
Query Checking for Linear Temporal Logic

Samuel Huang and Rance Cleaveland(B)

University of Maryland, College Park, USA
srhuang@cs.umd.edu, rance@cs.umd.edu

Abstract. The query-checking problem for temporal logic may be for-
mulated as follows. Given a Kripke structure M and a temporal-logic
query of form φ [var], which may be thought of as a temporal formula
with a missing propositional subformula var, find the most precise propo-
sitional formula f that, when substituted for var in φ [var], ensures M
satisfies the resulting temporal property. Query checking has been used
for system comprehension, specification reconstruction, and other related
applications in the formal analysis of systems.

In this paper we present an automaton-based methodology for query
checking over linear temporal logic (LTL). While this problem is known
to be hard in the general case, we show that by exploiting several key
observations about the interplay between the input model M and the
query φ [var], we can produce results for many problems of interest. In
support of this claim, we report on preliminary experimental data for an
implementation of our technique.

1 Introduction

Temporal logics [9] are widely used to specify desired properties of system behav-
ior. Such logics permit the description of how systems should execute over time;
tools such as model checkers [4,8] can then be used automatically to determine
whether or not certain types of system possess given temporal properties.

The practical utility of model checking and other temporal-logic-based verifi-
cation technologies relies on the ability of users to define correctly the properties
they are interested in. To assist users in this regard, researchers have looked
into various forms of automated temporal-property reconstruction [1,11,17,18]
as a means of helping users to devise temporal specifications from given system
specifications. Users may then use these as specifications for the system (useful
when systems subsequently have new functionality added, as the new system
can be checked against the old specification to ensure backward compatibility);
they may also review them as a means of gaining insight into the behavior of a
system that may not have been formally specified or verified. One of the most
influential lines of work in this area is so-called temporal logic query checking [6],
which aims to solve the following general problem: given a system, and a tem-
poral formula with a missing (propositional) subformula, “solve” for the missing
subformula. As originally formulated by Chan [6], the temporal logic in question
was a subset of the branching-time temporal logic CTL [10], for which he gave

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 34–48, 2017.
DOI: 10.1007/978-3-319-67113-0 3

Query Checking for Linear Temporal Logic 35

efficient algorithms for computing most-precise missing formulas. Others have
considered different variants of this problem, by considering multiple missing
subformulas, for instance, or different logics [5,7,15].

In this paper we consider the problem of query checking for linear temporal
logic (LTL) [10]. LTL differs from branching-time logics in that one specifies
properties of executions, rather than states in a system, and it is often viewed as
an easier formalism to master for this reason. It is also the basis for specification
languages, such as FORSPEC [2], used in digital hardware design. In the current
work we show how automaton-based model-checking techniques may be adapted
to yield a solution to the query-checking problem that, while computationally
complex in the worst case, exploits structure in the space of possible query
solutions to yield better performance. To this end, after reporting on related work
and developing needed mathematical preliminaries, we present our technique and
report on a preliminary implementation that we are developing.

2 Related Work

Temporal-logic query checking was initially defined and explored by William
Chan [6], who considered the problem in the context of the branching-time tem-
poral logic CTL [10]. Chan initially considered a subset of CTL and showed
that queries in this subset, which allows the universal path quantifier and places
restrictions on the modal operators, can be solved in linear time. This work was
subsequently extended to more expressive branching-time logics via alternating-
tree automaton constructions [5] and three-valued model checking [15]; this last
paper also describes several applications of the technique in areas such as invari-
ant inference and test generation. Other work has studied the problem for classes
of infinite-state systems [21].

In contrast to branching time, linear-time query checking has remained rela-
tively unstudied. Chokler et al. [7] consider several variants of LTL query check-
ing and prove complexity results for these problems; however, no implementation
or experimental results were reported.

Other researchers have considered the problem of so-called specification min-
ing, in which temporal properties are inferred not from system models, but from
execution behavior, using techniques from data mining and machine learning.
Such properties hold of the data from which they are generated, but not neces-
sarily of all system behaviors. Emblematic of this work is the dynamic-invariant
generation work of Ernst et al. [11], which uses program instrumentation to
obtain state information as a program executes and then data mining to identify
possible invariants. Other work in this vein couples data mining of execution data
with retesting to attempt to remove invalid invariants in the case of Simulink
models [1]. Other work has considered the mining of general LTL formulas from
run-time data [16].

36 S. Huang and R. Cleaveland

3 LTL, Kripke Structures and Büchi Automata

This section defines the syntax of LTL and reviews the notions of Kripke struc-
ture, Büchi automata, and model checking in LTL. In what follows, we fix a
finite non-empty set A of atomic propositions.

3.1 LTL and Kripke Structures

The syntax of LTL formulas is given by the following grammar.

φ := a ∈ A | ¬φ | φ ∨ φ | Xφ | φUφ

In addition to the propositional constructs a, ¬ and ∨, LTL formulas also include
the modal operators X, or “next state”, and U, or “until”. The derived propo-
sitional operations ∧,→, etc. are defined in the usual manner; we also write
tt as an abbreviation for a ∨ ¬a for a designated a ∈ A and ff for ¬tt. We
additionally use the following derived temporal operators in the sequel.

Fφ � ttUφ

Gφ � ¬(F¬φ)
φ1 Rφ2 � ¬((¬φ1)U(¬φ2))

F and G are the “eventually” and “always” operators, while R is sometimes
called the “release” operator. We write Φ for the set of LTL formulas.

The semantics of LTL is given as a relation |=⊆ (2A)ω × Φ. Intuitively,
π |= φ holds if π ∈ (2A)ω, which is an infinite sequence of subsets of A, makes
φ true. In what follows, if π = A0A1 . . . then we write π[i] ∈ 2A for Ai ⊆ A and
π[i..] ∈ (2A)ω for the suffix AiAi+1 The relation |= may now be defined as
follows.

– π |= a (a ∈ A) iff a ∈ π[0].
– π |= ¬φ iff π �|= φ.
– π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2.
– π |= Xφ iff π[1..] |= φ.
– π |= φ1 Uφ2 iff there is a j ≥ 0 such that π[j..] |= φ1 and for all 0 ≤ i < j,

π[i..] |= φ2.

We often write �φ� �
{
π ∈ (2A)ω | π |= φ

}
for the set of sequences satisfying φ.

LTL formulas are often used to specify properties of systems modeled as
Kripke Structures.

Definition 1. A Kripke Structure is a quadruple (S,R,L, i) where:

– S is a non-empty set of states;
– R ⊆ S × S is the transition relation;
– L ∈ S → 2A is the labeling function; and
– i ∈ S is the initial state.

Query Checking for Linear Temporal Logic 37

A Kripke structure encodes the behavior of a system, with S representing system
states and the transition relation recording the possible execution steps that are
possible when a system is in a given state: when the system is in state s it can
evolve in one step to state s′ iff (s, s′) ∈ R. The labeling function indicates which
atomic propositions are true in any given state; if a ∈ L(s) then a is deemed true
s, while if a �∈ L(s) it is false. State i is the initial state. In what follows we require
Kripke structures to be left-total : for every s ∈ S it must be the case that there
is an s′ ∈ S such that (s, s′) ∈ R. We also call a Kripke structure finite-state
if its state set is finite. Semantically, left-total Kripke structure K = (S,R,L, i)
gives rise to a subset �K� of (2A)ω as follows.

– Infinite sequence s0s1 . . . ∈ Sω is an execution of K if s0 = i and (si, si+1) ∈ R
for all i ≥ 0.

– K generates π = A0A1 . . . iff there is an execution s0s1 . . . of K such that
Ai = L(si).

– �K� =
{
π ∈ (2A)ω | K generates π

}
.

We then write K |= φ, where K is a Kripke structure and φ is an LTL formula,
iff �K� ⊆ �φ�.

3.2 Büchi Automata and LTL Model Checking

The LTL model-checking problem may be formulated as follows.

Given: Kripke structure K, LTL formula φ
Determine: Does K |= φ?

When K is finite-state the model-checking problem is decidable in time propor-
tional to |K|, where |K| is the size of Kripke structure K. A common approach
for LTL model checking relies on the use of Büchi automata. This section defines
these automata and explains their use in LTL model checking.

Büchi automata. Büchi automata are used to recognize so-called ω-regular lan-
guages, which are sets of infinite-length sequences of alphabet symbols.

Definition 2. A Büchi automaton is a quintuple (Q,Σ, δ, qI , F), where:

– Q is a finite, non-empty set of states;
– Σ is a finite, non-empty set of alphabet symbols;
– δ ⊆ Q × Σ × Q is the transition relation;
– qI is the initial state; and
– F ⊆ Q is the set of accepting states.

Let B be a Büchi automaton (Q,Σ, δ, qi, F). We define the language, L(B) ⊆ Σω,
of B as follows.

– Given ω-word w = α0α1 . . . ∈ Σω, define a run of B on w to be a sequence
q0q1 . . . ∈ Qω such that q0 = qI and (qi, αi, qi+1) ∈ δ for all i ≥ 0.

38 S. Huang and R. Cleaveland

– A run q0q1 . . . ∈ Qω of B on w is accepting iff for all i ≥ 0 there exists j ≥ i
such that qj ∈ F .

– L(B) = {w ∈ Σω | B has an accepting run on w}.

The subsets W ⊆ Σω such that W = L(B) for some Büchi automaton B coin-
cide with the so-called ω-regular languages. This class of languages is closed
with respect to complementation and intersection; both of these operations can
be realized as constructions on Büchi automata. In addition, checking for empti-
ness of the language of B is decidable in time proportional to the size of B.
Algorithmically, this can be done by computing the strongly connected compo-
nents of B and determining if there is one such component reachable from the
start state, containing an accepting state, and having at least one edge from a
state in the component to another state in the component. This ensures the exis-
tence of at least one accepting run in B, and hence the non-emptiness of L(B).

LTL model checking using Büchi automata. Büchi automata may be used as
a basis for model checking of finite-state Kripke structures against LTL formu-
las [19]. Recall the model-checking problem in this case: given finite-state Kripke
structure K and LTL formula φ, determine whether or not K |= φ. This problem
may be solved algorithmically using Büchi automata as follows.

– From K, construct Büchi automaton BK such that L(BK) = �K�.
– From φ, construct Büchi automaton B¬φ such that L(B¬φ) = �¬φ�.
– Construct the Büchi automaton BK,¬φ such that L(BK,¬φ) = L(BK)∩L(B¬φ)

and check if L(BK,¬φ) = ∅. This is true iff K |= φ.

Note that both BK and B¬φ must have alphabet sets Σ = 2A. Specifically,
transitions in both of these Büchi automata are labeled by subsets of A.

For K = (S,R,L, i), the construction BK is straightforward: define BK =(
S, 2A, δK , i, S

)
, where

δK = {(s,A, s′) | (s, s′) ∈ R and A = L(s)} .

The construction of Bφ for LTL formula φ is more complex, and a number of
approaches may be found in the literature [3,12–14]. The best techniques yield
automata that are O(3|φ|), where |φ| is the size of formula φ.

We close this section by giving an alternative formulation of Büchi automata
whose alphabets are 2A. The edges in these automata are labeled by proposi-
tional formulas constructed from A, rather than subsets of A; the interpretation
of such an edge q

γ−→ q′ is that q
A−→ q′ for every A satisfying γ. These notions

are formalized as follows.

– Define the set of propositional formulas Γ over A by the following grammar.

γ ::= a ∈ A | ¬γ | γ ∨ γ

Note that Γ � Φ. We use the usual encodings of tt, ∧, etc.
– If A ⊆ A and γ ∈ Γ then define A |= γ as follows.

Query Checking for Linear Temporal Logic 39

• A |= a iff a ∈ A
• A |= ¬γ iff A �|= γ
• A |= γ1 ∨ γ2 iff A |= γ1 or A |= γ2.

We write �γ� for {A ⊆ A | A |= γ}. Note that A |= γ iff π |= γ for all π such
that π[0] = A.

We sometimes use A ⊆ A as short-hand for the formula (
∧

a∈A a) ∧ (
∧

a�∈A ¬a).
Note that �A� = {A} in this case.

Definition 3. Given A, a Büchi propositional automaton is a tuple (Q, δ, qI , F),
where:

– Q is a finite non-empty set of states, with qI ∈ Q and F ⊆ Q.
– δ ⊆ (Q × Γ × Q) is the transition relation.

Based on our interpretation of sets A ⊆ A as propositions it is easy to see that
every Büchi automaton is also a Büchi propositional automaton. An arbitrary
Büchi propositional automaton B = (Q, δ, qI , F) may also be translated into a
traditional Büchi automaton B′ =

(
Q, 2A, δ′, qI , F

)
by defining

δ′ = {(q,A, q′) | ∃γ. (q, γ, q′) ∈ δ ∧ A ∈ �γ�} .

We define L(B) = L(B′). The traditional tableau-based constructions for con-
verting LTL formulas into Büchi automata may easily be adapted to generate
Büchi propositional automata with the property that for every pair of automaton
states q, q′ there is exactly one γ such that (q, γ, q′) ∈ δ.

Finally, we give a construction for Büchi propositional automaton B12 with
L(B12) = L(B1) ∩ L(B2) for the special case of Büchi propositional automata
B1 and B2, with every state in B1 accepting.

Theorem 1. Let B1 = (Q1, δ1, q1, Q1) and B2 = (Q2, δ2, q2, F2) be Büchi propo-
sitional automata. Then L(B12) = L(B1) ∩ L(B2), where

B12 = (Q1 × Q2, δ12, (q1, q2) , Q1 × F2)

and ((q1, q2) , γ1 ∧ γ2, (q′
1, q

′
2)) ∈ δ12 iff (q1, γ1, q′

1) ∈ δ1 and (q2, γ2, q′
2) ∈ δ2.

4 The LTL Query Checking Problem

In LTL query checking we are interested in Kripke structures and LTL formula
queries, which are formulas containing a missing propositional subformula. The
goal in LTL query checking is to construct solutions for the missing subformula.
This section defines the problem precisely and proves results that will be used
later in our algorithmic solution.

LTL queries correspond to LTL formulas with a missing propositional subfor-
mula, which we denote var. It should be noted that var stands for an unknown
proposition over A; it is not a propositional variable. The syntax of queries is as
follows.

40 S. Huang and R. Cleaveland

φ := var | a ∈ A | ¬φ | φ ∨ φ | Xφ | φUφ

In this paper we only consider the case of a single propositional unknown,
although the definitions can naturally be extended to multiple such unknowns.
We often write φ[var] for LTL query with unknown var, and φ[φ′] for the LTL
formula obtained by replacing all occurrences of var by LTL formula φ′. We also
say that an occurrence of var within φ[var] is positive if it appears within an
even number of instances of ¬, and negative otherwise. If all occurrences of var
in φ[var] are positive we say var is positive in φ[var]; if all are negative we say
var is negative in φ[var]; if there are both positive and negative occurrences of
var in φ[var] then var is mixed in φ[var].

The query-checking problem may now be formulated as follows.

Given: Finite-state Kripke structure K, LTL query φ[var]
Compute: All γ ∈ Γ (i.e. all propositional formulas over A) with K |= φ[γ].

If γ is such that K |= φ[γ], then we call γ a solution for K and φ[var], and in
this case we say that φ[var] is solvable for K. Computing all solutions for query
checking problem K and φ[var] cannot be done explicitly, since the number
of propositional formulas is infinite. However, if we define γ1 ≡ γ2 to hold if
�γ1� = �γ2�, then it is clear that there are only finitely many distinct equivalence
classes for Γ . We also say that γ1 is at least as strong (weak) as γ2 if �γ1� ⊆ �γ2�
(�γ2� ⊆ �γ1�). We now have the following.

Theorem 2. Let K be a finite-state Kripke structure and φ[var] an LTL query.

1. If var is positive in φ[var] then there is a finite set (modulo ≡) of strongest
solutions for φ[γ].

2. If var is negative in φ[var] then there is a finite set (modulo ≡) of weakest
solutions to φ[γ].

In some cases these sets of maximal solutions contain a single solution.

Definition 4. Let φ[var] be an LTL query. Then φ[var] is:

– conjunctively covariant iff for all γ1, γ2, φ[γ1 ∧ γ2] ≡ φ[γ1] ∧ φ[γ2]; and
– conjunctively contravariant iff for all γ1, γ2, φ[γ1 ∨ γ2] ≡ φ[γ1] ∧ φ[γ2].

Theorem 3. Let K be a finite-state Kripke structure, and let φ[var] be solvable
for K. Then the following hold.

1. If var is positive in φ[var] and φ[var] is conjunctively covariant, then there
is a unique strongest solution (modulo ≡) for φ[var].

2. If var is negative in φ[var] and φ[var] is conjunctively contravariant, then
there is a unique weakest solution (modulo ≡) for φ[var].

As examples, note that G var is conjunctively covariant and solvable for every K,
and that var is positive; it is guaranteed to have a unique strongest solution for
any K. So does GF var. On the other hand, G(var =⇒ Fφ′) is conjunctively
contravariant and solvable for every K, and var appears negatively. Thus, every
K has a unique weakest solution for this query.

Query Checking for Linear Temporal Logic 41

5 Automaton-Based LTL Query Checking

In this section we show how LTL query checking can be formulated as a prob-
lem on Büchi propositional automata whose propositional labels may contain
instances of var. In this paper we only consider LTL queries in which var is
either negative or positive; the mixed case will not be dealt with. The app-
roach is based on LTL model checking in that we generate Büchi propositional
automata from both a Kripke structure and the negation of an LTL query and
compose them; we then search for solutions to var that make the language of
the composition automaton empty. To formalize these notions, we introduce the
following definitions.

5.1 Propositional Queries

Definition 5. Let var be an unknown proposition. Then propositional queries
are generated by the following grammar.

γ:: = var | a ∈ A | ¬γ | γ ∨ γ

We write γ[var] for a generic instance of a propositional template, and Γ [var]
for the set of all propositional templates involving var.

It is easy to see that propositional queries form a subset of LTL queries, and
that notions of γ[γ′], positive and negative occurrences of var, etc., carry over
immediately. A shattering formula for query γ[var] is a propositional formula
γ′ with the property that �γ[γ′]� = ∅; that is, γ′ “makes” γ[var] unsatisfiable.
We call γ[var] shatterable if it has a shattering formula. The following is a
consequence of the fact that the set of propositional formulas form a Boolean
algebra.

Theorem 4. Let γ[var] be shatterable.

1. If var is positive in γ[var] then there is a unique (modulo ≡) weakest shat-
tering formula for γ[var].

2. If var is negative in γ[var] then there is a unique strongest (modulo ≡) shat-
tering formula for γ[var].

Intuitively, if γ[var] is shatterable and var is positive, then γ[var] can be rewrit-
ten as var∧γ′ for some propositional formula γ′ (i.e. γ′ contains no occurrences
of var). In this case the weakest shattering formula for γ[var] is ¬γ′. A dual
argument holds in the case that var is negative in γ[var].

5.2 Büchi Query Automata

Büchi query automata are propositional automata with propositional queries
labeling transitions.

42 S. Huang and R. Cleaveland

Definition 6. Let var be a propositional unknown. A Büchi query automaton
has form (Q, δ, qI , F), with finite state set Q, initial state qI ∈ Q, accepting
states F ⊆ Q, and transition relation δ ⊆ Q × Γ [var] × Q.

Intuitively, a Büchi query automaton is like an LTL query in that it contains a
propositional unknown, var, that can be used to change the language accepted
by the automaton. Specifically, if var is set to a condition γ′ that shatters the
edge label γ[var], then any query-automaton edge of form (q, γ[var], q′) is no
longer available for use in constructing runs of the automaton. Figure 1 illustrates
this phenomenon. Thus, by varying var we can thus affect the language accepted
by the query automaton.

Fig. 1. Shattering edges in a Büchi query automaton. Proposition γ′ shatters γ[var],
and consequently the edge (q, γ[var], q′) is removed.

Formally, if B[var] is a Büchi query automaton then define B[γ] to be the
Büchi propositional automaton obtained by replacing all occurrences of var by
γ in any edge label within B[var]. We say that γ shatters B[var] if L(B[γ]) = ∅,
i.e. if γ renders the language of B[var] empty. Notions of positive and negative
occurrences of var in B[var], etc., carry over in the obvious manner.

We now note the following correspondence between LTL queries and Büchi
query automata.

Theorem 5. Let φ[var] be an LTL query. Then there exists a Büchi query
automaton Bφ[var] such that the following hold.

1. For all γ ∈ Γ , �φ[γ]� = L(Bφ[γ]).
2. If var is positive in φ[var] then var is positive in Bφ[var].
3. If var is negative in φ[var] then var is negative in Bφ[var].

The construction of Bφ[var] is a straightforward adaptation of the construction
of Büchi propositional automata from LTL formulas φ.

Query Checking for Linear Temporal Logic 43

5.3 LTL Query Checking via Büchi Query Automata

We now explain our approach to LTL query checking. Given finite-state Kripke
structure K and LTL query φ[var], we perform the following.

1. Construct Büchi (propositional) automaton BK .
2. Construct Büchi query automaton B¬φ[var].
3. Construct the product query automaton, BK,¬φ[var].
4. Solve for shattering conditions for BK,¬φ[var].

Because of Theorem 5 we know the following. If φ[var] is conjunctively covari-
ant and var is positive in φ[var], then var is negative in BK,¬φ[var], and the
strongest solution for var in φ[var] with respect to K coincides with the weak-
est shattering condition for BK,¬φ[var]. The dual result holds in case var is
negative in φ[var]. Thus, solving for shattering conditions in BK,¬φ[var] yields
appropriate query solutions for K and φ[var].

6 Implementing an LTL Query Checker

Based on the developments given earlier in the paper, to develop a query checker
for finite-state Kripke structures and LTL queries φ[var] it suffices to construct
the product query automaton BK,¬φ[var] and then search for γ that shatter
BK,¬φ[var]. In this section we highlight some of the algorithmic aspects of this
strategy and report on preliminary results of a prototype implementation.

At the outset, we can note that there is one immediate algorithmic solution:
enumerate γ and test to see if L(B[γ]) = ∅ by computing the strongly connected
components of B[γ] and seeing if the start state can reach a successful compo-
nent (i.e. one with an accepting state and at least one edge from the component
back to itself). As there are 22

|A|
semantically distinct such γ, this procedure

terminates; indeed, this is the basis of the approach outlined in [7]. The com-
plexity of this approach is prohibitive, however, as a sample implementation of
ours has shown: even Kripke structures with 10s of states and 10 atomic propo-
sitions failed to complete successfully. This is to be expected, given that there
are 22

10 ≥ 1.75 × 10308 semantically distinct propositions in this case.
Instead, the approach outlined below pursues two different strategies to

reduce the computational effort associated with shattering. One involves exploit-
ing the lattice structure of 22

A
to reduce the number of propositions that must

be considered; the second combines this idea with a weakening of the problem to
require the computation of a single shattering proposition, rather than all such
propositions. The next sections provide further details regarding our approach.

6.1 Construct Büchi Automaton BK

Given a Kripke structure K, constructing the corresponding Büchi automaton
BK is done using the traditional method as described above. There is no query
component to the model input, it should be noted.

44 S. Huang and R. Cleaveland

6.2 Construct Büchi Query Automaton B¬φ[var]

The LTL3BA package performs translations from standard LTL formulas to
Büchi propositional automata. For a given query φ[var] we convert the formula
into a Büchi query automaton by treating var as a normal atomic proposition. By
default, LTL3BA attempts to remove non-determinism from the output Büchi
query automaton, which can increase the number of edges in the automaton
containing var on their labels. We configure LTL3BA so that removal of non-
determinism is not required in order to avoid this extra overhead.

6.3 Construct Product Query Automaton BK,¬φ[var]

As mentioned before, there is a well-known product construction for composing
two Büchi automata into a single one accepting the intersection of the languages
of the component automata. We adapt this composition operation to automa-
ton BK and query automaton B¬φ[var], yielding composite query automaton
BK,¬φ[var], as follows. States in B¬φ[var] are pairs of states from BK and
B¬φ[var]. Tuple ((q1, q2) , A ∧ γ[var], (q′

1, q
′
2)) is a transition in BK,¬φ[var] iff

(q1, A, q′
1) is a transition in BK and (q2, γ[var], q′

2) is a transition in B¬φ[var].
It should be noted that the transition label in this case, A∧γ[var], has a special
property: for any var, either �A ∧ γ[var]� = {A}, or �A ∧ γ[var]� = ∅. This is
a consequence of the fact that our treatment of A as a proposition means that
�A� = {A}. The initial state of BK,¬φ[var] is the pair consisting of the start
states of BK and B¬φ[var], respectively; states are accepting in BK,¬φ[var] if
and only if the state component coming from B¬φ[var] is accepting.

6.4 Solve for Shattering Conditions of BK,¬φ[var]

Given BK,¬φ[γ], we now must find a proposition γ such that L(BK,¬φ[γ]) = ∅.
One approach [7] is to enumerate all possible γ and compute whether or not
L(BK,¬φ[γ]) = ∅ for each such γ. Because of the number of possible γ, this
approach is infeasible for all but trivial A.

Our approach instead focuses on determining when sets of edges in
BK,¬φ[var] can be shattered via a common proposition γ in such a way that
L(BK,¬φ)[γ]) is empty. Our procedure may be summarized as follows.

1. Pre-process BK,¬φ[var] to eliminate all strongly connected components that
have no outgoing edges from the component and that do not contain any
accepting states. Call the reduced query automaton B′[var].

2. Identify all unique edge labels S = {γ1[var], . . . , γn[var]} in B′[var].
3. Process Γ appropriately to determine how B′[var] can be shattered.

We now expand on the last step of the above procedure. In this work our interest
is only for LTL queries φ[var] in which var appears only positively or only
negatively; we do not consider queries in which var is mixed. Based on the
construction of BK,¬var[var] it follows that var is either positive in all of the

Query Checking for Linear Temporal Logic 45

γi[var] or negative in all of the γi[var]. In what follows we assume that var is
positive; the negative case is dual.

The first step in processing the γi[var] (var is positive) is to determine if
γi[var] is shatterable, and if so, to compute its weakest shattering condition γ′

i.
Propositional queries γi[var] that are not shatterable are removed from future
consideration, as they cannot contribute to shattering B′[var]. In what follows
we assume that each γi[var] is shatterable, with weakest shattering condition γ′

i.
The next step S is to search for subsets of S that, when all shattered, shatter

B′[var]. More specifically, suppose S′ ⊆ S and γ′′ is such that γ′′ shatters each
γ′[var] ∈ S′. In B′[γ′′] none of the edges labeled by elements of S′ would be
present; if enough edges are eliminated, L(B[γ′′]) = ∅, and γ′′ would shatter
B′[var]. In this case we say that S′ shatters B′[var]. This search procedure is
facilitated by the following observations.

1. If S′ shatters B′[var] and S′ ⊆ S′′, S′′ also shatters B′[var].
2. If S′ does not shatter B′[var] and S′′ ⊆ S′, S′′ does not shatter B′[var].

These observations can be exploited to develop a modified breadth-first search
(BFS) strategy for finding all minimal subsets of S that shatter B′[var]. The BFS
algorithm maintains a work set, W ⊆ 2S , of subsets of S that need processing.
Initially, W = {∅}. The algorithm then repeatedly does the following. It selects
a minimum-sized S′ ∈ W and checks if S′ shatters B[var]. If it does, then it
removes all supersets of S′ from W and adds S′ to the set of minimal shattering
subsets of S. If it does not, then every superset of S′ that contains one more
element than S′ is added to W . The procedure terminates when W is empty.
Note that the approach does not add to W when S′ is found to be a shattering
set; the correctness of this approach is based on the first observation above.

The BFS algorithm in the worst-case can still require examination of all
subsets of S, so we also consider a different algorithm whose goal is to com-
pute a single minimal shattering subset of S. This approach, which we call
GREEDY SET SEARCH (GSS), first locates a (not necessarily minimal) shat-
tering set using a depth-first search strategy as follows. The procedure maintains
a set R ⊆ S that is initially ∅. It then repeatedly checks to see if R shatters
B′[var]; if so, it terminates, otherwise, it adds a new element from S into R.
The observations above guarantee that the above procedure will terminate after
at most |S| iterations. The second stage of the procedure then locates a mini-
mal subset of the shattering set R returned by the first stage as follows. Each
edge (except the last one added) is removed from R, and the set without this
edge is checked for shattering. If the newly modified set R′, consisting of R with
this single edge removed, shatters B′[var] then the edge is permanently removed
from R; otherwise, the edge is left in R. When this procedure terminates the
resulting value of R is guaranteed to be a minimal shattering subset of S.

6.5 Implementation and Evaluation

We have developed prototype implementations of the BFS and GSS algorithms.
Kripke structures are read in as directed graph data containing node labels,

46 S. Huang and R. Cleaveland

and LTL formulas are represented as simple strings. As stated previously, the
LTL3BA routine was used to generate Büchi query automata from LTL queries.

For a proof-of-concept assessment of the techniques we use a modified version
of NuSMV to extract the explicit Kripke structures from a sample .smv model
files included in the NuSMV distribution. For each choice of model used, we con-
sidered property queries that were conceivably of interest based upon grounded
properties known to be true of the systems already. These always took one of
the following forms: G a, GF a or G (a → F b). The models we considered in
our evaluation are the following.

– Counter[k] - An implementation of a k-bit counter.
– Semaphore[k] - An implementation of a semaphore access control scheme for

k different processes.
– Production cell - A production cell control model, first presented as an SMV

model by Winter [20]. The original intent of this model concerned safety and
liveness specifications.

Figure 2 contains relevant data about sizes of these models, and about the
size of the Büchi query automata formed when composing the models with the
query automaton B¬G var. For our purposes, the following measures are relevant:
(1) number of states, (2) number of transitions, (3) number of atomic proposi-
tions in the Kripke structure, (4) number of transition labels containing variable
labels in the composite automaton, and (5) number of unique transition labels.

Dataset # States # Transitions |A| # var-present edges # distinct edge labels

counter[3] 17 26 3 9 8
counter[4] 33 50 4 17 16
counter[5] 65 98 5 33 32
counter[10] 2049 3074 10 1025 1024

semaphore[2] 25 98 9 33 12
semaphore[3] 65 314 13 105 32
semaphore[4] 161 917 17 305 80
semaphore[5] 385 2498 21 833 192
semaphore[6] 897 6530 25 2177 448
semaphore[7] 2049 16514 29 5505 1024

production-cell 163 245 76 82 81

Fig. 2. Statistics for Büchi product query automata when composed with G(var).

Figure 3 contains performance data for both BFS and GSS. Algorithms were
implemented in Java, and experiments were conducted on a single machine with
a 3.5 GHz processor containing 32 GB of memory. Individual experiments were
allowed to run for up to 2 h before being stopped and considered timed out. BFS
yielded minimal success, as most datasets timed out. The GSS approach to find
a single minimal shattering set proved much more effective.

Query Checking for Linear Temporal Logic 47

Dataset Time (s) # Queries

counter[3] 0.2 257
counter[4] 7.2 65537
counter[5] timeout 232 (*)
counter[10] timeout 21024 (*)

semaphore[2] 1.3 4097
semaphore[3] timeout 232 (*)
semaphore[4] timeout 280 (*)
semaphore[5] timeout 2192 (*)
semaphore[6] timeout 2448 (*)
semaphore[7] timeout 21024 (*)

production-cell timeout 281 (*)

(a)

Dataset Time (s) # Queries

counter[3] 0.2 17
counter[4] 0.2 33
counter[5] 0.6 65
counter[10] 22.4 2049

semaphore[2] 0.2 25
semaphore[3] 0.4 65
semaphore[4] 1.4 161
semaphore[5] 6.9 385
semaphore[6] 44.1 897
semaphore[7] 296.9 2049

production-cell 1.3 163

(b)

Fig. 3. Timing results for finding (a) all shattering sets via breadth first search, and
(b) one minimal shattering set via GREEDY SET SEARCH. The number of total
shattering queries that are made for each experiment are also reported. Query counts
marked with a (*) are estimates based on our understanding of the models.

7 Conclusions and Directions for Future Research

In this paper we have considered the problem of query checking for Linear Tem-
poral Logic (LTL). An LTL query checker takes a query, or LTL formula with
a missing propositional subformula, together with a Kripke structure and com-
putes a solution for the missing subformula. We have shown how this problem
may be solved using automata-theoretic techniques that rely on the use of Büchi
automata and the computation of so-called shattering conditions that make the
languages of these automata empty. An implementation and preliminary perfor-
mance data are also given.

As future work, we intend to fully develop the implementation and extend
the experimental results we have so far. We also would like to extend the results
to handle queries involving multiple missing subformulas, as well as ones in
which the missing subformula can appear both positively and negatively. Finally,
we would like to leverage relationships between different edge labels containing
variables, such as in cases where one label implies another.

References

1. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.:
Automatic requirement extraction from test cases. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16612-9 1

2. Armoni, R., et al.: The ForSpec temporal logic: a new temporal property-
specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 296–311. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 21

http://dx.doi.org/10.1007/978-3-642-16612-9_1
http://dx.doi.org/10.1007/978-3-642-16612-9_1
http://dx.doi.org/10.1007/3-540-46002-0_21

48 S. Huang and R. Cleaveland

3. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 8

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bruns, G., Godefroid, P.: Temporal logic query checking. In: 16th Annual IEEE
Symposium on Logic in Computer Science, pp. 409–417. IEEE, June 2001

6. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). doi:10.1007/
10722167 34

7. Chockler, H., Gurfinkel, A., Strichman, O.: Variants of LTL Query Checking. In:
Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp. 76–92. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19583-9 11

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

10. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. JACM 33(1), 151–178 (1986)

11. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

12. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000).
doi:10.1007/3-540-44618-4 13

13. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 6

14. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). doi:10.1007/
3-540-36135-9 20

15. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: a tool
for model exploration. IEEE Trans. Soft. Eng. 29(10), 898–914 (2003)

16. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In:
30th IEEE/ACM International Conference on Automated Software Engineering,
pp. 81–92. IEEE, Lincoln, November 2015

17. Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and
diagnosis. In: 47th Design Automation Conference, pp. 755–760. ACM, Anaheim,
June 2010

18. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using
automata-based abstractions. IEEE Trans. Soft. Eng. 34(5), 651–666 (2008)

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: First Symposium on Logic in Computer Science, pp. 322–331. IEEE
Computer Society, Boston, June 1986

20. Winter, K.: Model checking for abstract state machines. J. Univ. Comput. Sci.
3(5), 689–701 (1997)

21. Zhang, D., Cleaveland, R.: Efficient temporal-logic query checking for Presburger
systems. In: 20th IEEE/ACM International Conference on Automated Software
Engineering, pp. 24–33. ACM, Long Beach, November 2005

http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/10722167_34
http://dx.doi.org/10.1007/10722167_34
http://dx.doi.org/10.1007/978-3-642-19583-9_11
http://dx.doi.org/10.1007/3-540-44618-4_13
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1007/3-540-36135-9_20

	Query Checking for Linear Temporal Logic
	1 Introduction
	2 Related Work
	3 LTL, Kripke Structures and Büchi Automata
	3.1 LTL and Kripke Structures
	3.2 Büchi Automata and LTL Model Checking

	4 The LTL Query Checking Problem
	5 Automaton-Based LTL Query Checking
	5.1 Propositional Queries
	5.2 Büchi Query Automata
	5.3 LTL Query Checking via Büchi Query Automata

	6 Implementing an LTL Query Checker
	6.1 Construct Büchi Automaton BK
	6.2 Construct Büchi Query Automaton B[var]
	6.3 Construct Product Query Automaton BK, [var]
	6.4 Solve for Shattering Conditions of BK, [var]
	6.5 Implementation and Evaluation

	7 Conclusions and Directions for Future Research
	References

