1,i ∧ p2,i ∧¬c1,i ∧¬c2,i ∧¬c3,i ∧¬c4,i. Then
in accordance with the foregoing theory, for each i, if Ei is the event of the car
traveling leg i at the designated speed limit, it follows that

Poss(Ei) = v(Ci)
= min(Prob(p1,i),Prob(p2,i), 1 − Prob(c1,i), 1 − Prob(c2,i),

1 − Prob(c3,i), 1 − Prob(c4,i)).

The indicated probabilities may be provided by subjective or objective analy-
sis, where by “objective” is here meant based on statistical sampling. For exam-
ple, consider constraint c1. Traffic volume may be taken as a fuzzy linguistic
variable with possible values high, medium, low, where volume is measured as
the number of vehicles passing a given point per minute. For each hour of the day,
the probability that the traffic will be high during that time can be determined
by historical statistical samplings, e.g., the probability that congestion will be
high around 5:30 PM on a Monday might be 0.9. Other probabilities may depend
on subjective evaluations or current reports. For example, the probability of a
traffic accident (constraint c3) on a given leg based on statistical samplings might
be generally low, say 0.1, but if the smart city system announces that there is
an accident on some leg, then the evaluation immediately jumps to 1.0. In this
manner, one can determine Poss(Ei) for each leg i for any time.

Accordingly, the value Poss(Ei) can be computed dynamically while the vehi-
cle is travelling for any time of day and any day of the week. Given this ability,
the procedure for the vehicle’s decisions regarding which path to take goes as
follows. While at waypoint A, the choice is whether to proceed to B or C. Let
EB be the event of traveling from A to H through waypoint B, and let EC be
the event of traveling through C. Then these are the composite events

EB = E1 ∧ E3 ∧ E6 ∧ E9, and

EC = E2 ∧ ((E4 ∧ E7) ∨ (E5 ∧ E8)) ∧ E9

In accordance with the foregoing we can compute

Poss(EB) = min(Poss(E1),Poss(E3),Poss(E6),Poss(E9)), and
Poss(EC) = min(Poss(E2),max (min(Poss(E4),Poss(E7)),min(Poss(E5),

Poss(E8)),Poss(E9)),
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and choose the path with the higher value. If the path through waypoint C is
chosen, then upon reaching that waypoint, consider EE = E4 ∧ E7 ∧ E9 and
EF = E5 ∧ E8 ∧ E9, and compute

Poss(EE) = min(Poss(E4),Poss(E7),Poss(E9)), and

Poss(EF ) = min(Poss(E5),Poss(E8),Poss(E9))

and choose the path through E or F depending on which of these is higher. In
this manner one finds the path from A to H that is most possible to traverse at
a speed that is at least as high as the designated speed limit.

5 Concluding Remarks

The paper [3] has proposed a simple but intuitively plausible procedure for com-
puting the degree of possibility of an event. The plausibility rests on the obser-
vation that the notion of possibility for an event is context dependent, where the
context consists of prerequisites that must be satisfied in order for the event to
occur and/or constraints that may inhibit the event’s occurrence. The prerequi-
sites may be satisfied, and the constraints may manifest, with specific numerical
degrees of probability. Thus is seems reasonable to compute the possibility of
the event in terms of these probabilities.

This has the advantage that one can use the computational methods of statis-
tical sampling to determine the indicated probabilities, and then use these prob-
abilities to determine the event’s possibility. In this manner the overall method
is computational.

It may be argued that possibility theory can play an essential role in planning
applications inasmuch as it provides a tool for evaluating the possibilities of
alternative plans. This opens opportunities to employ possibility theory in areas
such as organizational planning and robot motion control.

The present paper has sought to illustrate some of the foregoing theoretical
ideas in a simple example of vehicle waypoint navigation, which is a special kind
of planning task.
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Abstract. In this paper, we discuss the local and global existence and
uniqueness results for intuitionistic fuzzy functional differential equa-
tions. For the local existence and uniqueness we use the method of suc-
cessive approximations and for global existence and uniqueness we use
the contraction principle. Also we give an useful procedure to solve intu-
itionistic fuzzy functional differential equations. The applicability of the
theoretical results is illustrated with some examples.
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Content

One of the generalizations of fuzzy sets theory [21] can be considered the pro-
posed intuitionistic fuzzy sets (IFS). Later on Atanassov generalized the concept
of fuzzy set and introduced the idea of intuitionistic fuzzy set [1,3]. Atanassov [2]
explored the concept of fuzzy set theory by intuitionistic fuzzy set (IFS) theory.

For intuitionistic fuzzy concepts, recently the authors [14–17] established,
respectively, the theory of metric space of intuitionistic fuzzy sets, intuitionistic
fuzzy differential equations, intuitionistic fuzzy fractional equation and intuition-
istic fuzzy differential equation with nonlocal condition. They proved the exis-
tence and uniqueness of the intuitionistic fuzzy solution for these intuitionistic
fuzzy differential equations using different concepts. This paper is to investigate
the existence and uniqueness of intuitionistic fuzzy solutions for the following
intuitionistic fuzzy functional differential equations:{

〈u, v〉′(t) = F
(
t, 〈u, v〉), t ≥ τ

〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ), τ − σ ≤ t ≤ τ
(0.1)

Which we inspired by previous definitions of [12,13].
These intuitionistic fuzzy functional differential equations provide more real-

istic models for phenomena, where the future state of systems depends on its
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past history. They are very necessary and powerful tool in modeling impreci-
sion, valuable applications of IFSs have been flourished in many different fields
[7–10,18–20]. The numerical methods for solving intuitionistic fuzzy differential
equations is introduced in [4–6]. There are many approaches to solve the intu-
itionistic fuzzy differential equations, in this work we propose a method of steps,
it can be useful to solve intuitionistic fuzzy functional differential equations.

Combining the two aspects introduced, intuitionistic fuzzy mathematics and
functional differential equations, we get intuitionistic fuzzy functional differential
equations, which will be attract the interest of many researchers. Intuitionistic
fuzzy differential equations without functional dependence are considered, for
instance in [14,16,17].

The paper is organized as follows. In Sect. 1 we give some basic concepts and
results are brought. In Sect. 2, we prove a local existence and uniqueness theorem
for a solution for initial value problem for intuitionistic fuzzy functional differ-
ential equations using the method of successive approximations and we prove
a global existence and uniqueness theorem for a solution using the contraction
principle. In Sect. 3 we propose an useful procedure to solve intuitionistic fuzzy
functional differential equations. We present some examples to illustrate the
applicability of the main results, specifically an intuitionistic fuzzy differential
equations with distributed delays and intuitionistic fuzzy population model in
Sect. 4 and finally conclusion is drawn in Sect. 5.

1 Basic Concepts

1.1 Notations and Definitions

Throughout this paper, (Rn, B(Rn), μ) denotes a complete finite measure space.
Let us Pk(Rn) the set of all nonempty compact convex subsets of Rn.
We denote by

IFn = IF(Rn) =
{

〈u, v〉 : R
n → [0, 1]2 , / ∀ x ∈ R

n 0 ≤ u(x) + v(x) ≤ 1
}

An element 〈u, v〉 of IFn is said an intuitionistic fuzzy number if it satisfies the
following conditions

(i) 〈u, v〉 is normal i.e. there exists x0, x1 ∈ R
n such that u(x0) = 1 and

v(x1) = 1.
(ii) u is fuzzy convex and v is fuzzy concave.
(iii) u is upper semi-continuous and v is lower semi-continuous
(iv) supp 〈u, v〉 = cl{x ∈ R

n : | v(x) < 1} is bounded.

so we denote the collection of all intuitionistic fuzzy number by IFn.
For α ∈ [0, 1] and 〈u, v〉 ∈ IFn, the upper and lower α-cuts of 〈u, v〉 are

defined by
[〈u, v〉]α = {x ∈ R

n : v(x) ≤ 1 − α}
and

[〈u, v〉]α = {x ∈ R
n : u(x) ≥ α}
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Remark 1.1. If 〈u, v〉 ∈ IFn, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as
[1 − v]α in the fuzzy case.

We define 0(1,0) ∈ IFn as

0(1,0)(t) =

{
(1, 0) t = 0
(0, 1) t 	= 0

Let 〈u, v〉, 〈u′, v′〉 ∈ IFn and λ ∈ R, we define the following operations by:(
〈u, v〉 ⊕ 〈u′, v′〉

)
(z) =

(
sup

z=x+y
min (u(x), u′(y)) , inf

z=x+y
max (v(x), v′(y))

)

λ 〈u, v〉 =

{
〈λu, λv〉 if λ 	= 0
0(1,0) ifλ = 0

For 〈u, v〉, 〈z, w〉 ∈ IFn and λ ∈ R, the addition and scaler-multiplication are
defined as follows[

〈u, v〉 ⊕ 〈z, w〉
]α

=
[
〈u, v〉

]α

+
[
〈z, w〉

]α

,
[
λ 〈z, w〉

]α

= λ
[
〈z, w〉

]α

[
〈u, v〉 ⊕ 〈z, w〉

]
α

=
[
〈u, v〉

]
α

+
[
〈z, w〉

]
α
,

[
λ 〈z, w〉

]
α

= λ
[
〈z, w〉

]
α

Definition 1.1. Let 〈u, v〉 an element of IFn and α ∈ [0, 1], we define the
following sets:

[
〈u, v〉

]+
l
(α) = inf{x ∈ R

n | u(x) ≥ α},
[

〈u, v〉
]+

r
(α) = sup{x ∈ R

n | u(x) ≥ α}
[

〈u, v〉
]−

l
(α) = inf{x ∈ R

n | v(x) ≤ 1 − α},
[

〈u, v〉
]−

r
(α) = sup{x ∈ R

n | v(x) ≤ 1 − α}

Remark 1.2. [
〈u, v〉

]
α

=
[[

〈u, v〉
]+

l
(α),

[
〈u, v〉

]+
r
(α)

]
[
〈u, v〉

]α

=
[[

〈u, v〉
]−

l
(α),

[
〈u, v〉

]−

r
(α)

]

Proposition 1.1 [16]. For all α, β ∈ [0, 1] and 〈u, v〉 ∈ IFn

(i)
[
〈u, v〉

]
α

⊂
[
〈u, v〉

]α

(ii)
[
〈u, v〉

]
α

and
[
〈u, v〉

]α

are nonempty compact convex sets in R
n

(iii) if α ≤ β then
[
〈u, v〉

]
β

⊂
[
〈u, v〉

]
α

and
[
〈u, v〉

]β

⊂
[
〈u, v〉

]α

(iv) If αn ↗ α then
[
〈u, v〉

]
α

=
⋂

n

[
〈u, v〉

]
αn

and
[
〈u, v〉

]α

=
⋂

n

[
〈u, v〉

]αn
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Let M any set and α ∈ [0, 1] we denote by

Mα = {x ∈ R
n : u(x) ≥ α} and Mα = {x ∈ R

n : v(x) ≤ 1 − α}

Lemma 1.1 [16]. Let
{

Mα, α ∈ [0, 1]
}

and
{

Mα, α ∈ [0, 1]
}

two families of
subsets of Rn satisfies (i)–(iv) in Proposition 1.1, if u and v define by

u(x) =

{
0 if x /∈ M0

sup {α ∈ [0, 1] : x ∈ Mα} if x ∈ M0

v(x) =

{
1 if x /∈ M0

1 − sup {α ∈ [0, 1] : x ∈ Mα} if x ∈ M0

Then 〈u, v〉 ∈ IFn.

Lemma 1.2 [16]. Let I a dense subset of [0, 1], if
[
〈u, v〉

]
α

=
[
〈u′, v′〉

]
α

and[
〈u, v〉

]α

=
[
〈u′, v′〉

]α

, for all α ∈ I then 〈u, v〉 = 〈u′, v′〉.

On the space IFn we will consider the following metric,

dn
∞

(
〈u, v〉 , 〈z, w〉

)
=

1
4

sup
0<α≤1

∥∥∥[
〈u, v〉

]+
r
(α) −

[
〈z, w〉

]+
r

(α)
∥∥∥

+
1
4

sup
0<α≤1

∥∥∥[
〈u, v〉

]+
l
(α) −

[
〈z, w〉

]+
l

(α)
∥∥∥

+
1
4

sup
0<α≤1

∥∥∥[
〈u, v〉

]−

r
(α) −

[
〈z, w〉

]−

r
(α)

∥∥∥
+

1
4

sup
0<α≤1

∥∥∥[
〈u, v〉

]−

l
(α) −

[
〈z, w〉

]−

l
(α)

∥∥∥
where ‖.‖ denotes the usual Euclidean norm in R

n.

Theorem 1.1 [15]. dn
∞ define a metric on IFn.

Theorem 1.2 [15]. The metric space (IFn, dn
∞) is complete.

Proof. There exists i0 ≤ n such that

dn
∞ (< u, v >,< u′, v′ >) ≤ √

nd∞ (< u, v >i0 , < u′, v′ >i0)

Since d∞ defined a complete topology in IF1, then dn
∞ also is complete. ��

Definition 1.2 [16]. F is called intuitionistic fuzzy continuous iff is intuition-
istic fuzzy continuous in every point of [a, b].
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Definition 1.3 [16]. Suppose A = [a, b], F : A → IFn is integrably bounded and
strongly measurable for each α ∈ (0, 1] write
[∫

A
F (t)dt

]

α

=

∫

A
[F (t)]α dt =

{∫

A
f(t)dt|f : A → R

nis a measurable selection for Fα

}
.

[∫

A
F (t)dt

]α
=

∫

A
[F (t)]α dt =

{∫

A
f(t)dt|f : A → R

nis a measurable selection for F α

}
.

if there exists 〈u, v〉 ∈ IFn such that [〈u, v〉]α =
[∫

A
F (t)dt

]α and [〈u, v〉]α =[∫
A

F (t)dt
]
α

∀α ∈ (0, 1]. Then F is called integrable on A, write 〈u, v〉 =∫
A

F (t)dt.

Theorem 1.3 [15]. If F : A → IFn is strongly measurable and integrably
bounded, then F is integrable.

Remark 1.3 [15]. If F : A → IFn is Hukuhara differentiable and its Hukuhara
derivative F ′ is integrable over [0, 1] then

F (t) = F (t0) +
∫ t

t0

F ′(s)ds

1.2 Locally Lipschitz Intuitionistic Fuzzy Function

If I is a compact interval of R, then C(I, IFn) denotes the set of all intuitionistic
fuzzy continuous functions from I into IFn. On the space C(I, IFn) we consider
the following metric:

DI

(
〈u, v〉, 〈w, z〉

)
= sup

t∈I
dn

∞
(
〈u, v〉(t), 〈w, z〉(t)

)

For a positive number σ, we denote by Cσ the space C
(
[−σ, 0], IFn

)
. Also we

denote by

Dσ

(
〈u, v〉, 〈w, z〉

)
= sup

t∈[−σ,0]

dn
∞

(
〈u, v〉(t), 〈w, z〉(t)

)

the metric on the space Cσ.
For a given constant ρ > 0, we put Bρ :=

{
〈ϕ1, ϕ2〉 ∈

Cσ; Dσ

(
〈ϕ1, ϕ2〉, 0(1,0)

)
≤ ρ

}
.

Let 〈u, v〉(.) ∈ C
([ − σ,∞)

, IFn

)
. Then, for each t ∈ [0,∞) we denote by

〈u, v〉t the element of Cσ defined by

〈u, v〉t(s) = 〈u, v〉(t + s), s ∈ [−σ, 0]

Definition 1.4. Let F : X × Y → Z. Then F is said to be jointly continuous if
it is continuous with respect to the product topology on X × Y .
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Joint continuity is used in contrast to the (a priori) weaker condition of
separate continuity, which means that the functions F (x, .) : Y → Z and F (., y) :
X → Z are continuous for all fixed x ∈ X and y ∈ Y .

Lemma 1.3. If F : [0,∞) × Cσ → IFn is a jointly continuous function
and 〈u, v〉 : [−σ,∞) → IFn is a continuous function, then the function
t �→ F

(
t, 〈u, v〉) : [0,∞) → IFn is also continuous.

Proof 1. Let us fixed
(
τ, 〈ϕ1, ϕ2〉

) ∈ [0,∞) × Cσ and ε > 0.
Since F : [0,∞)×Cσ → IFn is a jointly continuous, there exists δ1 > 0 such

that, for every (t, 〈ψ1, ψ2〉) ∈ [0,∞)×Cσ with |t−τ |+Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
< δ1

we have that dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, F

(
τ, 〈ψ1, ψ2〉

))
< ε.

On the other hand, since 〈u, v〉 − σ,∞) → IFn is a continuous, then it is
uniformly continuous on the compact interval I1 =

[
max

{−σ, τ−σ−δ1
}
, τ+δ1

]
.

Hence, there exists δ2 > 0 such that, for every t1, t2 ∈ I1 with |t1 − t2| < δ2
we have that

dn
∞

(
〈u, v〉(t1), 〈u, v〉(t2)

)
< δ1/2

Since for every s ∈ [−σ, 0] we have that τ +s ∈ I1 and t+s ∈ I1 if |t− τ | < δ1/2
then, by the fact that |(t + s) − (τ + s)| < δ2 it follows that

Dσ

(
〈u, v〉t, 〈u, v〉τ

)
= sup

−σ≤s≤0
dn

∞
(
〈u, v〉t(s), 〈u, v〉τ (s)

)
= sup

−σ≤s≤0
dn

∞
(
〈u, v〉(t + s), 〈u, v〉(s + τ)

)
≤ δ1/2

Therefore, |t − τ | + Dσ

(
〈u, v〉t, 〈u, v〉τ

)
< δ1 and hence, since F is jointly con-

tinuous, we have

dn
∞

(
F

(
t, 〈u, v〉t

)
, F

(
τ, 〈u, v〉τ

))
< ε

This implies that the function t �→ F (t, 〈u, v〉t) : [0,∞) → IFn is continuous.

Remark 1.4. If F : [0,∞) × Cσ → IFn is a jointly continuous function
and 〈u, v〉 : [−σ,∞) → IFn is a continuous function, then the function
t �→ F

(
t, 〈u, v〉) : [0,∞) → IFn is integrable on each compact interval [τ, T ].

Moreover, in this case the function G(t) =
∫ t

τ
F

(
s, 〈u, v〉)ds, t ∈ [τ, T ] is differ-

entiable and G′(t) = F
(
t, 〈u, v〉).

Remark 1.5. If F : [0,∞) × Cσ → IFn is a jointly continuous function
and 〈u, v〉 : [−σ,∞) → IFn is a continuous function, then the function
t �→ F

(
t, 〈u, v〉) : [0,∞) → IFn is bounded on each compact interval [0, T ]. And

also the function t �→ F
(
t, 0(1,0)

)
: [0,∞) → IFn is bounded on each compact

interval [0, T ].
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Definition 1.5. We say that the function F : [0,∞) × Cσ → IFn is locally
Lipschitz if for all a, b ∈ [0,∞) and ρ > 0 there exists L > 0 such that

dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, F

(
t, 〈ψ1, ψ2〉

)) ≤ LDσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
, a ≤ t ≤ b,

〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉 ∈ Bρ.

Lemma 1.4. Assume that F : [0,∞) × Cσ → IFn is continuous and locally
Lipschitz. Then, for each compact interval J ∈ [0,∞) and ρ > 0, there exists
K > 0 such that

dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, 0(1,0)(t)

)
≤ K, t ∈ J, ϕ ∈ Bρ.

Proof 2. Indeed, for t ∈ J , we have

dn
∞
(
F
(
t, 〈ϕ1, ϕ2〉), 0(1,0)(t)

)
≤ dn

∞
(
F
(
t, 〈ϕ1, ϕ2〉), F (t, 0(1,0)

))
+ dn

∞
(
F
(
t, 0(1,0)

)
, 0(1,0)(t)

)

≤ LDσ

(
〈ϕ1, ϕ2〉, 0(1,0)

)
+ dn

∞
(
F
(
t, 0(1,0)

)
, 0(1,0)(t)

)

≤ ρL + η

where η = sup
t∈J

dn
∞

(
F

(
t, 0(1,0)

)
, 0(1,0)(t)

)

2 Existence and Uniqueness

2.1 Local Existence and Uniqueness

For F : [0,∞) × Cσ −→ IFn we consider the following intuitionistic fuzzy func-
tional differential equation:{

〈u, v〉′(t) = F
(
t, 〈u, v〉t

)
, t ≥ τ

〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ), τ − σ ≤ t ≤ τ
(2.1)

By solution of intuitionistic fuzzy functional differential Eq. (2.1) on some inter-
val [τ, b), we mean a continuous function 〈u, v〉 : [τ − σ, b) −→ IFn such that
〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) for t ∈ [τ − σ, τ ], 〈u, v〉 is differentiable on [τ, b) and
〈u, v〉′(t) = F

(
t, 〈u, v〉t

)
, t ∈ [τ, b).

Theorem 2.1. Assume that F : [0,∞) × Cσ −→ IFn is continuous and locally
Lipschitz. Then, for each

(
τ, 〈ϕ1, ϕ2〉

) ∈ [0,∞)×Cσ, there exists T > τ such that
the intuitionistic fuzzy functional differential Eq. (2.1) has an unique solution
〈u, v〉 : [τ − σ, T ] −→ IFn.

Proof 3. Let ρ > 0 be any positive number. Since F is locally Lipschitz, there
exists L > 0 such that

dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, F

(
t, 〈ψ1, ψ2〉

)) ≤ LDσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉)

)
,

τ ≤ t ≤ h 〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉 ∈ B2ρ (2.2)

For some h > τ .
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By Lemma 1.4 there exists K > 0 such that dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, 0(1,0)(t)

)
≤ K

for
(
t, 〈ϕ1, ϕ2〉

) ∈ [τ, h] × B2ρ. Let T := min{h, ρ/K}. Next, we consider the set
IF of all functions 〈u, v〉 ∈ C([τ −σ, T ], IFn) such that 〈u, v〉(t) = 〈ϕ1, ϕ2〉(t−τ)
on [τ − σ, τ ] and dn

∞
(
〈u, v〉(t), 0(1,0)(t)

)
≤ 2ρ on [τ, T ].

Further, we observe that if 〈u1, v2〉 ∈ IF then we can define a continuous
function 〈z, w〉 : [τ − σ, T ] −→ IFn by

〈z, w〉(t) =

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) if τ − σ ≤ t ≤ τ,

〈ϕ1, ϕ2〉(0) +
∫ t

τ
F

(
s, 〈u1, v2〉s

)
ds if τ ≤ t ≤ T

Then for t ∈ [τ, T ] we have

dn
∞
(
〈z, w〉(t), 0(1,0)(t)

)
≤ dn

∞
(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+ dn

∞
(∫ t

τ
F
(
s, 〈u1, v2〉s

)
ds, 0(1,0)(t)

)

≤ ρ +

∫ t

τ
dn

∞
(
F
(
s, 〈u1, v2〉s

)
, 0(1,0)(t)

)
ds ≤ ρ + KT

≤ 2ρ

and so 〈z, w〉 ∈ IF . To solve (2.1) we shall apply the method of successive
approximations, constructing a sequence of continuous functions 〈u, v〉m : [τ −
σ, T ] −→ IF starting with the initial continuous function

〈u, v〉0(t) :=

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) for τ − σ ≤ t ≤ τ),

〈ϕ1, ϕ2〉(0) for τ ≤ t ≤ T

Clearly, dn
∞

(〈u, v〉0(t), 0(1,0)(t)
) ≤ ρ on [τ, T ]. Further, we define

〈u, v〉m+1(t) :=

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) for τ − σ ≤ t ≤ τ),

〈ϕ1, ϕ2〉(0) +
∫ t

τ
F

(
s,< u, v >m

s

)
ds for τ ≤ t ≤ T

(2.3)

if m = 0, 1, . . .. Then, for t ∈ [τ, T ], we have

dn
∞

(
〈u, v〉1(t), 〈u, v〉0(t)

)
≤ dn

∞
(∫ t

τ

F
(
s, 〈u, v〉0s

)
ds, 0(1,0)(t)

)

≤
∫ t

τ

dn
∞

(
F

(
s, 〈u, v〉0s

)
, 0(1,0)(t)

)
ds ≤ K(t − τ)

By (2.2) and (2.3), we find that

dn
∞
(
〈u, v〉m+1(t), 〈u, v〉m(t)

)
≤ dn

∞
(∫ t

τ

F
(
s, 〈u, v〉m

s

)
ds,

∫ t

τ

F
(
s, 〈u, v〉m−1

s

)
ds
)

≤
∫ t

τ

dn
∞
(
F
(
s, 〈u, v〉m

s

)
, F
(
s, 〈u, v〉m−1

s

))
ds
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≤
∫ t

τ

LDσ

(
〈u, v〉m

s , 〈u, v〉m−1
s

)
ds

= L

∫ t

τ

sup
r∈[−σ,0]

dn
∞
(
〈u, v〉m

s (r), 〈u, v〉m−1
s (r)

)
ds

= L

∫ t

τ

sup
r∈[−σ,0]

dn
∞
(
〈u, v〉m(s + r), 〈u, v〉m−1(s + r)

)
ds

≤ L

∫ t

τ

sup
θ∈[s−σ,s]

dn
∞
(
〈u, v〉m(θ), 〈u, v〉m−1(θ)

)
ds

In particular,

dn
∞

(
〈u, v〉2(t), 〈u, v〉1(t)

)
≤ L

∫ t

τ

K(s − τ)ds =
K

L

[L(t − τ)]2

2!
, t ∈ [τ, T ]

Further, if we assume that

dn
∞

(
〈u, v〉m(t), 〈u, v〉m−1(t)

)
≤ K

L

[L(t − τ)]m

m!
, t ∈ [τ, T ] (2.4)

then, we have

dn
∞
(
〈u, v〉m+1(t), 〈u, v〉m(t)

)
≤ L

∫ t

τ

K

L

[L(s − τ)]m

m!
ds =

K

L

[L(t − τ)]m+1

(m + 1)!
, t ∈ [τ, T ]

It follows by mathematical induction that (2.4) holds for any m ≥ 1.
Consequently, the series

∑∞
m=1 dn

∞
(
〈u, v〉m(t), 〈u, v〉m−1(t)

)
is uniformly con-

vergent on [τ, T ], and so is the sequence {〈u, v〉m}m≥0. It follows that
there exists a continuous function 〈u, v〉 : [τ, T ] −→ IFn such that
sup

t∈[τ,T ]

dn
∞

(
〈u, v〉m(t), 〈u, v〉(t)

)
−→ 0 as m → ∞. Since

dn
∞

(
F

(
s, 〈u, v〉m

s

)
, F

(
s, 〈u, v〉s

)) ≤ LDσ

(
〈u, v〉m

s , 〈u, v〉s

)
≤ L sup

t∈[τ,T ]

dn
∞

(
〈u, v〉m(t), 〈u, v〉(t)

)

we deduce that dn
∞

(
F

(
s, 〈u, v〉m

s

)
, F

(
s, 〈u, v〉s

)) −→ 0 uniformly on [τ, T ] as
m → ∞. Therefore, since

dn
∞
(∫ t

τ

F
(
s, 〈u, v〉m

s

)
ds,

∫ t

τ

F
(
s, 〈u, v〉s

)
ds
)

≤
∫ t

τ

dn
∞
(
F
(
s, 〈u, v〉m

s

)
, F
(
s, 〈u, v〉s

))
ds

it follows that lim
m−→∞

∫ t

τ
F

(
s, 〈u, v〉m

s

)
ds =

∫ t

τ
F

(
s, 〈u, v〉s

)
ds, t ∈ [τ, T ]. Extend-

ing 〈u, v〉 to [τ − σ, τ ] in the usual way by 〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) for
t ∈ [τ − σ, τ ], then by (2.3) we obtain that

〈u, v〉(t) =

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) if t ∈ [τ − σ, τ ],

〈ϕ1, ϕ2〉(0) +
∫ t

τ
F

(
s, 〈u, v〉)ds if t ∈ [τ, T ]

(2.5)
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and so 〈u, v〉 is a solution for (2.1).
To prove the uniqueness, let 〈z, w〉 : [τ − σ, T ] → IFn be a second solution

for (2.1). Then for every t ∈ [τ, T ] we have

dn
∞

(
〈u, v〉, 〈z, w〉

)
≤ dn

∞
(∫ t

τ

F
(
s, 〈u, v〉s

)
ds,

∫ t

τ

F
(
s, 〈z, w〉s

)
ds

)

≤
∫ t

τ

dn
∞

(
F

(
s, 〈u, v〉s

)
, F

(
s, 〈z, w〉s

))
ds

≤
∫ t

τ

Dσ

(
〈u, v〉s, 〈z, w〉s

)
ds

≤ L

∫ t

τ

sup
θ∈[s−σ,s]

dn
∞

(
〈u, v〉(θ), 〈z, w〉(θ)

)

If we let ξ(s) := sup
r∈[s−σ,s]

dn
∞

(
〈u, v〉(r), 〈z, w〉(r)

)
, s ∈ [τ, t], then we have

ξ(t) ≤ L

∫ t

τ

ξ(s)ds

and by Gronwall’s lemma we obtain that ξ(t) = 0 on [τ, T ]. This proves the
uniqueness of the solution for (2.1).

Theorem 2.2. Assume that the function F : [0,∞) × Cσ −→ IFn is con-
tinuous and locally Lipschitz. If

(
τ, 〈ϕ1, ϕ2〉

)
,

(
τ, 〈ψ1, ψ2〉

) ∈ [0,∞) × Cσ and
〈u, v〉(〈ϕ1, ϕ2〉

)
: [τ − σ, ω1) → IFn and 〈u, v〉(〈ψ1, ψ2〉) : [τ − σ, ω2) → IFn

are unique solutions of (2.1) with 〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) and 〈u, v〉(t) =
〈ψ1, ψ2〉(t − τ) on [τ − σ, τ ], then

dn
∞

(
〈u, v〉(〈ϕ1, ϕ2〉

)
(t), 〈u, v〉(〈ψ1, ψ2〉

)
(t)

)
≤ Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
eL(t−τ) for all t ∈ [τ, ω) (2.6)

where ω = min{ω1, ω2}.
Proof 4. On [τ, ω) solution 〈u, v〉(〈ϕ1, ϕ2〉) satisfies relation

〈u, v〉(t) =

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) if t ∈ [τ − σ, τ ],

〈ϕ1, ϕ2〉(0) +
∫ t

τ
F

(
s, 〈u, v〉(〈ϕ1, ϕ2〉)

)
ds if t[τ, ω]

(2.7)

and solution 〈u, v〉(〈ψ1, ψ2〉
)

satisfies the same relation but with 〈ψ1, ψ2〉 in place
of 〈ϕ1, ϕ2〉. Then, for t ∈ [τ, ω), we have

dn
∞

(
〈u, v〉(〈ϕ1, ϕ2〉

)
(t), 〈u, v〉(〈ψ1, ψ2〉

)
(t)

)
≤ dn

∞
(
〈ϕ1, ϕ2〉(0), < ψ1, ψ2 > (0)

)
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+
∫ τ

t

dn
∞

(
F

(
s, 〈u, v〉s(〈ϕ1, ϕ2〉

)
, F

(
s, 〈u, v〉s

(〈ψ1, ψ2〉
))

ds

≤ Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
+ L

∫ τ

t

Dσ

(
〈u, v〉s

(〈ϕ1, ϕ2〉s

)
, 〈u, v〉(〈ψ1, ψ2〉s

))
ds

≤ Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
+

L

∫ τ

t

sup
r∈[τ−σ,s]

Dσ

(
〈u, v〉(〈ϕ1, ϕ2〉

)
(r), 〈u, v〉(〈ψ1, ψ2〉

)
(r)

)
ds.

If we let w(s) = sup
r∈[τ−σ,s]

Dσ

(
〈u, v〉(〈ϕ1, ϕ2〉)(r), 〈u, v〉(〈ψ1, ψ2〉

)
(r)

)
, τ ≤ s ≤ t,

then we have

w(t) ≤ Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
+ L

∫ τ

t

w(s)ds, τ ≤ t < ω

and Gronwall’s inequality gives

w(t) ≤ Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉)eL(t−τ), τ ≤ t < ω

implying that (2.6) holds.

2.2 Global Existence and Uniqueness

In the following, for a given constant a > 0, we consider the set IFa of all
functions 〈u, v〉 ∈ C([τ − σ,∞), IFn) such that 〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) on
[τ − σ, τ) and sup

t≥τ−σ
dn

∞
(
〈u, v〉(t), 0(1,0)

)
e−at < ∞. On IFa we can define the

following metric

Da

(
〈u, v〉, 〈z, w〉

)
= sup

t≥τ−σ
dn

∞
(
〈u, v〉(t), 〈z, w〉(t)

)
e−at (2.8)

Lemma 2.1. (IFa,Da) is a complete metric space.

Proof 5. Let
{〈u, v〉}

m≥1
be a Cauchy sequence in IFa. Then, for each ε > 0,

there exists mε ∈ N such that for all m, p ≥ mε we have Da

(
〈u, v〉m, 〈u, v〉p

)
< ε.

Hence

dn
∞

(
〈u, v〉m(t), 〈u, v〉p(t)

)
≤ Da

(
〈u, v〉m, 〈u, v〉p

)
eat ≤ εeat

so

dn
∞

(
〈u, v〉m(t), 〈u, v〉p(t)

)
≤ εeat for all m, p ≥ mε and t ≥ τ − σ (2.9)



346 B. Ben Amma et al.

It follows that, for each t ≥ τ − σ, {〈u, v〉}m≥1 is a Cauchy sequence in IFn.
Therefore, since (IFn, dn

∞) is a complete metric space, there exists 〈u, v〉(t) =
lim

m−→∞〈u, v〉m(t) for t ≥ τ − σ. Next, we show that 〈u, v〉 ∈ IFa. Evidently,

〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) on [τ − σ, τ ]. Also, from (2.9) we obtain that

lim
p−→∞ dn

∞
(
〈u, v〉m(t), 〈u, v〉p(t)

)
= dn

∞
(
〈u, v〉m(t), 〈u, v〉(t)

)
≤ εeat for all m ≥ mε and t ≥ τ.

Now, we show that 〈u, v〉 is a continuous function on [τ,∞). Let ε > 0 and
s ≥ τ . Then there exists m = m′

ε ∈ N such that dn
∞

(〈u, v〉m(t), 〈u, v〉(t)) ≤
( ε
6 )ea(t−s), for all t ≥ τ . Since 〈u, v〉m is a continuous function, then there exists

δ1ε > 0 such that dn
∞

(
〈u, v〉m(t), 〈u, v〉m(s)

)
≤ ε

3 for t ≥ τ with |t − s| ≤ δ1ε.

Also, there exists δ2ε > 0 such that ea(t−s) ≤ 1 for t ≥ τ with |t − s| ≤ δ2ε. Let
δε = min{δ1ε, δ2ε}. Then, for every t ≥ τ with |t − s| ≤ δε, we have

dn
∞

(
〈u, v〉(t), 〈u, v〉(s)

)
≤ dn

∞
(
〈u, v〉(t), 〈u, v〉m(t)

)
+ dn

∞
(
〈u, v〉m(t), 〈u, v〉m(s)

)
+ dn

∞
(
〈u, v〉m(s), 〈u, v〉(s)

)
≤ ε

6
ea(t−s) +

ε

3
+

ε

6
≤ ε

and so 〈u, v〉 is a continuous function on [τ,∞).
Finally, we must show that sup

t≥t−σ
dn

∞
(
〈u, v〉(t), 0(1,0)(t)

)
e−at < ∞.

Since,

dn
∞

(
〈u, v〉(t), 0(1,0)(t)

)
≤ dn

∞
(
〈u, v〉(t), 〈u, v〉m(t)

)
+dn

∞
(
〈u, v〉m(t), 0(1,0)(t)

)
for all τ ≥ τ − σ and m ≥ 1

Then

sup
t≥τ−σ

dn
∞

(
〈u, v〉(t), 0(1,0)(t)

)
e−at

≤ sup
t≥τ−σ

dn
∞

(
〈u, v〉(t), 〈u, v〉m(t)

)
e−at

+ sup
t≥τ−σ

dn
∞

(
〈u, v〉m(t), 0(1,0)(t)

)
e−at

= Da

(
〈u, v〉, 〈u, v〉m

)
+ sup

t≥τ−σ
dn

∞
(
〈u, v〉m(t), 0(1,0)(t)

)
e−at

and thus, by the fact that lim
m−→∞ Da

(
〈u, v〉, 〈u, v〉m

)
= 0 and 〈u, v〉m ∈ IFa for

all m ≥ 1, we obtain that

sup
t≥τ−σ

dn
∞

(
〈u, v〉(t), 0(1,0)(t)

)
e−at < ∞.

Therefore, 〈u, v〉 ∈ IFa. Hence, (IFa,Da) is a complete metric space.
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Next, we consider the intuitionistic fuzzy differential Eq. (2.1) under the fol-
lowing assumptions:

(h1) There exists L > 0 such that

dn
∞

(
F

(
t, 〈ϕ1, ϕ2〉

)
, F

(
t, 〈ψ1, ψ2〉

)) ≤ LDσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
for all 〈ϕ1, ϕ2〉〈ψ1, ψ2〉 ∈ Cσ and t ≥ 0

(h2) F : [0,∞) × Cσ −→ IFn is jointly continuous.

(h3) There exist M > 0 and b > 0 such that

dn
∞

(
F

(
t, 0(1,0)

)
, 0(1,0)(t)

)
≤ Mebt for all t ≥ 0.

Also, let P : C
(
[−σ,∞), IFn

) −→ C
(
[−σ,∞), IFn

)
be defined by

(
P 〈u, v〉)(t) =

⎧⎪⎨
⎪⎩

〈ϕ1, ϕ2〉(t − τ) if t ∈ [τ − σ, τ),

〈ϕ1, ϕ〉(0) +
∫ t

τ
F

(
s, 〈u, v〉s

)
ds if t ≥ τ

(2.10)

Lemma 2.2. If F : [0,∞) × Cσ −→ IFn satisfies assumptions (h1)–(h3) and
a > b then P (IFa) ⊂ IFa.

Proof 6. Let 〈u, v〉 ∈ IFa. For each t ≥ τ , we have

dn
∞

((
P 〈u, v〉)(t), 0(1,0)(t))

= dn
∞

(
〈ϕ1, ϕ2〉(0) +

∫ t

τ

F
(
s, 〈u, v〉s

)
ds, 0(1,0)(t)

)

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+ dn

∞
( ∫ t

τ

F
(
s, 〈u, v〉s

)
ds, 0(1,0)(t)

)

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

∫ t

τ

dn
∞

(
F

(
s, 〈u, v〉s

)
, 0(1,0)(t)

)
ds

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

∫ t

τ

{
dn

∞
(
F

(
s, 〈u, v〉s

)
, F

(
s, 0(1,0)(t)

))
+ dn

∞
(
F

(
s, 0(1,0)(t)

)
, 0(1,0)(t)

)}
ds

dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

∫ t

τ

(
LDσ

(
〈u, v〉s, 0(1,0)(t)

)
+ Mebs

)
ds

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

∫ t

τ

LDσ

(
〈u, v〉s, 0(1,0)(t)

)
ds+

M

b
ebτ (eb(t−τ)−1)

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

∫ t

τ

LDσ

(
〈u, v〉s, 0(1,0)(t)

)
ds +

M

b
ebt
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Further, since 〈u, v〉 ∈ IFa, there exists ρ > 0 such that dn
∞

(〈u, v〉(t), 0(1,0)(t)
) ≤

ρeat for all t ≥ τ − σ. It follows that sup
θ∈[−σ,0]

dn
∞

(〈u, v〉(t + θ), 0(1,0)(t)
) ≤ ρeat

for all t ≥ τ , and hence

dn
∞
(
(P 〈u, v〉)(t), 0(1,0)(t)

)
≤ dn

∞
(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)

+

∫ t

τ

L sup
θ∈[−σ,0]

dn
∞
(
〈u, v〉(s + θ), 0(1,0)(t)

)
ds +

M

b
ebt

≤ dn
∞
(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

ρL

a
eaτ (ea(t−τ) − 1) +

M

b
ebt

≤ dn
∞
(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

ρL

a
eat +

M

b
ebt

Thus

sup
t≥τ

dn
∞

((
P 〈u, v〉)(t), 0(1,0)(t)

)
e−at

≤ sup
t≥τ

(
dn

∞
(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

ρL

a
eat +

M

b
ebt

)
e−at

≤ dn
∞

(
〈ϕ1, ϕ2〉(0), 0(1,0)(t)

)
+

1
b
(ρL + M)

Let K = sup
θ∈[τ−σ,τ ]

dn
∞

(
〈ϕ1ϕ2〉(θ − τ), 0(1,0)(t)

)
. Then

sup
t≥τ

dn
∞

((
P 〈u, v〉)(t), 0(1,0)(t)

)
e−at ≤ K +

1
b

(
ρL + M

)
< ∞

and thus P 〈u, v〉 ∈ IFa.

Lemma 2.3. If F : [0,∞) × Cσ −→ IFn satisfies assumptions (h1)–(h3) and
L < a, then P is a contraction on IFa

Proof 7. Let 〈u, v〉, 〈z, w〉 ∈ IFa. Then for each t ≥ τ , we have

dn
∞

((
P 〈u, v〉)(t), (P 〈z, w〉)(t)) = dn

∞
(∫ t

τ

F
(
s, 〈u, v〉s

)
ds,

∫ t

τ

F
(
s, 〈z, w〉s

)
ds

)

≤
∫ t

τ

dn
∞

(
F

(
s, 〈u, v〉s

)
, F

(
s, 〈z, w〉s

))
ds

≤
∫ t

τ

LDσ

(
〈u, v〉s, 〈z, w〉s

)
ds

= L

∫ t

τ

sup
r∈[−σ,0]

dn
∞

(
〈u, v〉s(r), 〈z, w〉s(r)

)
ds

= L

∫ t

τ

sup
r∈[−σ,0]

dn
∞

(
〈u, v〉(r + s), 〈z, w〉(r + s)

)
ds

= L

∫ t

τ

sup
θ∈[s−σ,s]

dn
∞

(
〈u, v〉(θ), 〈z, w〉(θ)

)
ds
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From (2.8) it follows that

dn
∞

(
〈u, v〉(t), 〈z, w〉(t)

)
≤ Da

(〈u, v〉, 〈z, w〉
)
eat for all t ≥ τ − σ.

Hence sup
r∈[t−σ,t]

dn
∞

(
〈u, v〉(r), 〈z, w〉(r)

)
≤ Da

(
〈u, v〉, 〈z, w〉

)
eat for all t ≥ τ .

Further, for every t ≥ τ , we have

dn
∞

((
P 〈u, v〉)(t), (P 〈z, w〉)(t)) ≤ L

∫ t

τ

sup
θ∈[s−σ,s]

dn
∞

(
〈u, v〉(θ), 〈z, w〉(θ)

)
ds

≤ L

∫ t

τ

Da

(
〈u, v〉, 〈z, w〉

)
eatds

=
L

a
Da

(
〈u, v〉, 〈z, w〉

)
eaτ

(
ea(t−τ) − 1

)
and so

Da

(
P 〈u, v〉, P 〈z, w〉

)
= sup

t≥τ−σ
dn

∞
((

P 〈u, v〉)(t), (P 〈z, w〉)(t))e−at

= sup
t≥τ

dn
∞

((
P 〈u, v〉)(t), (P 〈z, w〉)(t))e−at

≤ sup
t≥τ

L

a
Da

(
〈u, v〉, 〈z, w〉

)(
1 − e−a(t−τ)

)
≤ L

a
Da

(
〈u, v〉, 〈z, w〉

)
≤ Da

(
〈u, v〉, 〈z, w〉

)
Therefore, since L/a < 1, it follows that P is a contraction on IFa.

Theorem 2.3. Suppose that the function F : [0,∞) × Cσ −→ IFn satisfies
assumptions (h1) − (h3). Then for each (τ, 〈ϕ1, ϕ2〉) ∈ Cσ, the intuitionistic
fuzzy functional differential Eq. (2.1) has an unique solution on [τ,∞).

Proof 8. Let a > max{b, L}. By Lemmas 2.2 and 2.3 we deduce that the
operator P : IFa → IFa is a contraction. Therefore, there exists an unique
〈u, v〉 ∈ IFa such that P 〈u, v〉 = 〈u, v〉. Evidently, 〈u, v〉 is a continuous function
and 〈u, v〉(t) = 〈ϕ1, ϕ2〉(t − τ) on [τ − σ, τ ]. Moreover, 〈u, v〉(t) = 〈ϕ1, ϕ2〉(0) +∫ t

τ
F

(
s, 〈u, v〉)ds, for every t ≥ τ . Since 〈u, v〉 is continuous and F satisfies

(h2) then, by Lemma 1.3 and Remark 1.4, we have that s −→ F
(
s, 〈u, v〉s

)
is an

integrable function on [τ, t]. Therefore, by Remark 1.4, 〈u, v〉 is a differentiable
function and 〈u, v〉′(t) = F

(
t, 〈u, v〉t) for every t ≥ τ . Theorem2.3 is completely

proved.
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3 Solving Intuitionistic Fuzzy Delay Differential Equation

We give an useful procedure to solve the following initial value problem for an
intutionistic fuzzy delay differential equation:{

〈u, v〉′(t) = F
(
t, 〈u, v〉(t − σ)

)
, t ≥ 0

〈u, v〉(t) = 〈ϕ1, ϕ2〉(t), −σ ≤ t ≤ 0
(3.1)

where F : [0,∞) × IFn −→ IFn is obtained by extension principle from a
continuous function G : [0,∞) × R

n −→ R
n. Since[

F
(
t, 〈u, v〉)]

α
= F

(
t, [〈u, v〉)]α)

[
F

(
t, 〈u, v〉)]α = F

(
t, [〈u, v〉)]α)

for all α ∈ [0, 1] and 〈u, v〉 ∈ IFn, we denote

[
〈u, v〉(t)

]
α

=
[[

〈u, v〉(t)
]+

l
(α),

[
〈u, v〉(t)

]+
r
(α)

]
,

[
〈u, v〉(t)

]α

=
[[

〈u, v〉(t)
]−

l
(α),

[
〈u, v〉(t)

]−

r
(α)

]
[
〈u, v〉′(t)

]
α

=
[[

〈u, v〉′(t)
]+

l
(α),

[
〈u, v〉′(t)

]+
r

(α)
]
,

[
〈u, v〉′(t)

]α

=
[[

〈u, v〉′(t)
]−

l
(α),

[
〈u, v〉′(t)

]−

r
(α)

]
[
〈ϕ1, ϕ2〉(t)

]
α

=
[[

〈ϕ1, ϕ2〉(t)
]+

l
(α),

[
〈ϕ1, ϕ2〉(t)

]+
r
(α)

]
,

[
〈ϕ1, ϕ2〉(t)

]α

=
[[

〈ϕ1, ϕ2〉(t)
]−

l
(α),

[
〈ϕ1, ϕ2〉(t)

]−

r
(α)

]

and [
F (t, 〈u, v〉(t − σ))

]
α

=
[
F+

l (t, [〈u, v〉(t − σ)]+l (α), [〈u, v〉(t − σ)]+r (α)),

F+
r

(
t, [〈u, v〉(t − σ)]+l (α), [〈u, v〉(t − σ)]+r (α)

)]
[
F (t, 〈u, v〉(t − σ))

]α

=
[
F−

l (t,
[
〈u, v〉(t − σ)]−l (α),

[〈u, v〉(t − σ)]−r (α)), F−
r (t, [〈u, v〉(t − σ)]−l (α), [〈u, v〉(t − σ)]−r (α)

)]
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Then, with this notations, problem (3.1) is transformed into the following para-
metrized delay differential system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
〈u, v〉′(t)

]+
l
(α) = F+

l

(
t,

[
〈u, v〉(t − σ)

]+
l
(α),

[
〈u, v〉(t − σ)

]+
r
(α)

)
, t ≥ 0

[
〈u, v〉′(t)

]+
r
(α) = F+

r

(
t,

[
〈u, v〉(t − σ)

]+
l
(α),

[
〈u, v〉(t − σ)

]+
r
(α)

)
, t ≥ 0

[
〈u, v〉′(t)

]−

l
(α) = F−

l

(
t,

[
〈u, v〉(t − σ)

]−

l
(α),

[
〈u, v〉(t − σ)

]−

r
(α)

)
, t ≥ 0

[
〈u, v〉′(t)

]−

r
(α) = F−

r

(
t,

[
〈u, v〉(t − σ)

]−

l
(α),

[
〈u, v〉(t − σ)

]−

r
(α)

)
, t ≥ 0

(3.2)

with initial conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
〈u, v〉(t)

]+
l

(α) =
[
〈ϕ1, ϕ2〉(t)

]+
l

(α), −σ ≤ t ≤ 0

[
〈u, v〉(t)

]+
r

(α) =
[
〈ϕ1, ϕ2〉(t)

]+
r

(α), −σ ≤ t ≤ 0

[
〈u, v〉(t)

]−

l
(α) =

[
〈ϕ1, ϕ2〉(t)

]−

l
(α), −σ ≤ t ≤ 0

[
〈u, v〉(t)

]−

r
(α) =

[
〈ϕ1, ϕ2〉(t)

]−

r
(α), −σ ≤ t ≤ 0

(3.3)

1. We can solve system (3.2)–(3.3) using the method of steps [11].

2. If
[
〈u, v〉(t)

]+
l

(α),
[
〈u, v〉(t)

]+
r

(α),
[
〈u, v〉(t)

]−

l
(α),

[
〈u, v〉(t)

]−

r
(α) is the solu-

tion of system (3.2)–(3.3), then denote[[
〈u, v〉(t)

]+
l
(α),
[
〈u, v〉(t)

]+
r
(α)

]
= Mα,

[[
〈u, v〉(t)

]−
l

(α),
[
〈u, v〉(t)

]−
r

(α)

]
= Mα

and[[
〈u, v〉′(t)

]+
l
(α),
[
〈u, v〉′(t)

]+
r
(α)

]
= M

′
α,

[[
〈u, v〉′(t)

]−
l
(α),
[
〈u, v〉′(t)

]−
r
(α)

]
= M

′α

ensure that (Mα,Mα) and (M
′
α,M

′α) verifying (i)–(iv) of Proposition 1.1.

3. After, by using the Lemma 1.1 we can construct the intuitionistic fuzzy solu-
tion 〈u, v〉(t) ∈ IFn for (3.1) such that[

〈u, v〉(t)
]

α
=

[[
〈u, v〉(t)

]+
l

(α),
[
〈u, v〉(t)

]+
r
(α)

]
,

[
〈u, v〉(t)

]α

=
[[

〈u, v〉(t)
]−

l
(α),

[
〈u, v〉(t)

]−

r
(α)

]
for all α ∈ [0, 1].
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4 Applications

4.1 Intuitionistic Fuzzy Differential Equations with Distributed
Delay

In the following, we consider a class of delay intuitionistic fuzzy differential
equations with distributed delay. Fix m ∈ N and delay times 0 < σ1 < . . . <
σm < σ, we consider the following type of delay intuitionistic fuzzy differential
equations:{

〈u, v〉 =
∫ 0

−σ
G0

(
s, 〈u, v〉(t + s)

)
ds +

∑m
i=1 Gi

(
s, 〈u, v〉(t − σi)

)
〈u, v〉|[−σ,0] = 〈ϕ1, ϕ2〉 ∈ Cσ

(4.1)

where Gi : [0,∞)×IFn −→ IFn, i = 0, 1, . . . ,m, are some functions. We assume
that each function Gi : [0,∞) × Cσ −→ IFn satisfies the following assumptions:

(h′
1) There exists Li > 0 such that

dn
∞

(
Gi

(
t, 〈u, v〉), Gi

(
t, 〈z, w〉)) ≤ Lid

n
∞

(
〈u, v〉, 〈z, w〉

)
for all 〈u, v〉, 〈z, w〉 ∈ IFn and t ≥ 0

(h′
2) Gi : [0,∞) × IFn −→ IFn is jointly continuous.

(h′
3) There exist Mi > 0 and bi > 0 such that

dn
∞

(
Gi

(
t, 0(1,0)

)
, 0(1,0)(t)

)
≤ Mie

bit for all t ≥ 0.

Then the function F : [0,∞) × Cσ −→ IFn defined by

F
(
t, 〈ϕ1, ϕ2〉

)
=

∫ 0

−σ

G0

(
τ, 〈ϕ1, ϕ2〉(τ)

)
dτ +

m∑
i=1

Gi

(
t, 〈ϕ1, ϕ2〉(−σi)

)

satisfies also assumptions (h1) − (h3). Indeed, is easy to see that F is jointly
continuous. For each i = 0, 1, . . . ,m, let Li be the Lipschitz constant for function
Gi. Then we have

dn
∞
(
F
(
t, 〈ϕ1, ϕ2〉), F (t, 〈ψ1, ψ2〉)

)
≤
∫ 0

−σ
dn

∞
(
G0

(
τ, 〈ϕ1, ϕ2〉(τ)), G0

(
τ, 〈ψ1, ψ2〉(τ))

)
dτ

+
m∑

i=1

dn
∞
(
Gi

(
t, 〈ϕ1, ϕ2〉(−σi)

)
, Gi

(
t, 〈ψ1, ψ2〉(−σi)

))

≤ L0

∫ 0

−σ
dn

∞
(
〈ϕ1, ϕ2〉(τ)), 〈ψ1, ψ2〉(τ)

)
dτ

+

m∑
i=1

Lid
n
∞
(
〈ϕ1, ϕ2〉(−σi), 〈ψ1, ψ2〉(−σi)

)

≤
(
σL0 +

m∑
i=1

Li

)
Dσ

(
〈ϕ1, ϕ2〉, 〈ψ1, ψ2〉

)
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and so F satisfy (h1). Also, we have

dn
∞

(
F

(
t, 0(1,0)

)
, 0(1,0)(t)

)
≤ dn

∞
(
a, 0(1,0)(t)

)
+

∫ 0

−σ

dn
∞

(
G0

(
τ, 0(1,0)

)
, 0(1,0)(t)

)
dτ

+
m∑

i=1

dn
∞

(
Gi

(
t, 0(1,0)

)
, 0(1,0)(t)

)

≤ dn
∞

(
a, 0(1,0)(t)

)
+

∫ 0

−σ

M0e
b0τdτ +

m∑
i=1

Mie
bit

= dn
∞

(
a, 0(1,0)(t)

)
+

M0

b0
(1 − eb0σ) +

m∑
i=1

Mie
bit

Since we can find Mm+1 > 0 and bm+1 > 0 such that dn
∞

(
a, 0(1,0)(t)

)
+ M0

b0
(1 −

eb0σ) ≤ Mm+1e
bm+1t for all t ≥ 0, we obtain that dn

∞
(
F

(
t, 〈ϕ1, ϕ2〉

)
, 0(1,0)(t)

)
≤

Mebt for all t ≥ 0, where M := max{Mi, i = 0, 1, . . . ,m + 1} and b :=
max{bi, , i = 0, 1, . . . ,m + 1}. Hence, F satisfy (h3).

Therefore, we obtain the following result:

Theorem 4.1. Suppose that the function Gi : [0,∞) × IFn −→ IFn, i =
0, 1, ...,m, m ∈ N satisfy assumptions (h′

1) − (h′
3). Then the intuitionistic fuzzy

functional differential Eq. (4.1) has an unique solution on [0,∞).

4.2 Intuitionistic Fuzzy Time-Delay Malthusian Model

Consider the following initial value problem for the intuitionistic fuzzy time-delay
Malthusian model:⎧⎪⎨

⎪⎩
〈N1, N2〉′(t) = r〈N1, N2〉(t − 1), t ≥ 0

〈N1, N2〉(t) = 〈N1, N2〉0, −1 ≤ t ≤ 0
(4.2)

where
[〈N1, N2〉0]α = [α − 1, 1 − α]

[〈N1, N2〉0]α = [−α, α]

and

• r: The growth rate

• 〈N1, N2〉(t): The population at time t

The growth of the population at time t depends on the population at time t−1,
Let us show that the problem (4.2) admits an unique solution on [0,∞)?
Then the function F : [0,∞) × C

(
[−1, 0], IF1

) −→ IF1 defined by

F
(
t, 〈N1, N2〉t

)
= r〈N1, N2〉(t − 1) = r〈N1, N2〉t(−1), t ≥ 0
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satisfies assumptions (h1) − (h3). Indeed, is easy to see that F is jointly
continuous.

Let 〈φ1, φ2〉, 〈ψ1, ψ2〉 ∈ C
(
[−1, 0], IF1

)
then we have:

d∞
(
F

(
t, 〈φ1, φ2〉

)
, F

(
t, 〈ψ1, ψ2〉

))
= d∞

(
r〈φ1, φ2〉(−1), r〈ψ1, ψ2〉(−1)

)
= rd∞

(
〈φ1, φ2〉(−1), 〈ψ1, ψ2〉(−1)

)
≤ rD−1

(
〈φ1, φ2〉, 〈ψ1, ψ2〉

)
and so F satisfy (h1). Also, we have

d∞
(
F

(
t, 0(1,0)

)
, 0(1,0)(t)

)
= d∞

(
r0(−1), 0(1,0)(t)

)
= 0

Since we can find M > 0 and b > 0 such that d∞
(
F

(
t, 0(1,0)

)
, 0(1,0)(t)

)
≤ Mebt.

Hence, F satisfy (h3).
Then the intuitionistic fuzzy differential Eq. (4.2) has an unique solution on

[0,∞).
Now let’s calculate this solution:
Then the function F : IF1 −→ IF1 define by F

(〈N1, N2〉(t − 1)
)

=
r〈N1, N2〉(t − 1) is obtained by extension principle from the function f(x) = rx,
x ∈ R.

If [
〈N1, N2〉(t)

]
α

=
[[

〈N1, N2〉(t)
]+

l
(α),

[
〈N1, N2〉(t)

]+
r
(α)

]
[
〈N1, N2〉(t)

]α

=
[[

〈N1, N2〉(t)
]−

l
(α),

[
〈N1, N2〉(t)

]−

r
(α)

]

Then [
〈N1, N2〉′(t)

]
α

=
[[

〈N1, N2〉′(t)
]+

l
(α),

[
〈N1, N2〉′(t)

]+
r
(α)

]
[
〈N1, N2〉′(t)

]α

=
[[

〈N1, N2〉′(t)
]−

l
(α),

[
〈N1, N2〉′(t)

]−

r
(α)

]

[
r〈N1, N2〉(t − 1)

]
α

=
[
r
[
〈N1, N2〉(t − 1)

]+
l

(α),
[
r〈N1, N2〉(t − 1)

]+
r

(α)
]

[
r〈N1, N2〉(t − 1)

]α

=
[
r
[
〈N1, N2〉(t − 1)

]−

l
(α), r

[
〈N1, N2〉(t − 1)

]−

r
(α)

]
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Therefore, we have to solve the following functional differential equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
〈N1, N2〉′(t)

]+
l

(α), = r
[
〈N1, N2〉(t − 1)

]+
l
(α), t ≥ 0

[
〈N1, N2〉(t)

]+
l
(α) = −β, −1 ≤ t ≤ 0

(4.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
〈N1, N2〉′(t)

]+
r

(α), = r
[
〈N1, N2〉(t − 1)

]+
r
(α), t ≥ 0

[
〈N1, N2〉(t)

]+
r
(α) = β, −1 ≤ t ≤ 0

(4.4)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
〈N1, N2〉′(t)

]−

l
(α), = r

[
〈N1, N2〉(t − 1)

]−

l
(α), t ≥ 0

[
〈N1, N2〉(t)

]−

l
(α) = β − 1, −1 ≤ t ≤ 0

(4.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
〈N1, N2〉′(t)

]−

r
(α), = r

[
〈N1, N2〉(t − 1)

]−

r
(α), t ≥ 0

[
〈N1, N2〉(t)

]−

r
(α) = 1 − β, −1 ≤ t ≤ 0

(4.6)

where β = 1 − α.
We solve Eq. (4.3) using the method of steps [11]. For 0 ≤ t ≤ 1, we obtain

the equation ⎧⎪⎨
⎪⎩

[
〈N1, N2〉′(t)

]+
l

(α) = −rβ[
〈N1, N2〉(0)

]+
l

(α) = −β

with solution
[
〈N1, N2〉(t)

]+
l
(α) = −β − rβt for 0 ≤ t ≤ 1. For 1 ≤ t ≤ 2, we

obtain the equation⎧⎪⎨
⎪⎩

[
〈N1, N2〉′(t)

]+
l

(α) = −rβ − r2β(t − 1)[
〈N1, N2〉(1)

]+
l
(α) = −β − rβ

with solution
[
〈N1, N2〉(t)

]+
l
(α) = −β − rβ − rβt − 1

2r2β(t − 1)2 for 1 ≤ t ≤ 2.

Now, it easy to observe that for any n ∈ N, the solution of (4.3) has a polynomial



356 B. Ben Amma et al.

form
[
〈N1, N2〉(t)

]+
l

(α) =
∑n+1

p=1 apt
p on [n, n + 1]. Also, the solutions of (4.4),

(4.5) and (4.6) have a polynomial form on [n, n + 1]. Now we denote

[ n+1∑
p=1

apt
p,

n+1∑
p=1

bpt
p

]
= Mα,

[ n+1∑
p=1

cpt
p,

n+1∑
p=1

dpt
p

]
= Mα

and [ n+1∑
p=1

papt
p−1,

n+1∑
p=1

pbpt
p−1

]
= M

′
α,

[ n+1∑
p=1

pcpt
p−1,

n+1∑
p=1

pdpt
p−1

]
= M

′α

it easy to see that (Mα,Mα) and (M
′
α,M

′α) verify (i)–(iv) of Proposition 1.1
and by using the Lemma 1.1 we we can construct the intuitionistic fuzzy solution
〈N1, N2〉(t) ∈ IF1 for (4.2) by the following form on [n, n + 1]:

[
〈N1, N2〉(t)

]
α

=
[ n+1∑

p=1

apt
p,

n+1∑
p=1

bpt
p

]

[
〈N1, N2〉(t)

]α

=
[ n+1∑

p=1

cpt
p,

n+1∑
p=1

dpt
p

]

for every α ∈ [0, 1] and n ∈ N.

5 Conclusion

In this paper, we have obtained the existence and uniqueness result for a solu-
tion to intuitionistic fuzzy functional differential equations using the method of
successive approximation and contraction principle for local and global existence
and uniqueness. Also we have given an useful procedure to solve intuitionistic
fuzzy functional differential equations. For future research we can apply these
results on intuitionistic fuzzy neutral functional differential equations.

Acknowledgements. The authors would like to express our thanks to Professor
Oscar Castillo for his valuable remarks concerning this work.

References

1. Atanassov, K.: Intuitionistic fuzzy sets. VII ITKR’s session. Sofia (1983).
(deposited in Central Science and Technical Library of the Bulgarian Academy
of Sciences)

2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
3. Atanassov, K.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets

Syst. 64, 159–174 (1994)



Intuitionistic Fuzzy Functional Differential Equations 357

4. Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy
differential equations by Euler and Taylor methods. Notes Intuit. Fuzzy Sets 22,
71–86 (2016)

5. Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy
differential equations by Adams three order predictor-corrector method. Notes
Intuit. Fuzzy Sets 22, 47–69 (2016)

6. Ben Amma, B., Melliani, S., Chadli, L.S.: Numerical solution of intuitionistic fuzzy
differential equations by Runge-Kutta Method of order four. Notes Intuit. Fuzzy
Sets 22, 42–52 (2016)

7. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in med-
ical diagnosis. Fuzzy Sets Syst. 117, 209–213 (2001)

8. Kharal, A.: Homeopathic drug selection using intuitionistic fuzzy sets. Homeopathy
98, 35–39 (2009)

9. Li, D.F., Cheng, C.T.: New similarity measures of intuitionistic fuzzy sets and
application to pattern recognitions. Pattern Recognit. Lett. 23, 221–225 (2002)

10. Li, D.F.: Multiattribute decision making models and methods using intuitionistic
fuzzy sets. J. Comput. Syst. Sci. 70, 73–85 (2005)

11. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)
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Defects in the Defuzzification of Periodic
Membership Functions on Orthogonal

Coordinates and a Solution
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University of Marketing and Distribution Sciences, Kobe, Japan
takashi mitsuishi@red.umds.ac.jp

Abstract. Some membership functions which are characteristic func-
tions of fuzzy sets are periodic due to the properties of the constituent
elements of the fuzzy sets. In this study, some defects in the defuzzifi-
cation of periodic membership functions on orthogonal coordinates are
shown. Also, a solution in which the periodic membership function is
transformed into polar coordinates is proposed. Moreover, a new defuzzi-
fication method for periodic membership functions on polar coordinates
is proposed.

1 Introduction

Since the concept of fuzziness was proposed by Zadeh [1], the study of fuzzy
logic has spread not only to the natural sciences and engineering field but to the
humanities and social sciences as well.

The authors constructed an approximate reasoning system which inferences
an appropriate colour based on sensitive human information using fuzzy logic.
Meanwhile, machines which can move in all directions, such as drones and indus-
trial robots, have appeared. Therefore, it is necessary to control not only the right
and left directions but all directions.

Decisions regarding colour and control of movement in all directions both
use the periodic membership function in fuzzy approximate reasoning. Defuzzi-
fication is a conversion from the fuzzy set as an output of fuzzy inference to a
crisp quantity. The center of gravity method (centroid method), weighted aver-
age method, height method and center of sums method are among the many
proposed defuzzification methods. The center of gravity method is one of the
most popular defuzzification methods [4–6]. It computes the center of gravity
of an area under the membership function. However, in the case of the peri-
odic membership function, there are some defects in the defuzzification stage of
approximate reasoning.

Therefore, in this study, the authors focus on this problem and propose a
defuzzification method of the periodic membership function, in which it is trans-
formed to circular polar coordinates, as a replacement for the center of gravity
method. The paper is organized as follows: In Sect. 2, some of the difficulties of
defuzzifying of a periodic membership function are shown, and the use of polar
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 40
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coordinate transformation to address these difficulties is introduced. A defuzzi-
fication method in which the radius on the polar coordinates is obtained as the
defuzzified value from the periodic membership function using discretisation is
proposed in Sect. 3. In Sect. 4, simple examples using the proposed method are
shown. Finally, Sect. 5 contains some conclusions.

2 Defects in the Defuzzification of the Periodic
Membership Function

2.1 Periodic Fuzzy Membership Function

Most of the membership functions of fuzzy sets are defined on a fixed interval
which is usually closed in practice usage. On the other in some of the fuzzy
approximate reasoning, time, season, direction, the point of the compass, and
hue of color may be inferred. The membership functions of those fuzzy sets are
periodic functions. The fuzzy grades of them return to the same value at regular
intervals, and a closed interval is not confirmed. A membership function is said
to be periodic with period ω > 0, if we have

μ(v) = μ(v + ω) (1)

for all variable v in carrier of the membership function.

0 3 6 9 12 15 18 21 24

M D E N

time

grade

0

0.5

1

Fig. 1. Membership functions of time on Cartesian coordinates

Figure 1 shows an example of membership functions of the fuzzy sets express-
ing morning (M), daytime (D), evening (E) and night (N) in twenty four hours.
Assuming that the interval of them is [0, 24], the membership function of the
night is separated in front and rear of the interval. It has no influence that mem-
bership functions are in premise part of IF-THEN rules. It is inconvenience for
defuzzification and the composition of the membership functions in consequent
part of IF-THEN rules. In particular using the center of gravity method for
defuzzification for the membership function representing night (N), the calcu-
lated value is incorrect value 12 o’clock against the better value 0 (24) o’clock.
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To avoid the problem in the defuzzification, the interval of the membership
functions should be sufficiently wide. And they should be periodic. The following
μM (t), μD(t), μE(t) and μN (t) are membership functions of them for time t ∈
[0,∞) respectively.

μN (t) = max
{

0, 1 −
∣∣∣∣ t − 24n

6

∣∣∣∣
}

μM (t) = max
{

0, 1 −
∣∣∣∣ t − 24n − 6

6

∣∣∣∣
}

μD(t) = max
{

0, 1 −
∣∣∣∣ t − 24n − 12

6

∣∣∣∣
}

(2)

μE(t) = max
{

0, 1 −
∣∣∣∣ t − 24n − 18

6

∣∣∣∣
}

(n ∈ Z)

Thus, we introduce transformation the periodic membership function on the
Cartesian coordinates to the polar coordinates.

2.2 Non-uniqueness of Defuzzified Value

Output of fuzzy approximate reasoning is a fuzzy set which is integrated from
outputs of inferred results of each IF-THEN rules by sum or max operation.
Therefore, the crisp value for decision making or control must be computed
from the membership function of the fuzzy set [2–4].

The following shows the example that defuzzified value of fuzzy set of infer-
ence result is non uniqueness since its membership function is periodic.

It is assumed that the following membership function μ1(t) is composed of
μM (t), μD(t), μE(t) and μN (t) (2) in previous section by Mamdani method.
Here, the conformity degree of each rule that consequent fuzzy set is N, M or E
is 0.5. On the other, the conformity degree for fuzzy set D is 1.

μ1(t) = max
{

min{0.5, μN (t)},min{0.5, μM (t)}, μD(t),min{0.5, μE(t)}}
= max{0.5, μD(t)} (3)

The membership function μ1(t) is periodic with the period 24 obviously. The
closed interval should be selected to obtain crisp value as inference result from
μ1(t) using the center of gravity method. Then, we assume two finite interval
[9, 33], [15, 39] with the period 24. Two graphs of μ1(t) on [9, 33] and [15, 39] are
shown in Figs. 2 and 3, respectively.

It is considered that the crisp values 12, 36, 60, · · · (12 + 24n, n ∈ Z) are the
suitable defuzzified values for the membership function μ1(t) intuitively.

Put t9, t15 be defuzzified values of μ1(t) on [9, 33], [15, 39] respectively, then
we can have followings:

t9 =

∫ 33

9
tμ′(t)dt∫ 33

9
μ′(t)dt

= 20, t15 =

∫ 39

15
tμ′(t)dt∫ 39

15
μ′(t)dt

= 28.
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Fig. 2. The membership function µ1(t) on the interval [9, 33]

Fig. 3. The membership function µ1(t) on the interval [15, 39]

As these examples suggest, even if it is the same periodic membership func-
tion, the defuzzified values are different depending on their interval. Since μ1(t)
doesn’t equal zero, the interval of μ1(t) for the defuzzification is not determined
uniquely. Hence, the inference result is not unique in this case. We can consider
that the interval should be [t0, t0 + 24] such that μ1(t0) = 0. The interval is
determined only if μ1(t0) has one increasing line.

Assume that the periodic membership function μ by (1) with period ω
satisfying

∃v1;μ(v1) = 0, ∃v5 ∈ (v1, v1 + ω]; μ(v5) = 0,
∃v3 ∈ (v1, v5); μ(v3) = 0,

∃v2 ∈ (v1, v3), v4 ∈ (v3, v5); μ(v2) > 0, μ(v4) > 0,

then there are two or more increasing lines as Fig. 4. Similarly in this case, the
interval of μ is not determined uniquely.

2.3 Converting Between Circular and Cartesian Coordinates

Let v0 be a fixed real number and let μ(v) : [v0, v0 + ω] → [0, 1] be a periodic
membership function. The circular polar coordinates μ(v) (the radial coordinate)
and θ (the angular coordinate) can be converted to the Cartesian coordinates x
and y as follows:

x = μ(v) cos θ, y = μ(v) sin θ (4)
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v1 v1+ωv2 v3 v4 v5

µ(v)

Fig. 4. The membership function with two increasing lines

where

θ =
2π

ω
(v − v0).

In this work, we discuss about only the circular polar coordinates, although
there are cylindrical polar coordinates and spherical polar coordinates. The Fig. 5
shows converted periodic membership functions μM (t), μD(t), μE(t) and μN (t)
on circular polar coordinates. This transformation is unique for each periodic
membership function. Based on these conversions, we can prevent the domain of
membership function from separating on the periodic interval. Then the intervals
of the periodic membership functions in the consequent part of IF-THEN rule
integrate to one circular coordinates.

Fig. 5. Membership functions of time on the circular polar coordinates

3 Defuzzification

To obtain a crisp value from the membership function as the result of fuzzy
approximate reasoning, the defuzzification is required. The defuzzified crisp value
as the output should bu suitable for the membership function intuitively. The
angle of the radius (the straight line through the origin) on the circular coor-
dinates corresponds to the defuzzified crisp value on the Cartesian coordinates.
The center of gravity method is widely used for defuzzification. In this section,
the procedure that a coordinate like the center of gravity is calculated from the
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graph of membership function on the circular coordinates is proposed. Since the
periodic membership function is not S-shape or Z-shape, the graph is contin-
uously composed of sectors, and is the closed plane figure. In this study, the
closed plane figure is approximated to the polygon for simplification discretely.
The interval [v0, v0 + ω] which is one of the intervals of μ(v) by (1) is divided
into k intervals as follows:

v0, v1 = v0 +
ω

k
, v2 = v0 +

2ω

k
, · · · ,

vk−1 = v0 +
(k − 1)ω

k
, vk = v0 + ω. (5)

The coordinates (vi, μ(vi)) (i = 0, 1, 2, · · · , k) on the orthogonal coordinates
are transformed into polar coordinates on the circular coordinates by (4).

xi = μ(vi) cos
(

2πi

k

)
, yi = μ(vi) sin

(
2πi

k

)
(6)

where

vi ∈ [v0, v0 + ω] , i = 0, 1, 2, · · · , k.

These procedures implies that the continuous plane figure is discretized to the
polygon whose vertices are (xi, yi) , i = 0, 1, 2, · · · , k. This polygon is consid-
ered to be composed of the triangles whose three vertices are (0, 0), (xi, yi)
and (xi+1, yi+1) (i = 0, 1, 2, · · · , k − 1). The barycentric coordinates (xi

∗, yi∗)

for three points (0, 0), (xi, yi) and (xi+1, yi+1) is
(

1
3
(xi + xi+1),

1
3
(yi + yi+1)

)
.

Using this coordinates, the center of gravity (x∗, y∗) of the polygon by (6) is a
weighted average of (xi

∗, yi∗) with the area of these triangles as follows:

x∗ =

k−1∑
i=0

{
1
3
(xi + xi+1) · Si

}

k−1∑
i=0

Si

, y∗ =

k−1∑
i=0

{
1
3
(yi + yi+1) · Si

}

k−1∑
i=0

Si

(7)

where

Si =
1
2

|xiyi+1 − xi+1yi| (i = 0, 1, 2, · · · , k − 1)

which is the area of triangles (0, 0), (xi, yi) and (xi+1, yi+1).

The angle arctan
y∗

x∗ ∈ [0, 2π] of the radius passing through the origin and

(x∗, y∗) is considered to be the defuzzified value on the circular coordinates in
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this study. We can obtain the final defuzzified value on the original interval
[v0, v0 + ω] of the periodic membership function by the following conversion:

v∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v0 +

(
1
2π

arctan
y∗

x∗

)
ω, (x∗ �= 0)

v0 +
1
4
ω, (x∗ = 0, y∗ > 0)

v0 +
3
4
ω, (x∗ = 0, y∗ < 0).

(8)

Using this method, in the defuzzification stage of the approximate reasoning,
the intervals of the periodic membership functions of consequent parts are able
to be unified into the one circular coordinates without adjustment.

4 Numerical Examples

In this section, simple numerical examples using proposed polar coordinates
transformation for the periodic membership function by (2) are shown. We now
make assumption that the continuous functions by (2) are approximated by the
discretization (5) with k = 24 for simplicity.

4.1 The Case in the Sect. 2.2

Using the polar coordinates transformation by (6) and the computation method
of center of gravity by (7), the center of gravity of the periodic membership
function μ1 by (3) on the circular coordinates is (−0.164, 0). Then, using the
conversion by (8), we can obviously obtain t = 12 + 24n (n ∈ Z) as defuzzified
values on the orthogonal coordinates. This result is exactly considered to be
suitable as defuzzification.

4.2 The Case that Polar Coordinates Conversion for the Periodic
Membership Function Is Unnecessary

Assume that the agreement degrees of the membership functions (2) are given
by 0, 1, 0.7, 0.3 respectively, then the membership function, that the functions
(2) are clipped by the degrees with infimum operation and are composed with
supremum operation, is μ2 as following:

μ2(t) = max
{

min{0, μN (t)},min{1, μM (t)},min{0.7, μD(t)},min{0.3, μE(t)}}
= max

{
μM (t),min{0.7, μD(t)},min{0.3, μE(t)}}

The graph in Fig. 6 illustrates μ2 on the orthogonal coordinates. In this case,
since the graph has only one increasing line and the zero points, the conventional
center of gravity method can be used on the interval [0, 24]. Then we have

t =

∫ 24

0
tμ2(t)dt∫ 24

0
μ2(t)dt

= 10.56.
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On the other hand, if the defuzzification method proposed in this study for
μ2(t), the center of gravity on the circular coordinates is (−0.14, 0.23). It implies
t = 8.11 + 24n (n ∈ Z) by (8). Although there is a difference between them, it
is not considered to be pessimistic. Using the first of maxima for μ2(t), which
is one of the various defuzzification methods proposed in the past such as the
first of maxima, the height method, the middle of maxima, and other methods
[4,6], the defuzzified values is t = 6 clearly. Then it is desirable to decide which
method to adopt depending on the applications.

Fig. 6. The membership function µ2(t) possible to decide the endpoints

4.3 The Case of the Membership Function in Fig. 4

Suppose that the membership function like Fig. 4 has two increasing lines and
three or more zero point as follows. The membership function μ3 is composed of
the periodic membership functions (2) using the Mamdani method with premise
agreement degrees 0, 1, 0, 0.3 respectively.

Fig. 7. The membership function µ3 on the orthogonal coordinates

μ3(t) = max
{

min{0, μN (t)},min{1, μM (t)},min{0, μD(t)},min{0.3, μE(t)}}
= max

{
μM (t),min{0.3, μE(t)}}
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Fig. 8. The membership function µ3 on the circular coordinates

The graph of μ3 is shown in Fig. 7. In the same way as the previous Sect. 4.2,
two intervals [0, 24] and [12, 36] are able to be considered to be the domain
of the membership function μ3. As described before, the defuzzified values on
the orthogonal coordinates are different in dependence on the intervals [0, 24]
and [12, 36]. Therefore, μ3 is polar coordinates transformed into the circular
coordinates, and the graph is shown in Fig. 8. Using (6) and (7), we can have
(0, 0.22) as the center of gravity of μ3 on the circular coordinates. Thus t =
6 + 24n (n ∈ Z) is obtained on the orthogonal coordinates. This result means
that the center of gravity of the graph which has higher peak is calculated as a
defuzzified values.

5 Conclusions

It is difficult to make defuzzification for periodic membership functions without
complicatedly adjusting their domain. The interval of the membership function
can not be decided uniquely, therefore defuzzified value matching the charac-
teristic of the membership function (fuzzy set) on the orthogonal coordinates
cannot be obtained uniquely. The examples about these difficulties are given in
this paper. The polar coordinates transformation method of the periodic mem-
bership function into the circular coordinates have been studied. Moreover, one
of the defuzzification method for the periodic membership function transformed
on the circular coordinates have been shown. The polar coordinates transforma-
tion and the defuzzification make it possible that the defuzzified value is unique
and rational. The proposed method is one of the effective methods in fuzzy logic
control as part of approximate reasoning. It is necessary to verify the accuracy of
discretization which is for simplicity of computation. Although in this paper the
principal aim is to show the difficulties about the periodic membership function.
In the future, various defuzzifications should be proposed and compared to apply
them to practical use. As artificial intelligence, the fuzzy approximate reasoning
that the IT-THEN rules have periodic membership functions in consequent part
is a useful tool for making decisions on matters with periodicity such as time,
direction, colors, medical condition, symptoms.
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Abstract. Traditional statistical data processing techniques (such as
Least Squares) assume that we know the probability distributions of
measurement errors. Often, we do not have full information about these
distributions. In some cases, all we know is the bound of the measure-
ment error; in such cases, we can use known interval data processing
techniques. Sometimes, this bound is fuzzy; in such cases, we can use
known fuzzy data processing techniques.

However, in many practical situations, we know the probability distri-
bution of the random component of the measurement error and we know
the upper bound on the measurement error’s systematic component. For
such situations, no general data processing technique is currently known.
In this paper, we describe general data processing techniques for such sit-
uations, and we show that taking into account interval and fuzzy uncer-
tainty can lead to more adequate statistical estimates.

1 Formulation of the Problem: Traditional Statistical
Approach to Data Processing is not Always Applicable

Data Processing: A Brief Reminder. Some quantities, we can directly mea-
sure. For example, on the Earth, we can usually directly measure the distance
between the two nearby points. However, many other quantities Xj we cannot
measure directly. For example, we cannot directly measure the spatial coordi-
nates. To estimate such quantities Xj , we measure them indirectly, i.e.:

• we measure easier-to-measure quantities Y1, . . . , Ym

• which are connected to Xj in a known way: Yi = fi(X1, . . . , Xn) for known
functions fi(X1, . . . , Xn),

and then we reconstruct the values Xj of the desired quantities from the mea-
surement results:
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 41
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• we know the results ˜Yi of measuring Yi;
• we want to estimate the desired quantities Xj .

This reconstruction is what is often understood by data processing.

Example. Suppose that we want to measure coordinates Xj of an object. For
this purpose, we measure the distance Yi between this object and objects with

known coordinates X
(i)
j : Yi =

√

3
∑

j=1

(Xj − X
(i)
j )2, and then reconstruct the coor-

dinates based on the measured values of these distances. This is how, e.g., GPS
works – after estimating the clock offsets between the receiver’s clock and the
satellites’ clocks, we use the correspondingly corrected travel times to estimate
the distances Yi from our location Xj to satellites whose positions X

(i)
j are known

with high accuracy.

Sometimes, Measurement Results also Depend on Additional Factors
of No Interest to Us. Sometimes, the measurement results also depend on
auxiliary factors of no direct interest to us.

For example, the time delays used to measure distances depend not only
on the distance, but also on the amount of H20 in the troposphere and on the
sensors’ time offset; see, e.g., [16].

In such situations, we can add these auxiliary quantities to the list Xj of the
unknowns. We may also use the result Yi of additional measurements of these
auxiliary quantities.

Usually, Linearization is Possible. In most practical situations, we know
the approximate values X

(0)
j of the desired quantities Xj .

For example, in geodesy, we want to find the coordinates Xj of different
locations. We do not know the exact values of these coordinates, but we usually
know the approximate location X

(0)
j that was obtained by previous measure-

ments. Our goal is then to use the measurement results ˜Yi to come up with more
accurate estimates for Xj .

These approximations are usually reasonably good, in the sense that the
difference xj

def= Xj − X
(0)
j are small. In terms of xj , we have Xi = X

(0)
i + xi

and thus,
Yi = f(X1, . . . , Xn) = f(X(0)

1 + x1, . . . , X
(0)
n + xn).

For a good approximation, we can safely ignore terms quadratic in xj . Indeed,
even if the estimation accuracy is 10% (0.1), its square is 1%, which is much
smaller than 10%.

We can thus expand the dependence of Yi on xj in Taylor series and keep
only linear terms:

Yi = Y
(0)
i +

n
∑

j=1

aij · xj ,
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where
Y

(0)
i

def= fi(X
(0)
1 , . . . , X(0)

n )

and
aij

def=
∂fi

∂Xj |X1=X
(0)
1 ,...,Xn=X

(0)
n

.

By moving the value Y
(0)
i to the other side of this formula, we conclude that

Yi − Y
(0)
i =

n
∑

j=1

aij · xj .

Here, we know the values aij – they are obtained by differentiating the known
functions fi(X1, . . . , Xn). We also know the value Y

(0)
i – we compute each

of these values by applying the known function fi(X1, . . . , Xn) to the known
approximate values X

(0)
j values that we knew before the measurements. We do

not, however, know the exact value Yj of the corresponding quantity. Instead,
as a result of measuring this quantity, we get the measurement result ˜Yj ≈ Yj .

Since ˜Yj ≈ Yj , the known difference yi
def= ˜Yi − Y

(0)
i is approximately equal to

Yi − Y
(0)
i , and thus, approximately equal to the sum

n
∑

j=1

aij · xj .

Thus, to find the unknowns xj , we need to solve a system of approximate

linear equations
n
∑

j=1

aij · xj ≈ yi, with known values yi and aij .

The Least Squares Approach. Usually, it is assumed that each measurement
error is normally distributed with 0 mean (and known standard deviation σi).

The distribution is indeed often normal; see, e.g., [10,11]. Indeed, the mea-
surement error is usually a joint result of many independent factors, and the
distribution of the sum of many small independent errors is close to Gaussian
(this result is known as the Central Limit Theorem; see, e.g., [13]).

The assumption that the mean value of the measurement error is 0 also
makes sense: we calibrate the measuring instrument by comparing it with a more
accurate, so if there was a bias (non-zero mean), we delete it by re-calibrating
the scale.

It is also assumed that measurement errors of different measurements are
independent. In this case, under the Gaussian assumption, for each possible
combination x = (x1, . . . , xn), the probability of observing y1, . . . , ym is equal to:

m
∏

i=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1√
2π · σi

· exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−

(

yi −
n
∑

j=1

aij · xj

)2

2σ2
i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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It is reasonable to select xj for which this probability is the largest, i.e., equiva-
lently, for which

n
∑

i=1

(

yi −
n
∑

j=1

aij · xj

)2

σ2
i

→ min .

(This natural idea is known as the Maximum Likelihood approach.) The set Sγ

of all possible combinations x – known as the confidence set – has the following
form, where χ2

m−n,γ is the value of the chi-square statistic corresponding to the
confidence 1 − γ (i.e., to the probability γ of the false alarm; see, e.g., [13]):

Sγ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x :
n

∑

i=1

(

yi −
n
∑

j=1

aij · xj

)2

σ2
i

≤ χ2
m−n,γ

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

Comment. If this set Sγ is empty, this means that some measurements are
outliers.

A Simple Example. Suppose that we have m measurements y1, . . . , ym of
the same quantity x1, with 0 mean and standard deviation σi. Then, the least
squares estimate for x1 is

x̂1 =

m
∑

i=1

σ−2
i · yi

m
∑

i=1

σ−2
i

.

The accuracy (standard deviation) of this estimate is σ2[x1] =
1

m
∑

i=1

σ−2
i

.

In particular, for σ1 = . . . = σm = σ, we get

x̂1 =
y1 + . . . + ym

m
, with σ[x1] =

σ√
m

.

The Least Squares Approach is not Always Applicable. While in many
practical situations, the Least Squares approach has been very successful, there
are cases when the Least Squares approach is not applicable.

The first case is when we use the most accurate measuring instruments. In
this case, we don’t have any more accurate instrument that we could use for
calibration. So, we do not know the mean, and we do not know the distribution.
What we may know in such situations is the upper bound on the measure-
ment error; this bound may be a number or it may even be an expert estimate
described by using natural language words like “small”.
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The second case is when:

• we have a good approximation to the probability distribution of the measure-
ment error,

• we have calibrated the measuring instrument so that the remaining bias is
statistically indistinguishable from 0 – and

• with thus calibrated measuring instrument, we perform a large number of
measurements.

At first glance, this may seem a perfect case for applying the Least Squares tech-
niques. However, if we simply measure the same quantity m times, we get an
estimate (average) with accuracy

σ√
m

. So, if we, e.g., use GPS with 1 m accu-

racy million times, we can get 1 mm accuracy, then microns etc. This makes no
physical sense. The explanation for this is simple. When we calibrate, we guar-
antee that the systematic error (i.e., the mean value of the measurement error)
is much smaller than the random error. However, when we repeat measurements
and take the average of the measurement results, we decrease the random error,
while the systematic error does not decrease. So, the systematic error becomes
larger than the remaining random error.

What We Do in This Paper. In this paper, we consider these two cases one
by one, and we show that in both cases, interval and fuzzy approaches can help
make statistical estimates more adequate.

2 Case 1, When We Do not Know the Distributions:
Enter Interval and Fuzzy Uncertainties

What Do We Know: A Question. Let us first consider the case when we
do not know the distribution of the measurement error. As we have mentioned,
in this case, we know either the numerical guaranteed upper bound on the mea-
surement error, or at least bounds which are valid with some confidence. Let us
consider these two types of situations one by one.

Situations When We Know Guaranteed Upper Bounds on the Mea-
surement Errors: Enter Interval Uncertainty. In some situations, we know
the upper bound Δi on the i-th measurement error. Thus, based on the measured

values yi, we can conclude that the actual value of the quantity si
def=

n
∑

j=1

aij · xj

(which is approximately equal to yi) is in the interval yi
def= [yi − Δi, yi + Δi];

see, e.g., [3,7].
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Situations When We Only Have Imprecise Expert Estimates of the
Upper Bounds on the Measurement Errors: Center Fuzzy Uncertainty.
Let us now consider the situations when we do not have guaranteed bounds
Δi, we only have expert estimates of these bounds. These estimates come with
different levels of certainty.

So, for each level of certainty p, we have a corresponding bound Δi(p). Thus,
with certainty p, we can conclude that si ∈ yi(p) def= [yi − Δi(p), yi + Δi(p)].

To get higher p, we need to enlarge the interval. Thus, we have a nested
family of intervals. Describing such a nested family of intervals is equivalent to
describing a fuzzy set with α-cuts yi(1 − α); see, e.g., [5,9,17].

How to Process Interval Uncertainty. For different yi ∈ yi, we get different
values xj . The largest possible value xj can be obtained by solving the following
linear programming problem:

xj → max under constraints yi − Δi ≤
n

∑

k=1

aik · xk ≤ yi + Δi.

The smallest possible value xj can be obtained by minimizing xj under the
same constraints. There exist efficient algorithms for solving linear programming
problems (see, e.g., [6]), we can use them. In general, the set S of possible values
x is a polyhedron determined by the above inequalities.

A Simple Example. Suppose that we have m measurements y1, . . . , ym of the
same quantity x1, with bounds Δi. Then, based on each measurement i, we can
conclude that x1 ∈ [yi − Δi, yi + Δi]. Thus, based on all m measurements, we
can conclude that x1 belongs to the intersection of these m intervals:

m
⋂

i=1

[yi − Δi, yi + Δi] =
[

max
1≤i≤n

(yi − Δi), min
1≤i≤n

(yi + Δi)
]

.

The more measurements, the narrower the resulting interval.

Comment. If the intersection is empty – or, more generally, if there are no values

xj for which
n
∑

j=1

aij ·xj ∈ yi for all i – this means that some of the measurement

results are actually outliers; see, e.g., [14].

How to Process Fuzzy Uncertainty. In the fuzzy case, we need to repeat the
same interval-related computation for each p, and get bounds xj(p) and xj(p) for
each p. The resulting nested intervals form a fuzzy set of possible values of xj .

In General, How Do We Describe the Set S of Possible Values of x?
In the first approximation, we find the intervals [xj , xj ]. Then, we can conclude
that x = (x1, . . . , xn) belongs to the box [x1, x1] × . . . × [xn, xn].
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Often, not all combinations from the box are possible. To get a better descrip-
tion of the set S, we can also find the maximum and the minimum of the values

n
∑

i=1

βi · xi, with βi ∈ {−1, 1}.

For example, for n = 2 (e.g., for localizing a point in the plane), we also find the
bounds on s1

def= x1 + x2 and s2
def= x1 − x2. Using all these bounds leads to a

better description of the set S.
For example, for n = 2, we have bounds

x1 ≤ x1 ≤ x1, x2 ≤ x2 ≤ x2, s1 ≤ x1 + x2 ≤ s1, s2 ≤ x1 − x2 ≤ s2.

If this description is not enough, we take values
n
∑

i=1

βi ·xi, with βi ∈ {−1, 0, 1}
or, more generally, with:

βi ∈
{

−1,−1 +
2
M

,−1 +
4
M

, . . . , 1 − 2
M

, 1
}

for M = 1, 2, . . .

Additional Constraints. In some practical situations, we also have additional
constraints. For example, we can have bounds on the amount of water in the
troposphere. From the computational viewpoint, dealing with these additional
constraints is easy: we simply add these additional constraints xk ≤ xk ≤ xk to
the list of constraints under which we optimize xj .

Comment. Alternatively, we can use zonotopes to describe the set of all possible
vectors x = (x1, . . . , xn); see, e.g., [15].

3 Case 2, When We Know (A Good Approximation to)
the Probability Distribution of the Measurement Error
and We Know an Upper Bound on the Systematic
Error

Reminder. In the traditional approach, we assume that yi =
n
∑

j=1

aij · xj + ei,

where the measurement error ei has 0 mean. Sometimes, in addition to the
random error er

i
def= ei − E[ei] with 0 mean, we also have a systematic error

es
i

def= E[ei]:

yi =
n

∑

j=1

aij · xj + er
i + es

i .

What Do We Know About the Systematic Error: Interval and Fuzzy
Cases. Sometimes, we know the upper bound Δi on the systematic error: |es

i | ≤
Δi. In other cases, we have different bounds Δi(p) corresponding to different
degrees of confidence p. Based on all this information, what can we then say
about xj?
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Our Main Idea. If we knew the values es
i , then we would conclude that for

er
i = yi −

n
∑

j=1

aij · xj − es
i ,

we have

m
∑

i=1

(er
i )

2

σ2
i

=
m

∑

i=1

(

yi −
n
∑

j=1

aij · xj − es
i

)2

σ2
i

≤ χ2
m−n,γ .

In practice, we do not know the values es
i , we only know that these values are in

the interval [−Δi,Δi]. Thus, we know that the above inequality holds for some
values es

1, . . . , e
s
m for which es

i ∈ [−Δi,Δi].
The above condition is equivalent to v(x) ≤ χ2

m−n,γ , where we denoted

v(x) def= min
es
i∈[−Δi,Δi]

m
∑

i=1

(

yi −
n
∑

j=1

aij · xj − es
i

)2

σ2
i

.

So, the set Sγ of all combinations X = (x1, . . . , xn) which are possible with
confidence 1 − γ has the following form: Sγ = {x : v(x) ≤ χ2

m−n,γ}.
The range of possible values of xj can be obtained by maximizing and min-

imizing xj under the constraint v(x) ≤ χ2
m−n,γ . (In the fuzzy case, we have to

repeat the computations for every p.)

How to Check Consistency. We want to make sure that the measurements
are consistent – i.e., that there are no outliers. This means that we want to check
that there exists some x = (x1, . . . , xn) for which v(x) ≤ χ2

m−n,γ .
This condition is equivalent to

v
def= min

x
v(x) = min

x
min

es
i∈[−Δi,Δi]

m
∑

i=1

(

yi −
n
∑

j=1

aij · xj − es
i

)2

σ2
i

≤ χ2
m−n,γ .

This is Indeed a Generalization of Probabilistic and Interval
Approaches. In the case when Δi = 0 for all i, i.e., when there is no interval
uncertainty, we get the usual Least Squares. Vice versa, for very small σi, we
get the case of pure interval uncertainty. In this case, the above formulas tend
to the set of all the values for which

∣

∣

∣

∣

∣

∣

yi −
n

∑

j=1

aij · xj

∣

∣

∣

∣

∣

∣

≤ Δi.

For example, for m repeated measurements of the same quantity, we get the
intersection of the corresponding intervals. So, the new idea is indeed a general-
ization of the known probabilistic and interval approaches.
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From Formulas to Computations. The expression

(

yi −
n
∑

j=1

aij · xj − es
i

)2

is a convex function of xj .
The domain of possible values of es = (es

1, . . . , e
s
m) is also convex: it is the

box
[−Δ1,Δ1] × . . . × [−Δm,Δm].

There exist efficient algorithms for computing minima of convex functions
over convex domains; see, e.g., [1,8]. These algorithms also compute locations
where these minima are attained. Thus, for every x, we can efficiently compute
v(x) and thus, efficiently check whether v(x) ≤ χ2

m−n,γ .
Similarly, we can efficiently compute v and thus, check whether v ≤ χ2

m−n,γ

(i.e., whether the measurement results are consistent or we have outliers).
The set Sγ is convex. We can approximate the set Sγ by:

• taking a grid G,
• checking, for each x ∈ G, whether v(x) ≤ χ2

m−n,γ , and
• taking the convex hull of “possible” points.

We can also efficiently find the minimum xj of xj over x ∈ Sγ . By computing
the minimum of the linear function −xj , we can thus efficiently compute the
largest possible values xj of xj over x ∈ Sγ .

4 Discussion

But Where Do We Get the Bounds on Systematic Errors? The above
algorithms require that we have some bounds on the systematic error component.
But where can we get these bounds?

To answer this question, let’s recall that we get σi from calibration. In the
process of calibration, we also get an estimate for the bias, and we use this
estimate to re-calibrate our instrument – so that its bias will be 0. If we could
estimate the bias more accurately, we would have eliminated it too. So, where
do the bounds Δi come from?

The answer is simple: after the calibration, we get an estimate for the bias,
but this numerical estimate is only approximate. From the same calibration
experiment, we can extract not only this estimate b, but also the confidence
interval [b, b] which contains b with given confidence.

After we use the numerical estimate b to re-scale, the remaining bias is – with
given confidence – in the interval [b − b, b − b]. This is where the corresponding
bound Δi comes from: it is simply the largest possible value from this interval,
i.e.,

Δi = max(b − b, b − b).



380 L. Sun et al.

Relation to Uniform Distributions: Caution is Needed. Usually, in prob-
ability theory, if we do not know the exact distribution, then out of possible
distributions, we select the one with the largest entropy − ∫

ρ(x) · ln(ρ(x)) dx,
where ρ(x) is the corresponding probability density function; see, e.g., [4].

In particular, if we only know that the random variable is located some-
where on the interval [−Δi,Δi], then the Maximum Entropy approach leads to
a uniform distribution on this interval.

If a random variable η (corresponding to random error component) is dis-
tributed with the probability density function ρ(x), then the sum of η and an
m-dimensional uniform distribution has the density ρ′(x) = max

es
i∈[−Δi,Δi]

ρ(x−es).

For this distribution, the maximum likelihood method ρ′(x) → max is equiva-
lent to minimizing − ln(ρ′(x)) → min, where − ln(ρ′(x)) = min

es
i∈[−Δi,Δi]

(− ln(ρ(x−
es)).

In particular, for the normal distribution with 0 mean,

− ln(ρ(x)) = const +
1
2

·
m

∑

i=1

(er
i )

2

σ2
i

.

Thus, the maximum likelihood approach ρ′(x) → max leads to

min
es
i∈[−Δi,Δi]

m
∑

i=1

(

yi −
n
∑

j=1

aij · xj − es
i

)2

σ2
i

→ min .

The minimized expression is exactly our v(x).
Does this means that we can safely assume that the systematic error is uni-

formly distributed on [−Δi,Δi]? This is, e.g., what International Organization
for Standardization (ISO) suggests; see [2,12]. Our answer is: not always.

Indeed, e.g., for the sum s = x1 + . . . + xm of m such errors with Δi = Δ all
we can say is that s belongs to the interval [−m · Δ,m · Δ]. All the values from
this interval are clearly possible.

However, if we assume uniform distributions, then, for large m, due to the
Central Limit Theorem, the sum s is practically normally distributed, with 0
mean and standard deviation proportional to

√
m · σ.

So, with very high confidence, we can conclude that |s| ≤ const · (
√

m ·
σ). For large m, this bound is much smaller than m · σ and is, thus, a severe
underestimation of the possible error.

Our conclusion is that in some calculations, we can use MaxEnt and uniform
distributions, but not always. In other words, we must be cautious.
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Abstract. This paper discusses some feasibility conditions for fuzzy lin-
ear programming problems. The selection of different membership func-
tions in a fuzzy linear programming problem can lead to different solu-
tions, including unbounded and infeasible solutions, so in this paper we
generalize concepts of weak and strong solutions for this kind of prob-
lems. An application example is provided to illustrate our results.

1 Introduction and Motivation

Fuzzy Linear Programming (FLP) problems are among the most popular fuzzy
optimization techniques, so its analysis provides valuable information to prac-
titioners. The classical FLP model was proposed by Zimmermann [1], Zimmer-
mann and Fullér [2], and Fiedler et al. [3]; Černý and Hlad́ık [4], Hlad́ık [5] have
extended his results to two main families of fuzzy LPs: problems with fuzzy para-
meters/constraints, and problems with fuzzy parameters and crisp constraints.
Hernández-Pérez and Figueroa-Garćıa [6] discussed some sensitivity issues for
the Zimmermann’s soft constraints model, and Figueroa-Garćıa et al. [7] have
defined some feasibility conditions for fuzzy/crisp LPs.

Hlad́ık [5] has defined basic concepts of weak/strong feasibility for interval-
valued equations which we extend to FLPs. This way, we propose similar fea-
sibility conditions for FLPs with fuzzy costs, parameters and constraints with
nonlinear membership functions, which is a different problem of the issued by
Zimmermann on his seminal work [1]. The FLP addressed here refers to an LP
structure whose coefficients can be fuzzy sets with any linear/nonlinear shape
(e.g. exponential, gaussian, quadratic, sigmoidal, etc.), including its constraints.
To do so, we define feasibility over FLPs in two instances: feasibility regarding
the support of all fuzzy parameters, and feasibility regarding α-cuts. The case
of infeasible FLPs is discussed as well.

This paper focuses on the analysis of weak/strong feasibility conditions for
a general FLP model with nonlinear costs, technological coefficients, and con-
straints. Some examples are provided and its results are discussed. The paper is
divided into six sections. Section 1 introduces the problem. In Sect. 2, some basics
on fuzzy numbers are provided; in Sect. 3, description of the FLP model used
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 42
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here and concepts of weak/strong feasibility, are introduced. Section 4 presents
and explains some application examples (including feasible/infeasible examples);
and Sect. 5 presents the concluding remarks of the study.

2 Basics on Fuzzy Numbers

FLP models are composed by three sets of fuzzy parameters: costs, technological
coefficients, and constraints which are commonly defined as convex fuzzy sets
(or fuzzy numbers) for which we provide some basic notations. P(R) is the class
of all crisp sets of X and F(R) is the class of all fuzzy sets defined over the reals.
A fuzzy set Ã, Ã : X → [0, 1] can be represented as a set of ordered pairs of an
element x and its membership degree, μÃ(x), i.e.,

Ã = {(x, μA(x)) |x ∈ X} (1)

The support of Ã, supp(Ã), is composed by all the elements of X that have
nonzero membership in Ã, this is:

supp(Ã) = {x |μÃ(x) > 0} ∀ x ∈ X (2)

The α-cut of μÃ(x) namely αÃ represents the interval of all values of x which
has a membership degree equal or greatest than α, this means:

αÃ = {x |μÃ(x) � α} ∀ x ∈ X (3)
αÃ ∈

[
inf
x

αμÃ(x), sup
x

αμÃ(x)
]

=
[
Ǎα, Âα

]
(4)

A fuzzy number is then a convex fuzzy set. Let Ã ∈ G(R) where G(R) ∈ F(R)
is the class of all normal, upper semicontinuous, and fuzzy convex sets. Then, Ã
is a Fuzzy Number (FN) iff there exists a closed interval [a, b] �= 0 such that

μÃ(x) =

⎧
⎨
⎩

1 for x ∈ [a, b],
l(x) for x ∈ [−∞, a],
r(x) for x ∈ [b,∞]

(5)

where l : (−∞, a) → [0, 1] is monotonic non-decreasing, continuous from the
right, and l(x) = ∅ for x < ω1, and r : (b,∞) → [0, 1] is monotonic non-
increasing, continuous from the left, and r(x) = ∅ for x > ω2.

A graphical display of a nonlinear fuzzy set is given in Fig. 1. Its universe of
discourse is the set of all values x ∈ R, the support of Ã, supp(Ã) is the interval
x ∈ [Ǎ, Â] and μÃ is a triangular function with parameters Ǎ, Ā and Â. α is the
degree of membership that an specific value x has regarding A and the dashed
region is an α-cut done over Ã.

Note that any α-cut done over a fuzzy number is monotonically increas-
ing/decreasing, so for α1 < α2, α ∈ [0, 1] then α2Ã ⊆ α1Ã and αÃ ⊆ supp(Ã),
∀α ∈ [0, 1].
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1

µÃ

x ∈ RǍ Â

αÃ

ĀǍα Âα

Fig. 1. Fuzzy set Ã

3 Linear Programming with Fuzzy Parameters

The classical Linear Programming (LP) problem relates a set of Ax � b inequal-
ities to a desired goal z = c′x for which we want to find a maxima of z through
a set of decision variables x, this is Max{z = c′x : Ax � b, x � 0}, for short.
In this model, all parameters c ∈ R

+
n , A ∈ R

+
mn, b ∈ R

+
m are deterministic (e.g.

constants).
Fuzzy LPs regard to a problem where its parameters cannot be defined as

constants or singletons but as fuzzy sets which come from human like uncer-
tainty. Most of available methods for FLPs are based on the fuzzy decision
making principle (see Bellman and Zadeh [8]) and use linear membership func-
tions and/or symmetrical shapes. A mathematical representation of an FLP is
given as follows:

Max
x

z̃ = c̃′x

s.t.

Ãx � b̃ (6)
x � 0

where c̃ ∈ F(R), Ã ∈ F(R), and b̃ ∈ F(R).
The binary relation � for classical fuzzy sets has been proposed and investi-

gated by Ramı́k and R̆imánek [9], and the binary relation (fuzzy max order) �
has been extended to Interval Type-2 fuzzy numbers by Figueroa-Garćıa et al.
[10]. In this paper we analyze solutions for FLPs aside from the shapes of c̃, Ã
and b̃.

3.1 Weak and Strong Solutions for FLPs

A fully solvable system Ãx � b̃ implies that the fuzzy max order relation � holds
for all αÃx � αb̃, which is a strong supposition since there is no any guarantee
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1

µb̃

x ∈ Rb̂

αb̃

b̌ b̂α

Fig. 2. Fuzzy constraint b̃

that the system is feasible for some α ∈ [0, 1], so we can say that the system
Ãx � b̃ is α-feasible if there exists an α ∈ [0, 1] for which the system αÃx � αb̃
is feasible. Finding a feasible α could be a hard task, so we propose a way to
find a feasible solution for an FLP.

Now, the system Ãx � b̃ needs to be defined before solving (6). To do so, we
use concepts of weak/strong feasibility for interval equations (see Fiedler et al. [3],
Černý and Hlad́ık [4], and Hlad́ık [5]). In this paper, we only refer to weak/strong
feasibility of fuzzy equations since the vector x in (6) is defined as non-negative,
this is x ∈ R

+
n , so hereinafter we refer to x as the set of non-negative solutions

x ∈ R
+
n .

Definition 1. Let Ã be a fuzzy matrix, and b̃ a fuzzy vector, {Ã, b̃} ∈ F(R).
Then the system Ãx � b̃ is said to be weak α-feasible if ∃x (Ǎαx � b̂α) for
α ∈ [0, 1].

This means that given a value α ∈ [0, 1], a crisp coefficient matrix Ax ∈ [Ǎα,

Âα], and αb̃ ∈ [0, b̂α] for which Ǎαx � Axx � Âαx, so if ∃x(Axx � b̂α) then

0 � Ǎαx � Axx � Âαx � b̂α

and the binary order Ǎαx � b̂α holds. This also implies that all possible values
of A ∈ [Ǎα, Ax] satisfies Ax � b̂α and x is said to be a weak solution of Ǎαx � b̂α

since x only solves the system for Ǎα, b̂α.

Definition 2. Let Ax ∈ [Ǎα, Âα] be a crisp coefficient matrix. An FLP is said
to be α-infeasible if �x(Ǎαx � b̂α). This also implies that �x(Axx � b̂α).

Definition 3. Let Ã be a fuzzy matrix, and b̃ a fuzzy vector, {Ã, b̃} ∈ F(R).
Then the system Ãx � b̃ is said to be strong α-feasible if only if ∃x (Âαx � b̌α)
for α ∈ [0, 1].
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Definition 3 means that if ∃x(Axx � b̌α) given α ∈ [0, 1] and Ǎαx � Axx �
Âαx, then we have that

Ǎαx � Axx � Âαx � b̌α

implies that the only solution x′ for Axx′ � b̌α ∀Ax ∈ [Ǎα, Âα] is Âαx′, and x′

is then a strong solution for [Ǎα, Âα]x′ � b̌α since it solves Axx′ � b̌α ∀Ax ∈
[Ǎα, Âα].

3.2 Compact, Unbounded Solutions

Nonlinear gaussian, exponential, quadratic membership functions, etc. are
among the most popular membership functions in decision making. This kind
of membership functions have unbounded support, so they cannot provide a
global solution of the problem. Thus, if Ã has unbounded support, this is
supp(Ã) ∈ [−∞,∞], then the system Ãx � b̃ is untractable.

Feasibility of an FLP is constrained by the condition that supp(Ã) and
supp(b̃) must be compact sets for which inf{supp(Ã)} = Ǎ, sup{supp(Ã)} = Â,
inf{supp(b̃)} = 0, sup{supp(b̃)} = b̂, so supp(Ã) = [Ǎ, Â] and supp(b̃) = [0, b̂]
should be compact (see Fig. 2). This leads us to the following results.

Definition 4. Let Ã be a matrix of fuzzy sets and b̃ a vector of fuzzy sets,
{Ã, b̃} ∈ F(R). Then the linear system Ãx � b̃ is said to be compact if and only
if both supp(Ã) and supp(b̃) are compact sets.

Definition 5. Let Ãx � b̃ be compact. It is said that Ãx � b̃ is weak feasible
if ∃x(Ǎx � b̂). Otherwise if �x(Ǎx � b̂), it is said that Ãx � b̃ is infeasible.

Definition 6. Let Ãx � b̃ be compact. It is said that Ãx � b̃ is strong feasible
if ∃x(Âx � b̌).

Note that Eq. (6) is fuzzy max ordered (see Ramı́k and R̆imánek [9]) only
for fully solvable FLPs, so

∑
j Ãijxj � b̃i, ∀ i ∈ Nm holds for every α-cut. Then,

Definitions 5 and 6 imply that the system
∑

j
αÃijxj � αb̃i, ∀ i ∈ Nm should be

feasible at every boundary of αÃij and αb̃i, and this condition is ensured unless
the problem is not feasible.

A more generalized concept about feasibility over FLPs comes from the idea
that Max{z = c̃′x : Ãx � b̃, x � 0} is feasible if there exists a combination of
parameters into the supports of Ã, b̃ that conforms a feasible solution, as shown
as follows.

Definition 7. Let Ã be a fuzzy matrix, b̃ be a fuzzy vector, {Ãij , b̃i} ∈ F(R), Ax

be a crisp matrix and bx be a crisp vector such that Ax ∈ supp(Ã), bx ∈ supp(b̃).
Then the system Ãx � b̃ is said to be feasible if ∃x {Axx � bx}.

Feasibility in FLPs can be seen from a crisp point of view based on α-cuts.
Most of commercial optimizers such as CPLEX, AMLP, Gurobi, MATLAB,
Xpress, etc. provide efficient routines to check feasible LPs (mostly based on
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duality conditions) that can be applied to check feasibility of FLPs. What we
recommend to readers is to check for weak feasibility before solving the entire
problem.

Another important case to cover is unboundedness. It is clear that compact
systems lead to bounded solutions as stated in Definition 4 unless the problem
is infeasible, so unbounded FLP come from two sources: unbounded fuzzy para-
meters, or negative column vectors in the system A � b. Both conditions are
considered in the following definitions.

Definition 8. Let Ã be a matrix of fuzzy sets and b̃ a vector of fuzzy sets,
{Ã, b̃} ∈ F(R). Then the linear system Ãx � b̃ is said to be unbounded if one
of the following conditions are satisfied:

(i) ∃ j(supp(Ã·j) ∈ [−∞,∞]),
(ii) ∃ j(Ǎα ∈ R

− ∀ i ∈ Nm),
(iii) supp(b̃i) ∈ [−∞,∞]∀ i ∈ Nm.

In Definition 8, (i) means that an FLP is unbounded if jth column vector is
composed by unbounded sets, this is supp(Ã·j) ∈ [−∞,∞]; (ii) means that an
FLP is unbounded if the jth column vector is composed by bounded sets whose
supports contain non-negative elements, this is inf{supp(Ã·j)} = Ǎα ∈ R

−; and
(iii) means that if the constraints of an FLP are unbounded fuzzy sets, then the
FLP is unbounded as well.

Other unboundedness conditions derived from (iii) can be defined for partic-
ular values Ax ∈ supp(Ã) and bx ∈ supp(b̃). The linear system Axx � bx is said
to be unbounded if:

∃ y(A′
xy � 0, b′

xy < 0, y � 0).

This means that a convex combination of the dual variables y can obtain
a negative column of A in its primal problem (see Farkas and Clark’s lemmas)
leading to a unbounded primal LP. Also the linear system Axx � bx is unbounded
if a convex combination of the columns of Ax leads to a negative value. This is:

∃λ

⎛
⎝λ1ai1 + · · · + λjaij + · · · + λnain � 0, λj � 0,

∑
j∈Nn

λj = 1

⎞
⎠ ∀ i ∈ Nm,

where λ = {λ1, · · · , λj , · · · , λn}, λj ∈ P(R), and aij is the i, j element of Ax.
Fiedler et al. [3], Černý and Hlad́ık [4], and Hlad́ık [5] have proposed some

algorithms to find solutions to unbounded problems. Although they proposed
methods based on interval-valued LPs, their results can be applied without any
restriction to FLPs since a fuzzy number can be decomposed into α-cuts (a.k.a
horizontal slices of Ã).
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4 Application Examples

FLP with Weak and Strong Solutions. Consider the following FLP:

Max
x

z = 2̃x1 + 3̃x2 + 4̃x3

s.t.

1̃x1 + 4̃x2 + 2̃x3 � 1̃0

3̃x1 + 2̃x2 + 5̃x3 � 1̃2

3̃x1 + 3̃x2 + 4̃x3 � 1̃5
x � 0

The complete description of Ã is shown next:

c̃1 = T (1, 2, 5) c̃2 = T (2, 3, 5) c̃3 = T (2, 4, 7)
Ã11 = T (0, 1, 3) Ã12 = T (2, 4, 7) Ã13 = T (1, 2, 4)
Ã21 = T (1, 3, 5) Ã22 = T (0, 2, 5) Ã23 = T (2, 5, 7)
Ã31 = T (1, 3, 6) Ã32 = T (1, 3, 7) Ã33 = T (2, 4, 7)
b̃1 = T1(0, 10, 12) b̃2 = T1(0, 12, 15) b̃3 = T1(0, 15, 18)

where T (a, b, c) denotes a triangular membership function, and T1(a, b, c) denotes
a linear semi-trapezoidal membership function.

To check strong feasibility (see Definition 6) we solve the following LP:

Max
x

z = x1 + 2x2 + 2x3

s.t.

3x1 + 7x2 + 4x3 � 10
5x1 + 5x2 + 7x3 � 12
6x1 + 7x2 + 7x3 � 15

x � 0

This problem has an optimal solution at x1 = 0, x2 = 0.7586, x3 = 1.1724
that reaches z = 3.8620. Note that this solution is called strong because it solves
all possible combinations of supp(Ã) and supp(b̃) (please do the calculus).

To check for weak feasibility (see Definition 5) we solve the following LP:

Max
x

z = 5x1 + 5x2 + 7x3

s.t.

2x2 + x3 � 10
x1 + 2x3 � 12

x1 + x2 + 2x3 � 18
x � 0

This problem has an optimal solution at x1 = 12, x2 = 6, x3 = 0 that reaches
z = 90. This solution is called weak because it does not solve other possible
combinations of supp(Ã) and supp(b̃), it only solves the system Ǎx � b̂.
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FLP with Infeasible Solutions. Consider the following FLP:

Max
x

z = 2̃x1 + 3̃x2 + 4̃x3

s.t.

1̃x1 + 4̃x2 + 2̃x3 � 1̃0

3̃x1 + 2̃x2 + 5̃x3 � 1̃2

3̃x1 + 3̃x2 + 4̃x3 � 1̃5
x � 0

The complete description of Ã, b̃, c̃ are shown next:

c̃1 = T (1, 2, 5) c̃2 = T (2, 3, 5) c̃3 = T (2, 4, 7)
Ã11 = T (0, 1, 3) Ã12 = T (2, 4, 7) Ã13 = T (1, 2, 4)
Ã21 = T (1, 3, 5) Ã22 = T (0, 2, 5) Ã23 = T (2, 5, 7)
Ã31 = T (1, 3, 6) Ã32 = T (0, 3, 7) Ã33 = T (1, 4, 7)
b̃1 = T1(0, 10, 12) b̃2 = T1(0, 12, 15) b̃3 = T1(15, 18,∞)

To check strong feasibility (see Definition 6) we solve the following LP:

Max
x

z = x1 + 2x2 + 2x3

s.t.

3x1 + 7x2 + 4x3 � 10
5x1 + 5x2 + 7x3 � 12

x1 + x3 � 18
x � 0

In this case, the problem is infeasible. This leads us to check for weak feasi-
bility (see Definition 5). To do so, we have to solve the following LP:

Max
x

z = 5x1 + 5x2 + 7x3

s.t.

2x2 + x3 � 10
x1 + 2x3 � 12

6x1 + 7x2 + 7x3 � 15
x � 0

This problem has an optimal solution at x1 = 15, x2 = 6, x3 = 0 that reaches
z = 105. Remember that this solution is called weak because it does not solve
other possible combinations of supp(Ã) and supp(b̃), it only solves the system
Ǎx � b̂.
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FLP with Unbounded Solutions. Consider the following FLP:

Max
x

z = 5̃x1 + 4̃x2 + 5̃x3

s.t.

3̃x1 + 4̃x2 + 2̃x3 � 1̃5

4̃x1 + 5̃x2 + 3̃x3 � 1̃8

3̃x1 + 4̃x2 + 3̃x3 � 1̃6
x � 0

The complete description of Ã is shown next:

c̃1 = E(5, 2) c̃2 = E(4, 1) c̃3 = E(5, 1.5)
Ã11 = G(3, 1) Ã12 = G(4, 1) Ã13 = G(2, 0.5)
Ã21 = G(4, 2) Ã22 = G(5, 2) Ã23 = G(3, 1)

Ã31 = G(3, 0.5) Ã32 = G(4, 2) Ã33 = G(3, 1.5)
b̃1 = QE(0, 15, 2) b̃2 = QE(0, 18, 3) b̃3 = QE(0, 16, 2)

where E(a, b, c) denotes an exponential membership function, G(a, b) denotes
a Gaussian membership function, and QE(a, b, c) denotes a quasi-exponential
membership function, as shown as follows:

E(a, b) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

exp
−

(x − a)
b for x < a,

exp
−

(a − x)
b for x > a,

G(a, b) = exp
−

1
2

(
x − a

b

)2

∀x ∈ (−∞,∞),

QE(0, a, b) =

⎧
⎪⎨
⎪⎩

1 for x < a,

exp
−

(a − x)
b for x > a.

Since all fuzzy sets are unbounded, it is clear that the problem is unbounded
(see condition (i) in Definition 8). So we will check for α-feasibility. To check
strong α-feasibility (see Definition 3) we select α = 0.5 to solve the following LP:

Max
x

z = 6.38x1 + 4.69x2 + 6.03x3

s.t.

4.17x1 + 5.17x2 + 2.58x3 � 16.38
6.35x1 + 7.35x2 + 4.17x3 � 20.07
3.58x1 + 6.35x2 + 4.76x3 � 17.38

x � 0
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This problem has an optimal solution at x1 = 1.5083, x2 = 0, x3 = 2.5122
that reaches z = 24.80. Note that this solution is called α-strong because it
solves all possible combinations of αÃ and αb̃ (please do the calculus). At this
point, no need for checking weak feasibility of this problem since it has at least
an α-strong solution for α = 0.5.

5 Concluding Remarks

We analyzed some necessary conditions to ensure feasibility of an FLP, using the
supports of all fuzzy sets involved in the problem, or at least α-feasibility. Note
that our results apply to any kind of membership functions, and we have gener-
alized some important results known for interval-valued optimization problems.

Some FLPs can use unbounded fuzzy sets, but it does not mean that the
problem is always unbounded. In fact, it can be bounded for a given α level, as
shown in the examples. The proposed results also show that there is a chance
of having elements Ax ∈ supp(Ã) and bx ∈ supp(b̃) that could lead to infeasible
solutions, but other elements can lead to feasible solutions.

We recommend to check weak feasibility of an FLP before finding any other
kind of solutions of the problem. If a robust solution is needed, then a strong
feasible solution will solve any combination of Ax and bx.
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Abstract. Restricted Boltzmann Machines are a reconstructive neural
network. They derive an implicitly probabilistic model of data which can
be used to reconstruct or filter missing data as well as to classify data.
This paper develops a deterministic training algorithm and shows how to
use that algorithm to automatically derive fuzzy membership classes. The
algorithm developed in this paper combines many of the best features of
fuzzy learning algorithms and Restricted Boltzmann machines.
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1 Introduction

Restricted Boltzmann Machines (RBMs) [6] are a prototypical example of deep
learning, where the network is trained to reconstruct its input data. RBMs learn
to recognize the data they have been shown [4,7]. Therefore, they are well-suited
to difficult problems in machine learning and data mining where only one class
of data is well formed. For example, in computer security the space of normal
network traffic is defined but the attack space is relatively unbounded [8,14].
A similar example occurs in computational structural biology where the space
of properly folded proteins is much smaller than the space of improperly folded
proteins. In general, these problems are examples of anomaly detection, where
normal behavior of the system is well characterized but anomalous behavior
is unknown until it is observed. Thus, RBMs are of great potential interest,
especially when combined with probabilistic or fuzzy measures.

This paper examines the use of RBMs for classification and develops a novel
approach where the RBM is associated with a fuzzy variable. RBMs are inher-
ently fuzzy or probabilistic recognizers. Our contribution makes the class variable
a fuzzy or probabilistic prediction and takes advantage of the simplifications of
the RBM algorithm also developed in this paper. Using a fuzzy class variable
has two important results: first, it makes a direct estimate of the certainty of
the class prediction, and second, examination of the membership values allows
direct estimation of the confusion between classes.

2 Algorithm and Implementation

The generic algorithm for a RBM trains or optimizes a potential against data
[6]. A full Boltzmann machine uses a spin-lattice construct of hidden variables
c© Springer International Publishing AG 2018
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to enumerate states and seeks to find an energy minimum over that lattice
given an observed set of data. Since the number of possible states of the spin-
lattice is exponential, simplifications such as the RBM have been developed. An
RBM uses a layer of hidden variables. The hidden variables are independent
and thus the number of possible states is a linear function of the number of
hidden variables. Conventional RBMs use an iterative stochastic optimization
algorithm, contrastive divergence, for training.

2.1 General Algorithm

Several simplifications of the standard approach are used in this work to enhance
the speed and stability of the algorithm.

Spin Values: Following the physics convention of using the values of −1, 1 rather
than 0, 1 simplifies the calculations [11]. This corresponds to the assumption of
a constant bias of 0.5.

Layers: For Nhidden hidden layers and Nvisible visible data points there are
Nhidden ∗ Nvisible weights. It is helpful to think of this as a set of Nhidden vec-
tors that are Nvisible long. Training improves the correlation or anti-correlation
between the weights in a row and the inputs that activate that row.

Energy: The potential energy U is given by
∑

i HjWi,j(Vi − bi) where H are
the hidden signs, V the visible signs, and b a bias (if any).

Derivative: The trivial expression for dU
dWi,j

is simply HjVi. This encapsulates
Hebbian learning [5,7,12] and reinforces when H and V correlate. This, however,
is not the complete derivative. The probability of a given configuration (H,V)
is given by f = exp−βU

Z where the partition function Z is
∑

f and β is the
inverse temperature. The derivative dU

df is shown in Eq. 1. The angle brackets
(<>) denote expected value.

dU

dW
− <

dU

dW
> (1)

Contrastive divergence [6,13] finds a numerical approximation for < dU
dW >.

There is also an analytic approximation for this term, as shown in Eq. 2.

<
dU

dWi,j
>=< HjVi >= Hj < Vi >= Hj

eβU − e−βU

eβU + e−βU
(2)

We use the above approximation in this work. The fractional term estimates
the difference in probability for ±V . It converges to HjVi when the signs agree
and the energy is large and thus inhibits further training where the model repro-
duces the data. Being analytic, it does not iterate through reconstructions like
contrastive divergence, and is thus faster, especially on big data sets. Since train-
ing is an iterative process, small errors in the gradient are washed out in later
steps.
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Floating Point vs. Encoding. There are two approaches to dealing with
multivalued data. For the MNIST data,1 the values were mapped from 0 to 255
to −1 to 1. These floating point values are then used in exactly the same way
as the integer values of V . The other approach is to map the values into bits
and train against the bit values. Mapping to integer bit-strings worked better
for the relatively small test cases that were compared against our earlier Fuzzy
Decision Tree algorithm [1,3].

A Simple Scoring Function. The relative energy of the reconstruction and
the input is an effective approximation to the free energy. Formally, the energy
of the reconstruction is Hi

∑
j Wi,jCj where Hi is the hidden layer, Wi,j the

weights, and Cj the reconstruction. The energy of the input is Hi

∑
j Wi,jVj .

These expressions are, in themselves, of little use since the values of the weights
can reflect the number of instances of each kind of data used to train the machine
and other non-informative attributes of the data. However, if we normalize this
with the maximum possible value of the energy |Hi|

∑
j |Wi,j ||Cj | then we have

an expression that describes how well a given data point is reconstructed by the
machine without formally finding the reconstruction. The reconstruction ratio
R, shown in Eq. 3, is −1 for a perfect reconstruction where Vj = Cj for all j.

R =
Hi

∑
j Wi,jVj

|Hi|
∑

j |Wi,j ||Cj | (3)

Training. Training proceeds by gradient descent. Let Wi,j ← Wi,j − α dU
dWi,j

where α is the step size or training rate. Since the energy function is quadratic,
if the layers are optimized against the same data in the same manner, they will
converge to a constant set of values (up to a trivial sign change). There are two
general approaches to forcing the layers to be different. One is to use a stochastic
optimization strategy where the layers are treated differently even though the
gradients are identical. The other is to restrict the updates to a subset of the
layers. We use the reconstruction error to select which layers to optimize.

Initialization. Typically we initialize the weights to zero. Experimentally, using
random initial weights does not alter the values that are found (other than via
a trivial sign term). Initialization is performed by using the reconstruction ratio
defined in Eq. 3 and selecting the best and worst layer for each data point as
the training iterates through the training set. This ensures that all of the layers
have some non-zero weights and that these weights reflect at least one data point
in the training set. Observationally, this algorithm does not converge well when
iterated and so we use a different approach to training.

1 The MNIST character recognition set [9,15] consists of a set of 70,000 hand drawn
characters divided into 60,000 training samples and 10,000 test samples.
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Iteration. After initialization, we have found that selecting the layer with the
best reconstruction ratio for optimization is a good strategy. The reconstruction
ratio is evaluated for each layer and only the best layer is trained.

Anti-training. The gradient derives the best local descent direction to improve
the quality of the reconstruction. The analytic gradient can be used to make local
ascents to de-optimize incorrect reconstructions. Anti-training by hill climbing
is used in the crisp algorithm where the best solution for an incorrect class is
found. That best “incorrect” solution is detuned in an anti-training step. Anti-
training is applied to sharpen the specificity in the fuzzy algorithms. In those
cases, the second most likely category is selected for detuning.

2.2 Crisp Multiclass Algorithm

The Crisp Multiclass algorithm defines an individual RBM for each category of
data and assigns the class based on the quality of the reconstruction [7]. This
is an effective algorithm if the number of categories is known in advance and if
the population of each category is approximately the same. The total number
of layers is defined as Ntotal = Nlayer ∗ Ncategory. Instead of searching Ntotal

layers, it is only necessary to search each of the Nlayer layers to find the optimal
reconstruction. This can result in a significant savings in convergence time. The
individual RBMs are trained to reconstruct instances of each class. Unknown
classes are assigned by finding which RBM returns the lowest (and therefore
best) reconstruction ratio.

2.3 Fuzzy Multiclass Algorithm

The Fuzzy Multiclass algorithm extends the standard RBM by adding a belief
function to each layer. The layer with the best reconstruction ratio is selected
during classification and the most likely value (if discrete) or expected value (if
continuous) for the class assignment is returned along with an accuracy esti-
mate. The examples in this paper possess discrete values, so the belief function
is a count of how often each layer optimally reconstructs a given input. Dur-
ing assignment of an unknown class, the most likely category of the layer with
optimal reconstruction is chosen as the class label. A continuous version could
be defined where a belief function is constructed based on the values for the
continuous variable. We explore two versions of the Fuzzy Multiclass algorithm:
a single pass online version where the belief function is updated during training,
and a two-pass version where the belief functions are updated after each pass of
training.

Online Version. In the online version the fuzzy measure is updated during
training. After initialization, the first step in the iteration is to find the layer
with the best reconstruction in the current model. The fuzzy measure for that
layer is incremented when the layer is trained. It improves convergence to anti-
train the layer if the fuzzy measure disagrees with the input class.
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Two-Pass Version. The alternative approach is to train the data using the
best reconstruction metric. Anti-training is used during the first pass when the
predicted class is not the most probable class. Aggressive anti-training can auto-
matically remove layers. When the model uses fewer parameters for the same
accuracy this is a good property. However, it can remove layers that represent
minor components of the model and thereby lower accuracy so it should be used
with caution. In the second pass, the fuzzy measure is reinitialized, the data set
rewound, and the counts adjusted based on the predicted classes for each layer.

3 Results

Small Examples. Several standard small example test cases were chosen from
our previous work on the Fuzzy Decision Trees (FDT) [1–3]. Taken from the
UCI repository [10], these benchmarks were evaluated on the supplied train-
ing/testing sets. The results shown in Table 1 demonstrate that both the crisp
and fuzzy RBMs are generally competitive with the FDT. Both RBM algorithms
do better when the number of classes is small and there is enough redundancy
in the data for effective training.

Table 1. Benchmark Results

Benchmark Size, Classes FDT Crisp Antitrained
crisp

2-Pass fuzzy Online
fuzzy

Iris 36.3 97.2 83.3 83.3 86.1 91.7

Bupa 86.2 54.7 55.8 61.6 64 64

Wdbc 142.2 95.1 94.3 95.1 91.5 91.5

Ecoli 170.7 79.4 71.2 70 74.7 71.8

sRNA 452.2 48.7 58.2 57.1 57.7 58.6

Image 574.7 91.5 92 90.8 91.5 91.5

microRNA 1106.2 85.7 75 80 86.8 87.1

MNIST Example. The crisp algorithms were trained on ten 100 hidden unit
classifiers and the two fuzzy algorithms were trained on 1000 hidden unit classi-
fiers so that the same number of parameters were trained. No preprocessing or
distortion was used other than a linear map of the 0–255 range of the data to the
range −1 to 1. The accuracy ranges from 94.6% for the crisp algorithm to 95.7%
for the online fuzzy algorithm and is similar to what is seen with a 2-layer NN
[9]. Figure 1 shows the separation between classes for both types of algorithms.
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Fig. 1. The class separation for the two similar digits 4 and 9. The plot on the left
shows the separation with the crisp algorithm and the right shows the separation with
the 2-pass fuzzy algorithm. The classes are distinct in both cases although there is
overlap due to errors. The confusion in the 2-pass fuzzy algorithm (3%) is consistent
with the estimated accuracy (97%). The small group of points near 0,0 in the plot on
the right are misclassified as something other than 4 and 9.
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Abstract. Exotic semirings have become an important area of mathe-
matical research over the last decade. Fuzzy set theory, and especially
possibility theory are Uncertainty Systems that use exotic semirings as
their algebra. This connection was first notes in an exploration of gen-
eralized measures of uncertainty. There is a lot the fuzzy set community
can learn from the new ares being explored in exotic semirings. . . .

Keywords: Exotic semiring · Tropical geometry · Measure of uncer-
tainty

1 Introduction

Set theory, viewed by characteristic functions, maps a universe to the Boolean
values zero and one with operators disjunction for or and conjunction for and.
Fuzzy set theory defines two operators on the unit interval, max corresponding
to union and min corresponding to intersection. Probability theory also maps
elements to the unit interval, however it uses plus and times as its primary
operators. The simplest common algebraic model that includes all three models
of uncertainty—Boolean algebras, max-min algebras, and plus-times algebras—
is the semiring.

A second line of inquiry, which focused on local computation, in a general-
ization of marginal and conditional probabilities, also arrived at semirings as the
base system for valuation algebras [8,9,14,16].

A third line of inquiry noted that set, probability and possibility theory all
have axiomatic measures of uncertainty. For set theory, the axiomatic measure
of uncertainty is the Hartley measure [5]. For probability and possibility the
well known measures of uncertainty are the Shannon entropy [15] and the non-
specificity [6] (See Table 1). In addition, generalized means in probability theory
allow for the introduction of the Rényi entropies. Wierman [18] observed that
the fundamental commonality of all measures of uncertainty was additivity; in
special circumstances the uncertainty in two spaces adds to the uncertainty in
the product space. Wierman shows that if uncertainty values are amalgamated
and diffused with binary operators, the underlying algebraic structure must be
a semiring.

It turns out that there are four basic classes of semirings on the reals: one
is the plus-times semiring used in probability systems and the other is the max-
min semiring used in possibility. Another class of semirings are all isomorphic
c© Springer International Publishing AG 2018
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and are called the exotic semirings. Exotic semirings are hybrids where addition
is replaced with max or min and multiplication is replaced with addition or
multiplication. This gives four exotic semirings max-plus, max-times, min-plus,
and min-times. Finally, max and any t-norm will always form a semiring on the
unit interval. Recently Wierman (submitted) shows that it is possible to have
axiomatic measures of uncertainty for uncertainty theories based on the exotic
semirings. This paper will look at the implications of this uncertainty measure
on applying one of these exotic semirings to uncertainty problems. It will also
stress the important new results in the application of exotic semirings that are
published outside of the fuzzy set community.

Table 1. Measures of uncertainty

Uncertainty theory Uncertainty measure Name Year

Classical set theory H(A) = log (|A|) Hartley function 1928

Probability theory H(p) = −∑n
i=1 pilog (pi) Shannon entropy 1948

Possibility theory U(r) =
∑n

i=2 ri log
(

i
i−1

)
Nonspecificity 1982

Probability theory Rα (p) = 1
1−α

log
(∑m

i=1 pα
i

)
Rényi entropies (α �= 1) 1961

2 Semirings

Semirings are an algebraic structures that has recently found a host of applica-
tions. For a complete reference as wall as a survey of applications, see the works
of Golan, [2–4]. A topology is a semiring, a distributive bounded lattice is a
semiring, the languages over an alphabet are a semiring. Here we present only
the basic definition of a semiring.

Definition 1 (semiring). A semiring is a set K with two binary operators,
⊕ (pseudo—addition) and ⊗ (pseudo—multiplication) defined upon K and such
that the following five rules are satisfied: (1) ⊕ and ⊗ are associative, (2) ⊕ is
commutative, (3) right and left distributive laws hold for ⊗ over ⊕, (4) there
exist pseudo-additive and pseudo-multiplicative identities 0 and 1 with 0 �= 1,
and (5) 0 ⊗ k = 0 = k ⊗ 0 for all k in K.

Note 1. Unfortunately, the literature uses a variety of notations for the four
components pseudoaddition, pseudoadditive identity, pseudomultiplication, and
pseudomultiplicative identity. Exotic semirings sometimes use � for pseudomul-
tiplication and e for the additive identity and ε for the multiplicative identity.
Wikipedia denotes the four components +, 0, ·, 1.

If ⊗ is commutative K is said to be a commutative semiring. If a ⊗ a = a
the semiring is idempotent. The important point is that ⊗ distributes over ⊕
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both from the left and the right, a⊗ (b ⊕ c) = (a ⊗ b)⊕ (a ⊗ c) and (b ⊕ c)⊗a =
(b ⊗ a) ⊕ (c ⊗ a). When we pseudo multiply an element by itself n times we will
denote it as exponentiation, so that a ⊗ a ⊗ · · · ⊗ a = an (sometimes this is
denoted a � n).

Next, let A and B matrices of size m × s and s × n respectively where every
entry is a member of the set K. We can define matrix multiplication of A and
B to produce a matrix C of size m × n, denoted C = A � B, with the formula
ci,j =

⊕s
k=1 aik ⊗ bkj .

2.1 Constructing New Semirings from Old

When K is a interval of real numbers we can use monotone surjective functions
to create new semirings from old. Suppose that 〈[a, b],⊕,0,⊗,1〉 is a semiring
and that g : [a, b] → [c, d] is a strictly increasing surjective function with g(a) = c
and g(b) = d. Define two binary operators, � and �, on [c, d] by the formulas:

x � y = g
(
g−1 (x) ⊕ g−1(y)

)
(1)

x � y = g
(
g−1 (x) ⊗ g−1(y)

)
. (2)

Then � distributes over � and 〈[c, d],�, g (0) ,�, g (1)〉 is a semiring. The use
of generating functions g allows essentially limitless generation of semirings. Of
course most of these systems are isomorphic under this generation. The use of
generating functions in the construction of t-norms is similar in strategy.

Example 1. Let S = 〈[0, 1],+, 0, ·, 1〉 and let g(x) = xp with p a positive inte-
ger greater than two. Then g (S) =

〈
[0, 1], (ap + bp)

1
p , 0, ·, 1

〉
is the semiring

generated from S by g.

Example 2. Let S = 〈R,+, 0, ·, 1〉 and let g(x) = h log x so that g−1(x) = ex/h.
Then

x � y = h log
(
e

x/h + e
y/h

)
(3)

x � y = h log
(
e

x/he
y/h

)
= x + y. (4)

When we take the limit as h → 0 the � becomes max (x, y). This transforma-
tion is called the Maslov dequantization. It has become fundamental to some
of the analytic applications of semirings [10,11]. Since logb(x) = 1/log(b) log(x)
letting h approach zero is the same as letting the base of the logarithm approach
infinity, which is a common alternative formulation of the Maslov dequantization
(Table 2).

The names of the scheduling and bottleneck semirings (see Table 3) do a
fair job of indicating their application. The tropical semiring has applications in
finite automata, geometry and resource allocation, and the possibilistic semiring
has been applied to fuzzy games. Some of the more important semirings are
given in Table 3 (Fig. 1).
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Fig. 1. Graph with distance.

G V1 V2 V3 V4 V5 V6

V1 0 101 122 107 36 66

V2 101 0 50 108 52 109

V3 122 50 0 36 58 68

V4 107 108 36 0 93 48

V5 36 52 58 93 0 121

V6 66 109 68 48 121 0

Fig. 2. Matrix representation of graph.

Table 2. Length of shortest path from Vi to Vj.

V1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5

V2 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

Length 88 94 107 36 66 50 86 52 109 36 58 68 93 48 102

Example 3. Consider a weighted graph where the weights denote the distance
between nodes. Let G be its matrix representation, where gij is the distance from
node i to node j. If there are n nodes in the graph consider Gn = G�G�· · ·�G
using the min-plus algebra. Then gn

ij is the length of the shortest path from node
i to node j (Fig. 2).

This paper is concerned with the so called Exotic Semirings. They are the
four hybrid exotic semirings: max-plus, min-plus, max-times, and min-times. The
Brazilian mathematician Imre Simon lived in Rio de Janeiro on the Tropic of
Capricorn and was an early researcher of the max-plus semiring; they are named
in his honor. The max-min algebra is also considered exotic, but this semiring
has already seen extensive application in fuzzy set theory.

Example 4. Let S = 〈R,min,−∞,+, 0〉 and let g(x) = −x so that g−1(x) = −x.
Then x � y = −min (−x,−y) = max (x, y) and x � y = − (−x + −y) = x + y.
From which we conclude that the Tropic or min—plus semiring is isomorphic to
the Arctic or max-plus semiring.

Example 5. Let S = 〈R,min,−∞, ·, 1〉 and let g(x) = ln(x) so that g−1(x) =
ex. Because the exponential function is monotone increasing we have x � y =
ln(min (ex, ey) = min (x, y) and x � y = ln (exey) = x + y. From which we
conclude that the Subtropic or min—times semiring is isomorphic to the Tropic
or min—plus semiring on the positive reals. It is not to hard to see that the
Subarctic and Arctic semirings are isomorphic and that therefore all the hybrid
exotic semirings are isomorphic.
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Table 3. Semirings

US ⊕ ⊗ 0 1 Names

[a, b] max {a, b} min {a, b} a b Bottleneck, Extended fuzzy

R ∪ {−∞} max {a, b} a + b −∞ 0 Arctic, Schedule, max-plus

R ∪ {−∞} max {a, b} a · b −∞ 1 Subarctic, max-times

R a + b a · b 0 1 Real numbers

R ∪ {+∞} min {a, b} a + b +∞ 0 Tropical, min-plus

R ∪ {+∞} min {a, b} a · b +∞ 1 Subtropical, min-times

R
≥0 (ap + bp)

1
p a · b 0 1 Real-p

L ∨ join ∧ meet 0 1 Bounded distributive lattice

[0, 1] max {a, b} min {a, b} 0 1 Fuzzy set

[0, 1] max {a, b} t-norm(a, b) 0 1 Fuzzy-t

{0, 1} ∧ and ∨ or 0 1 Boolean algebra

P (
∑∗) union concatenation ∅ null Language

3 Additivity and Semirings

In the introduction, we note that the Additivity Axiom is essentially identical for
all measures of uncertainty. With X and Y be finite sets and K ⊆ R ∪ {±∞} let
a : X → K and b : Y → K be functions we will call distributions. The Additivity
Axiom for a measure of uncertainty W then looks like

(S1) Additivity—W (a × b) = W (a) + W (b).

The trick here is how to form distribution a× b from a and b and how to recover
distributions a and b from a × b. It helps to examine examples from probability
and possibility, see Table 4. In probability we get a×b from a and b by multiplying
and get a and b from a × b by adding. In possibility we get a × b from a and b
by min and get a and b from a × b by max.

If we assume K is part of a semiring then we can generalize these procedures.
Since we assume finiteness we know that |X| = m and |Y | = n and define
ai = a(xi), bj = b(yj), and cij = c(xi, yj) where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 2 (cylindric closure). Given distributions a and b with a : X → K
and b : Y → K we define the cylindric closure of ĉ = a×b , formally ĉ : X ×Y →
K as follows: ĉij = ĉ(xi, yj) = ai ⊗ bj.

Definition 3 (marginal). Given the distributions c : X × Y → K define mar-
ginal distribution on X and Y , formally Xc : X → K and Y c : Y → K, by
Xc(xi) =

n⊕

j=1

c(xi, yj) and Y c(yj) =
m⊕

i=1

c(xi, yj).
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Definition 4 (noninteractive). Given the function c : X × Y → K then c is
noninteractive if and only if the cylindric closure of its marginals is identical to
c, or c = ĉ.

Table 4. Noninteractive uncertainty systems (US).

Suppose that a semiring permits noninteractive distributions on X×Y . Then
noninteraction implies that

ai = (ai ⊗ b1) ⊕ (ai ⊗ b2) ⊕ · · · ⊕ (ai ⊗ bn). (5)

Since we have a distributive law we know that

ai = ai ⊗ (b1 ⊕ b2 ⊗ . . . ⊕ bn) (6)

Looking at the above equation it is obvious that noninteraction will always
be present in an US if we require distribution to pseudoadd to the multiplicative
identity 1.

Definition 5 (1–normal). A distribution a : X → K is 1-normal if 1 =⊕
x∈X a(x).

Therefore, if b is 1-normal,

ai = ai ⊗ (b1 ⊕ b2 ⊕ . . . ⊕ bn) (7)
= ai ⊗ 1

= ai

Similarly, the requirement that bj =
⊕m

i=1 cij forces a to be 1-normal.
In probability, 1-normal means the probability distribution adds to one. In

possibility theory it means that the max of the possibility distribution is one.
It is interesting to remark that probability, from a semiring viewpoint,

does not require positivity. All the familiar formulas for probability, such as
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P (A ∪ B) = P (A) + P (B) − P (A ∩ B) and P (A | B) = P (A∩B)/P (B) work
without this requirement. Thus the distribution on X with five elements of
〈−1,−1, 1/2, 1/2, 2〉 works just fine. Similarly, possibility could use negative num-
bers, but not numbers greater than one.

For the Exotic Semirings the condition of being 1-normal has some interesting
results. For example max-plus requires that the maximum over X of a(x) be
zero. Max-times requires that the maximum be one, and we can actually limit
this to the unit interval to produce a familiar brand of fuzzy set theory, since
times is a t-norm. The min plus requires the minimum be zero but we can not
limit ourselves to any finite interval since addition is unbounded. The min times
requires the minimum to be one.

Many applications of the Exotic semirings do not accept these bounds. For
example Ricardian economics, which we briefly discuss later.

Definition 6 (uncertainty distribution). An uncertainty distribution is a
mapping a from a universe U to a set K in a semiring S = 〈K,⊕,0,⊗,1〉 such
that a is 1-normal.

Definition 7 (uncertainty system). An uncertainty system is a set of uncer-
tainty distributions that map to a set K in a semiring S = 〈K,⊕,0,⊗,1〉.

It will often be convenient to say that an uncertainty system maps to a semi-
ring S when it technically maps to the set K in the semiring S = 〈K,⊕,0,⊗,1〉.

4 Information Measures and Additivity

The following axioms for an arbitrary semiring assume that it is possible to
create uniform distributions of size n so that kn = 〈k, k, · · · , k〉 with k ∈ K. We
note that this uniform distribution kn = 〈k, k, · · · , k〉 usually takes k = 1, the
pseudo-multiplication identity, as its repeated value.

(S2) Monotonicity—W (kn) ≤ W (kn+1).
(S3) Normalization—W (k2) = 1.
(S4) Expansibility—if we add an element z to X and assign z the value 0 (from

the semiring) then it has no affect on the measure—W (a) = W (a,0).

With just these axioms it is possible to set h(n) = W (kn) and deduce that
W (kn) = log(n) for any semiring which satisfies 1-normal and uniform distrib-
ution requirement.

Another property that is often desired of an uncertainty measures is bound-
edness.

(P1) Bounded—0 ≤ W (a) ≤ log (|X|).
The final two Axioms for uncertainty depend on the individual semiring that is
the image. Here we give the axioms for the Arctic semiring whose pseudomulti-
plicative operator is edition with identity zero. It turns out that for the exotic
semirings the measures of uncertainty are similar to the Rényi entropies and are
parameterized by a non-negative α.
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(W5) Base—Wα(0, k2) = log
(
1 + eαk2

)
.

(W6) Recursion—If kn adds a final element kn to the distribution kn−1 then

Wα(k1, k2, k3, · · · , kn) = Wα(k1, k2, k3, · · · , kn−1) + Wα

⎛

⎝0,
eαkn

α

√∑n−1
i=1 eαki

⎞

⎠

(8)

A simple induction proof gives us the resulting Arctic measure of uncertainty,
see Table 5 for the uncertainty measures for all four exotic semirings.

Table 5. Exotic uncertainty with α ≥ 0.

US ⊕ - ⊗ 0 1 1-normal Names

Arctic max-plus −∞ 0 [−∞, 0] Wα(k) = log
(∑n

i=1 eαki
)

Subarctic max-times −∞ 1 [0, 1] Wα(k) = log
(∑n

i=1 e−αki
)

Tropical min-plus +∞ 0 [0, ∞] Wα(k) = log
(∑n

i=1 kα
i

)

Subtropical min-times +∞ 1 [1, ∞] Wα(k) = log
(∑n

i=1 k−α
i

)

5 Ricardian Trade

A Ricardian [13,17] economy concerns M countries that produce N commodities.
An M ×N matrix A has components aij that denote the labor costs of Country i
to produce Commodity j. In addition, each country has a fixed labor force qi, and
the M dimensional vector q = 〈qi〉i∈M . A Ricardian economy is the set {A,q}.
Next, in a fixed currency we denote by the M dimensional vector w = 〈wi〉i∈M

the wage rate of Country i. Similarly the an N-row vector p = 〈pj〉j∈N gives the
price of Commodity j. We call the pair (w,p) a wage-price system.

We easily see that the cost for Country i to produce Commodity j is aijwj

and if this is equal to pj we say the production technique (i, j) is competitive.
An international value v = (w,p) is admissible if aijwj ≥ pj ∀i∀j.

In terms of the Exotic algebra competitive becomes w�A = p and admissible
becomes w � A ≥ p. Economists seek to find an international value v for which
there is one or more competitive techniques for each commodity. How do they go
about solving for an feasible w? By using geometry of course - tropical geometry;
these are linear equations and the intersection of the lines should be the optimal
point.

5.1 Tropical Geometry

What does an exotic line in the R
2 plane look like? Let us use the Tropic min-

plus semiring. A linear curve is defined by a polynomial in x and y : p(x, y) =
a ⊗ x ⊕ b ⊗ y ⊕ c where a, b, c ∈ R. The curve associated with any polynomial is
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defined as the set of points at which it is not linear. This means that if we are
at a point P0 = 〈x0, y0〉 and we move in a direction Δ = 〈dx, dy〉 then the value
of p(x0 + αdx, y0 + αdy) varies linearly with α. When we transform p(x, y) into
a more familiar notation, we are looking at min [a + x, b + y, c]. Since each piece
is linear, the function is nonlinear only when we change pieces. This produces
three lines a+x = b+ y, b+ y = c, and c = a+x which all intersect at the point
〈c − a, c − b〉. The result is three rays emerging from the point L = 〈c − a, b − a〉,
one going south, one west, and one sloping off to the northeast. Two Tropic
lines that are not collinear (intersect at a single point. Figure 3 shows two lines
intersecting l1(x, y) = 6 ⊗ x ⊕ 7 ⊗ y ⊕ 5 and l2(x, y) = 2 ⊗ x ⊕ 1 ⊗ y ⊕ 5.

Fig. 3. Tropical lines intersecting. Fig. 4. Tropical cubic polynomial.

In the more general case a polynomial such as p(x, y) = 2x5y ⊕ xy5 ⊕ 3xy ⊕ 5
is more familiar as min [2 + 5x + y, x + 5y, 3 + x + y, 5]. The resulting graph
would be composed of a line segments, as is true of all Tropic polynomials,
see Fig. 4.

6 The Fuzzy Semirings

Suppose in the following discussion that K = [0, 1]. In fuzzy set theory t-norm
and t-conorm operators are continuous monotonic binary functions that mimic
logic’s and and or when restricted to Boolean values {0, 1}. We can apply the
following theorems from [1] since we assume distributivity.

Theorem 1. If ⊕ and ⊗ represent a t-conorm and t-norm respectively and ⊗
distributes over ⊕ then ⊕ = max.

Theorem 2. If ⊕ and ⊗ represent a t-conorm and t-norm respectively and ⊕
distributes over ⊗ then ⊗ = min.
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Theorem 3. If ⊕ and ⊗ represent a t-conorm and t-norm respectively and ⊗
and ⊕ both distribute over each other then ⊕ = max and ⊗ = min.

Also as [7] note, the deMorgan laws and distributivity are exclusive for all
the generated norm, conorm, complement triples. From Theorem1 we see that
we are restricted to max as our pseudo-multiplication. Pseudo-multiplication
however can be any t-norm. If ⊗ = min then it turns out that 1-normality is
not necessary for noninteraction. We can use the formula for Nonspecificity on
the sorted values. The max-times algebra is dealt with above.

We conjecture that there are no other semirings on intervals of the real num-
bers that are not isomorphic to one of the semirings in Table 3.

7 Conclusion

Exotic semirings contain a lot of new mathematical concepts that should be
of interest to the fuzzy community. For example Nitica and Sergeev [12] are
working on convex geometry in max-min algebras. All of their publications are
in mainstream mathematics journals. The max—times semiring is both a fuzzy
algebra and an exotic semiring, a coincidence that bears exploitation.
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Abstract. It is know from the literature that interval-valued equiva-
lence functions are not decomposable. In order to solve that problem and
give a characterization for interval-valued restricted equivalence func-
tions by means of aggregating interval fuzzy implication we consider an
admissible order on the lattice L([0, 1]). Also, we discuss about some
other properties of those operators.

Keywords: Restricted equivalence functions · Interval · Images ·Global
comparison

1 Introduction

A very important issue in image processing is provide a suitable way to compare
two images globally and say how similar they are. It can be done following many
different techniques and algorithms that differ depending on the interpretation
of the problem. In the literature one can find several paper discussing about how
to compare digital images [7,8].

In this framework Bustince et al. in [7] have defined the restricted equivalence
functions on [0, 1] which is a particular case of equivalence functions given by
Fodor and Roubens in [16] which is able to provide a local measure for comparing
images by considering a pixel in one image with its corresponding pixel in the
other image. Also authors develop a way to construct restricted equivalence
functions by aggregating fuzzy implications.

Later Julio et al. in [18] have defined the interval version of restricted equiva-
lence functions (for short REF) which can not be characterized since its domain
L([0, 1]) does not have a total order in it (i.e. elements x, y ∈ L([0, 1]) may not be
comparable). It is a very important restriction since local comparison of digital
image is processed pixel by pixel and hence have no comparable elements on
L([0, 1]) became a limit for the algorithms.

In this paper we present a way to some that problem by considering in
L([0, 1]) an admissible order and show that interval-valued restricted equivalence
functions are decomposable.
c© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
Advances in Intelligent Systems and Computing 648, DOI 10.1007/978-3-319-67137-6 45
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We begin by recalling some definitions and results related to REF, interval
fuzzy negations and implications in Sect. 2. Section 3 brings out the discussing
about the restricted equivalence functions on L([0, 1]) with an admissible order
and we finish the paper by talking about results in Sect. 4.

2 Preliminaries

2.1 Aggregation Functions

Definition 2.1: A function M :
⋃

n∈N
[0, 1]n → [0, 1] for some n � 2 is called an

aggregation function if it satisfies the following properties:

(A1) M(x1, . . . , xn) = 0 if and only if xi = 0 for all i ∈ {1, 2, . . . , n};
(A2) M(x1, . . . , xn) = 1 if and only if xi = 1 for all i ∈ {1, 2, . . . , n};
(A3) For any pairs (x1, . . . , xn) and (y1, . . . , yn) of elements of [0, 1]n, if xi � yi

for all i ∈ {1, 2, . . . , n} then M(x1, . . . , xn) � M(y1, . . . , yn);
(A4) M(x1, . . . , xn) � M(xp(1), . . . , xp(n)) for any permutation p on

{1, 2, . . . , n}.
Moreover, if M satisfies

(A5) M(x1, . . . , xn) < M(y1, . . . , yn) whenever xi < yi for all i ∈ {1, 2, . . . , n}.
For n = 2, if M satisfies

(A6) M(x, y) = M(y, x) it is called commutative.
An element e ∈ [0, 1] is a neutral element of M if it satisfies

(A7) For all x ∈ [0, 1]

M(x, e) = M(e, x) = x.

Example 2.2: If P = [0, 1]2 then functions R,L : Pn → P defined by

R((x1, y1), . . . , (xn, yn)) = (min(x1, . . . , xn),min(y1, . . . , yn))

and

L((x1, y1), . . . , (xn, yn)) = (max(x1, . . . , xn),max(y1, . . . , yn))

are n-ary aggregation functions on P .

2.2 Fuzzy Implications

Definition 2.3: A function I : [0, 1] × [0, 1] −→ [0, 1] is a fuzzy implication if for
each x, y, z ∈ [0, 1] the following properties hold:

(FPA) if x � y then I(y, z) � I(x, z);
(SPI) if y � z then I(x, y) � I(x, z);
(LB) I(0, y) = 1;
(RB) I(x, 1) = 1;

(CC3) I(1, 0) = 0.
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Consider also the following properties of an implication I:

(CC1): I(0, 0) = 1 (corner condition 1);
(CC2): I(1, 1) = 1 (corner condition 2);
(CC4) I(0, 1) = 1 (corner condition 4);
(NP) I(1, y) = y for each y ∈ [0, 1] (left neutrality principle);
(EP) I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1] (exchange principle);
(IP) I(x, x) = 1 for each x ∈ [0, 1] (identity principle);
(OP) I(x, y) = 1 if and only if x � y (ordering property);
(IBL) I(x, I(x, y)) = I(x, y) for all x, y, z ∈ [0, 1] (iterative Boolean law);
(CP) I(x, y) = I(N(y), N(x)) for each x, y ∈ [0, 1] with N a fuzzy negation

(contraposition law);
(P) I(x, y) = 0 if and only if x = 1 and y = 0 (Positivity);

(SN) I(x, 0) = N(x) is a strong negation;
(SI) I(x, y) � y for all x, y ∈ [0, 1];
(C) I is a continuous function (continuity).

2.3 Restrited Equivalence Functions

The problem of global comparison of two images has been studied by several
researchers in image processing (see [3,7,25]). One of the most used tools for
this global comparison is the equivalence functions introduced in [16].

Definition 2.4: A function EF : [0, 1]2 → [0, 1] is called equivalence function if
the following properties hold:

(i) EF (x, y) = EF (y, x) for all x, y ∈ [0, 1];
(ii) EF (0, 1) = EF (1, 0) = 0;
(iii) EF (x, x) = 1 for all x ∈ [0, 1];
(iv) If x � x′ � y′ � y then EF (x, y) � EF (x′, y′).

As a particular class of these kind of functions, in [7] Bustince defined the
notion of restricted equivalence functions as follows.

Definition 2.5: A function REF : [0, 1]2 → [0, 1] is called a restricted equivalence
function if it satisfies the following conditions:

(i) REF (x, y) = REF (y, x) for all x, y ∈ [0, 1];
(ii) REF (x, y) = 1 if and only if x = y;
(iii) REF (x, y) = 0 if and only if x = 1 and y = 0, or x = 0 and y = 1;
(iv) REF (x, y) = REF (N(x), N(y)) for all x, y ∈ [0, 1], N being a strong nega-

tion on [0, 1];
(v) For all x, y, z ∈ [0, 1] such that x � y � z then REF (x, z) � REF (x, y)

and REF (x, z) � REF (y, z).
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It is clear that every restricted equivalence function is an equivalence function
in the sense of Definition 2.4, however the reciprocal of this affirmation is not
true. For instance, the function EF : [0, 1]2 → [0, 1] given by

EF (x, y) =
{

0, if x = 0 and y = 1 or x = 1 and y = 0;
1, otherwise.

for all x, y ∈ [0, 1] is an equivalence function but it is not a restricted equivalence
function (see Example 2 in [7]).

Naturally, equivalence functions can be generalized for bounded lattices as
follows.

Definition 2.6: Let L be a bounded lattice. A function EF : L2 → L is called
an equivalence if it satisfies the following conditions:

(F1) EF (x, y) = EF (y, x) for all x, y ∈ L;
(F2) EF (0L, 1L) = EF (1L, 0L) = 0L;
(F3) EF (x, x) = 1L for all x ∈ L;
(F4) If x �L y �L z then EF (x, y) �L EF (x, z).

A first problem that arises from defining restricted equivalence functions on
lattices is that we can not guarantee the existence of a strong negation for a
given lattice L. On the other hand, for many applications, specially in image
processing, it is crucial that an analog of [3] in Definition 2.5 holds, since it
ensures the fact that a given property is preserved when the negative of an
image instead of the image itself is considered. For this reason, we introduce the
following definition.

Definition 2.7: Let N be a frontier negation on L. A function REF : L2 → L is
called a restricted equivalence function on L with respect to N , or just an L-REF
with respect to N , if it satisfies, for all x, y, z ∈ L, the following conditions:

(L1) REF (x, y) = REF (y, x);
(L2) REF (x, y) = 1L if and only if x = y;
(L3) REF (x, y) = 0L if and only if x = 1L and y = 0L, or x = 0L and y = 1L;
(L4) REF (x, y) = REF (N(x), N(y));
(L5) if x �L y �L z then REF (x, z) �L REF (x, y).

Notice for a given lattice L a frontier negation always exists, as Example 2.8
shows.

Example 2.8: Let L be any lattice such that there exists x0 ∈ L with x0 �= 0L, 1L.
Then the mapping:

N(x) =

⎧
⎨

⎩

0L if x = 1L;
1L if x = 0L;
x0 otherwise.

is a frontier negation. Notice that this example proves that for every lattice L
with at least three elements it is possible to define a frontier negation.
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On the other hand, the requirement of N being a frontier negation can no be
weakened since otherwise a contradiction between (L3) and (L4) arises. In any
cases, and with an eye on possible applications, we will mostly deal with REF’s
defined with respect to a strong negation.

Example 2.9: Let L be a lattice with at least three elements, and take x0 ∈
L\{0L, 1L}. Then we can define

REF (x, y) =

⎧
⎨

⎩

0L if x = y;
1L if {x, y} = {0L, 1L};
x0 otherwise.

which is a restricted equivalence function with respect to any frontier negation N .

Proposition 2.10: Let M : [0, 1]2 → [0, 1] be a function satisfying (A1), (A2),
(A6) and (A7). Then, a function REF : [0, 1]2 → [0, 1] is a restricted equivalence
function (with respect to a strong negation N) if and only if there exists a
function I : [0, 1]2 → [0, 1] satisfying (FPA), (OP), (CP) and (P) such that

REF (x, y) = M(I(x, y), I(y, x)). (1)

2.4 Interval Fuzzy Negations and Implications

Definition 2.11: A function NIV : L([0, 1])2 → L([0, 1]) is called a interval fuzzy
negation if it satisfies for all X,Y,Z,K ∈ L([0, 1]) the following conditions:
(N1) NIV ([0, 0]) = [1, 1] and NIV ([1, 1]) = [0, 0];
(N2) If X ≤ Y then NIV (Y ) ≤ NIV (X);
The function NIV is called a strict interval fuzzy negation if it is Moore contin-
uous and
(N3) If X < Y then NIV (Y ) < NIV (X);

Definition 2.12: [1] A function IIV : L([0, 1])2 → L([0, 1]) is called a interval
fuzzy implication if it satisfies for all X,Y,Z,K ∈ L([0, 1]) the following condi-
tions:
(FPA) X � Z implies IIV (X,Y ) ≥ IIV (Z, Y ) (first place antitonicity);
(SPI) Y � K implies IIV (X,Y ) � IIV (X,K) (second place isotonicity);
(RB) IIV (X, [1, 1]) = [1, 1] (right corner condition);
(LB) IIV ([0, 0], Y ) = [1, 1] (left corner condition);
(CC3) IIV ([1, 1], [0, 0]) = [0, 0].

Extra properties for a given fuzzy implication IIV on L([0, 1]):

(OP) IIV (X,Y ) = [1, 1] if and only if X � Y (the ordering property);
(CP) IIV (X,Y ) = IIV (N(Y ), N(X)) with a strong negation N (contraposition);
(P) IIV (X,Y ) = [0, 0] if and only if X = [1, 1] and Y = [0, 0] (positive).
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3 Restricted Equivalence Functions on L([0, 1])

One of main tasks related to restricted equivalence functions is providing a char-
acterization of them, i.e. propose a suitable method to construct these functions.
In this sense, it is presented in [7] (see Theorem 7) a method based on implica-
tions (for REFs on [0, 1]). In this section we introduce a generalization of this
method for restricted equivalence functions on L([0, 1]).

3.1 Admissible Orders on Lattice L([0, 1])

Let
L([0, 1]) = {[x, x] | 0 ≤ x ≤ y ≤ 1} (2)

be the set of all subintervals of unit interval [0, 1] which endowed with the partial
order

[a, b] �2 [c, d] ⇔ a � c and b � d (3)

for all a, b, c, d ∈ [0, 1] is a bounded lattice with bottom and top elements being
[0, 0] and [1, 1] respectively. There are several works in the literature discussing
about fuzzy operators on L([0, 1]) and its generalizations.

Though the relation �2 generates just a partial order on L([0, 1]) it is possible
to extend this partial order to a linear order (total order). Bustince et al. in [11]
introduced some ways to make this extension.

Definition 3.1: [11] Let (L([0, 1]),�) be a poset1. The order � is called an admis-
sible order if

(1) � is a linear order on L([0, 1]);
(2) for all [a, b], [c, d] ∈ L([0, 1]), [a, b] � [c, d] whenever [a, b] �2 [c, d].

Example 3.2: It is possible to prove that the order defined by [a, b] �Lex1 [c, d]
if and only if either a < c or a = c and b � d is an admissible order in L([0, 1])
motivated by the lexicographical order in R

2.

3.2 Interval Restricted Equivalence Functions

Definition 3.3: A function REFIV : L([0, 1])2 → L([0, 1]) is called a interval
valued restricted equivalence function if it satisfies for all X,Y,Z ∈ L([0, 1]):

(1) REFIV (X,Y ) = REFIV (Y,X);
(2) REFIV (X,Y ) = [1, 1] if and only if X = Y ;
(3) REFIV (X,Y ) = [0, 0] if and only if either X = [1, 1] and Y = [0, 0] or

X = [0, 0] and Y = [1, 1];
(4) REFIV (X,Y ) = REFIV (N(X), N(Y )) with N a frontier negation;
(5) if X � Y � Z then REFIV (X,Z) � REFIV (X,Y ).

1 A non-empty set P endowed with a partial order �P is called a partial order set or
for short a poset.
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Theorem 3.4: Let � be an admissible order in L([0, 1]) and MIV : L([0, 1])2 →
L([0, 1]) be a function satisfying (A1), (A2), (A6), (A7) and MIV (X,X) = X for
each X ∈ L([0, 1]). Thus REFIV : L([0, 1])2 → L([0, 1]) is an L-REF if and only
if there exists a function IIV : L([0, 1])2 → L([0, 1]) satisfying (FPA), (OP ),
(CP ), (P ) and such that REFIV (X,Y ) = MIV (IIV (X,Y ), IIV (Y,X)).

Proof: (Necessity)
Suppose that REFIV is a restricted equivalence function and define the function
IIV : L([0, 1])2 → L([0, 1]) by

IIV (X,Y ) =
{

[1, 1], X ≤ Y
REFIV (X,Y ), X > Y

First, we will prove that REFIV (X,Y ) = MIV (IIV (X,Y ), IIV (Y,X)) for all
X,Y ∈ L([0, 1]). In this case, we have three possibilities:

(1) If X = Y then IIV (X,Y ) = IIV (Y,X) = [1, 1] by (OP ). Thus
REFIV (X,Y ) = [1, 1] = MIV ([1, 1], [1, 1]) = MIV (IIV (X,Y ), IIV (Y,X)).

(2) Now, suppose that X < Y . Then by (OP ) IIV (X,Y ) = [1, 1] and by
(A7) MIV (IIV (X,Y ), IIV (Y,X)) = IIV (Y,X). Hence REFIV (X,Y ) =
REFIV (Y,X) = IIV (Y,X) = MIV (IIV (X,Y ), IIV (Y,X)).

(3) Finally, if X > Y then IIV (Y,X) = [1, 1]. Again by (A7) we have
MIV (IIV (X,Y ), IIV (Y,X)) = IIV (X,Y ) that implies REFIV (X,Y ) =
MIV (IIV (X,Y ), IIV (Y,X)).

It remains to prove that properties (FPA), (OP ), (CP ) and (P ) hold.

(FPA) LetX,Y,Z ∈ L([0, 1]) such thatX ≤ Z. Again, we have three possibilities:
(i) Y < X ≤ Z

In this case, REFIV (Y,X) ≥ REFIV (Y,Z) by (L5) and
hence REFIV (X,Y ) ≥ REFIV (Z, Y ) by (1). Since I(X,Y ) =
REFIV (X,Y ) and IIV (Z, Y ) = REFIV (Z, Y ) it follows that
IIV (X,Y ) ≥ I(Z, Y ).

(ii) X ≤ Y < Z
According to definition of I we have that IIV (X,Y ) = [1, 1] and
IIV (Z, Y ) = REFIV (Z, Y ). Hence IIV (X,Y ) ≥ IIV (Z, Y ).

(iii) X ≤ Z ≤ Y
Again by definition of I it follows that IIV (X,Y ) = [1, 1] and
IIV (Z, Y ) = [1, 1]. Thus IIV (X,Y ) = IIV (Z, Y ).

Therefore, by (i), (ii) and (iii) it can be concluded that IIV (X,Y ) ≥
IIV (Z, Y ) with X ≤ Z.
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(OP) If X ≤ Y then IIV (X,Y ) = [1, 1] by definition of IIV .
Reciprocally, suppose that IIV (X,Y ) = [1, 1]. Thus either X ≤ Y or
X > Y and REFIV (X,Y ) = [1, 1]. But, in the second case we have a
contradiction since REFIV (X,Y ) = [1, 1] if and only if X = Y . Hence
X ≤ Y .

(CP) By definition of I we have

IIV (N(Y ), N(X)) =
{

[1, 1], N(Y ) ≤ N(X)
REFIV (N(Y ), N(X)), N(Y ) > N(X)

=
{

[1, 1], X ≤ Y
REFIV (X,Y ), X > Y

= IIV (x, y)

(P) Suppose that X = [1, 1] and Y = [0, 0]. Thus X > Y and hence I(X,Y ) =
REFIV (X,Y ) = [0, 0].
Reciprocally if I(X,Y ) = [0, 0] then X > Y and REFIV (X,Y ) = [0, 0]
that implies X = [1, 1] and Y = [0, 0].

(Sufficiency) Straightforward from Theorem 7 in [7] �

Remark 1: It is worth noting that considering an admissible order (linear order)
on L([0, 1]) is an essential hypothesis for the Theorem 3.4 holds. For instance,
assuming the partial order �2 on L([0, 1]) and let REF : [0, 1] → [0, 1] be given
by REF (x, y) = 1 − |x − y|, which is a restricted equivalence function with
respect to the strong negation n(x) = 1 − x for all x ∈ [0, 1] (see [7], Example
1). Then

REFIV ([a, b], [c, d]) = [min{K1,K2},max{K1,K2}] (4)

where K1 = REF (a, c) and K2 = REF (b, d), is a restricted equivalence function
on (L([0, 1]),�2). Nevertheless, if IIV is the interval version of IREF then IIV
does not satisfy property (FPA). Indeed, taking X = [0.4, 0.7], Y = [0.5, 0.8]
and Z = [0.5, 0.6] we have that X �2 Y but REFIV (X,Z) = [0.9, 0.9] and
REFIV (Y,Z) = [0.8, 1] which are not comparable with respect to ≤2.

Remark 2: From now on we are always considering an admissible order � on
L([0, 1]).

Proposition 3.5: Let REFIV be a restricted equivalence function on the lattice
L([0, 1]) with respect to some frontier negation N . Then, the mapping

N0(X) = REFIV ([0, 0],X)

is a frontier fuzzy negation.

Proof: That N0 satisfies (N1) is trivial. Let’s prove that (N2) holds for it. Indeed,
for each X,Y ∈ L([0, 1]) such that X ≤ Y since [0, 0] ≤ X ≤ Y by (L5) it follows
that N0(Y ) = REFIV ([0, 0], Y ) ≤ REFIV ([0, 0],X) = N0(X). �
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Definition 3.6: Let e be an equilibrium point2 of a interval strong negation N .
A function Ee,N : L([0, 1]) → L([0, 1]) is called a interval normal Ee,N -function
associated to N if it satisfies the following conditions:

(1) Ee,N (X) = [1, 1] if and only if X = e;
(2) Ee,N (X) = [0, 0] if and only if X = [0, 0] or X = [1, 1];
(3) For all X,Y ∈ L([0, 1]) such that either e ≤ X ≤ Y or Y ≤ X ≤ e it follows

Ee,N (Y ) ≤ Ee,N (X);
(4) Ee,N (X) = Ee,N (N(X)) for all X ∈ L([0, 1]).

Proposition 3.7: [7] Let N be an interval frontier negation and e be an equi-
librium point of N . If REFIV : L([0, 1])2 → L([0, 1]) is a restricted equivalence
function then the function given by

Ee,N (X) = REFIV (X,N(X)) (5)

for all x ∈ L([0, 1]) is an interval normal Ee,N -function.

Proof: Notice that REFIV (X,N(X)) = Ee,N (X) = [1, 1] if and only if X =
N(X) by Definition 3.3 if and only if X is an equilibrium point of N i.e. X = e.

Also Ee,N (X) = [0, 0] if and only if REFIV (X,N(X)) = [0, 0] if and only if
either X = [1, 1] and N(X) = [0, 0] or X = [0, 0] and N(X) = [1, 1]. In both
cases we have that either X = [1, 1] or X = [0, 0].

Now suppose X,Y ∈ L([0, 1]) such that e ≤ X ≤ Y and then Y ≤ N(Y ) ≤
N(X). Hence Ee,N (Y ) = REFIV (Y,N(Y )) ≤ REFIV (X,N(X)) = Ee,N (X).
Same result may be obtained by considering Y ≤ X ≤ e.

Finally, for all X ∈ L([0, 1]) it follows

Ee,N (N(X)) = REFIV (N(X), N(N(X)))
= REFIV (N(X),X)
= REFIV (X,N(X)) = Ee,N (X) �

Theorem 3.8: Let M : L([0, 1])2 → L([0, 1]) a function satisfying (A2), (A6) and
(A7). If I : L([0, 1])2 → L([0, 1]) satisfies (FPA), (OP ), (CP ) and (P ) then

Ee,N (X) = M(I(X,N(X)), I(N(X),X))

for all x ∈ L([0, 1]) is an interval normal Ee,N -function.

Proof: By Theorem 2.10 we know that REF (X,Y ) = M(I(X,Y ), I(Y,X)) for
all X,Y ∈ L([0, 1]) is a restricted equivalence function. Thus

Ee,N (X) = REFIV (X,N(X))
= M(IIV (X,N(X)), IIV (N(X),X))

is a interval normal Ee,N -function by Theorem 3.7. �

2 An element e is called an equilibrium point if N(e) = e.
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Corollary 3.9: Let e be an equilibrium point of the interval strong negation N .
Under the same conditions of Theorem 3.8, we have Ee,N (X) = I(X,N(X)) for
all X ∈ L([0, 1]) such that e � X.

Proof: If e � X then N(X) � N(e) and hence N(X) ≤ e ≤ X since
N(e) = e. Thus by (OP ) we have that I(N(X),X) = [1, 1]. Therefore Ee,N (X) =
M(I(X,N(X)), I(N(X),X)) = M(I(X,N(X)), [1, 1]) = I(X,N(X)) by
Theorem 3.8 and (A6). �

4 Final Remarks

In this paper we presented some results for restricted equivalence functions on
L([0, 1]) endowed with an admissible order � providing in it a total order and
allowing us to give a suitable characterization by interval fuzzy implications
what is not possible if L([0, 1]) have just a partial order (see [18]). Also, we
shown that interval normal Ee,N -functions associated to interval negation N are
decomposable.

For further works we are interested in applying interval restricted equivalence
functions for image clustering and other image processing algorithm in order to
test its efficience.
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