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Surgery

Tariq A. Kwaees, Adrian Pearce, Jo Ring, Paul Sutton,

and Charalambos P. Charalambous

3.1 Introduction

Nanotechnology is the application and manipulation of structures, typically particles

or molecules within the ‘nano’ range. Subatomic particles (protons, electrons and

neutrons) are the smallest building blocks of atoms, which bond together to form

molecules. Elements are many molecules of the same atom, whilst compounds are

many molecules of a mixture of atoms. Technically, a single atom is the smallest unit

of matter, but matter is regarded as being molecular. The prefix nano in the metric

system represents a distance of one billionth of a metre (nm) and is represented

numerically as one times ten to the power minus nine (10�9 or 0.000000001 m).

Nanoparticles have one dimension that measures 100 nm or less and contain 4–400

atoms [1]. The properties of many conventional materials change when formed from

or are exposed to nanoparticles as they have a greater surface area to weight ratio

making them potentially more reactive to other materials [2]. Nanostructures are

1–100 nm and comprised of molecular nanomaterials which may be natural or

artificial. Natural nanostructures include light amplifying pigment particles such as

those that occur in the corneas of moths [3], adhesive compounds forming pads on the

feet of geckos which aid climbing [4] and nanotubules in some plants which have

diverse functions, from a defence against UV radiation in mountain flowers to a self-

cleaning mechanism in the lotus flower [5]. The most common artificial

nanostructures in current nanotechnologies include graphene nanotubes of single,
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double or multiple layers which can be oriented into one complete tube inside another

(Russian doll configuration) [6] or constructed into a continuous graphene sheet

rolled upon itself (parchment configuration) [7]. The various configurations offer a

variety of electrical, chemical and mechanical properties.

3.2 Current Concepts in Nanomedicine

Potential nanotechnology applications are currently being explored in medicine

generally; however, this chapter is particularly concerned with applications in

orthopaedics [1, 8, 9]. Some examples which give an idea of the scope of applica-

tions in medicine include nanoconstituent and nanoarchitecture modifications to

implant coatings [10–15], diagnostics [16] and patient monitoring [17]. Advances

in pharmacokinetics include improving drug targeting [18], efficacy optimisation,

potency and side effect reduction [19]. Examples of how these techniques work

include polymeric micelle nanoparticles with surface receptors that can specifically

identify particular tumours and deliver drugs directly to tumour cells avoiding

generalised cell destruction [20]. Another example of a targeting modality involves

the attachment of a chemotherapy drug to a nanodiamond which has been used to

treat brain tumours [21] and leukaemia [22]. Nanoparticles may be combined with

specific antibodies known as ‘quantum dots’ (Invitrogen) to target neoplastic or

infected cells [23]. Docetaxel (Cristal Therapeutics) for the treatment of solid

tumours is a good example of the possibilities of nanotechnology and has recently

commenced phase I clinical trials in 2015 [24].

In the field of infection control and prevention, nanotechnology has been used to

improve the antimicrobial properties of healthcare clothing and equipment. Inte-

grating nanosilicon particles into materials such as scrubs or surgical gowns has

been shown to greatly enhance their antimicrobial capacity [25, 26]. Furthermore,

polymer-coated iron oxide nanoparticles disrupt clusters of bacteria, with the

potential to facilitate more effective treatment of chronic bacterial infections [27]. -

Protein-filled nanoparticles have been used in the form of an inhalational vaccine to

promote an enhanced immune response [28].

Regenerative and preventative medicine has also been influenced by nanotech-

nology. Cerium oxide nanoparticles act as an antioxidant to remove oxygen-free

radicals following trauma [29], and protein-linked nanodiamonds increase bone

growth around dental or joint implants [30]. Nickel nanoparticles combined with a

polymer form a self-healing, synthetic skin, which could potentially be used in the

development of prosthetics [31]. Of particular interest is the phenomenon the

material exhibits when cut, where it spontaneously heals itself within 30 min if

held together. It also exhibits electrical resistance properties which change with

pressure, giving it the ability to function as a form of synthetic touch. The devel-

opment of advanced imaging systems may allow disease to be detected and

potentially treated even in its early stages [32]. Combining nanoparticles with
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dyes or marker substances to allow the intraoperative visualisation of diseased

tissue may greatly improve resection accuracy [33]. Implantable nanowires give

real-time monitoring of physiological parameters which may aid chronic disease

management and access to emergency treatment [34].

Nanoarrays have superseded microarray analysis, which was once regarded as

the future of biomolecular analysis [35]. Limitations of microarrays include large

sample volumes, longer incubation times, limited detection, bulky instrumentation,

laborious sample amplification and labelling ultimately resulting in high running

costs and delays. Nanotechnology may improve the speed and quality of diagnostic

tests by moving complex tests from specialised centres to the bedside or office.

Current operational protocols exist for nanoarray technology in label-free analysis

of nucleic acids, protein detection (using conventional optical fluorescence micros-

copy or novel label-free atomic force microscopy) [35]. Furthermore, multiple tests

can be combined onto a single ‘lab-on-a-chip’ and processed rapidly using hand-

held devices [36].

The examples above are not exhaustive but demonstrate the wide and variable

uses of nanotechnology and the great potential for further development and use.

3.3 Current Concepts in Nano-Orthopaedic Research

Nanotechnology may provide the means of manipulating the organic and inorganic

nanostructures of the bone and its surrounding soft tissues, representing a new

avenue for the treatment of musculoskeletal disorders. Ongoing research into the

application of nanotechnology within the field of orthopaedics is diverse; however,

much of this remains at the laboratory stage with few clinical studies testing

technologies in vivo [1, 8]. The current literature suggests three main and

overlapping areas of exploration in orthopaedic nanotechnology: nanoscaffolds,

implant and tissue integration and drug delivery.

3.3.1 Nanoscaffolds

Nanoscaffolds may be used for local drug or gene therapy delivery or act to regulate

cellular processes and can be used as a growth material for tissue engineering

purposes. Nanoscaffolds are typically comprised of electrospun nanofibre matrices

[37]. These scaffolds are designed to be biomimetic particularly representing

extracellular matrix structure and function [38]. This technology has the potential

to be incorporated into implants to improve their integration with the bone [39, 40]

and to combat biofilm-related infections of implants [14] and can be applied in

tissue engineering to create artificial versions of natural substances [41].
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3.3.2 Implant Integration

Biological integration of implants into the human body is highly sought after in

orthopaedics. Aseptic loosening remains a major cause of revision in arthroplasty

surgery [42–45]. Modification of existing materials such as titanium, tantalum,

ceramics and hydroxyapatite at the nano level may facilitate biological activity

[46, 47]. Evidence from previous research has indicated that if this can be safely

harnessed it may decrease the incidence of revision in major joint arthroplasty

[9, 14, 48, 49]. Infection is also a leading cause of implant failure and lack of

integration. Nanoscale surface modification of orthopaedic implants has been found

to be effective in reducing bacterial adherence, biofilm creation and disrupting

bacterial cell homeostasis [14]. The fight against primary and secondary bone

malignancy, which frequently requires the use of implants, may also be improved

with the aid of nanotechnology. Tran et al. conducted an experimental in vitro study

which examined the effects of three novel, hybrid implant surfaces of selenium and

titanium on cancerous bone tissue. They found that the selenium adherent surfaces

chemotherapeutic and osteointegrative when compared to untreated titanium

implants [50].

3.4 Drug Delivery

3.4.1 Chemotherapeutics

The avoidance of healthy cells via the targeted delivery of therapeutic substances to

diseased tissue is another possible role of nanotechnology which could revolution-

ise the management of some diseases. There is a potential to improve pharmaco-

kinetics, efficacy, lower doses and lower drug-related toxicity [19]. Drugs

contained within nanocapsules consisting of a nanoengineered coat with coded

surface protein that unlock at the target cell are one method of applying this

technology [18] (Fig. 3.1). The potential applications of such nanocoats could

greatly improve orthopaedic care including the targeting of neoplastic bone disease

and common orthopaedic conditions such as osteoarthritis and osteoporosis

[51]. Bisphosphonates are currently the vessel of choice for improving the targeting

of bone using nanotechnology due to their high affinity to the organ [51]. Their use

with nanoparticles has been shown to limit metastasis, reduce tumour seeding and

angiogenesis [51]. Bisphosphonates have been used in the treatment of bone

metastasis to deliver chemotherapeutics directly to the organ, maintaining higher

levels of the drug at target tissues and slowing its metabolic breakdown [52]. The

treatment of primary bone tumours could also be influenced by nanotechnology.

The delivery of chemotherapeutic substances to osteosarcoma has been improved

with the use of nanoparticles and was able to tackle multidrug-resistant forms of the

disease [53]. The combination of nanomedicine with gene therapy may have an
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even greater effect on treating such tumours [54]. Nanoparticles have been used to

improve the efficacy of bisphosphonates in treating osteoporosis and have been

shown to improve the retention time of interleukin receptor inhibitors in the

treatment of osteoarthritis [51]. By similar means nanotechnology could be applied

to improve drug delivery in the treatment of osteoarthritis, osteomyelitis and benign

neoplastic conditions. The cells responsible for pigmented villonodular synovitis

(PVNS) can be made more sensitive to radiotherapy resulting in a reduction of

overall radiation dose and its associated risks [55].

3.4.2 Antimicrobial Applications

The use of nanocrystals of silver versus larger molecules in the surface coatings of

arthroplasty implants to control and extend the release of antibiotics has been

shown to reduce bacterial adhesion [56]. The use of synergistic nanomolecules

such as nanophase gold which enhances the transcutaneous uptake of non-steroidal

anti-inflammatories as also shown similar results. Currently, nanotechnology is

utilised in wound dressings impregnated with silver nanocrystals which have a

lower finite amount of silver but have been shown to have increased potency

compared with larger molecules [57].

Fig. 3.1 Nanocoating drug

system. The drug (D) is

contained within a nanocoat

(NC) which meets receptors

(R) on target cells

(C1) whilst avoiding

receptors on nontarget

tissue (C2)
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3.5 Nanotechnology Applications in Knee Surgery

3.5.1 Knee Arthroplasty

Total knee arthroplasty is well established with excellent success rates [58]. The

standard expected of any new implant entering the market is a ten-year survival rate

in greater than 90% of cases; however, aseptic loosening and infection remain

leading causes of failure [58]. Aseptic loosening in total knee arthroplasty is a

significant challenge and is more common in uncemented rather than cemented and

hybrid implants [58]. It is the indication for over 40% of single stage revision knee

replacements in the United Kingdom [58]. Target rates of infection in joint

arthroplasty are quoted as <0.5%, but actual rates are under 2% [58]. Despite

major advances, infection remains a major cause for implant failure and burden in

revision surgery [58].

Better osteointegration is brought about by altering the mechanical nature of the

implant, i.e. creating a more porous architecture for bone ingrowth or by altering

chemical characteristics leading to selective bonding to bone and inhibition of

fibrous healing [59]. Nanoengineered coatings may provide chemical, mechanical

and ultimately biological enhancement to implant integration, improving long-term

performance [60]. The nature of an implant surface dictates implant–host interac-

tion [11, 48, 61–63] and nanotechnology has been employed in the effort to

improve osteointegration [64–67] and counter bacterial adhesion and growth [68–

74]. Osteoblast adherence to implants occurs on the nanoscale; therefore, altering

the surface roughness of an orthopaedic implant from the macro to the nanoscale

could improve osteointegration whilst inhibiting suboptimal fibrous tissue from

forming [62, 75, 76] (Fig. 3.2). This has been demonstrated in animal studies with

good results. Salou et al. assessed the pull-out resistance and histological charac-

teristics between macro-surface implants created through standard manufacturing

techniques and nanosurface implants of titanium nanotubules. Pull-out strength and

histological evidence of osteointegration were improved with the nanoscale sur-

faces [77]. Addition of nanoparticles of hydroxyapatite or titanium may further

enhance this process [60, 78].

Surface topography can influence bacterial behaviour, and nanotechnology has

been shown to reduce adherence [48, 79] (Fig. 3.3). Lab-based research has

demonstrated marked reductions in the adherence of multiple bacterial species

[80], and silver nanosurfaces have been found to be bactericidal by interfering in

bacterial cell homeostasis [74, 81]. Improving the quality of orthopaedic cement, a

substance which has remained relatively unchanged for decades, as well as the

cement bone interface may also be achieved with nanotechnology leading to lower

risk of failure and cement fracture. Khandaker et al. added nanoform magnesium

oxide to bone cement and found marked improvement in fracture toughness of the

cement which could have implications for implant longevity [82]. Ricker et al.

investigated the effects of added barium sulphate and magnesium oxide

nanoparticles on methyl methacrylate bone cement. They noted reductions in the
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Fig. 3.2 Implant integration with the bone; immediately after bone (B) preparation blood

components (BC) surround the prosthesis (P) within the bone (1); platelet-derived factors

(PF) coat the prosthesis and prevent integration with healing tissue (2); suboptimal fibrous tissue

develops with poor pull-out strength (3); enhanced implant integration with nanosurface modifi-

cation (NC) prevents PF from binding and allows for better implant bone interface bonding (4–6)

Fig. 3.3 Prevention of bacterial colonisation on implant surfaces. Bacteria (B) seed onto the

implant (IP-1) and soon form colonies (P-2) surrounded by biofilm (BF). Nanocoating (NC) can be

used to alter the surface of an implant to reduce bacterial adhesion (IP-3 and IP-4)

3 Nanotechnology and Its Applications in Knee Surgery 41



harm caused during the curing process and an increase in osteointegration with the

nanoparticles [83]. Valuable evidence for improved osteointegration using nano-

technology has come from the field of dentistry. Modifications to the surface of

implants with bioactive ceramics to improve interaction at the bone implant inter-

face and coating material such as various phosphates, hydroxyapatite and bioactive

glasses have been shown to hold promise [59].

3.5.2 Repair and Restoration of Cartilage

One of the more complex aspects of knee surgery is the management of cartilage

defects. Restoring, replacing and rejuvenating articular cartilage are all aspirations

of the knee surgeon but are currently impossible. Techniques including

microfracture, drilling and transplants give rise to suboptimal fibrous scar tissue

which does not provide the same biomechanical properties as true cartilage

[84]. Innovative techniques such as patch graft repairs with autologous stem cells

are laborious, expensive and inconsistent in their results. Nanoscaffolds may

provide opportunities to improve this aspect of knee surgery. Creating a three-

dimensional structure formed of biodegradable polymers that function as a scaffold

for stem cell adherence programmed differentiation according to tissue require-

ments and eventual integration into the surrounding native tissue [85]. This could

be achieved through programmed obsolescence (e.g. hydrolysis) and has been

realised in other areas of the body [86]. Kon et al. used a nanostructured scaffold

to surgically pack a chronic degenerative chondral lesion in a high demand knee.

The response to treatment was monitored clinically with pain-free function at a year

following surgery and by MRI which demonstrated healing [87]. Alternatively, a

more robust or self-healing synthetic mimic, which retains the biomechanical

properties of cartilage, could be created. This is exemplified by newer nanoplastics

developed for use in prosthetics, with the ability to self-repair following micro or

even macro level damage [41]. These can be created as multilayered structures

which may better represent interfaces between tissues such as cartilage and bone

[88]. Nanocomposites have been developed using Type I collagen and hydroxyap-

atite with promising results [88].

3.5.3 Anterior Cruciate Ligament Injury

ACL ruptures are common, with an estimated incidence rate of 37 per 100,000

person-years or approximately 118,000 ruptures in the USA alone [89]. Up to two

thirds of these patients (79,000) experience instability that limits their daily activity

or sport and recreation [90] with up to 76.6% of such patients requiring surgery

[90]. A review of approximately 13,000 ACL reconstructions on the Swedish knee
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ligament register reported a 1.6% incidence of revision surgery at 2-year follow-

up [91].

Success of an ACL reconstruction relies upon two key ideologies: the constitu-

ents of the graft and the integration of the graft with the host [92, 93]. The former

primarily addresses the strength of the mobile segment of the repair, its kinematics

through ranges of movement and its longevity. The latter is concerned with the

degree and speed with which biological integration occurs in the static segments

(proximal and distal) of the graft embedded within bone tunnels and the

minimisation of factors that would weaken the integration over time. ACL recon-

struction represents a unique area in which to test the possible applications of

current nanotechnological concepts and to consider new avenues for their devel-

opment which could aid in addressing these two points. The current focus of

investigation includes the creation of artificial ligament replacements which is

less common than autograft repair but is still used and the enhancement of bone

graft integration [85, 94–97]. The manufacturing of artificial grafts which incorpo-

rate into host tissue and function as a native ACL is still at the exploratory stage.

The incorporation of a graft into bone tunnels provides long-term fixation;

however, this remains the weak link in ACL reconstruction, accounting for early

failures and limiting the speed of rehabilitation [98]. Multiple tissue engineering

strategies using nanotechnology are being developed for improved bone graft

interface healing and include local delivery of bioactive compounds such as

collagen using scaffolds, coating of implants and grafts and augmentation of the

canal [99]. Chou et al. undertook an in vivo study looking at the pull-out strength

and histological features of collagen and biodegradable poly lactic-co-glycolic acid

coated nanofibre membrane graft in the form of a scaffold. Histologically the

researchers noted a reduction in tunnel size and greater graft-bone integration in

the form of fibre-bone anchors using the scaffold. Pull-out strength was much

greater in those treated with the scaffold [100]. Han et al. examined the tissue

integration of tendon graft wrapped in polycaprolactone/nanohydroxyapatite/colla-

gen nanofibre and non-wrapped tendon in vitro and in vivo. Wrapped

semimembranosus ACL graft was found to have better integration, mineralisation

and mechanical stretch [101]. Grant et al. undertook a study in which human tendon

impregnated with various combinations of gold and hydroxyapatite nanoparticles

was grafted into animal models in place of an ACL. These were compared with

nonimpregnated grafts after approximately 3 months, and it was found that grafts

with gold nanoparticles had greater new growth of fibrous connective tissue and

higher vascularity [102]. These results support the findings by Smith et al. who

undertook a similar study of gold and hydroxyapatite nanoparticles and found

improved cell viability [103].

Some ACL tears are amenable to repair, but ligament healing forms a fibrous

scare resulting in inferior biomechanical properties [100, 104]. It may be possible to

enhance this or to create ligament substitutes from nanoengineered materials which

may improve integration and physical properties and decrease donor site morbidity.

In addition, nanoscaffolds could be used to augment existing grafts to enhance
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integration properties with bone [93], which could enhance the pace of healing and

the ability to return to activities compared to existing techniques [99, 100].

3.6 Trauma Applications

Given the nanocomposite nature of bone, osseous trauma can be difficult to treat

with traditional surgical methods of fixation which lack nanoscale properties. This

is especially the case in areas of poor healing such as the femoral head and talus

which are at risk of avascular necrosis, stripped soft tissue covering, bone loss and

superimposed infection. The key principles of this technology for healing include

attractive mechanical characteristics, surface modification of implants to aid fixa-

tion and scaffolds for tissue integration or defect filling.

3.6.1 Surface Modification

Modification of existing fracture fixation techniques using nanotechnology to

enhance incorporation into the host tissue, to reduce the need for foreign material

implantation or to reduce the need for repeated procedures to remove implants once

healing is complete is key research areas. The biocompatibility of an implant is

determined by its surface characteristics, and nanoscale coating applied to their

surface may offer a solution in terms of accelerated bony healing and minimal

tissue reaction to foreign material. Surface characteristics include the surface area

or roughness, hydrophobicity and immunogenicity which determine the implant’s
ability to integrate into the body and influence healing [105]. Surface modification

at the nanoscale can be achieved by several methods, including altering the

structure of endogenous substances such as collagen, creation of artificial

nanomaterials applied to the surface of implants or anodization of existing mate-

rials, primarily metals [105].

Alteration of metallic and ceramic implant surfaces at the nanoscale has been

shown to improve osteoblasts adhesion and proliferation, calcium deposition and

alkaline phosphatase activity [105]. A recent study used bioactive and degradable

nanocomposite coating on k-wire fixation of animal tibia in vivo and evaluated

these at 1 and 2 months postoperatively [106]. The results indicated minimal soft

tissue reaction and an increase in healing rate in those treated with the nanocoat.

Hydroxyapatite-coated screws have been trialled in hip fracture surgery and have

been shown to provide superior fixation in osteoporotic bone [107] as an effective

coating for half pins in external fixation constructs. These applications are partic-

ularly relevant around the knee where removal or metalwork may be required

before subsequent surgery, for example, knee replacement following high tibial

osteotomy or tibial plateau fixation. In addition, fixation of osteochondral fractures

and meniscal tears within the knee are perfectly suitable for nanoengineered
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fixation devices due to the intra-articular environment which better mimic the tissue

and incorporate over time as the tissue heals.

3.6.2 Scaffolds

Orthopaedic fixation devices could be engineered to have properties that encourage

healing and regeneration which current implants do not offer. Key to fracture

healing is the extracellular matrix which not only serves as a scaffold for growth

and healing but also acts as a source of growth factors and other key constituents of

repair [108]. Implantation of impregnated, degradable scaphoids could enhance

bone healing by providing an immediate source of bone-forming cells and materials

with minimal tissue reaction. Peptides which undergo self-assembly into

nanostructures (termed self-assembling peptides) have been shown to enhance

cell replication and proliferation and promote bone regeneration and healing whilst

inhibiting demineralization. Another option for surface modification to improve

bone healing is with carbon nanotubes, multiple forms of which have been shown to

improve bone repair and provide exceptional mechanical stability; however, pep-

tides are more versatile in terms of architecture and are less hydrophobic. Coating

of titanium or hydroxyapatite implants with components of the ECM such as

collagen and chondroitin sulphate may greatly improve the quality of fracture

fixation and speed of bony healing [108]. Recent advances in biologically

engineered hydrogels at the nano level have been shown to dramatically improve

the osseous forming components following fracture. Hydrogel biomaterials are

highly porous structures which can mimic the extracellular matrix and enhancing

these at the nanoscale may greatly improve bone healing. Xavier et al. undertook a

study in which collagen-based hydrogels impregnated with nanosilicates of

orthosilicic acid (bioavailable silicon utilised by living organisms), magnesium

and lithium were created and used in the healing of non-united fractures. They

found a marked increase in the activity of alkaline phosphatase and the formation of

mineralised matrix. They concluded that adequate osteogenesis could occur even in

the absence of osteoinductive and growth factors [109]. These substances could be

injected into osseous defects both in the immediate postfracture period and in

chronic non-unions, optimising healing whilst gradually being replaced by native

tissue. Nanocomposite hydrogels may also be used to induce stem cells into a

desired cell type by mimicking bone-inducing growth factors [110].

Gao et al. examined the potential applications of nanotechnology in treating

avascular necrosis of the femoral head by applying nanoscale decompression cores

containing mesenchymal stem cells in 12 patients with early stages of the disease

and found that the treatment was effective in alleviating symptomology and

improving radiographic appearance [111]. Yang et al. also looked at the applica-

tions of nanotechnology on avascular necrosis of the femoral head. Patients were

treated with core decompression in combination with a nanohydroxyapatite and

polyamide rod and a porous bioglass bone graft, and an equal number were treated
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with core decompression with an autologous cancellous bone graft. The clinical

failure rate was lower in the non-particle-enhanced approach, and overall,

symptomology and functionality were better in this group [112].

3.7 Bone Grafting

There has been much interest in the world of nanotechnology around bone graft

substitutes using nanoengineered scaffolds and other techniques. These products

would be particularly useful around the knee both in trauma surgery and in revision

knee arthroplasty as bone loss can be an issue in some cases following implant

removal. Currently bone graft is used for small defects, and larger defects are

managed with augments or wedges that are usually metal or polyethylene. The

current augmentation techniques are effective but do not reconstitute the patient’s
bone stock. The use of nanoengineered structural scaffolds with biological proper-

ties could be very effective in this area to fill these defects and provide structural

stability, whilst natural bone stock is restored during the integration process.

Nanoparticles of various bone graft substances are in development, and these

have shown promising results in addition to nanoscaffolds in combination with

bone morphogenic proteins, the latter having been shown in vivo to be a highly

effective osteogenic and osteoconductive graft substance [37]. Other in vivo studies

have looked at the potential of filling bone defects with nanotechnology and have

shown exciting results. Recent studies have examined the effects of a nanoscale

filling material in the form of porous hydroxyapatite as a substitute for bone graft

and found that normal bony healing resulted, including a mature haversian

system [113].

3.8 Safety Considerations

The question of safety relating to the use of nanotechnology is not without justifi-

cation. Nanoparticles can be toxic and have been associated with a host of human

disease and may result in massive environmental damage with widespread use.

Asbestos was once hailed as a miracle material due to its versatility and was used

extensively in construction and other industry in the early half of the last century,

resulting in disease in the form of asbestosis and mesothelioma [114]. The open

questions relating to the safety of nanotechnology have led to developments of the

field of nanotoxicology which aims to study this in detail. Although many of the

technologies used are based on biological systems or compounds already in use,

differences in forms or sizes of materials are responsible for the increased risk.

Nanoparticles are more likely to pass undetected by the respiratory immune system

[115] and have been known to pass across vascular barriers and potentially alter

clotting [116]. Nanoparticles can pass the blood–brain barrier and may be
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implicated in degenerative brain disease [117]. In orthopaedics, questions arise

relating to the toxicity of wear particles which are a proven risk even when none

nanomaterial is utilised in joint replacement surgery [118]. Questions also remain

over the long-term toxic effects of nanomaterials in vivo [27]. Despite the exciting

and imminent therapeutic advancements offered by nanotechnology, urgent and

exhaustive research into the medical and environmental risks associated with its

wider use is required [27].

3.9 Conclusions

Currently the published data supports the applicability of a wide variety of

nanotechniques which have the potential to revolutionise the management of a

plethora of medical and surgical pathologies, once considered refractory to treat-

ment or even incurable. In knee surgery, this potential is diverse in terms of disease

type, surgical or nonsurgical options, method of drug or device delivery and overall

strategy of applying new technologies. Synergistic strategies encourage organic and

inorganic cooperation to improve healing following trauma, better graft integration

following ligament repair or reconstruction and creating a nourishing microenvi-

ronment for stem cell differentiation and tissue integration. Furthermore, targeting

strategies that improve pharmacokinetics in musculoskeletal could aid in the

treatment of neoplasia and in symptomatic care of patients with chronic or degen-

erative disease. Implants used for trauma or arthroplasty may be enhanced by

nanotechnology with a concomitant reduction in revision procedures. Infection-

resistant materials or coatings, highly integrative implants and revolutionary mate-

rials with the ability to repair or regenerate may represent the advent of a new era in

arthroplasty. These potential advances are exciting, but enthusiasm for their use

must be tempered until the risks of nanotechnology are fully investigated.
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