
Formalising the Dezyne Modelling Language
in mCRL2

Rutger van Beusekom2, Jan Friso Groote1, Paul Hoogendijk2, Robert Howe2,
Wieger Wesselink1, Rob Wieringa2, and Tim A.C. Willemse1(B)

1 Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.c.willemse@tue.nl

2 Verum Software Tools B.V., Waalre, The Netherlands

Abstract. Dezyne is an industrial language with an associated set of
tools, allowing users to model interface behaviours and implementations
of reactive components and generate executable code from these. The
tool and language succeed the successful ASD:Suite tool set, which, in
addition to modelling reactive components, offers a set of verification
capabilities allowing users to check the conformance of implementations
to their interfaces. In this paper, we describe the Dezyne language and
a model transformation to the mCRL2 language, providing users access
to advanced model checking capabilities and refinement checks of the
mCRL2 tool set.

1 Introduction

Companies increasingly rely on model-driven engineering for developing their
(software) systems. The benefit of this approach, in which a high-level (often
domain-specific) modelling language is used for designing systems, is that it
raises the level of abstraction, resulting in an increased productivity and higher
dependability of the developed artefacts. Formal verification of the models may
help to further reduce development costs by detecting issues early and by further
increasing the overall reliability of the system. However, the success of formal
verification is directly linked to the maturity of the tooling used for performing
the analysis. Most of the available tooling requires highly skilled and experienced
verification engineers to tackle complex industrial problems.

The company Verum has created the ASD:Suite tool suite in the past, in an
attempt to shield the system designer from the complexity of the verification
language and technology by offering an intuitive integrated development envi-
ronment for specifying complex, concurrent, industrial systems. This tool suite
relies on a proprietary design language and associated development methodol-
ogy. The latter is built on top of the verification technology offered by the FDR
tool suite [4], which offers facilities for checking deadlock, livelock and refine-
ment. While ASD:Suite is easy to use for both novice and experienced system
designers, it limits more experienced designers in constructing more complex
models and accessing the full power of formal verification.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 217–233, 2017.
DOI: 10.1007/978-3-319-67113-0 14

218 R. van Beusekom et al.

In an effort to move beyond these limitations, Verum has designed a new,
open modelling language called Dezyne1, that, compared to ASD, is richer
in terms of constructs and facilities. FDR still is the de facto back-end for
conducting verifications, through a non-documented proprietary translation of
Dezyne models to FDR models, but the open nature of the language enables
offering alternative verification technology through other back-ends. This will
allow Verum and others to offer new services for expert users.

In this paper, we provide an encoding of the Dezyne modelling language
in the mCRL2 process algebra [5], thus giving a formal semantics to Dezyne
models. We address issues such as the transformation of Dezyne models to
mCRL2 process expressions, which we describe as formal as possible without
going into unnecessary detail. Moreover, we also discuss the technology that we
used to program the transformation between Dezyne and mCRL2, and illustrate
how the connection to mCRL2 and its analysis tool set [3] can be used as the
basis for future verification services that can check for a much wider range of
user-specific safety and liveness properties, and to offer advanced behavioural
visualisation tooling to end-users.

The work we report on has been conducted in the context of the FP7 TTP
VICTORIA. It took over 1 man-year of effort, of which a large portion was
spent on uncovering details about Dezyne’s (execution) semantics, but also on
improving the transformation to mCRL2 so that it yields mCRL2 models for
which verification scales well. Moreover, our efforts led to a few improvements in
the existing FDR translation, but also to some improvements and enhancements
in the mCRL2 tool set.

Structure of the Paper. We introduce the Dezyne language in Sect. 2 and our
mCRL2 encoding of Dezyne in Sect. 3. In Sect. 4, we discuss improvements
in the mCRL2 tool set that were a direct result of the project and in Sect. 5
we discuss experiments using two versions of our translation and we illustrate
some of the technology that becomes available through our translation. Section 6
finishes with closing remarks.

2 DEZYNE

Dezyne is a language and design methodology for specifying the behaviours
of interfaces and components and checking the compliance between these. The
language constructs for describing interfaces are, save some small details, iden-
tical to the language constructs available for describing components, and take
cues from the theory of Mealy machines and borrow concepts from process alge-
bras. Dezyne offers rudimentary facilities for using data variables of Boolean,
(bounded) integer or user-defined enumerated types.

Components specified in Dezyne assume a specific execution model, in which
a component deals with inputs one at a time. That is, in standard practice a

1 See https://www.verum.com; accessed 21 May 2017.

https://www.verum.com

Formalising the Dezyne Modelling Language in mCRL2 219

Fig. 1. Typical architecture in Dezyne. Components interact with other components
through ports. Components interact with other components in a hierarchical fashion.
Each component has an interface specification which formalises how its behaviour at the
provided port is expected to behave. A compliance check verifies whether a component
actually respects its interface.

single-threaded run-to-completion semantics is employed. A ‘user’ of a compo-
nent can interact with the component by sending events to it; these events are
handled synchronously in the sense that the component essentially will remain
blocked for unsolicited events from lower-level components (which run concur-
rently with the component) until the user receives a reply from the component,
while solicited events from lower-level components are buffered and dealt with
one at a time. Unsolicited events emitted by lower-level components are dealt
with in a similar fashion; such events may result in ‘spontaneous’ outputs emitted
asynchronously by the component.

The design methodology and system architecture implemented in Dezyne is
illustrated in Fig. 1. As a designer employing the Dezyne language and method-
ology, one is only concerned with specifying the behaviour of interfaces and com-
ponents. Subsequent checks compute whether the behaviour of a component as
observed at its provided port (i.e. as seen by the ‘user’ of the component), when
interacting with components through its required ports (i.e. the low-level com-
ponents), formally complies with the behaviour as specified by its interface. This
way one obtains a modular, hierarchical design of a software system. The modu-
lar design and compliance check are pivotal for designing large systems that are
correct-by-design.

The essential part of the grammar of Dezyne is depicted in Table 1; we
have omitted those parts that are required for describing a system; the latter
is essentially a collection of components and a static description of how they
are connected. Dezyne’s static semantics excludes models in which there are
obvious naming conflicts and consistency issues (e.g. multiple interface specifi-
cations with the same name are not permitted; events can be declared at most
once in an interface, etcetera). Some constraints are there to enforce the typical

220 R. van Beusekom et al.

Table 1. EBNF for (the essential part of) the Dezyne language. Terminal symbols are
typeset in bold. For brevity, optional productions are enclosed within parentheses and
a question mark ()? whereas repetition, resp. positive repetition of productions are
enclosed within ()∗, resp. ()+. Nonterminal ID represents the identifiers that can be
generated using standard ASCII characters; Expr represents typical expressions built
from operations on data types, function calls, etcetera.

tree-like architectural design pattern of Fig. 1, used in Dezyne (e.g. each com-
ponent has at most one provided port). Most importantly for our exposition is
the fact that correct interface specifications, components and recursive functions
can be rewritten to a normal form where the behaviour can be represented by
the following production rules:

BehaviourStmt ::= [Guard] OnEventStmt
. . .
FuncDecl ::= ID ID ((ID ID)?) { (ImperativeStmt)∗ }
. . .
OnEventStmt ::= on OnTrigger : ImperativeStmt
ImperativeStmt ::= CompoundImperativeStmt | ReplyStmt | IllegalStmt

AssignmentBehaviourStmt | ActionStmt | ReturnStmt| ConditionalStmt
CompoundImperativeStmt ::= { (ImperativeStmt)∗ }
ConditionalStmt ::= if Guard then ImperativeStmt else ImperativeStmt ;

In essence, this means that each interface and component specifies a sequence of
responses and assignments for each event stimulating the interface or component.

Example 1. Consider the description of a controller described in Dezyne, given
in Fig. 2(left). Its interface specification (not depicted here), describing the exter-
nal behaviour the component must comply with, is described by specification
IController, as indicated by the provides keyword; it communicates with the ‘out-
side world’ via the port called controller. The requires keyword indicates that
the controller communicates with a lower-level component, via a port named

Formalising the Dezyne Modelling Language in mCRL2 221

Fig. 2. Left: a Dezyne model describing a very simple controller. Right: a snippet of
a recursive function in Dezyne; i is a port over which events such as start, stop, on,
run and standby are sent.

actuator, behaving in line with the IActuator interface. Events can be received
via, or sent via the ports. The behaviour section prescribes the behaviour of the
component, indicating, e.g. that when s.Off holds (which is shorthand for s ==
Off) and a start event occurs at port controller (indicated by the on keyword),
the component invokes a start event on port actuator, assigns variable s the value
State.Init and subsequently returns control via an implicit reply message via the
controller port. Also, when s.Off holds, neither a shutdown event via port con-
troller, nor a fail event via port actuator, are permitted; this is indicated by the
illegal keyword. ��
Using (mutually) recursive functions, one can specify a finite or infinite sequence
of statements to be executed upon receiving an event. Recursion is limited to tail
recursion [2], allowing for predictable and effective implementations of Dezyne
models in standard programming languages such as C and C++. A typical
excerpt of a recursive function is given in Fig. 2(right).

Dezyne allows its users to read and update the values of the variables
declared in the variable section of a behaviour in recursive functions. Such manip-
ulations offer a high degree of flexibility to the modeller and are appealing to
those accustomed to using iteration rather than recursion. As a consequence,
the function g in Fig. 2(right) sets Boolean b to false so that the second time g
is called from f, no run event is emitted from port i. Another way for functions
to save part of their computation is to explicitly return a value via a return
keyword.

222 R. van Beusekom et al.

3 An mCRL2 Semantics for DEZYNE

Our formalisation of the Dezyne methodology includes both a transformation
of the core language constructs of Dezyne to mCRL2, and a sketch of our
formalisation of the underlying execution semantics which is used to analyse the
compliance of a component to its interface. We first give a cursory overview of
the mCRL2 language in Sect. 3.1, followed by the formalisation of the Dezyne
language in Sect. 3.2 and its execution semantics in Sect. 3.3. The implementation
and validation of our transformation is briefly discussed in Sect. 3.4.

3.1 The Process Algebra mCRL2

The mCRL2 language is a process algebra in the lineage of the Algebra of
Communicating Processes [1]. It consists of a data language for describing data
transformations and data types, and a process language for specifying system
behaviours. The semantics of mCRL2 processes is given both axiomatically and
operationally, associating a labelled transition system to process expressions. For
a comprehensive overview of the language, we refer to [5]; for the associated tool
set, we refer to [3]; due to page limits, we only informally explain the constructs
essential for understanding our work.

The data language includes built-in definitions for most of the commonly used
data types, such as Booleans, integers, natural numbers, etcetera. In addition,
container sorts, such as lists, sets and bags are available. Users can specify their
own data sorts using a basic equational data type specification mechanism.

The process specification language of mCRL2 consists of a relatively small
number of basic operators and primitives. Since we are concerned with only
a fragment of the language we focus on the intuition behind those operators
and constructs that are essential for the current exposition. The basic observ-
able events are modelled by parameterised (multi-)actions. Unobservable events
are modelled by the constant τ , and the constant δ represents inaction (the
process that performs no action, colloquially referred to as the deadlock process).
Processes are constructed compositionally: the non-deterministic choice between
processes p and q is denoted p+q; their sequential composition is denoted p·q,
and their parallel composition is denoted p‖q. A parallel composition of processes
may give rise to multi-actions: actions that occur simultaneously. A communi-
cation operator ΓC(p) can map such multi-actions to new actions when their
parameters coincide, thus modelling the synchronisation of actions. Using an
abstraction operator τH(p), one can turn observable actions into unobservable
actions. An allow operator ∇A(p) can be used to only allow (multi-)actions of
the set A that occur in process p.

Recursion can be used to specify processes with infinite behaviour. This is
typically achieved by specifying a recursive process of the form P(v:V) = p, where
P is a process variable, v is a vector of typed variables (where the type is given
by V), and p is a process expression that may contain process variables (and in
particular variable P). Note that in the next section, we often omit the type V
when specifying recursive processes.

Formalising the Dezyne Modelling Language in mCRL2 223

Process behaviour can be made to depend on data using the conditional
choice operator and a generalised choice operator. The process b→ p � q denotes
a conditional choice between processes p and q: if b holds, it behaves as process
p, and otherwise as process q. Process

∑
d:D.p(d) describes a (possibly infinite)

unconditional choice between processes p with different values for variable d.

Example 2. A simple one-place buffer for natural numbers can be represented
by a process Buffer =

∑
m:Nat.read(m) · send(m) · Buffer, where read and send

are actions that represent storing a value in the buffer and loading a buffered
value from the buffer. The process below represents the same behaviour:

Buffer(n:Nat,b:Bool) = b → (send(n) · Buffer(b = false))
� ∑

m:Nat. (read(m) · Buffer(n = m, b = true))

In this alternative formalisation of the buffer, variable b is used to keep track of
whether the buffer is filled, and, if so, the value currently stored in the buffer is
represented by variable n. Note that Buffer(b = false) is shorthand notation for
Buffer(n,false); i.e. in this notation, only updates to parameters are listed.

3.2 A Formal Description of the DEZYNE to mCRL2 Translation

We mainly focus on the transformation of behaviour statements that occur in
Dezyne models to mCRL2; i.e. we focus on those statements that correspond to
the BehaviourStmt element in the grammar. We omit details about expressions
and type declarations, as these map almost one-to-one on mCRL2 types and
data structures.

For our transformation, we assume that every statement s in a concrete
Dezyne model has a unique index (e.g. a program counter) given by index(s).
This index can easily be assigned while parsing the model. Every mCRL2 process
equation for a given Dezyne component (resp. interface specification), gener-
ated by our transformation, shares the same list v of typed process parameters.
This list contains all variables declared in a Dezyne component (resp. interface
specification). In particular, it includes all global and local variables of the behav-
iours, all function parameters and local function variables, and a small number
of additional variables that are needed as context for the translation. The list of
variables v over-approximates the list of variables that may be in scope at any
point in the execution of a component (resp. interface specification). The typed
list v can also be constructed while parsing the model. We assume that name
conflicts have been resolved using appropriate α-renaming.

Our translation of a behaviour statement s is given by Tr(s, v, i, j, g), where
mapping Tr yields a set of mCRL2 process equations, defined by the rules in
Table 2 (for basic statements and events), and in Table 3 (for function state-
ments). Here i is always equal to index(s), and j is the index corresponding to
the statement that is executed after termination of s, or −1 if there is no such
statement; i.e. j points to the next continuation. Each statement s with index i
has a corresponding process equation Pi(v), where v is the list of typed process

224 R. van Beusekom et al.

parameters. The parameter g determines the current scope in which statement s
resides; g can either be the name of a function (in which case s is in the function
body of g), or it can have the value ⊥ (in which case s is not in the scope of
any function). The actions inevitable, optional and illegal correspond to the trig-
gers and statement with the same name in Dezyne. The parameterised actions
snd r and rcv r are used to send and receive a value t that is set in a reply(t)
statement; the snd r action marks the end of an on e:s1 statement. The snd e
and rcv e actions correspond to sending and receiving of events.

In order to bridge the semantic gap between the Dezyne language and the
mCRL2 language, we have added a few statements that are not part of the
Dezyne language. A send reply statement is inserted at the end of each on e: s1
statement, to make it explicit that the value that is set using a reply(t) statement
inside s1 is eventually returned. In the Dezyne language, sending the reply
remains implicit. Dezyne has the requirement that a reply value is set exactly
once in an on e: s1 statement. It is straightforward to extend the translation of
Table 2 to check for this by recording the number of executed reply(t) statements
in a process parameter. Several other checks, such as out-of-bounds checks can
be added equally straightforward to our transformation. The choice statement
s1 ⊕ s2 and the sequential statement s1; s2 were introduced to make it explicit
that a compound statement that is directly in the scope of an on e:s1 statement
is different from a compound statement inside a behaviour section. The first
one acts like a choice between statements, while the latter acts as a sequential
composition of statements. Finally the skip statement corresponds to an empty
compound statement.

The translation of a behaviour s of a component (resp. an interface specifica-
tion) is given by Tr(s, v0, i, i,⊥), where i = index(s) and v0 contains the initial
values of the global variables of the behaviour, and default values for all other
parameters. The continuation variable j is set to i. The effect of this is that the
behaviour s will be repeated indefinitely. To reduce the size of the underlying
state space, in our implementation of our encoding we reset all non-global vari-
ables to their default value at the end of the execution of an on e:s1 statement.

Example 3. We exemplify the translation on a small part of the Dezyne model
of Fig. 2(left), using fictitious numbers as statement indices. We assume that all
events are void events, meaning that these do not return a value.

Controller1(s:State) = Controller2(s) + Controller12(s);
Controller2(s:State) = (s == Off) → Controller3(s) � δ;
Controller3(s:State) = Controller4(s) + Controller8(s);
Controller4(s:State) = rcv e(controller.start) · Controller5(s);
Controller5(s:State) = snd e(actuator.start) · rcv r(void) · Controller6(s);
Controller6(s:State) = Controller7(s = Init);
Controller7(s:State) = snd r(controller.start, void) · Controller1(s);
Controller8(s:State) = Controller9(s) + Controller11(s);
Controller9(s:State) = rcv e(controller.shutdown) · Controller10(s);
Controller10(s:State) = Illegal();
Controller11(s:State) = rcv e(actuator.fail) · Controller10(s);
Controller12(s:State) = ...
...
Illegal(s:State) = illegal · Illegal();

Formalising the Dezyne Modelling Language in mCRL2 225

Table 2. Mapping Tr, describing the translation of (extended) Dezyne statements
in normal form to mCRL2 processes and process expressions. Note that we used the
convention that i1 = index(s1) and i2 = index(s2), t is a data expression, b is a
Boolean expression, e is an event, x is a variable name, T is a type and Tx is the type
of x. The process parameter r is an element of v and may contain any value t that is
set using a reply(t) statement.

Statement s Translation Tr(s, v, i, j, g)

Basic statements

skip {Pi(v) = Pj()}
s1; s2 {Pi(v) = Pi1 ()} ∪ Tr(s1, v, i1, i2, g) ∪ Tr(s2, v, i2, j, g)

{s1; s2; · · · ; sn} Tr(s1; (s2; (· · · ; sn)), v, i, j, g)
s1 ⊕ s2 {Pi(v) = Pi1 () + Pi2 ()} ∪ Tr(s1, v, i1, j, g) ∪ Tr(s2, v, i2, j, g)

{s1 ⊕ s2 ⊕ · · · ⊕ sn} Tr(s1 ⊕ (s2 ⊕ (· · · ; sn)), v, i, j, g)
if b then s1 else s2 {Pi(v) = b → Pi1 () � Pi2 ()} ∪ Tr(s1, v, i1, j, g) ∪ Tr(s2, v, i2, j, g)

x = t {Pi(v) = Pj(x = t)}
T x = t Tr(x = t, v, i, j, g)

illegal {Pi(v) = Illegal()} where Illegal(v) = illegal · Illegal()

Event related statements

[b] s1 {Pi(v) = b → Pi1 () � δ} ∪ Tr(s1, v, i1, j, g)

on e:s1 {Pi(v) = rcv e(e) · Pi1 ()} ∪ Tr(s1, v, i1, j, g)

reply(t) {Pi(v) = Pj(r = t)}
send reply(e) {Pi(v) = snd r(e, r) · Pj()}
x = e {Pi(v) = snd e(e) ·∑ x′ : Tx.rcv r(e, x′) · Pj(x = x′)}

e

⎧
⎪⎪⎨

⎪⎪⎩

{Pi(v) = snd e(e) · rcv r(void) · Pj()} if e is an ‘in’ event

from a required port

{Pi(v) = snd e(e) · Pj()} otherwise

Note that the actual typing information for the events would be specified in the
interface specifications IController and IActuator, referred to in (but not detailed
in) Fig. 2(left). Furthermore, observe that equation Controller7 deals with the
send reply statement which is not part of the Dezyne language, but which we
need to include to signal the end of an on-event statement. ��

Formalising the recursive functions of the Dezyne language proved to be
the most involved part of the translation as it required several iterations to find
a translation that had a good enough performance for some industrial cases
with thousands of deeply nested function calls. One of the complications is that
functions can modify the global variables of a behaviour. In our first attempt, we
handled these modifications using a separate register process, but it turned out
that the additional communication needed for this could cause an unacceptable
blow up of the state space for some examples.

Our final solution was to introduce a process parameter c that contains the
function call stack, and process parameters rvarT for each function return type

226 R. van Beusekom et al.

T that contain function call results. Both c and rvarT are elements of the list of
variables v we maintain in our translation. In each return statement of a function
with return type T, the function result is stored in the parameter rvarT. In an
assignment statement x = f(t), the function result is retrieved from this parame-
ter rvarT. We ensure that each function body is translated only once. At first
sight this may seem problematic, since the translation of a function call depends
on the statement where the execution should continue after termination, which
is encoded in the parameter j. This problem has been solved by moving the
actual mapping of a function call statement with index i to the corresponding
continuation j in a separate Return process. The Return process contains a sum-
mand (c
= [] ∧ head(c) = i) → Pj(c = tail(c), x = rvarT) � δ for each assignment
statement x = f(t) with index i. Note that the indices of the function call state-
ments are stored in the function call stack c. In case of a nested function call
between mutually dependent tail-recursive functions, it is known that the con-
tinuation statement will not change. So in this particular case we do not add
the index of the statement to the function call stack c. We determine whether
functions are mutually dependent by checking that they are in the same strongly
connected component of the function call graph. The restriction to tail-recursive
functions ensures that it is not needed to put copies of local function variables
on the stack, see e.g. [2]. Details of the formalisation of function call statements
can be found in Table 3. For completeness, the translation Tr(sf , v, if ,−1, f) of
a function body sf is added to the translation of each function call f(t). In our
implementation it is generated only once. Note that the continuation parame-
ter j is set to the undefined value −1, since the actual continuation value of a
function call is stored in the Return process.

3.3 Formalising the Execution Model

Dezyne models that are converted to executable code and subsequently
deployed interact with other components following a run-to-completion regime
which is guaranteed by the Dezyne code generation. A faithful analysis of the

Table 3. Mapping Tr, describing the translation of Dezyne function calls and returns
in mCRL2. Note that t is a data expression, sf is the body of function f , if = index(sf),
and df is the function parameter of function f . By c = i � c we denoted that index i is
prepended to list c.

Statement s Translation Tr(s, v, i, j, g)

Function call statements

f(t)

{{
Pi(v) = Pif (df = t)

}
if f and g are mutually dependent{

Pi(v) = Pif (df = t, c = i � c)
}

otherwise

∪ Tr(sf , v, if , −1, f)

x= f(t)
{
Pi(v) = Pif (df = t, c = i � c)

} ∪ Tr(sf , v, if , −1, f)

return t {Pi(v) = Return(rvarT = t)} where T is the return type of f

Formalising the Dezyne Modelling Language in mCRL2 227

behaviour of Dezyne components therefore requires a formalisation of this exe-
cution model in mCRL2. This holds particularly true for the compliance test that
is conducted, which essentially checks whether the behaviour of a component C,
as can be observed from its provided port p, complies with the behaviour that is
specified by C’s interface specification. Formally, the compliance check decides
whether or not the labelled transition system underlying the behaviour of C
(when interacting with other components through its required ports r1 up to rn,
see also Fig. 1) is a correct failures-divergence refinement [6] of the labelled tran-
sition system underlying the behaviour of C’s interface specification. Relying on
an assume-guarantee style of reasoning, the behaviours of the components that
C interacts with through ports r1 up to rn, are represented by their respective
interface specifications (and their underlying labelled transition systems) in all
analyses of the behaviour of C in the Dezyne tool set.

Conceptually, the run-to-completion execution model ensures that compo-
nent C, when interacting with other components through C’s port p and ports
r1 up to rn, is blocked for unsolicited external stimuli as long as it has not
finished dealing with a previous stimulus. External stimuli that come via the
required ports are queued in a queue Q. This is not the case for the replies to
events submitted to a component via a required port. Unsolicited stimuli arriv-
ing at a required port are announced by an optional or inevitable trigger. The
execution model furthermore defines the semantic difference between the latter
two triggers, by non-deterministically deciding at any point in the execution of
C’s behaviour that optional triggers become disabled, whereas inevitable triggers
cannot be disabled. Such nuances make the effect of the execution model on the
interactions between components non-trivial.

Rather than presenting our mCRL2 formalisation of the run-to-completion
semantics, we explain its workings using a high-level state diagram of a part
of this formalisation, see Fig. 3. The diagram represents how unsolicited stimuli
arriving via the provided port are dealt with; the part dealing with unsolicited
stimuli arriving via the required port (initiated by an optional or inevitable trig-
ger, which fills buffer Q) is largely the same but lacks, e.g. transitions dealing
with sending reply values to the events taken from the queue. The execution
model enforces that stimuli at the provided port and optional and inevitable
triggers at the required ports are only accepted in state ‘Idle’ of Fig. 3. In
mCRL2, this can be modelled by a blocking synchronisation on actions such
as rcv e, optional and inevitable, using a combination of mCRL2’s parallel com-
position operator ||, its communication and restriction operator and its renaming
operator.

The state diagram of Fig. 3 illustrates the flow of events when a stimulus via
the provided port arrives. This causes a state change, leading to state ‘Process-
ing’. When the component reports that it has finished processing the event (indi-
cated by the snd r(e,v) action, which sets a value for reply variable r) it moves
to state ‘Finishing’. Once the component is in state ‘Finishing’, it will start
processing the solicited events that may have arrived in the queue in the mean-
time. Executing an event e′ from the queue (indicated by the rcv e(e′) action)

228 R. van Beusekom et al.

Fig. 3. Schematic overview of the run-to-completion semantics of Dezyne components.

takes the state diagram to state ‘Finished Blocked’; when the component reports
it is finished processing this event (indicated by the snd r(e′) action), it returns to
state ‘Finished’. When the queue is finally empty, the component again returns
to the ‘Idle’ state and returns the value stored in variable r that was determined
during the execution of event e. In all non-‘Idle’ states the component may send
out events via its provided port or via its required ports, and, in response to such
events, other components may fill the queue with new events; we have omitted
these self-loops from the diagram for simplicity.

3.4 Implementing and Validating the Transformation

The model transformation has been implemented using Python. The input of our
transformation is a Dezyne model stored in Scheme format. The Scheme file is
parsed into a Python class model of a Dezyne model, to which our generator is
applied. The result is a Python class model of an mCRL2 model. This mCRL2
model is then pretty printed to text format, after which the mCRL2 tools are
applied for further analysis.

Our preference for the general purpose programming language Python over
a specialised model transformation language such as, e.g. QVTo, is motivated
by the need to easily make changes to the generator. A scripting language like
Python is ideal for that. Since there is a large gap between the Dezyne language
and the process algebra mCRL2, it was clear from the start that the main effort
would be to experiment with different ways to do the transformation. The gener-
ator and its supporting data structures have been revised many times. What also
helped to support making changes is that we made specifications of the transla-
tion in an early stage, and kept it in sync with the implementation, ultimately
resulting in the specifications of Tables 2 and 3.

Note that the class models of Dezyne and mCRL2 were stable from the
start. The classes were kept very simple, and correspond in a one to one way
with UML metamodels of both languages. The mCRL2 classes could even be
generated from an input file containing merely 150 lines of text.

Formalising the Dezyne Modelling Language in mCRL2 229

We validated the relative correctness of our transformation using a set of test
cases provided by Verum, consisting of 168 component models and 224 interface
models, including several models taken from industry (see also Sect. 5). For all
these cases we were able to establish that the state spaces of the behaviours of the
components using our transformation and Verum’s transformation were strongly
bisimilar. Moreover, using the mCRL2 tool set we could reproduce the outcomes
to all checks currently performed by Dezyne on components, interfaces and
their interactions under the run-to-completion semantics on these test cases.

4 Improvements and Enhancements in mCRL2

As the previous section illustrates, from a language point of view, the mCRL2
language is sufficiently expressive for describing the Dezyne models and its
execution semantics. This opens up the possibility to analyse Dezyne models
using the mCRL2 tool set.

The mCRL2 tool set works by parsing, type-checking and subsequently
converting an mCRL2 specification to a normal form called a Linear Process
Specification (LPS). All analyses of the mCRL2 specification are subsequently
performed by tools operating on LPSs or its derived artefacts such as state
spaces. Analysing the mCRL2 models obtained by translating large Dezyne
models developed in industry led to several feature requests for various tools in
mCRL2 but also revealed a few bottlenecks and a thus far undiscovered error in
the mCRL2 tool set.

A major enhancement to the mCRL2 tool set concerns the addition of
algorithms for deciding several types of refinement relations. This was needed
to properly deal with Dezyne’s verification methodology which relies on an
assume-guarantee style of reasoning rooted in the notion of failures-divergence
refinement [6]. While this notion is one of the hallmark features of the FDR
tool set (in fact giving it its name), mCRL2 did not support this refinement
notion, and it could not be mimicked by any of the many behavioural equiva-
lences that were supported by mCRL2. An anti-chain-based algorithm, based
on [7], for deciding failures-divergence refinement was added to the mCRL2 tool
ltscompare.2 Another enhancement to the tool set concerns the generation of
witnesses to divergences—infinite sequences of internal actions—and the genera-
tion of counterexamples for failures-divergence refinement and other refinement
relations.

The larger Dezyne models we ran as test cases revealed that mCRL2 was
not optimised for dealing with the immense number of recursive process equa-
tions obtained from our automated translation. While the complexity of each
individual equation was low (some equations just refer to other equations, e.g.

2 The option to check for this refinement relation, and other refinement relations
such as trace inclusion, weak trace inclusion, failures, weak failures and simulation
preorder is available from mCRL2 revision 13875 and onward. The additions weigh
in at approximately 800 lines of code, which include, among others the additional
algorithms and test cases for these algorithms.

230 R. van Beusekom et al.

when translating assignments), the vast number of these equations meant that
some basic parts of the algorithms used to convert mCRL2 processes to LPSs
needed improvement. Examples include the removal of a linear search through a
list of global data variables and the addition of routines to merge similar equa-
tions. In particular, alphabet reduction, a preprocessing step of linearisation that
analyses possible occurrences of multi-actions, has been improved in a number
of ways. Due to the occurrence of large blocks of interdependent equations, it
turned out to be necessary to cache the alphabet of such equations. Also the
sets of possible multi-actions needed to be pruned more aggressively, to deal
with their huge sizes. At the same time, an error in the rules underlying the old
alphabet reduction algorithm surfaced, which was subsequently fixed.

5 Experiments

In the course of formalising Dezyne in mCRL2, we have experimented with sev-
eral different but semantically equivalent (modulo divergence-preserving branch-
ing bisimulation) translations. The main criterion, next to correctness, used in
our search for a proper formalisation was the scalability of verifying the mCRL2
models resulting from a translation. Typical verifications that are offered by
the Dezyne tool set, and which can be conducted by analysing the appropri-
ate mCRL2 model obtained from translating a Dezyne model, are absence of
deadlock and livelock, out-of-bound checks for variables, invoking events that
are marked illegal, and interface compliance of components. As we mentioned
before, the latter verification is essentially a check whether the behaviour as can
be observed at the provided port of a component is a correct failures-divergence
refinement of the behaviour as specified by the interface specification.

While it can be expected that the various ways of formalising a language
will have an effect on the size of the underlying labelled transition systems of
concrete Dezyne models, we had initially not expected the effects to be so dra-
matic. In fact, for small examples, the effects were marginal, but for the models
developed in the industry, the effects were surprisingly big. This was particularly
true for the compliance checks, which are computationally the most expensive
checks carried out by the Dezyne tool set: the check requires computing a
labelled transition system that represents the interaction between a component
and the interface specifications for its required ports, given the execution model
of Sect. 3.3. To illustrate the differences in scalability for the compliance check,
we compare the effect (on time and state space size) of translating functions
using a dedicated register process for recording the side effects functions can
have on global variables and the translation described in Sect. 3.2, see Table 4.3

These results clearly indicate that one can easily gain a factor 5 or more for the
larger models in terms of speed by choosing an appropriate translation. This
also holds for the other types of verification that can be conducted.

3 Unfortunately, we cannot disclose the origin of, nor further details about these indus-
trial models.

Formalising the Dezyne Modelling Language in mCRL2 231

Table 4. The effect on the size of the state space and the time to generate the transition
system and run the compliance test when translating Dezyne functions using either
a dedicated register process for recording side effects on global variables (translation
I) and when translating functions using the rules in Sect. 3.2 (translation II). Time is
in seconds; a dash indicates that the computation did not finish within the available
time or memory. The models are embedded software control models, developed (and
deployed) in industry using Verum’s software engineering tool suite. The lines of code
for mCRL2 correspond to translation II.

Model Time (s) Speedup # States Reduction Lines of code

I II I II Dezyne mCRL2

Model 1 155 13 11 715, 049 110, 773 6 3, 133 2, 157

Model 2 83 13 6 984, 167 43, 281 22 2, 808 3, 616

Model 3 37 10 3 33, 488 6, 700 4 2, 382 2, 838

Model 4 27 11 2 822 226 3 2, 904 2, 482

Model 5 45 11 4 443, 379 182, 367 2 1, 751 2, 114

Model 6 135 17 7 1, 039, 654 323, 023 3 4, 145 3, 114

Model 7 − 18 − − 74, 654 − 4, 328 3, 161

Model 8 − 21 − − 101, 948 − 4, 931 4, 434

Model 9 − 35 − − 215, 727 − 5, 721 4, 645

Model 10 2, 069 275 7 36, 140, 140 10, 967, 862 3 8, 169 8, 474

Fig. 4. Visualisations of the state space underlying an interface specification used in
‘Model 10’. The symmetry in the two branches at the bottom in the left picture is a
telltale sign of symmetry in the behaviour of the interface specification.

It is noteworthy that the verification times we obtain using the mCRL2 model
are currently roughly 2–5 times slower than the verification times reported by
Verum on the same models. This difference may be due to hardware differ-
ences, but we expect that FDR’s different state space exploration technique is
a main factor, which explores and minimises individual parallel processes before
combining these, whereas mCRL2 explores a monolithic model. Indeed, manu-
ally mimicking FDR’s compositional approach in mCRL2 shows an additional
speed-up of a factor 5–10 can be achieved.

Finally, we note that the translation to mCRL2 opens up the possibility to
use advanced technology for visually inspecting state spaces and tools to verify
more complex properties than the generic ones currently offered by the Dezyne

232 R. van Beusekom et al.

verification tool set. For instance, for ‘Model 10’, which models a complex piece
of software control in an embedded device of one of Verum’s customers, we have
verified typical properties relevant in this context such as:

– Invariantly, whenever the system receives an initialisation event, it remains
possible to successfully stop production;

– There is an infinite execution in which production is never stopped;
– It is impossible to initialise the system when it is already initialised unless

production is stopped.

Such properties are expressed in mCRL2’s modal μ-calculus with data, and all
three properties listed above are readily verified to hold on ‘Model 10’. Moreover,
we have verified several liveness properties that are true of the interface specifi-
cation of ‘Model 10’ but not of the component itself. Through such properties,
the relation between a component and its interface specification can be better
understood.

Figure 4 depicts a graphical simulation of a 3D depiction of the state space
of one of the interface specifications used in ‘Model 10’, giving an impression of
the type of visualisations that one can use to inspect the state space. Such a
visualisation help to, e.g. confirm expectations (such as an expected symmetry
in the system behaviour).

6 Concluding Remarks

Modelling languages used in the context of model driven engineering have gained
traction among industry over the last years. Such languages are predominantly
used to generate executable code, but tool sets supporting these languages rarely
offer forms of formal verification of the models. The Dezyne language and asso-
ciated tool set, developed by Verum, is one of these rare exceptions, with formal
verification support offered through a non-documented, proprietary mapping to
the FDR tool set [4].

We have described a formalisation of the Dezyne language in terms of
mCRL2 [5], providing a first publicly accessible formal semantics of Dezyne
models and their execution semantics. The formalisation and implementation of
the transformation, which was developed in a period of 2 years and took well in
excess of 1 man-year of effort, led to improvements and additions in both mCRL2
and the existing Dezyne to FDR translation, and served as an independent val-
idation of the ideas behind the methodology behind Dezyne. Moreover, the
transformation we developed is a first step to adding more advanced verification
and visualisation possibilities to the Dezyne tool set.

Acknowledgements. Wieger Wesselink and Tim Willemse were funded by the EU-
FP7 TTP VICTORIA project (project grant agreement 609491).

Formalising the Dezyne Modelling Language in mCRL2 233

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press, New York (2010)

2. Clinger, W.D.: Proper tail recursion and space efficiency. In: PLDI, pp. 174–185.
ACM (1998)

3. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink,
W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a parallel
refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167
(2016)

5. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

6. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Asp. Comput.
17(2), 93–112 (2005)

7. Wang, T., Song, S., Sun, J., Liu, Y., Dong, J.S., Wang, X., Li, S.: More anti-chain
based refinement checking. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol.
7635, pp. 364–380. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34281-3 26

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-642-34281-3_26

	Formalising the Dezyne Modelling Language in mCRL2
	1 Introduction
	2 DEZYNE
	3 An mCRL2 Semantics for DEZYNE
	3.1 The Process Algebra mCRL2
	3.2 A Formal Description of the DEZYNE to mCRL2 Translation
	3.3 Formalising the Execution Model
	3.4 Implementing and Validating the Transformation

	4 Improvements and Enhancements in mCRL2
	5 Experiments
	6 Concluding Remarks
	References

