
Chapter 2

Taxane Formulations: From Plant to Clinic

A. Elhissi, R. Mahmood, I. Parveen, A. Vali, W. Ahmed, and M.J. Jackson

2.1 Plant Origin and Pharmacology of Taxanes

Taxane compounds are anticancer agents derived from a plant source and include

paclitaxel and docetaxel (Fig. 2.1). Paclitaxel is isolated from the Pacific yew tree

(Taxus brevifolia) [1], whilst the semisynthetic taxane docetaxel is derived from the

needles of the European yew (Taxus baccata) [2, 3]. Taxane formulations can treat

various types of cancer including ovarian, breast and bladder carcinomas [4] as well

as lung cancer and acute leukaemia [2].

Taxanes are classified as anti-microtubule chemotherapeutic compounds that

work by interrupting the microtubule function which is important in cell division.

They do so by inhibiting mitosis, causing an incomplete formation of the metaphase

plate of chromosomes and hence altering the arrangement of the spindle microtu-

bules [5, 6]. Both paclitaxel and docetaxel bind to ß subunit of tubulin (a protein

found in microtubules) [7, 8], producing highly stable dysfunctional microtubules

[9]. Microtubules are central to cell division forming spindle fibres permitting

separation and alignment of chromosomes during mitosis [10]. Paclitaxel inhibits

mitosis in the G-phase of the mitotic cycle, whilst docetaxel causes arrest at the
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S-phase to prevent cell division and produce apoptosis [11]. Docetaxel has been

reported to be twice as potent as paclitaxel at inhibiting microtubules [12].

2.2 Conventional Taxane Formulations in Clinical Use

Paclitaxel and docetaxel are highly lipophilic; hence, they are both regarded to be

water-insoluble compounds (Table 2.1), making formulation and administration

considerably challenging. Paclitaxel is solubilised using a mixture of Cremophor

EL (polyethoxylated castor oil) and dehydrated ethanol (50:50 v/v) to provide a

drug concentration of 6 mg/mL [13, 14]. Cremophor EL is a non-ionic surfactant

that has the ability to form micelles in biological fluids (e.g. plasma) and increase

the solubility of paclitaxel. By contrast, docetaxel is slightly more soluble than

paclitaxel; therefore polysorbate 80 (Tween 80) and ethanol are used to solubilise it

[15, 16]. These paclitaxel and docetaxel formulations are available for clinical use

as Taxol® and Taxotere®, respectively, and are administered by intravenous infu-

sion. Before administration of Taxol®, the formulation is diluted with 5–20-fold

using NaCl (0.9%) or dextrose (5%) solutions [9].

2.3 Stability of Taxane Formulations

Stability of taxane is extremely important particularly in situations where chemo-

therapy is prepared for later administration [17]. In these cases, storage conditions

may affect the drug dose received. Docetaxel stability can be influenced by the

degree of agitation during preparation and by slight temperature fluctuations during

storage [18]. By contrast, for paclitaxel, the optimum storage temperature was
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Fig. 2.1 Chemical structure of (a) paclitaxel and (b) docetaxel
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found to be 2–8 �C [19], suggesting paclitaxel is less affected by changes in storage

temperature compared to docetaxel.

The type of vehicle used and the inclusion of other chemotherapeutic drugs may

affect the stability of taxanes on storage. Studies have found that when paclitaxel

was diluted to 0.3 or 1.2 mg/mL using 5% dextrose or 0.9% NaCl, the drug

remained chemically stable for 72 h under conditions of clinical use [20]. However,

when doxorubicin 0.2 mg/mL was added to the formulation, samples were stable

for only 24 h, whilst by 72 h some samples showed signs of paclitaxel precipitation.

However, by day 5, all samples showed precipitation of the drug; this was inde-

pendent of storage temperature [21]. This might be attributed to the incorporation of

doxorubicin which was relatively easier to solubilise, resulting in salting out of

paclitaxel. It has also been found that paclitaxel has an optimum stability when the

vehicle had a pH range of 3–5 [22]. Drug concentration may also affect storage

stability, with higher drug concentrations producing formulations with longer

stability [17].

Administration of taxanes via the intravenous route poses many problems in

terms of physical stability of the drug. Waugh et al. (1991) studied the stability of

various concentrations of paclitaxel using 5% dextrose or 0.9% NaCl as diluent

solutions [23]. The solutions were contained within glass bottles, polyolefin con-

tainers or PVC infusion bags and stored for 12–24 h. The chemical stability of the

drug was unaffected in all cases; however, the solutions in the polyvinyl chloride

(PVC) bags showed signs of leaching of the plasticiser di(2-ethylhexyl) phthalate

(DEHP) into the formulation. DEHP is a polymer used in PVC to make it more

flexible, since without this constituent, PVC would be very brittle at room temper-

ature [24]. Leaching has also occurred during infusion using PVC administration

sets. When a similar study was conducted on docetaxel, DEHP also leached during

storage in PVC bags. Moreover, after 5 days the drug began to precipitate in the

PVC infusion bags, whereas the solution contained within the polyolefin container

was physically and chemically stable for 4 weeks [3]. It is worth to note that DEHP

has been reported to be carcinogenic and teratogenic. This indicates that using

polyethylene-lined infusion bags and administration kits is more appropriate in

terms of safety for the patient when administering taxanes.

Table 2.1 Paclitaxel and docetaxel have extremely high Log P values thus are water-insoluble

compounds; hence, to enhance their solubility, they are incorporated into organic vehicles

Paclitaxel Docetaxel

Aqueous solubility Water insoluble 0.025 mg/L water insoluble

LogP 3.20 2.59

Organic vehicle used in formulation Cremophor EL Tween 80
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2.4 Undesirable Toxicities of Taxane Formulations

Taxane anticancer compounds may produce adverse effects such as

myelosuppression, neuropathy, fatigue, alopecia, nausea and vomiting, with

docetaxel also causing nail damage [6]. Moreover, an important limitation of taxane

formulations is the toxicity of the excipients used to solubilise the drugs, particu-

larly Cremophor EL and polysorbate 80 [25]. An initial fatal hypersensitivity

reactions, nephrotoxicity and hypotension may happen because of using these

excipients [16, 26]. Cremophor EL commonly causes serious adverse effects such

as severe anaphylactoid hypersensitivity reactions, hyperlipidaemia, abnormal

lipoprotein patterns, aggregation of erythrocytes and peripheral neuropathy

[27]. Patients are premedicated with corticosteroids and histamine antagonists to

reduce the incidence and severity of these hypersensitivity reactions [28]. However,

even after premedication, 5–30% of the relevant patients are still affected by mild

hypersensitivity reactions [29]. Thus, research has been conducted to provide

alternative formulations that may enhance taxane solubility and reduce formulation

instability and toxicity. Approaches that have been investigated included the use of

nanotechnology, i.e. by involving nanocarrier-based formulations such as lipo-

somes, polymeric micelles, nanoparticles, dendrimers, microemulsions (also called

nanoemulsions) and cyclodextrins.

2.5 Formulations Developed to Reduce Instability

A number of strategies have been used to develop taxane formulations that are

Cremophor EL-free, aiming to solubilise the drug, minimise adverse effects and

improve stability. These strategies include formulating taxanes in the form of

albumin nanoparticles, micelles, cyclodextrins and liposomes. A main cause of

instability of paclitaxel is the lipophilicity of the drug, which makes it extremely

difficult to solubilise in an aqueous solution; therefore new formulations should

demonstrate improved drug solubility and show equal or better drug action com-

pared to Cremophor EL-based formulations (e.g. Taxol®).

2.5.1 Liposomes

Liposomes are spherical amphiphilic vesicles comprising lipid bilayers that provide

a hydrophobic region permitting interaction with hydrophobic drugs, in order to

allow for drug incorporation into the lipid bilayer and enhance its solubility.

Liposomal formulations of paclitaxel are well researched in terms of taxane deliv-

ery and have shown enhanced drug solubilisation, stability and reduced side effects.

Sharma and co-workers researched the effect of liposome-incorporated paclitaxel
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on toxicity and therapeutic effect in comparison to Taxol® [30]. In comparison to

Taxol®, toxicity was markedly reduced using liposomal paclitaxel formulations.

Whilst a Taxol® dose of >50 mg/kg in mice (with a human ovarian tumour

xenograft) proved fatal, the same dose was well tolerated when administered in

liposome formulations. Moreover, liposomal formulations provide a targeted deliv-

ery, increasing drug localisation into the tumour tissue due to the enhanced perme-

ability and retention (EPR) effect which may also reduce the toxic effects of the

drug on normal cells. Thus, reduced toxicity using liposomes is attributed to the

absence of Cremophor EL and promoted targeted delivery to the cancerous cells.

Yang and co-workers found that liposomes increased entrapment efficiency and

drug solubility to 3.39 mg/mL and exhibited similar antitumour efficacy as com-

pared to paclitaxel in Taxol® [29].

In another study, it has been found that although there was no significant

difference in the distribution of the drug, the Cremophor EL-based formulation of

paclitaxel is fivefold more toxic to normal tissues when compared to liposomal

formulations [31]. Another study showed that when paclitaxel was incorporated

into cationic liposomes, it prevented the growth of tumours and decreased the

density of blood vessels at the tumour site by limiting the endothelial mitosis,

whereas the Cremophor EL formulation elicited an insignificant effect on the

growth of tumour and no effect on the blood vessels [32]. Lipusu® (Luye Pharma

Group, China) is a recently commercialised liposomal formulation of paclitaxel that

has been recommended for the treatment of breast, ovarian and non-small cell lung

cancer [33–35]. Recently, we have designed liposomes based on a range of lipid

compositions, generated using an ethanol-based proliposome technology. Com-

pared to a Taxol-like formulation, the liposomal formulations of paclitaxel showed

higher selectivity towards glioma cells when compared to healthy glial cells of the

brain [36].

2.5.2 Nanoparticles

Nanoparticles may comprise a novel approach to delivering taxanes, and studies

have been carried out using both paclitaxel [37] and docetaxel [38]. Fonseca et al.

[39] found that PLGA nanoparticles (biodegradable, biocompatible, stable poly-

mer) prepared using nano-precipitation method entrapped 100% of paclitaxel.

Moreover, paclitaxel release from PLGA nanoparticles was initially rapid for the

first 24 h after which release was slow and continuous. Furthermore, nanoparticles

had a greater cytotoxic effect in comparison to Taxol® [39].

Xu and co-workers [40] used actively targetable nanoparticles (PEG-coated

biodegradable polycyanoacrylate nanoparticles conjugated to transferrin) for pac-

litaxel delivery. Encapsulation efficiency reached as high as 94%, with drug

initially released rapidly after which sustained release was achieved (81% of

paclitaxel was released over 30 days). The release pattern was similar to that

described by Fonseca and co-workers [39], which probably depends on polymer
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erosion patterns. Moreover, drug clearance from plasma was low in comparison to

Taxol®, which can be due to failure by phagocytic system to recognise the

nanoparticles, as previously discussed. Additionally, antitumour activity was

enhanced and increased the life span of mice to 60 days [40]. Nanoparticles are

also capable of providing targeted drug delivery and concentrate in tumour cells

greatly compared to Taxol®. This might be due to transferrin conjugated to the

nanoparticle as tumour cells have amplified transferrin receptors hence the greater

antitumour activity.

Controlled release formulations have also been studied using docetaxel, where a

prodrug of the taxane was incorporated into lipid nanoparticles (LNP). Testing of

the prodrug on cancer cell lines revealed the drug easily converted to the active

form and showed similar activity in vivo to the parent drug. Once loaded into LNPs,

it was found that drug half-life was increased, the drug was well tolerated allowing

administration of three times higher than the current max dose, and accumulation in

the tumour tissue was 50–100 times more than Taxotere [41]. In that study, the

development of a weak-base docetaxel derivative that can be loaded into lipid

nanoparticles (LNP) was investigated. The LNP functions as a solubilising agent

that is similar to polysorbate 80 and Cremophor EL; however, the lipids are less

toxic. LNPs in that study were used to avoid the toxicities associated with polysor-

bate 80. A weak-base docetaxel derivative was efficiently loaded and retained by

LNP. The study found that the prodrug that was formulated using polysorbate

80 had acute toxicity (i.e. changes in body weight at a docetaxel equivalent dose

of 20 mg/kg). By contrast, the LNP derivative showed no signs of toxicity

(no changes in body weight) at a docetaxel dose of 88 mg/kg. The LNP formulation

seemed to have advantages over the traditional docetaxel formulation, as the

hypersensitivity reactions were not observed.

A widely studied alternative to Taxol® is ABI-007 that is a novel human

albumin-stabilised, lyophilised nanoparticle formulation incorporating paclitaxel.

It has an average size of 130 nm and is free of Cremophor EL and ethanol

[42]. Ibrahim and co-workers [43] conducted a phase I study of ABI-007 on patients

who were diagnosed with an advanced solid tumour or had failed the standard

therapy. Nineteen patients received doses of ABI-007 which ranged from 135 to

375 mg/m2. Three patients received infusions of ABI-007 over 2–3 h, and hyper-

sensitivity reactions were not observed. Therefore, all the other infusions were

administered over 30 min, and even at a faster infusion rate, no hypersensitivity

reactions were observed [43]. Though this formulation was reported to be safer in

terms of avoiding hypersensitivity reactions, other side effects that were dose

dependent were reported, for example, haematological toxicity had occurred as

one patient was taken to hospital for febrile neutropenia. Non-haematological

toxicities were also reported such as nausea and vomiting, and muscle and joint

pain were common. Ocular side effects were also reported such as ‘smoky’ vision
and dry eyes. Two patients developed keratopathy where lubricating eye drops and

ointments were needed to alleviate this [43]. A phase II trial carried out by Ibrahim

and co-workers [44] to investigate the ABI-007 formulation in patients with

metastatic breast cancer. Seven patients (11%) in that study discontinued treatment
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due to adverse effects such as neuropathy. Sixteen patients (25%) required dose

reductions for toxicities; toxicities resulting in a dose reduction for two or more

patients were uncomplicated neutropenia, sensory neuropathy, febrile neutropenia,

myalgia and fatigue. No severe ocular events were reported, and other common

taxane-associated toxicities were less severe and less frequent [44]. O’Shaughnessy
and co-workers [45] compared the ABI-007 formulation against the standard

paclitaxel formulation in patients with metastatic breast cancer. The study involved

454 patients who either received ABI-007260 mg/m2 infused over 30 min once

every 3 weeks without premedication or Taxol® 175 mg/m2 administered over 3 h

once every 3 weeks with premedication, including dexamethasone and antihista-

mines. This study confirmed no hypersensitivity reactions in patients received

ABI-007, despite the absence of premedication. However, 10% of the patients

who received ABI-007 experienced sensory neuropathy compared to 2% who

received Taxol®. In order to alleviate sensory neuropathy, ABI-007 was withheld

for a number of days. Other toxicities such as neutropenia and flushing were less

frequent in patients treated with ABI-007 compared to Taxol® [45]. These clinical

trials have led to the development of Abraxane® (ABI-007) which is a relatively

recent paclitaxel derivative available in the United States. Abraxane® is used as a

second-line treatment in patients with breast cancer if combination therapy fails

[46]. Abraxane® has been found to be relatively safe so that the need for the

corticosteroid therapy prior to paclitaxel administration was eliminated [47]. Infu-

sion requires only 30 min for Abraxane® compared to 3 h for Taxol® [48]. Abraxane

is nowadays referred to as ‘Nab-paclitaxel’. In combination with carboplatin,

Nab-paclitaxel is indicated as first-line treatment of non-small cell lung cancer in

patients who may not be cured by surgery or radiation therapy [49].

2.5.3 Polymeric Micelles

Genexol-PM is a novel biodegradable Cremophor EL-free polymeric micelle

formulation of paclitaxel. A phase I study of Genexol-PM formulation was carried

out in patients with advanced malignancies to determine the toxicities of Genexol-

PM [50, 51]. Genexol-PM (1 mL) formulation contains 6 mg paclitaxel and 30 mg

methoxy polyethylene glycol-poly (D,L-lactide). Nine patients had previously

received taxane therapy, six of which showed tumour progression [50]. It was

found that acute hypersensitivity was not observed in these patients; however,

other toxicities such as neuropathy and myalgia were observed. These toxicities

were dose related and the maximum tolerated dose was 390 mg/m2. Phase II trials

of Genexol-PM were conducted to evaluate the efficacy and safety of the formula-

tion in combination with cisplatin (antineoplastic drug) in patients with advanced

non-small-cell lung cancer [52]. Accordingly, 5.8% of the patients experienced

hypersensitivity reactions. Recently, it has been reported that Genexol-PM plus

carboplatin as first-line treatment in patients with epithelial ovarian cancer showed

high efficacy and low toxicity [51].
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2.5.4 Other Formulation Strategies

Many nanocarrier systems can be used for delivery of poorly soluble drugs

(e.g. paclitaxel). For example, dendrimers are monodisperse three-dimensional,

hyper-branched polymers [53]. The oligomeric-branched structures of dendrimers

can be designed to increase their hydrophobicity, aiming to enhance solubility of

hydrophobic drugs. It has been found that when ethylene glycol was included

within dendrimer formulation, the solubility of paclitaxel markedly enhanced

(1.8–2.3 mg/mL) [54]. Moreover, the solubility of hydrophobic compounds was

higher, and release rate was faster when G5 dendrimers were used as compared to

low-generation dendrimers (e.g. G4 or G3 dendrimers). Lack of biodegradability of

many dendrimer formulations (e.g. PAMAM dendrimers) remains an obstacle for

the development of clinically applicable paclitaxel formulations.

Cyclodextrins are carrier systems that have shown the ability to enhance the

solubility of paclitaxel and decrease its degradation by complexing with the drug in

an aqueous solution [22]. Stability of the drug is increased by increasing its

solubility as the drug becomes less likely to precipitate on storage. Other methods

of enhancing solubility of paclitaxel include emulsion delivery systems

[55, 56]. Recently, we have loaded paclitaxel into clinically established parenteral

nutrition nanoemulsions and showed that such delivery systems have cytotoxic

effect against glioma cell lines [56].

2.6 Conclusions

Paclitaxel, as the most prominent and common taxane, has been traditionally

administered in Cremophor EL-based formulations (e.g. Taxol®); this vehicle is

reliable for solubilising paclitaxel, but it causes many adverse effects. Several

nanocarrier formulations of paclitaxel have shown to be appropriate alternatives

to Cremophor EL formulations, owing to their biodegradability and the fewer

adverse effects caused by the drug incorporated into these carriers. Many paclitaxel

formulations based on nanotechnology are under investigations, and some are in the

pipeline of commercialization.
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