
Laure Petrucci
Cristina Seceleanu
Ana Cavalcanti (Eds.)

 123

LN
CS

 1
04

71

Joint 22nd International Workshop
on Formal Methods for Industrial Critical Systems
and 17th International Workshop
on Automated Verification of Critical Systems, FMICS-AVoCS 2017
Turin, Italy, September 18–20, 2017, Proceedings

Critical Systems:
Formal Methods and
Automated Verification

Lecture Notes in Computer Science 10471

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Laure Petrucci • Cristina Seceleanu
Ana Cavalcanti (Eds.)

Critical Systems:
Formal Methods and
Automated Verification
Joint 22nd International Workshop
on Formal Methods for Industrial Critical Systems
and 17th International Workshop
on Automated Verification of Critical Systems, FMICS-AVoCS 2017
Turin, Italy, September 18–20, 2017
Proceedings

123

Editors
Laure Petrucci
Paris 13 University
Villetaneuse
France

Cristina Seceleanu
Mälardalen University
Västerås
Sweden

Ana Cavalcanti
University of York
York
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-67112-3 ISBN 978-3-319-67113-0 (eBook)
DOI 10.1007/978-3-319-67113-0

Library of Congress Control Number: 2017952389

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the International Workshop on Formal
Methods for Industrial Critical Systems and Automated Verification of Critical Systems
(FMICS-AVoCS), held in Turin, Italy, September 18–20, 2017. FMICS-AVoCS 2017
combines the 22nd International Workshop on Formal Methods for Industrial Critical
Systems and the 17th International Workshop on Automated Verification of Critical
Systems.

The aim of the FMICS workshop series is to provide a forum for researchers who
are interested in the development and application of formal methods in industry. In
particular, FMICS brings together scientists and practitioners who are active in the area
of formal methods and interested in exchanging their experiences in the industrial usage
of these methods. The FMICS workshop series also strives to promote research and
development that targets the improvement of formal methods and tools for industrial
applications.

The aim of the AVoCS workshop series is to contribute to the interaction and
exchange of ideas among members of the international research community on tools and
techniques for the verification of critical systems. The subject is to be interpreted broadly
and inclusively. It covers all aspects of automated verification, including model
checking, theorem proving, SAT/SMT constraint solving, abstract interpretation, and
refinement pertaining to various types of critical systems (safety-critical, business-
critical, performance-critical, etc.) that need to meet stringent dependability
requirements.

This year we received 30 submissions, out of which 8 were submitted to the new
special track on “Formal methods for mobile and autonomous robots”, focusing on the
design, verification, and implementation of mobile and autonomous robots based on
formal methods.

Each of these submissions went through a rigorous review process in which each
paper was reviewed by at least three researchers from a strong Program Committee of
international reputation. We selected 14 papers, 4 of them for the special track, for
presentation during the workshop and inclusion in the workshop’s proceedings, which
resulted in an acceptance rate of 47%.

The regular track papers span various topics on system modeling and verification,
such as deductive verification of code, automata learning techniques, event-based
timing constraints verification, and model checking software components, as well as
topics related to testing and scheduling, such as automatic conformance testing of
industrial systems, model-based testing of asynchronous systems, and formal-
methods-backed schedulability analysis.

The papers accepted for the special track cover recent results and open problems
related to verifying mobile and autonomous robots.

The workshop also featured keynotes by Prof. Parosh Abdullah (Uppsala Univer-
sity, Sweden) and Prof. Kerstin Eder (University of Bristol, UK), and a tutorial offered

by Prof. Tiziana Margaria (University of Limerick and Lero - The Irish Software
Research Centre, Ireland) and Prof. Bernhard Steffen (TU Dortmund, Germany). We
hereby thank the invited speakers for having accepted our invitation, and the tutors for
organizing the tutorial.

We are grateful to the editorial staff of Springer for publishing the workshop’s
proceedings, EasyChair for assisting us in managing the complete process from sub-
mission to proceedings, as well as ERCIM and EASST for their support. Finally, we
would like to thank the Program Committee members and the external reviewers, for
their accurate and timely reviews, all authors for their submissions, and all attendees
of the workshop for their participation.

July 2017 Laure Petrucci
Cristina Seceleanu

Ana Cavalcanti

VI Preface

Organization

Program Committee

María Alpuente Universitat Politècnica de València, Spain
Jiří Barnat Masaryk University, Czech Republic
Ana Cavalcanti University of York, UK
Michael Dierkes Rockwell Collins, France
Kerstin Eder University of Bristol, UK
Alessandro Fantechi Università degli Studi di Firenze, Italy
Michael Fisher University of Liverpool, UK
Francesco Flammini Ansaldo STS, Naples, Italy
María Del Mar Gallardo University of Málaga, Spain
Michael Goldsmith University of Oxford, UK
Gudmund Grov Heriot-Watt University, UK
Matthias Güdemann Diffblue Ltd., Oxford, UK
Marieke Huisman University of Twente, The Netherlands
Gerwin Klein NICTA and University of New South Wales, Australia
Lars Kristensen Bergen University College, Norway
Anna-Lena Lamprecht University of Limerick, Ireland
Peter Gorm Larsen Aarhus University, Denmark
Thierry Lecomte ClearSy, Aix-en-Provence, France
Radu Mateescu Inria Grenoble - Rhône-Alpes, France
David Mentré Mitsubishi Electric R&D Centre Europe, Rennes,

France
Stephan Merz Inria Nancy, France
Manuel Núñez Universidad Complutense de Madrid, Spain
Charles Pecheur Université catholique de Louvain, Belgium
Marielle Petit-Doche Systerel, Aix-en-Provence, France
Laure Petrucci Université Paris 13 and CNRS, France
Markus Roggenbach Swansea University, UK
Matteo Rossi Politecnico di Milano, Italy
Marco Roveri FBK-irst, Italy
Thomas Santen Microsoft Research Advanced Technology Labs

Europe, Germany
Cristina Seceleanu Mälardalen University, Sweden
Bernhard Steffen University of Dortmund, Germany
Jun Sun Singapore University of Technology and Design,

Singapore
Maurice Ter Beek ISTI-CNR, Pisa, Italy
Helen Treharne University of Surrey, UK
Xavier Urbain Université Claude Bernard Lyon 1, France

Jaco van de Pol University of Twente, The Netherlands
Peter Ölveczky University of Oslo, Norway

Additional Reviewers

Armand, Michaël
Basile, Davide
Bendík, Jaroslav
Boudjadar, Jalil
Boyer, Benoît
Bozzano, Marco
Brecknell, Matthew
Carnevali, Laura
Cousineau, Denis
Cruanes, Simon
Dennis, Louise
Dixon, Clare
Griggio, Alberto
Guérin Lassous, Isabelle
Happa, Jassim
Insa, David

Kamali, Maryam
Lang, Frédéric
Linker, Sven
Longuet, Delphine
Macedo, Hugo Daniel
Marsso, Lina
Merino, Pedro
Micheli, Andrea
Murray, Toby
Panizo, Laura
Pardo, Daniel
Poskitt, Christopher M.
Potop-Butucaru, Maria
Salmerón, Alberto
Tixeuil, Sébastien
Wang, Jingyi

VIII Organization

Replacing Store Buffers by Load Buffers
in Total Store Ordering

(Invited Lecture)

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Ahmed Bouajjani2,
and Tuan Phong Ngo1

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed_faouzi.atig,tuan-phong.ngo}@it.uu.se

2 IRIF, Université Paris Diderot, Paris, France
abou@irif.fr

To gain more efficiency and save energy, almost all modern multi-processor architec-
tures execute instructions in an out-of-order fashion. This means that processors execute
instructions in an order governed by the availability of input data rather than by their
original order in the program. The out-of-order execution does not affect the behavior of
sequential programs. However, in the concurrent setting, many new (and unexpected)
behaviors may be observed in program executions. We can no longer assume the
classical Sequential Consistency (SC) semantics that has for decades been the standard
semantics for concurrent programs. Sequential consistency means that “the result of any
execution of the program is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program” [8]. In fact, even
well-known concurrent algorithms such as mutual exclusion and producer-consumer
protocols that are correct under the SC semantics, may not satisfy their specifications
any more when run on modern architectures. This means that it is relevant to carry out
program verification in order to to ensure correctness under these new premises.

To carry out formal verification, we need to have a well-defined semantics for the
program under consideration. The inadequacy of the SC semantics has led to the
invention of new program semantics, so called Weak, (or relaxed) Memory Models, by
allowing permutations between certain types of memory operations [4–6]. One of the
most popular memory models is Total Store Ordering (TSO) that corresponds, among
others, to the relaxation adopted by Sun’s SPARC multiprocessors [11] and formal-
izations of the Intel x86-tso memory model [9, 10]. The TSO model inserts an
unbounded non-lossy (perfect) FIFO buffer (queue), called a store buffer, between each
processor and the main memory. When a processor performs a write operation, the
memory will not be immediately updated as is the case in the SC semantics. Instead,
the write operation will be appended to the tail of the store buffer of the processor. In
such a case, we say that the write operation is pending. A pending write operation is
only visible to the processor that has issued it, but not to the rest of the processors. At
any point during the execution of the program, the memory may be updated, i.e., the
write operation at the head of the store buffer of one of the processors may

non-deterministically be fetched and used to update the memory. The update operation
overwrites the memory position corresponding to the variable on which the write
operation is performed.

After the update operation, the write operation will be visible to all the processors.
If a processor performs a read operation, then it searches first its own store buffer for
the latest pending write operation on the same variable. If no pending write operation
exists on that variable in the buffer, the processor fetches the value from the memory.

In this lecture, we describe an alternative semantics called the dual TSO semantics
[3]. The new semantics is equivalent to the classical TSO semantics but more amenable
for efficient algorithmic verification. The main idea is to replace the store buffers of the
processors by load buffers. The load buffer of a processor contains pending read
operations instead of write operations. Intuitively, the read operation at the end of a
buffer can be consumed and used to perform a local read operation by the processor. The
flow of information will now be in the reverse direction, i.e., write operations by
processors will immediately update the memory, while the values of the variables are
propagated non-deterministically from the memory to the load buffers of the processors.
When a processor performs a read operation, it fetches its value from the tail of its buffer.

One interesting aspect of the dual semantics is that it presents a new (yet equiva-
lent) view of the classical memory model of TSO. Furthermore, the model allows to
incorporate lossiness into the semantics. More precisely, if we extend the semantics by
allowing the load buffers of the processors to lose messages non-deterministically, then
the set of reachable processor states will remain the same. The equivalent lossy
semantics allows the application the framework of well-structured systems [1, 2, 7] in a
straightforward manner leading to a simple proof of decidability of safety properties for
finite-state programs operating on Dual-TSO.

References

1. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: LICS 1996, pp. 313–321. IEEE Computer Society (1996)

2. Abdulla. P.A.: Well (and better) quasi-ordered transition systems. Bull. Symb. Log. 16(4),
457–515, (2010)

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in verifying
concurrent programs under TSO. In: Desharnais, J., Jagadeesan, R. (eds.) 27th International
Conference on Concurrency Theory, CONCUR 2016, 23–26 August 2016, Québec City,
Canada, vol. 59. LIPIcs, pp. 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

4. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer 29
(12) 1996

5. Adve, S., Hill, M.D.: Weak ordering - a new definition. In: ISCA (1990)
6. Dubois, M., Scheurich, C., Briggs, F.A.: Memory access buffering in multiprocessors. In:

ISCA (1986)
7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.

Sci. 256(1–2), 63–92 (2001)

X P. Aziz Abdulla et al.

8. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp. C-28(9) (1979)

9. Owens, S., Sarkar, S., Sewell, P: A better x86 memory model: x86-tso. In: TPHOL (2009)
10. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: a rigorous and

usable programmer’s model for x86 multiprocessors. CACM 53 (2010)
11. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR Prentice

Hall (1994)

Replacing Store Buffers by Load Buffers in Total Store Ordering XI

Contents

Automated Verification Techniques

Deductive Functional Verification of Safety-Critical Embedded C-Code:
An Experience Report . 3

Dilian Gurov, Christian Lidström, Mattias Nyberg, and Jonas Westman

Verifying Event-Based Timing Constraints by Translation
into Presburger Formulae . 19

Björn Lisper

Query Checking for Linear Temporal Logic . 34
Samuel Huang and Rance Cleaveland

Testing and Scheduling

Automatic Conformance Testing of Safety Instrumented Systems
for Offshore Oil Platforms . 51

Hallan William Veiga, Max Hering de Queiroz, Jean-Marie Farines,
and Marcelo Lopes de Lima

Model-Based Testing for Asynchronous Systems . 66
Alexander Graf-Brill and Holger Hermanns

Information Leakage as a Scheduling Resource. 83
Fabrizio Biondi, Mounir Chadli, Thomas Given-Wilson, and Axel Legay

A Unified Formalism for Monoprocessor Schedulability Analysis
Under Uncertainty . 100

Étienne André

Special Track: Formal Methods for Mobile and Autonomous Robots

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 119
Paul Gainer, Clare Dixon, Kerstin Dautenhahn, Michael Fisher,
Ullrich Hustadt, Joe Saunders, and Matt Webster

Sampling-Based Reactive Motion Planning with Temporal Logic
Constraints and Imperfect State Information . 134

Felipe J. Montana, Jun Liu, and Tony J. Dodd

http://dx.doi.org/10.1007/978-3-319-67113-0_1
http://dx.doi.org/10.1007/978-3-319-67113-0_1
http://dx.doi.org/10.1007/978-3-319-67113-0_2
http://dx.doi.org/10.1007/978-3-319-67113-0_2
http://dx.doi.org/10.1007/978-3-319-67113-0_3
http://dx.doi.org/10.1007/978-3-319-67113-0_4
http://dx.doi.org/10.1007/978-3-319-67113-0_4
http://dx.doi.org/10.1007/978-3-319-67113-0_5
http://dx.doi.org/10.1007/978-3-319-67113-0_6
http://dx.doi.org/10.1007/978-3-319-67113-0_7
http://dx.doi.org/10.1007/978-3-319-67113-0_7
http://dx.doi.org/10.1007/978-3-319-67113-0_8
http://dx.doi.org/10.1007/978-3-319-67113-0_9
http://dx.doi.org/10.1007/978-3-319-67113-0_9

Sampling-Based Path Planning for Multi-robot Systems with Co-Safe
Linear Temporal Logic Specifications . 150

Felipe J. Montana, Jun Liu, and Tony J. Dodd

Certified Gathering of Oblivious Mobile Robots: Survey of Recent
Results and Open Problems . 165

Thibaut Balabonski, Pierre Courtieu, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain

Modeling and Analysis Techniques

Learning-Based Testing the Sliding Window Behavior
of TCP Implementations . 185

Paul Fiterău-Broştean and Falk Howar

Optimizing Feature Interaction Detection . 201
Alessandro Fantechi, Stefania Gnesi, and Laura Semini

Formalising the Dezyne Modelling Language in mCRL2 217
Rutger van Beusekom, Jan Friso Groote, Paul Hoogendijk,
Robert Howe, Wieger Wesselink, Rob Wieringa, and Tim A.C. Willemse

Erratum to: Certified Gathering of Oblivious Mobile Robots:
Survey of Recent Results and Open Problems. E1

Thibaut Balabonski, Pierre Courtieu, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain

Author Index . 235

XIV Contents

http://dx.doi.org/10.1007/978-3-319-67113-0_10
http://dx.doi.org/10.1007/978-3-319-67113-0_10
http://dx.doi.org/10.1007/978-3-319-67113-0_11
http://dx.doi.org/10.1007/978-3-319-67113-0_11
http://dx.doi.org/10.1007/978-3-319-67113-0_12
http://dx.doi.org/10.1007/978-3-319-67113-0_12
http://dx.doi.org/10.1007/978-3-319-67113-0_13
http://dx.doi.org/10.1007/978-3-319-67113-0_14

Automated Verification Techniques

Deductive Functional Verification
of Safety-Critical Embedded C-Code:

An Experience Report

Dilian Gurov1, Christian Lidström2(B), Mattias Nyberg1,2,
and Jonas Westman1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Systems Development Division, Scania AB, Södertälje, Sweden

christian.lidstrom@scania.com

Abstract. This paper summarizes our experiences from an exercise in
deductive verification of functional properties of automotive embedded C-
code in an industrial setting. We propose a formal requirements model
that supports the way C-code requirements are currently written at
Scania. We describe our work, for a safety-critical module of an embed-
ded system, on formalizing its functional requirements and verifying its
C-code implementation by means of VCC, an established tool for deduc-
tive verification. We describe the obstacles we encountered, and discuss
the automation of the specification and annotation effort as a prerequisite
for integrating this technology into the embedded software design process.

1 Introduction

While Formal Methods are in general only slowly making their way into indus-
trial practice for quality assurance, their adoption in the domain of embedded,
safety-critical systems has seen much progress over the last years. One reason
for this development, from an industry perspective, is the increased analyses
effort advocated by standards to achieve functional safety of such systems. For
example, automotive functional safety standard ISO 26262 recommends for-
mal verification for higher levels of criticality. The smaller size of embedded
code as compared to arbitrary applications, and the constraints on how code
is structured in order to safeguard against potential unwanted behaviours, are
also enabling factors for the application of the typically more expensive formal
analysis techniques.

Scania is a leading manufacturer of commercial vehicles, and specifically
heavy trucks and buses. A large part of the embedded C-code developed at
Scania is safety-critical, and a considerable effort is spent during code devel-
opment and deployment on quality assurance. On top of the traditional testing
methods, Scania is exploring the possibility for integrating deductive verifica-
tion and model checking into the code design and quality assurance process.

Work partially funded by Vinnova within the KLOSS AkUt initiative, which sent
academics out to Industry one day a week for half a year during 2015/2016.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-67113-0 1

4 D. Gurov et al.

The main motivation for this are the increased safety requirements resulting
from innovative trucking solutions such as platooning and autonomous driving.

Motivating Factors. The starting point for the work described here were the
following general findings and concrete observations made from studying a par-
ticular C-module and its associated requirements document [1].

1. Many of the requirements of the module are functional, in the sense that they
express output values as a function of input values (i.e., as a mathematical
function). A common case is that two or more outputs of the same mod-
ule depend on intersecting sets of inputs. This leads to a natural functional
decomposition that allows the functionality of modules to be understood con-
ceptually through the metaphor of a combinational logic circuit.

2. The well-known and established logic and deductive system called Hoare logic
has been developed precisely for formally specifying and proving this type of
properties [12]. Program verification in this style is based on logical assertions,
which are essentially state properties expressed as first-order formulas over
program and (additional) logical variables, typically in the form of pre- and
postconditions to C-functions, or loop invariants. The assertions are tied to
specific control points of the program, usually by means of program annota-
tions provided by the programmer. The annotated program is then translated
by purely symbolic means (based on computation of so-called weakest pre-
conditions, or on symbolic execution) to a first-order logic formula, called
verification condition, which is true exactly when the assertions hold for the
annotated program. The generated verification condition is then passed on to
an automated (back-end) theorem prover to be checked for validity.

3. The typical control flow of embedded code, and the used datatypes, follow
certain constraints, described through guidelines following MISRA C and ISO
26262, which render the given correctness problem decidable. For instance,
most of the code we examined does not involve any looping constructs, which
typically require loop invariants to be provided by the programmer, and most
of the data is of enumerable (i.e., non-inductive) types, and thus no datatype
invariants need to be provided.

4. There exist mature tools such as VCC [4,5] and Frama-C [8] that support
the automated deductive verification of C-code supplied with annotations.

All these observations and findings were a strong indication that the formal
specification of requirements and their deductive functional verification can be
automated to a degree that makes them a viable option for increased quality
assurance of the safety-critical embedded C-code. This lead to the present pre-
study, which builds on the findings of two Master theses [10,13].

Goals of the Study. The main question that the present pre-study addresses is: is
it feasible, and what would be needed, to push formal requirement specification
and deductive functional verification into an embedded software design process,
such as the one at Scania?

Deductive Functional Verification Safety-Critical Embedded C-Code 5

Our concrete questions concern:

1. Formalization of functional requirements: how user-friendly can it be made,
and how much effort does it take?

2. Verification tool: what is the code coverage regarding the given code base,
how easy is it to use the tool and to make sense and use of the feedback it
provides on failed verifications, and how efficient is it in practice?

3. Annotation of the code: how much effort does it take, what annotation over-
head does this incur, and how automatable is the annotation process?

Structure of the Paper. The remainder of the paper is organized as follows.
In Sect. 2 we describe the type of requirements we found in the requirements
document, and propose a formal requirements model, based on mathematical
functions, for capturing such requirements. In Sect. 3 we describe the verifica-
tion tool VCC, the verification method it supports, and the specifics of its use.
In Sect. 4 we discuss (without, however, revealing proprietary code or informa-
tion) the module which we considered in our pre-study, its requirements, the
annotation process, and the obstacles which we encountered. Our findings are
summarized in Sect. 5, together with a proposal for a semi-automated specifica-
tion and verification process based on these findings. Related work we describe
in Sect. 6, and conclude with Sect. 7.

2 Formalizing Functional Requirements

In this section we describe the character of the requirements as we encountered
in the requirements document of the module we considered [1], and propose a
formal requirements model.

Requirements. The requirements in the provided requirements document are
written in terms of a set of requirements variables, which are (model) variables
distinct from the program variables. This follows a clean discipline of separating
specifications from implementations.

A significant number of the requirements are presented in a format illustrated
by the following concrete example:

While SecondaryCircuitHandlesSteering == True
If ParkingBrakeSwitch == ParkingBrakeNotSet

ElectricMotor = On

which could be described as a conditional assignment form. On its own, such
a requirement does not specify completely the value of the variable being set
(here, ElectricMotor). Since the same variable may be assigned a value by
more than one requirement, this immediately raises the questions of whether
the set of requirements is complete (i.e., it specifies, for all values of the input
variables, a value for every output variable) and whether it is consistent (i.e.,
specifies at most one such value), together guaranteeing the well-definedness of

6 D. Gurov et al.

the specified data transformation. While specifications may be incomplete by
intention, inconsistency is always a problem that needs to be resolved.

Further noteworthy to observe is that, while some of the requirements vari-
ables used in the specifications do correspond to global module interface ones
(i.e., variables through which the module interacts with its environment), most
do not; instead they are intermediate requirements variables. This corresponds
conceptually to a function decomposition of the functions computed by the mod-
ule. Such a break-down of requirements constitutes a natural representation of
a multi-output function when its outputs depend on intersecting sets of inputs,
and makes the reading of requirements easier. It also allows the functionality of
modules to be understood conceptually, and visualized, through the metaphor
of a (multiple-valued) combinational logic circuit.

Many of the intermediate requirements variables have corresponding coun-
terparts in the code in the form of local variables or struct fields (sometimes even
more than one, as certain values are transferred by reference via calls to helper
functions). These observations raise the question whether one should aim to ver-
ify every requirement individually, or only the induced functional dependence of
the output variables on the input ones. The first option can only be realized by
referring in the code annotations to the local code artifacts, and thus ties the
verification to the implementation. This goes against the principle of separating
specifications from implementation details, which allows the implementation to
evolve without necessarily changing the requirements. On the other hand, the
second option may result in considerably worse verification times, as it is usually
the case when verifying a specification in a “black-box” manner, not utilizing
the implementation information.

Formal Requirements Model. To formalize the requirements, one has first to
define a formal requirements model. In the present case of purely functional data
transformation, it is suitable to base the formal model on the standard discrete-
mathematical notion of (partial) function.

As an example, consider variables x1, x2 ∈ {7,−3} and x3, y ∈ {−2, 6}, and
let the value of variable y depend functionally on the values of the variables x1,
x2 and x3, as defined by the table on the left of Fig. 1. We shall use this (rather
trivial) example to discuss possible presentations of such functions.

Function Views. One can distinguish between two views on mathematical func-
tions. First, there is the black-box view, which describes the functions computed
by a module via interface variables only, i.e., as module contracts. This view is
important for modular verification (say, in an assume/guarantee style), as it is
the view of the module that is exported to the rest of the system. In principle,
this is the view to be verified, since it specifies just the data transformation to be
computed by a module and nothing more. And then, there is the white-box view,
which decomposes the functions by introducing intermediate variables. This view
is important for readability and simplicity of module specifications. However, as
explained above, the verification of the individual requirements resulting from
the breakdown is problematic. Ideally, intermediate variables should only be

Deductive Functional Verification Safety-Critical Embedded C-Code 7

x1 x2 x3 y

7 7 −2 6
−3 7 −2 6

7 −3 −2 6
−3 −3 −2 −2

7 7 6 −2
−3 7 6 −2

7 −3 6 −2
−3 −3 6 6

(a) Function.

x1 x2 f

7 7 7
−3 7 7

7 −3 7
−3 −3 −3

z x3 g

7 −2 6
−3 −2 −2

7 6 −2
−3 6 6

(b) Function decomposition.

f

g y

zx

x

x

1

2

3

(c) Function architecture.

Fig. 1. A function and its decomposition.

used as a vehicle to relate output values to input values. The two views have a
simple mathematical connection by means of function decomposition in the one
direction, and function substitution in the other.

For instance, the example function defined above can be decomposed accord-
ing to the equations:

z = f(x1, x2)
y = g(z, x3)

introducing the intermediate requirements variable z ∈ {7,−3} and the func-
tions f and g defined by the tables in the middle of Fig. 1. The “architecture” of
this decomposition, or white-box view of the function, is depicted on the right
of Fig. 1, in the style of a combinational logic circuit.

3 The Verification Tool VCC

VCC, standing for Verified Concurrent C, is a tool for the formal verification
of programs written in the C language [5]. As the name suggests, it supports
verification of concurrent code. It has been developed at Microsoft Research, and
is available for Windows under the MIT license via GitHub1.

The assertions to be verified, such as function contracts and data invariants,
are to be specified by the programmer directly in the C source code in the form
of annotations. VCC has its own syntax for this: annotations are always enclosed
in parentheses and preceded by an underscore ‘ (...)’, but otherwise follow a
syntax similar to the one of the C language itself.

The contract of a function is a set of annotations located between the function
header and its body. The set typically includes a precondition expressing an
assumption on the values of the actual parameters and global variables at the
time of invoking the function, and a postcondition relating the return value and
the values of the global variables at the time of returning from the function
1 See github.com/Microsoft/vcc.

8 D. Gurov et al.

#include <vcc.h>

void swap(int *p, int *q)

_(writes p,q)

_(ensures *p == \old(*q) && *q == \old(*p))

{

int tmp;

tmp = *p;

*p = *q;

*q = tmp;

}

Fig. 2. A simple C-function annotated with a contract.

call to the former values. The remaining annotations essentially specify other
side-effects of executing the function body.

An example of a contract for a simple C function is given in Fig. 2. The header
file vcc.h is included in order to make the compiler ignore the VCC annotations.
In the contract, the ensures clause specifies a postcondition, where an expression
appearing within an \old clause refers to its value at function invocation time
(for preconditions this is the default mode). The postcondition states that the
value pointed to by p upon return from the method call will equal the value
pointed to by q before execution, and vice versa. Preconditions are specified with
the keyword requires. There is no precondition provided in this specification,
meaning that the contract should hold for any values of the actual parameters
and global variables at the time of invoking the function. The writes clause
specifies the side-effect that both argument pointers are writable, and no other
memory locations. It also serves to give notice to any calling function that (only)
the contents of the specified memory locations may change during the call. In
contrast, the lack of a writes clause tells the caller that this function will not
have any visible side-effects w.r.t. the specified variables.

Contracts can be specified not only for functions, but for any block of code.
Assertions can be inserted at any control point of executable code, and are useful
both to provide hints to VCC and for troubleshooting. Finally, one can specify
invariants for both loops and data structures.

Verification Method. VCC is a deductive verifier. The annotations are translated
into an intermediate language and provided to another tool, Boogie, from which
proof obligations are generated; these are then discharged by an automated
theorem prover, the default being Z3.

The verification of function contracts is modular : when checking the body of
a function, and a call to another function is encountered, the tool asserts that
the caller fulfills the preconditions of the callee, and assumes that the callee’s
postconditions hold right after the call statement. This function modularity
ensures scalability of the verification method w.r.t. the number of C functions.

Deductive Functional Verification Safety-Critical Embedded C-Code 9

The verification performed by VCC is claimed to be sound, in the sense
that verified assertions do indeed hold, but is not guaranteed to be complete,
meaning that assertions that could not be verified may still hold. Sometimes the
programmer can “help” the tool by rewriting assertions to equivalent formulas
that can be handled by the back-end reasoning engine.

Ghost Code. During verification, VCC keeps track of an internal state referred
to as the ghost state [5]. Apart from logical representations of all actual pro-
gram variables, this state also includes many other abstract data structures and
functions that are needed to provide a model in which to reason about the pro-
gram. In addition to function contracts, VCC provides numerous other ways of
manipulating the ghost state, allowing the programmer to assist the reasoning
engine in performing a successful verification.

Ghost functions can be defined with the keyword def. Such functions must
have no side effects, and may only be used in specifications. Also regular (but
side-effect free) C functions can be marked with the keyword pure to allow them
to be used in specifications. Ghost variables are declared with the keyword ghost
preceding an ordinary C declaration. For ghost variables, any native or user cre-
ated C type can be used, as well as a number of types built into VCC. For exam-
ple, there are mathematical integers (\integer), natural numbers (\natural),
and true Booleans (\bool), to name a few.

Memory Model. C is often referred to as a low-level programming language,
because of the similarity between its primitive objects and those of hardware. In
addition, C has explicit memory (de)allocation, pointer arithmetic and aliasing,
and a weak type system that can be easily circumvented, all of which makes
reasoning about memory harder. VCC, however, has a stricter memory model
and stronger typing for its ghost state [7]. System memory is represented as a set
of typed objects, and is maintained in the ghost memory as pointers to all valid
objects. One guarantee of this model is that valid objects are always separated.
VCC can thus efficiently take advantage of well-written C code and elevate it to
its own stronger model. In cases where it is not able to do this, verification will
fail, and additional annotations regarding the usage of memory are needed.

Because of its focus on concurrent code, ownership and closedness informa-
tion is also stored for each object in ghost memory [6]. For example, threads are
only allowed to make sequential writes to memory of which they are the owner,
and sequential reads to memory that they own or can be proved not to change.
Ownership is represented as a tree structure. The system heap is organized as a
set of trees, where each root node represents a thread and each edge represents
ownership by the source node. A thread is the direct owner of its local variables,
whereas a struct owns its fields and is itself owned by some higher-level object.

10 D. Gurov et al.

4 The Case Study

Our case study is based on a C-code module that is part of the embedded system
controlling the Scania trucks, and is considered safety-critical. More specifically,
the module deals with the secondary power steering function that must take over
in the case of a malfunction in the primary power steering function. Since the
C-code itself is proprietary, we shall only describe its relevant aspects here, and
will not be able to show any parts of it.

The code base of the analyzed module has 1,400 lines of code, consisting of
10 C-functions, one main and 9 helper functions. The analyzed code is strictly
sequential (although the larger system is not), and the control flow consists solely
of if- and switch-statements, and function calls (i.e., it does not involve any
loops). The module interacts with two other modules: one primarily concerned
with diagnostics, and one performing the I/O to the larger system. We had no
access to the source code for the first of these, and could therefore not perform
any reasoning about variables that depended on it. In the case of the latter,
9 small functions concerning reading, writing and status checking of signals were
annotated as part of the verification. Additionally, the analyzed code makes
much use of type definitions and macros imported from several external files,
none of which were taken into account in our quantitative assessment.

Scania has its own internal programming rules for embedded systems, most
of which are identical to the MISRA C development guidelines. Because of this,
the analyzed code base avoids many of the C constructs which may cause problem
in the stricter model which VCC operates in.

Requirements. Our starting point for annotating the code base was an inter-
nal document, containing 27 requirements. Of these, 14 were not considered for
verification: 6 were not specific to the module itself (they had to do with initial-
ization, and should be specified on another module), 3 were of a temporal nature
(and thus could not be captured through VCC assertions), and the remaining
5 depended on output from other modules (and would need more modules to
be included in the verification effort). Thus, 13 requirements were considered, of
which 10 were verified due to time constraints. No functional errors were found
in the code base during this verification.

The requirements are given in two formats: some are expressed in natural
language only, and some in a semi-formal form, making use of logical statements
and operators, such as if, else, and, and = (although the precise semantics
of these operators is left unspecified). The document provides no details as to
how variables referred to in requirements are related to system memory. After
careful analysis we found that they could refer to globally available signals, local
program variables, or not exist as explicit variables in the code at all.

An example of a semi-formal requirement was given above, in the beginning
of Sect. 2. An example for a requirement in natural language could be: “If the
vehicle is moving without primary power steering, then the secondary circuit
should handle power steering.” The requirement can be seen formalized and

Deductive Functional Verification Safety-Critical Embedded C-Code 11

8

21

4

23

10

2

13

14

15

20

WU1
SSS1

PCES

ES

SCHS

PBS
WBVS
VIML
VISL

PS
SCHS

VIM

PCHM
PCSM

VMWPPS

7

21

Fig. 3. Combinational logic circuit of case study requirements.

annotated in Fig. 5, and represented as a numbered box in Fig. 3, as requirement
number 15.

A representation of some of the requirements in the form of a combinational
logic circuit is shown in Fig. 3. The circuit models all requirements that define the
value of the variable SCHS (the complete model is over 35 requirements variables,
of which 6 output, 17 input and 12 intermediate variables). Outside the larger
box are the interface variables, with input variables to the left and the output
ones to the right. Requirements are represented by small boxes with numbers
corresponding to the number of the requirement according to the document.
These boxes are (sometimes cloned and) grouped together in “gates”, so that
each gate has a single output “wire” modelling a requirements variable.

The requirements did not form a complete specification of the module. We
also found that under a naive interpretation two of the requirements were con-
tradictory. Upon further investigation we found that this was a case of imprecise
specification, and that they were intended to be evaluated in a certain order.
Formal verification generally helps with detecting and resolving such issues, as
two contradictory requirements can not both be verified on the same code base.

Code Preprocessing. Before verifying the requirements, the code had first to be
prepared in order to pass VCC as it is, without any annotations concerning the
application-specific requirements. First of all, some preprocessor directives con-
cerning conditional inclusion of platform-specific headers and compiler-specific
language extensions had to be either rewritten or removed. Furthermore, VCC
always tries to prove validity and ownership of all accessed memory, which means
that annotations for that purpose had to be inserted. We also chose to insert
annotations for verification of termination of all functions before verifying the

12 D. Gurov et al.

requirements, which was easily achieved because of the simplicity of the module’s
control flow.

Code Annotation: Main Function. Since the analyzed module contains a single
entry-point function, all requirements chosen for verification had to be speci-
fied in the contract of this particular function. The requirements were specified
according to the white-box view described in Sect. 2, and were verified individ-
ually. To achieve this, ghost variables were used in the annotations to reason
about the variables that do not exist as memory in the scope of the top-level
function, such as local variables within a function, and about the requirements
variables that are not implemented in the module. Variables of the former kind
were referred to directly by their memory location. An example of a contract
specified according to the white-box view is shown in Fig. 5. Some requirements
were also specified according to the black-box view, in order to compare the read-
ability of the resulting contracts. This was performed by substitution of model
variables for the expressions which defined them.

Code Annotation: Ghost Variable Assignment. In order to successfully verify
the white-box view contracts, the ghost variables have to be assigned the correct
values during execution of the function. During the case study, we came up with
two distinct methods to achieve this.

The first of these is to simply assign to the ghost variable the value of the local
program variable or expression that it represents, within the functions where it
changes. For manual annotation this is relatively straight-forward. The verifica-
tion is also fast since the ghost representations are continuously synchronized
with the actual code, and as such there is less work for the verification tool to
prove the correlation. However, because of the tight connection to the code this
method does not lend itself well to automation, since the relation between inter-
mediary requirement variables and expressions in the code can not be inferred
without human instruction.

In the second method, we define a separate ghost program that computes the
complete combinational logic circuit discussed in Sect. 2, from program input
variables. The ghost program can then be inserted in the body of the top-level
function through inlining. Because VCC will need to infer the relation between
the ghost circuit and the actual code, the performance of the verification is worse
(how much worse depends largely on the number of intermediate variables, i.e.,
how much VCC needs to infer that would otherwise be explicit). On the other
hand, the construction of such a ghost program from a formal requirements
specification is far easier to automate. Another drawback of this method is that
incomplete specifications cause problems, since VCC is not able to infer any
relation between the ghost circuit and the software for input values that are not
specified, whereas in the first method this relation can be made explicit even if
not specified, provided ghost variables are always assigned values in the code.

Deductive Functional Verification Safety-Critical Embedded C-Code 13

int state[NUM_SIGNALS]; // Global state

int _(pure) read(int idx)

_(requires \thread_local_array(state, NUM_SIGNALS))

_(requires 0 <= idx && idx < NUM_SIGNALS)

_(ensures \result == state[idx])

{

if (idx >= 0 && idx < NUM_SIGNALS)

return state[idx];

}

Fig. 4. A fully specified function.

Code Annotation: Helper Functions. Since the requirements only specify the
behaviour of the module as a whole and not how individual functions should
behave, and because VCC performs its verification function-modularly, it was
necessary to decompose and propagate the top-level requirements through the
call hierarchy of the module. We utilized two complementary approaches to this,
which we term bottom-up and top-down.

In the bottom-up approach, we give a complete specification of the compu-
tations performed by the functions, starting at the bottom of the call hierarchy,
working upwards. This approach is suitable for small functions, which many
other functions depend on, such as setters and getters, since giving a complete
specification for these is relatively easy, and we get much value out of having
one. An example of a fully specified, simple read function is given in Fig. 4.

In the top-down approach, on the other hand, we instead work with one
requirement at a time, follow the trail of execution affecting that requirement
through the functional hierarchy, and add the appropriate annotations, or partial
specifications. This approach is suited for large and high-level (w.r.t. the call
hierarchy) functions, where giving a complete specification is complex and not
much value is gained from having one. An example of a partial contract of a
high-level function, where annotations for only certain requirements have been
supplied, is given in Fig. 5. These annotated requirements are represented as
boxes within gates in Fig. 3, with their respective numbers.

Obstacles. Apart from the previously mentioned challenges with the require-
ments themselves, we also identified several obstacles to verification that could
occur from how the code is written. Most importantly, the code should be writ-
ten in a type-safe manner. To perform its reasoning, VCC must be able to lift
the code to its own stronger model. If the code is not written in a well-typed
manner, such as making use of implicit type conversions or aliasing of distinct
memory objects, VCC will be unable to do this lifting and verification will not
be possible without assistance in the form of additional annotations.

Another obstacle that may occur is code that depends on previous execu-
tions, for example in the form of local static variables. Such variables are out-
side the scope of the contract and can therefore not be used to directly specify

14 D. Gurov et al.

_(ghost \bool model_vehicleIsMoving) // Intermediate ghost variable

_(ghost \bool model_VehicleMovingWithoutPrimaryPowerSteering)

void steering()

_(writes \array_range(state, NUM_SIGNALS))

_(writes &model_vehicleIsMoving)

_(writes &model_VehicleMovingWithoutPrimaryPowerSteering)

// Req. 4

_(ensures \old(state[WHEEL_BASED_SPEED]) > VEH_MOVING_LIMIT

==> model_vehicleIsMoving == \true)

_(ensures \old(state[WHEEL_BASED_SPEED]) < VEH_STATIONARY_LIMIT

==> model_vehicleIsMoving == \false)

// Req. 10

_(ensures \old(state[POS_SENSOR]) == NO_FLOW

&& model_vehicleIsMoving == \true

==> model_VehicleMovingWithoutPrimaryPowerSteering == \true)

// Req. 15

_(ensures model_VehicleMovingWithoutPrimaryPowerSteering == \true

==> state[SECONDARY_CIRCUIT_HANDLES_STEERING] == \true)

Fig. 5. A partially specified function.

properties of the function; but at the same time changes to their values may
affect future invocations of the function. It is possible to work around this, for
example by connecting static variables to ghost variables that exist in the scope
of the contract, but a much simpler solution is just to try to avoid them.

Variables of the enumerable and Boolean types can also make verification
difficult in some cases, since in the C language they are in reality backed by the
integer type, and may assume all the same values. While these types of variables
are common and may not be easily avoided, they introduce some additional
annotation effort; for a successful verification of requirements referring to such
variables, annotations for proving that the variables never assume values outside
of their expected domain are usually needed.

5 Discussion

Summary of Findings. We now return to the questions raised in the Introduction.

1. We found the formalization of functional requirements intuitive to achieve,
and without much effort. We also found that the formalization helped clarify
the requirements, as we were forced to resolve ambiguities and contradictions
in order to achieve a valid verification.

2. The code coverage of the verification tool VCC for the given code base was
almost complete. It is relatively easy to use the tool, especially as it can be
configured as a plug-in to Visual Studio, but requires a certain training and
knowledge of the underlying verification technology to make full use of it.

Deductive Functional Verification Safety-Critical Embedded C-Code 15

VCC turns out to be relatively efficient : it took 165 sec to verify the whole
annotated module, of which 65 sec went to the “worst” function. On the
negative side, the feedback provided from the tool when verification fails only
highlights the specific assertions that failed to verify, without any hints as to
why. Depending on the type and complexity of the assertion, this feedback
may not always be useful, and careful analysis of the code and the annotations
is usually required to understand what went wrong.

3. The annotation overhead of the code was about 50%, or roughly 700 lines
of annotations. The annotation was performed manually, but we observe a
clear potential for automation of (most of) the annotation process (see below).
Manual annotation of the code, even after having formalized the requirements
and understood the tool and code base, required much effort; we estimate
it roughly to have taken between 1 and 1.5 person-months. In particular,
finding and inserting appropriate annotations for all memory accesses, as
well as figuring out how each function affects the individual requirements or,
alternatively, giving a full specification for the function, are time consuming
tasks.

Towards Semi-automated Specification and Verification. Based on findings from
the case study, we propose the following work process that automates most
of the specification and verification effort, as a prerequisite of integrating our
technology into the development process for safety-critical embedded C-code.

Our proposal is to start from a (potentially graphical) combinational logic
circuit-like description of the computed functions, according to a chosen function
decomposition (i.e., a white-box view as illustrated on Fig. 3), together with
descriptions of the individual “gates” of this circuit, created with the help of
a tool. The tool has to support specifying interface requirements variables in
terms of references to the actual global program variables, or otherwise allow this
mapping to be provided by the user separately. This description can be seen as
the requirements model, and is then to be translated to a VCC “ghost program”
computing the functions, by introducing a ghost variable for each requirements
variable. In this way we can utilize the existing syntax and operational semantics
of VCC ghost code, and are thus relieved from the need to have to define such a
semantics for a new formal requirements language. This ghost program can thus
be seen as an executable specification.

From the requirements model, including the mapping of interface require-
ments variables to actual global program variables, a contract for the main func-
tion of the given module is to be generated. The tool should support generating
both the white-box and black-box view contracts. In the white-box view, global
program variables should be used in the specification of interface requirements,
in order to enable modular verification. The generated executable specification
is to be inlined in the top-level function of the module, so that the value of the
intermediate requirements variables can be computed. As a fallback strategy,
intermediate requirements variables may instead be manually synchronized with
their program counterparts, in cases where verification proves unfeasible.

16 D. Gurov et al.

What then remains to be annotated are the helper functions. One way of
handling these is to inline them successively into the main function. While this
eliminates the need for annotation of helper functions altogether, its drawbacks
are the potential explosion of code (which may result in an inability of VCC
to verify it), and the need to maintain a verified code base separately from
the actual code base, creating a potential gap and making more difficult the
interpretation of the feedback from the tool.

The preprocessing phase described in Sect. 4 is to be assisted by dedicated sta-
tic analyses, which are to generate annotations for the different types of implicit
requirements. Certain postprocessing may also be needed in order to help the
programmer in making sense of and reacting to the messages that VCC issues
on unsuccessful verifications.

6 Related Work

VCC has been used in a number of software verification initiatives. It was in
fact built with verification of the Microsoft Hyper-V hypervisor in mind [5,7].
In a case study [2], VCC was also used to verify another hypervisor, although a
less complex one. The study presents techniques for verification using automated
methods. It describes modeling of interaction between hardware and software,
and shows that functional verification of simulation of guest machines is feasible.
In another case study [3], VCC is used to verify system calls in a micro-kernel
based operating system targeted at safety-critical embedded systems. The study
was part of an avionics project, and describes the verification process as well
as how the underlying hardware architecture was modelled. In addition, it is
shown that assembly code can be semantically specified and integrated in the
verification through VCC.

Within the same avionics project, a case study utilizing the verification tool
Frama-C was also performed [9]. The study evaluates several aspects of modern
formal verification, such as how formalization of requirements can be achieved
and when it is feasible, and the complexity of the formal languages of verification
tools in comparison to programming languages. Solutions to many obstacles that
commonly occur in formal verification are proposed. Of the encountered case
studies, this is the only one with a starting point similar to ours, i.e. informal
requirements specifying functional relations between input and output states.
Our approach is different in that we formalize the requirements as a circuit, which
can then be executed in ghost code, as well as handle requirements variables
without explicit counter-parts in the software.

A methodology for reasoning about timed and hybrid systems in VCC is
presented in [4]. The approach uses what is referred to as Timers and Dead-
lines, and can provide a solution to the verification of temporal requirements in
a functional setting. Another work examines the incorporation of strongest post-
conditions in the verification process, and how symbolic execution can be used
to calculate them [11]. Such a framework could provide a basis for automation of
much of the C code annotation process, particularly the (complete) specification
of function contracts.

Deductive Functional Verification Safety-Critical Embedded C-Code 17

7 Conclusion

In this paper we summarize our findings and experiences with specifying and
verifying deductively the functional requirements of an embedded safety-critical
C-code module, by using the VCC tool. The main specifics of the verified code is
that it computes a multi-output function over variables from finite domains that
has a non-trivial, multi-level decomposition. The main challenge then is how to
deal with intermediate requirements variables.

The pre-study indicates that deductive functional verification can be a viable
option for increased quality assurance of safety-critical embedded C-code. For
its integration into an embedded C-code development process, however, a number
of issues need to be resolved. First, a formal requirements language needs to
be adopted and guidelines for writing requirements need to be formulated and
supported by a tool. Second, the coding rules that are prerequisite for successful
verification need to be enforced. Third, the annotation process needs to be auto-
mated almost completely, with clear hints to the programmer where he or she has
to provide annotations, and of what type. And fourth, support for interpreting
and handling the feedback from the verification tool needs to be provided in a
way that allows unsuccessful verifications to be resolved adequately and without
requiring deep knowledge of the inner workings of the tool. Our work currently
focuses on addressing these issues.

References

1. Allocation Element Requirement AE417 Dual-Circuit Steering. Scania Technical
Product Data (2015)

2. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification
of a small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.)
VSTTE 2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15057-9 3

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Formal verification of a micro-
kernel used in dependable software systems. In: Buth, B., Rabe, G., Seyfarth,
T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 187–200. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04468-7 16

4. Cohen, E.: Modular verification of hybrid system code with VCC. CoRR
abs/1403.3611 (2014)

5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 2

6. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A practical verification method-
ology for concurrent programs. Technical report MSR-TR-2009-15, Microsoft
Research, February 2009

7. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory
model for C. In: Workshop on Systems Software Verification (SSV 2009). Electronic
Notes in Theoretical Computer Science, vol. 254, pp. 85–103. Elsevier (2009)

http://dx.doi.org/10.1007/978-3-642-15057-9_3
http://dx.doi.org/10.1007/978-3-642-15057-9_3
http://dx.doi.org/10.1007/978-3-642-04468-7_16
http://dx.doi.org/10.1007/978-3-642-03359-9_2

18 D. Gurov et al.

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33826-7 16

9. Dordowsky, F.: An experimental study using ACSL and Frama-C to formulate
and verify low-level requirements from a DO-178C compliant avionics project. In:
Formal Integrated Development Environment (F-IDE 2015), pp. 28–41 (2015)

10. Eriksson, J.: Formal Requirement Models for Automotive Embedded Systems.
Master’s thesis, KTH Royal Institute of Technology, School of Computer Science
and Communication (2016)

11. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A., Jones, C., Wood,
K. (eds) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer, London
(2010). doi:10.1007/978-1-84882-912-1 5

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

13. Lidström, C.: Verification of Functional Requirements of Embedded Automotive
C Code. Master’s thesis, KTH Royal Institute of Technology, School of Computer
Science and Communication (2016)

http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-1-84882-912-1_5

Verifying Event-Based Timing Constraints
by Translation into Presburger Formulae

Björn Lisper(B)

School of Innovation, Design, and Engineering,
Mälardalen University, 721 23 Väster̊as, Sweden

bjorn.lisper@mdh.se

Abstract. Abstract modeling of timing properties is often based on
events. An event can be seen as a sequence of times. Timing constraints
can then be expressed as constraints on events: an example is the TADL2
language that has been developed in the automotive domain.

Event-based constraints can express timing properties of implementa-
tions as well as timing requirements. An important step in timing verifi-
cation is then to show that any events that comply with the properties of
the implementation, i.e., that describe the timings of its possible behav-
iours, also satisfy the requirements.

Real-time software is often organised as a set of periodically repeat-
ing tasks, especially in domains with time-critical systems like automo-
tive and avionics. This implementation naturally yields periodic events,
where each event occurrence belongs to a periodically repeating time
window. An interesting question is then: if some events are periodic in
this fashion, will they then fulfil a timing constraint that describes a tim-
ing requirement? We show, for a number of TADL2 timing constraints,
how to translate this implication into an equivalent Presburger formula.
Since Presburger logic is decidable, this yields an automated method to
decide whether the periodic implementation satisfies the timing require-
ments or not. Initial experiments with a Presburger solver indicate that
the method is practical.

1 Introduction

Timing behavior descriptions exist in many different forms. Classical real-time
scheduling theory defines the basic periodic [18] and sporadic [19] patterns to
describe task activations, along with the simple notion of relative deadlines for
capturing the desired behavior of a system’s response. Digital circuits are often
accompanied by timing diagrams [4], where selected scenarios from an infinitely
repeating behavior are depicted graphically, specifically indicating the minimum
and maximum distances between key events. In the automotive domain, the
model-based development frameworks of AUTOSAR [6] and EAST-ADL [12]
offer a rich palette of built-in timing patterns and constraints, commonly specified
in terms of typical-case timing diagrams. On the theoretical side, temporal and
real-time logics concentrate on a few basic building blocks, from which more
complex timing formulae can be constructed using logical connectives.
c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-67113-0 2

20 B. Lisper

An important class of timing behavior descriptions is based on events: exam-
ples are TADL2 [10], a revised version of the Timing Augmented Descrip-
tion Language (TADL) [15] that forms the basis for timing specifications in
AUTOSAR and EAST-ADL, and the CCSL language of the UML real-time pro-
file MARTE [5]. Events are sequences (or sets) of times. A rich variety of timing
properties, for single as well as multiple events, can be expressed in this fashion.
An advantage with this way of describing timing properties is that it abstracts
away from the underlying system by describing its possible timing behaviours
through constraints on events. Once this is done, it can be checked in the event
domain whether the system fulfils its timing requirements or not. If the possible
timing behaviours of the system are described by a predicate impl on the events
e1, . . . , en, and if the requirements are expressed by the predicate req on the
same events, then the property that the system fulfils its timing requirements is
expressed by the formula

∀e1, . . . , en.[impl(e1, . . . , en) ⇒ req(e1, . . . , en)] (1)

We have studied a case where formulae of this kind can be decided. Systems
are often implemented in a fashion that gives rise to periodic events, where each
event occurrence belongs to a regularly repeating time window of fixed size. The
class of periodic events has certain mathematical properties that, when the impl
predicate in (1) is expressed as a conjunction of periodic event constraints, allows
many instances of (1) to be translated into an equivalent Presburger formula. We
exemplify this by translating a number of instances of (1), where req(e1, . . . , en)
is given by different TADL2 constraints, into equivalent Presburger formulae.
Since Presburger logic is decidable, this yields a route to automatic verification
of these instances.

An important case where periodic events appear is for periodic preemptive
fixed priority based scheduling, where real-time tasks are triggered periodically
and higher priority tasks can preempt lower-priority tasks. The time windows for
events marking the completions of such tasks can be established by a best- and a
worst-case response-time analysis, well-known from classical real-time scheduling
theory. The task model is very common in areas like automotive and avionics,
and many real-time operating systems implement this scheduling policy.

In the widely used AUTOSAR standard [6] for development of automo-
tive software, the smallest software entities that can be associated with events
are runnables. These are grouped into tasks, which can be executed by the
AUTOSAR Basic Software Layer according to this scheduling policy. Events aris-
ing from runnables will then be periodic. Timing requirements can be expressed
over these events using constraints from the AUTOSAR Timing Extensions [7],
which are directly based on the TADL timing constraints. This opens the pos-
sibility to verify timing constraints for AUTOSAR software automatically using
our approach.

A concern, however, is the potentially very high complexity for deciding Pres-
burger formulae. This could render the verification method impractical. We have

Verifying Event-Based Timing Constraints 21

performed some simple experiments with the the iscc calculator1, which can
handle general Presburger formulae. In all cases, the translated formulae were
solved instantaneously. This indicates that the method may indeed be practical.

The rest of this paper is organised as follows. In Sect. 2 we define events, and
introduce a syntax for timing constraints as a simple logic “TiCS” for sequences
of times. Section 3 introduces TADL2, and we define the TADL2 constraints in
TiCS. In Sect. 4 we show how to translate statements of form (1) into Presburger
formulae, and we prove the equivalence of the translated formula for some typical
cases where the events are periodic and the requirements are expressed as TADL2
constraints. In Sect. 5 we give an account for some initial experiments with a
Presburger solver. We discuss related work in Sect. 6, and the paper is concluded
with some reflections on future work in Sect. 7.

2 Events

Definition 1. An event e is a strictly increasing, possibly infinite sequence of
times 〈e0, e1, . . .〉. Each time ei is an occurrence of the event.

We consider times to be integers. This is not a serious restriction: all results
shown here are also valid for events with real-valued occurrences. For a periodic
event, each occurrence belongs to a regularly appearing, fixed size time window:

Definition 2. An event 〈e0, e1, . . .〉 is periodic with start time ts, jitter j ≥ 0,
and periodicity p > j, iff for all i ≥ 0 holds that ts + i · p ≤ ei ≤ ts + i · p + j.
We write Per(e, ts, p, j) to denote that e is a periodic event with start time ts,
periodicity p, and jitter j.

0
ts

p

j

time

j

Fig. 1. Time windows for a periodic event.

Periodic events with jitter correspond to the periodic task model with output
jitter [8]. Figure 1 provides an illustration of the time windows to which the
occurrences of a periodic event must belong.

We define a simple, formal syntax for constraints on events in the form of a
first-order logic, see Fig. 2, where we also give a standard denotational semantics
with semantic functions mapping expressions and environments “ρ” to values.
We label the logic “TiCS” (“Timing Constraints for Sequences”). It is a variation
of the event logic “TiCL” [17], which has been used to give a formal semantics to

1 https://dtai.cs.kuleuven.be/cgi-bin/barvinok.cgi.

https://dtai.cs.kuleuven.be/cgi-bin/barvinok.cgi

22 B. Lisper

the TADL2 timing constraints: the main difference between TiCS and TiCL is
that in TiCL events are sets of times, whereas TiCS defines events as sequences
of times.

TiCS allows timing constraints to be expressed as conditions on arithmetic
expressions involving event occurrences. There are three kinds of variables: event
variables e, arithmetic variables t, and index variables i. Event occurrences are
of the form ei+n, where n is a natural number. Quantification can be done over
all three kinds of variables.

Fig. 2. Syntactic categories, abstract syntax, and semantics

We will make free use of derived operators like ⇒ , >, =, �=, which are
definable in the language. We will write ei for ei+0. We will write a ≤ a′ ≤ a′′

for a ≤ a′∧′a ≤ a′′. We will sometimes use set inclusion x ∈ S when this formula
can be expressed as a predicate in TiCS: for instance, given an interval [l, u] we
may write x ∈ [l, u] for l ≤ x ≤ u. We will use the the shorthands ∀p(x).c and
∃p(x).c for ∀x.(p(x) ⇒ c) and ∃x.(p(x)∧c), respectively. We will allow ourselves
the use of the infinity symbol “∞” in lieu of integers, when the semantics is clear:
for instance, ∞ ≥ z will always be true whenever z ∈ Z. Using this notation we
can express the property of being a periodic event as the following constraint:

Per(e, ts, p, j) = ∀i ≥ 0.[ts + i · p ≤ ei ≤ ts + i · p + j]

Verifying Event-Based Timing Constraints 23

When defining TADL2 constraints below we will allow nonrecursive “macros”
defined in this way to appear in the formulae: their semantics can be defined
by simple substitution. Finally we will use metanotation like “e1, . . . , en”, or
“c1 ∧ · · · ∧ cn”, to describe a varying number of arguments, or expressions.

TiCS, being a first-order logic containing basic arithmetics, is undecidable.
Presburger arithmetic is a decidable fragment.

3 TADL2

The Timing Augmented Description Language (TADL2) [10] is a constraint lan-
guage for describing timing requirements and properties within the automotive
domain. It was originally defined in the TIMMO project, and was subsequently
revised and formalised within the TIMMO-2-USE project2. The syntax of TADL
is compliant to the AUTOSAR meta-model, but the TADL2 constraints can also
be understood through a textual syntax.

TADL2 defines constraints on events, which are simply (finite or infinite)
sequences of strictly increasing times. The definition does not specify whether
times are integers or reals: the constraints have meaningful interpretations in
both cases.

The TADL2 constraints can be divided into three groups: repetition rate
constraints, which concern single events, delay constraints, which concern the
timing relation between stimuli and responses, and synchronisation constraints,
which require that corresponding occurrences of a group of events appear in
sufficiently tight clusters.

All repetition rate constraints can be seen as instances of a generic repetition
rate constraint. This constraint is specified by four parameters lower , upper ,
jitter , and span where span > 0. An event 〈t0, t1, . . .〉 satisfies a generic repetition
rate constraint iff there exists a sequence of times 〈x0, x1, . . .〉 such that for all
i ≥ 0,

xi ≤ ti ≤ xi + jitter , and lower ≤ xi+span − xi ≤ upper

A periodic repetition constraint is a generic repetition rate constraint where
span = 1, and lower = upper . This uniquely decides xi to be x0 + i · lower ,
and we can write the constraint as ∃x0.P er(〈t0, t1, . . .〉, x0, lower , jitter) with
Per given by Definition 2. A sporadic repetition constraint has span = 1, and
upper = ∞. TADL2 also defines more complex pattern repetition constraints,
and arbitrary repetition constraints, see [10].

(The reason why we define a slightly different periodic constraint “Per” in
Sect. 2 is that the TADL2 Periodic constraint is too weak to allow the results
that we prove in Sect. 4. These results rely on knowledge about the relative
offsets of periodic events, and this information is not present for the Periodic
constraint.)

2 https://itea3.org/project/timmo-2-use.html.

https://itea3.org/project/timmo-2-use.html

24 B. Lisper

Delay constraints relate two events, called stimulus and response, by demand-
ing that each occurrence of the stimulus is matched by at least one occurrence
of the response within some time window. The basic delay constraint takes the
parameters lower , and upper , and relates the stimulus event 〈s0, s1, . . .〉 and the
response event 〈r0, r1, . . .〉 through the following constraint: for all i there exists
a j such that

si + lower ≤ rj ≤ si + upper

Synchronisation constraints concern a group of events S, characterised by
a single parameter tolerance. The basic synchronisation constraint is fulfilled if
there are time windows of size tolerance such that (1) each time window contains
at least one occurrence of each event in S, and (2) there are no “spurious” event
occurrences outside these windows. In other words, this constraint is satisfied iff
there is a sequence of times 〈x0, x1, . . .〉 such that (1) for all events 〈s0, s1, . . .〉 ∈ S
and for all i there exists a j such that

xi ≤ sj ≤ xi + tolerance

and (2) for all i there exists a j such that

si − tolerance ≤ xj ≤ si

Following [10,17] the twelve most important TADL2 constraints are expressed
below in TiCS. First, the repetition rate constraints:

Repeat(e, l, u, s) = ∀i ≥ 0.[l ≤ ei+s − ei ≤ u] (s > 0)
Repetition(e, l, u, s, j) = ∃e′.[Repeat(e′, l, u, s) ∧ StrongDelay(e′, e, 0, j)]
Sporadic(e, l, u, j,m) = Repetition(e, l, u, 1, j) ∧ Repeat(e,m,∞, 1)

Periodic(e, p, j,m) = Sporadic(e, p, p, j,m) (p > 0)
Pattern(e, p, o1, . . . , on, j,m) = ∃e′.[Periodic(e′, p, 0, 0) ∧ Repeat(e,m,∞, 1)∧

Delay(e′, e, o1, o1 − j)∧
. . .
Delay(e′, e, on, on − j)]

Arbitrary(e, l1, . . . , ln,
u1, . . . , un) = Repeat(e, l1, u1, 1) ∧ · · · ∧ Repeat(e, ln, un, n)

Burst(e, l, o,m) = Repeat(e, l,∞, o) ∧ Repeat(e,m,∞, 1)

Then, the delay constraints:

Delay(e, e′, l, u) = ∀i ≥ 0.∃k ≥ 0.[l ≤ e′
k − ei ≤ u]

StrongDelay(e, e′, l, u) = ∀i ≥ 0.[l ≤ e′
i − ei ≤ u]

Order(e, e′) = ∀i ≥ 0.[ei < e′
i]

Finally, the synchronisation constraints:

Synch(e1, . . . , en, w) = ∃e′.[Delay(e′, e1, 0, w) ∧ Delay(e1, e′,−w, 0)∧
. . .
Delay(e′, en, 0, w) ∧ Delay(en, e′,−w, 0)]

StrongSynch(e1, . . . , en, w) = ∃e′.[StrongDelay(e′, e1, 0, w)∧
. . .
StrongDelay(e′, en, 0, w)]

Verifying Event-Based Timing Constraints 25

In addition, TADL2 contains five constraints that cannot always be expressed in
TiCS: an execution time constraint, and four constraints that are variations of
basic constraints but where these constraints are restricted to hold only between
certain event occurrences as specified by an auxiliary causality relation on these.
As TADL2 does not define the nature of this relation further, we cannot guar-
antee that these constraints are always expressible in TiCS. However note that
if the causality relation can be expressed in the TiCS syntax, then the full con-
straint can be as well and the verification machinery developed here can be
applied. We will not consider these constraints further here: see [10] for details.

In addition to the constraints TADL2 also allows timing expressions to be
symbolic. Symbolic variables can be defined, or constrained, and used in timing
constraints. Typical usages are to parameterise timing requirements for easy
update, to constrain the ranges of parameters, and to aid time budgeting by
specifying bounds on sums of delays. TiCS supports symbolic timing expressions
right away, and constraints on symbolic variables can simply be conjoined with
the timing constraints.

4 Transforming TADL2 Constraints into Presburger
Formulae

We will now show how to transform statements of the form (1), where the
antecedent specifies events to be periodic according to Definition 2, and the
consequent is chosen from a selection of TADL2 constraints, into equivalent
Presburger formulae. The correctness of the transformation depends on a cer-
tain property of the repeating time windows for the periodic events. We now
define this property, and show that it holds for these time windows.

Definition 3. Let R = 〈R0, R1, . . .〉 be a sequence of sets of times. Let E be a
set of events.

1. R is a sequence of regions for E iff for all i ≥ 0, and all e ∈ E, holds that
ei ∈ Ri.

2. R is tight for E iff it is a sequence of regions for E, and for any event e,
where ei ∈ Ri for all i ≥ 0, holds that e ∈ E.

Lemma 1. If R is tight for E, then e ∈ E ⇐⇒ ∀i.ei ∈ Ri.

Proof. ⇒ : since if R is tight for E, then R is a sequence of regions for E. ⇐ :
by the definition of tightness.

Let us write win(ts, p, j, i) for the ith time window [ts + i · p, ts + i · p + j]
containing the ith occurrence of a periodic event according to Definition 2.

Lemma 2. {win(ts, p, j, i) | i ≥ 0 } is tight for { e | Per(e, ts, p, j) }.
Proof. Immediate from Definition 2.

26 B. Lisper

A tight sequence of regions fully characterises its set of events: each event
occurrence belongs to the corresponding region, and any event in the set can be
generated by picking a time from each region as the corresponding occurrence.

The transformation into a Presburger formula follows a common pattern.
The first step is to transform the consequent in (1), i.e., the formula specifying
the requirements, by replacing event occurrences with arithmetic variables to
obtain a formula free of such occurrences:

– If the consequent contains the term ∀i.C(ei+n), where Per(e, ts, p, j), then
this term is replaced by ∀i.∀t ∈ win(ts, p, j, i + n).C(t). That is: ei+n is
replaced by the arithmetic variable t throughout, where t ranges over the
interval of ei+n.

– If there are several distinct event occurrences indexed by the same quanti-
fied index variable, then each occurrence is replaced by a distinct arithmetic
variable ranging over its interval. For instance, ∀i.C(ei+n, e′

i+m) is translated
into ∀i.∀t ∈ win(ts, p, j, i + n).∀t′ ∈ win(t′s, p

′, j′, i + m).C(t, t′) (given that
Per(e, ts, p, j), and Per(e′, t′s, p

′, j′)).
– Terms with existentially quantified index variables are transformed in the

same way.

We now give a formal definition. The translation is defined relative to a function
R mapping event variables to sequences of regions, and we denote it “PR”.
We define it for a fragment of TiCS without quantification over events, and
where formulas w.l.o.g. are in prenex normal form (all quantifiers are at the
outermost level). The first restriction is important, whereas the second is merely
for convenience as it allows a more succinct definition of the translation. In Fig. 3
we define the syntax of this fragment.

a → z | t | i | ei+n | a1 + a2 | a1 − a2 | a1 · a2 | a1/a2 AExpr
c− → T | F | a1 ≥ a2 | c−

1 ∧ c−
2 | c−

1 ∨ c−
2 | ¬c− CExpr−

c → c− | ∀t.c | ∃t.c | ∀i.c | ∃i.c CPExpr

Fig. 3. Abstract syntax for restricted constraint expressions

First we introduce some notation. FVI (c) denotes the set of index variables
that are free in c:

Definition 4. For any expression c and index variable i, Eo(c, i) is the set of
event occurrences in c of the form ei+n, for some event variable e and natural
number n. Furthermore Eo(c) =

⋃
i∈FVI (c) Eo(c, i).

For instance, if r, s ∈ Evar, then Eo(si + l ≤ rj ≤ si + u, i) = {si}, Eo(si + l ≤
rj ≤ si +u, j) = {rj}, Eo(si + l ≤ rj ≤ si +u) = {si, rj}, and Eo(ei ≤ ei+1, i) =
{ei, ei+1}.

Next, we assume a function t : Eocc → Avar that maps each event occur-
rence ei+n to a syntactic arithmetic variable t(ei+n) ∈ Avar. Our transformation
replaces each ei+n with t(ei+n). We assume that all variables t(ei+n) are fresh.

Verifying Event-Based Timing Constraints 27

Definition 5. (Substitution of event occurrences) Let c− ∈ CExpr−, and let
EO be a set of event occurrences: then c−[ei+n ← t(ei+n) | ei+n ∈ EO] is the
expression resulting when every occurrence of ei+n in c, where ei+n ∈ EO, is
concurrently replaced by the variable t(ei+n).

(We could make a fully formal, recursive definition over the structure of c−.)
Basically this is a first order substitution, the only difference being that we
replace syntactic event instances ei+n rather than single variables. Since there
never can be any overlaps between the expressions ei+n to be replaced, and since
the substitution does not introduce such expressions, this kind of substitution is
well-defined. We need some more meta-notation to define the translation:

Definition 6. For any finite set of event occurrences EO = {o1, . . . , on}, arith-
metic variables t(o1), . . . , t(on), sets of integers T (o1), . . . , T (on), and constraint
expression c, we define:

∀(t(o) ∈ T (o) | o ∈ EO).c =
∀t(o1) · · · ∀t(on).(t(o1) ∈ T (o1) ∧ · · · ∧ t(on) ∈ T (on) ⇒ c)

Thus, the meta-notation denotes a formula where the variables t(o1), . . . , t(on)
are universally quantified over c while ranging over the sets T (o1), . . . , T (on).

We now define our transformation PR for expressions in CPExpr. We assume
that for each e ∈ Evar there is a set of events E(e) such that R(e) is a sequence
of regions for E(e):

Definition 7.

PR(c−) = c−[ei+n ← t(ei+n) | ei+n ∈ Eo(c−)], c− ∈ CExpr−

PR(∀t.c) = ∀t.PR(c)
PR(∃t.c) = ∃t.PR(c)
PR(∀i.c) = ∀i.∀(t(ei+n) ∈ R(e)i+n | ei+n ∈ Eo(c, i)).PR(c)
PR(∃i.c) = ∃i.∀(t(ei+n) ∈ R(e)i+n | ei+n ∈ Eo(c, i)).PR(c)

It is clear that PR(c) will contain no event occurrences. If all numerical subex-
pressions in c are linear in the index variables, arithmetic variables and event
occurrences, and if the set memberships t(ei+n) ∈ R(e)i+n can be expressed as
Presburger formulae, then PR(c) will be a Presburger formula. For instance, if
i, k ∈ Ivar and r, s ∈ Evar then

PR(∀i.∃k.(si + l ≤ rk ≤ si + u)) = ∀i.∀t ∈ R(s)i.∃k.∀t′ ∈ R(r)k.(t + l ≤ t′ ≤ t + u)

Here, we have written t for t(si) and t′ for t(rk). If the conditions t ∈ R(s)i
and t′ ∈ R(r)k can be expressed by Presburger formulae then the transformed
formula is also a Presburger formula.

The translation does not handle terms with quantified events. Such events
appear in the definitions of the Repetition, Pattern, Synch, and StrongSynch

28 B. Lisper

constraints. To translate such constraints, the quantified events have to be elim-
inated. For the Repetition constraint, if l = u = p and s = 1 then the constraint
Repeat(e′, p, p, 1) will uniquely determine e′

i = e′
0 + i ·p. Then, the quantification

over e′ can be replaced by a quantification over an arithmetic variable e′
0, and e′

i

can be replaced by e′
0 + i · p throughout. This situation appears for the Periodic

constraint, which calls Repetition through Sporadic.
For the synchronisation constraints, Synch, and StrongSynch, the instances

e′
i of the existentially quantified event e′ specify starting times of time windows

of size w, where some occurrences of all events e1, . . . , en belong to each win-
dow, and no occurrence of any event is outside such a time window. For these
constraints, the existence of such a window can instead be expressed by the con-
dition that for all pairs of synchronised events, all distances between the involved
event occurrences are less than or equal to the size w of the window. We omit
the details.

By eliminating quantified events in the manner described above, all con-
straints listed in Sect. 3 except the general Sporadic and Repetition constraints
can be written in a form where (1) can be translated into a formula free from
event occurrences according to above. What remains is to prove the correct-
ness of the translation. We exemplify by proving the correctness for the Delay
constraint.

Theorem 1.

∀e, e′.[Per(e, ts, p, j) ∧ Per(e′, t′s, p
′, j′) ⇒ Delay(e, e′, l, u)]

⇐⇒
∀i ≥ 0.∀t ∈ win(ts, p, j, i).∃k ≥ 0.∀t′ ∈ win(t′s, p

′, j′, k).[l ≤ t′ − t ≤ u]

Proof. ⇐ : assume that the statement to the right of the equivalence holds.
Consider any events e, e′ such that Per(e, ts, p, j), and Per(e′, t′s, p

′, j′). Then
it holds for any i, k ≥ 0 that ei ∈ win(ts, p, j, i), and e′

k ∈ win(t′s, p
′, j′, k).

Then, by instantiating t = ei and t′ = e′
k in the right-hand side we obtain

∀i ≥ 0.∃k ≥ 0.[l ≤ e′
k − ei ≤ u], that is: Delay(e, e′, l, u).

⇒ : assume that the statement does not hold. We show existence of e, e′

where Per(e, ts, p, j), Per(e′, t′s, p
′, j′), and ¬Delay(e, e′, l, u). Since the state-

ment does not hold, there exists an i ≥ 0 and t ∈ win(ts, p, j, i) such that for
all k ≥ 0 there is a t′ ∈ win(t′s, p

′, j′, k) where ¬(l ≤ t′ − t ≤ u). Another way
to express this is that there is a sequence of times { t′k | k ≥ 0 } where for all
elements t′k holds that t′k ∈ win(t′s, p

′, j′, k) and ¬(l ≤ t′k − t ≤ u). By tightness
and Lemma 1 there is an event e such that ei = t and Per(e, ts, p, j). Similarly,
by tightness and Lemma 1 we can construct an event e′ where Per(e′, t′s, p

′, j′),
by letting e′

k = tk for each k ≥ 0. Thus, ∃i ≥ 0.∀k ≥ 0.¬(l ≤ e′
k − ei ≤ u), that

is: ¬Delay(e, e′, l, u).

Theorem 1 is illustrated in Fig. 4. It shows two time windows, for the events
e and e′, respectively, and indicates how the distance between any t, t′ drawn
from the respective time window must be kept between l and u. The theorem

Verifying Event-Based Timing Constraints 29

t’t

0 l u

t’ − t

relative time
> l

< u

Fig. 4. An illustration of Theorem 1.

does not guarantee that the translated formula is a Presburger formula. For this
to hold, the periodicities p, p′ of the events e, e′ must be constants.

For all the TADL2 constraints listed in Sect. 3, except Sporadic and Repeti-
tion, the equivalence of the translation can be proved in a similar manner as for
Theorem 1. This suggests that it should be possible to prove, in a similar way,
a correctness result for the translation PR of any constraint in CPExpr. How-
ever, counterexamples can be found where the equivalence between statement
and translated statement does not hold. To prove such a result we need to find
a nontrivial fragment of TiCS, which is smaller than the one defined in Fig. 3,
for which such a result holds. This is a topic for further research.

5 An Experiment: The Box Service Generic-External

We have tried our method by verifying parts of the timing requirements for the
“Box Service Generic-External” (BSG-E) [10], which manages the fog lights
in cars. It also handles the electrical protection of downstream wires, diag-
nostics, and the dialogue with the main car ECU over a CAN network. The
total specification of the timing requirements includes ten events, five delay con-
straints, two periodic constraints, and one synchronisation constraint involving
two events. We selected a subset of these with two events, and one delay con-
straint: the selection was made to provide an example with periodic events. The
events are: EMA PERM3, (filtered) voltage reading from the power supply,
and CAR CDE BSE, the arrival of the first frame on the CAN bus from the
main ECU. EMA PERM3 is periodic, with periodicity 15 ms and zero jitter,
and the nature of CAR CDE BSE is not specified. The delay constraint spec-
ifies a requirement that whenever a rising edge is detected on the power supply,
the first frame from the CAN bus must be read within 40 ms. For this example
we assume that CAR CDE BSE is periodic. We obtain the following timing
constraints:

AcqPerm = 5
T init = 40
Per(EMA PERM3, t2, 3 · AcqPerm, 0)
Per(CAR CDE BSE, t3, 3 · AcqPerm, jitter)
Delay(EMA PERM3, CAR CDE BSE, 0, T init)

30 B. Lisper

As the start time t2 for EMA PERM3 is not specified, we leave it open. Sim-
ilarly, since CAR CDE BSE is not specified at all, we leave its start time t3
and jitter open. (We cannot leave its periodicity as a parameter, as this would
create a nonlinear expression in the transformed constraint.) For this example
we set it to the periodicity of EMA PERM3, but any value could be chosen.

We have verified the Delay constraint, transformed according to Sect. 4, with
the iscc3 calculator [22]. iscc can simplify sets defined by Presburger formulae
using Fourier-Motzkin variable elimination. Sets defined by formulae without
free variables reduce either to the empty or the universal set (that is, false or
true): if the defining formula has free variables then the result will be a set
defined by a simplified, quantifier-free formula in the same variables. Thus, iscc
can be used as a Presburger solver with the ability to return parametric results.

The experiment was carried out on a Dell Optiplex 7010, with a dual-core
64 bit Intel i5-3570 processor running at 3.40 GHz, 8 GB memory, three levels
of cache (256 kB, 1 MB, 6 MB) running Xubuntu linux v. 14.04.5.

Fig. 5. iscc encoding of the Presburger formula for the Delay constraint.

The encoding of the Presburger formula for the Delay constraint, in the
textual language of iscc, is shown in Fig. 5. The formula includes constraints
on the auxiliary variables as well as non-negativity constraints on the starting
times and the jitter. When run with this input, iscc will instantaneously return
the following, simplified set expression:

{ [AcqPerm = 5, T init = 40, t2, t3, jitter] :

t2 >= 0 and t3 >= 0 and 0 <= jitter <= 40 + t2 - t3 and

15*floor((14t2 + t3)/15) >= -40 + 14t2 + t3 + jitter }
We thus obtain constraints on the unknown parameters of the periodic events.

We can also make runs with different periodicities of CAR CDE BSE to explore
how this parameter affects the ability to find a solution that satisfies the con-
straint. In all, the ability to produce symbolic solutions facilitates a design space
exploration where the system is designed as to meet its timing constraints.

3 Our version was built using version 0.40 of the barvinok library.

Verifying Event-Based Timing Constraints 31

6 Related Work

Logics for expressing and reasoning about real-time properties are mostly
expressed as modal logics [1,3,11]. Decidable such logics allow for verification
of real-time properties of systems by model-checking. In particular Timed
Automata [2] have become much used for this purpose. UPPAAL [16] is a well-
known tool for modeling and verification using timed automata. Jagadish [21]
used UPPAAL to verify some TADL timing constraints, transformed into timed
automata, for periodic events. Examples include the delay constraint. UPPAAL
has also been used for verifying timing constraints expressed in the AUTOSAR
Timing Extensions [7,9], which build on the TADL timing constraints.

Our approach, using translations into Presburger formulae, is quite different
from model checking. It allows the use of decision procedures that eliminate
quantifiers through projections, which allows parametric solutions in the form
of quantifier-free formulas. For timing verification this can be valuable in early
design phases where system parameters are not yet fixed. Possibly parametric
model checking of timed automata can be used for the same purpose [14], but this
remains to be investigated. Furthermore our approach can be directly extended
to continuous time. For this kind of time the use of projection-based decision
procedures will yield a lower complexity, whereas the opposite holds for model
checking.

We know few other attempts to verify timing properties by deciding Pres-
burger formulae. Amon et al. [4] capture the logic of timing diagrams in a form
that resembles our constraint language but without event variables. This sub-
language corresponds to Presburger formulas.

CCSL [5] is a timing constraint language in the UML profile MARTE [20]
for modeling and analysis of real-time systems. CCSL can specify clocks, and
relations between them. Yin et al. [23] describe how to translate a specification
in a subset of CCSL into a Promela model for verification in the model checker
SPIN. Ning and Pantel [13] proposed a framework for verifying timing properties
of MARTE models through model checking over Timed Petri Nets.

7 Conclusions and Further Research

We have shown how to verify a number of TADL2 timing constraints under
the condition that the constrained events are periodic with jitter. The TADL2
constraints then express timing requirements, whereas the periodicity and jit-
ter of the events may stem from an implementation where tasks are triggered
with some fixed periodicity. Such implementations are common in safety-critical
systems, in domains like automotive and avionics. TADL2 has been developed
within the automotive domain, with its typical timing requirements mind, and
it forms the basis for the AUTOSAR Timing Extensions. It can therefore be of
great practical interest to have methods to verify whether or not such periodi-
cally scheduled systems will meet their timing requirements expressed as TADL2
constraints. Our work provides a step towards this goal.

32 B. Lisper

The translations to Presburger formulas, and their proofs of correctness,
follow a common pattern. An obvious topic for future research is to find a larger
fragment of TiCS for which the translation is correct.

We believe that the ability to obtain symbolic results, constraining design
parameters, can be very useful. This is convenient in early design phases where all
parts of the system are not yet fixed, and it facilitates a design space exploration
where the system is optimised under the given timing constraints.

A possible concern is the extremely high worst-case complexity for solv-
ing Presburger formulas. However, our experience is that timing constraints in
domains like automotive often are gathered into a conjunction of rather simple
constraints, like delay or synchronisation constraints. The translated Presburger
formula will then be a conjunction of simple constraints, each involving only
a few variables. The solver can then solve these individually and intersect the
results, which is likely to be much faster than the worst case. A topic for future
research is to make larger case studies to see whether this is indeed the case.

Acknowledgments. This work was partially supported by VINNOVA through the
ITEA2 TIMMO-2-USE and ITEA3 ASSUME projects. We would also like to thank
Johan Nordlander for interesting discussions.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Trans. Pro-
gram. Lang. Syst. 16(5), 1543–1571 (1994)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceeding of Logic in Computer Science, pp. 414–425. IEEE (1990)

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
4. Amon, T., Borriello, G., Hu, T., Liu, J.: Symbolic timing verification of timing dia-

grams using Presburger formulas. In: Proceeding of 34th Annual Design Automa-
tion Conference, pp. 226–231. ACM, New York (1997)

5. André, C., Mallet, F.: Clock constraints in UML/MARTE CCSL. Research report,
INRIA, May 2008

6. AUTOSAR: Homepage of the AUTOSAR project (2009). www.autosar.org/
7. AUTOSAR: Specification of timing extensions (2011). www.autosar.org/
8. Baruah, S., Buttazzo, G., Gorinsky, S., Lipari, G.: Scheduling periodic task systems

to minimize output jitter. In: Proceeding of Sixth International Conference on Real-
Time Computing Systems and Applications (RTCSA 1999), pp. 62–69 (1999)

9. Beringer, S., Wehrheim, H.: Verification of AUTOSAR software architectures with
timed automata. In: Beek, M.H., Gnesi, S., Knapp, A. (eds.) FMICS/AVoCS
2016. LNCS, vol. 9933, pp. 189–204. Springer, Cham (2016). doi:10.1007/
978-3-319-45943-1 13

10. Blom, H., Feng, L., Lönn, H., Nordlander, J., Kuntz, S., Lisper, B., Quinton, S.,
Hanke, M., Peraldi-Frati, M.A., Goknil, A., Deantoni, J., Defo, G.B., Klobedanz,
K., Özhan, M., Honcharova, O.: D11 language syntax, semantics, metamodel v2.
Technical report, August 2012. https://itea3.org/project/timmo-2-use.html

11. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

www.autosar.org/
www.autosar.org/
http://dx.doi.org/10.1007/978-3-319-45943-1_13
http://dx.doi.org/10.1007/978-3-319-45943-1_13
https://itea3.org/project/timmo-2-use.html

Verifying Event-Based Timing Constraints 33

12. Cuenot, P., et al.: 11 The EAST-ADL architecture description language for auto-
motive embedded software. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz,
B. (eds.) MBEERTS 2007. LNCS, vol. 6100, pp. 297–307. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16277-0 11

13. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE
safety critical real-time systems. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E.,
Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 352–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31491-9 27

14. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Log. Algebr. Program. 52–53, 183–220 (2002).
http://dx.doi.org/10.1016/S1567-8326(02)00037-1

15. Johansson, R., Frey, P., Jonsson, J., Nordlander, J., Pathan, R.M., Feiertag, N.,
Schlager, M., Espinoza, H., Richter, K., Kuntz, S., Lönn, H., Kolagari, R.T., Blom,
H.: TADL: timing augmented description language, version 2. Technical report,
October 2009

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1, 134–152 (1997)

17. Lisper, B., Nordlander, J.: A simple and flexible timing constraint logic. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 80–95. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34032-1 12

18. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20(1), 46–61 (1973)

19. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-
time environment. Ph.D. thesis, Massachusetts Institute of Technology, May 1983

20. UML profile for MARTE: modeling and analysis of real-time embedded systems.
Technical report, OMG, November 2009

21. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In:
Proceeding 39th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), September 2013. http://www.es.mdh.se/publications/
2988-22

22. Verdoolaege, S.: barvinok: user guide. Technical report, January 2016.
barvinok.gforge.inria.fr/barvinok.pdf

23. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Proceeding of 16th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS 2011), pp. 65–74, April 2011

http://dx.doi.org/10.1007/978-3-642-16277-0_11
http://dx.doi.org/10.1007/978-3-642-31491-9_27
http://dx.doi.org/10.1016/S1567-8326(02)00037-1
http://dx.doi.org/10.1007/978-3-642-34032-1_12
http://www.es.mdh.se/publications/2988-22
http://www.es.mdh.se/publications/2988-22
http://barvinok.gforge.inria.fr/barvinok.pdf

Query Checking for Linear Temporal Logic

Samuel Huang and Rance Cleaveland(B)

University of Maryland, College Park, USA
srhuang@cs.umd.edu, rance@cs.umd.edu

Abstract. The query-checking problem for temporal logic may be for-
mulated as follows. Given a Kripke structure M and a temporal-logic
query of form φ [var], which may be thought of as a temporal formula
with a missing propositional subformula var, find the most precise propo-
sitional formula f that, when substituted for var in φ [var], ensures M
satisfies the resulting temporal property. Query checking has been used
for system comprehension, specification reconstruction, and other related
applications in the formal analysis of systems.

In this paper we present an automaton-based methodology for query
checking over linear temporal logic (LTL). While this problem is known
to be hard in the general case, we show that by exploiting several key
observations about the interplay between the input model M and the
query φ [var], we can produce results for many problems of interest. In
support of this claim, we report on preliminary experimental data for an
implementation of our technique.

1 Introduction

Temporal logics [9] are widely used to specify desired properties of system behav-
ior. Such logics permit the description of how systems should execute over time;
tools such as model checkers [4,8] can then be used automatically to determine
whether or not certain types of system possess given temporal properties.

The practical utility of model checking and other temporal-logic-based verifi-
cation technologies relies on the ability of users to define correctly the properties
they are interested in. To assist users in this regard, researchers have looked
into various forms of automated temporal-property reconstruction [1,11,17,18]
as a means of helping users to devise temporal specifications from given system
specifications. Users may then use these as specifications for the system (useful
when systems subsequently have new functionality added, as the new system
can be checked against the old specification to ensure backward compatibility);
they may also review them as a means of gaining insight into the behavior of a
system that may not have been formally specified or verified. One of the most
influential lines of work in this area is so-called temporal logic query checking [6],
which aims to solve the following general problem: given a system, and a tem-
poral formula with a missing (propositional) subformula, “solve” for the missing
subformula. As originally formulated by Chan [6], the temporal logic in question
was a subset of the branching-time temporal logic CTL [10], for which he gave

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 34–48, 2017.
DOI: 10.1007/978-3-319-67113-0 3

Query Checking for Linear Temporal Logic 35

efficient algorithms for computing most-precise missing formulas. Others have
considered different variants of this problem, by considering multiple missing
subformulas, for instance, or different logics [5,7,15].

In this paper we consider the problem of query checking for linear temporal
logic (LTL) [10]. LTL differs from branching-time logics in that one specifies
properties of executions, rather than states in a system, and it is often viewed as
an easier formalism to master for this reason. It is also the basis for specification
languages, such as FORSPEC [2], used in digital hardware design. In the current
work we show how automaton-based model-checking techniques may be adapted
to yield a solution to the query-checking problem that, while computationally
complex in the worst case, exploits structure in the space of possible query
solutions to yield better performance. To this end, after reporting on related work
and developing needed mathematical preliminaries, we present our technique and
report on a preliminary implementation that we are developing.

2 Related Work

Temporal-logic query checking was initially defined and explored by William
Chan [6], who considered the problem in the context of the branching-time tem-
poral logic CTL [10]. Chan initially considered a subset of CTL and showed
that queries in this subset, which allows the universal path quantifier and places
restrictions on the modal operators, can be solved in linear time. This work was
subsequently extended to more expressive branching-time logics via alternating-
tree automaton constructions [5] and three-valued model checking [15]; this last
paper also describes several applications of the technique in areas such as invari-
ant inference and test generation. Other work has studied the problem for classes
of infinite-state systems [21].

In contrast to branching time, linear-time query checking has remained rela-
tively unstudied. Chokler et al. [7] consider several variants of LTL query check-
ing and prove complexity results for these problems; however, no implementation
or experimental results were reported.

Other researchers have considered the problem of so-called specification min-
ing, in which temporal properties are inferred not from system models, but from
execution behavior, using techniques from data mining and machine learning.
Such properties hold of the data from which they are generated, but not neces-
sarily of all system behaviors. Emblematic of this work is the dynamic-invariant
generation work of Ernst et al. [11], which uses program instrumentation to
obtain state information as a program executes and then data mining to identify
possible invariants. Other work in this vein couples data mining of execution data
with retesting to attempt to remove invalid invariants in the case of Simulink
models [1]. Other work has considered the mining of general LTL formulas from
run-time data [16].

36 S. Huang and R. Cleaveland

3 LTL, Kripke Structures and Büchi Automata

This section defines the syntax of LTL and reviews the notions of Kripke struc-
ture, Büchi automata, and model checking in LTL. In what follows, we fix a
finite non-empty set A of atomic propositions.

3.1 LTL and Kripke Structures

The syntax of LTL formulas is given by the following grammar.

φ := a ∈ A | ¬φ | φ ∨ φ | Xφ | φUφ

In addition to the propositional constructs a, ¬ and ∨, LTL formulas also include
the modal operators X, or “next state”, and U, or “until”. The derived propo-
sitional operations ∧,→, etc. are defined in the usual manner; we also write
tt as an abbreviation for a ∨ ¬a for a designated a ∈ A and ff for ¬tt. We
additionally use the following derived temporal operators in the sequel.

Fφ � ttUφ

Gφ � ¬(F¬φ)
φ1 Rφ2 � ¬((¬φ1)U(¬φ2))

F and G are the “eventually” and “always” operators, while R is sometimes
called the “release” operator. We write Φ for the set of LTL formulas.

The semantics of LTL is given as a relation |=⊆ (2A)ω × Φ. Intuitively,
π |= φ holds if π ∈ (2A)ω, which is an infinite sequence of subsets of A, makes
φ true. In what follows, if π = A0A1 . . . then we write π[i] ∈ 2A for Ai ⊆ A and
π[i..] ∈ (2A)ω for the suffix AiAi+1 The relation |= may now be defined as
follows.

– π |= a (a ∈ A) iff a ∈ π[0].
– π |= ¬φ iff π �|= φ.
– π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2.
– π |= Xφ iff π[1..] |= φ.
– π |= φ1 Uφ2 iff there is a j ≥ 0 such that π[j..] |= φ1 and for all 0 ≤ i < j,

π[i..] |= φ2.

We often write �φ� �
{
π ∈ (2A)ω | π |= φ

}
for the set of sequences satisfying φ.

LTL formulas are often used to specify properties of systems modeled as
Kripke Structures.

Definition 1. A Kripke Structure is a quadruple (S,R,L, i) where:

– S is a non-empty set of states;
– R ⊆ S × S is the transition relation;
– L ∈ S → 2A is the labeling function; and
– i ∈ S is the initial state.

Query Checking for Linear Temporal Logic 37

A Kripke structure encodes the behavior of a system, with S representing system
states and the transition relation recording the possible execution steps that are
possible when a system is in a given state: when the system is in state s it can
evolve in one step to state s′ iff (s, s′) ∈ R. The labeling function indicates which
atomic propositions are true in any given state; if a ∈ L(s) then a is deemed true
s, while if a �∈ L(s) it is false. State i is the initial state. In what follows we require
Kripke structures to be left-total : for every s ∈ S it must be the case that there
is an s′ ∈ S such that (s, s′) ∈ R. We also call a Kripke structure finite-state
if its state set is finite. Semantically, left-total Kripke structure K = (S,R,L, i)
gives rise to a subset �K� of (2A)ω as follows.

– Infinite sequence s0s1 . . . ∈ Sω is an execution of K if s0 = i and (si, si+1) ∈ R
for all i ≥ 0.

– K generates π = A0A1 . . . iff there is an execution s0s1 . . . of K such that
Ai = L(si).

– �K� =
{
π ∈ (2A)ω | K generates π

}
.

We then write K |= φ, where K is a Kripke structure and φ is an LTL formula,
iff �K� ⊆ �φ�.

3.2 Büchi Automata and LTL Model Checking

The LTL model-checking problem may be formulated as follows.

Given: Kripke structure K, LTL formula φ
Determine: Does K |= φ?

When K is finite-state the model-checking problem is decidable in time propor-
tional to |K|, where |K| is the size of Kripke structure K. A common approach
for LTL model checking relies on the use of Büchi automata. This section defines
these automata and explains their use in LTL model checking.

Büchi automata. Büchi automata are used to recognize so-called ω-regular lan-
guages, which are sets of infinite-length sequences of alphabet symbols.

Definition 2. A Büchi automaton is a quintuple (Q,Σ, δ, qI , F), where:

– Q is a finite, non-empty set of states;
– Σ is a finite, non-empty set of alphabet symbols;
– δ ⊆ Q × Σ × Q is the transition relation;
– qI is the initial state; and
– F ⊆ Q is the set of accepting states.

Let B be a Büchi automaton (Q,Σ, δ, qi, F). We define the language, L(B) ⊆ Σω,
of B as follows.

– Given ω-word w = α0α1 . . . ∈ Σω, define a run of B on w to be a sequence
q0q1 . . . ∈ Qω such that q0 = qI and (qi, αi, qi+1) ∈ δ for all i ≥ 0.

38 S. Huang and R. Cleaveland

– A run q0q1 . . . ∈ Qω of B on w is accepting iff for all i ≥ 0 there exists j ≥ i
such that qj ∈ F .

– L(B) = {w ∈ Σω | B has an accepting run on w}.

The subsets W ⊆ Σω such that W = L(B) for some Büchi automaton B coin-
cide with the so-called ω-regular languages. This class of languages is closed
with respect to complementation and intersection; both of these operations can
be realized as constructions on Büchi automata. In addition, checking for empti-
ness of the language of B is decidable in time proportional to the size of B.
Algorithmically, this can be done by computing the strongly connected compo-
nents of B and determining if there is one such component reachable from the
start state, containing an accepting state, and having at least one edge from a
state in the component to another state in the component. This ensures the exis-
tence of at least one accepting run in B, and hence the non-emptiness of L(B).

LTL model checking using Büchi automata. Büchi automata may be used as
a basis for model checking of finite-state Kripke structures against LTL formu-
las [19]. Recall the model-checking problem in this case: given finite-state Kripke
structure K and LTL formula φ, determine whether or not K |= φ. This problem
may be solved algorithmically using Büchi automata as follows.

– From K, construct Büchi automaton BK such that L(BK) = �K�.
– From φ, construct Büchi automaton B¬φ such that L(B¬φ) = �¬φ�.
– Construct the Büchi automaton BK,¬φ such that L(BK,¬φ) = L(BK)∩L(B¬φ)

and check if L(BK,¬φ) = ∅. This is true iff K |= φ.

Note that both BK and B¬φ must have alphabet sets Σ = 2A. Specifically,
transitions in both of these Büchi automata are labeled by subsets of A.

For K = (S,R,L, i), the construction BK is straightforward: define BK =(
S, 2A, δK , i, S

)
, where

δK = {(s,A, s′) | (s, s′) ∈ R and A = L(s)} .

The construction of Bφ for LTL formula φ is more complex, and a number of
approaches may be found in the literature [3,12–14]. The best techniques yield
automata that are O(3|φ|), where |φ| is the size of formula φ.

We close this section by giving an alternative formulation of Büchi automata
whose alphabets are 2A. The edges in these automata are labeled by proposi-
tional formulas constructed from A, rather than subsets of A; the interpretation
of such an edge q

γ−→ q′ is that q
A−→ q′ for every A satisfying γ. These notions

are formalized as follows.

– Define the set of propositional formulas Γ over A by the following grammar.

γ ::= a ∈ A | ¬γ | γ ∨ γ

Note that Γ � Φ. We use the usual encodings of tt, ∧, etc.
– If A ⊆ A and γ ∈ Γ then define A |= γ as follows.

Query Checking for Linear Temporal Logic 39

• A |= a iff a ∈ A
• A |= ¬γ iff A �|= γ
• A |= γ1 ∨ γ2 iff A |= γ1 or A |= γ2.

We write �γ� for {A ⊆ A | A |= γ}. Note that A |= γ iff π |= γ for all π such
that π[0] = A.

We sometimes use A ⊆ A as short-hand for the formula (
∧

a∈A a) ∧ (
∧

a�∈A ¬a).
Note that �A� = {A} in this case.

Definition 3. Given A, a Büchi propositional automaton is a tuple (Q, δ, qI , F),
where:

– Q is a finite non-empty set of states, with qI ∈ Q and F ⊆ Q.
– δ ⊆ (Q × Γ × Q) is the transition relation.

Based on our interpretation of sets A ⊆ A as propositions it is easy to see that
every Büchi automaton is also a Büchi propositional automaton. An arbitrary
Büchi propositional automaton B = (Q, δ, qI , F) may also be translated into a
traditional Büchi automaton B′ =

(
Q, 2A, δ′, qI , F

)
by defining

δ′ = {(q,A, q′) | ∃γ. (q, γ, q′) ∈ δ ∧ A ∈ �γ�} .

We define L(B) = L(B′). The traditional tableau-based constructions for con-
verting LTL formulas into Büchi automata may easily be adapted to generate
Büchi propositional automata with the property that for every pair of automaton
states q, q′ there is exactly one γ such that (q, γ, q′) ∈ δ.

Finally, we give a construction for Büchi propositional automaton B12 with
L(B12) = L(B1) ∩ L(B2) for the special case of Büchi propositional automata
B1 and B2, with every state in B1 accepting.

Theorem 1. Let B1 = (Q1, δ1, q1, Q1) and B2 = (Q2, δ2, q2, F2) be Büchi propo-
sitional automata. Then L(B12) = L(B1) ∩ L(B2), where

B12 = (Q1 × Q2, δ12, (q1, q2) , Q1 × F2)

and ((q1, q2) , γ1 ∧ γ2, (q′
1, q

′
2)) ∈ δ12 iff (q1, γ1, q′

1) ∈ δ1 and (q2, γ2, q′
2) ∈ δ2.

4 The LTL Query Checking Problem

In LTL query checking we are interested in Kripke structures and LTL formula
queries, which are formulas containing a missing propositional subformula. The
goal in LTL query checking is to construct solutions for the missing subformula.
This section defines the problem precisely and proves results that will be used
later in our algorithmic solution.

LTL queries correspond to LTL formulas with a missing propositional subfor-
mula, which we denote var. It should be noted that var stands for an unknown
proposition over A; it is not a propositional variable. The syntax of queries is as
follows.

40 S. Huang and R. Cleaveland

φ := var | a ∈ A | ¬φ | φ ∨ φ | Xφ | φUφ

In this paper we only consider the case of a single propositional unknown,
although the definitions can naturally be extended to multiple such unknowns.
We often write φ[var] for LTL query with unknown var, and φ[φ′] for the LTL
formula obtained by replacing all occurrences of var by LTL formula φ′. We also
say that an occurrence of var within φ[var] is positive if it appears within an
even number of instances of ¬, and negative otherwise. If all occurrences of var
in φ[var] are positive we say var is positive in φ[var]; if all are negative we say
var is negative in φ[var]; if there are both positive and negative occurrences of
var in φ[var] then var is mixed in φ[var].

The query-checking problem may now be formulated as follows.

Given: Finite-state Kripke structure K, LTL query φ[var]
Compute: All γ ∈ Γ (i.e. all propositional formulas over A) with K |= φ[γ].

If γ is such that K |= φ[γ], then we call γ a solution for K and φ[var], and in
this case we say that φ[var] is solvable for K. Computing all solutions for query
checking problem K and φ[var] cannot be done explicitly, since the number
of propositional formulas is infinite. However, if we define γ1 ≡ γ2 to hold if
�γ1� = �γ2�, then it is clear that there are only finitely many distinct equivalence
classes for Γ . We also say that γ1 is at least as strong (weak) as γ2 if �γ1� ⊆ �γ2�
(�γ2� ⊆ �γ1�). We now have the following.

Theorem 2. Let K be a finite-state Kripke structure and φ[var] an LTL query.

1. If var is positive in φ[var] then there is a finite set (modulo ≡) of strongest
solutions for φ[γ].

2. If var is negative in φ[var] then there is a finite set (modulo ≡) of weakest
solutions to φ[γ].

In some cases these sets of maximal solutions contain a single solution.

Definition 4. Let φ[var] be an LTL query. Then φ[var] is:

– conjunctively covariant iff for all γ1, γ2, φ[γ1 ∧ γ2] ≡ φ[γ1] ∧ φ[γ2]; and
– conjunctively contravariant iff for all γ1, γ2, φ[γ1 ∨ γ2] ≡ φ[γ1] ∧ φ[γ2].

Theorem 3. Let K be a finite-state Kripke structure, and let φ[var] be solvable
for K. Then the following hold.

1. If var is positive in φ[var] and φ[var] is conjunctively covariant, then there
is a unique strongest solution (modulo ≡) for φ[var].

2. If var is negative in φ[var] and φ[var] is conjunctively contravariant, then
there is a unique weakest solution (modulo ≡) for φ[var].

As examples, note that G var is conjunctively covariant and solvable for every K,
and that var is positive; it is guaranteed to have a unique strongest solution for
any K. So does GF var. On the other hand, G(var =⇒ Fφ′) is conjunctively
contravariant and solvable for every K, and var appears negatively. Thus, every
K has a unique weakest solution for this query.

Query Checking for Linear Temporal Logic 41

5 Automaton-Based LTL Query Checking

In this section we show how LTL query checking can be formulated as a prob-
lem on Büchi propositional automata whose propositional labels may contain
instances of var. In this paper we only consider LTL queries in which var is
either negative or positive; the mixed case will not be dealt with. The app-
roach is based on LTL model checking in that we generate Büchi propositional
automata from both a Kripke structure and the negation of an LTL query and
compose them; we then search for solutions to var that make the language of
the composition automaton empty. To formalize these notions, we introduce the
following definitions.

5.1 Propositional Queries

Definition 5. Let var be an unknown proposition. Then propositional queries
are generated by the following grammar.

γ:: = var | a ∈ A | ¬γ | γ ∨ γ

We write γ[var] for a generic instance of a propositional template, and Γ [var]
for the set of all propositional templates involving var.

It is easy to see that propositional queries form a subset of LTL queries, and
that notions of γ[γ′], positive and negative occurrences of var, etc., carry over
immediately. A shattering formula for query γ[var] is a propositional formula
γ′ with the property that �γ[γ′]� = ∅; that is, γ′ “makes” γ[var] unsatisfiable.
We call γ[var] shatterable if it has a shattering formula. The following is a
consequence of the fact that the set of propositional formulas form a Boolean
algebra.

Theorem 4. Let γ[var] be shatterable.

1. If var is positive in γ[var] then there is a unique (modulo ≡) weakest shat-
tering formula for γ[var].

2. If var is negative in γ[var] then there is a unique strongest (modulo ≡) shat-
tering formula for γ[var].

Intuitively, if γ[var] is shatterable and var is positive, then γ[var] can be rewrit-
ten as var∧γ′ for some propositional formula γ′ (i.e. γ′ contains no occurrences
of var). In this case the weakest shattering formula for γ[var] is ¬γ′. A dual
argument holds in the case that var is negative in γ[var].

5.2 Büchi Query Automata

Büchi query automata are propositional automata with propositional queries
labeling transitions.

42 S. Huang and R. Cleaveland

Definition 6. Let var be a propositional unknown. A Büchi query automaton
has form (Q, δ, qI , F), with finite state set Q, initial state qI ∈ Q, accepting
states F ⊆ Q, and transition relation δ ⊆ Q × Γ [var] × Q.

Intuitively, a Büchi query automaton is like an LTL query in that it contains a
propositional unknown, var, that can be used to change the language accepted
by the automaton. Specifically, if var is set to a condition γ′ that shatters the
edge label γ[var], then any query-automaton edge of form (q, γ[var], q′) is no
longer available for use in constructing runs of the automaton. Figure 1 illustrates
this phenomenon. Thus, by varying var we can thus affect the language accepted
by the query automaton.

Fig. 1. Shattering edges in a Büchi query automaton. Proposition γ′ shatters γ[var],
and consequently the edge (q, γ[var], q′) is removed.

Formally, if B[var] is a Büchi query automaton then define B[γ] to be the
Büchi propositional automaton obtained by replacing all occurrences of var by
γ in any edge label within B[var]. We say that γ shatters B[var] if L(B[γ]) = ∅,
i.e. if γ renders the language of B[var] empty. Notions of positive and negative
occurrences of var in B[var], etc., carry over in the obvious manner.

We now note the following correspondence between LTL queries and Büchi
query automata.

Theorem 5. Let φ[var] be an LTL query. Then there exists a Büchi query
automaton Bφ[var] such that the following hold.

1. For all γ ∈ Γ , �φ[γ]� = L(Bφ[γ]).
2. If var is positive in φ[var] then var is positive in Bφ[var].
3. If var is negative in φ[var] then var is negative in Bφ[var].

The construction of Bφ[var] is a straightforward adaptation of the construction
of Büchi propositional automata from LTL formulas φ.

Query Checking for Linear Temporal Logic 43

5.3 LTL Query Checking via Büchi Query Automata

We now explain our approach to LTL query checking. Given finite-state Kripke
structure K and LTL query φ[var], we perform the following.

1. Construct Büchi (propositional) automaton BK .
2. Construct Büchi query automaton B¬φ[var].
3. Construct the product query automaton, BK,¬φ[var].
4. Solve for shattering conditions for BK,¬φ[var].

Because of Theorem 5 we know the following. If φ[var] is conjunctively covari-
ant and var is positive in φ[var], then var is negative in BK,¬φ[var], and the
strongest solution for var in φ[var] with respect to K coincides with the weak-
est shattering condition for BK,¬φ[var]. The dual result holds in case var is
negative in φ[var]. Thus, solving for shattering conditions in BK,¬φ[var] yields
appropriate query solutions for K and φ[var].

6 Implementing an LTL Query Checker

Based on the developments given earlier in the paper, to develop a query checker
for finite-state Kripke structures and LTL queries φ[var] it suffices to construct
the product query automaton BK,¬φ[var] and then search for γ that shatter
BK,¬φ[var]. In this section we highlight some of the algorithmic aspects of this
strategy and report on preliminary results of a prototype implementation.

At the outset, we can note that there is one immediate algorithmic solution:
enumerate γ and test to see if L(B[γ]) = ∅ by computing the strongly connected
components of B[γ] and seeing if the start state can reach a successful compo-
nent (i.e. one with an accepting state and at least one edge from the component
back to itself). As there are 22

|A|
semantically distinct such γ, this procedure

terminates; indeed, this is the basis of the approach outlined in [7]. The com-
plexity of this approach is prohibitive, however, as a sample implementation of
ours has shown: even Kripke structures with 10s of states and 10 atomic propo-
sitions failed to complete successfully. This is to be expected, given that there
are 22

10 ≥ 1.75 × 10308 semantically distinct propositions in this case.
Instead, the approach outlined below pursues two different strategies to

reduce the computational effort associated with shattering. One involves exploit-
ing the lattice structure of 22

A
to reduce the number of propositions that must

be considered; the second combines this idea with a weakening of the problem to
require the computation of a single shattering proposition, rather than all such
propositions. The next sections provide further details regarding our approach.

6.1 Construct Büchi Automaton BK

Given a Kripke structure K, constructing the corresponding Büchi automaton
BK is done using the traditional method as described above. There is no query
component to the model input, it should be noted.

44 S. Huang and R. Cleaveland

6.2 Construct Büchi Query Automaton B¬φ[var]

The LTL3BA package performs translations from standard LTL formulas to
Büchi propositional automata. For a given query φ[var] we convert the formula
into a Büchi query automaton by treating var as a normal atomic proposition. By
default, LTL3BA attempts to remove non-determinism from the output Büchi
query automaton, which can increase the number of edges in the automaton
containing var on their labels. We configure LTL3BA so that removal of non-
determinism is not required in order to avoid this extra overhead.

6.3 Construct Product Query Automaton BK,¬φ[var]

As mentioned before, there is a well-known product construction for composing
two Büchi automata into a single one accepting the intersection of the languages
of the component automata. We adapt this composition operation to automa-
ton BK and query automaton B¬φ[var], yielding composite query automaton
BK,¬φ[var], as follows. States in B¬φ[var] are pairs of states from BK and
B¬φ[var]. Tuple ((q1, q2) , A ∧ γ[var], (q′

1, q
′
2)) is a transition in BK,¬φ[var] iff

(q1, A, q′
1) is a transition in BK and (q2, γ[var], q′

2) is a transition in B¬φ[var].
It should be noted that the transition label in this case, A∧γ[var], has a special
property: for any var, either �A ∧ γ[var]� = {A}, or �A ∧ γ[var]� = ∅. This is
a consequence of the fact that our treatment of A as a proposition means that
�A� = {A}. The initial state of BK,¬φ[var] is the pair consisting of the start
states of BK and B¬φ[var], respectively; states are accepting in BK,¬φ[var] if
and only if the state component coming from B¬φ[var] is accepting.

6.4 Solve for Shattering Conditions of BK,¬φ[var]

Given BK,¬φ[γ], we now must find a proposition γ such that L(BK,¬φ[γ]) = ∅.
One approach [7] is to enumerate all possible γ and compute whether or not
L(BK,¬φ[γ]) = ∅ for each such γ. Because of the number of possible γ, this
approach is infeasible for all but trivial A.

Our approach instead focuses on determining when sets of edges in
BK,¬φ[var] can be shattered via a common proposition γ in such a way that
L(BK,¬φ)[γ]) is empty. Our procedure may be summarized as follows.

1. Pre-process BK,¬φ[var] to eliminate all strongly connected components that
have no outgoing edges from the component and that do not contain any
accepting states. Call the reduced query automaton B′[var].

2. Identify all unique edge labels S = {γ1[var], . . . , γn[var]} in B′[var].
3. Process Γ appropriately to determine how B′[var] can be shattered.

We now expand on the last step of the above procedure. In this work our interest
is only for LTL queries φ[var] in which var appears only positively or only
negatively; we do not consider queries in which var is mixed. Based on the
construction of BK,¬var[var] it follows that var is either positive in all of the

Query Checking for Linear Temporal Logic 45

γi[var] or negative in all of the γi[var]. In what follows we assume that var is
positive; the negative case is dual.

The first step in processing the γi[var] (var is positive) is to determine if
γi[var] is shatterable, and if so, to compute its weakest shattering condition γ′

i.
Propositional queries γi[var] that are not shatterable are removed from future
consideration, as they cannot contribute to shattering B′[var]. In what follows
we assume that each γi[var] is shatterable, with weakest shattering condition γ′

i.
The next step S is to search for subsets of S that, when all shattered, shatter

B′[var]. More specifically, suppose S′ ⊆ S and γ′′ is such that γ′′ shatters each
γ′[var] ∈ S′. In B′[γ′′] none of the edges labeled by elements of S′ would be
present; if enough edges are eliminated, L(B[γ′′]) = ∅, and γ′′ would shatter
B′[var]. In this case we say that S′ shatters B′[var]. This search procedure is
facilitated by the following observations.

1. If S′ shatters B′[var] and S′ ⊆ S′′, S′′ also shatters B′[var].
2. If S′ does not shatter B′[var] and S′′ ⊆ S′, S′′ does not shatter B′[var].

These observations can be exploited to develop a modified breadth-first search
(BFS) strategy for finding all minimal subsets of S that shatter B′[var]. The BFS
algorithm maintains a work set, W ⊆ 2S , of subsets of S that need processing.
Initially, W = {∅}. The algorithm then repeatedly does the following. It selects
a minimum-sized S′ ∈ W and checks if S′ shatters B[var]. If it does, then it
removes all supersets of S′ from W and adds S′ to the set of minimal shattering
subsets of S. If it does not, then every superset of S′ that contains one more
element than S′ is added to W . The procedure terminates when W is empty.
Note that the approach does not add to W when S′ is found to be a shattering
set; the correctness of this approach is based on the first observation above.

The BFS algorithm in the worst-case can still require examination of all
subsets of S, so we also consider a different algorithm whose goal is to com-
pute a single minimal shattering subset of S. This approach, which we call
GREEDY SET SEARCH (GSS), first locates a (not necessarily minimal) shat-
tering set using a depth-first search strategy as follows. The procedure maintains
a set R ⊆ S that is initially ∅. It then repeatedly checks to see if R shatters
B′[var]; if so, it terminates, otherwise, it adds a new element from S into R.
The observations above guarantee that the above procedure will terminate after
at most |S| iterations. The second stage of the procedure then locates a mini-
mal subset of the shattering set R returned by the first stage as follows. Each
edge (except the last one added) is removed from R, and the set without this
edge is checked for shattering. If the newly modified set R′, consisting of R with
this single edge removed, shatters B′[var] then the edge is permanently removed
from R; otherwise, the edge is left in R. When this procedure terminates the
resulting value of R is guaranteed to be a minimal shattering subset of S.

6.5 Implementation and Evaluation

We have developed prototype implementations of the BFS and GSS algorithms.
Kripke structures are read in as directed graph data containing node labels,

46 S. Huang and R. Cleaveland

and LTL formulas are represented as simple strings. As stated previously, the
LTL3BA routine was used to generate Büchi query automata from LTL queries.

For a proof-of-concept assessment of the techniques we use a modified version
of NuSMV to extract the explicit Kripke structures from a sample .smv model
files included in the NuSMV distribution. For each choice of model used, we con-
sidered property queries that were conceivably of interest based upon grounded
properties known to be true of the systems already. These always took one of
the following forms: G a, GF a or G (a → F b). The models we considered in
our evaluation are the following.

– Counter[k] - An implementation of a k-bit counter.
– Semaphore[k] - An implementation of a semaphore access control scheme for

k different processes.
– Production cell - A production cell control model, first presented as an SMV

model by Winter [20]. The original intent of this model concerned safety and
liveness specifications.

Figure 2 contains relevant data about sizes of these models, and about the
size of the Büchi query automata formed when composing the models with the
query automaton B¬G var. For our purposes, the following measures are relevant:
(1) number of states, (2) number of transitions, (3) number of atomic proposi-
tions in the Kripke structure, (4) number of transition labels containing variable
labels in the composite automaton, and (5) number of unique transition labels.

Dataset # States # Transitions |A| # var-present edges # distinct edge labels

counter[3] 17 26 3 9 8
counter[4] 33 50 4 17 16
counter[5] 65 98 5 33 32
counter[10] 2049 3074 10 1025 1024

semaphore[2] 25 98 9 33 12
semaphore[3] 65 314 13 105 32
semaphore[4] 161 917 17 305 80
semaphore[5] 385 2498 21 833 192
semaphore[6] 897 6530 25 2177 448
semaphore[7] 2049 16514 29 5505 1024

production-cell 163 245 76 82 81

Fig. 2. Statistics for Büchi product query automata when composed with G(var).

Figure 3 contains performance data for both BFS and GSS. Algorithms were
implemented in Java, and experiments were conducted on a single machine with
a 3.5 GHz processor containing 32 GB of memory. Individual experiments were
allowed to run for up to 2 h before being stopped and considered timed out. BFS
yielded minimal success, as most datasets timed out. The GSS approach to find
a single minimal shattering set proved much more effective.

Query Checking for Linear Temporal Logic 47

Dataset Time (s) # Queries

counter[3] 0.2 257
counter[4] 7.2 65537
counter[5] timeout 232 (*)
counter[10] timeout 21024 (*)

semaphore[2] 1.3 4097
semaphore[3] timeout 232 (*)
semaphore[4] timeout 280 (*)
semaphore[5] timeout 2192 (*)
semaphore[6] timeout 2448 (*)
semaphore[7] timeout 21024 (*)

production-cell timeout 281 (*)

(a)

Dataset Time (s) # Queries

counter[3] 0.2 17
counter[4] 0.2 33
counter[5] 0.6 65
counter[10] 22.4 2049

semaphore[2] 0.2 25
semaphore[3] 0.4 65
semaphore[4] 1.4 161
semaphore[5] 6.9 385
semaphore[6] 44.1 897
semaphore[7] 296.9 2049

production-cell 1.3 163

(b)

Fig. 3. Timing results for finding (a) all shattering sets via breadth first search, and
(b) one minimal shattering set via GREEDY SET SEARCH. The number of total
shattering queries that are made for each experiment are also reported. Query counts
marked with a (*) are estimates based on our understanding of the models.

7 Conclusions and Directions for Future Research

In this paper we have considered the problem of query checking for Linear Tem-
poral Logic (LTL). An LTL query checker takes a query, or LTL formula with
a missing propositional subformula, together with a Kripke structure and com-
putes a solution for the missing subformula. We have shown how this problem
may be solved using automata-theoretic techniques that rely on the use of Büchi
automata and the computation of so-called shattering conditions that make the
languages of these automata empty. An implementation and preliminary perfor-
mance data are also given.

As future work, we intend to fully develop the implementation and extend
the experimental results we have so far. We also would like to extend the results
to handle queries involving multiple missing subformulas, as well as ones in
which the missing subformula can appear both positively and negatively. Finally,
we would like to leverage relationships between different edge labels containing
variables, such as in cases where one label implies another.

References

1. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.:
Automatic requirement extraction from test cases. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16612-9 1

2. Armoni, R., et al.: The ForSpec temporal logic: a new temporal property-
specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 296–311. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 21

http://dx.doi.org/10.1007/978-3-642-16612-9_1
http://dx.doi.org/10.1007/978-3-642-16612-9_1
http://dx.doi.org/10.1007/3-540-46002-0_21

48 S. Huang and R. Cleaveland

3. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 8

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bruns, G., Godefroid, P.: Temporal logic query checking. In: 16th Annual IEEE
Symposium on Logic in Computer Science, pp. 409–417. IEEE, June 2001

6. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). doi:10.1007/
10722167 34

7. Chockler, H., Gurfinkel, A., Strichman, O.: Variants of LTL Query Checking. In:
Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp. 76–92. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19583-9 11

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

10. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. JACM 33(1), 151–178 (1986)

11. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

12. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000).
doi:10.1007/3-540-44618-4 13

13. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 6

14. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). doi:10.1007/
3-540-36135-9 20

15. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: a tool
for model exploration. IEEE Trans. Soft. Eng. 29(10), 898–914 (2003)

16. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In:
30th IEEE/ACM International Conference on Automated Software Engineering,
pp. 81–92. IEEE, Lincoln, November 2015

17. Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and
diagnosis. In: 47th Design Automation Conference, pp. 755–760. ACM, Anaheim,
June 2010

18. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using
automata-based abstractions. IEEE Trans. Soft. Eng. 34(5), 651–666 (2008)

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: First Symposium on Logic in Computer Science, pp. 322–331. IEEE
Computer Society, Boston, June 1986

20. Winter, K.: Model checking for abstract state machines. J. Univ. Comput. Sci.
3(5), 689–701 (1997)

21. Zhang, D., Cleaveland, R.: Efficient temporal-logic query checking for Presburger
systems. In: 20th IEEE/ACM International Conference on Automated Software
Engineering, pp. 24–33. ACM, Long Beach, November 2005

http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/10722167_34
http://dx.doi.org/10.1007/10722167_34
http://dx.doi.org/10.1007/978-3-642-19583-9_11
http://dx.doi.org/10.1007/3-540-44618-4_13
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1007/3-540-36135-9_20

Testing and Scheduling

Automatic Conformance Testing of Safety
Instrumented Systems for Offshore Oil Platforms

Hallan William Veiga1(B), Max Hering de Queiroz1(B),
Jean-Marie Farines1(B), and Marcelo Lopes de Lima2(B)

1 Departamento de Automação e Sistemas,
Universidade Federal de Santa Catarina, Florianópolis, Brazil

hallan.william@gmail.com, {max.queiroz,j.m.farines}@ufsc.br
2 CENPES, Petrobras, Rio de Janeiro, Brazil

marceloll@petrobras.com.br

Abstract. Functional failures in Safety Instrumented System (SIS) of
offshore platforms may have catastrophic consequences for the produc-
tion, facility, environment and health. This work presents a method for
automatic conformance testing of safety specifications represented in a
Cause and Effect Matrix (CEM) for Programmable Logic Controllers
(PLC) in charge of SIS. Test cases are automatically designed from the
CEM using a CEG-BOR strategy to enhance coverage of black box test.
Petri Net models support the automated oracle creation and test result
evaluation. An experimental tool has been developed to edit the CEM,
to generate and execute test cases on a PLC simulator, to generate and
execute the Petri Net oracles and to present the verdict. The method has
been applied to test the SIS of an offshore oil platform.

Keywords: Conformance test · Safety Instrumented Systems ·
Petri-nets · Automatic testing · Programmable Logic Controllers ·
Offshore platforms

1 Introduction

The operational safety of Oil and Gas Facilities currently relies on the existence
of multiple independent layers of protection responsible for the prevention of
accidents and, in the worst case, for the mitigation of damages. In this con-
text, the Safety Instrumented System (SIS) is the last barrier for prevention of
accidents. A SIS is an automatic system composed by a separate combination
of sensors that can identify hazardous situations, a safety Programmable Logic
Controller (PLC) and final elements that lead the process back to a safe state [1].
A SIS is therefore a critical system, whose design errors may have catastrophic
consequences for the production, facility, environment and health. Moreover,

We thank CAPES and Petrobras for the financial support and the engineering team
from Petrobras/UO-RIO for their valuable technical cooperation.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 51–65, 2017.
DOI: 10.1007/978-3-319-67113-0 4

52 H.W. Veiga et al.

programming errors in safety PLC may remain unknown for a long time until
the SIS is demanded to act in a critical situation [2].

The IEC 61511 [3] standard presents good engineering practices for the life-
cycle of SIS in the process industries. The design of hardware and software for
SIS must follow rigorous development methodologies aiming to verify the func-
tional specifications defined by risk analysis techniques. The regulatory agencies
and standards demand the Conformance Testing to validate the PLC implemen-
tation.

Among the various methods for validation of PLC systems [4], conformance
testing, or functional testing, is a black-box approach, which allows to verify that
the system conforms to the specifications without the knowledge of the internal
program. Basically, test cases are applied to the system inputs and the resulting
outputs are compared to the expected behavior according to the specifications
[5–7]. As combinatorial complexity makes it impossible to generate an exhaustive
set of test cases for complex systems, the testing method cannot produce an
absolute and positive verdict. Thus, in critical systems, conformance testing
should be taken as a complementary technique aiming to reduce the number
of undiagnosed failures. Consequently, the automation of test procedures is an
important strategy to enhance test coverage, beyond reducing costs, time and
human-errors of manual tests.

In addition to software testing methods, formal methods are suitable for syn-
thesis and verification of safety PLC programs [9,10]. However, the hindrance of
obtaining a correct mathematical model of a PLC program and the risk of state-
space exponential growth of formal models render black box testing techniques
more appealing approaches in practice for the validation of complex applica-
tions such as offshore oil platforms. Recent works in the literature apply formal
methods to substantiate the automation of PLC testing. Provost, Roussel and
Faure [11] propose a model based method [12] for conformance testing of a PLC
and a Grafcet specification, which is modeled as a Mealy machine. Based on this
model, an algorithm defines a test sequence with single input changes that allows
to check the PLC behavior against the Grafcet by comparing the observed out-
puts with the expected output sequence. Meinke and Sindhu [13] have presented
a tool for Learning Based Testing (LBT) that combines incremental learning
with model checking for automatic generation and execution of test cases. The
basic idea of LBT is to generate a model representing the behavior of the device
from output data observation. Then this model is checked with the specification
represented in temporal logic. The complexity of PLC code and the large number
of safety requirements renders such model based methods nonviable for testing
the SIS of offshore installations.

In a previous work [14] we present a method for automatic conformance
test of PLC with focus on the cause-and-effect relationships specified in the
CEM according to the standards of Oil and Gas Industry. Although it has sim-
ple syntax, the CEM specifies a large number of critical relationships between
PLC inputs (causes) and outputs (effects), including logic operations, vot-
ing and delays. In the proposed method, test cases and Time Petri Nets are

Automatic Conformance Testing of SIS for Offshore Oil Platforms 53

systematically derived from the CEM. Then, the test cases are used to com-
mand the PLC inputs and the generated Time Petri Nets are used as oracles,
i.e., as processes that evaluates the test result according to the (timed) sequence
of observed inputs and outputs. This paper presents the current state of the
research, with improvements in both the test case generation technique and the
oracle models. We also present a new prototype tool for editing the CEM and
for automatic generation and execution of PLC tests, which is applied to test
the safety specifications of the Fire and Gas System of an offshore platform.

The outline of this paper is the following. Next section presents the devel-
opment methodology of safety PLC programs in the oil and gas industry. The
proposed testing method is explained in Sect. 3. Section 4 presents the experi-
mental tool for automatic testing and Sect. 5 shows the results of the real-world
application.

2 Software Development for Safety PLC

Safety Instrumented Systems are composed by field devices (sensors and actu-
ators) and a logic solver responsible for carrying the process to a safe state at
the detection of a risk condition [1]. A Safety PLC is usually chosen as the logic
solver for SIS of complex process in the oil and gas industry. Although the safety
integrity level of the PLC hardware can be certified by the PLC vendors, the
logic implemented in a Safety PLC must be individually validated for each SIS
design.

There are two types of failures of SIS: dangerous failures occur if the correct
actuator is not activated in the presence of a risky situation and safe failures
occur when the actuator is activated unnecessarily. Since safe failures may result
in needless plant shutdowns, operators tend to lose confidence in the SIS and
may be dangerously tempted to bypass the SIS [1].

The development of PLC programs of offshore platforms follows a methodical
process where a series of standardized documentation is generated and commu-
nicated among multiple engineering teams. In a simplified overview, the develop-
ment process can be organized in three main stages: specification, planning and
implementation. The specification stage follows a series of risk analysis meth-
ods and oil and gas industry standards. Piping and Instrumentation Diagram
(P&ID) is a document created by process engineers that specifies the instrumen-
tation and control loops for both the Basic Process Control System (BPCS) and
the SIS. The specification of the safety logic relating the sensors and actuators in
the P&ID is systematically presented in the form of a Cause and Effect Matrix
(CEM). Complementary specifications mostly related to the BCPS such as start-
up and shut-down sequences are documented in the Descriptive Memorial. In the
second stage of design process the program specification and a testing plan for
Safety PLC are documented by the Logic Diagram and the Factory Acceptance
Test (FAT). Logic Diagram is a midfield document between the specification and
the PLC programming that is normally implemented by an third-party company.
The FAT plan defines a check-list and the corresponding procedures for testing
the SIS. The final stage comprises PLC code implementation and test execution.

54 H.W. Veiga et al.

Tester
Programmed

PLC

Test
Report

Automa c
Tester

PLC
code

CEMFAT

Verdict

Complementary
Tool

Fig. 1. Test of safety PLC programs

During test execution (Fig. 1), testers must perform a time-demanding list of
manual procedures according to the FAT plan and the CEM. However, the FAT
execution explores only a superficial number of existing test cases and requires
agility because it is constrained by the delivery date. The coverage of tests can
be augmented with the use of an automatic testing tool that interacts with the
inputs and outputs of the Safety PLC to check if the implemented logic conforms
to the CEM.

2.1 Cause and Effect Matrix

The SIS of a typical Offshore Platform comprises several hundred sensors and
actuators, such as smoke detectors, high pressure sensors, emergency alarms and
shutdown valves. The Cause and Effect Matrix is a document used by the process
and control engineers throughout the SIS life-cycle to systematically specify the
safety logic between the large number of sensors (causes) and actuators (effects).
According to the Project Guidelines for Offshore Production Installation [15],
each matrix has a maximum of 50 rows (causes) and 50 columns (effects), and
the entries can be specified with the following symbols:

– X: The causes related to this entry are combined with OR logic to activate
the corresponding effect.

– Ai: For i = 1, 2, ..., the causes related to an entry Ai are combined with a
AND logic to activate the corresponding effect.

– Tx: The cause related to an entry Tx must be active for x seconds to activate
the corresponding output.

– XooY : The cause in the corresponding line of the CEM is the result of the
voting X out of Y from a group of sensors.

For example, the small CEM in Table 1 defines the following safety
specifications:

Automatic Conformance Testing of SIS for Offshore Oil Platforms 55

Table 1. Small Example of Cause & Effect Matrix

– “ESD-101” must be activated when “HSS-101100” or “YST-101200”
– “FD-101” must be activated when “YST-101200” or “HSS-101100” and at

least one input of the group {“UST-101001”, “UST-101002”, “UST-101003”}
is active

– “FC-102” must be activated when “YST-101200” remains active for 10 s or at
least two inputs of the group {“UST-101001”, “UST-101002”, “UST-101003”}
are active.

3 A Method for Conformance Testing of PLC

Figure 1 shows how an Automatic Tester can be used as a complementary tool to
improve the coverage of conformance test of safety PLC. The automatic testing
method proposed in this work uses a black-box approach where the generation
of test cases and evaluation of results are done directly from the CEM, without
the need of a model of the PLC code. Figure 2 gives an overview of the test-
ing method. Basically, the method has two main steps: test generation and test
execution. The automatic test generation aims to define a sequence of causes
combinations (test cases) from the safety specification of CEM, and a set of
oracles in the form of Time Petri Nets. During the test execution, the test cases
are transformed into commands to the PLC inputs and the resulting behavior
is evaluated by the oracles in order to produce a verdict identifying the noncon-
formities between the PLC implementation and the CEM.

3.1 Generation of Test Cases

In order to check conformity of the safety PLC implementation with respect to
the specifications in the CEM, it is necessary to define a sequence of signals to

56 H.W. Veiga et al.

activate the PLC inputs. Each combination of PLC inputs is called a test case [5].
As the number of possible test cases grows exponentially to the number of inputs,
and as outputs may also depend on the PLC memory and timers, the goal of
test case generation in black-box testing is not to assure an exhaustive search of
failures, but to increase the coverage of test.

In black-box testing, the tester does not consider the PLC program and the
test cases are generated from the relations between inputs and outputs defined
by the specification. Each test case consists in a combination of PLC inputs
to be activated for a period of time. The exhaustive test is not feasible for
complex systems such as offshore unit protection systems. For illustration, even
for the small CEM in Table 1, it would be necessary to execute 32 tests only to
cover all possible combinations of 5 boolean input. But still a failure depending
on a specific sequence of inputs and delays could pass undetected. Notice that
safety PLC of offshore platforms may easily have much more than 1000 inputs.
The techniques to avoid combinatorial complexity in the generation of test cases
include Equivalence Partitioning, Boundary Value Analysis and Cause and Effect
Graph (CEG).

The CEG method provides a systematic way to obtain a set of test cases
including combinations of inputs that allow an efficient coverage of failures [6,17].
The method consists of representing the specifications for the relations between
inputs and outputs in the form of an acyclic Boolean logic network, from which
a Limited Entry Decision Table (LEDT) is generated containing only the com-
binations of causes that effectively sensitize an effect, avoiding redundancies and
ambiguities for fault detection. For example, when an effect must be activated by
the logical relation AND of a set of causes, it is enough to test the case in which all

Generation of OraclesGeneration of Test Cases

Cause & Effect Matrix

Verdict

Test Result EvaluationExecution of Test Cases

I.1

I.0

Test
Cases

Time
Petri Nets

Q.1

Q.0

I.1
I.0

Q.1
Q.0

PLC

Fig. 2. Method overview

Automatic Conformance Testing of SIS for Offshore Oil Platforms 57

the causes are activated. For an OR logic, only those cases where only one cause
is activated should be tested, preventing a cause from masking any failure in the
path from another cause to the effect. Among the several methods for converting
CEG to LEDT Table [6,17], the CEG-BOR Boolean operator-based method [18]
calculates the smallest number of test cases to cover all requirements through
a computationally efficient and appropriate to be automated algorithm [20].
The BOR algorithm is effective only for expressions that are singular, i.e., with
only one occurrence of each constituent Boolean variable. Paradkar and Tai [19]
combines the CEG-BOR strategy and Meaning Impact (MI) strategy to deal
with non-singularities like, for example, in the Boolean expression of a 2oo3
voting.

The main advantage of the CEG-BOR and CEG-BOR-MI strategies is that
the size of the set of test cases for an effect node is linear with the number of
nodes linked with the effect in the CEG [18]. In this work, we have adapted
these methods to generate test cases automatically from the Cause and Effect
Matrix. Once we have the specification represented formally by a matrix it is not
necessary to construct a graph and we can directly apply the BOR algorithm to
define the test cases constraint. In short, the proposed strategy for test generation
follows these rules:

Rule 1: For each column of the CEM a set of test cases is defined considering only
the related causes. In case of a singular logic relating causes to an effect, the
CEG-BOR strategy is used. In case of a non-singular logic (voting of multiple
causes), the CEG-BOR-MI strategy is used.

Rule 2: For each test case, the causes not related to the corresponding effect are
all set to true if the expected output is false, or to false if the expected output
is true. In this way, the test cases remain efficient to detect safe-failure and
dangerous-failure, respectively.

Rule 3: All the test cases defined are listed to form a LEDT Table, where dupli-
cated tests are removed from this table.

3.2 Example

For the CEM example in Table 1, we compute a set of test cases for each effect:
“ESD-101”, “FD-101”, “FC-102” (Rule 1). Applying the CEG-BOR algorithm
to the logic of the Effect “ESD-101”, we obtain the set of test cases defined by a
vector in Table 2. Each vector contains the value for the five inputs in the CEM,
which can be true (t), false (f) or don’t care (x), when the input is not related
to the effect. Note that, for the OR relation between “HSS-101100” and“YST-
101200”, the test case that set to true both inputs is not selected, since it could
mask the dangerous failure when one input is problematic and the other still
activates the effect (path sensitizing). As the remaining inputs are not related
to “ESD-101”, they are set to true when the expected output is false and false
when the expected output is true (Rule 2).

Next we compute the set of test cases of the effect “FD-101”, which are listed
in Table 2. Since the voting 1oo3 among causes “UST-101001”, “UST-101002”

58 H.W. Veiga et al.

Table 2. CEM test cases - Effects: “ESD-101”, “FD-101”, “FC-102”

CEG-BOR test cases CEM test cases ESD-101

(x, x, x, f, f) (t, t, t, f, f) f

(x, x, x, f, t) (f, f, f, f, t) t

(x, x, x, t, f) (f, f, f, t, f) t

CEG-BOR test cases CEM test cases FD-101

(f, f, f, t, f) (f, f, f, t, f) f

(t, f, f, f, f) (t, f, f, f, f) f

(t, f, f, t, f) (t, f, f, t, f) t

(f, t, f, t, f) (f, t, f, t, f) t

(f, f, t, t, f) (f, f, t, t, f) t

(f, f, f, t, t) (f, f, f, t, t) t

CEG-BOR-MI test cases CEM test cases FC-102

(t, f, f, x, f) (t, f, f, t, f) f

(f, t, f, x, f) (f, t, f, t, f) f

(f, f, t, x, f) (f, f, t, t, f) f

(t, t, f, x, f) (t, t, f, f, f) t

(f, t, t, x, f) (f, t, t, f, f) t

(t, f, t, x, f) (t, f, t, f, f) t

(t, f, f, x, t) (t, f, f, f, t) t

and “UST-101003” can be represented as a singular expression (OR), we can
apply the CEG-BOR strategy.

The logic for the last column (FC-102 effect) includes non-singularities due
to the voting 2oo3 of multiple causes. Thus, CEG-BOR-MI method is applied to
obtain the test cases in Table 2. Rule 2 is used to define the values of input “HSS-
101100”. Note that the “T10” entry logic respective to input “YST-101200”
is considered as a simple OR. A sufficient delay to activate the effect by the
corresponding test case will be assured by the oracle model to be presented in
the next subsection.

Finally, all the test cases are joined to form the LEDT in Table 3, where
duplicated tests ((f, f, f, t, f), (t, f, f, t, f), (f, t, f, t, f) and (f, f, t, t, f)) have
been eliminated (Rule 3).

3.3 Generation of Oracles

The most important aspect of any testing situation is the determination of suc-
cess or failure. An effective oracle can be used to automate this process executing
the specification and comparing with the program output [8].

Some black-box testing strategies do not implement an oracle to evaluate the
behaviour of the implementation. The diagnostic is made comparing the observed

Automatic Conformance Testing of SIS for Offshore Oil Platforms 59

Table 3. Decision table for the CEM example

CEM test cases ESD-101 FD-101 FC-102

(t, t, t, f, f) f f t

(f, f, f, f, t) t t t

(f, f, f, t, f) t f f

(t, f, f, f, f) f f f

(t, f, f, t, f) t t f

(f, t, f, t, f) t t f

(f, f, t, t, f) t t f

(f, f, f, t, t) t t t

(t, t, f, f, f) f f t

(f, t, t, f, f) f f t

(t, f, t, f, f) f f t

(t, f, f, f, t) f f t

PLC outputs with the expected values determined by the LEDT Table. However,
in this work the diagnostic must consider situations where a delay must be taken
into account in order to activate an effect. To evaluate the results of test cases,
the method proposed in this work uses oracles automatically generated from the
CEM. Time Petri nets [21] are used for both modeling and execution of oracles,
in order to ensure consistency and facilitate the automation of the test tool.
Beyond the advantages of model-based software development [22], the use of
a formal model allows the use of mathematical operations for the composition
and analysis of oracles. Moreover Time Petri Nets are suitable for representing
multiple timed specifications of concurrent PLC inputs.

The Petri Nets transitions are driven by the changes in the values of PLCs
inputs and outputs, allowing to diagnose safe or dangerous failures according to
the specifications in the CEM.

One oracle is created for each effect (column) of the CEM. The corresponding
Time Petri Net model is organized in five main modules: input/output reading,
delay, logic, control and diagnostic. Each module is defined separately according
to the CEM entries in the corresponding column and then the composed model
is computed by place fusion [21]. In this paper we present details about the
diagnostic module (responsible to provide the verdict about the test cases) and
a brief explanation about the other modules by means of an example.

In the diagnostic module (Fig. 3), a token in places PASS OK–, SAFE
FAILURE, DANGEROUS FAILURE and PASS OK+ represents the correspond-
ing test result. The place EFFECT has a token when the corresponding PLC
output is active, during the test cases execution. The place CAUSE receives a
token from the logic module when the observed combination of inputs is expected
to activate the effect according to the CEM entries. The transitions are fired
according to the relations in Table 4. A tolerance time T(greater than the PLC

60 H.W. Veiga et al.

PASS OK+DANGEROUS
FAILURE

SAFE
FAILURE

CAUSE EFFECT

PASS OK-

t1 t2 t3 t4[T,T] [T,T] [T,T] [T,T]

Read Arc

Regular Arc

Inhibitor Arc

Fig. 3. Petri net observer - diagnostic module

scan cycle) is assigned to transitions t1, t2, t3 and t4 in order to assure that the
PLC has enough time to update the output (PLC scan cycle) before a verdict is
given. An inhibitor arc must also be linked from each delay module to transition
t1 in order to avoid a TEST OK– verdict before the specified activation time
of the corresponding input. For example, if the CAUSE and EFFECT places do
not have a token for [T] seconds and no delay module is counting, then transition
t1 is fired and PASS OK– place receives a token.

The diagnosis of failures in effect FC-102 is performed by the oracle of Fig. 4
represented with its five modules. The I/O module is responsible for observing
the input/outputs signals from PLC. For example, transition t19 is fired when the
inputs group satisfies the 2oo3 voting. By the CEM, FC-102 should be activated
if voting is true or if YST-101200 holds a true signal for 10 s. The delay module
treats this situation avoiding a diagnostic while the WAIT place has a token.
The logic module represents the Boolean operation OR. The control module is
responsible to enable the execution of a new test case only when the diagnostic
of the previous test case is finished.

Table 4. Oracle diagnostic

Cause (expected effect) Observed effect Diagnostic

False False Pass (OK –)

False True Safe failure

True False Dangerous failure

True True Pass (OK +)

Automatic Conformance Testing of SIS for Offshore Oil Platforms 61

Diagnostic Module

PASS
OK+

DANGEROUS
FAILURE

SAFE
FAILURE

CAUSE
EFFECT

PASS
OK-

t1 t2 t3 t4

t5 t8t6 t7

START

YST-101200

2oo3(UST-101001,UST-101002,UST-101003)
FALSE

YST-101200
[T10]

WAIT

FC-102

not(FC-102)

t22

t21

t17

t18

t19

t20

t13

t14 t15

t16

TESTING

t11 t12

t9

t10

RESET

not(YST-101200)

[10,10]

Control Module

I/O ModuleInput

Output

Voting

Logic Module

Delay Module

not(2oo3(UST-101001,UST-101002,UST-101003))
OR Operation

[T,T] [T,T][T,T]

[0,0]

[0,0]

[0,0][0,0]

[0,0]

[T,T]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

Fig. 4. Petri net observer for effect “FC-102”

4 Automatic Testing Tool

Figure 5 presents an overview of the proposed solution to automate the con-
formance test. An experimental tool has been developed in Python with two
main modules: the Cause and Effect Matrix Editor and the Automatic Tester.
Through the CEM Editor, the designer can build a standardized specification in
a graphical interface that allows both the generation of PDF file for documen-
tation and the storage of the data in a structured XML file that serves as input
for the automatic tester. The graphical interface includes features that facilitate
edition and visualization of large CEM for real-world platforms, such as: high-
lighting rows and columns to make it easier to view relationships, searching for
TAGs, and checking for inconsistencies.

62 H.W. Veiga et al.

Cause & Effect
Matrix Editor

OPC
server

PLC simulator
or jig test

PLC
Programming

Software

Automatic Tester
Generation/Execution/

Verdict of test cases

PLC code

Verdict Tester

Process engineerProgrammer

XML file
CEM

representation

PDF file
CEM

representation

Testing

Design &
Engineering

Fig. 5. The automatic conformance test

The Automatic Tester implements the method in Sect. 3, allowing to perform
black-box testing directly from the XML file generated by the CEM Editor. Test
cases can be automatically derived from the CEM using CEG-BOR-MI technique
or random generation, or manually defined in a graphical interface. The CEM
specifications are automatically transformed into oracles. The Python Snakes
library [23] was used to create, compose and execute the Petri Net models.
Through an OPC interface, the Automatic Tester activates the PLC inputs and
reads the resulting outputs according to the test cases and executes the oracles
concurrently in order to present a verdict for each test case and each effect in
the CEM.

5 Application of the Proposed Method

We have applied the automatic tester to assist the preparation of the as-built
CEM for the SIS of an offshore oil platform. The overall safety specification
has 130 Cause and Effect Matrices of dimension 50 × 50, comprising several
subsystems: electrical, shutdown, fire and gas (F&G), control, turret, and vessel
subsystem. During the installation and start-up of systems as complex as oil
platforms, small changes in the control and automation system are frequently
made on the fly by engineers. However, each nonconformity between the current
PLC implementation and the safety specifications in the original project must
be identified and carefully analyzed.

Aiming to validate the experimental tool and the proposed method, we have
tested the current safety PLC code against two Cause & Effect Matrices (repre-
senting different zones of the F&G subsystem). The relationships in these CEM

Automatic Conformance Testing of SIS for Offshore Oil Platforms 63

include voting of sensor groups, Boolean logic and delays. The experiment has
been executed in a 2.70 GHz PC where the Automatic Tester could interact
via OPC with a PLC simulator running a copy of the safety PLC code in the
platform. Table 5 shows the number of test cases generated to each CEM, the
time spent to execute all test cases, and the number of conformities (OK+ or
OK–) and nonconformities (SF or DF) diagnosed by the oracles. Note that the
number of diagnoses must be equal to the product of the number of test cases
and effects. In order to evaluate the effectiveness of the proposed test case gen-
eration strategy, we have also implemented an exhaustive testing that executes
all combinations of PLC inputs.

Table 5. Testing results for the CEM of fire & gas system

CEM of

F&G

Causes/

effects

Exhaustive testing Proposed strategy

Test cases Running

time

OK+/OK–/SF/DF Test

cases

Running

time

OK+/OK–/SF/DF

Zone A 8/4 256 523 s 942/82/0/0 24 66 s 74/22/0/0

Zone B 11/9 2048 1 h 11008/7424/0/0 28 92 s 123/129/0/0

Zone C 14/9 16384 >2 h – 33 98 s 140/152/5/0

Zone D 24/2 16777216 >>2 h – 40 104 s 51/29/0/0

For the CEM of Zone A, for example, the Automatic Tester has executed
24 test cases and evaluated 4 effects, totalizing 96 diagnoses (74 OK+, 22 OK–,
0 SF and 0 DF) in 66 s. The exhaustive testing executed all 256 combinations of
causes for the CEM of Zone A, resulting in 1024 diagnoses (942 OK+, 82 OK–,
0 SF and 0 DF) after 523 s of automatic test.

For the CEM of Zone C, five test cases have been diagnosed as safe-failures
by the automatic testing tool in two minutes. By running these test cases in
the PLC simulator, we could observe that all these failures are due to a unique
nonconformity: the safety PLC activates a shutdown device in Zone C by a
sensor that is not related to this effect in the CEM. The exhaustive testing was
aborted after 2 h of execution without diagnosing any additional nonconformity
for this CEM.

We can observe that the number of test cases and the running time grow lin-
early with the number of causes for the proposed method, and exponentially for
the exhaustive testing. During the whole experiment, it was possible to diagnose
five safe-failures in six minutes of test execution. By focusing on these criti-
cal test-cases we could efficiently identify a nonconformity between the original
project and the current SIS in the offshore platform that shall be the subject of
a rigorous safety analysis.

6 Conclusion

This work has presented a method for automating conformity testing between
the safety specifications of CEM and the PLC program, which is based on an

64 H.W. Veiga et al.

adaptation of CEG-BOR-MI strategy for the generation of test cases and on
the use of Time Petri Nets for the generation and execution of oracles. The
CEG-BOR-MI technique guarantees an efficient coverage for the identification
of failures avoiding the combinatorial complexity of an exhaustive test. The use
of Time Petri Net as formal models to represent the CEM specifications facili-
tates the automation of oracle generation and improves the reliability of the test
result evaluation process. Because Petri Nets are independent of the test case,
the automatic tester allows diagnosing failures also by manually or randomly
performing tests. More over, Time Petri Net could be easily adapted for diag-
nosing failures during online operation of the plant, if it could be interconnected
to the process monitoring system.

The experimental tool for automatic testing has allowed to validate the pro-
posed method by identifying nonconformities between the CEM of the fire and
gas system and the PLC program installed on a real platform. The experimen-
tal results show that the method is efficient for real-world problems and may
provide an important assistance to improve the safety of oil and gas facilities.
Currently the tool is being improved for its use in practice, through functional-
ities to facilitate, for example, the configuration of the links between the causes
and effects of the CEM and the corresponding PLC memory addresses.

References

1. Gruhn, P., Cheddie, H.: Safety Instrumented Systems - Design, Analysis, and Jus-
tification, 2nd edn. ISA: The Instrumentation, Systems, and Automation Society
(2005)

2. Skogdalen, J.E., Smogeli, O.: Looking Forward-Reliability of Safety Critical Con-
trol Systems on Offshore Drilling Vessels. Working Paper, Deepwater Horizon
Study Group (2011)

3. IEC 61511: Functional safety: safety instrumented systems for the process industry
sector, part 1–3. International Electrotechnical Commission, Geneva (2003)

4. Gergely, E.I., Coroiu, L., Popentiu-Vladicescu, F.: Methods for validation of PLC
systems. J. Comput. Sci. Control Syst. 4, 47 (2011)

5. Jorgensen, P.: Software Testing: A Craftsman’s Approach, 2nd edn. CRC Press,
New York (2002)

6. Myers, G.J., Thomas, T.M., Sandler, C.: The Art of Software Testing, 3rd edn.
Wiley, New York (2011)

7. Nidhra, S.: Black box and white box testing techniques - a literature review. Int.
J. Embed. Syst. Appl. 2, 29–50 (2012)

8. Hamlet, D.: Software Quality, Software Process, and Software Testing. In: Advances
in Computers, pp. 41–191. Academic Press (1994)

9. Frey, G., Litz, L.: Formal methods in PLC programming. In: IEEE International
Conference on Systems, Man and Cybernetics (2000)

10. Tretmans, G.J., Belinfante, A.: Automatic testing with formal methods. Technical
report, Centre for Telematics and Information Technology University of Twente
(1999)

11. Provost, J., Roussel, J.M., Faure, J.M.: Translating Grafcet specifications into
Mealy machines for conformance test purposes. Control Engineering Practice
(2011)

Automatic Conformance Testing of SIS for Offshore Oil Platforms 65

12. Utting, M., Legeard, B.: Software Testing: Practical Model-Based Testing: A Tools
Approach, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2006)

13. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: International Conference on Software Testing, Verification and Validation,
ICST (2013)

14. Prati, T.J., Farines, J.M., Queiroz, M.H.: Automatic test of safety specifications
for PLC programs in the oil and gas industry. In: Proceedings of the 2nd IFAC
Workshop on Automatic Control in Offshore Oil and Gas Production, Florianópolis
(2015)

15. ET-3000.00-1200-800-PGT-006: Project Guidelines for the Confection of Cause and
Effect Matrixes and Logic Diagrams. Project Guidelines for Offshore Production
Installation. Technical Specification, Petrobras (2000)

16. Howden, W.E.: Functional program testing. IEEE Trans. Softw. Eng. 6, 162–169
(1980)

17. Elmendorf, W.R.: Automated design of program test libraries. IBM Technical
report (1970)

18. Paradkar, A.M., Tai, K.-C., Vouk, M.A.: Specification-based testing using cause-
effect graphs. Anna. Softw. Eng. 4, 133–157 (1997)

19. Paradkar, A., Tai, K.-C.: Test generation for Boolean expressions. In: Proceedings
of the Sixth International Symposium on Software Reliability Engineering. IEEE
(1995)

20. Malekzadeh, M., Raja, N.A.: An automatic test case generator for testing safety-
critical software systems. In: The 2nd International Conference on Computer and
Automation Engineering (ICCAE), vol. 1. IEEE (2010)

21. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. 17, 259–273 (1991)

22. Selic, B.: What will it take? A view on adoption of model-based methods in prac-
tice. Softw. Syst. Model. 1–14 (2012)

23. Pommereau, F.: SNAKES: a flexible high-level petri nets library (tool paper). In:
Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 254–265.
Springer, Cham (2015). doi:10.1007/978-3-319-19488-2 13

http://dx.doi.org/10.1007/978-3-319-19488-2_13

Model-Based Testing for Asynchronous Systems

Alexander Graf-Brill(B) and Holger Hermanns

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
grafbrill@depend.uni-saarland.de

Abstract. Model-based testing is a prominent validation technique,
integrating well with other formal approaches to verification, such as
model checking. Automated test derivation and execution approaches
often struggle with asynchrony in communication between the imple-
mentation under test (IUT) and tester, a phenomenon present in most
networked systems. Earlier attacks on this problem came with differ-
ent restrictions on the specification model side. This paper presents a
new and effective approach to model-based testing under asynchrony.
By waiving the need to guess the possible output state of the IUT, we
reduce the computational effort of the test generation algorithm while
preserving soundness and conceptual completeness of the testing pro-
cedures. In addition, no restrictions on the specification model need to
be imposed. We define a suitable conformance relation and we report on
empirical results obtained from an industrial case study from the domain
of electric mobility.

1 Introduction

Model-based testing is a validation technique where, based on a formal specifi-
cation of a system, a suitable set of experiments (test suite) is generated in an
automated manner and executed on the implementation of that system, so as
to assert some notion of conformance between the implementation and its spec-
ification. In model-based testing it is common to use variants of input-output
transitions systems (IOTS) as formal models to capture the system behaviour on
the specification side. In IOTS, transitions between states have structured action
labels: the name of a performed action and an identifier of its type, i.e. input
(stimuli) to the implementation or output (response) of the implementation. By
automated inspection of the possible inputs and outputs in the current states of
a given specification model, a model-based testing tool can either provide one of
these inputs to or records an output from the implementation under test (IUT).
It then updates its knowledge of the current state in the specification model.
Whenever an unexpected output of the IUT occurs, i.e. an output which is not
considered possible according to the current state(s) of the specification model,
the IUT is refused with a verdict “fail”. Testing is usually employed for finding
problems in an IUT, instead of for verifying the absence of any problems. Nev-
ertheless it is theoretically appealing to discuss the size a complete test suite
needs to have in order to be usable for such a verification. Finiteness of such a

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 66–82, 2017.
DOI: 10.1007/978-3-319-67113-0 5

Model-Based Testing for Asynchronous Systems 67

complete test suite however requires finite and acyclic behaviour, which is rarely
the case for embedded systems, the class of systems we look at.

While the specification can be provided as a formal model, this is not nat-
urally given for the IUT, which is most often a real physical object, or a piece
of code. To enable a formal relation between the specification and the IUT, the
so-called testing hypothesis or test assumption, is usually put in place, assuming
the existence of an equivalent formal model of the IUT. It is common to use
IOTS for both, the model of the specification and the IUT, as we do in the
sequel.

The most prominent conformance relation in use is input-output conformance
(ioco) [24]. It is defined for systems interacting synchronously with their environ-
ment, and especially with the model-based testing tool. Here “synchronously”
means that each input to the IUT instantaneously leads to a state transition
in the IUT, and each output of the IUT can be instantaneously processed by
its environment. Model-based testing for synchronous communication has been
extensively studied for decades [2,8–10,17–19,21–23], spanning varying confor-
mance relations and modelling formalisms. IOTS may be nondeterministic in
the sense that a state has several outgoing transitions with the same label, so as
to support abstraction or implementation freedom w.r.t. certain system aspects.

In contrast to synchronous testing, where the exact state of an IUT on the
specification side is known modulo non-determinism, this does not hold if testing
systems communicating asynchronously, especially if being tested via one or more
asynchronous channels. Rooted in possible message delays, it is then no longer
guaranteed that inputs provided to and outputs received from an IUT are being
processed in the order they appear to the tester.

Asynchronous communication can appear in different flavours, since buffer-
ing and delaying of messages may happen in various ways, depending on the
characteristics of the channels connecting the two sides. Channels may only
delay inputs w.r.t. outputs, or the other way around, they may allow arbitrary
re-ordering of messages, for instance if separate channels for different inputs or
outputs are in place. However, the most commonly assumed communication sce-
nario is that of bidirectional FIFO (first-in-first-out) communication, effectuated
by two independent FIFO channels, one for inputs, one for outputs.

The problem of asynchronous testing has received attention since the incep-
tion of model-based testing [22]. A conceptually pioneering approach [26,27]
considers a so-called queue operator, which adds infinite queues for inputs and
outputs, so as to model the entirety of the possible asynchrony in interaction
between tester and IUT. Modelling these queues explicitly however is challeng-
ing because of their infinite size. Indeed, it is left unanswered how the presented
theory could be implemented without the need for restrictions on the model to
be taken into account. Additionally, the queue context may induce that the test
case generation algorithm [27] produces irrelevant test cases. This is because
the queue context is always ready to receive any input action, which includes
inputs which are impossible according to the specification at the current state
(and states reachable by a sequence of output actions of the system), thereby
inspecting executions which are irrelevant for testing conformance.

68 A. Graf-Brill and H. Hermanns

A conceptually different approach [20] proposes to divide the tester into an
input test process and an output test process, both operating with finite buffer.
This approach comes with appropriate implementation relations and test deriva-
tion procedures which however require a fault model for the tester architecture,
and focusses on input-enabled specifications, i.e. systems where in every state,
every input action is enabled, and without output cycles. Under these assump-
tions, completeness relative to the fault model can be achieved by a finite suite.
Subsequent work [16] considers a single interaction sequence derived from a
specification to generate asynchronous test cases. By applying the delay oper-
ator [1], outputs of the system are shifted along the sequence to emulate asyn-
chrony. This enables relaxations of several of the restrictions on the specification
model imposed before. Test case generation is incomplete but driven by cover-
age criteria w.r.t. the specification model. The need for repeated delay operator
constructions is costly, and the proposed algorithm is only applied to offline test
generation.

Another approach [28] considers IUTs which are internal-choice IOTS.
Internal-choice IOTS do only have inputs enabled in quiescent states, i.e. in
states which do not possess output transitions. With this assumption in place
for both, IUT and specification, asynchronous testing and synchronous test-
ing are equivalent and standard test case generation algorithms can be used.
If the specification is not an internal-choice IOTS, the methodology becomes
incomplete.

Asynchronous test case generation from test purposes is considered in [7] for
specifications and IUTs obeying certain restrictions. A test purpose describes a
set of interaction sequences which are to be investigated at the IUT. By incor-
porating the asynchronous behaviour directly at the finite test purpose the app-
roach ensures finiteness of the test suite. A comparison of the complexity of
different asynchronous testing approaches can be found in [14], together with an
overview of several implementation relations for testing through asynchronous
channels [15].

All the approaches discussed above either impose restrictions on the spec-
ification, or sacrifice expressiveness of the generated test suite, or work with
potentially unboundedly growing representations. In this paper we propose a
methodology for model-based testing of asynchronous system which does not
impose restrictions on the specification model, while preserving soundness and
completeness. The method we are going to present is rooted in the theory of the
delay operator, but derives the test cases directly from an IOTS using a single
input queue, and executes them. The approach is effective and computationally
affordable, and can be applied to generate a test suite offline, or to construct a
test case online, i.e. incrementally during test execution. We thereby construct
on-the-fly the asynchronous transition system of the specification, based on its
input queue behaviour only. Our methodology is driven by the practical needs
arising in the context of the EnergyBus specification [6] which aims at estab-
lishing a common basis for the interchange and interoperation of electric devices
in the context of energy management systems (EMS).

Model-Based Testing for Asynchronous Systems 69

2 Synchronous Input-Output Conformance Testing

The basis for model-based testing is a precise specification of the IUT which
unambiguously describes what an implementation may do and what it may
not do.

Input-Output Transition Systems. A common semantic model to describe the
behaviour of a system are labeled transition systems (LTS). In the presence of
inputs and outputs, a suitable variation is provided by Input-Output Transition
Systems (IOTS).

Definition 1. An input-output transition system is a 5-tuple 〈Q,L?, L!, T, q0〉
where

– Q is a countable, non-empty set of states;
– L? and L! are disjoint countable sets (L?∩L! = ∅) of input labels and output

labels, respectively;
– T ⊆ Q×(L∪{τ})×Q, with τ /∈ L, is the transition relation, where L = L?∪L!;
– q0 is the initial state.

The class of input-output transition systems with inputs in L? and outputs in L!

is denoted by IOT S(L?, L!).

As usual, τ represents an unobservable internal action of the system. We
write q

μ−−→ q′ if there is a transition labelled μ from state q to state q′, i.e.,
(q, μ, q′) ∈ T . The composition of transitions q1

μ1·μ2·...·μn−1−−−−−−−−−−→ qn expresses that
the system, when in state q1, may end in state qn, after performing the sequence
of actions μ1 · μ2 · ... · μn−1, i.e. ∃(qi, μi, qi+1) ∈ T, i ≤ n − 1. Due to non-
determinism, it may be the case, that after performing the same sequence, the
system may end in another state (or multiple such states): q1

μ1·μ2·...·μn−1−−−−−−−−−−→ q′
n

with qn �= q′
n.

Traces and Derived Notions. Usually an IOTS can represent the entire behaviour
of a system, including concrete interactions between system and environment.
One such behaviour is represented by a so-called trace, of which we are only
interested in its observable part, obtained by abstracting from internal actions
of the system. Let p = 〈Q,L?, L!, T, q0〉 be an IOTS with q, q′ ∈ Q,L = L?∪L!, a,
ai ∈ L, and σ ∈ L∗. We write q

ε=⇒ q′ to express that q = q′ or q
τ ·...·τ−−−−→ q′. q

a=⇒ q′

denotes the fact that ∃q1, q2 ∈ Q : q
ε=⇒ q1

a−→ q2
ε=⇒ q′. This can be extended for a

sequence of actions q
a1·...·an=====⇒ q′ s.t. ∃q0, ..., qn ∈ Q : q = q0

a1=⇒ q1
a2=⇒ ...

an=⇒ qn =
q′. q

σ=⇒ and q
σ
� are then defined as ∃q′ : q

σ=⇒ q′ and �q′ : q
σ=⇒ q′, respectively.

Furthermore, init(q) denotes the set of available transitions in a state q, i.e.,
{μ ∈ L ∪ {τ} | q

μ−→}. The set of traces starting in state q is then defined as
traces(q) =def {σ ∈ L∗ | q

σ=⇒}. For a given trace σ, the set of reachable states is
given by the definition q afterσ =def {q′ | q

σ=⇒ q′}. The extension for starting
in a set of states Q′ is Q′ afterσ =def

⋃
{q afterσ | q ∈ Q′}. With der(q) we

denote the set of all reachable states from q, i.e., {q′ | ∃σ ∈ L∗ : q
σ=⇒ q′}.

70 A. Graf-Brill and H. Hermanns

Definition 2. Let p = 〈Q,L?, L!, T, q0〉 be an IOTS with q, q1, q2 ∈ Q, a ∈ L?,
and σ ∈ L∗.

– q is input-enabled, iff ∀a ∈ L?.q
a=⇒.

– q is input-progressive, iff �σ ∈ L+
! : q

σ=⇒ q ∧ �q1, q2 : q
ε=⇒ q1

τ−→ q2
ε=⇒ q

– q is fully-specified, iff L? ⊆ init(q) ∨ init(q) ∩ L? = ∅

An IOTS p is input-enabled, or input-progressive, or fully-specified if and only if
all its reachable states are input-enabled, or input-progressive, or fully-specified,
respectively. It is common practice to work with specifications modelled as IOTS
without further restrictions while IUTs are often assumed to be represented as
input-enabled IOTS.

Input-Output Conformance and Quiescence. A specific conformance relation,
input-out conformance (ioco) [24] dominates theoretical as well as practical
work on model-based testing. It relates implementations with specifications with
respect to the possible output behaviour observed after executing traces of the
specification. In ioco, the output behaviour includes a designated output quies-
cence, abbreviated with the special label δ. Quiescence represents the situation
when there is no output to observe at all. A state q is said to be quiescent,
denoted by δ(q), iff init(q) ∩ L! = ∅, whereby δ /∈ (L ∪ {τ}). In this case we add
the transition q

δ−→ q for technical convenience. The set of possible outputs of a
state q is then defined as out(q) =def {a ∈ L! | q

a−→} ∪ {δ | δ(q)}, and this is
lifted to sets of states P by out(P) =def

⋃
{out(q) | q ∈ P}. Since quiescence is

now interpreted as an additional observable output, we extend the definition for
traces to suspension traces.

Definition 3. Let p = 〈Q,L?, L!, T, q0〉 ∈ IOT S(L?, L!). The suspension traces
of p are given by Straces(p) =def{σ ∈ (L ∪ {δ})∗ | q0

σ=⇒}.

The definition of ioco then looks as follows:

Definition 4. Given a set of input labels L? and a set of output labels L!, the
relation ioco ⊆ IOT S(L?, L!) × IOT S(L?, L!) is defined for a specification s
and an input-enabled implementation i as

i ioco s ⇔def ∀σ ∈ Straces(s) : out(iafterσ) ⊆ out(safterσ).

Underspecification. Since ioco is defined for specifications without further
restrictions and only takes suspension traces of the specification into account,
the behaviour of an implementation after a trace not considered according to
the specification is irrelevant for the relation. Figure 1 displays three IOTS (for
readability we omitted the δ transitions as well as self-loops needed to ensure
input-enabledness). The trace x!b? is not in Straces(s), i.e. it is underspecified
w.r.t. s. So, any implementation of s is allowed to behave as it desires after that
trace, and therefore i ioco s. In contrast, the trace x!a? is in Straces(s) and the
allowed outputs after x!a? are {y!}. Therefore, i′ ioco s does not hold. However,
s1 afterx! = {s2, s3} and a? is not specified in state s2. Thus, one could argue

Model-Based Testing for Asynchronous Systems 71

Fig. 1. Variants of underspecification

that the trace x!a? actually constitutes a variant of underspecification, as well.
This reasoning leads to the definition of uioco [24] which actually excludes such
traces from consideration, and hence i′ uioco s.

Test Generation and Execution. Based on the definition of ioco, test
cases are generated and executed in interaction with the IUT. A test case
t = 〈Qt, L?, L!, Tt, v, t0〉 is an extension of IOTS s.t. 〈Qt, L?, L!, Tt, t0〉 ∈
IOT S(L?, L!). Qt is a set of states of Q, i.e. Qt ⊆ P(Q) and Tt ⊆ Qt × (L? ∪
L! ∪ {θ}) × Qt, where θ �= τ �= δ and θ /∈ (L? ∪ L!) is a special label syn-
chronising with δ to detect quiescence. The function v ∈ Qt × V is the verdict
label function which assigns to each state of the test case a verdict in the set
V = {none,pass, fail}. A test case is then generated as follows: The initial state
of a test case consists of the τ -closure of the initial state of the specification, i.e.
the set of all states which are reachable by a sequence of τ transitions. Then, one
of the following three options is chosen nondeterministically. Either the current
state is marked in the verdict label function as pass and test case generation is
stopped; or an input action which is enabled in one of the current states of the
specification is chosen and a transition for this action is added to the test. The
successor state than consists of all valid successor states for the chosen (weak)
input action. In addition, to be prepared to perform any output action of the
IUT which might interrupt the input, for all outputs in L! a transition is added
to all corresponding successor states of the specification. If the output is not
foreseen by the specification, the successor state is a new state labeled with fail.
For all valid successor states the test case generation algorithm is called recur-
sively. The third option is to wait for an output of the system. For all outputs
in L! and quiescence a transition is added to all corresponding successor states
of the specification. Again, if the output is not foreseen by the specification, the
successor state is a new state labeled with fail and for all valid successor states
the test case generation algorithm is called recursively. States which are neither
labeled with pass nor fail are marked with “none” in the verdict label function.

An execution of a test case is then the parallel composition of the test case
and the IUT. A test run is than any trace of the parallel composition which ends
in a state which is labeled with pass or fail. An IUT then passes a test case if

72 A. Graf-Brill and H. Hermanns

and only if all possible test runs lead to states labeled with pass. It fails the test
case otherwise. By assuming some kind of fairness, an IUT will reveal sooner or
later all its nondeterministic behaviour when executed with a test case.

3 Asynchronous Input-Output Conformance Testing

The traditional synchronous testing theory is not applicable when testing com-
munication is asynchronous [27]. The implementation relations used for synchro-
nous testing are not testable in an asynchronous context, and test cases derived
from specifications to be used for synchronous testing do reject correct imple-
mentations when tested asynchronously. Therefore, the asynchronous communi-
cation behaviour needs to be directly taken into account within the conformance
relation and the test case generation.

Queue Operator. One approach to include the asynchronous communication
behaviour of a system applies the so-called queue operator [26]. This takes an
IOTS s and yields an IOTS s′ which behaves like s in the context of an input
queue and an output queue, both with infinite capacity. The behaviour of s ∈
IOT S(L?, L!) in a queue context [σ!�s�σ?] (abbreviated by Q(s)), where σ! ∈
L∗
! and σ? ∈ L∗

? represent the input and output queue state as words of arbitrary
length over inputs, respectively outputs. It is derived by applying the following
axioms and inference rules:

A1 [σ!�s�σ?]
a−→ [σ!�s�σ?·a] a ∈ L? A2 [x ·σ!�s�σ?]

x−→ [σ!�s�σ?] x ∈ L!

I1
s

τ−→ s′

[σ!�s�σ?]
τ−→ [σ!�s ′

�σ?]
I2

s
a−→ s′

[σ!�s�a·σ?]
τ−→ [σ!�s ′

�σ?]
a ∈ L?

I3
s

x−→ s′

[σ!�s�σ?]
τ−→ [σ!·x�s ′

�σ?]
x ∈ L!

Obviously, the resulting state space of Q(s) is infinite. Looking at the output
queue, this infinity problem materialises for systems having at least one output
action on a cycle, i.e. ∃σ1, σ2 ∈ L∗, x ∈ L!, q, q1, q2 ∈ der(s) : q

σ1=⇒ q1
x−→ q2

σ2=⇒
q. The state space however remains finite at any finite depth of the testing
process, unless the system contains output loops. In the latter case, the weak
trace construction in the testing theory leads to an immediate explosion, rooted
in an infinite branching. This however can be prevented by putting restrictions
on the specification, namely input-progressiveness. The input queue, in turn, is
always ready to receive an input, thus, growing to unbounded size. In addition,
the input capability of Q(s) is in no sense related to the actual structure of the
underlying system s. Thus, providing input actions which are not specified in s
at the current state, may lead to the execution of underspecified traces w.r.t. s,
which are being irrelevant for testing conformance. When only considering input-
enabled or fully-specified specifications, this discrepancy is obviously not there.
Therefore, using the queue operator as basis for asynchronous testing seems to
be rather inconvenient.

Model-Based Testing for Asynchronous Systems 73

Delay Operator. A conceptually different way of including asynchronous commu-
nication is the delay operator [1]. Instead of being directly applied to an IOTS,
the delay operator works on the traces of a system. For a set of action sequences,
e.g. traces, E ⊆ L∗ and a subset L′ ⊆ L, the operator delay [L′] : 2L∗ → 2L∗

gives the smallest superset of E s.t. for σ1, σ2 ∈ L∗, any a ∈ L\L′ and a1 ∈ L′ :

σ1a1aσ2 ∈ delay [L′](E) ⇒ σ1aa1σ2 ∈ delay [L′](E).

Given a set of traces E and a set of actions L′, delay [L′](E) calculates a set
of traces where actions in L′ are shifted towards the end of a trace in E while
keeping the relative order of actions in L\L′. For an IOTS p = 〈Q,L?, L!, T, q0〉,
the observable traces in a queue context can then be defined as traces(Q(p)) =
pref (delay [L!](traces(p))), where pref (U) is the prefix closure of a set of traces
U . On the other hand, when a trace σ has been observed, p can have executed
any of the traces in delay [L?](σL∗

!) ∩ traces(p).
Since the delay operator directly operates on traces of a system, genuine

underspecified traces are excluded. However, due to delayed input actions, it is
still possibly that an execution is steered away from specified traces, which has to
be dealt with in the test case generation algorithm [16]. Again, this problem does
not arise when only considering input-enabled or fully-specified specifications. If
assuming input progressive specifications (as in [16]) the test algorithm can be
made to assign verdicts in quiescent states of an IUT only. But this assumption
is otherwise not needed for generating test cases from given traces, which are in
fact, finite. Nevertheless, the test generation algorithm is only suitable for offline
test case generation due to the need for repeated calculation of delayed traces
and their intersection with traces of the system.

Our Approach

The method we are going to present is a practical approach to deriving test
cases directly from an IOTS, offline or online, while theoretically being (almost)
equivalent to applying the delay operator to the specification traces. Notably, we
neither have to propose any restrictions on the specification, nor do we examine
underspecified traces of the system, nor can our tester become trapped in an
immediate growth of the state space due to infinite branching. At the same
time, the approach is effective and computationally affordable.

Input Queue Context. The starting point of our approach is the construction
of the input queue context of a system s which represents the asynchronous
communication behaviour of s in the presence of an infinite input queue.

Definition 5. For an IOTS s = 〈Q,L?, L!, T, q0〉, the input queue context is the
smallest IOTS s� = 〈Q�, L?, L!, T�, q0�〉 where Q� ⊆ (Q × L∗

?), σ ∈ L∗
? , μ ∈

L ∪ {τ} s.t. :

– q0� = (q0, ε) and q0� ∈ Q�

74 A. Graf-Brill and H. Hermanns

– T� = {((q, σ), τ, (q′, σ)) | q, q′ ∈ Q, q
τ−→ q′}

∪ {((q, σ), a, (q, σa)) | q ∈ Q, a ∈ L?}
∪ {((q, aσ), τ, (q′, σ)) | q, q′ ∈ Q, q

a−→ q′}
∪ {((q, σ), x, (q′, σ)) | q, q′ ∈ Q,x ∈ L!, q

x−→ q′}
– q ∈ Q� ∧ (q, μ, q′) ∈ T� ⇒ q′ ∈ Q�

The input queue context of a system behaves exactly as the queue context derived
by the queue operator, but without applying the rules A2 and I3. Interestingly,
despite the fact that for a system s, s� and Q(s) are not isomorphic, the observ-
able trace behaviour of both resulting systems is actually equivalent.

Proposition 1. Let s ∈ IOT S(L?, L!)

1. traces(Q(s)) = traces(s�)
2. Straces(Q(s)) = Straces(s�)

This follows from the observation already mentioned when introducing the delay
operator: traces(Q(p)) = pref (delay [L!](traces(p))).

Shifting Outputs. The core property exploited by our approach (already appear-
ing above) is that the asynchronous behaviour can be modelled by only shifting
one action set, i.e. outputs, w.r.t. the other action set. To establish this shift, it
is actually irrelevant which set of actions is buffered. Notably, this means, that
we could equally well model the same phenomena by an output queue context
instead of an input queue context, but requiring input-enabled specifications.
However, inputs are under full control of the tester while outputs are under the
control of the IUT. So, with an output queue context we would still face the
immediate explosion problem due to infinite branching in the test generation
algorithm when dealing with output loops. This is not the case for the input
queue context as defined above. Thus, the input queue context is computable
using the standard test case generation algorithm proposed for synchronous com-
munication.

Asynchronous Transition System. In comparison with the delay operator app-
roach, we however still have the issue with unnecessarily testing underspecified
traces. In order to remedy this, we define the asynchronous transition system on
top of the input queue context.

Definition 6. Given an IOTS s = 〈Q,L?, L!, T, q0〉 and its input queue context
s� = 〈Q�, L?, L!, T�, q0�〉, the asynchronous transition system (ATS) is the
smallest IOTS �s� = 〈�Q�, L?, L!,� T�,� q0�〉 where �Q� ⊆ P(Q × L∗

?),
a ∈ L?, x ∈ L!, σ, σ1, σ2 ∈ L∗, μ ∈ L ∪ {τ, δ} s.t. :

– �q0� = {q0�} ∪ q0� after ε

– �T� = {(q̂, a, q̂′) | ∃(q, ε) ∈ q̂ : q
a−→ ∧ ∀(q′, σ1) ∈ q̂ : (q′, σ1)

a=⇒ (q′′, σ2) =⇒
(q′′, σ2) ∈ q̂′}
∪ {(q̂, x, q̂′) | ∃q ∈ q̂ : q

x−→ ∧ q̂′ = q̂ afterx}
∪ {(q̂, δ, q̂′) | ∃(q, ε) ∈ q̂ : δ(q) ∧ q̂′ = {(q′, ε) ∈ q̂}}

Model-Based Testing for Asynchronous Systems 75

– q ∈� Q� ∧ (q, μ, q′) ∈� T� ⇒ q′ ∈� Q�

The initial state of the ATS is the τ -closure of the initial state of the underly-
ing input queue context. Continuing from here, the ATS is further constructed by
adding transitions for the asynchronous behaviour and by eliminating nondeter-
minism (putting all successor states together). A state in the ATS can receive an
input action, iff there is one state in the input queue context which has an empty
input queue. Then, the successor state consists of all the successor states of the
input queue context after the corresponding input transition. By restricting the
input functionality in this way, we make sure that we always follow specified traces
of the system, i.e. we are not examining genuine underspecified traces. The ATS
can issue an output action, again, iff there is a state in the input queue context
which enables this output action. All states reachable by this output transition
form the new successor state, including states reachable by successive τ transi-
tions inherited from the underlying system or from the opportunity of the input
queue context to process inputs present in the input queue. The last part of the
definition of the above transition relation deals with our interpretation of quies-
cence in the asynchronous communication setting. When quiescence is observed,
we do not only assume that the system is in no state which can produce an output,
but we also assume the input queue to be as processed as possible. Thus, we only
can observe quiescence in a state of an input queue context which is quiescent in
the perspective of the underlying system and whose input queue is either empty,
or the next input action in the queue is blocking w.r.t. the currently enabled input
transitions. If the input queue is not empty, we can conclude that this state config-
uration represents an underspecified trace. Since it is quiescent, it can not evolve
by further output and it does not have a suitable input action enabled w.r.t. the
specification, thus it must be an underspecified trace. Therefore, we restrict qui-
escence further to only quiescent states with empty input queues.

Passing Underspecified Behaviour. Regarding unintended examination of under-
specified traces due to the asynchronous communication, there is one situation
left which we did not take care of so far. When receiving an output from the
system, which is not foreseen in any of the current states, this is seen as an
illegal output. However, when we already drifted in an underspecified trace, the
reception of such an output should lead to the verdict “pass”. Such a situation is
identified by inspecting the input queues of the current states. If there is no state
with an empty input queue, we know that there is no trace of the specification
corresponding to the current execution. Note, a valid output in such a situation
will be processed further, since we could still be on a valid trace with pending
inputs not received so far by the IUT. Technically speaking, we observed a trace
σ1 s.t. delay [L?](σ1) ∩ traces(s) = ∅, but their might be a sequence of output
actions σ2 ∈ L+

! s.t. delay [L?](σ1σ2)∩traces(s) �= ∅. Taking care of this situation
is done during the test case generation.

76 A. Graf-Brill and H. Hermanns

Role of ATS. Since the asynchronous transition system directly takes all non-
determinism and weak transitions in the input queue context into account, it
represents an intermediate step to the test graph of our testing approach.

Test Generation Algorithm. Our test case generation algorithm is provided as
Algorithm 1. Starting with an empty test case, we set the initial state to the
τ -closure of the initial state of the system with empty input queues. Following
the structure of the test case generation algorithm for synchronous communi-
cation, we then nondeterministically choose between ending with verdict pass
(lines 11–14), providing an enabled input to the IUT and recursively construct
the following subtree (lines 15–20), or add transitions for all outputs (includ-
ing quiescence) (lines 21–52) and recursively construct the following subtree for
valid outputs (lines 23–28 and 38–42). The provided algorithm is suitable for
both, offline and online test case generation. For offline test case generation, it is
common to only explore one subtree of valid outputs and stop with the verdict
pass for the other output actions.

Asynchronous Input-Output Conformance. With the test case generation algo-
rithm in place, what is missing is the definition of the actual conformance rela-
tion we are testing for, which we call asynchronous input-output conformance
(asyioco). First, we need an additional definition.

Definition 7. For a given IOTS s ∈ IOT S(L?, L!) and a suspension trace σ ∈
Straces(s), the set of asynchronous trace executions is defined as the smallest
subset of Straces(s) s.t. for σ1, σ2 ∈ (L? ∪ L!)∗, any x ∈ L! with x �= δ and
a ∈ L?:

σ ∈ asyexecs(σ)
σ1axσ2 ∈ asyexecs(σ) =⇒ (σ1xaσ2 ∈ Straces(s) =⇒ σ1xaσ2 ∈ asyexecs(σ))

Here we directly encode the delay operator into the definition of asynchronous
trace executions to point out, that input actions can not be shifted along quies-
cence.

Definition 8. Given a set of input labels L? and a set of output labels L!, the
relation asyioco ⊆ IOT S(L?, L!) × IOT S(L?, L!) is defined for a specification
s and an input-enabled implementation i as:

iasyioco s ⇔def ∀σ ∈ Straces(s). out(iafter asyexecs(σ)) ⊆ out(safter asyexecs(σ))

In words, this definition says that an IUT conforms to a specification, iff for
each observable behaviour of the specification, the possible outputs of the IUT
after asynchronously executing this trace w.r.t. the specified traces are foreseen
by the specification after all possible asynchronous executions.

Proposition 2. Let specification s and implementation i ∈ IOT S(L?, L!). The
following holds for input-enabled i and for s being

Model-Based Testing for Asynchronous Systems 77

Algorithm 1. Test case generation algorithm for asynchronous communi-
cating systems through queues
1 Function TCG(s)

Input : IOTS s = 〈Q, L?, L!, T, q0〉
Output: Test case t = 〈Qt, L!, L?, Tt, v, t0〉

2 t0 ← (q0, ε) after ε

3 Qt ← {t0}
4 Tt, v ← ∅
5 〈Qt, L!, L?, Tt, v, t′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v, t0〉)
6 return reTCG(s, 〈Qt, L!, L?, Tt, v, t0〉)
7 end

8

9 Function reTCG(s, t)
Input : IOTS s = 〈Q, L?, L!, T, q0〉,

Test case t = 〈Qt, L!, L?, Tt, v, t0〉
Output: Test case t′ = 〈Qt, L!, L?, Tt, v, t0〉

10 choice {pass, input, output} do

11 case pass

12 v ← v ∪ {(t0, pass)}
13 return 〈Qt, L!, L?, Tt, v, t0〉
14 end

15 case input ∧ ∃a ∈ L?, (q, ε) ∈ t0. q
a−→

16 t′ ← t0 after a

17 Qt ← Qt ∪ {t′}
18 Tt ← Tt ∪ {(t0, a, t′)}
19 return reTCG(s, 〈Qt, L!, L?, Tt, v, t′〉)
20 end

21 otherwise

22 v ← v ∪ {(t0, none)}
23 for x ∈ L! : ∃(q, σ) ∈ t0 : q

x−→ do

24 t′ ← t0 after x

25 Qt ← Qt ∪ {t′}
26 Tt ← Tt ∪ {(t0, x, t′)}
27 〈Qt, L!, L?, Tt, v, t′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v, t′〉)
28 end

29 for x ∈ L! : �(q, σ) ∈ t0 : q
x−→ do

30 Qt ← Qt ∪ {t′}
31 Tt ← Tt ∪ {(t0, x, t′)}
32 if ∃(q, ε) ∈ t0 then

33 v ← v ∪ {(t′, fail)}
34 else

35 v ← v ∪ {(t′, pass)}
36 end

37 end

38 if ∃(q, ε) ∈ t0 : δ(q) then

39 t′ ← {(q, ε) ∈ t0. δ(q)}
40 Qt ← Qt ∪ {t′}
41 Tt ← Tt ∪ {(t0, δ, t′)}
42 〈Qt, L!, L?, Tt, v, t′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v, t′〉)
43 else if ∃(q, ε) ∈ t0 ∧ ∀(q′, ε) ∈ t0 : ¬δ(q′) then

44 Qt ← Qt ∪ {t′}
45 Tt ← Tt ∪ {(t0, δ, t′)}
46 v ← v ∪ {(t′, fail)}
47 else

48 Qt ← Qt ∪ {t′}
49 Tt ← Tt ∪ {(t0, δ, t′)}
50 v ← v ∪ {(t′, pass)}
51 end

52 end

53 end

54 return 〈Qt, L!, L?, Tt, v, t0〉
55 end

78 A. Graf-Brill and H. Hermanns

Disconnected

Connected
Compatibilit y

Check

Operating

Limiting

configure? reset?

reset?

resetPartial?

ready! setLimits?

operate?

operate?

Fig. 2. EnergyBus energy management system FSA (simplified)

1. input-enabled: iasyioco s ⇔ i ≤qcst s ⇔ Q(i) iocoQ(s)
2. fully-specified: iasyioco s ⇐ i ≤qcst s ⇔ Q(i) iocoQ(s)
3. partially-specified: iasyioco s ⇐ Q(i) iocoQ(s) ∧ i ≤qcst s ⇐ Q(i) iocoQ(s)

The definition of asyioco is similar to queue-context suspension trace inclu-
sion(≤qcst) [16] if restricting to fully or partially specified IOTS. As already
discussed, these settings either exclude the need to handle underspecification of
the specification or they exclude underspecification in its entirety. The latter
can thus be considered as an asynchronous version of uioco [24]. In contrast,
asyioco follows the ioco philosophy and only exclude traces which in any case
are underspecified. Therefore, we think asyioco is a more natural extension of
ioco to asynchronous communication.

We claim that the test case generation algorithm we presented is sound and
complete w.r.t. asyioco. The latter feature is of only a theoretical nature. Since
completeness can only be achieved by generating an infinite amount of test cases,
which can in practice not be executed in finite time.

4 EnergyBus Case Study

The EnergyBus specification [6] aims at establishing a common basis for the
interchange and interoperation of electric devices in the context of energy man-
agement systems (EMS). The central and innovative role of EnergyBus is the
transmission and management of electrical power: the purpose of its protocol
suite is not just to transmit data, but in particular to manage the safe access
to electricity and its distribution inside an EnergyBus network. Conceptually,
EnergyBus extends the CANopen architecture in terms of CANopen applica-
tion profiles endorsed by the CiA association [6]. Among these, the “Pedelec
Profile 1” (PP1) is very elaborate, targeting a predominant business context,
which is also at the centre of ongoing international standardisation efforts as
part of IEC/IS/TC69/JPT61851-3.

Formal EnergyBus Specification. Since EnergyBus is defined as a layer on top
of CANopen, EnergyBus documentation [6] as well as the CANopen docu-
mentation [4] have to be taken into account for formal modelling. Both specifi-
cations are provided as informal combinations of text, protocol flow charts, data
tables, and finite state automata (FSA). The definitions include several data

Model-Based Testing for Asynchronous Systems 79

structures and various services for e.g. initial configuration, data exchange, and
basic communication capability control. Figure 2 presents a simplified view on
a core EnergyBus control functionality. Our formal model of EnergyBus uses
the Modest modelling language.

Aside from the basic control functionality, the EnergyBus protocol is all
about data. To overcome the state space explosion problem, we applied sev-
eral abstraction techniques to appropriate areas of our model, transferring the
complexity from the Modest model to the adapter component.

Results. Already during the model construction phase, our work [11] uncovered
several issues concerning the (at that time current version of the) Energy-

Bus specification documents. On the one hand there were gaps in the speci-
fication, preventing some parts of the services to be modelled to a reasonable
extent; on the other hand there were ambiguities in some parts of the spec-
ification, possibly inducing non-interoperability. These have been reported so
as to be corrected in standardisation. The actual test runs then revealed two
different types of further errors. The first type were traditional implementa-
tion bugs of a non-severe nature. The second type of observed errors were
intricately related to the hard- and software hierarchy of the test and IUT
architecture, i.e. the CAN bus system. They can be viewed as spurious fail ver-
dicts rooted in the fact that the different communication layers made the tradi-
tional model-based testing assumption of synchronous communication unsound.
One of these spurious fail verdicts can be illustrated by means of Fig. 2. An
already configured device can transit from state Connected to state Compat-
ibility Check by announcing being ready, or it can be ordered to switch back
to state Disconnected via a reset. One test execution trace we observed was
configure?.reset?.ready !. In the synchronous testing approach this should end in
a fail verdict, because after performing the prefix configure?.reset? the set of
potential states where the IUT might be in is {Disconnected}, and ready! is not
part of the out set of this state. However, the behaviour obviously represents
the case where the device already switched to the state Compatibility Check,
but the tester issued the reset? command before the ready! output arrived.
In our asynchronous approach, the above prefix we would instead lead to the
set {(Disconnected , ε), (Connected , reset?), (Disconnected , configured?.reset?)}.
And since ready! is in the out set of Connected, this turns ready! into
a valid output. We can thus conclude the test with a pass verdict, or,
more importantly, we can continue testing from the set {(Disconnected , ε),
(CompatibilityCheck , reset?)}.

The above asynchronicity phenomena indeed triggered the development and
implementation of the asynchronous model-based testing method discussed here.
New test runs with this improved methodology confirmed the already uncovered
implementation bugs that have been reported and fixed. Since the spurious fail
runs no longer appear, we have invested in a better analysis of the remaining
errors. A newly identified type of error was rooted in two distinct interpretations
of the EnergyBus basic device initialisation and the core EnergyBus device
control leading to incompatible implementations. To pinpoint this, we developed

80 A. Graf-Brill and H. Hermanns

two different models of the specification and continued testing with the respec-
tive version. In addition, we observed that some CAN implementations take
the liberty to reorder messages within responses, so that consecutive messages
passed by an IUT’s application to its local CAN controller may be sent out in
reverse order, which made manual inspection still be needed to definitely rule
out spurious fail verdicts.

Asynchronous Testing with Motest. The presented approach is implemented in
our model-based testing toolMotest, which is part of theModestToolset [13].
The tool platform is based on the Modest modelling language [12] and encom-
passes several tools for formal modelling, simulation and verification of systems.
The Modest Toolset is available at www.modestchecker.net.

Due to our tight interaction with the EnergyBus consortium we had the
opportunity to apply motest to a variety of prototypes and retail devices imple-
menting EnergyBus as soon as those became available. Lately we went a step
further, by making motest together with the specification models available free-
of-charge to the entirety of the EnergyBus e.V. association, so as to enable its
direct use by association members as part of their in-house testing. The feedback
collected is very encouraging.

5 Conclusion

This paper has discussed a novel, practical approach to model-based testing
for asynchronous communicating systems. Test cases are generated directly on
the model of the specification in a way that resembles the theory of the delay
operator. We presented a pseudo-code algorithm together with the definition of
asyioco, for which our algorithm produces sound and theoretically complete test
suites. Our algorithm is implemented in the Motest tool as part of the Modest

Toolset. As we discussed, this tool is in use for model-based conformance
testing of the EnergyBus standard over CAN.

Acknowledgments. This work is supported by the ERC Advanced Grant powver

(695614) and the Sino-German project CAP (GZ 1023).

References

1. Balemi, S.: Control of discrete event systems: theory and application. Ph.D. thesis,
Swiss Federal Institute of Technology, Zurich, Switzerland (1992)

2. Bernot, G., Gaudel, M.-C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

3. Bijl, M., Rensink, A., Tretmans, J.: Action refinement in conformance testing.
In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 81–96.
Springer, Heidelberg (2005). doi:10.1007/11430230 7

4. CAN in Automation International Users and Manufacturers Group e.V.: CiA 301
CANopen Application Layer and Communication Profile, v. 4.2.0 (2011)

http://www.modestchecker.net/
http://dx.doi.org/10.1007/11430230_7

Model-Based Testing for Asynchronous Systems 81

5. CAN in Automation International Users and Manufacturers Group e.V.: CiA 305
Layer setting services (LSS) and protocols, v. 3.0.0 (2013)

6. CAN in Automation International Users and Manufacturers Group e.V. and Ener-
gyBus e.V.: CiA 454 Draft Standard Proposal Application profile for energy man-
agement systems - doc. series 1-14, v. 2.0.0 (2014)

7. da Silva Simão, A., Petrenko, A.: From test purposes to asynchronous test cases.
In: ICST 2010 Workshops Proceedings, pp. 1–10. IEEE Computer Society (2010)

8. De Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2),
211–237 (1987)

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

10. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995). doi:10.1007/3-540-59293-8 188

11. Graf-Brill, A., Hermanns, H., Garavel, H.: A model-based certification framework
for the EnergyBus standard. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 84–99. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43613-4 6

12. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Form. Methods Syst.
Des. 43(2), 191–232 (2013)

13. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

14. Hierons, R.M.: The complexity of asynchronous model based testing. Theor. Com-
put. Sci. 451, 70–82 (2012)

15. Hierons, R.M.: Implementation relations for testing through asynchronous chan-
nels. Comput. J. 56(11), 1305–1319 (2013)

16. Huo, J., Petrenko, A.: On testing partially specified IOTS through lossless queues.
In: Groz, R., Hierons, R.M. (eds.) TestCom 2004. LNCS, vol. 2978, pp. 76–94.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24704-3 6

17. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315
(2005)

18. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: PSTV
1989, North-Holland, pp. 87–98 (1989)

19. Petrenko, A.: Fault model-driven test derivation from finite state models: anno-
tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001). doi:10.1007/
3-540-45510-8 10

20. Petrenko, A., Yevtushenko, N.: Queued testing of transition systems with inputs
and outputs. In: Proceedings of FATES 2002, pp. 79–93 (2002)

21. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50, 241–284 (1987)
22. Tretmans, J.: A formal approach to conformance testing. Ph.D. thesis, University

of Twente, Enschede (1992)
23. Tretmans, J.: Testing concurrent systems: a formal approach. In: Baeten, J.C.M.,

Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999). doi:10.1007/3-540-48320-9 6

24. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 1

http://dx.doi.org/10.1007/3-540-59293-8_188
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-540-24704-3_6
http://dx.doi.org/10.1007/3-540-45510-8_10
http://dx.doi.org/10.1007/3-540-45510-8_10
http://dx.doi.org/10.1007/3-540-48320-9_6
http://dx.doi.org/10.1007/978-3-540-78917-8_1

82 A. Graf-Brill and H. Hermanns

25. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing - Côte de
Resyste (2003)

26. Tretmans, J., Verhaard, L.: A queue model relating synchronous and asynchronous
communication. In: PSTV 1992, North-Holland, pp. 131–145 (1992)

27. Verhaard, L., Tretmans, J., Kars, P., Brinksma, E.: On asynchronous testing. In:
IWPTS 1992, North-Holland, pp. 55–66 (1992)

28. Weiglhofer, M., Wotawa, F.: Asynchronous input-output conformance testing. In:
COMPSAC 2009, pp. 154–159. IEEE Computer Society (2009)

Information Leakage as a Scheduling Resource

Fabrizio Biondi1, Mounir Chadli2, Thomas Given-Wilson2(B), and Axel Legay2

1 CentraleSupélec, Châtenay-Malabry, France
2 Inria, Paris, France

thomas.given-wilson@inria.fr

Abstract. High-security processes have to load confidential information
into shared resources as part of their operation. This confidential infor-
mation may be leaked (directly or indirectly) to low-security processes via
the shared resource. This paper considers leakage from high-security to
low-security processes from the perspective of scheduling. The workflow
model is here extended to support preemption, security levels, and leak-
age. Formalization of leakage properties is then built upon this extended
model, allowing formal reasoning about the security of schedulers. Several
heuristics are presented in the form of compositional preprocessors and
postprocessors as part of a more general scheduling approach. The effec-
tiveness of such heuristics are evaluated experimentally, showing them
to achieve significantly better schedulability than the state of the art.
Modeling of leakage from cache attacks is presented as a case study.

1 Introduction

This paper considers a shared resource system where processes are classified as
either high-security or low-security. High-security processes work with confiden-
tial information that should not be leaked to low-security processes. Typically,
this includes loading confidential information into memory for use within high-
security processes. Examples of such confidential information include encryption
keys, medical data, and bank details. This confidential information may be vital
to the operation of the high-security processes, but must also be tightly controlled
and not be leaked to low-security processes. For instance, in an embedded sen-
sor, high-security encryption processes handle encryption keys that must not be
leaked to low-security data compression processes.

However, high-security processes may not properly flush confidential infor-
mation from the shared resource, or context switching may interrupt their execu-
tion before such flushing can be applied. Consequently, confidential information
remaining in the shared resource becomes (directly or indirectly) available to
low-security processes.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 83–99, 2017.
DOI: 10.1007/978-3-319-67113-0 6

84 F. Biondi et al.

Consider the small example in Fig. 1, written in Intel x86-64 assem-
bly code for Linux compiled to ELF format1. There are two processes:
Process 1 doing some (trivial) encryption operations, and Process 2
attempting to access the encryption key. Process 1 takes a key $KEY and
a message $MSG then encrypts the message with the key using an exclu-
sive or XOR operation. The result is then output to the disk (represented
by $DISK1). Process 2 writes to a different disk location (represented by
$DISK2) the content of register r13. It is clear that if Process 2 is executed
after the first operation and before the fourth operation of Process 1, then
the value of the key is directly leaked.

If a scheduler is aware of a process’ access level, then the scheduler can take
action to prevent confidential information being leaked to low-security processes.
Recent work [15,17] has explored these kinds of problems in a real-time setting
by scheduling a complete resource (memory) flush after any high-security process
that is followed by a low-security process. However, this provides only limited
options to the scheduler since such a complete resource flush is expensive and
may prevent real-time tasks from meeting their deadlines. Further, when flushing
is not possible, current approaches do not quantify the information leakage,
simply considering any leakage unacceptable.

Fig. 1. Example Processes with schedule-dependent confidential information leakage.

This paper proposes treating confidentiality, measured by the resulting leak-
age of secure information, as a quantitative resource that the scheduler can
exploit. This allows for better quantification of the resulting leakage in different
scenarios, as well as having a clear measure of the cost of different scheduling

1 Technical details for X86-64 (https://software.intel.com/sites/default/files/article/
402129/mpx-linux64-abi.pdf) and ELF initialization (http://lxr.linux.no/linux+v3.
2.4/arch/ia64/include/asm/elf.h).

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
http://lxr.linux.no/linux+v3.2.4/arch/ia64/include/asm/elf.h
http://lxr.linux.no/linux+v3.2.4/arch/ia64/include/asm/elf.h

Information Leakage as a Scheduling Resource 85

choices. Further, this allows for the creation of schedulers that can make better
scheduling choices and also respect confidential information leakage constraints.

The paper builds upon the workflow model commonly used to represent real-
time systems [3,9,26]. In the workflow model a set of tasks periodically produce
jobs that have to be scheduled to complete before deadlines.

The workflow model is here extended by considering tasks to be composed of
steps, eachofwhichhasan execution time, leakage value, and security level.Eachone
of these steps is implicitly an atomic sequence of actions that can be taken within
a task without preemption by the scheduler. Thus a task consists of an ordered
sequence of steps to be performed, that yields the total behavior of the task.

Using this extended workflow model, schedulers can operate upon steps
rather than jobs, and so implement preemption while also being able to rea-
son about leakage in a fine-grained manner. This supports offline schedulers in
periodic systems that can plan an optimal strategy, as well as online schedulers
that optimize using the knowledge available. (The focus in this paper is on the
former.) Further, schedulers can be considered that operate over leakage thresh-
olds or within quantified security constraints.

The approach in this paper easily captures prior work [15,17] by inserting
a flush task that has a known runtime cost and ensures a complete resource
(memory) wipe (and thus zero resulting leakage). When a high-security job would
be followed by a low-security job, a flush is inserted between them. This enforces
zero resulting leakage, but often results in poor schedulability due to the high
cost of frequently flushing resources.

By considering the flush task to be always available (rather than at prescribed
times), schedulers can add flushes when this reduces resulting leakage and still
achieve schedulability. Indeed, it is often possible to achieve zero resulting leakage
even when flushing after every high-security job is not possible. Thus, solutions
can be found here that achieve zero leakage that could not be scheduled by the
prior state-of-the-art.

More generally, this paper proposes heuristic algorithms to achieve efficient
scheduling while reducing resulting leakage, i.e. the amount of confidential infor-
mation that can be leaked to low-security jobs. Thus allowing for more flexi-
bility in choices; a scheduling approach may allow a limited amount of leakage
to achieve schedulability. The scheduling algorithms presented here produce a
schedule for a set of tasks. Standard scheduling algorithms are extended with
a preprocessing and a postprocessing phase. Preprocessing modifies the set of
tasks to be scheduled, while postprocessing modifies the schedule produced by a
scheduling algorithm to yield another schedule. Several pre- and postprocessors
designed to reduce leakage are introduced in this paper.

Experimental results are presented that demonstrate the trade-off between
leakage and schedulability. These show that this approach schedules, with good
(or zero) resulting leakage, sets of tasks that are not schedulable by the state-
of-the-art. Different pre- and postprocessors and their impact on the resulting
leakage are evaluated. This clearly illustrates that there is a trade-off to be
made between leakage and schedulability. Accepting some leakage can allow for

86 F. Biondi et al.

schedulability when requiring zero leakage would fail to be schedulable. Further,
experimental results here show that zero leakage can still be achieved in cases
where the current state-of-the-art fails schedulability.

A case study demonstrates the flexibility of the model, by detailing how to
represent cache attacks and their leakage using the extended workflow model.
This demonstrates a different leakage model and alternative ways to exploit the
model.

Key Contributions. The key contributions of this paper are as follows.

– A model to reason quantitatively on the amount of information leaked by
scheduling tasks with different security levels on a shared resource system.

– A scheduling approach with compositional and specialized pre- and post-
processors that schedule tasks while reducing the amount of confidential infor-
mation leaked.

– Several heuristic pre- and postprocessing algorithms that can reduce leakage.
– Experimental evaluation of the combinations of the pre- and postprocessors,

showing that the approach provides significantly better schedulability and
lower information leakage than the state of the art.

– A case study showing how to adapt the model to other scenarios and kinds
of leakage, demonstrated with cache attacks.

The structure of the paper is as follows. Section 2 recalls background informa-
tion. Section 3 extends the workflow model. Section 4 presents our approach to
scheduling used here, with algorithms for pre- and postprocessing. Section 5 high-
lights and discusses the experimental results. Section 6 presents a case study on
adapting leakage for cache attacks. Section 7 discusses variations and extensions
to the model and algorithms. Section 8 concludes and considers future work.

2 Background

WorkflowModel. This section recalls the workflow model, a standard model for
the scheduling of periodic tasks [3,9,26]. Section 3 extends the workflow model to
account for the possible leakage of confidential information. Assume an infinite
time divided into discrete time units indexed by natural numbers. Let Γ be a set
of independent periodic tasks {Tα,Tβ , . . . } with each task Tx ∈ Γ having a period
Px, an execution time Ex, and a relative deadline Dx. A job τx,k is produced by
the activation of a task Tx ∈ Γ at release time Rx,k = (k − 1)Px, ∀k ∈ N0. Each
job τx,k must be completed before its absolute deadline Ax,k = Rx,k + Dx. The
hyperperiod HΓ of a set of tasks Γ corresponds to the least common multiplier of
the period Px of each task Tx ∈ Γ : HΓ = lcm{Px | Tx ∈ Γ}.

Scheduling Algorithms. This paper uses two standard scheduling algorithms
to schedule the jobs produced by sets of tasks: Earliest Deadline First (EDF) and
Least Slack First (LSF). Both are simple and widely used offline scheduling algo-
rithms based on dynamic priority of the jobs being scheduled. EDF determines
the priority of jobs according to their absolute deadline. At any given point in

Information Leakage as a Scheduling Resource 87

time, out of the currently available jobs, the job with the earliest absolute dead-
line is scheduled first. LSF determines the priority of jobs according to their
amount of slack. This slack is calculated for a job τx,k according to the formula
Ax,k − t − Ex where t is the current time. At any given point in time, out of the
currently available jobs, the job with the least slack is scheduled first.

Information Leakage. Information leakage quantifies the amount of confi-
dential information leaked by a system, and is widely used to measure of the
(in)security of the system [1,2,4,12]. In this paper, leakage is used to measure
the amount of confidential information that a high-level job leaves in the shared
resource at different moments of its execution. The unit of measure of leakage
is not relevant since it depends on the specific application. For instance, if the
confidential information is a private key, leakage could measure the number of
bits of the key that are leaked. Alternatively, leakage could measure the number
of confidential packets leaked from a secure transmission. Therefore, the same
leakage model can be used with different leakage measures, where zero leakage
represents no loss of confidential information.

Related Work. Real-time systems need to communicate with the outside world,
such as receiving data from sensors or communicating with other systems, some-
times over unsecured networks. This communication has allowed attacks against
even air-gapped industrial control systems [8].

The real-time scheduling requirement itself can be exploited to generate addi-
tional vulnerabilities. For instance, a process can modulate its use of a resource
to affect the scheduling of another process, and use this to covertly transmit
information [20,21].

Further vulnerabilities can occur in any system with shared resources. When
processes with different security levels share the same memory resources, it is
possible for low-security processes to monitor the access to confidential infor-
mation by high-security processes, causing information leakage [15]. Using sep-
arated memory for processes with different security levels is expensive, particu-
larly if the system has more than two security levels. Mohan et al. [15] consider
a shared memory scenario where low-security processes executing after high-
security processes could access the high-security processes’ memory space result-
ing in information leakage. To prevent this, they propose completely flushing the
shared resource (memory) after the execution of high-security processes when
followed by a low-security process. In [17], Pellizzoni et al. generalize this work by
introducing a binary relation no-leak on tasks, where no-leak (Tx,Ty) holds
if no leakage can occur from Tx to Ty. The authors also determine the number
of resource (memory) flushes needed to enforce the no-leak relation, and con-
sequently construct a preemptivity-assignment scheduling algorithm. This work
proposes a more fine-grained approach to confidentiality in similar scenarios.

Another less formal approach is that used in [24] where they limit the time
between preemptions between virtual machines in an online scheduling scenario
to prevent cache attacks. This can be represented using the approach here as a
case study.

88 F. Biondi et al.

Intel propose the Software Guard Extension (SGX) architecture to prevent
leakage through shared memory [7]. SGX aims to keep each process in a separate
enclave, and keep these enclaves isolated from other processes (and flushing them
upon exit). However, Schwarz et al. [19] demonstrate that SGX is not safe using
cache attacks.

Formal analysis of scheduling system under resource constraints has been
performed by Kim et al. [13,14]. The proposed approach can be extended to
confidentiality as a resource using the model proposed in this paper.

3 Model

This section introduces the key concepts and model of the system being sched-
uled, and is based upon the workflow model recalled in Sect. 2. The extension
here is to represent precise information about the internal operations and pre-
emptivity of tasks by dividing them into steps. Steps include their own execution
time (like a task or job), and are extended to include leakage value and security
level. Special tasks are also added to model other operations of the system. The
rest of this section details this extended model and presents illustrative examples
that motivate the choices in this paper.

3.1 Concept

This section considers concepts and motivations for the model presented here; the
division of tasks into steps, accounting for leakage, and justification for special
tasks.

Steps. This model considers the possibility to divide tasks into fine-grained steps.
A step represents an atomic sequence of operations that cannot be interrupted by
preemption. The practical implementation of steps depends on the architecture
and granularity of the scheduling system. The model is agnostic to step implemen-
tation details as long as an execution time, leakage value, and security level can be
defined for each step. The most fine-grained approach would be to consider each
CPU operation as a step. For instance, Process 1 in Fig. 1 would be represented
as a task divided into five steps. Thus, a task could be preempted after each CPU
operation. Although very simple, in practice this approach is too fine-grained. In
lightweight and embedded systems it is common to delegate part of the handling of
preemption and atomicity to the programmer, so it is reasonable to consider that
the programmer themself could define the steps.

Special Tasks. This paper considers two special tasks representing special sys-
tem operations: flush and wait. The flush task flushes all confidential information
from the shared resource, for instance by overwriting all shared memory with
zeroes. This preserves compatibility with the state of the art [15,17] where flush-
ing is used as the main tool to preserve confidentiality. The wait task represents
idle processor time. Apart from the obvious use, scheduling of idle time can
impact confidentiality of the system.

Information Leakage as a Scheduling Resource 89

Leakage Values. The leakage value of a step represents the amount of confi-
dential information that would be leaked to an attacker able to read the shared
resource just after the steps’ execution. The model does not constrain the way the
leakage value is obtained: leakage can be added by the programmer as an anno-
tation, computed by an automatic tool [5,6,23], or possibly both. For instance,
the programmer could specify critical zones in which the program must not be
interrupted, and the leakage values would be computed automatically by a tool
(for both critical and non-critical zones). An alternative, variable-based app-
roach would be to have the programmer annotate some variables as containing
confidential information at a certain point (and as cleared of confidential infor-
mation at a later point). Taint analysis can be used to identify which variables
are tainted at each point. Information leakage quantification can be used to
quantify leakage from the tainted variables.

3.2 Formal Model

Steps, Tasks and Jobs

Definition 1 (Step). Formally, each step is a tuple S(E,L,X) where E
denotes the (worst case) execution time that the step takes to be completed,
L denotes its (potential) leakage value, and X denotes its security level (either
high � or low ⊥).

The (potential) leakage value L of a step S is a measure of the amount
of confidential information left in a shared resource at the completion of S.
Here � indicates that the step contains confidential information and therefore
is high-security. Similarly, ⊥ indicates that the step should not have access to
confidential information and therefore is low-security. Since � and ⊥ are used to
indicate whether the step has access to confidential information, ⊥ steps typically
have leakage zero. This is not a strict requirement, see Sect. 6. The choice of
having two security levels here is to clearly illustrate the model, however the
extension to any number of security levels is straightforward.

For instance, consider Process 1 in Fig. 1. Each assembly instruction
can be represented by a single step with an execution time of one time unit
and a security level of �. The first three instructions have a leakage value
of one, representing the fact that one word of confidential information (the
key) is in the shared resource (in register r13). However, the remaining
instructions have a leakage value of zero since the fourth instruction wipes
r13.

The system operates with a set of tasks Γ = {Tα,Tβ , . . .}.

Definition 2 (Task). Each task Tx ∈ Γ is a tuple Tx(Px,Dx, ̂Sx) where Px is
the period of the task, Dx is its relative deadline, and ̂Sx is a sequence of steps
Sxa,Sxb, . . . making up the ordered actions of the task.

90 F. Biondi et al.

Tasks are named with Greek letters, e.g. Tβ . Steps are named with the cor-
responding task’s Greek letter and a Latin letter in alphabetical order, e.g. step
Sβc represents the third step of task Tβ .

Observe that Process 1 in Fig. 1 can be modeled by the following task:

Tα = T (Pα, Dα, (Sαa(1, 1,�),Sαb(1, 1,�),Sαc(1, 1,�),Sαd(1, 0,�),Sαe(1, 0,�))).

Similarly, Process 2 in Fig. 1 can be modeled by the following task:

Tβ = T (Pβ , Dβ ,Sβa(1, 0,⊥)) .

Definition 3 (Job). Each job τx,k is created by the activation of the task Tx

at release time Rx,k = (k −1)Px for k ∈ N0, and is a tuple τx,k(Rx,k, Ax,k, ̂Sx,k)
where Ax,k = Rx,k + Dx is the job’s absolute deadline, and ̂Sx,k is the sequence
of steps inherited from task Tx.

Jobs are named with the corresponding task’s Greek letter and the number
k, so job τβ4 is the fourth job generated by task Tβ and step Sβ4c is the third
step of job τβ4.

For simplicity, a task (resp. job) will be referred to as � or ⊥ when all steps
within that task (resp. job) are either � or ⊥, respectively.

Flush and Wait. The model uses a task to represent complete flushing of the
shared resource. The flush task is defined by TF (−,−,SF (EF , 0,�)) where EF
is the execution time to completely flush the shared resource. Observe that after
flushing the shared resource the leakage is reduced to zero. This is achieved by the
single step SF (EF , 0,�) that takes all the execution time of the flush task and
has a zero leakage value. Since the flush task is always available to be scheduled,
it has no defined period or deadline (denoted here as -), being able to scheduled
(or not) at whim. The security level of flush is � since it is acceptable for flush to
have access to confidential information, and for use in calculating the resulting
leakage (see below). For simplicity and when no ambiguity may occur, F is used
for the flush task or step.

To represent idle processor time, define thewait task asTW(−,−,SW(1, ∗, ∗)).
Similar to flush, wait is always available to be scheduled and has no period or dead-
line (again denoted as -). Wait also has a single step that has the minimal runtime of
one time unit. However, the leakage value of wait is here denoted by ∗ since waiting
does not change the shared resource, instead the ∗ denotes that the leakage value
of a wait step is the same as the previous step. Similarly, the security level is also
represented by ∗ because it is the same as the previous step. Again for simplicity
and where no ambiguity may occur, W may be used in place of the wait task or
step.

Traces, Solutions, and Resulting Leakage

Definition 4 (Trace). A trace ˜S = (S1(E1, L1,X1),S2(E2, L2,X2), . . .) is a
(possibly infinite) sequence of n ∈ N∪{∞} steps that may come from any number
of jobs.

Information Leakage as a Scheduling Resource 91

In a trace, Step S1 starts execution at time t1 = 0, and each step Si for i > 1
starts execution at time ti =

∑i−1
j=1 Ej and terminates execution at time ti + Ei.

The notation ˜S1++˜S2 is used to indicate concatenation of traces ˜S1 and ˜S2,
and ˜S \S1 the removal of the step S1 from the trace ˜S. The focus of this paper
is upon solutions.

Definition 5 (Solution). A trace ˜S is a solution S if:

1. for each job τ(R,A, ̂S):
(a) each step in ̂S appears in the trace ˜S in the order that it appears in ̂S;
(b) the first step of ̂S does not start execution before R;
(c) the last step of ̂S does not terminate execution after A;

2. each step that is not wait W or flush F appears exactly once in the trace ˜S.

Given a set of tasks Γ , a solution S is a solution for Γ , written SΓ , iff
∀Tx ∈ Γ,∀k ∈ N0 then for each job τx,k(Rx,k, Ax,k, ̂Sx,k) it holds that every step
in ̂Sx,k is in S.

A solution S is periodic if it periodically repeats the same sequence of steps
up to job indexing. For simplicity, a periodic solution may be represented by the
periodically repeated sequence alone.

Given a trace ˜S the resulting leakage L (˜S) of trace ˜S represents the total
amount of information leaked during the execution of the jobs scheduled accord-
ing to ˜S.

Definition 6 (Resulting leakage). Given a trace ˜S composed of n steps with
n ∈ N ∪ {∞}, the resulting leakage L (˜S) of the trace ˜S is defined inductively
as follows:

– if n ≤ 1, then L (˜S) = 0;
– if n > 1 and the second step S2 of trace ˜S is �, then the resulting leakage is

the leakage of the trace without the first step S1: L (˜S) = L (˜S \ S1);
– if n > 1 and the second step S2 of trace ˜S is ⊥, then the resulting leakage

is the leakage of the trace without the first step S1 = S(E1, L1,X1) plus the
leakage value L1 of the first step S1: L (˜S) = L (˜S \ S1) + L1.

Since every solution S is a trace ˜S, a solution’s resulting leakage L (S) is defined
in the same manner.

Recall the example from Fig. 1. The solution in Fig. 2a has resulting leak-
age one, since Process 2 is executed when the key is in the shared resource
and so the step Sβa is able to access the key.

However, the solution in Fig. 2b has resulting leakage is zero, since
Process 2 is executed after the key has been wiped from the shared
resource.

92 F. Biondi et al.

(a) Solution leaking information. (b) Solution leaking no information.

Fig. 2. Schedulings for the processes in Fig. 1.

If a solution is periodic, the periodic leakage can be calculated as fol-
lows. Given one instance of the periodically repeated sequence of steps ˜S =
(S1,S2, . . . ,Si), the periodic leakage is the resulting leakage of the sequence
˜S++S1.

4 Our Approach

The overarching goal of the approach proposed in this paper is to produce a
solution with low resulting leakage for a given set of tasks. To achieve this,
standard offline scheduling algorithms are extended with a preprocessing and a
postprocessing phase. The preprocessing phase transforms a set of tasks Γ into
a set of preprocessed tasks Γ ′. Then scheduling is applied to Γ ′ obtaining a
solution S′

Γ ′ for Γ ′. Finally, the postprocessing phase transforms the solution
S′

Γ ′ into a postprocessed solution S′′
Γ ′ . Both the pre- and postprocessing phases

can affect the desired solution S′′
Γ ′ , here with the goal of reducing the resulting

leakage. The rest of this section presents various heuristic algorithms used for
the results (see Sect. 5). The scheduling algorithms considered are EDF and LSF.
Note that EDF and LSF do no consider the security-level or leakage of the steps
(for discussion of this see Sect. 7). The rest of this section focuses upon the pre-
and postprocessors. The division in phases creates a modular and compositional
approach, allowing for a better comparison of different pre- and postprocessors.

4.1 Preprocessing

Preprocessors are algorithms that take a set of tasks Γ and produce a set of
tasks Γ ′ to be scheduled. This paper considers preprocessors that attempt to
“merge” adjacent steps with the same security level within each task in Γ . The
merged step has the sum of the execution times of the merged steps, the leakage
value of the last merged step, and the same security level as the merged steps.
For instance, the steps Sαa(1, 0,�) and Sαb(1, 4,�) could be merged produc-
ing the step Sαa′(2, 4,�). The rest of this section presents three preprocessing
algorithms that exploit merging.

Total Merge. The Total Merge algorithm merges all the steps in a task into a
single step. The merging is achieved by starting with a step that has execution
time and leakage value zero. The execution time for each other step in the task is

Information Leakage as a Scheduling Resource 93

then added, and the leakage value from the last step being merged is preserved.
The security level is set to that of the last step (this is reasonable here since all
steps within a task share the same security level, for other approaches to this
see Sect. 6). Finally, the processed task uses this single merged step as its only
step.

One-Step Merge. The One-Step Merge algorithm attempts to merge pairs of
adjacent steps. Adjacent pairs are merged iff the leakage of the former step is
higher than the latter. This is achieved by iterating through the steps Si of the
task. If Li > Li+1, then the steps Si and Si+1 are merged. Otherwise, Si is
maintained unchanged. This algorithm generates a new sequence of steps ̂S′,
that are then used in the processed task.

n-Step Merge. A straightforward extension to the One-Step Merge algorithm
is to allow merging of any number of steps. This appears in the results as n-Step
Merge.

4.2 Postprocessing

Postprocessing algorithms take one solution and produce another solution. This
can be done by any possible manipulation of the steps within the original solution
S′

Γ to produce the new solution S′′
Γ that does not break the property of being

a solution for Γ . The rest of this section presents four such postprocessors.

Add Flush. The Add Flush algorithm replaces sequences of W with F where
possible. Add Flush operates by finding sequences of W whose length is greater
than or equal the execution time of F . If such a sequence is found, a F is added
to the produced solution instead of the initial sequence of W with execution
time equal to the F . Any remaining W in the solution are maintained.

Swap. The Swap algorithm attempts to reduce the resulting leakage by swap-
ping steps within the solution. Swap works by considering each step Si. Then
each possible swap [Si ↔ Sj] between the step Si and a following step Sj is
considered. If the trace with this swap applied has less resulting leakage and is
still a solution, then this solution [Si ↔ Sj]S is kept as the best possible solution
so far. Finally, once all possible swaps have been considered, the best swap to
the solution is applied and i is incremented.

Move. The Move algorithm moves one step to a new position in the solution.
Move works in the same manner as the Swap postprocessor, except instead of
swapping [Si ↔ Sj]S the steps Si and Sj , the move [Si −→ Sj]S moves the step
Si to be after Sj . For example: [S1 −→ S3]Sa,Sb,Sc = Sb,Sc,Sa where the first
step Sa is moved to be after the third step Sc. The rest of the algorithm is the
same as Swap, finding the best possible move and ensuring the trace after the
move is a solution. The algorithm is identical to the Swap algorithm substituting
[Si ↔ Sj]S with [Si −→ Sj]S in Line 4.

94 F. Biondi et al.

1-Swap. Observe that if only swapping or moving with the following step is
considered, that is [Si ↔ Si+1] or [Si −→ Si+1], then the swap and move
postprocessors coincide. This postprocessor is denoted as 1-Swap in the results.

5 Experimental Results

This section discusses the results obtained by running experiments with the
preprocessing, scheduling, and postprocessing algorithms in this paper.

The experiments were conducted by using approximately 30,000 randomly
generated sets of tasks2, and then testing each possible combination of one pre-
processing, one scheduling, and one postprocessing algorithm. Each set of tasks
consists of 2 to 6 tasks with at least one � task and one ⊥ task, with each
task having 1 to 8 steps, and each step execution time from 1 to 5. Sets of
tasks with a hyperperiod over 5000 have been discarded to reduce testing time.
The code3 to perform the tests and implement the preprocessing, scheduling,
and postprocessing is written in Java 1.8, and all experiments conducted on a
Linux 3.13 64-bit kernel on an Intel Core i7-3720QM 2.60 GHz CPU with 8 GB
of RAM. A demo4 is available that shows examples, and allows users to conduct
their own GUI-based experiments. The rest of this section discusses experimental
outcomes.

Fig. 3. Failures and leakage results for pre- and postprocessing.

2 30,000 sets of tasks were generated, 22 were discarded as unschedulable.
3 Available via git from: https://scm.gforge.inria.fr/anonscm/git/secleakpublic/

secleakpublic.git.
4 Demo available via website at: http://secleakpublic.gforge.inria.fr/.

https://scm.gforge.inria.fr/anonscm/git/secleakpublic/secleakpublic.git
https://scm.gforge.inria.fr/anonscm/git/secleakpublic/secleakpublic.git
http://secleakpublic.gforge.inria.fr/

Information Leakage as a Scheduling Resource 95

Table 1. Average execution time (in ms) for each combination
of pre- and postprocessor (except Total Merge) using the EDF
scheduling algorithm.

Preprocessor Merge Postprocessor
None Add flush Swap Move 1-Swap

None 2 116 1919 1903 190
One-Step 1 93 1567 1489 149
n-Step 1 88 1486 1404 141

The first point
of interest is the
schedulability of the
set of tasks used
in each experiment.
Merging task steps
in a preprocessor
can make a set
of tasks unschedu-
lable, and the EDF
and LSF scheduling algorithms are not equally able to find solutions. The fail-
ure percentage for each combination of preprocessing and scheduling algorithm
is shown in Fig. 3a.

Figure 3a clearly shows that greater merging of steps leads to more schedu-
lability failures. In particular, indicating that Total Merge is not an effective
algorithm to use in practice despite being considered the current state of the
art [15,17]. This is a strong motivation for the approach presented in this work
to consider fine-grained preprocessing and preemption of tasks. Due to its high
failure rate, Total Merge will not be considered further in this paper.

Figure 3a also shows that, for all preprocessing algorithms, EDF performs
better for schedulability than LSF. (This is expected since EDF is guaranteed to
find a solution if the tasks are schedulable, while LSF is not.) The two scheduling
algorithms produce almost the same results for every other measure tested, so
the rest of this paper shall present only experimental results using the EDF
scheduling algorithm.

Comparing the experimental results from postprocessing algorithms, the
average resulting leakages for each combination of pre- and postprocessor is
shown in Fig. 3b, while the average running times to generate a solution are
shown in Table 1.

As expected, solutions without any postprocessing produce the highest result-
ing leakage. The best resulting leakage is obtained by the Add Flush algorithm.
(This would correspond to the approach in [15,17] when combined with Total
Merge, however as noted above this is often not schedulable.) Note that merging
preprocessors reduce total time, since they reduce the number of steps that the
scheduler has to schedule.

1-Swap slightly reduces the resulting leakage, however Table 1 shows that it
is significantly more expensive than the scheduling operation, so 1-Swap could
be applied after Add Flush only if the cost is acceptable. Swap and Move do not
reduce the resulting leakage significantly more than 1-Swap and are significantly
more expensive to compute. These indicate that there is a balance to be found
depending on the scenario. Taking significant time to pre-compute an optimal
scheduling strategy for a sensor or other real-time system prior to shipping could
be worth the time cost. However, for online scheduling with limited (or no) ability
to look ahead and consider such options, the cost of anything more complex than
Add Flush or 1-Swap may be too much.

96 F. Biondi et al.

6 Case Study: Modeling Cache Attacks

This section demonstrates how to reason about cache attacks using the model
presented in this paper, and how leakage can be used in different ways. This
includes how to adapt resulting leakage to represent leakage via cache attacks,
and how to exploit the general definition of the model to handle more complex
notions of leakage.

In cache attacks, the shared resource is the cache itself. There are several
approaches to gaining information from the cache (which is in general a form
of side-channel attack) [10,18,22,25]. One such method is for the attacker to
attempt to load code that uses the same cache lines as the program being
attacked. When these load very quickly, then this indicates that the program
being attacked has already loaded particular parts of the program, and from
this the attacker can infer information about the program.

The main point in modeling cache attacks is that leakage is related to the
cache lines, and there are many such lines in the cache. Thus, the measure of
leakage is which lines of the cache are known to have been loaded by the attacker.

This can be modeled using the techniques in this paper, by exploiting the
flexibility of the leakage representation as follows:

– The leakage value L of a step is represented by a bit-vector, with 1 bit for
each cache line. Loading a cache line is represented by setting the bit in the
bit-vector that represents that line of the cache to 1.

– When calculating leakage from a trace, the leakage is calculated by taking
the bit-wise disjunction (represented as |) of the leakage bit-vectors. Observe
that this automatically accounts for over-writing by newer lines.

– The leakage result from a high security step to a low security step can then be
calculated over bit-vectors, e.g. by the bit-wise conjunction operation (repre-
sented as &). Recall that since the attacker loads cache lines to test if another
process has accessed these lines, they will appear to have loaded these lines
to another step.

– The flush step F is represented by setting the leakage vector to 0000.

For example, assume four cache lines, then leakage would be represented
by bit-vectors of length four. A step that loads into the first cache line would
have the leakage bit-vector 1000, and the step that loads into the third cache
line would have the leakage bit-vector 0010. If these steps were executed
sequentially, the leakage bit-vectors 1000 and 0010 bit-wise disjoined would
yield 1000 | 0010 = 1010.

An attacker that attacks (by using) the first and second cache line would
have a bit-vector 1100. If the leakage of the last high security step is 1010
and the attacker has leakage bit-vector 1100, then the attacker would gain
information about the first cache line being used (since 1010 & 1100 =
1000), and the leakage would end up in the state 1110 (since 1010 | 1100 =
1110) since the attacker must access these cache lines to perform the attack.

Information Leakage as a Scheduling Resource 97

The leakage value calculated from the cache attacks can also be more realistic.
In practice certain cache lines yield more information. So if the cache attack is
being modeled for an attack against the key of AES [16,22], different lines can be
given different values, thus allowing precise computation of key leakage. Indeed,
works such as [11] could be used to determine the most appropriate leakage
values to use.

Thus, the model presented in this paper already supports many interesting
and real scenarios by instantiating the leakage in an appropriate manner. This
has been kept simple earlier in the paper for illustration, but highly complex
leakage models can easily be accounted for in the manner demonstrated above.

7 Discussion

On the Division of Scheduling into Three Phases. The division into three
phases is to separate out distinct parts of an overall scheduling from tasks to a
solution. This approach allows for separation conceptually of different phases,
and also for composition of simple algorithms in the pre- and postprocessing
phases. For example, a postprocessor could move steps in a solution around to
maximize contiguous Ws and then be composed with the Add Flush postproces-
sor to improve the resulting leakage further. This also allows different strategies
to be employed in different phases, including strategies with different goals. For
example, processors for resulting leakage minimization and energy consumption
could be combined during pre- or postprocessing (or both).

Online Scheduling. This paper considers offline scheduling, i.e. when the tasks
to be scheduled are known beforehand. In most real cases the tasks appear at
runtime, requiring online heuristics to decide the scheduling. The division in steps
and the leakage model presented in this paper extend immediately to the online
scenario. While the preprocessors and postprocessors do not, they provide insight
that can be used to build online heuristics that reduce leakage. We consider this
as future work.

Execution Time. This paper has considered the execution time to be essentially
fixed for each step. Although formally the execution time is worst case, the
scheduling here does not exploit when steps may terminate prior to their (worst
case) execution time. This could naturally be incorporated into online scheduling
(above), but even in a purely offline scheduling system this could be exploited.
For example, consider the cache attack scenario, where flushing not only effects
the leakage, but by flushing the cache the execution time will go up due to cache
misses.

8 Conclusions and Future Work

In a system with shared resources, the security of confidential information is a
major concern. This paper allows reasoning about leakage of confidential infor-
mation by extending the workflow model to support fine-grained preemption

98 F. Biondi et al.

and confidentiality. This allows confidentiality to be addressed by quantifying
the amount of information leaked by the system, including different leakage
models.

Scheduling in this new model is then considered using pre-and postprocessors.
These can be compositonally combined for scheduling that exploits different
techniques and approaches, including focusing on different aspects of the overall
problem. Several pre- and postprocessing heuristic algorithms are presented that
can operate on the model. These are focused upon improving resulting leakage,
but the principles can be adapted to other areas as well. Experimental results
evaluate the algorithms presented here, showing that the model and heuristics
improve over the state of the art and show that even simple heuristics can be
effective. The case demonstrates the flexibility of the model, and illustrates how
to adapt to different kinds of leakage and scenarios.

Future work could generalise to multi-resource approaches, where schedul-
ing considers confidentiality, energy consumption, schedulability, etc. Another
direction would be to consider theoretical complexity, and optimal scheduling
strategies.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring infor-
mation leakage using generalized gain functions. In: Chong, S. (ed.) CSF. IEEE
(2012)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S&P, pp. 141–153. IEEE (2009)

3. Benoit, A., Çatalyürek, U.V., Robert, Y., Saule, E.: A survey of pipelined workflow
scheduling: models and algorithms. ACM Comput. Surv. 45(4), 50:1–50:36 (2013)

4. Biondi, F., Legay, A., Malacaria, P., Wasowski, A.: Quantifying information leakage
of randomized protocols. Theor. Comput. Sci. 597, 62–87 (2015)

5. Biondi, F., Legay, A., Traonouez, L.-M., W ↪asowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 49

6. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). doi:10.1007/
978-3-319-11212-1 13

7. Costan, V., Devadas, S.: Intel sgx explained. IACR ePrint Archive 2016, 86 (2016)
8. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet dossier (2011)
9. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.

45(9), 1563–1581 (1966)
10. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and

stealthy cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). doi:10.1007/
978-3-319-40667-1 14

11. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: Usenix Security 2015, pp. 897–912 (2015)

http://dx.doi.org/10.1007/978-3-642-39799-8_49
http://dx.doi.org/10.1007/978-3-642-39799-8_49
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_14

Information Leakage as a Scheduling Resource 99

12. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Gates,
C., Franz, M., McDermott, J.P. (ed.) ACSAC, pp. 261–269. ACM (2010)

13. Kim, J.H., Legay, A., Larsen, K.G., Mikučionis, M., Nielsen, B.: Resource-
parameterized timing analysis of real-time systems. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 190–205. Springer, Cham (2015). doi:10.1007/
978-3-319-26287-1 12

14. Kim, J.H., Legay, A., Traonouez, L., Boudjadar, A., Nyman, U., Larsen, K.G.,
Lee, I., Choi, J.: Optimizing the resource requirements of hierarchical scheduling
systems. SIGBED Rev. 13(3), 41–48 (2016)

15. Mohan, S., Yoon, M., Pellizzoni, R., Bobba, R.: Real-time systems security through
scheduler constraints. In: ECRTS, pp. 129–140. IEEE Computer Society (2014)

16. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). doi:10.1007/11605805 1

17. Pellizzoni, R., Paryab, N., Yoon, M., Bak, S., Mohan, S., Bobba, R.: A generalized
model for preventing information leakage in hard real-time systems. In: RTAS.
IEEE (2015)

18. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS 2009. ACM
(2009)

19. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard exten-
sion: Using SGX to conceal cache attacks. arXiv preprint (2017). arXiv:1702.08719

20. Son, J., Alves-Foss, J.: Covert timing channel capacity of rate monotonic real-time
scheduling algorithm in MLS systems. In: IASTED, pp. 13–18 (2006)

21. Son, S.H., Mukkamala, R., David, R.: Integrating security and real-time require-
ments using covert channel capacity. IEEE Trans. Knowl. Data Eng. 12(6), 865–879
(2000)

22. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

23. Val, C.G., Enescu, M.A., Bayless, S., Aiello, W., Hu, A.J.: Precisely measuring
quantitative information flow: 10k lines of code and beyond. In: Euro S&P. IEEE
(2016)

24. Varadarajan, V., Ristenpart, T., Swift, M.M.: Scheduler-based defenses against
cross-VM side-channels. In: Usenix Security, pp. 687–702 (2014)

25. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security, pp. 719–732 (2014)

26. Yoon, M.-K., Mohan, S., Chen, C.-Y., Sha, L.: Taskshuffler: a schedule randomiza-
tion protocol for obfuscation against timing inference attacks in real-time systems.
In: RTAS, pp. 1–12. IEEE (2016)

http://dx.doi.org/10.1007/978-3-319-26287-1_12
http://dx.doi.org/10.1007/978-3-319-26287-1_12
http://dx.doi.org/10.1007/11605805_1
http://arxiv.org/abs/1702.08719

A Unified Formalism for Monoprocessor
Schedulability Analysis Under Uncertainty

Étienne André(B)

Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
eandre93430@lipn13.fr

Abstract. The schedulability analysis of real-time systems (even on
a single processor) is a very difficult task, which becomes even more
complex (or undecidable) when periods or deadlines become uncertain.
In this work, we propose a unified formalism to model monoprocessor
schedulability problems with several types of tasks (periodic, sporadic,
or more complex), most types of schedulers (including EDF, FPS and
SJF), with or without preemption, in the presence of uncertain timing
constants. Although the general case is undecidable, we exhibit a large
decidable subclass. We demonstrate the expressive power of our formal-
ism on several examples, allowing also for robust schedulability.

Keywords: Schedulability analysis · Real-time systems · Timing
parameters

1 Introduction

The schedulability problem for real-time systems consists in checking whether,
for a given set of tasks bound by some constraints (precedence between tasks,
periods ...) and for a given scheduler, all tasks can finish their computation
before their relative deadline. This problem is a very delicate task, even on a
single processor, and becomes even more complex (or undecidable) when periods
or deadlines become unknown or subject to uncertainty.

Timed automata (TAs) [2] are a powerful formalism to model and ver-
ify timed concurrent systems, by extending finite-state automata with con-
tinuous variables (“clocks”) that can be compared to constants in transitions
(“guards”) and locations (“invariants”) or reset along transitions. Schedulabil-
ity analysis with stopwatch automata (an extension of TAs) was proposed in [1]:
although stopwatch automata are an undecidable formalism in general [10], job-
shop scheduling using stopwatch automata is still possible [1].

Task automata (TaskA) were introduced in [17] as an extension of TAs where
discrete transitions can be labeled with tasks, that can have a worst case execu-
tion time and a deadline. Thanks to the expressive power of TAs, this formalism

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 100–115, 2017.
DOI: 10.1007/978-3-319-67113-0 7

A Unified Formalism for Monoprocessor Schedulability Analysis 101

l0
t0

l1
t1

l2
t2

l3
t3

x > p
x := 0

x = 40
x := 0

x := 0

x = 20
x := 0

Priorities
t0 > t2 > t1 > t3

Task B W D

t0 0 1 2

t1 4 4 20

t2 0 1 p′

t3 2 2 10

Fig. 1. Encoding semi-periodic and sporadic tasks using a PTaskA

is richer than the traditional periodic tasks (characterized by their period) or spo-
radic tasks (characterized only by their minimal inter-arrival time). In addition,
the schedulability problem (“is the TaskA schedulable for a given strategy?”) is
decidable for non-preemptive strategies, i.e., without the ability of the scheduler
to temporarily suspend a task for a more urgent one. This formalism is enriched
and slightly modified in [13], where the tasks become associated with locations
(instead of transitions) and are also characterized with a minimum execution
time. Although the schedulability problem for task automata of [13] is unde-
cidable in general (for some preemptive strategies), the decidable case is large,
including all non-preemptive strategies, and all strategies without task feedback
(i.e., the precise finishing time of a task influences the release of another one) or
when best- and worst-case computation times of tasks are equal to each other.

Example 1. Consider the TaskA in Fig. 1 (from [13, Fig. 2b]) with two tasks
t1 and t3 which are similar to periodic tasks, though they alternate between
each other. D, B and W denote the deadline, the best and worst-case execution
time of each task, respectively. In addition, two sporadic tasks (t0 and t2) are
interleaved between t1 and t3. Every time location li is entered, an instance of ti
is created. For preemptive fixed priority scheduling (FPS), the tasks ordered by
decreasing priority order are t0 > t2 > t1 > t3. TaskA can help to solve the
schedulability problem: e. g., for p = 10 and p′ = 4 and FPS strategy, is the
system schedulable?

Contributions. Task automata cannot be used anymore if some of the timing
constants are uncertain (for instance due to clock drift) or if they are unknown –
which rules out the verification at early design stage. In this work, we extend task
automata with timing parameters, i.e., unknown constants, as a unified formal-
ism to model monoprocessor schedulability problems with several types of tasks
(periodic, sporadic, or more complex). Most types of schedulers, including EDF
(earliest-deadline first), FPS (fixed-priority) and SJF (shortest job first), with
or without preemption, can be used. Most importantly, uncertain or unknown
timing constants can be used thanks to timing parameters. Although the general
case is undecidable, we exhibit a large decidable subclass. We then propose a
method that, given a parametric task automaton and a scheduling strategy, syn-
thesizes parameter valuations for which the system is schedulable. For example,

102 É. André

for what valuations of p, p′ is the PTaskA in Fig. 1 schedulable? We demonstrate
the applicability of our formalism using the parametric real-time model-checker
IMITATOR [5] augmented with an ad-hoc extension, and show that it can also
address robust schedulability.

Related Work. Schedulability analysis under uncertainty, i.e., with uncertain
or unknown parameters, attracted recent attention. In [11], parametric timed
automata (PTAs) [3] are used to perform parametric schedulability analysis:
whereas the general case is unsurprisingly undecidable, the authors exhibit a
subclass for which the schedulability-synthesis (i.e., synthesizing all valuations
for which the system is schedulable) can be performed exactly.

In [8] parametric interrupt timed automata are proposed: this class inspired
by PTAs is such that, at any time, at most one clock is active. This class allows
a kind of preemption, and the reachability-emptiness problem is decidable.

In [18], we used parametric stopwatch automata (PSwA) to analyze a distrib-
uted real-time system with a preemptive fixed-priority strategy; while the ana-
lytical methods are faster, they are often incomplete, while the PSwA method
implemented in a former version of IMITATOR turns out to be exact (sound and
complete) on a set of case studies. This justifies the use of parametric model
checking techniques instead of analytical techniques in order to analyze real-
time systems under uncertainty. Finally, in [6], IMITATOR was able to output
the exact answer to an industrial challenge by Thales with uncertain periods,
whereas other approaches were not able to compute this result (with the excep-
tion of one simulation-based approach, which did obtain the exact result without
however the ability to assess its optimality).

Different from these previous works, are contribution aims at providing real-
time system designers with a formalism natively including periods, deadlines and
best- and worst-case computation times, and that also allows for uncertainty.

Outline. Section 2 recalls TaskA and introduces PTaskA. Section 3 studies
the decidability of PTaskA. Section 4 introduces the modeling with PTaskA.
Section 5 presents the practical translation into IMITATOR and Sect. 6 describes
experiments. Section 7 concludes the paper.

2 Preliminaries: Task Automata

In this section, we mainly recall task automata from [13] (with some modifica-
tions in the syntax to fit our framework), and introduce our parametric extension.

2.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function

A Unified Formalism for Monoprocessor Schedulability Analysis 103

μ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, μ + d denotes the valuation such that (μ + d)(x) = μ(x) + d, for
all x ∈ X . Given R ⊆ X , we define the reset of a valuation μ, denoted by [μ]R,
as follows: [μ]R(x) = 0 if x ∈ R, and [μ]R(x) = μ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i.e., unknown rational-
valued constants. A parameter valuation v is a function v : P → Q+.

In the following, we assume � ∈ {<,≤} and �� ∈ {<,≤,≥, >}. A P-guard
is a constraint over X ∪ P defined by a conjunction of inequalities of the form
x �� z, where z is either a parameter or a constant in Q+. A non-parametric
guard is a P-guard over X only, i.e., defined by a conjunction of inequalities of
the form x �� d.

We may assume bounds on the parameters; a parameter p is bounded if its
valuation domain is of the form [a,∞) or [a, b] with a, b ∈ N.

2.2 Tasks

Let T = {t1, t2, · · · } be a set of tasks. Each task is characterized by three timings,
i.e., constants in P ∪ Q+: (i) B: its best-case execution time, (ii) W : its worst-
case execution time, and (iii) D: its relative deadline (i.e., the latest time after
the release of the task by which it must be completed). Given a task t and a
parameter valuation v, we denote by v(t) the task where the parameters in the
timings (i.e., B, W and D) are replaced with their value in v.

Each task can have several instances, i.e., copies of the same task. An instance
of task t is written (t, b, w, d) where b ∈ R+ (resp. w ∈ R+) is the best-case (resp.
worst-case) remaining computation time, and d ∈ R+ the remaining time before
the deadline.

2.3 Parametric Task Automata

Let us define parametric task automata as an extension of task automata defined
in [13], where we allow the use of parameters in guards and invariants.1

Definition 1 (PTaskA). A parametric task automaton (hereafter PTaskA) is
a tuple (T , Σ,L, l0,X , xdone,P, I, T, E), where: (i) T is a set of tasks, (ii) Σ
is a set of actions, (iii) L is a finite set of locations, (iv) l0 ∈ L is the initial
location, (v) X is a finite set of clocks, (vi) xdone ∈ X is a special clock to be
reset only when a task finishes, (vii) P is a finite set of parameters, (viii) I is
the invariant, assigning to every l ∈ L a P-guard I(l), (ix) T : L ⇀ T is the
partial task function, assigning to some locations a task, (x) E is a finite set of
edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a P-guard.

1 As this definition is a contribution of this paper, it would better fit outside of the
preliminaries section; however, it is convenient to define it first so as to then define
task automata, and (parametric) timed automata in a straightforward manner.

104 É. André

l2
t2

l1
t1

l0 a
x1 := 0
x2 := 0

x1 ≥ 10
∧ x2 ≤ 40

a
x1 := 0

b

x1 := 0

x1 > 10
b

x1 := 0

x2 > p
c

Fig. 2. An example of a PTaskA (inspired by [13, Fig. 1])

T is a partial function, and therefore some locations may be associated with
no task. Also note that we define at most one task per location. Several tasks can
be encoded in a straightforward manner by using several consecutive locations
in 0-time. Also note that the parameters can be used both in the guards and
invariants of the automaton, and/or in the task timings.

A PTaskA is said to have no task feedback if none of its guards and invariants
contain xdone.

Given a PTaskA A and a parameter valuation v, we denote by v(A) the non-
parametric task automaton (TaskA) where all occurrences of a parameter pi (in
task timings, guards and invariants) have been replaced by v(pi). We will denote
a TaskA using a tuple (T , Σ,L, l0,X , xdone, I, T, E), with all elements defined as
Definition 1 except that guards and invariants are non-parametric guards, and
that all B, W , and d in the tasks of T are non-parametric.

A TaskA is said to have exact computation times if B = W for all tasks.

Example 2. Figure 2 describes a PTask with 2 clocks, and 2 tasks: t1, an instance
of which is activated every time the PTaskA enters l1, and t2 (in l2). For t1, we
have B = 1, W = 2 and D = 10; for t2, B = 2, W = p′ and D = 8. Note that
our formalism allows one to define parameters both in the automaton (p) and
the task timings (p′). This PTaskA has no task feedback (xdone is not used).

Basically, this PTaskA can create in l1 between 1 and 5 instances of t1 (but
no more frequently than every 10 time units); then, it moves to l2 where it can
remain as long as wished, creating instances of t2 (again no more frequently
than every 10 time units). Eventually, the PTaskA can move back to the initial
location no sooner than p time units since the entering of l1.

Intuitively, this PTaskA will be schedulable only if p′ (W of t2) is not too
large, and only when p is not too small (otherwise one may loop too fast through
the automaton for all tasks to terminate before their deadline).

2.4 (Parametric) Timed and Stopwatch Automata

A parametric timed automaton (PTA) is a PTaskA for which T = ∅. Similarly,
a timed automaton (TA) is a TaskA for which T = ∅.2

2 In the literature, TAs are often defined using integer constants in guards and invari-
ants; it is well-known that using rationals preserves decidability results, as rationals
can be translated to integers using an appropriate constants rescaling.

A Unified Formalism for Monoprocessor Schedulability Analysis 105

Lower-bound/upper-bound parametric timed automata (L/U-PTAs), pro-
posed in [14], restrict the use of parameters in the model. A parameter is said
to be an upper-bound parameter if, whenever it is compared with a clock, it is
necessarily compared as an upper bound, i.e., it only appears in inequalities of
the form x � p. Conversely, a parameter is a lower-bound parameter if it is only
compared with clocks as a lower bound, i.e., of the form p � x. An L/U-PTA is
a PTA where the set of parameters is partitioned into upper-bound parameters
and lower-bound parameters.

Finally, TAs can be extended into stopwatch automata with the additional
ability to stop some clocks in selected locations [10]. Similarly, PTAs can be
extended into parametric stopwatch automata (PSwAs) [18]. We assume that
(P)SwAs are equipped with diagonal constraints, i.e., guards made of a conjunc-
tion of inequalities of the form xi − xj ��

∑
1≤i≤M αipi + d, with αi, d ∈ Q.

2.5 Task Queue and Scheduling Strategy

A task queue is a sequence of instances of the form
(
(t1, b1, w1, d1), (t2, b2,

w2, d2), · · ·
)
. Given a non-parametric task set T , let QT denote all possible

task queues. A scheduling strategy is a function Sch : T × QT → QT that, given
a task and a current task queue, inserts a new instance of this task into the
task queue, while preserving the order of the other task instances in the queue.
Famous scheduling strategies are EDF (earliest deadline first), FPS (fixed-priority
scheduling) and SJF (shortest job first).

Definition 2. A strategy is non-preemptive if it can never insert a new task
instance as the first element of a non-empty queue. A strategy is preemptive if
it can insert a new task instance as the first element of the queue, provided its
task name is different from the name of every task in the queue, i.e., the current
running task and all preempted tasks in the queue.

Example 3. Let q =
(
(t1, 1.4, 2.4, 3), (t2, 2.5, 3.5, 4.2)

)
. Assume a task t3 where

B = 1, W = 1 and D = 10. Then EDF(t3, q) =
(
(t1, 1.4, 2.4, 3), (t2, 2.5, 3.5, 4.2),

(t3, 1, 1, 10)
)
, whereas preemptive SJF(t3, q) =

(
(t3, 1, 1, 10), (t1, 1.4, 2.4, 3),

(t2, 2.5, 3.5, 4.2)
)
.

To be general enough, we only assume that schedulers must be encoded using
a SwA. Also, the decision to insert a new task instance into the queue must be
made only by comparing task timings of the new task instance with each of the
existing instances (and possibly by looking at the discrete part of the queue, i.e.,
the ordering of the task names). This is not strong an assumption: for example,
note that EDF, FPS and SJF (preemptive or not) all meet these criteria.

2.6 Semantics of Task Automata

A configuration is a triple (l, μ, q) for location l, clock valuation μ and queue q.

106 É. André

Definition 3 (Semantics of TaskA [13]). Given a scheduling strategy Sch, the
semantics of a TaskA A = (T , Σ,L, l0,X , xdone, I, T, E) is a labeled transition
system with initial state (l0,0, []) and transitions defined as follows:

– (l, μ, q) a→Sch (l′, [μ]R,Sch(T (l), q)) if (l, g, a,R, l′) ∈ E, μ |= g and [μ]R |=
I(l′), (|= denotes satisfiability)

– (l, μ, []) δ→Sch (l′, μ + δ, []) if δ ∈ R+ and (μ + δ) |= I(l),
– (l, μ, (t, b, w, d) :: q) δ→Sch (l′, μ+δ,Run((t, b, w, d) :: q, δ)) if δ ∈ R+, δ ≤ w and

(μ + δ) |= I(l), and

– (l, μ, (t, b, w, d) :: q)
fin→Sch (l, [μ]{xdone}, q) if b ≤ 0 ≤ w and [μ]{xdone} |= I(l).

where [] denotes the empty queue, :: is the list “cons” operator, and fin /∈ Σ is a
fresh action name denoting task completion.

The transition relation → is parameterized by the scheduler Sch, as the strat-
egy impacts the choice of the insertion into the queue of a new task instance.
The first rule defines a discrete transition. The second rule defines time elapsing
for the empty queue. The third rule defines time elapsing for a non-empty queue;
Run(q, δ) decreases by δ the value of all d in q, as well as the b and w of its first
element. The fourth rule defines the task completion, and resets xdone as this
clock is reset iff a task has completed.

2.7 Decidability of Task Automata

A TaskA is schedulable for a given strategy if, for all possible executions of
the TaskA, all task instances meet their deadlines, i.e., they finish before their
deadline, for any computation time within [B,W].

Let us recall the main results from [13].

Theorem 1 ([13, Theorems 1–4]). The problem of checking schedulability is
decidable when relative to: (i) a non-preemptive scheduling for TaskA; or (ii)
a preemptive scheduling strategy for TaskA without task feedback or with exact
computation times.

The decidability is obtained by encoding the scheduler Sch for this decid-
able class into a timed automaton, or a timed automaton with bounded sub-
traction, denoted by Aenc(Sch). Then, the synchronous product automaton
A ‖ Aenc(Sch) is constructed. Finally, it is shown that the system is schedulable
iff a special location (which corresponds to a deadline miss) is not reachable in
A ‖ Aenc(Sch). The result follows from the decidability of the reachability in
both timed automata [2] and timed automata with bounded subtraction [13].

Theorem 2 ([13, Theorems 5]). The problem of checking schedulability is unde-
cidable with (preemptive) EDF, FPS, SJF.

A Unified Formalism for Monoprocessor Schedulability Analysis 107

3 Decidability and Undecidability

In this section, we address the following decision problem.

3.1 Undecidability

The following undecidability results derive from two well-known results: (i) the
reachability-emptiness problem is undecidable for PTAs with at least three para-
metric clocks (clocks that are indeed compared to a parameter somewhere in the
model) and a single parameter [16]; and (ii) general schedulability analysis is
undecidable for TaskA [13].

Theorem 3 (Undecidability). The schedulability-emptiness problem is unde-
cidable for PTaskA with at least three parametric clocks and a single timing
parameter, whatever the scheduling strategy.

The schedulability-emptiness problem is undecidable for general PTaskA.

Proof. It is known that reachability emptiness is undecidable with at least three
parametric clocks and one parameter [16]. That is, we can encode a 2-counter
machine using a PTA such that the machine halts iff a special location in the
PTA is reachable. We reuse this construction by adding no task in the PTA,
except to the special location, where we add two tasks with B = W = D = 1,
activated in 0-time (adding two tasks requires a second additional location with
an urgent transition). Now, if the special location is reachable, the system is
necessarily non-schedulable (the first task will complete within 1 time unit, and
the second one will immediately miss its deadline). Conversely, if the special
location is unreachable, no task is ever activated and the system is necessarily
schedulable. The result follows from the undecidability of the halting problem
for 2-counter machines.

For the second part, it suffices to consider a PTaskA with a single parameter
never used in the model, since non-parametric-schedulability analysis is already
undecidable in general [13] (using possibly preemptive scheduling strategies). ��

Remark 1. In the first part of Theorem3, we require three parametric clocks
in the model. Note that the scheduler translates itself into a PTA with several
(possibly parametric) clocks; therefore, it is likely that the undecidability result
holds for less clocks in the PTaskA. Exhibiting better bounds (which does not
have huge practical applications though) is the subject of future work.

108 É. André

3.2 Decidability

In the non-parametric setting, the number of instances of a task t (with tim-
ings B, W , D) is intuitively bounded by
D/W �; indeed, when the number of
instances exceeds this bound, the queue will be overflown in the sense that it will
be impossible to finish that many instances before the deadline D. Therefore, as
soon as the queue exceeds this value, the system is non-schedulable and therefore,
it is sufficient to consider a bounded queue for schedulability analysis. However,
this reasoning does not hold for general PTaskA, as W can be arbitrarily small,
and D arbitrarily large. This motivates the following definition.

Definition 4. A PTaskA has schedulable-bounded parameters if, for each
task t, its worst-case execution time W is bounded in [a,∞) or [a, b] with a > 0,
and its deadline D is bounded in [a, b], with a, b ≥ 0.

That is, the W cannot be 0, and the deadline cannot be infinite. There-
fore, the maximum number of instances to be considered for a task is bounded
by
max(D)/min(W)�, where max (resp. min) denotes the upper (resp. lower)
bound of a parameter.

Example 4. Figure 2 trivially meets the schedulable-boundedness assumption,
as necessarily p′ ≥ B = 2 > 0. In addition, the maximum number of instances
necessary to check schedulability is 10/2 = 5 for t1 and 8/2 = 4 for t2.

We then slightly restrain the use of parameters in PTaskA in the following
definition, following the similar restriction in L/U-PTAs.

Definition 5. A PTaskA is an L/U-PTaskA if its parameters set is partitioned
into lower-bound parameters and upper-bound parameters.

Theorem 4 (Decidability). The schedulability-emptiness problem is decidable
for L/U-PTaskAs with schedulable-bounded parameters, for non-preemptive FPS
and SJF, and non-preemptive EDF without parametric deadlines.

Proof. Let us first show that Sch can be encoded into an L/U-PTA Aenc(Sch).
Thanks to the restriction in Definition 4, we note that it is sufficient to consider
a bounded number of instances for each task. Therefore, there is a bounded
number of possible discrete queues. These combinations can be encoded using a
finite number of locations in the L/U-PTA (more pragmatically, both in [13,17]
and in our implementation, we use shared global variables such as Booleans,
integers, or lists, that act as syntactic sugar for extra locations). Whenever the
queue exceeds its bounded size, we add a transition to a special error location.

Then, we follow the same encoding as in [13] for non-preemptive strategies:
we create one clock per possible task instance (of which the number is bounded).
Whenever x > D ∧ x ≤ W , where x denotes a task instance in a given location
encoding a queue where this instance is indeed active, we add a transition to the
error location, as this task instance missed its deadline. For FPS, this encoding
is such that D and B are always compared to clocks as lower-bounds, and are

A Unified Formalism for Monoprocessor Schedulability Analysis 109

therefore lower-bound parameters, whereas W is an upper-bound parameter.
This gives that Aenc(Sch) is a (finite) L/U-PTA. For EDF, we need to compare
expressions such as Di − xi �� Dj − xj ; by forbidding parametric deadlines,
the model remains again an L/U-PTA. Now, since A is itself an L/U-PTA, the
product A ‖ Aenc(Sch) is an L/U-PTA, where the error location is reachable
for all valuations iff there exists no parameter valuation for which the system
is schedulable. The result follows from the fact that the problem of knowing
whether a location is reachable for all valuations is decidable for L/U-PTAs [4].

For SJF, we have to compare the B and W with each other, but that can be
done “statically” by considering all possible orderings, which gives a finite union
of L/U-PTAs; we can show using a monotonicity property that the universality
of each of these constrained L/U-PTAs is decidable. ��

The class of PTaskA in Theorem 4 is large. Indeed, the assumption of
schedulable-bounded parameters is more than reasonable: both an infinite dead-
line and a 0-time WCET seem doubtful cases. In addition, the L/U assumption
is not much restrictive either: first note that any PTaskA with no parameter in
the automaton (but with parametric timings in the tasks, except for deadlines
for EDF) fits into this class. Second, this assumption mainly consists in disal-
lowing equality with parameters in the PTaskA, which does not seem much a
restriction. Both Fig. 1 (except for EDF, unless p′ is valuated) and Fig. 2 (for all
strategies) fit into this class.

Remark 2. The decidability of the schedulability-emptiness problem does not
necessarily mean that one is able to synthesize all parameter valuations. In fact,
it was shown in [15] that the synthesis is in general intractable for L/U-PTAs:
more precisely, it is (in general) impossible to represent the set of valuations
for which a given location is reachable in an L/U-PTA using a finite union of
polyhedra. However, we can mitigate this in two ways. First, the non-emptiness is
constructive: that is, if the set of valuations for which the system is schedulable
is not empty, then one is certain to exhibit immediately a set of valuations
(maybe incomplete though) using procedures from [14]. When synthesizing all
valuations is out of reach, exhibiting at least some is also of interest. Second, we
have in fact a more pragmatical goal, as the subject of the next section will be
to synthesize valuations not only for this decidable subclass, but for the general
class of PTaskA – maybe not all such valuations (due to Theorem 3) but as many
as possible.

4 Schedulability Analysis for Parametric Task
Automata

In this section, we adopt a more pragmatical view. Since we only constrain a
scheduler to be encoded using a stopwatch automaton, we therefore directly
translate any scheduler (preemptive or not) into a (parametric) stopwatch
automaton. Even in the decidable cases (where we showed that stopwatches
are not needed), we potentially use stopwatches.

110 É. André

As noted in [13], most scheduling strategies can fit into timed (or stopwatch)
automata, and therefore fit into parametric stopwatch automata when extended
with parameters.

However, the discrete part of the queue might require an unbounded number
of locations. Whereas in the non-parametric case, a sufficient bound can be
computed which is sufficient for schedulability, this does not hold anymore in
the parametric case. Therefore, in the remainder of the paper, we always assume
the mild assumption of schedulable-boundedness of Definition 4, and therefore
we can infer a bound on the length of the tasks queue.

We do not go into full details for encoding strategies, as this was (partially)
done in [13,17], and would require lengthy details; we however give the general
idea below.

General Idea. We will consider the synchronous product of two PSwAs in paral-
lel: the actual PTaskA A, and the translation of the scheduler Sch into a second
PSwA Aenc(Sch). As noted earlier, a PTaskA is just a PTA, where some loca-
tions activate task instances. Therefore, the PTaskA can be transformed into an
almost-identical PSwA (without stopwatches), by labeling each edge going into
a location where task t is activated by a fresh action Act t. Then, the scheduler
will synchronize on actions Act t, and manage the tasks queue according to its
strategy.

The locations of Aenc(Sch) are all possible configurations of the discrete part
of the tasks queue, of which there is a finite number thanks to the schedulable-
boundedness assumption. At any time, if the size of the queue overflows the max-
imal queue size implied by the schedulable-boundedness assumption, Aenc(Sch)
will go to a special error location, which denotes that the system is non-
schedulable.

We use the following clocks for Aenc(Sch). First, for each task ti, we use a
unique clock (say xi), that serves to measure the unique running instance; note
that at most one task instance of task ti has a non-zero time of already executed
computation, from the definition of non-preemptive and preemptive strategies
(from Definition 2). These task clocks may be stopped (which is why we require
stopwatches): in fact, they will always be stopped, unless an instance of the
current task is currently being executed. These task clocks are initially 0, run
when an instance of the task is executed, and are reset when such an instance
is completed.

Second, for each task instance, we create one clock. For example, clock xj
i

denotes the clock for the instance j of task ti. Thanks to the schedulable-
boundedness assumption, we know the maximum required number of instances
per task. These task instance clocks are never stopped; whenever an instance j
of task ti is active, if this instance misses its deadline Di (which can be tested
using a guard xj

i > Di), Aenc(Sch) is sent to a special error location.
We now briefly review the specificities of the three scheduling strategies.

EDF scheduler. In order to encode EDF, one must identify the task instance with
an earliest deadline: for example, if Di −xj

i < Di′ −xj′
i′ , then instance j of task ti

A Unified Formalism for Monoprocessor Schedulability Analysis 111

has an earlier deadline than instance j′ of task ti′ and should be executed first.
This can be tested thanks to the diagonal constraints in PSwAs.

FPS scheduler. The fixed-priority scheduling is encoded directly on the discrete
part of Aenc(Sch). When a new instance of task ti is activated (action Act t), if
that task has a higher priority than the task currently executed (say ti′), then
the scheduler temporarily stops ti′ and starts executing ti; otherwise, the sched-
uler keeps executing ti′ and inserts a new instance of ti into the queue.

SJF scheduler. In order to encode SJF, one must identify the task with the
shortest job: for example, if Wi − xi < Wi′ − xi′ , then the running instance of
task ti has a shorter job than the running of ti′ and should be executed first.

Using the above construction Aenc, we have:

Proposition 1. Given a PTaskA A and strategy Sch, the system is schedulable
for all valuations for which the error location is unreachable in A ‖ Aenc(Sch).

5 Parameter Synthesis for PTaskA Using IMITATOR

5.1 IMITATOR

IMITATOR [5] is a parametric model checker for networks of PSwAs extended
with various features, including global variables, strong broadcast synchroniza-
tion, and linear clock assignments (instead of being reset to 0, a clock x can
also be set, e. g., to x′ + p). The symbolic computations are performed using
polyhedra [7]. IMITATOR implements various algorithms; the one used here is
EFsynth (“reachability synthesis” [3,15]). EFsynth is in fact a semi-algorithm: it
is not guaranteed to terminate but, if it does, then its result is exact.

5.2 Translation into Parametric Stopwatch Automata

In our translation of the scheduler into a PSwA, we extensively use stopwatches,
even in the decidable cases. The reason is that, while the semantics of SwA
cannot be encoded using Difference Bound Matrices (a popular data structure
rendering TAs very efficient) in the non-parametric setting, however they come
for free in the parametric setting (as stopwatches can be encoded into polyhedra,
which usually encode the semantics of PTAs).

In order to reduce the state space, we also implemented several optimizations
using the expressive power of IMITATOR: (i) The queue is not implemented into
locations, but using a set of variables. In contrast to [17] where Booleans are used
to denote whether a task instance is active or not, we use a single integer for
each task ti, that encodes the number of active instances for ti. (ii) We also use
stopwatches as much as possible: whenever a instance clock denotes an inactive
instance, it is set to 0 and stopped so as to not create unnecessary diverging
relations with the other clocks.

112 É. André

6 Experiments

As writing such a scheduler quickly becomes tedious and error-prone, we imple-
mented an external program (650 lines of Python) that takes as input on the
one hand a scheduling strategy Sch and on the other hand the list of tasks of the
PTaskA A (with their timings, their priority (for FPS), their maximum number
of instances ...), and automatically generates the corresponding PSwA Aenc(Sch)
in the IMITATOR input format. Then, it suffices to pass to IMITATOR the model
made of A and Aenc(Sch).

We used IMITATOR 2.9.1 for our experiments. All the subsequent analyses
terminate in (at most) a few seconds on a MacBook Pro i7 2.67 GHz.3

In this section, we consider a preemptive FPS scheduler. All the results are
exact – although the preemptive FPS scheduler is clearly beyond the decidable
class of Theorem 4.

Non-parametric Analysis. Quite trivially, our framework allows for non-
parametric analysis. Setting p = 10 and p′ = 4, IMITATOR concludes that the
PTaskA in Fig. 1 is schedulable for preemptive FPS. With priorities t0 > t1 >
t2 > t3, the system becomes non-schedulable.

Mixing Parameters. Let us go back to Fig. 2. First, we set p = 100, and we
obtain that the system is schedulable for p′ ∈ [2, 3]. Second, we set p′ = 3,
and we obtain that the system is schedulable for p ≥ 42. This confirms both
intuitions that p′ should be not too large, and p large enough for the system
to be schedulable. Finally, we run an analysis with both parameter dimensions,
which gives:

p′ ∈ [2, 3]∧p ≥ 42 ∨ p′ = 2∧p ∈ [8, 42) ∨ p′ > 2∧p < 42∧p ≥ 36+2×p′

A graphical representation output by IMITATOR is given in Fig. 3a (where p100
stands for p and Q WCET for p′).

Concerning Fig. 1, setting p′ = 4 yields p ≥ 9, while a parametric schedula-
bility analysis on both dimensions gives

p ≥ 9 ∧ p′ ≥ 2 ∧ p + p′ ≥ 23 ∨ p ≥ 9 ∧ p′ ≥ 3 ∧ p + p′ < 23

A graphical representation is given in Fig. 3a (where S D stands for p′).

Robustness Analysis. Finally, we can perform robustness analysis: often, TAs
and their extension are not by default robust, i.e., they can require infinitely
precise behaviors. It may happen that a property holds only if all timing con-
stants are implemented exactly as they were specified. In contrast, robustness
analysis (see, e. g., [9]) consists in checking whether there exists some ε > 0 for
which, when all guards may be enlarged by ε, the system still meets its prop-
erty. To check whether Fig. 1 is robustly schedulable, we modify the system as

3 Sources, binaries, models and results are available at imitator.fr/static/FMICS17.

http://www.imitator.fr/static/FMICS17

A Unified Formalism for Monoprocessor Schedulability Analysis 113

(a) Fig. 2 (b) Fig. 1
(c) Fig. 1 (robust)

Fig. 3. Visualization of parametric schedulability zones

follows: any constraint (in both A and Aenc(Sch)) of the form x ≤ z, x ≥ z,
or x = z, where z ∈ Q+ ∪ P, is transformed into x ≤ z + ε, x ≥ z − ε, or
z − ε ≤ x ≤ z + ε, respectively (and similarly for strict constraints). Applying
this modification to Fig. 1 with p = 10 and p′ = 4, by adding a fresh parameter ε,
gives the constraint ε = 0: that is, this system is not robustly schedulable. Any
modification (even infinitesimal) of the timing constants may render the system
non-schedulable.

We can combine parametric schedulability with robustness analysis: keeping
both p and ε gives

p ≥ 9 ∨ ε ≤ 2
5

∧ p ≥ 20 + 5ε ∧ p ≥ 19 + 8ε

That is, the system is not schedulable for p < 9, is schedulable but not robustly
for p ∈ [9, 20] and becomes robust from 20. Note that our constraint even gives
by how much the guards can be enlarged (the value depends on p and never
exceeds 2

5). A graphical representation is given in Fig. 3c.

7 Conclusion

We introduced a unified and concise model for parametric schedulability analysis
for (non-)preemptive strategies on a monoprocessor. While the general case is
undecidable, we exhibited a decidable subclass, and our implementation termi-
nates with an exact result on benchmarks even outside of the decidable class.

While formal methods with timing parameters might not scale to verify the
schedulability of very large systems with all details, we believe they can pro-
vide designers with first schedulability results on subparts of the system, or to
derive timing bounds on abstractions of it. Designing ad-hoc abstractions for
our framework is on our agenda.

There is still some open space between our decidability result (Theorem 4)
and our undecidability results (Theorem3). A promising way to improve the

114 É. André

knowledge of decidability would be to show that L/U-parametric timed automata
with bounded subtractions are decidable, which would allow to extend our decid-
able subclass of PTaskA. Conversely, a good candidate for undecidability is non-
preemptive strategies without the schedulable-boundedness assumption.

So far, whereas the scheduler is automatically generated, the PTaskA still
needs to be manually constructed. A natural future work is therefore to propose
on the one hand a library of patterns (periodic tasks, sporadic tasks ...), and on
the other hand an automated translation from existing formalisms.

Of course, handling multiprocessor scheduling is on our agenda, as well as
mixed-criticality scheduling. Finally, we would also like to consider a parameter-
ization of a recent extension of TaskA [12].

References

1. Abdeddäım, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch
automata. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 113–126. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 9

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

4. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham
(2016). doi:10.1007/978-3-319-29510-7 3

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

6. André, É., Lipari, G., Sun, Y.: Verification of two real-time systems using para-
metric timed automata. In: WATERS (2015)

7. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

8. Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed
automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
59–69. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41036-9 7

9. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla,
P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41036-9 1

10. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
doi:10.1007/3-540-44618-4 12

11. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer
Society (2008)

12. Fang, B., Li, G., Sun, D., Cai, H.: Schedulability analysis of timed regular tasks
by under-approximation on WCET. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 147–162. Springer, Cham (2016). doi:10.1007/
978-3-319-47677-3 10

http://dx.doi.org/10.1007/3-540-46002-0_9
http://dx.doi.org/10.1007/978-3-319-29510-7_3
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-41036-9_7
http://dx.doi.org/10.1007/978-3-642-41036-9_1
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1007/978-3-319-47677-3_10
http://dx.doi.org/10.1007/978-3-319-47677-3_10

A Unified Formalism for Monoprocessor Schedulability Analysis 115

13. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

14. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebr. Program. 52–53, 183–220 (2002)

15. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

16. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol.
1790, pp. 296–310. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1 26

17. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven
systems. In: RTCSA, pp. 182–189. IEEE Computer Society (1999)

18. Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability
analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky,
P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014).
doi:10.1007/978-3-319-05416-2 14

http://dx.doi.org/10.1007/3-540-46430-1_26
http://dx.doi.org/10.1007/978-3-319-05416-2_14

Special Track: Formal Methods for
Mobile and Autonomous Robots

CRutoN: Automatic Verification of a Robotic
Assistant’s Behaviours

Paul Gainer1(B), Clare Dixon1, Kerstin Dautenhahn2, Michael Fisher1,
Ullrich Hustadt1, Joe Saunders2, and Matt Webster1

1 University of Liverpool, Liverpool, UK
{p.gainer,cldixon,mfisher,u.hustadt,matt}@liverpool.ac.uk

2 University of Hertfordshire, Hatfield, UK
{k.dautenhahn,j.1.saunders}@herts.ac.uk

Abstract. The Care-O-bot is an autonomous robotic assistant that can
support people in domestic and other environments. The behaviour of the
robot can be defined by a set of high level control rules. The adoption
and further development of such robotic assistants is inhibited by the
absence of assurances about their safety. In previous work, formal models
of the robot behaviour and its environment were constructed by hand
and model checkers were then used to check whether desirable formal
temporal properties were satisfied for all possible system behaviours. In
this paper we describe the details of the software CRutoN, that provides
an automatic translation from sets of robot control rules into input for the
model checker NuSMV. We compare our work with previous attempts to
formally verify the robot control rules, discuss the potential applications
of the approach, and consider future directions of research.

1 Introduction

Robot assistants are autonomous robots that can help with home and work-
oriented activities collaborating closely with humans. Personal care robots assist
those who might be vulnerable due to illness, age or disability. In 2014 a new
ISO safety standard for personal care robots was published, providing guidelines
to manufacturers of personal care robots to ensure the safety of their design,
construction and application [7]. However, the development and deployment of
robotic assistants has been restricted by the lack of formal assurances of their
safety.

Formal verification is the application of mathematical techniques to deter-
mine whether or not a system conforms exactly to its specification. These tech-
niques are used in the development of software and hardware systems, notably
in the development of critical systems where system failure can have drastic
human or economic repercussions. Formal verification has already been applied

This work was supported by both the Sir Joseph Rotblat Alumni Scholarship at
Liverpool and the EPSRC Research Programme EP/K006193/1 Trustworthy Robotic
Assistants.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 119–133, 2017.
DOI: 10.1007/978-3-319-67113-0 8

120 P. Gainer et al.

to robotic systems, for instance, Cowley and Taylor [2] used linear logic and
dependent-type theory to verify assembly robots. A different approach using
hybrid automata and hybrid statecharts was employed by Mohammed et al. [10]
to formally model and verify multirobot systems, and control algorithms for a
surgical robot were verified by Kouskoulas et al. in [8]. Applying formal verifica-
tion to the behaviours of robotic assistants can help to support their safety and
trustworthiness by demonstrating that the robot always behaves in accordance
with a set of formal requirements. We might, for instance, want to show that for
all possible executions of robot behaviours the robot eventually performs some
good action, or conversely that some bad action is never performed.

The Care-O-bot R© is a robotic assistant that has been deployed in a domestic-
style house at the University of Hertfordshire. The house is equipped with sensors
which provide real-time information on the state of the house and its occupants.
Studies have already been conducted to apply formal verification to the behav-
iours of the Care-O-bot in this environment. Model checking, an automated
algorithmic verification technique, was applied in [3]. A model of the robot and
its environment was manually constructed and the model checker NuSMV [1]
was used to prove several properties relating to the priority and interruptibil-
ity of behaviours. Sensor data pertaining to the house was modelled by non-
deterministically selecting one of several possible values for every sensor at any
moment in time. In [17] algorithmic verification was again applied to the set of
Care-O-bot behaviours. Here, models of the robot and its environment were man-
ually constructed using the intelligent agent modelling and simulation language
Brahms [15]. The BrahmsToPromela tool [16] was then used to automatically
translate Brahms models into PROMELA, the input language for the model
checker Spin [6]. This approach differed from the first in that the model of sen-
sor data was more restrictive. The non-deterministic choice of sensor values was
constrained using data taken from an activity log for a real 6 h execution period
of the robot.

These studies clearly demonstrated that the high level decision making of
the Care-O-bot could indeed be verified using model checking, however both
approaches had limiting factors. Firstly, effort was required to manually con-
struct formal models for a fixed set of robot behaviours. Furthermore, a new
set of control rules means the model needs to be constructed again. Secondly,
in [3] the timing constraints in the control rules were dealt with in an ad-hoc
manner. Additionally, the properties checked focused on the operation of the
robot control rules rather than general requirements of the robot. In this paper
we describe the software CRutoN1, developed in [5], that proves to be an effec-
tive solution to the problem. CRutoN automates the generation of formal input
models for the NuSMV model checker, and minimises the time needed to apply
model checking to different sets of robot behaviours. Given a set of rules at the
design stage, generated models could be used to find unexpected behaviour in the
model. Less effort would then be required to refine the design since modification

1 The software, sample output files, and input used in this paper, are available at
https://github.com/PaulGainer/CRutoN.

https://github.com/PaulGainer/CRutoN

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 121

of the formal model is automated. We show that the models generated using the
software retain the same desirable properties as those constructed manually, and
describe features of the software that facilitate modulation of the granularity of
temporal aspects of the robot behaviours.

The Care-O-bot, the environment in which it operates, and the behaviours
that determine the actions of the robot are introduced in Sect. 2. An overview
of the CRutoN software, and the translation of control rules for the robot into
an intermediate form representation are given in Sect. 3. In Sect. 4 we formalise
the behaviour of the robot using linear time temporal logic, and we specify
the expected behaviour of the robot in any generated formal model. Section 5
describes the translation from the intermediate form representation into input
for the model checker NuSMV. In Sect. 6 the results of applying this translation
to sets of control rules are presented, and we discuss the limitations of our
approach. We give concluding remarks in Sect. 7 and outline some future work.

2 The Care-O-bot and the Robot House

The Robot House is a typical suburban house in Hertfordshire, UK. The house is
appropriately furnished, and is equipped with a number of sensors. The sensors
provide real time information about the state of the house and its occupants, for
instance pressure sensors that detect when an occupant is seated, or electrical
sensors indicating whether doors are open or closed [4,13].

The house provides a realistic setting in which experiments can be conducted
using a number of robots, including the Care-O-bot (see Fig. 1). The Care-O-bot
is a commercially available robot assistant developed at the Fraunhofer Institute
for Manufacturing Engineering and Automation [12]. The robot has an articu-
lated torso with a manipulator arm and tray, stereo optical sensors, LED lights,
and appropriate sensors that provide information about its current state. The
robot software is based on the Robot Operating System [11].

Control Rules and Behaviours. The high level decision making of the Care-O-bot
is specified by a set of behaviours whose execution is controlled by a scheduler.
Each behaviour consists of a sequence of atomic preconditions and a sequence of
actions. Atomic preconditions and actions are also called control rules. Actions
correspond to operations executed by the robot, including the setting of internal
variables, implemented as ROS scripts. For instance, the robot may move to the
living room and say “It’s time for your medicine”, or may turn its inbuilt lights
to yellow. Atomic preconditions are propositional statements that check either
the internal state of the robot or the state of the environment in which the robot
operates. They may include an additional constraint requiring the condition to
have remained true for some period of time, or requiring the condition to have
been true at least once within some period of time.

The atomic preconditions of a behaviour are linked by Boolean operators
into a propositional precondition. This precondition must evaluate to true for
the behaviour to be scheduled for execution. If the sequence of atomic precon-
ditions for a behaviour is empty then the associated propositional precondition,

122 P. Gainer et al.

(a) (b)

Fig. 1. The Care-O-bot (a) operating in the Robot House in Hertfordshire, and the
floor plan of the house (b).

the empty conjunction, is always true. Behaviours without atomic preconditions
can be declared to be subroutines. Subroutines cannot be picked by the sched-
uler for execution but can be executed directly by actions in other behaviours.
Behaviours that are not subroutines are also called schedulable.

Behaviour Scheduling. The algorithm in Fig. 3 describes how the Care-O-bot
schedules its behaviours. When all preconditions of a behaviour are true, then
the behaviour can be selected by the scheduler for execution. Only one behav-
iour can be executed at a time and when a behaviour is executed, the robot will
sequentially perform its sequence of actions. Each behaviour has a priority, given
by a natural number, which is used by the scheduler to decide which behaviour
to execute if the preconditions of several behaviour are true at the same time.
Behaviours with higher priorities will be scheduled before those with lower pri-
orities, and if more than one behaviour shares the highest priority then one of
these will be non-deterministically selected for scheduling. A behaviour can be
declared to be interruptible. The execution of the sequence of actions of an inter-
ruptible behaviour can be interrupted by another schedulable behaviour having
a priority greater than the priority of the executing behaviour, if, and only if,
the preconditions of the interrupting behaviour hold. Any remaining actions in
the interrupted behaviour are lost, and the behaviour must again wait to be
scheduled as usual. All subroutines are uninterruptible.

Figure 2 shows the control rules for the S1-Med-5PM-Remind behaviour.
Rules 1 and 2 are atomic preconditions and rules 3–9 are actions. For each con-
trol rule in the database there is a flag indicating if that rule is a precondition or
an action. These are omitted here for simplicity. Rule 1 requires the time to be
after 5pm and rule 2 requires the robot’s internal flag ::502::5PM-MedicineDue
to be true. When both preconditions hold, and this behaviour is scheduled for
execution, the robot will sequentially execute actions 3–9. It first turns its lights

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 123

1. Time is on or after 17:00:00
2. ::502::5PM-MedicineDue is true
3. Turn light on ::0::Care-O-Bot 3.2 to yellow
4. move ::0::Care-O-Bot 3.2 to ::14:: Living Room Sofa Area in the

Living Room and wait for completion
5. Turn light on ::0::Care-O-Bot 3.2 to white and wait for completion
6. ::0::Care-O-Bot 3.2 says ’Its time for your medicine’ and wait for

completion
7. ::0::Care-O-Bot 3.2 GUI,S1-Set-GoToKitchen, S1-Set-ReturnHome,

S1-Set-WaitHere
8. SET ::502::5PM-MedicineDue TO false
9. SET ::503::5PM-MedicineReminder TO true

Fig. 2. The S1-Med-5PM-Remind behaviour

to yellow, then moves to the living room, near the sofa and then turns its lights
to white. The robot then tells the occupant “It’s time to take your medicine”,
and displays some options on its GUI that allow the occupant to either send the
robot to the kitchen, send the robot to its charging point, or instruct the robot
to do nothing. The values of two internal variables are then set to true and false
respectively.

3 Intermediate Form Translation

As a first step to the transformation of Care-O-bot control rules into input for
NuSMV, we translate the extracted control rules into a succinct intermediate
form representation that represents all of the information extracted from the
control rules. This intermediate form facilitated the final translation into SMV.
This was so that translations from the intermediate form into input for other
model checkers could potentially be defined and implemented.

Precondition Classification. For the translation into intermediate form, we dis-
tinguish two categories of atomic preconditions: Value Check and Time Constraint.
A Value Check checks the value of some variable corresponding to the internal
state of the robot or the state of the environment. A Time Constraint requires the
current time of day to be within some given time interval. Table 1 gives examples
of preconditions for each of the two categories. The first Value Check checks the
value of the Boolean variable ::502::5PM-MedicineDue, which equates to an
internal variable of the robot, the second Value Check checks that the location of
the robot is in the living room, and the two Time Constraints require the current
time to be at or after 5pm, or between midnight and 5 pm.

Action Classification. We also distinguish four categories of actions: Value
Assignment, Behaviour Execution, Behaviour Selection, and Delay. A Value Assign-
ment assigns some value to a variable. This can represent a change in the inter-
nal state of the robot, or a change in the state of the environment. A Behaviour

124 P. Gainer et al.

Table 1. Precondition categories

Value Check ::502::5PM-MedicineDue is true

::0::Care-O-Bot 3.2 location is ::14::the Living Room

Time Constraint Time is on or after 17:00:00

Time is between 00:00:00 and 16:59:00

Execution transfers control from some scheduled behaviour to another behav-
iour. A Behaviour Selection again transfers control to another behaviour, how-
ever, here a choice of possible behaviours is presented to the occupant of the
house via the GUI of the Care-O-bot. A Delay instructs the robot to do noth-
ing for a given number of seconds. Table 2 gives examples of actions for each
of the four categories. The first Value Assignment assigns the value true to the
internal variable ::503::5PM-MedicineReminder, while the second Value Assign-
ment selects a phrase to be vocalised by the robot. The Behaviour Execution
executes the behaviour S1-sleep, and the Behaviour Selection allows the occu-
pant to choose to execute one of the S1-Set-GoToKitchen, S1-Set-ReturnHome,
and S1-Set-WaitHere behaviours. Finally, the Delay instructs the robot to do
nothing for 1 s.

Parsing and Translation. As can be observed from the tables, the control rules
can have a wide variety of syntactic forms. To ensure that future control rules
that may use additional categories of preconditions or actions can be translated
correctly, the parsing and extraction of information from the rules is not hard
coded into the software. The translator takes as input a set of Grammar Rules
defining the syntax of the control rules, and a set of Data Extraction Rules that
define how information should be extracted from the control rules. The Grammar
Rule for a new control rule allows an automaton to be constructed at run time
that can be used to parse this new syntactic rule form. This Grammar Rule has a
corresponding Data Extraction Rule that describes how meaningful information
can be extracted from the text parsed by the automaton. The software has
options that regulate the level of automation of the translation process and
determine when a user should be prompted to disambiguate input if necessary.

Table 2. Action categories

Value Assignment SET ::503::5PM-MedicineReminder TO true

::0::Care-O-Bot 3.2 says Its time for your medicine

Behaviour Execution Execute sequence S1-sleep on ::0::Care-O-Bot 3.2

Behaviour Selection ::0::Care-O-Bot 3.2 GUI, S1-Set-GoToKitchen,

S1-Set-ReturnHome, S1-Set-WaitHere

Delay Wait for 1 seconds on ::0::Care-O-Bot 3.2

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 125

procedure BehaviourScheduling
sched ← none
while true do

S ← all schedulable behaviours
whose preconditions hold

P ← b ∈ S with highest priority
if sched = none and S �=∅ then

sched ← P
else if interruptible(sched) and

priority(P) > priority(sched) then
sched ← P

else if all actions executed then
sched ← none

else execute next action
end if

end while
end procedure

Fig. 3. Care-O-bot behaviour scheduling.

Control
Rules

CRutoN
Parser

Parameter
Input

Intermediate
Form

Grammar &
Data Rules

Input for
other Model
Checkers

NuSMV
Model

Fig. 4. A system diagram of CRutoN.

Figure 4 shows a diagram of the system. Given a set of Care-O-bot behav-
iours S, a set of Grammar Rules and Data Extraction Rules, and parameter input
for the parser, we construct an intermediate form representation (IFR). The IFR
of S is a tuple I(S) = 〈Γ,Ω, fsch , fint〉, where Γ is a set of behaviours in inter-
mediate form, fsch and fint are predicates over Γ that are true if, and only if, a
behaviour is respectively schedulable or interruptible, and Ω is a set of variables
that represent the internal state of the robot and the state of the environment.
A behaviour B ∈ Γ is a tuple B = 〈P,A, ρ〉, where P is a formula formed by
combining the atomic preconditions of the behaviour, ρ ∈ N is the priority of
the behaviour, and A is a sequence of actions. Each individual action α ∈ A is
a tuple of values. A Value Assignment is a pair (ω, ν), where ω ∈ Ω is a variable
and ν is a value from the domain of ω, a Behaviour Execution is a subroutine
B ∈ Γ , a Behaviour Selection is a set of subroutines B ⊆ Γ , and a Delay is a
natural number D.

4 Property Specification

There was no available formal semantics specifying the behaviours of the Care-O-
bot. An analysis of the set of control rules modelled in [3,17] and input from the
development team led to the formulation of desirable properties that would be
expected to hold in any model resulting from the translation into model checker
input. Linear-time temporal logic (LTL) was used to specify these properties.

Linear Temporal Logic. In LTL the model of time is isomorphic to the natural
numbers, and a model for a formula is a sequence of states Σ = σ0, σ1, . . . such
that each state σi is a valuation for the set of variables V at the ith moment in

126 P. Gainer et al.

time, and σi(ω) is finite for every ω ∈ V and i ≥ 0. The set of LTL formulae can
be defined inductively as

ϕ:: = � | ⊥ | (ω=ν) | ¬ϕ | (ϕ∨ψ) | (ϕ∧ψ) | (ϕ =⇒ ψ) | �ϕ | �ϕ | ♦ϕ

where ω ∈ V and ϕ and ψ are LTL forumlae. If ω is a Boolean variable we will
often use ω for (ω=true), and ¬ω for (ω=false). We can define (Σ, i) |= Φ, the
truth of a formula Φ in Σ at time i, as follows:

(Σ, i) |= (ω=ν) iff σi(ω)=ν

(Σ, i) |= �Φ iff (Σ, i + 1) |= Φ

(Σ, i) |= ♦Φ iff for some k ∈ N, (k ≥ i) and (Σ, k) |= Φ

(Σ, i) |= �Φ iff for all k ∈ N, (k ≥ i) implies (Σ, k) |= Φ.

The semantics of propositional operators is defined as usual.

Formal Model of the System State. Given a set of Care-O-bot behaviours S, and
its intermediate form representation I(S) = 〈Γ,Ω, fsch , fint〉, we define variables
sched and step that are used to model the behaviour scheduling procedure of the
robot. The scheduling variable sched ranges over the values {none} ∪ {schedB |
B ∈ Γ} and its value indicates the behaviour that is currently scheduled by the
robot with none indicating that no behaviour is scheduled. The step variable
step ranges over the values {none} ∪ {step1, . . . , stepk} where k = max{|A| |
〈P,A, ρ〉 ∈ Γ}, and its value indicates the index of an action that is being
executed in the sequence of actions for a behaviour that is currently scheduled
by the robot, with none indicating that no action is being executed. A model of
our system is a sequence of states Σ = σ0, σ1, . . ., and each state is a valuation
for Ω ∪ {sched, step}.

Specification. We now formally express properties that we would expect to
hold in any generated NuSMV model. The following schematic formulae intend
to capture the behavioural semantics of the robot with regards to behaviour
scheduling and action execution. Let Γ sch = {B ∈ Γ | fsch(B)} be the set of all
behaviours that are schedulable, and let Γ int = {B ∈ Γ | fint(B)} be the set
of all behaviours that are interruptible. For every B = 〈P,A, ρ〉 ∈ Γ we define
�B = {〈P ′,A′, ρ′〉 ∈ Γ | ρ′ > ρ} to be the set of all behaviours in Γ that have a
higher priority than B.

If the kth action of a scheduled behaviour B is the Value Assignment (ω, ν)
and this action is executed, then the variable ω should have the value ν in the
next moment in time.

�[(
sched = schedB ∧ step = stepk

)
=⇒ �[

(ω = ν)
]]

(1)

Scheduling. If no behaviours are scheduled and the preconditions to at least one
behaviour hold, then in the next moment in time a behaviour will be scheduled.

� [(
sched = none

∧ ∨
〈P,A,ρ〉∈Γ sch P

)
=⇒ � [

step = step1

∧ ∨
B∈Γ sch sched = schedB

]]
(2)

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 127

Termination. For any behaviour B that executes a Value Assignment or Delay as
its kth action, and this is the last action of the behaviour, if the preconditions
to no other schedulable behaviour hold then in the next moment in time no
behaviour should be executing.

� [(
sched = schedB ∧ step = stepk

∧ ∧
〈P,A,ρ〉∈Γ sch ¬P

)
=⇒ � sched = none

]
(3)

Prioritisation. If no behaviour is scheduled, and the preconditions to one or more
behaviours hold, then in the next moment in time the schedulable behaviour with
the highest priority will be executing its first action.

�
⎡
⎣

(
sched = none ∧ ∨

〈P,A,ρ〉∈Γ sch P
)

=⇒
∨

B∈Γ sch

(∧〈P ′,A′,ρ′〉∈�B∩Γ sch ¬P ′

∧ �[sched = schedB ∧ step = step1]
)
⎤
⎦ (4)

Persistence. For every uninterruptible behaviour B, if it has been scheduled and
has an action sequence of length k, then it should always eventually execute its
last (kth) action.

� [
sched = schedB =⇒ ♦(sched = schedB ∧ step = stepk)

]
(5)

Continuity. For any interruptible behaviour B that executes a Value Assignment
or Delay as its kth action, where that action is not the last action, in the next
moment in time the behaviour should be executing its (k+1)th action if no other
behaviour can interrupt B.

�
[

(sched = schedB ∧ step = stepk ∧ ∧
〈P,A,ρ〉∈�B∩Γ sch ¬P)

=⇒ �[sched = schedB ∧ step = stepk+1]

]
(6)

Note that without the 3rd conjunct we can also show continuity for uninterrupt-
ible behaviours executing Value Assignment or Delay actions.

Discontinuity. For all interruptible behaviours it should be the case that if the
behaviour can be interrupted in the next moment in time, the schedulable behav-
iour having the highest priority of all the behaviours that can interrupt should
be executing its first action.

∧

B∈Γ int

�
[

∨
B′∈�B∩Γ sch

(�[sched = schedB′ ∧ step = step1]
∧ ∧

〈P,A,ρ〉∈�B′∩Γ sch ¬P

)]
(7)

Delegation. For every behaviour B executing a Behaviour Execution, Bex , as its
kth action, if B is not interrupted by another behaviour then in the next moment
in time Bex should be scheduled and executing its first action.

� [(
sched = schedB ∧ step = stepk

∧∧
〈P,A,ρ〉∈�B∩Γ sch ¬P

)
=⇒ � [

sched = schedBex

∧ step = step1

]]
(8)

128 P. Gainer et al.

Resumption. For every behaviour B executing a Behaviour Execution Bex as
its kth action, where that action is not the last action, if B is not interrupted
by another behaviour then at some time after that Bex should have finished
executing its actions, and the original behaviour should be executing its (k+1)th

action.

� [(
sched = schedB ∧ step = stepk

∧∧
〈P,A,ρ〉∈�B∩Γ sch ¬P

)
=⇒ ♦

[
sched = schedB

∧ step = stepk+1

]]
(9)

Selection. For every behaviour B executing a Behaviour Selection B as its kth

action, if B is not interrupted by another behaviour then in the next moment in
time a behaviour in B should be scheduled and executing its first action.

�
⎡
⎣

⎛
⎝

sched = schedB

∧ step = stepk

∧ ∧
〈P,A,ρ〉∈�B∩Γ sch ¬P

⎞
⎠=⇒∨

Bex∈B �[
sched = schedBex

∧ step = step1

]
⎤
⎦ (10)

Selection Resumption. For every behaviour B executing a Behaviour Selection B
as its kth action, where that action is not the last action, if B is not interrupted by
another behaviour then at some time after that any subroutine in B should have
finished executing its actions, and the original behaviour should be executing its
(k+1)th action.

�
⎡
⎣

⎛
⎝

sched = schedB

∧ step = stepk

∧ ∧
〈P,A,ρ〉∈�B∩Γ sch ¬P

⎞
⎠ =⇒ ∨

Bex∈B ♦
[

sched = schedB

∧ step = stepk+1

]⎤
⎦ (11)

5 Translation into SMV

NuSMV [1] is a symbolic BDD-based model checker. The model checker accepts
as input a finite state transition system defined using the modelling language
SMV [9]. NuSMV input models can be decomposed into separate modules. Every
model has at least one module, the main module, and some number of additional
parameterisable modules. Each model consists of three sections: VAR, ASSIGN,
and DEFINE. The VAR section defines variables and instances of modules; vari-
ables can be Booleans, symbolic enumerated types, or finitely bound integers. The
global state of a NuSMV model is a valuation for all variables in the model. Ini-
tial states of the model and transitions between states are defined in the ASSIGN
section. Finally, macro expressions can be defined in the DEFINE section.

Given a set of Care-O-bot behaviours S, and its intermediate form represen-
tation I(S)=〈Γ ,Ω,fsch ,fint〉, we construct an input model for NuSMV as follows.

State Variables. For every ω ∈ Ω there is a variable declaration in the VAR
section of the main module. Variables are either Booleans or enumerated types –
variables over a set of symbolic constants. Variables that correspond to internal

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 129

flags of the robot are initialised to false, and initial values for variables corre-
sponding to the environment are non-deterministically chosen by NuSMV in the
initial state. Initial values for both types of variable can also be explicitly spec-
ified in the form of additional input to the software. As in Sect. 4 we also define
the enumerated variables scheduled and step. Initially, both variables have the
value none. The additional variable scheduled last ranges over the same values
as scheduled, and is used to record a behaviour that executes a Behaviour Exe-
cution or Behaviour Selection so that it can be rescheduled once the subroutine
has executed all of its actions. The initial value of scheduled last is none. Since
we only use one variable to record behaviours that should be rescheduled, we
can only construct models where the level of nesting of behaviour executions is
at most 1. Introducing additional variables would allow us to extend the nesting
level, at the expense of model size.

The time variable records the time of day in the Robot House. Values for time
are defined by partitioning a 24 h period into intervals during which different
subsets of the set of all Time Constraints in the model hold. The initial value
of time is non-deterministically chosen in the initial state, and the value then
remains constant throughout a run of the system. If desired, time can be set
to an exact time of day using a parameter to the software, but still remains
constant throughout. Note that this is a limitation relating to explicit time.

Behaviours. For every B = 〈P,A, ρ〉 ∈ Γ there is a corresponding macro expres-
sion for P in the main module; for non-schedulable behaviours this is simply false.
In NuSMV a variable assignment occurs if some constraint holds. There is an
ordering on variable assignments such that if the constraints hold for multiple
assignments to a single variable then the assignment ordered first will be applied.
We can exploit this to ensure that behaviours with higher priorities are scheduled
before those with lower priorities i.e. scheduled is assigned a value corresponding
to the behaviour having the highest priority of all those that can be scheduled.
Assignments to scheduled are constrained by the expression corresponding to P ,
and by an interruptibility macro expression that evaluates to true if a behaviour
with a lower priority is currently scheduled. For each Value Assignment in A there
is a corresponding variable assignment, constrained by scheduled having a value
corresponding to B and step having a value corresponding to the index of the
action in A. For each Behaviour Execution there is a corresponding assignment to
scheduled last of a value corresponding to B, an assignment of 1 to step, and an
assignment to scheduled of a value corresponding to that of the subroutine being
executed. Additional variable assignments model the rescheduling of a behaviour
that calls a subroutine, once the subroutine has executed all of its actions.

Temporal Constraints. Some Value Check rules have additional temporal con-
straints. There are two types of constraint, Been-In-State and Was-In-State, that
require some variable ω ∈ Ω to have respectively maintained some value ν
during some previous period of time, or to have had the value ν at least
once during some previous period of time. We model Been-In-State and Was-In-
State constraints by introducing additional variables that record the number of

130 P. Gainer et al.

Table 3. Priorities and flags for Care-O-bot behaviours

Name Pri Int Sch

S1-Med-5PM-Reset 90 0 1
checkBell 80 0 1
unCheckBell 80 0 1
S1-remindFridgeDoor 80 0 1
answerDoorBell 70 0 1
S1-alertFridgeDoor 60 0 1
S1-Med5PM 50 1 1
S1-Med5PM-Remind 50 1 1
S1-gotoKitchen 40 1 1
S1-gotoSofa 40 1 1

Name Pri Int Sch

S1-gotoTable 40 1 1
S1-kitchenAwaitCmd 40 1 1
Sw-sofaAwaitCmd 40 1 1
S1-tableAwaitCmd 40 1 1
S1-WaitHere 40 1 1
S1-ReturnHome 40 1 1
S1-continueWatchTV 35 1 1
S1-watchTV 30 1 1
S1-sleep 10 1 1

transitions of the model since a variable last had a value other than ν or since
a variable last had the value ν respectively. We associate with each state of the
model some fixed length of time in seconds (duration), and this determines the
number of values over which these additional variables range. The software has
a parameter determining the granularity of these temporal aspects of the model.

6 Results and Discussion

We focus on the complete set of 31 behaviours developed as part of the EU
Accompany project2 and available from the project’s Git repository3. The pri-
ority (Pri), interruptibility (Int), and schedulability (Sch) of the 19 schedulable
behaviours is given in Table 3. There were also 12 unschedulable subroutines all
with Pri, Int, and Sch set to 0. For every behaviour, and every action in those
behaviours, we instantiated the corresponding properties specified in Sect. 4. The
full specification for the system was the conjunction of all of these individually
instantiated properties. All models generated using all behaviours with different
sets of parameter input for CRutoN satisfied their corresponding specification.

Generated models can be used to check properties pertaining to specific
behaviours and robot actions. We might, for instance, want to check whether
a behaviour will eventually be scheduled, or if the robot will eventually perform
some action, given the current state of the robot and environment. We validated
our model by checking properties that were originally specified in [3]. For exam-
ple, “is it always the case that if the fridge door is open and the robot has not
already alerted the user, then at some point in the future the robot will alert the
user?” We found that for all generated models the verification results matched
those obtained by checking the properties in the manually constructed model.

Recall that CRutoN accepts parameters to allow modulation of the tempo-
ral granularity of the model, and associates a fixed length of time (duration) in
seconds with every state in the formal model. Table 4 shows the effect of tempo-
ral granularity on the size of the models, and the time taken to perform model

2 http://accompanyproject.eu.
3 https://github.com/uh-adapsys/accompany.

http://accompanyproject.eu
https://github.com/uh-adapsys/accompany

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 131

Table 4. Model size and model checking times for different temporal granularities.

Seconds per state 600 500 400 300 200 100 50

States 249 249 249 250 251 253 256

Reachable states 222 222 223 223 224 226 228

Model build time(s) 11.94 12.08 13.17 15.13 20.43 39.43 108.64

Model checking time(s) 0.73 0.82 0.99 1.16 1.75 3.77 8.95

checking. The results correspond to the initial set of 31 behaviours. We generated
models for 7 different durations for each state. The model checking times indicate
the time taken to check the property �((scheduled = S1-alertFridgeDoor∧step =
step1) =⇒ ♦(scheduled = S1-alertFridgeDoor ∧ step = step9)), which was true
in each model as it is always the case that if the behaviour S1-alertFridgeDoor is
executing its first action then is should eventually execute its last (9th) action,
since the behaviour is not interruptible. Note that this sample property was arbi-
trarily selected, and checking this property serves only to illustrate the effect of
temporal granularity on model size, and hence model checking times. The results
show that we can use a sensible duration of time for each state and still perform
model checking within a reasonable amount of time. Using shorter durations per
state would result in larger models, and hence longer model checking times. We
can therefore extrapolate a trade-off between the time taken to perform model
checking, and the time that would be required to manually extend existing formal
models to include new behaviours.

For all investigated durations the corresponding model generated using
CRutoN contains more reachable states than the manually constructed model
described in [3]. One reason for this difference is that in the manual construction
a distinction between value assignments to internal variables of the robot and all
other actions was made. Only the latter result in a new state, the former do not.
Whilst CRutoN currently does not make such a distinction and any action results
in a new state, we could differentiate between value assignments and other actions
(see Table 2) to group sequences of value assignments into one state.

It is clear that our modelling of temporal aspects is not ideal. Time Constraints
are either always satisfied, or always not satisfied, along a run of the model, since
the time of day is fixed for each path. Alternatively, we could allow the time of
day to be non-deterministically chosen in each state, and then constrain that
choice in the properties. We also note that it is sometimes difficult to determine
a sensible value for the duration of time associated with a single state of the
formal model, since setting this value too low can result in large models in
which it is infeasible to check properties within a realistic amount of time, and
setting this value to be too high results in unrealistic models where many of
the constraints imposed by Been-In-State and Was-In-State conditions are not
included in the model as the durations of time to which they refer are too small.

We also applied our automatic transformations to an extended set of Care-
O-bot behaviours provided by the development team working with the robot.
The original set of 31 behaviours with 156 control rules was extended to 88
behaviours with 324 control rules. Some rules had new syntactic forms, however

132 P. Gainer et al.

the expressiveness of the Grammar Rules and Data Extraction Rules allowed the
software to parse all control rules, and automatically generate a formal NuSMV
model that satisfied its specification.

7 Conclusion

We have described a translation from a set of control rules defining the behav-
iour of the Care-O-bot into both an intermediate form representation, and fur-
thermore into input for the model checker NuSMV. We presented the software
CRutoN that automates these translation processes. Formal models that sat-
isfy their specifications are automatically generated for different sets of input
parameters to the software, and the complexity of the generated models was
evaluated with regards to the granularity of the temporal aspects. We aim to
generalise our approach so that formal models could be automatically generated
for other robot systems using similar rule constructs.

The generated intermediate form representation for a set of control rules
could be used to develop further translations into input for other model checkers.
We could, for instance, extend our models to incorporate uncertainty arising from
faulty sensors or actuators, or the unpredictable behaviour of a human in the
Robot House, and develop a translation into a probabilistic model checker. In
Sect. 6 we discussed the limitations of our model with regards to the temporal
aspects of robot behaviours. Translations into input for verification tools for
real-time systems could be developed to refine our model of time.

Recent work in the robot house has allowed users to add their own behaviours,
built upon existing primitives, via the ‘TeachMe’ system [14]. We have carried out
a static analysis on the priorities and preconditions of newly added behaviours to
advise users of potential problems. For example, the added behaviour will never
be executed because an existing behaviour with a higher priority has a subset of
the preconditions of the added behaviour. Evaluations have shown that users find
this helpful when adding behaviours. The tool accomplishes this using an inter-
mediate form representation of the behaviours generated by the CRutoN parser.

The analysis of scheduling issues arising from the prioritisation of behaviours
could be complemented by formalising a set of properties relating to changes in
the state of the robot and its environment resulting from robot actions, and
automatically checking that these hold in generated models. Properties to be
checked could include safety properties that would require the robot to never
perform a specific action when in proximity to a human. A further issue that
could be addressed is how counterexamples, generated when requisite properties
fail to hold in the model, could be presented to a user in a comprehensible form.

References

1. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 29

http://dx.doi.org/10.1007/3-540-45657-0_29

CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours 133

2. Cowley, A., Taylor, C.J.: Towards language-based verification of robot behaviors.
In: Proceedings of IROS 2011, pp. 4776–4782. IEEE (2011)

3. Dixon, C., Webster, M., Saunders, J., Fisher, M., Dautenhahn, K.: “The fridge
door is open”–temporal verification of a robotic assistant’s behaviours. In: Mistry,
M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS, vol.
8717, pp. 97–108. Springer, Cham (2014). doi:10.1007/978-3-319-10401-0 9

4. Duque, I., Dautenhahn, K., Koay, K.L., Willcock, L., Christianson, B.: Knowledge-
driven user activity recognition for a smart house? Development and validation of
a generic and low-cost, resource-efficient system. In: Proceedings of ACHI 2013.
IARIA XPS Press (2013)

5. Gainer, P.: Verification for a robotic assistant. Technical report, ULCS-17-003,
Department of Computer Science, University of Liverpool, Liverpool, UK (2017)

6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

7. ISO: Robots and robotic devices - safety requirements for personal care robots. ISO
13482: 2014, International Organization for Standardization, Geneva, Switzerland
(2014)

8. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design
of a virtual fixture control algorithm for a surgical robot. In: Proceedings of HSCC
2013, pp. 263–272. ACM (2013)

9. McMillan, K.L.: The SMV language. Technical report, Cadence Berkeley Labs
(1999)

10. Mohammed, A., Stolzenburg, F., Furbach, U.: Multi-robot systems: modeling, spec-
ification, and model checking. INTECH Open Access Publisher (2010)

11. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: Proceedings of the
ICRA Workshop on Open Source Software in Robotics (2009)

12. Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F.,
Jacobs, T., Parlitz, C., Hägele, M., Verl, A.: Care-o-bot R© 3: creating a product
vision for service robot applications by integrating design and technology. In: Pro-
ceedings of IROS 2009, pp. 1992–1998. IEEE (2009)

13. Saunders, J., Burke, N., Koay, K.L., Dautenhahn, K.: A user friendly robot archi-
tecture for re-ablement and co-learning in a sensorised home. In: Proceedings of
AAATE 2013, pp. 49–58. IOS Press (2013)

14. Saunders, J., Syrdal, D.S., Koay, K.L., Burke, N., Dautenhahn, K.: “Teach Me-
Show Me”—end-user personalization of a smart home and companion robot. IEEE
Trans. Hum.-Mach. Syst. 46(1), 27–40 (2016)

15. Sierhuis, M., Clancey, W.J.: Modeling and simulating work practice: a method for
work systems design. IEEE Intell. Syst. 17(5), 32–41 (2002)

16. Stocker, R., Dennis, L., Dixon, C., Fisher, M.: Verifying Brahms human-robot
teamwork models. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 385–397. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33353-8 30

17. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Daut-
enhahn, K., Saez-Pons, J.: Toward reliable autonomous robotic assistants through
formal verification: a case study. IEEE Trans. Hum.-Mach. Syst. 46(2), 186–196
(2016)

http://dx.doi.org/10.1007/978-3-319-10401-0_9
http://dx.doi.org/10.1007/978-3-642-33353-8_30
http://dx.doi.org/10.1007/978-3-642-33353-8_30

Sampling-Based Reactive Motion Planning
with Temporal Logic Constraints and Imperfect

State Information

Felipe J. Montana1(B), Jun Liu2, and Tony J. Dodd1

1 Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, UK

{fjmontanagonzalez1,t.j.dodd}@sheffield.ac.uk
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

j.liu@uwaterloo.ca

Abstract. This paper presents a method that allows mobile systems
with uncertainty in motion and sensing to react to unknown environ-
ments while high-level specifications are satisfied. Although previous
works have addressed the problem of synthesising controllers under
uncertainty constraints and temporal logic specifications, reaction to
dynamic environments has not been considered under this scenario. The
method uses feedback-based information roadmaps (FIRMs) to break the
curse of history associated with partially observable systems. A transi-
tion system is incrementally constructed based on the idea of FIRMs by
adding nodes on the belief space. Then, a policy is found in the product
Markov decision process created between the transition system and a
Rabin automaton representing a linear temporal logic formula. The pro-
posed solution allows the system to react to previously unknown elements
in the environment. To achieve fast reaction time, a FIRM considering
the probability of violating the specification in each transition is used to
drive the system towards local targets or to avoid obstacles. The method
is demonstrated with an illustrative example.

1 Introduction

Efficient motion planning with imperfect state information is a desirable abil-
ity of systems operating in uncertain and dynamic environments. In these cases
the system cannot decide the best actions based on a single deterministic state.
Instead, a probability distribution over all possible states, called belief, is con-
sidered. This problem can be mathematically modelled as a partially observable
Markov decision process (POMDP). Although several methods have adapted
discrete POMDPs to motion planning, they have, in general, poor scalability

Felipe J. Montana is supported by the Mexican National Council of Science and
Technology (CONACyT). Jun Liu is supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada and the Canada Research Chairs
(CRC) program.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 134–149, 2017.
DOI: 10.1007/978-3-319-67113-0 9

Sampling-Based Reactive Motion Planning 135

with the number of states. This is caused by two main sources of complexity:
(i) the so-called curse of dimensionality, for a system with n states, the belief
space is an (n−1)-dimensional continuous space; and (ii) the curse of history [16],
the number of distinct action-observation histories grows exponentially with the
planning horizon. To alleviate this problem, sampling-based methods have been
proposed, e.g., [1,5,17]. In these works, the objective is usually to optimally drive
the system from an initial to a final state. Nevertheless, more complex objec-
tives are required in some applications. This necessity has motivated the use of
formal methods to automatically synthesise controllers for mobile systems such
that high-level specifications are satisfied. Due to well-developed techniques in
model checking using temporal logic, these specifications are commonly defined
by linear temporal logic (LTL) formulae for robotic applications.

Using model checking techniques, several methods have been developed to
solve the problem of control synthesis for stochastic systems with perfect state
information, e.g., [9,15]. However, only few solutions have been presented for
stochastic systems with partially observable states. Wongpiromsarn et al. [21]
propose a method to compute policies that maximise the probability of satisfying
an LTL specification for partially known environments. They assume that the
environment can be in one of several modes, which are modelled as Markov
chains. Although the system does not know exactly which is the current mode
of the environment at each time, all the possible environment models are known
by the system. This is a limitation since in many applications these models are
not available. The policies are computed using a parallel composition between
an MDP modelling the system and the set of Markov chains. Vasile et al. [20]
propose a specification language, called Gaussian Distribution Temporal Logic
(GDTL), that permits including noise mitigation in the specification. The work
uses the idea of information feedback roadmaps to break the curse of history.

In contrast to the solution proposed in this paper, the approaches above do
not consider dynamic environments. To deal with changing environments, reac-
tive controllers have been proposed. Fu et al. [8] solve a two-player partially
observable game with an adversarial environment, where the actions of the envi-
ronment cannot be seen by the system. Although the system has incomplete
information about the environment, the solution is computed based on a strat-
egy using complete information. To reach states where a control is defined, the
system uses a series of sensing actions to reduce the uncertainty until such states
are reached. Chatterjee et al. [6] present finite-state controllers as a solution to
POMDPs with parity objectives. To reduce the complexity, a series of heuristics
are designed to find the solution. A practical case based on the results in [6] is
presented in [18]. In this work a quadrotor performs a surveillance task while
avoiding a ground vehicle. The motion of the quadrotor is considered determin-
istic as opposed to the stochastic motion considered in this paper.

To the best knowledge of the authors, we address for the first time the prob-
lem of computing optimal policies for mobile systems with uncertainty in motion
and state information which follow temporal logic specifications and operate in
dynamic environments. Rather than reacting to an adversarial environment as

136 F.J. Montana et al.

presented above, in the proposed method, the system reacts to static local targets
and obstacles found during the execution of a plan such that the probability of
satisfying an LTL specifications is maximised. Our method is based on the work
in [20]. However, our solution permits the reaction of the system to local targets
and obstacles unknown during the offline computation of the policy. To break
the curse of history, we use feedback-based information roadmaps (FIRMs) to
create a transition system by sampling the state space of the system. Based on
results in probabilistic model checking, we find an optimal solution to the prob-
lem by constructing a product MDP with the transition system and a Rabin
automaton representing the LTL specification. In order to permit a fast reac-
tion to the environment, a FIRM with edge’s cost equal to the probability of
violating the LTL specification is computed offline. This computation is possible
due to the property that the cost of the edges of the FIRM are independent of
each other. This FIRM is then used to drive the system from its current state
to a sensed local target or to avoid obstacles while the probability of violating
the specification is minimised. Hence, the main contribution of this paper is a
sampling-based framework that permits systems with imperfect state informa-
tion and motion uncertainty to react to detected obstacles and local targets in
real-time while a LTL specification is satisfied.

The rest of the paper is organised as follows. Section 2 presents definitions of
formalisms used in the rest of the paper and the problem formulation. Section 3
explains in detail the proposed method. Finally, a numerical example and con-
clusions are shown in Sects. 4 and 5, respectively.

2 Preliminaries and Problem Definition

2.1 System Model

This paper focuses on dynamic systems with motion and sensing uncertainty
that evolve according to the following system model:

xk+1 = f(xk, uk, wk), (1)

where x ∈ X ⊆ R
dx is the system state, u ∈ U ⊆ R

du is the control input and
wk is the process noise at time k. We consider wk as a zero-mean Gaussian noise
with covariance Qk. In partially observable systems, the system state is observed
according to an observation model:

zk = h(xk, vk), (2)

where zk ∈ Z ⊂ R
dz denotes the observation and vk is a zero-mean Gaussian

noise with covariance Rk at time k.

2.2 Belief Space

Since the state of the system is only partially known due to sensing uncertainty,
the information available at each time k is a distribution over the set of possible
states [16]:

bk = Pr(xk|zk, uk−1, zk−1, . . . , u1, z1, u0, b0). (3)

Sampling-Based Reactive Motion Planning 137

This distribution, called belief, compresses the history of observations z0:k and
control actions u0:k−1 taken from time 0 to time k and k − 1, respectively. The
updated belief for an applied control uk and received observation zk+1 is given by:

bk+1 =
Pr(zk+1|xk+1)
Pr(zk+1|bk, uk)

∫
X

bkPr(xk+1|xk, uk)dxk, (4)

In a Gaussian belief space B, the belief is characterised by the mean x̂ and
covariance P , i.e., bk = (x̂k, Pk) ∈ X × S

dx×dx
+ , where S

dx×dx
+ represents the set

of all possible positive semi-definite matrices with dx × dx entries.

2.3 Linear Temporal Logic

We use LTL to express system properties or desired behaviours. These proper-
ties are represented by a set Π of atomic propositions that indicate whether a
property is true or false. A labelling function L : x → 2Π maps the system state
x to the set Π. Let xxx = x0x1 . . . be a sequence of states describing the behaviour
of the system (1). A word ω = L(x0)L(x1) . . . expresses this behaviour in terms
of the atomic propositions.

Syntax : The syntax of LTL over Π is defined as follows:

ϕ := π|¬ϕ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2| © ϕ|ϕ1U ϕ2,

where π ∈ Π is an atomic proposition; and ¬, ∨, ∧, © and U represent the
operators negation, disjunction, conjunction, next and until, respectively. The
temporal operators eventually and always are defined as ♦π = TrueU π and
�π = ¬♦¬π, respectively.

Semantics: The semantic of LTL formulae are defined with respect to infinite
words over Π. Given an LTL specification ϕ, a sequence xxx, and the satisfaction
relation |=, we define the semantics inductively as follows: (i) xi |= π iff π ∈
L(xi); (ii) xi |= ϕ1 ∧ϕ2 iff xi |= ϕ1 and xi |= ϕ2; (iii) xi |= ϕ1 ∨ϕ2 iff xi |= ϕ1 or
xi |= ϕ2; (iv) xi |= ©ϕ iff xi+1 |= ϕ; and (v) xi |= ϕ1U ϕ2 iff ∃j ≥ i : xj |= ϕ2

and xk |= ϕ1,∀i ≤ k < j.

2.4 Deterministic Rabin Automaton

An LTL specification can be represented by a deterministic Rabin automaton
(DRA), which accepts only words ω that satisfy the specification. A DRA R
is a tuple R = (Σ,Q, q0, δR, F), where: Σ = 2Π is a finite alphabet, Q is a
finite set of states, q0 ∈ Q is an initial state, δR : Q × Σ → Q is a transition
function and F = {(L1,K1), . . . , (Lr,Kr)} is a set of pairs where Li,Ki ⊆ Q for
all i ∈ {1, . . . , r}.

A run on R, produced by a word ω over the alphabet Σ, is a sequence
ρ = q0q1 . . . such that for every i ≥ 0, there exists πi ∈ Σ and δR(qi, πi) = qi+1.
A run ρ is accepting if for a pair (Li,Ki) ∈ F , the set Li is intersected finitely
many times while the set Ki is intersected infinitely many times. Figure 1 shows
an example of a Rabin automaton.

138 F.J. Montana et al.

Fig. 1. Rabin automaton of LTL formula ϕ = ¬π2U π1, where π1, π2 ∈ Σ are atomic
propositions and U is the operator until. The formula indicates that the atomic propo-
sition π2 has to be avoided until π1 is satisfied. The set F is formed by the pair L = {q1}
and K = {q2}. The arrow points to the initial state and � is unconditionally true.

2.5 Problem Formulation

Consider as an example a robot moving objects in a dynamically changing ware-
house with two areas of interest, denoted by the atomic propositions π1 and π2,
respectively. Using LTL, relevant behaviours can be specified. For example, the
reachability formula ♦π1 ∧ ♦π2 can be used to indicate that the robot needs to
eventually move an object to the areas π1 and π2. Safety formulae, e.g. �¬π2,
indicates that certain properties remain invariant throughout the execution. In
this work, we find a sequence of control inputs that maximises the probability of
satisfying an LTL formula ϕ. Moreover, since the environment is dynamic, new
local targets, e.g. objects in the warehouse, or obstacles can appear during the
operation of the robot. Therefore, in addition to following the behaviour defined
by ϕ, we allow the system to react to sensed local targets and obstacles in the
environment while the probability of violating ϕ is minimised.

The labelling function L is used to identify the satisfaction of atomic proposi-
tions at each time k. That is, L(xk) = πi if the system is in the region defined by
πi at time k. By labelling the system state at each time k, a word ω expressing
the behaviour of the system in terms of the atomic propositions Π is obtained.
Based on the definition of a Rabin automaton, a run xxx = x0x1 . . . of the sys-
tem satisfies the specification ϕ if the word ω = L(x0)L(x1) . . . is accepted by
the Rabin automaton representing ϕ. Since the state is unknown in partially
observable systems, instead of considering the state of the system to verify the
satisfaction of the specification, we consider all the possible words generated
during the transition between beliefs as presented in the next section. Now, we
formally define the problem as follows.

Problem definition: Given a dynamic system with motion and sensing uncer-
tainty of the form (1) and (2); and an LTL formula ϕ, compute a policy μ : B → U
such that the probability of satisfying ϕ is maximised.

3 Solution

In this section, an overview of the proposed method is firstly presented followed
by a detailed presentation. The main idea is to create a graph that represents

Sampling-Based Reactive Motion Planning 139

the motion of the system in the environment. In this graph, vertices represent
belief nodes and edges represent controllers that drive the system from one belief
node to another, Fig. 2. The graph is initialised with a single vertex, the initial
belief of the system. Then, the graph is incrementally expanded by adding a
new vertex that represents a new belief created by randomly sampling the state
space of the system. After each expansion, it is verified whether there is a path
such that the LTL specification is satisfied. If such a path does not exist, a
new belief is added to the graph and the process is repeated until a path is
found. Section 3.1 presents the computation of belief nodes and controllers. The
expansion of the graph and the search of a path that satisfies the specification are
explained in Sects. 3.2, 3.3 and 3.4. Because a dynamically changing environment
is considered, the system must be able to react to local targets and obstacles.
To allow fast reaction time to sensed objects, we precompute another graph,
called FIRM, assigning to each edge, as the cost, the probability of violating the
LTL specification in the transition. This FIRM is used to guide the system to
the local targets or to avoid obstacles while the probability of violating the LTL
specification is minimised, see Sects. 3.5 and 3.6.

3.1 Feedback-Based Information Roadmap

The main difficulty of solving POMDPs is the so-called curse of dimension-
ality. To alleviate this problem, we use feedback-based information roadmaps
(FIRMs) [1]. FIRMs generalise probabilistic roadmaps (PRMs) [12] to account
for motion and sensing uncertainty. In most of the works considering PRM-based
methods and imperfect state information, each edge of the graph depends on the
path traveled by the system, i.e., actions and observations taken from the initial
belief, and therefore recalculation is necessary when the initial belief changes.
In contrast, in a FIRM, each edge is independent of the others as a consequence
of feedback controllers used to guarantee the convergency of the belief to prede-
fined belief nodes. We exploit this property to perform most of the computation
offline.

Without loss of generality, we use SLQG-FIRMs [1], where stationary linear
quadratic Gaussian (SLQG) controllers are used as belief stabilisers. Any other
type of controller can be used provided that the reachability of a belief is guar-
anteed. To construct a FIRM, a PRM is first constructed by sampling the state
space of the system. Let G = (V,E) represent the PRM, where V is the set of
vertices (sampled states) ν ∈ X and E is the set of edges connecting the elements
of V . Each node ν of the PRM is used to create a FIRM node as follows. First
the system model (1) and observation model (2) are linearised with respect to a
node ν resulting in the linear models:

xk+1 = Aνxk + Bνuk + wk, (5)

zk+1 = Hνxk + vk, (6)

where Aν ∈ R
dx×dx , Bν ∈ R

dx×du and Hν ∈ R
dz×dx are obtained through

Jacobian linearisation.

140 F.J. Montana et al.

x1

x2

Fig. 2. FIRM created using a PRM on an environment in which the vertices repre-
sent the position (x1, x2) of the system. The grey rectangles and red stars are areas
of interest and landmarks respectively. The landmarks are used by the system to
localise itself. Hence, the uncertainty on the system state increases with the distance
to the landmarks. The centre bν = (ν, Pν) of the FIRM nodes is represented with a
white disk and the 3σ ellipse (region where the true value lies with a probability of
.988) of the associated covariances. The blue area around ν denotes the part of the
node corresponding to the mean x̂, i.e., {x̂ : ‖x̂ − v‖ < ε}, where ε is a constant.
(Color figure online)

A SLQG controller is designed to maintain the system state x as close as
possible to ν while a Kalman filter is used to estimate the belief. Under the
assumption that the pairs (A,B) and (A,H) are controllable and observable,
respectively, the SLQG controller stabilises the system to an expected belief
bν = (ν, Pν), where the covariance Pν can be determined offline for each node
ν [1]. Hence, a belief node is defined as b = {b : ‖b − bν‖b < ε}, where ‖ · ‖b

is a suitable norm in B and ε determines the size of the belief node. Each node
is associated with its SLQG controller, denoted by μb, as belief stabiliser. The
edges in E of the PRM are used to design time-varying LQG controllers that
drive the system to the proximity of the FIRM nodes where the stabilisers can
maintain the system within the nodes. Therefore, an edge between two FIRM
nodes b and b′ is formed by the combination of the time-varying LQG and the
stabiliser controller and is denoted by μb,b′ . A FIRM can be presented as a graph
G = (B,E), where B is the set of FIRM nodes and E is the set of controllers
used as edges, Fig. 2.

In the next subsection, we use the procedure for creating FIRM nodes and
controllers to incrementally construct a transition system on which a path sat-
isfying the LTL specification is sought.

Sampling-Based Reactive Motion Planning 141

Algorithm 1. Transition system expansion
1: BT ← b0
2: while ϕ not satisfied do
3: X ← X, i ← 1
4: Get a new sample state νsample ∈ X
5: Create node bnewT with centre bν = (νsample, Pν)
6: while BT ∩ X �= ∅ do
7: Find closest node bnear,iT ∈ B to bnewT such that bnear,iT ∩ X
8: i ← i + 1
9: X ← X \ H, where H is the half-space containing bnear,iT but not bnewT

10: BT ← BT ∪ bnewT

11: δT ← δT ∪ μ
bnew
T

,b
near,j
T

∪ μ
b
near,j
T

,bnew
T

∀j ∈ {1, . . . , i}

3.2 Incremental Transition System

Recall that using feedback controllers that guarantee the convergency of the
belief to predefined belief nodes, the curse of dimensionality can be broken.
Hence, we use the idea of FIRMs to create a transition system with the same
property. In this subsection, an incremental construction of such a transition
system is presented. A transition system is a tuple T = (BT , b0, δT), where
BT is a finite set of nodes bT , b0 ∈ BT is an initial node and δT ⊆ bT × b′

T

is a transition relation.
Because the complexity of the problem depends on the number of nodes in the

transition, the transition system is incrementally expanded by adding new nodes
until the specification is satisfied. The transition system is constructed based on
the idea of Rapidly-exploring Random Graphs (RRGs) [11] to allow satisfying
words of infinite length and is constructed as follows, see Alg. 1. Initially, the
transition system T includes only the initial node b0 which contains the initial
belief of the system. To add a new node, a state νsample ∈ X is sampled from the
state space. This state is used to compute the FIRM node bnewT including a belief
stabiliser as presented in Sect. 3.1. Then, the closest node bnearT in BT is sought.
This process is repeated considering, in each iteration, the nearest nodes in BT

in the half-space containing νsample but not the previously considered nearest
nodes bnearT . Once no more nodes are available, the new node bnewT is added to
T with the transitions (bnewT , bnear,iT) and (bnear,iT , bnewT), where i is the index
of the nearest nodes found in the process described above. For each transition
(bT , b′

T) ∈ δT , the edge controller μbT ,b′
T

is computed. This process continues
until a path that satisfies the LTL specification is found, see Sect. 3.4.

In order to reduce the number of nodes in T and at the same time cover most
of the workspace, a coarse partition is computed over the workspace. A segment
of partition is randomly selected based on the number of samples associated
with this segment. Then, a state is sampled uniformly such that Γ (νsample) is
constrained by the selected segment, where Γ : X → R

dΓ is the projection of
the system state to the workspace.

142 F.J. Montana et al.

Based on results from probabilistic verification [3], the product MDP of the
transition system T and the Rabin automaton representing the LTL specification
is computed and used to find a path such that the LTL specification is satisfied.
The computation of this product MDP is presented in the next subsection.

3.3 Product MDP

A product MDP P = T × R is a tuple P = (S, s0, A, P, FP), where: S =
BT ×Q is a finite set of states, s0 = (b0, q0) is an initial state, A is a finite set of
actions, P (·|·, ·) : S×S×A → [0, 1] is the probability of transitioning to the state
s′ from the state s under action a ∈ A and FP = {(LP

1 ,KP
1), . . . , (LP

r ,KP
r)},

where LP
i = BT × Li and KP

i = BT × Ki for all i ∈ {1, . . . , r}.
A run on P is defined as a sequence ρP = s0s1 . . . , where P (si+1|si, a) > 0

for all i ≥ 0. The set of actions A corresponds to the computed controllers
associated with each transition in T . Therefore, the set of actions available
at state s = (bT , q), denoted as A(s), are the controllers computed for the
transitions (bT , b′

T) ∈ δT . The probability P (s′|s, μbT ,b′
T

), where s = (bT , q)
and s′ = (b′

T , q′), is the probability of ending on the DRA state q′ starting from
q when the transition (bT , b′

T) ∈ δT is performed using the control μb,b′ ∈ A(s).
Let bbb = b0b1 . . . bn be the sequence of beliefs followed after applying μbT ,b′

T
,

such that b0 ∈ bT and bn ∈ b′
T . To find the DRA state q′ reached in R after

the transition (bT , b′
T) ∈ δT , the word ω produced by bbb is used as an input

word in the DRA R, starting from the state q ∈ Q. The last state of the run
ρ on R, produced by ω, is used as a state q′ for the transition s = (bT , q) to
s′ = (b′

T , q′). As an example, consider the initial state q0 of the Rabin automaton
in Fig. 1 and assume that during the transition (bT , b′

T) in T the words ω1 =
{¬π1¬π2}{¬π1¬π2}{π1} and ω2 = {¬π1¬π2}{¬π1¬π2}{π2} are generated with
probability 0.90 and 0.10, respectively. Therefore, the probability of transitioning
from state (bT , q0) to (b′

T , q2) is 0.90 and to (b′
T , q1) is 0.10.

Recall that a specification is satisfied by the system if the word ω produces a run
onR such that it visits finitely often times the set Li and infinitely many times the
set Ki, for i ∈ {1, . . . , r}. Because during the transition s to s′ inP, more than one
DRA state can be reached, in order to find a run on P satisfying a specification,
each transition in P is associated with a probability of visiting a state in a pair
(Li,Ki) ∈ F . These probabilities are denoted as PLi

s,s′ and PKi

s,s′ , respectively.
Computing probabilities of transitioning from s to s′ ∈ S is computationally

expensive [1]. In this work, we approximate them using particle-based methods.
The probability P ((b′

T , q′)|(bT , q), μbT ,b′
T

) is computed based on the number of
particles that produced a word ω, during the transition bT to b′

T under μbT ,b′
T

and starting from q, finishing in q′. A similar procedure is used to calculate the
probability of intersecting the pairs (Li,Ki) ∈ F during the transition from s to s′.

The product MDP P is updated with each new node bnewT added to T . After
each update, it is checked whether the LTL specification can be satisfied. In the
next subsection, the computation of a policy μP : S → A in P that satisfies
the LTL specification is presented. Using μP , a policy μ : B → U that solves
the formulated problem is finally obtained.

Sampling-Based Reactive Motion Planning 143

3.4 Optimal Policy Computation

This subsection presents the calculation of the policy that maximises the proba-
bility of satisfying a LTL specification ϕ. A run ρP = s0s1 . . . on P is accepting
if there exists a pair (LP

i ,KP
i) ∈ FP such that LP

i and KP
i are visited finitely

and infinitely many times, respectively. Thus, we define an accepting end compo-
nent (AEC) as follows. An AEC of P for a pair (LP

i ,KP
i) ∈ FP is a subgraph

of P where each state is reachable from every other state, PLi

s,s′ = 0 for all
transitions and there exists a transition with PKi

s,s′ > 0. After each increment of
the transition system T , the existence of an AEC is checked. Once an AEC is
found, an optimal policy is computed.

It has been shown in probabilistic model checking that maximising the prob-
ability of reaching an AEC is equivalent to maximising the probability of satis-
fying ϕ [3]. A policy μP(s) on P, where s = (bT , q), induces a policy μ(bT)
on T by defining μ(bT) = μP(s). Hence, computing a policy on P that max-
imises the probability of reaching an AEC is equivalent to finding a policy on T
that maximises the probability of satisfying the LTL specification. We use value
iteration to compute the optimal policy by maximising the value function:

V (s) = max
a∈A(s)

∑
s′∈S

P (s′|s, a)V (s′), (7)

μP(s) = arg max
a∈A(s)

∑
s′∈S

P (s′|s, a)V (s′), (8)

for all s /∈ AEC and V (s) = 1 for all s ∈ AEC.
Since the product MDP is updated with each addition of nodes to T , the

end components of P must be maintained after each update. The complexity of
maintaining the end components on P is O(|F ||S| 3

2) [20], where the number of
states in S is |BT | × |Q|. On the other hand, the running time of each iteration
to find the optimal policy is O(|S||A|2) [14].

3.5 Local Targets

Approximating the probability of each transition on P using particle-based
methods is in general a slow process [1,20]. The construction and computation
of a policy for T is computed offline and hence this slow task can be toler-
ated. Nevertheless, for fast reactions to targets or obstacles sensed in real-time,
this long time is restrictive. To solve this problem, an offline computation of
a FIRM is performed. In addition to permitting reactions in a short period of
time, PRM-like structures such as FIRM can present better performance than
methods using RRG techniques on difficult scenarios [10].

To maximise the coverage of the workspace and to obtain a dynamic FIRM
(see Sect. 3.6), an offline partition of the environment is first created. In our
method we used a grid-based partition. Then, the process of selecting and sam-
pling in cells is performed similar to the process presented in Sect. 3.2. After a

144 F.J. Montana et al.

minimum number of samples on each cell are obtained, a FIRM G = (B,E) is
created as presented in Sect. 3.1.

When a local target is sensed by the system at time k, the FIRM is used
to drive the system from its current belief bk to a predefined service region of
the local target while the specification is satisfied. To use the transition system
and the FIRM, three aspects have to be considered: (i) the connection of the
current belief to a node in FIRM; (ii) the optimal path in the FIRM; and (iii)
the reconnection to T after the local target has been attended. This procedure
is presented in Algorithm 2.

Algorithm 2. Path to local target
1: G ′ = (B′, E ′), where B′ = {b|b ∈ B, ‖Γb(b) − Γb(bk)‖ ≤ r}, Γb : B → Γ (x̂) and

E ′ ⊂ E
2: bnear ← Nearest(bk,B′), btarget ← Nearest(target,B′)
3: Apply μbnear

4: path ← OptimalPath(bnear, btarget)
5: Follow path applying edge controllers in E ′

6: bclose ← Nearest(bT ,B′), where bT ∈ BT and V (s) > 0 such that s = (bT , q)
7: path ← OptimalPath(btarget, bclose)
8: Follow path applying edge controllers in E ′

9: Apply μbT

In the first step, when a local target is sensed by the system, a subgraph
of the FIRM is created within the sensing area with radius r, Fig. 3(a). In this
subgraph, the nearest FIRM node bnear to the current belief bk is sought. Then,
the local stabiliser of bnear is applied to drive the system to the FIRM node.
Once the system is in the subgraph of the FIRM, an optimal path to the local
target is computed. This path is optimal in terms of minimising the probability
of violating the specification. To achieve this, it is necessary to verify which
transitions of the FIRM do not violate the LTL specification. A similar problem
has been solved in the literature for deterministic systems with perfect state
information [2,19] using a monitor [4] which identifies if a specification has been
satisfied or falsified as early as possible. In this work, since the state of the system
is unknown, we use the Rabin automaton instead. Recall that in order to satisfy
a specification, for a pair (Li,Ki) ∈ F , the set Li must be visited only finitely
many times. Therefore, we calculate the probability of reaching states in Li

with a self transition, Fig. 1. Similar to the computation of PLi

s,s′ and PKi

s,s′ in T ,
the probability of reaching such states starting in the Rabin state q during the
transition from one node to another in the FIRM is computed during the FIRM
construction. These probabilities are assigned as a weight on each transition on
the FIRM. Since the probability of reaching a state Li on a transition (b, b′)
depends on the DRA state q, the current DRA state is tracked all the time
during the online operation. Because all the transitions are precomputed offline,
the only computation online is a shortest path graph search on the subgraph

Sampling-Based Reactive Motion Planning 145

using the weights according to the current DRA state q. This problem can be
solved efficiently by methods such as Dijkstra’s algorithm, which has a time
complexity O(|B|2) [7].

After the computed path is followed, the last FIRM node in the path has to be
connected to the transition system T in order to continue with the specification.
This is achieved by searching the closest node bT in T such that V (s) > 0 and
s = (bT , q), where q is the current R state after following the path in the FIRM.
Once this state has been found, the closest node bclose of the FIRM to bT is
sought. Then, the path in the FIRM is computed between the current node and
bclose. After following the path, the stabiliser of the node bT is applied to make
the connection.

(a) (b)

Fig. 3. FIRM used to drive the system close to local targets or to avoid obstacles. (a)
Subgraph of the FIRM within the sensing area of the system. The offline path obtained
by solving the product MDP P is shown as a blue dotted line. The current belief
and local target are represented by a green rectangle and blue diamond, respectively.
(b) Subgraph of the FIRM without transitions affected by the obstacle. The obstacle
and estimated position of it are shown with a yellow and red rectangle, respectively.
The cells (shown in blue) occupied by the obstacle determine the invalid nodes and
transitions of the FIRM. (Color figure online)

3.6 Obstacle Avoidance

Similar to the local target case, the FIRM is used to avoid detected obstacles
during the online operation. The main difference is that the presence of obsta-
cles invalidates parts of the computed FIRM. Because edges of the FIRM are
independent of each other, ideas from dynamic roadmaps [10,13] can be applied.

Recall that the environment is partitioned into cells. Each of these cells is
associated with FIRM nodes and transitions as follows. During the computation
of the probabilities from node b to b′, see Sect. 3.5, the probability of visiting
a cell ci during a transition can be computed. Let pk

0:Tk
be the sample path of

the k-th particle p from b at time zero to b′ at time T k. The probability of the
system reaching a state such that Γ (x) is on the cell ci during the transition
from b to b′ is approximated by:

146 F.J. Montana et al.

Prb,b′(ci) ≈
K∑

k=1

wk1ci
(pk

0:Tk
), (9)

where wk is a weight assigned to the particle pk and 1ci
(·) is an indicator that

returns one, if a particle enters the cell ci, and zero otherwise. Based on these
probabilities, a cell is associated with the FIRM nodes b, b′ and its transition if
Prb,b′(ci) > 0, Fig. 3(b).

When an obstacle is detected, the cells occupied by the obstacle are com-
puted. Then, the nodes and transitions associated with these cells are invali-
dated from the FIRM. Since the current state of the system is uncertain, i.e.,
given by a mean and covariance over the belief space, the exact location of the
obstacle cannot be determined by the system. To include the uncertainty on
the obstacle’s location, we compute the Minkowski sum of the detected obsta-
cle and the contour of the 3σ ellipse of the current Gaussian. Assume that the
system is transitioning between the nodes bT and b′

T in T when an obstacle
is detected. A subgraph of the FIRM is created within the sensing area as pre-
sented in Sect. 3.5. Note that this subgraph does not include any of the nodes
affected by the estimation of the obstacle’s location. In this subgraph, the closest
node b to the current belief bk is sought. The stabiliser of b is applied to drive
the system to this node. Then, a path between b and b′, the closest node to
b′
T , is computed using the weights as in the local target case. If, after applying

the edge controllers of the computed path, the obstacle is still detected, a new
subgraph is computed removing the invalid nodes. This process is repeated until
the obstacle is not sensed. Then, the FIRM is connected to T as presented in
Sect. 3.5. Algorithm 3 shows the procedure described above.

Algorithm 3. Obstacle avoidance
1: while obstacle detected do
2: obstacleposition ← EstimatedPosition(bk, Pk, obstacle)
3: C ← AffectedCells(obstacleposition)
4: G ′ = (B′, E ′), where B′ = {b|b ∈ B, ‖Γb(bk) − Γb(b)‖ ≤ r}, Γb : B → Γ (x̂),
5: E ′ ⊂ E \ E ′′ and (b, b′) ∈ E ′′ iff ∃c ∈ C s.t. Prb,b′(c) > 0
6: bnear ← Nearest(bk,B′), btarget ← Nearest(b′

T ,B′)
7: path ← OptimalPath(bnear, btarget)
8: Follow path applying edge controllers in E ′

9: bclose ← Nearest(bT ,B′), where bT ∈ BT and V (s) > 0 such that s = (bT , q)
10: path ← OptimalPath(btarget, bclose)
11: Follow path applying edge controllers in E ′

12: Apply μbT

4 Example

In this section a numerical example is presented to illustrate the proposed
method. We consider a robot in a workspace with 7 areas associated with the

Sampling-Based Reactive Motion Planning 147

atomic propositions π1, π2, π3 and π4, Fig. 4. The mission of the robot is to visit
the areas marked by the atomic proposition π1, π2 and π3, in any order, while
the areas marked with π4 are avoided. Formally, this specification can be writ-
ten as ϕ = (¬π4U π1) ∧ (¬π4U π2) ∧ (¬π4U π3). The example is implemented in
MATLAB on a computer with a 3.1 GHz i7 processor and 8 GB of RAM.

The three-wheel omnidirectional mobile robot model presented in [1] is con-
sidered. For this robot (1) becomes:

f =

⎛
⎝− 2

3 sin(θ) − 2
3 sin(π

3 − θ) 2
3 sin(π

3 + θ)
2
3 cos(θ) − 2

3 cos(π
3 − θ) − 2

3 cos(π
3 + θ)

1
3l

1
3l

1
3l

⎞
⎠ u + w. (10)

The state x = [x1, x2, θ]T is composed of the robot position (x1, x2) and the
orientation θ. The control input u = [u1, u2, u3]T is formed of the linear velocities
of each wheel. The distance of the wheels from the centre of the robot is denoted
by l. The process noise w is a zero-mean Gaussian with covariance Q.

The robot uses landmarks, with known location on the workspace, to localise
itself, Fig. 4. Let (LM i

1, LM i
2) denote the location of the i-th landmark; and ηr,

σr
b , ηθ and σθ

b be constants. The observation model (2) with respect to the i-th
landmark is expressed as:

zi = [‖di‖, atan2(di
2, d

i
1) − θ]T + vi, (11)

Fig. 4. Environment containing seven areas identified by the atomic proposition π1,
π2, π3 and π4; a local target (blue diamond) with its service region (grey disk), an
unknown obstacle (yellow rectangle) and ten landmarks (red stars). The objective of
the robot is to visit the areas marked as π1, π2 and π3 while areas π4 have to be
avoided. The grey line shows the path computed offline. The blue line shows a sample
path of the system followed after detecting the local target and previously unknown
obstacle. The initial position is marked by a red disk. (Color figure online)

148 F.J. Montana et al.

where d = [x1, x2] − [LM i
1, LM i

2] and vi is zero-mean Gaussian noise with
covariance R:

Ri = diag((ηr‖di‖ + σr
b)2, (ηθ‖di‖ + σθ

b)2). (12)

The results presented below were obtained from 20 simulations, but for the
purpose of clarity, only one run is presented in Fig. 4. In average (mean), the
offline path is found in 82.46 s and the number of states in T and P are 31.61
and 284.5, respectively. The Rabin automaton R has 9 states and one pair (L,K)
with |L| = 1 and |K| = 1. Computing the probability in each transition requires
0.536 s. The PRM used to create the FIRM has 1224 vertices, each vertex is
connected to its seven nearest vertices. The FIRM requires on average 5022.61 s
to be constructed. Since computing the probabilities for each edge of the FIRM is
the most computationally demanding operation, the time to construct the FIRM
could be reduced by limiting the number of edges on each vertex. Note that all
the previous computations are performed offline. Finding a path in the FIRM,
online, to reach the local target and to avoid the obstacle requires 0.097 and
0.698 s, respectively. Based on these results, it can be observed that computing
a path in the FIRM to reach targets or avoid obstacles would require less time
than expanding the transition system with the purpose of finding an alternative
path.

5 Conclusions

In this paper we have introduced a new method to design control policies
for mobile robots that can react to unknown environments under uncertainty
in motion and sensing, while maximising the probability of satisfying high-
level specifications. Although previous works have considered synthesis of con-
trollers under uncertainty constraints and temporal logic specifications, reaction
to unknown elements of the environment had not been considered under this
scenario. An offline policy that maximises the probability of satisfying the speci-
fication is computed using an incrementally constructed transition system and a
Rabin automaton. To achieve short reaction times, we precomputed a feedback-
based information roadmap, considering the probability of violating the speci-
fication in each transition. Once the system finds an unknown element on the
environment, the FIRM is used to reach or avoid this element. This task requires
the connection of the current belief to the FIRM and the computation of a path
that minimises the probability of violating the specification. Results show that
using the FIRM requires less time than trying to find a path online by extending
the transition system.

References

1. Agha-Mohammadi, A.A., Chakravorty, S., Amato, N.M.: FIRM: sampling-based
feedback motion-planning under motion uncertainty and imperfect measurements.
Int. J. Robot. Res. 33(2), 268–304 (2014)

Sampling-Based Reactive Motion Planning 149

2. Ayala, A.M., Andersson, S.B., Belta, C.: Temporal logic motion planning in
unknown environments. In: Proceedings of IROS, pp. 5279–5284. IEEE (2013)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
In: Proceedings of FSTTCS, vol. 20, pp. 1–68. ACM (2006)

5. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under
uncertainty. In: Proceedings of ICRA, pp. 723–730. IEEE (2011)

6. Chatterjee, K., Chmeĺık, M., Gupta, R., Kanodia, A.: Qualitative analysis of
POMDPs with temporal logic specifications for robotics applications. In: Proced-
ings of ICRA, pp. 325–330. IEEE (2015)

7. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)
8. Fu, J., Topcu, U.: Integrating active sensing into reactive synthesis with temporal

logic constraints under partial observations. In: Proceedings of ACC, pp. 2408–
2413. IEEE (2015)

9. Horowitz, M.B., Wolff, E.M., Murray, R.M.: A compositional approach to stochas-
tic optimal control with co-safe temporal logic specifications. In: Proceedings of
IROS, pp. 1466–1473. IEEE (2014)

10. Kallman, M., Mataric, M.: Motion planning using dynamic roadmaps. In: Proceed-
ings of ICRA, vol. 5, pp. 4399–4404. IEEE (2004)

11. Karaman, S., Frazzoli, E.: Sampling-based motion planning with deterministic μ-
calculus specifications. In: Proceedings of CDC/CCC, pp. 2222–2229. IEEE (2009)

12. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

13. Leven, P., Hutchinson, S.: Toward real-time path planning in changing environ-
ments. In: Algorithmic and Computational Robotics: New Directions, pp. 363–376.
A K Peters (2000)

14. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solvingMarkov
decision problems. In: Proceedings of UAI, pp. 394–402. Morgan Kaufmann Pub-
lishers Inc. (1995)

15. Montana, F.J., Liu, J., Dodd, T.J.: Sampling-based stochastic optimal control with
metric interval temporal logic specifications. In: Proceedings of CCA, pp. 767–773.
IEEE (2016)

16. Pineau, J., Gordon, G., Thrun, S., et al.: Point-based value iteration: An anytime
algorithm for POMDPs. In: Proceedings of IJCAI, vol. 3, pp. 1025–1032 (2003)

17. Prentice, S., Roy, N.: The belief roadmap: efficient planning in linear POMDPs by
factoring the covariance. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research,
pp. 293–305. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14743-2 25

18. Svoreňová, M., Chmeĺık, M., Leahy, K., Eniser, H.F., Chatterjee, K., Černá, I.,
Belta, C.: Temporal logic motion planning using POMDPs with parity objectives:
case study paper. In: Proceedings of HSCC, pp. 233–238. ACM (2015)

19. Vasile, C.I., Belta, C.: Reactive sampling-based temporal logic path planning. In:
Proceedings of ICRA, pp. 4310–4315. IEEE (2014)

20. Vasile, C.I., Leahy, K., Cristofalo, E., Jones, A., Schwager, M., Belta, C.: Control
in belief space with temporal logic specifications. In: Proceedings of CDC, pp.
7419–7424. IEEE (2016)

21. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic,
partially known environments with temporal logic specifications. In: Proceedings
of CDC, pp. 7644–7651. IEEE (2012)

http://dx.doi.org/10.1007/978-3-642-14743-2_25

Sampling-Based Path Planning for Multi-robot
Systems with Co-Safe Linear Temporal Logic

Specifications

Felipe J. Montana1(B), Jun Liu2, and Tony J. Dodd1

1 Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, UK

{fjmontanagonzalez1,t.j.dodd}@sheffield.ac.uk
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

j.liu@uwaterloo.ca

Abstract. This paper addresses the problem of path planning for mul-
tiple robots under high-level specifications given as syntactically co-safe
linear temporal logic formulae. Most of the existing solutions use the
notion of abstraction to obtain a discrete transition system that simu-
lates the dynamics of the robot. Nevertheless, these solutions have poor
scalability with the dimension of the configuration space of the robots.
For problems with a single robot, sampling-based methods have been
presented as a solution to alleviate this limitation. The proposed solu-
tion extends the idea of sampling methods to the multiple robot case.
The method samples the configuration space of the robots to incremen-
tally constructs a transition system that models the motion of all the
robots as a group. This transition system is then combined with a Büchi
automaton, representing the specification, in a Cartesian product. The
product is updated with each expansion of the transition system until
a solution is found. We also present a new algorithm that improves the
performance of the proposed method by guiding the expansion of the
transition system. The method is demonstrated with examples consider-
ing different number of robots and specifications.

1 Introduction

Motion planning based on high-level temporal specifications has become an
important area of research. Several methods have been developed for single
robots, e.g., [5,15,18,22]; and for multiple robots, e.g., [2,6,19]. The multi-robot
path planning problem with linear temporal logic (LTL) specifications can be
categorised into two areas depending on the final goal: (i) each robot has its own
task, or (ii) all the robots act as a team trying to accomplish a global speci-
fication. In general, to find a path that satisfies an LTL specification, most of

F.J. Montana is supported by the Mexican National Council of Science and Technol-
ogy (CONACyT). Jun Liu is supported in part by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada and the Canada Research Chairs
(CRC) program.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 150–164, 2017.
DOI: 10.1007/978-3-319-67113-0 10

Sampling-Based Path Planning for Multi-robot Systems 151

the methods use the notion of equivalent abstraction [1] to create a finite transi-
tion system that models the motion of the robot. Then, a product automaton is
created using this transition system and a Büchi automaton that represents the
LTL specification. In this product automaton, a graph search is performed to
find a path satisfying the specification. When a single task has to be completed
by all the robots, a parallel composition of the individual transition systems can
be created to model the motion of all the robots as a group. Then, this composi-
tion is used to create a product automaton with the Büchi automaton as in the
single robot case. Although this method can find a solution, it is computationally
expensive and scales poorly with the number of robots [10].

To avoid the parallel composition, in [2], the authors present a method to
decompose the global specification into local specifications. Then, individual
strategies are computed for the robots. Using a similar approach, in [12], the
problem of gathering information from an environment while the motion of the
robots is constrained by a temporal logic specification is solved. Distributability
has been also used to find robust paths when the travelling time of the robots
is uncertain [20] and for nonholonomic robots [23]. Although these methods
avoid the parallel composition by decomposing the specification, the approaches
fail to find a solution, even if one exists, when the global specification is not
distributable among the robots.

A common similarity of the works aforementioned is the assumption of a
transition system obtained by the process of abstraction described above. A lim-
itation of this approach is its complexity. They scale at least exponentially with
the dimension of the configuration space of the robots [21]. Using sampling-based
methods, this problem has been addressed by sampling the continuous configura-
tion space and incrementally constructing a transition system until the specified
task can be accomplished. In [8], the authors use an incremental model check-
ing method to solve the problem when μ-calculus formulae are used to express
the specifications. In [21], a method that uses a sparse sampling to reduce the
number of states in the transition system is presented. These methods scale
well since all the operations performed to find a path increment only with the
number of samples. The previous methods only consider a single robot. For the
multi-robot problem, in [7], a sampling-based method is used to create a tree
that approximates the product automaton. This approximation permits to solve
large problems, in terms of the number of states in the product automaton, that
are not solvable considering the product automaton itself. Nevertheless, in con-
trast to the solution proposed in this paper, they sample states from a transition
system representing regions of the environment and not from the configuration
space of the robots.

In this paper we present a sampling-based method that explores the config-
uration space of a group of robots to find a path such that a global specifica-
tion is satisfied. The proposed method explores an implicit representation of a
composite roadmap that models the motion of all the robots as a group. Dur-
ing the exploration, a transition system is incrementally expanded by adding new
states from individual roadmaps. With each expansion, the product automaton

152 F.J. Montana et al.

of the transition system and a Büchi automaton is updated. Although a solu-
tion can be found by naively exploring the composite roadmap, this process could
require long time. To improve this time, we also present an algorithm that uses the
Büchi automaton of the specification to guide the exploration of the composition.
The main contribution of this paper is a novel method that combines a sampling-
based method for multiple robots with a new algorithm that allows fast compu-
tation of solutions.

The rest of the paper is organised as follows. Preliminaries and a formal defi-
nition of the problem addressed are presented in Sect. 2. A detailed presentation
of the proposed method is found in Sect. 3. The method is demonstrated with
three examples in Sect. 4 and the conclusion is presented in Sect. 5.

2 Preliminaries and Problem Definition

2.1 Deterministic Transition System

A deterministic transition system is a tuple T = (S, s0, δT ,Π, L), where:

– S is a finite set of states,
– s0 ∈ S is an initial state,
– δT ⊆ S × S is a transition relation,
– Π is a finite set of atomic propositions,
– L : S → 2Π is a labelling function.

A run on T is a sequence σ = s0s1 . . . such that for every i ≥ 0, (si, si+1) ∈
δT . The trace of a run σ, ω = L(s0)L(s1) . . . , is a word over the power set of Π
that defines the atomic propositions that evaluate true in the states of the run.

2.2 Linear Temporal Logic

We use a segment of LTL, called syntactically co-safe LTL (sc-LTL) [11], to
express the desired system behaviour. LTL formulae are built from atomic propo-
sitions π ∈ Π that indicate whether a property of the system is true or false.

Syntax : The syntax of sc-LTL over Π is defined as follows:

ϕ := π | ¬π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | © ϕ | ϕ1U ϕ2 ,

where π ∈ Π is an atomic proposition, ϕ is a sc-LTL formula; and ¬, ∨, ∧,
© and U represent the operators negation, disjunction, conjunction, next and
until, respectively. Other operators such as the temporal operator eventually,
♦π = TrueU π, can be derived from the operators presented above.

Semantics: The semantics of LTL are defined over words ω. Given an LTL spec-
ification ϕ, a run σ = sisi+1 . . . , and the satisfaction relation |=, the semantics
are defined inductively as follows:

Sampling-Based Path Planning for Multi-robot Systems 153

si |= π iff π ∈ L(si),

si |= ϕ1 ∧ ϕ2 iff si |= ϕ1 and si |= ϕ2,

si |= ϕ1 ∨ ϕ2 iff si |= ϕ1 or si |= ϕ2,

si |= ©ϕ iff si+1 |= ϕ,

si |= ϕ1U ϕ2 iff ∃j ≥ i : sj |= ϕ2 and sk |= ϕ1, ∀ i ≤ k < j.

LTL formulae in positive normal form, where negations only occur in front of
atomic propositions, and which only use the operators ©, U and ♦, are co-safe
formulae [11].

2.3 Büchi Automaton

Given an LTL specification, it is possible to construct a Büchi automaton, which
accepts only words ω that satisfy the specification. A Büchi automaton B is a
tuple B = (Σ,Q, q0, δB, QF), where:

– Σ = 2Π is a finite alphabet,
– Q is a finite set of states,
– q0 ∈ Q is an initial state,
– δB : Q × Σ → Q is a transition function,
– QF ⊆ Q is a set of accepting states.

A run on B, produced by a word ω over the alphabet Σ, is a sequence
ρ = q0q1 . . . such that for every i ≥ 0, there exists πi ∈ Σ and δB(qi, πi) = qi+1.
For sc-LTL formulae, an infinite word ω is accepted if it starts with a prefix
such that the produced run ρ reaches the set QF of final states. An example of
a specification and its Büchi automaton is shown in Fig. 1.

Fig. 1. Büchi automaton of formula ϕ = (¬π1U π2)∧♦π1, where π1, π2 ∈ Σ are atomic
propositions, � is unconditionally true and U , ♦ are the operator until and eventually,
respectively. The formula indicates that the atomic propositions π2 and π1 have to be
satisfied in that specific order or at the same time. The small numbers on the edges
are used to identify each transition (see Sect. 3.4). The initial and final states, q0 and
q2, are indicated with an arrow and a double circle, respectively.

154 F.J. Montana et al.

Given a Büchi automaton B = (Σ,Q, q0, δB, QF), let |Q|,|q| and AP (q, q′)
denote the cardinality of Q, the number non self-transitions from state q and the
set of atomic propositions required for a transition from q to q′, i.e., AP (q, q′) = π
if δB(q, π) = q′.

2.4 Product Automaton

Given a transition system T and a Büchi automaton B, the product automaton
P = T × B is defined by the tuple P = (SP , sP,0, δP , SP,F), where:

– SP = S × Q is a finite set of states,
– sP,0 = s0 × q0 is an initial state,
– δP ⊆ SP ×SP is a transition relation, where ((s, q), (s′, q′)) ∈ δP iff (s, s′) ∈

δT and δB(q, L(s′)) = q′,
– SP,F = S × QF is a set of accepting states.

2.5 Problem Formulation

We consider R robots operating in a workspace containing obstacles and areas of
interest, defined by disjoint regions, that are associated with atomic propositions.
These atomic propositions are used to define sc-LTL formulae such as ϕ1 = ♦π1

or ϕ2 = ¬(π1 ∨ π2)U (π1 ∧ π2). Formula ϕ1 indicates that a robot has to visit the
area associated with the atomic proposition π1 while the formula ϕ2 indicates that
the areas π1 and π2 cannot be visited until they are reached at the same time step.

Let Xi ⊂ R
n be a compact set defining the configuration space of a robot

i, where i is an element of the set
 = {1, . . . , R} that indexes the robots
and R

n is the n-dimensional Euclidean space. Each robot has an obstacle-free
configuration space Xi

free. The configuration space of the full system is denoted
as X =

∏
i∈� Xi. The obstacle-free space Xfree =

∏
i∈� Xi

free does not include
states where collision between robots occurs. Let xxx = x0x1 . . . , where xj =
(x1

j , . . . , x
R
j) for all j ≥ 0, be a sequence of configurations describing a path

followed by the full system. A path is collision free if xj ∈ Xfree for all j ≥ 0. To
interpret atomic propositions over the configuration space X, let L : X → 2Π

be a function that maps a configuration x to the atomic propositions satisfied
by the configuration. Hence, a word ω = L(x0)L(x1) . . . expresses a path xxx in
terms of the atomic propositions. We say that the path xxx satisfies the sc-LTL
specification ϕ if the word ω, produced by xxx, is accepted by the Büchi automaton
that accepts words satisfying ϕ.

Problem definition: Given a group of R robots with initial configuration xi
0 for

i ∈
 and a sc-LTL specification ϕ, find a collision-free path xxx such that ϕ is
satisfied.

3 Solution

This section firstly presents an overview of the proposed method followed by a
detailed explanation. The main idea of the method is to create a graph, called

Sampling-Based Path Planning for Multi-robot Systems 155

transition system, modelling the motion of all the robots as a single system.
Each vertex of the graph represents a combination of single configurations of
all the robots. Edges represent collision-free paths between these configurations.
Initially, the graph contains only one vertex, the initial configuration of all the
robots. Then, this graph is incrementally expanded by adding a new vertex and
transitions. To obtain the new vertex, individual graphs, called roadmaps, that
model the motion of each robot are used. The process of expanding the graph
is repeated until the specification can be satisfied by a path in the graph. To
improve the required time to find a solution, the method uses an algorithm that
guides the expansion of the graph. Section 3.1 explains the creation of the individ-
ual roadmaps. In Sects. 3.2 and 3.3, the incremental construction of the transition
system and the search for a path satisfying the specification are presented. In
Sect. 3.4, the algorithm that guides the expansion is explained in detail. Finally,
illustrative examples and conclusions are presented in Sect. 4 and 5, respectively.

3.1 Probabilistic Roadmap

The first step of the proposed method consists of creating probabilistic roadmaps
[9] for each robot i ∈
. A roadmap of a robot i models a subset of the pos-
sible trajectories of the robot and is formed by a set of sampled configurations
x ∈ Xi

free connected by collision-free paths. A graph Gi = (V i, Ei) is used to
represent the roadmap of the robot i. Each vertex v ∈ V i is associated with an
unique robot configuration x ∈ Xi

free. This association is given by the function
χ : V i → Xi. Connectivity between two configurations is represented by an edge
(v, v′) ∈ Ei. We refer to all the vertices v′ that share an edge with v as neigh-
bours of v. To verify the satisfaction of a specification using only the atomic
propositions that are true in each state of the transition system, see Sect. 3.3,
we limit the edges between vertices to those edges that intersect the boundary
of a region in the workspace at most once [21]. Moreover, we reduce the size of
the roadmaps by constructing sparse roadmaps [4]. Since each vertex v ∈ V i is
associated with a configuration x ∈ Xi

free, with abuse of notation, we use L(v)
to denote the atomic propositions satisfied by χ(v). The set of vertices on a
roadmap Gi that satisfy an atomic proposition π ∈ Π is denoted by [[π]]i.

To consider the configuration of all the robots, a composite roadmap [17]
G = (V,E) is constructed as the tensor product of the individual roadmaps
{Gi}R

i=1. Formally, ν = (v1, . . . , vR) is a vertex of G if vi ∈ V i for all i ∈
 and
χ(ν) ∈ Xfree. Let ν = (v1, . . . , vR) and ν′ = (v

′1, . . . , v
′R) be two vertices in G.

In a tensor product, an edge (ν, ν′) ∈ E is defined if for every i ∈
, (vi, v
′i) ∈ Ei.

The projection of a composite vertex ν ∈ V onto the vertex vi ∈ V i of robot
i is denoted by ν ↓i, i.e., ν ↓i= vi. The atomic propositions satisfied by a
vertex ν = (v1, . . . , vR) is the union of the atomic propositions satisfied by the
individual vertices forming ν, i.e., L(ν) = ∪R

i=1L(vi), where vi = ν ↓i.
As explained in Sect. 1, it is possible to find a path for each robot satisfying

a specification by creating a product automaton of the composite roadmap G

and the Büchi automaton B of the specification ϕ. Nevertheless, this procedure
is only applicable for small problems due to its poor scalability; the number of

156 F.J. Montana et al.

Algorithm 1. IncrementalExpansion ({Gi}R
i=1,B)

1: S ← s0 = (v1
0 , v2

0 , . . . , vR
0)

2: P = T × B
3: while sP = (s, q) /∈ SP : q ∈ QF do
4: T ← Explore({Gi}R

i=1,T)
5: P, S′

P ← Update(P,B,T)
6: T ← LocalConnector({Gi}R

i=1,B,T ,S′
P)

7: while new connection do
8: P, S′

P ← Update(P,B,T)
9: T ← LocalConnector({Gi}R

i=1,B,T ,S′
P)

vertices in G is |V |R. Instead, we implicitly represent G and perform a sampling
of it until a solution is found. Algorithm 1, explained in the rest of Sect. 3, shows
this procedure.

3.2 Composite Roadmap Exploration

In this subsection, the incremental exploration of the composite configuration
space G is presented. First, a transition system T is initialised with only the
vertex corresponding to the initial configuration of all robots, i.e., s0 = ν0 =
(v1

0 , v
2
0 , . . . , v

R
0), where χ(vi

0) = xi
0 ∀i ∈
 (Algorithm 1, line 1). Vertices ν added

to the transition system are represented as s. In each iteration of Algorithm 1,
a new state is added to T using the idea of discrete rapidly-exploring random
trees [16] as follows (Algorithm 1, line 4).

Unless some conditions, explained in Sect. 3.4, are satisfied, a state s =
(v1, . . . , vR) ∈ S is randomly selected from the transition system T . Consider
a single vertex vi forming s and recall that vi,j is a neighbour of vi in Gi if
(vi, vi,j) ∈ Ei. The rays ρvi,vi,j , for all j ∈ {1, . . . , l}, that start from vi and pass
through the l neighbours of vi are computed. Then, a configuration xsample is
sampled from Xi

free and the ray ρvi,xsample is calculated. To choose a neighbour
of vi in direction of xsample, the angles between the ray ρvi,xsample and each of the
rays ρvi,vi,j are computed. The neighbour vertex that generates the ray with the
smallest angle is selected and denoted as vi

new, Fig. 2. This process is repeated for
all the vertices forming s, resulting in a candidate state snew = (v1

new, . . . , vR
new).

Before adding snew to T , it is verified whether collision between robots exists.
To avoid collisions during the transitions (vi, vi

new) for all i ∈
, priorities are
assigned to each robot according to the following rules [3]: (i) if robot i, transi-
tioning from vi to vi

new, causes a collision with robot j, located in vj
new, the robot

i receives higher priority than j; (ii) if robot i collides with robot j placed in vj

during the transition (vi, vi
new), then, robot i receives lower priority than j. The

state snew is discarded if there is no ordering such that collisions are avoided. Oth-
erwise, the state is added to T with the transitions (s, snew) and (snew, s). Note
that by choosing only neighbours of each individual vertex vi, (v1

new, . . . , vR
new)

is an element of the composite roadmap G. Intuitively, the transition system T

Sampling-Based Path Planning for Multi-robot Systems 157

vi
vi,1

vi,2

vi,3

vi,4

xsample

Fig. 2. Selection of vertex and edge in roadmap Gi. The states and transitions in T are
illustrated with black vertices and edges. The roadmap Gi is shown in grey. To choose
which neighbour {vi,j}4

j=1 of vi is added to the T , a configuration xsample is randomly
sampled from Xi

free. The rays starting from vi and passing through xsample and the
neighbours are shown as red and blue dotted lines, respectively. The angles between
the ray of the sample and the rest of the rays are computed. The smallest angle, α
in the figure, determines which neighbour and edge are added to T , neighbour vi,2 in
this example. (Color figure online)

Fig. 3. Incremental construction of a transition system. The roadmap of the robot is
shown in grey. The transition system, representing the explored part of the roadmap,
is shown in black. The green areas, identified by the atomic propositions π1, π2, π3 and
π4, are regions of interest. The proposed method iteratively adds vertices and edges
from the roadmap to the transition system until the specifications can be satisfied. In
this example, the specification is to visit the four green areas. The initial configuration
of the robot is shown as a red vertex. (Color figure online)

represents the explored part of G. An example of such exploration, for the case
R = 1, is shown in Fig. 3.

Since each vertex ν of G is associated with a configuration x ∈ Xfree, a
run σ = s0s1 . . . on T represents a path of the full system in the configura-
tion space Xfree. Hence, this exploration continues until a path that satisfies the
specification ϕ is found. The procedure to determine whether the current tran-
sition system contains such a path is presented in the next subsection.

158 F.J. Montana et al.

3.3 Product Automaton Update

Based on model checking techniques, the verification of a run σ satisfying the sc-
LTL specification ϕ is made on the Cartesian product P = (SP , sP,0, δP , SP,F)
ofT and the Büchi automatonB obtained from ϕ. States sP ∈ SP are formed by
pairs (s, q), where s = (v1, . . . , vR) ∈ S is a state of T and q ∈ Q is a state of B.

The product automaton P is firstly created when the transition system
contains only the initial state s0 (Algorithm 1, line 2). Since the transition system
T changes with each new state snew, the product P requires to be updated
(Algorithm 1, line 5). The procedure to incrementally update P [21] and to
search for a path satisfying ϕ is now presented.

When a new state snew is added to T with the transition (s, snew) and
(snew, s), the set S′

P of states s′
P = (snew, q′), such that δB(q, L(snew)) = q′ and

(s, q) ∈ SP , is computed. Then, for each state s′
P ∈ S′

P , it is verified if s′
P is

already in SP . If that is not the case, the state is added to P and is removed
from S′

P . Moreover, the set of states s′′
P = (s′, q′′), such that (snew, s′) ∈ δT

and δB(q′, L(s′)) = q′′, is computed. If a state s′′
P is not already in SP , s′′

P is
added to SP and to S′

P . This recursive procedure continues until the set S′
P is

empty.
By construction, if a run on P, starting from sP,0, reaches the set SP,F of

accepting states, the language produced by the run σ on T generates a word ω
that is accepted by the Büchi automaton B computed from the sc-LTL formula.
In other words, a run σ on T satisfies the specification if a run on P reaches
the set of accepting states. Hence, the process of exploring B and updating P
continues until a state sP = (s, q) is added to P such that q ∈ QF (Algorithm 1,
line 3).

A solution to the problem defined in Sect. 2.5 would be eventually found by
repeating the process described above. Nevertheless, depending on the number
of robots and the specification, this process could take an impractical amount of
time. In the next subsection, an algorithm that improves the required time by
guiding the exploration of G is presented.

3.4 Guided Expansion

In this subsection, we present a new algorithm, called local connector, which
selects the states in T that must be expanded in order to satisfy the sc-LTL
specification. The main idea is to find the shortest path, in terms of transi-
tions, in the Büchi automaton to an accepting state and to search for vertices in
the individual roadmaps {Gi}R

i=1 satisfying the atomic propositions required to
progress in such a path.

Before explaining the algorithm, some concepts and notation are introduced.
The algorithm monitors which transitions of the Büchi automaton have been
satisfied by the current transition system. To achieve this, each state and non-
self transition of the Büchi automaton are identified by an index, Fig. 1. When
one of the |qi| outgoing transitions from state qi ∈ Q is satisfied, the index that

Sampling-Based Path Planning for Multi-robot Systems 159

Algorithm 2. LocalConnector ({Gi}R
i=1,B,T ,S′

P)
1: gi ← {s : (s, qi) ∈ S′

P, ∀i ∈ {1, . . . , |Q|}}
2: for i ∈ sorted(qi) : i ∈ {1, . . . , |Q|}, gi �= ∅ and i /∈ Dq} do
3: for j ∈ {	 : j /∈ WR} do
4: for n = 1 → |gi| do
5: vs = sn ↓j , sn ∈ gi � Vertex to be connected
6: for k ∈ sorted(δB(qi, ·)) : k ∈ {1, . . . , |qi|, Wδ �= ∅ → k ∈ Wδ and k /∈ Di

δ} do
7: Πreq = AP (qi, qk) � Set of AP required
8: for m ∈ {1, . . . , |Πreq| : m /∈ DΠ} do
9: for h = 1 → |[[πm]]j | do

10: vt = vh, vh ∈ [[πm]]j � Target vertex
11: if Connect (vs, vt) then
12: if |Πreq| = 1 then
13: snew = s , s ∈ gi

14: snew ↓j= vt � New state of T
15: Di

δ ← Di
δ ∪ k

16: else if |DΠ | < |Πreq| − 1 then
17: WR ← WR ∪ j � robot j can satisfy πm

18: Wq ← Wq ∪ i
19: Wδ ← Wδ ∪ k
20: DΠ ← DΠ ∪ m
21: vj,next = vt � Vertex satisfying πm

22: else if |DΠ | = |Πreq| − 1 then
23: snew = s , s ∈ gi

24: snew ↓p= vp,next , ∀p ∈ WR

25: snew ↓j= vt � New state of T
26: Di

δ ← Di
δ ∪ k

27: WR = ∅, Wq = ∅, Wδ = ∅, DΠ = ∅

identifies the transition is added to the set Di
δ. Once all the outgoing transitions

of a state qi ∈ Q are satisfied, i.e., |Di
δ| = |qi|, the index i is added to the set Dq.

Depending on the transition, one or more atomic propositions have to be
satisfied at the same time. Since each robot can satisfy one atomic proposition
at a time, when more than one proposition is required, collaboration between
robots is needed. Consider the transition (q0, q2) in the Büchi automaton shown
in Fig. 1 as an example. To make this transition, the atomic propositions π1 and
π2 have to be satisfied, i.e., AP (q0, q2) = {π1, π2}. The algorithm verifies if a
robot i is able to satisfy any of the propositions by finding a local path from
its current configuration to a configuration in Gi satisfying one of the atomic
propositions. If, for instance, a path exists to a vertex v ∈ V i satisfying π1, i.e.,
v ∈ [[π1]]i, the atomic proposition π1 is added to the set DΠ and the index that
identifies the robot is added to the set WR. The set WR identifies the robots
that are waiting for other robots to satisfy the remaining atomic propositions
required to make the transition in the Büchi automaton. Moreover, this set is
used to guide the expansion of T as presented below. To identify which transition
is tried to be satisfied when a robot is added to WR, the index identifying the

160 F.J. Montana et al.

state q and its outgoing transition are added to the sets Wq and Wδ, respectively.
We now explain the algorithm in detail, see Algorithm2.

The algorithm receives as input the Büchi automaton B and the set S′
P of

states added to the product automaton P after the last update. These states
have the form (s, q), where s = (v1, . . . , vR) ∈ S and q ∈ Q. The states are
divided into different groups depending on their Büchi state component (Algo-
rithm2, line 1). In other words, for each state qi in the Büchi automaton, a group
gi containing states s = (v1, . . . , vR) such that sP = (s, qi) ∈ S′

P is created. The
algorithm eliminates the group gi if there is no remaining outgoing transitions
from the Büchi state qi to be satisfied, i.e., i ∈ Dq. Then, the algorithm sorts,
from shortest to longest, the different paths from the initial state q0 ∈ Q to the
closest accepting state q ∈ QF in the Büchi automaton B.

Using these sorted paths, the algorithm tries to reach atomic propositions
required in the paths, starting from the shortest path (Algorithm2, line 2). An
exception to the order is made when of one the robots is waiting for another
atomic proposition to be satisfied, i.e., WR �= ∅. In this case, all the Büchi states
are ignored except the states in the set Wq.

For each state s in gi, the individual vertices of non-waiting robots form-
ing s, i.e., s ↓j for j ∈
 \ WR, are considered to be connected to vertices in
Gj satisfying the required atomic propositions in the Büchi automaton transi-
tion. An individual vertex, denoted as vs, is considered for connection in each
iteration (Algorithm 2, lines 3–5). If a robot is waiting, all the transitions are
ignored except the transition indicated by the set Wδ. Otherwise, the transition
is selected based on the sorted paths (Algorithm 2, line 6). The required atomic
propositions in the transition are assigned to the set Πreq (Algorithm 2, line 7).
Then, all the vertices in the roadmap Gj that satisfy an atomic proposition that
cannot be satisfied by a waiting robot, i.e., πm ∈ Πreq \ DΠ , are assigned as a
target of the connection and are denoted as vt (Algorithm 2, lines 8–10). The
algorithm then tries to find a path between the vertices vs and vt. By connecting
the transition system to vertices satisfying atomic propositions required for the
specification, the time needed to solve the proposed problem is reduced.

In order to find a path between the vertices vs and vt any method can be used.
However, because this process is constantly repeated, a method that sacrifices
completeness for speed is preferred. In this work, the algorithm attempts to
connect two vertices if the Euclidean distance between them is less than a pre-
established value. If the path, given by a line between the vertices, is collision
free, the connection is considered successful (Algorithm 2, line 11). Depending on
the number of atomic propositions in the selected transition in B, three different
situations can occur:

Case 1: Only one atomic proposition is required in the transition, i.e., |Πreq| = 1
(Algorithm 2, lines 12–15). In this case, if robot j can satisfy the required atomic
proposition through the connection, a new state snew = (v1, . . . , vR), where
vi = s ↓i for i ∈ {
 : i �= j} and vt otherwise, is created. Intuitively, the new
state has the same components as the composite state s, except the element of
robot j that is replaced by vs. If the new state is not in the transition system T ,

Sampling-Based Path Planning for Multi-robot Systems 161

the state is added with the transitions (s, snew) and (snew, s). Finally, the index
k of the satisfied transition is added to Di

δ indicating that the transition k from
state qi has been satisfied.

Case 2: More than one atomic proposition is required and at least one more is
still required after the connection (Algorithm 2, lines 16–21). When a robot j can
satisfy one of the required atomic propositions but at least another is needed for
the transition in the Büchi automaton, the robot stays in the vertex vs waiting for
the remaining robots to satisfy the other atomic propositions. To indicate that the
robot is waiting, the index j is added to the set WR. The set WR restricts the states
that can be selected in the exploration of G. The selected state in the exploration
must be formed by the vertices vi, where i ∈ WR. Moreover, the next state snew to
be added to the transition system must have the same vertices. After adding the
index j of the robot to the set WR, the vertex that can be reached, i.e., vt, is saved
in vj,next to be used once all the atomic propositions of the transition are satisfied.
Then, the index m of the atomic proposition that can be satisfied is added to the
set DΠ to skip this atomic proposition the next iteration of Algorithm2. Note that
the restriction explained above guides the sampling process of G.

Case 3: The last required atomic proposition is satisfied with the connection
(Algorithm 2, lines 22–27). Similar to case 1, when a robot j can satisfy the last
required atomic proposition, a new state snew is created with the saved states
vi,next, i.e., snew ↓i= vi,next for all i ∈ WR, vt for i = j and s ↓i otherwise. This
state is added to T with the transitions (s, snew) and (snew, s). The index k of the
satisfied transition is added to Di

δ and the sets WR, Wq and Wδ and DΠ become
empty indicating that all the robots can move again and any non-satisfied state
and transition in the Büchi automaton can be selected.

Every time a new state snew is added to T , the product automaton P is
update (Algorithm 1, lines 7–9) and the process is repeated. As mentioned in
Sect. 3.3, Algorithm 1 stops once a product state with a final state q ∈ QF is
added to P.

3.5 Implementation

This subsection presents how a solution is obtained from P and the implemen-
tation of it in the robots. Once the condition to stop Algorithm1 is satisfied, the
shortest path σ = sP,0 . . . sP,n on P, where sP,n ∈ SP,F , is sought. Since a
state sP is formed by the pair (s, q), only the first element of each state is con-
sidered to create the path xxx that satisfies the sc-LTL specification. The function
χ is used to define the configurations in X that defines xxx. Finally, each config-
uration in xxx is projected to the individual configuration spaces Xi to define a
path for each robot.

To execute the path, each robot stores a list of the vertices to visit in its
roadmap Gi together with the configurations where the robot has to wait for
other robots before performing a transition. When a robot finishes a transition, it
broadcasts a unique identifier number and a signal indicating that the transition
has been completed. If a robot needs to wait for other robots, the transition is

162 F.J. Montana et al.

Fig. 4. Illustration of the path followed by two robots satisfying the specification ϕ =
♦(π1 ∧ π2) ∧ ♦(π3 ∧ π4). This sc-LTL specification requires the robots to visit areas
marked as π1 and π2 at the same time and the areas π3 and π4 with the same restriction.
The colour of the robots changes, from darker to lighter blue, over time to show that
the atomic propositions are satisfied at the same time step. (Color figure online)

not performed until the robot receives the signal of all the robots with higher
priority.

4 Examples

The proposed method is illustrated with different sc-LTL specifications and num-
ber of robots. We consider a differential wheeled robot, called e-puck [14], in a
workspace with 4 areas associated with the atomic propositions π1, π2, π3 and π4,
Fig. 4. The computation of the path is implemented in MATLAB on a computer
with a 3.1 GHz i7 processor and 8GB of RAM. The dynamics of the e-pucks are
simulated using Enki [13].

We present three examples, considering two, three and four robots,
respectively:

1. Regions π1, π2 have to be visited at the same time as well as π3, π4 with the
same restriction, Fig. 4.

2. Regions π1, π2 and π3 must be visited in the presented order.
3. Regions π1, π2, π3 and π4 cannot be visited until all of them are visited at

the same time.

Recall that the number of vertices in G is equal to |V |R, where |V | is the
number of vertices in the roadmap and R is the number of robots. In the example
with four robots, the parallel composition G has more than 96 million vertices.
Nevertheless, Table 1 shows that only a small portion of G is explored before
finding a solution. This result can be attributed to the guided search performed
by the local connector algorithm. For comparison, we compute a solution to the
first specification without Algorithm2. That is, we only expand the transition

Sampling-Based Path Planning for Multi-robot Systems 163

Table 1. Average number of states in T and required time to solve the problem over
20 different runs.

Specification Robots States in T Time (seconds)

♦(π1 ∧ π2) ∧ ♦(π3 ∧ π4) 2 278.55 6.30

♦(π1 ∧ ©♦(π2 ∧ ©♦(π3))) 3 6457.9 372.37

¬(π1 ∨ π2 ∨ π3 ∨ π4)U (π1 ∧ π2 ∧ π3 ∧ π4) 4 270.4 7.48

system using the idea presented in Sect. 3.2. In average, the solution is found
in 1057.91 s and require the exploration of 7242.43 vertices. This comparison
shows that Algorithm 2 reduces the exploration or G and, as a consequence,
the required time to find a solution. A direct comparison with other sampling-
based methods for multiple robots, e.g., [7], is not possible because our method
samples the continuous configuration space instead of a discrete representation
of the robots mobility.

5 Conclusions

In this paper, we have introduced a new method to find collision-free paths
for a multi-robot system that satisfy syntactically co-safe linear temporal logic
formulae. Most of the work in the literature consider methods with low scal-
ability with respect to the dimension of the robot’s configuration space. We
extend sampling-based methods, previously proposed to alleviate the scalability
problem, to multi-robot systems. The proposed method explores a composite
roadmap modelling the possible behaviour of all the robots. This exploration
stops when a path satisfying the specification is found. Additionally, we have pre-
sented a new algorithm that guides the exploration to reduce the time required
to find a solution. Numerical results show that only a small portion of the com-
posite roadmap is explored as a result of using this algorithm. The proposed
method is focused on obtaining a result in the shortest possible period of time
regardless of its optimality. Hence, a possible direction for future work is the
inclusion of a cost function to find optimal paths.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

2. Chen, Y., Ding, X.C., Belta, C.: Synthesis of distributed control and communi-
cation schemes from global LTL specifications. In: Proceedings of CDC-ECC, pp.
2718–2723. IEEE (2011)

3. van Den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning
for multiple robots: optimal decoupling into sequential plans. In: Robotics: Science
and Systems, vol. 2, pp. 2–3 (2009)

4. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-
optimal motion planning. Int. J. Robot. Res. 33(1), 18–47 (2014)

164 F.J. Montana et al.

5. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Automatica 45(2), 343–352 (2009)

6. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL
specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)

7. Kantaros, Y., Zavlanos, M.M.: Sampling-based control synthesis for multi-robot
systems under global temporal specifications. In: Proceedings of ICCPS, pp. 3–13.
ACM (2017)

8. Karaman, S., Frazzoli, E.: Sampling-based motion planning with deterministic μ-
calculus specifications. In: Proceedings of CDC/CCC, pp. 2222–2229. IEEE (2009)

9. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

10. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic motion specifications. IEEE Trans. Rob. 26(1), 48–61 (2010)

11. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth.
Syst. Des. 19(3), 291–314 (2001)

12. Leahy, K., Jones, A., Schwager, M., Belta, C.: Distributed information gathering
policies under temporal logic constraints. In: Proceedings of CDC, pp. 6803–6808.
IEEE (2015)

13. Magnenat, S., Waibel, M., Beyeler, A.: Enki: the fast 2D robot simulator (2011).
http://home.gna.org/enki

14. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Proceedings of ICARSC, pp. 59–65. IPCB (2009)

15. Montana, F.J., Liu, J., Dodd, T.J.: Sampling-based stochastic optimal control with
metric interval temporal logic specifications. In: Proceedings of CCA, pp. 767–773.
IEEE (2016)

16. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning.
Int. J. Robot. Res. 35(5), 501–513 (2016)

17. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Rob.
Auton. Syst. 23(3), 125–152 (1998)

18. Svoreňová, M., Křet́ınský, J., Chmeĺık, M., Chatterjee, K., Černá, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement
of probabilistic games. In: Proceedings of HSCC, pp. 259–268. ACM (2015)

19. Tumová, J., Dimarogonas, D.V.: A receding horizon approach to multi-agent plan-
ning from local LTL specifications. In: Proceedings of ACC, pp. 1775–1780. IEEE
(2014)

20. Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D.: Optimality and robustness
in multi-robot path planning with temporal logic constraints. Int. J. Robot. Res.
32(8), 889–911 (2013)

21. Vasile, C.I., Belta, C.: Sampling-based temporal logic path planning. In: Proceed-
ings of IROS, pp. 4817–4822. IEEE (2013)

22. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control of non-deterministic sys-
tems for a computationally efficient fragment of temporal logic. In: Proceedings of
CDC, pp. 3197–3204. IEEE (2013)

23. Zhang, Z., Cowlagi, R.V.: Motion-planning with global temporal logic specifica-
tions for multiple nonholonomic robotic vehicles. In: Proceedings of ACC, pp.
7098–7103. IEEE (2016)

http://home.gna.org/enki

Certified Gathering of Oblivious Mobile Robots:
Survey of Recent Results and Open Problems

Thibaut Balabonski6, Pierre Courtieu1, Lionel Rieg2,
Sébastien Tixeuil4,5, and Xavier Urbain3(B)

1 CÉDRIC, Conservatoire National des Arts et Métiers, Paris, France
2 Yale University, New Haven, USA

3 Université de Lyon, Université Claude Bernard Lyon 1,
CNRS, LIRIS UMR 5205, Lyon, France
Xavier.Urbain@liris.cnrs.fr

4 UPMC Sorbonne Universités, LIP6-CNRS 7606, Paris, France
5 Institut Universitaire de France, Paris, France

6 Université Paris-Sud, LRI, CNRS UMR 8623, Université Paris-Saclay, Paris, France

Abstract. Swarms of mobile robots have recently attracted the focus
of the Distributed Computing community. One of the fundamental prob-
lems in this context is that of gathering the robots: the robots must meet
at a common location, not known beforehand. Despite its apparent sim-
plicity, this problem proved quite hard to characterise fully, due to many
model variants, leading to informal error-prone reasoning.

Over the past few years, a significant effort has resulted in the set up
of a formal framework, relying on the Coq proof assistant, that was used
to provide certified results related to the gathering problem. We sur-
vey the main abstractions that permit to reason about oblivious mobile
robots that evolve in a bidimensional Euclidean space, the distributed
executions they can perform, and the variants of the gathering problem
they can solve, while certifying all obtained results. We also describe the
remaining steps to obtain a certified full characterisation of the problem.

1 Introduction

1.1 Oblivious Mobile Robots

We consider sets of mobile oblivious robots evolving in a bidimensional con-
tinuous Euclidean space. Robots follow the seminal model by Suzuki and
Yamashita [24]: they do not remember their past actions, they cannot com-
municate explicitly, and they are disoriented: they do not agree on a common
frame of reference (i.e., shared “North” direction, handedness or notion of dis-
tance). Note that obliviousness implies that the frame of reference of a single
robot is not guaranteed to stay the same during execution.

This work was partially funded by the CNRS PEPS OCAAA 2017 project CYBORG
and the Université Claude Bernard Lyon 1 BQR 2017 project PREFER.
The original version of this chapter was revised. The author corrections were
updated. The erratum to this chapter is available at https://doi.org/10.1007/
978-3-319-67113-0 15

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 165–181, 2017.
DOI: 10.1007/978-3-319-67113-0_11

166 T. Balabonski et al.

However, they can sense their environment and detect the positions of the
other robots according to their egocentered view of their surroundings. If several
robots share the same position in space (forming a tower, or multiplicity point),
other robots may or may not detect the tower. If robots have weak multiplicity
detection, they are assumed to sense a tower on a position, but are not able
to count the actual number of robots in this tower. With strong multiplicity
detection, they are able to count the exact number of robots on a given position.
Without multiplicity detection, robots simply detect occupied positions.

Robots are anonymous and execute the same deterministic algorithm to
achieve together a given objective. Each robot behaves according to the fol-
lowing look-compute-move cycle: it takes a snapshot of its environment, it then
computes its next move (either stay idle or move to a different position), and at
the end of the cycle, it moves according to its computation. Since robots can-
not rely on a common sense of direction, directions that are computed in the
compute phase are only relative to the robot.

Existing execution models consider different types of synchronisation for the
robots: in the fully synchronous model (FSYNC), all robots evolve simultane-
ously and complete full look-compute-move cycles at the same time. The semi-
synchronous model (SSYNC) considers runs that evolve in phases: at each phase,
an arbitrary subset of the robots is scheduled for a full look-compute-move cycle,
which is executed simultaneously by all robots of the subset. Finally, in the asyn-
chronous model (ASYNC), robots evolve freely at their own pace. In particular,
a robot can move according to a computation based on an obsolete observation
of its environment, as other robots may have moved in between.

The core problem to solve in the context of mobile robot networks is pat-
tern formation, introduced in the seminal paper by Suzuki and Yamashita [24].
It turns out that a deterministic solution to construct general patterns in the
SSYNC model can be devised, with the added assumption that robots have
access to an infinite non-volatile memory (that is, robots are not oblivious). The
construction was later refined for the ASYNC model by Bouzid et al. [7], still
using a finite number of infinite precision variables. The search for an oblivious
solution to general pattern formation proved difficult [19]. For oblivious deter-
ministic robots to be able to construct any general pattern, it is required that
they share a common “North” (that is, a common direction and orientation) but
also a common “Right” (i.e. handedness, aka chirality), so that robots get to all
agree on a common coordinate system. If only a “North” (and implicitly if only
a “Right”) is available, then some patterns involving an even number of robots
cannot be formed.

Relaxing the common coordinate system condition led to a characterisation
of the patterns that can be formed by deterministic oblivious robots [20,25,26].
The best deterministic algorithm so far in the ASYNC model without a common
coordinate system [26] proves the following: If ρ denotes the number of geometric
symmetries of a robot configuration, and I and P denote the initial and target
configurations, respectively, then P can be formed if and only if ρ(I) divides
ρ(P). Intuitively, this result says that we cannot break existing symmetries, so

Certified Gathering of Oblivious Mobile Robots 167

that any symmetry of the starting configuration must be present in the target
configuration. A direct consequence of this result is that the only patterns that
can possibly be formed from arbitrary initial positions are the regular polygons
and the point. Forming a point as the target pattern is known as gathering.

1.2 The Gathering Problem

Despite its apparent simplicity, the solvability of gathering has received a con-
siderable amount of attention [18]. A foundational result [13,24] shows that in
the FSYNC or SSYNC models, no oblivious deterministic algorithm can solve
gathering for two robots (without additional assumptions). The main argument
for establishing this impossibility is the observation that robots can have sym-
metric coordinate systems and retain symmetry forever. This result can be
extended [13] to the bivalent case, that is, when an even number of robots
is initially evenly split in exactly two positions. This result was significantly
extended by Prencipe [22]: in SSYNC, with n > 2 robots starting from ini-
tially distinct positions, no oblivious deterministic protocol can solve without
additional assumptions, such as multiplicity detection. On the other hand, it
is possible to solve gathering without additional assumptions in the FSYNC
model [3]. In the ASYNC model, gathering is possible if n > 2 robots start
from initially distinct positions and robots are endowed with weak multiplicity
detection [10].

Gathering was further studied for hostile environments, where robots become
likely to fail. So far, three kinds of failures were considered in the context of
deterministic gathering [1,6,8,16]:

1. Transient faults: as robots are oblivious (they do not remember their past
actions), they are naturally resilient to transient faults that corrupt their
memory. However, if the transient fault consequence was to place the robots
in some forbidden configuration (e.g. a bivalent configuration), some algo-
rithms may not recover. Algorithms can thus be sorted according to the set
of admissible initial configurations.

2. Crash faults: when robots may stop executing their algorithm unexpectedly
(and correct robots are not able to distinguish a correct robot from a crashed
one at first sight), guaranteeing that correct robots still gather in finite time
is a challenge. Algorithms can thus be sorted according to the number of
admissible crashed robots.

3. Byzantine faults: when robots may have completely random (and possibly
malicious) behaviour, there exists no deterministic gathering protocol in the
SSYNC model even assuming that at most one robot may be Byzantine [1].

The positive deterministic results so far in a fault tolerant context are as
follows. With strong multiplicity detection, and restricting the set of admissi-
ble initial configurations to distinct configurations (that is, configurations where
at most one robot occupies a particular position), gathering is feasible in the
SSYNC model with one crash fault [1]. If only transient faults are considered,

168 T. Balabonski et al.

strong multiplicity detection (that is, being able to sense the exact number of
robots at any particular position) permits to extend the set of initial configura-
tions to those that include multiplicity points [16] (however, only the case with
an odd number of robots is considered). When a common chirality is available,
it becomes possible to tolerate up to n− 1 (n being the number of robots) crash
faults [6], further expanding the set of initial configurations to those that are
not bivalent (so all feasible initial configurations in a deterministic context are
considered). This result was improved by Bramas et al. [8], as they present a
deterministic gathering protocol that can start from any non-bivalent configu-
ration (the largest possible set in the classical model), yet does not assume that
all robots share a common direction, nor a common chirality (as in [6]). The
protocol retains the ability to tolerate up to n − 1 crash faults.

1.3 Contributions and Outline of the Paper

In Sect. 2, we revisit the oblivious mobile robot model of Suzuki and
Yamashita [24] under the prism of formal methods, and present the Pactole
framework that we use throughout the paper. Section 3 surveys the core results
related to mobile robot gathering, how they can be expressed using the Pactole
framework, describes in detail key certified results obtained so far, and conclude
of the benefits of using the Pactole framework. Finally, we present in Sect. 4 the
next steps to obtain a complete certification of gathering-related results.

2 Formal Models of Oblivious Mobile Robots

2.1 Related Work/Overview

Designing and proving mobile robot protocols is notoriously difficult. Formal
methods encompass a long-lasting path of research that is meant to overcome
errors of human origin. Unsurprisingly, this mechanised approach to protocol
correctness was successively used in the context of mobile robots [2–5,9,13,15,
21,23].

In the discrete setting (that is, when the movements of the robots are
restricted according to a pre-existing graph), model-checking proved useful to
find bugs in existing literature [4,17] and formally check the correctness of pub-
lished algorithms [4,15,23]. Automatic program synthesis (for the problem of
perpetual exclusive exploration in a discrete ring) is due to Bonnet et al. [5],
and can be used to obtain automatically algorithms that are “correct-by-design”.
The approach was refined by Millet et al. [21] for the problem of gathering in
a discrete ring network. Recently, Aminof et al. [23] presented a general frame-
work for verifying properties about mobile robots evolving on graphs, where the
graphs are a parameter of the problem. As all aforementioned approaches are
designed for a discrete setting, they cannot permit to establish results that are
valid for a continuous Euclidean space such as the one we consider in this paper.

Certified Gathering of Oblivious Mobile Robots 169

When robots are not constrained to evolve on a particular topology but
instead move freely in a bidimensional Euclidian space, to the best of our knowl-
edge the only formal framework available is the Pactole framework.1 Pactole
enabled the use of higher-order logic to certify impossibility results for the prob-
lem of convergence [2]: robots are required to reach positions that are arbitrar-
ily close to each other. Another classical impossibility result that was certified
with Pactole is the impossibility of gathering starting from a bivalent configura-
tion [13], that is, a configuration with exactly two distinct towers, each consisting
of half the robots. Recently, positive certified results for SSYNC gathering with
multiplicity detection [14], and for FSYNC gathering without multiplicity detec-
tion [3] were provided.

2.2 The Pactole Framework

Developed for the coq proof assistant,2 the Pactole framework allows for for-
mal specification, and proofs of both correctness [3,14] and impossibility [2,13]
results, in the context of autonomous mobile robots.

The design of the formal platform is driven by two objectives. The first one
is to provide means to specify problems, protocols, and properties in a rela-
tively easy way, that is, without requiring the user to be a long time expert in
formal proof. As a matter of fact, specifications are rather short, very close to
mathematical statements as found in papers, and expressed in quite a readable
functional programming language. We would like to stress that developing proofs
is a completely different task, which does require expertise.

The second objective is to capture as many variations in the model as pos-
sible. The framework is highly generic and may be instantiated in numerous
ways. This allows for each result to be proven with the appropriate minimal
hypotheses, and then to be used in any setting where these hypotheses hold.
For example, if a problem is proved to be impossible in the fully synchronous
model then it is also impossible in the asynchronous model. Indeed, being more
powerful, an ASYNC demon can simulate the FSYNC setting and reproduce the
impossibility proof.

High-Level Description. In the current core of the framework, as in the
original model of [24], robots are considered point-like and they all execute the
same program. For the sake of genericity, positions are just elements of some
arbitrary space (with a decidable equality). A robot is simply an identifier, and
a configuration: a function mapping an identifier to the relevant information
(position, state, etc.); an execution is an infinite sequence of configurations. The
program embedded in all robots is a function that takes a perception of the
environment as an input and returns a target destination.

1 http://pactole.lri.fr.
2 http://coq.inria.fr.

http://pactole.lri.fr
http://coq.inria.fr

170 T. Balabonski et al.

Perception of robots. To ensure that the program does not use more information
than what is provided by the perceptions of robots, it must fulfil a compatibility
constraint saying that equivalent perceptions lead to equivalent destinations;
this is stated as an additional property. The definitions of “equivalent” for both
perceptions and positions is a parameter of the framework. This modularity
allows us maximum flexibility in the definition of robot perceptions, but comes
at the burden of these extra compatibility proofs. We do not impose the use
of Coq’s equality (which would remove the need for the compatibility proofs)
because on some datatypes equality is too fine grained, and we would like to
use a coarser relation instead. A simple example of this phenomenon is Coq’s
Sets library: they are represented by balanced trees, and different trees may
represent the same set. Nevertheless, when these equivalences are actually Coq’s
equality, these compatibility proofs are trivial. The pair function/property is
called a robogram. Perceptions of the environment are called spectra of the actual
configuration, the definition and computation of which are defined by the user
when the generic model is instantiated. For example, the provided function may
then hide or show identifiers or multiplicity, it may limit the vision to some
radius, etc. This flexibility allows the user to represent any kind of sensors.

Demons. Finally, demons are infinite sequences (Stream) of actions, each of those
activating a set of robots and giving to each one its current local coordinate sys-
tem. The way activated sets of robots are selected depends on the instantiation:
all robots for a fully synchronous scheme, subsets for semi-synchronous schemes,
etc. Additional properties like fairness-related constraints (fair, unfair, k-fair,3

etc.) are expressed as logical propositions on demons. This allows for the encod-
ing of many types of demons, and for their theoretical formal study. The relevant
library includes inclusions and equivalence theorems about demons, for example
that a fully-synchronous demon is semi-synchronous, or that a k-fair demon is
also (k + 1)-fair.

We also define the usual temporal operators ♦, ◦, and � to help expressing
temporal properties about executions, written respectively Stream.eventually,
Stream.next, and Stream.forever in our formalisation. Yet, the logic of Coq is
much more expressive and one can define new temporal operators or new prop-
erties directly on an execution.

Executions. We can generate an execution from a robogram and a demon by
executing successively the robogram against the demonic action described by the
demon for each round. To this end, the round function computes the configuration
obtained after one round of executing a robogram against a demonic action da

starting from a configuration. This is done in the following consecutive steps for
each robot identifier id:

3 A demon is k-fair when any robot is activated within k consecutive activations of
any other robot.

Certified Gathering of Oblivious Mobile Robots 171

1. If the robot id is not activated, return the same position.
2. If id is a byzantine robot, it is relocated by the demonic action da.
3. Use the local frame of reference provided by da to compute the local config-

uration.
4. Transform this local configuration into a spectrum.
5. Apply the robogram on this spectrum.
6. If moves are flexible, compute new position of id using the ratio given by da.
7. Convert the new position from the local frame to the global one.

In a discrete setting, the steps would be the same except for the local frame
of reference which does not contain a zoom factor.

All the developments related to the results we survey in this article are avail-
able from http://pactole.lri.fr.

Description of the Coq Libraries. The Pactole framework contains a core
part which is common to all settings and several libraries accommodating all sup-
ported variants for the model. The following table describes them with their sizes,
as given by coqwc. Statements of intermediate lemmas in proofs are counted as
specifications.

TotalProofSpecComponent
Instances of several Euclidian spaces with geometrical constructs
(barycentres, smallest enclosing circles and their properties, etc.)

864 2708 3572

Formalism for rigid or flexible moves (i.e. robots cannot/can
be interrupted before they reach the destination they computed),
SSYNC/FSYNC, with various properties on demons (most notably
flavours of fairness)

481 649 1130

Equivalence between rigid moves and flexible moves with ratio 1 63 86 149
Most common spectra to express perception capabilities of robots 217 280 497
Implementation and properties of multisets relevant to our context
to deal with and to ease proof over some spectra

1786 4162 5948

Several case studies, in particular for gathering and convergence 1398 5638 7036
20907152645643Total for Pactole

2.3 Specifying in Pactole

We emphasise that the task of specifying the problem and its components, and
the task of proving the various claims and statements are two separate activities.
While the latter is more the work of an expert in formal proof, the former has
to be accessible and manageable by every user and developer of distributed
protocols for mobile robots. The language of Coq (Gallina) and the Pactole
framework allow the user to characterise properties and contexts without a too
cumbersome verbosity or intricacy. Due to the high parametricity of Pactole and
the set of lemmas and definitions it comes with, specifying a gathering protocol
in R

2 can be as short as providing the code itself. Of course, if the robots enjoy
capabilities that are not yet in the libraries, the user will have to define a function
that takes a configuration and returns a spectrum; a special synchronicity may

http://pactole.lri.fr

172 T. Balabonski et al.

have to be defined by providing a property on demons (usually expressed with
the help of the operators on streams), etc., but overall the framework helps
to keep limited the amount of technical expertise in this phase, and allows for
focusing on the crucial parts described as univocal statements.

3 A Formal Study of Gathering with Pactole

3.1 Formal Definitions in Pactole

Most of the formal definitions about the gathering problem are common to all
results, ensuring on the one hand that we always consider the same problem in
the various settings, and on the other hand that there is no gap between the
impossibility result and the algorithms we design.

All these formal definitions do not make any assumption on the type of
space in which robots evolve, abstracted as Loc.t. Thus, they are used in both R

and R
2.

Gathering. A general description on how to characterise a solution to the prob-
lem of gathering has been given in [13]; we briefly recall how it is specified, using
3 definitions which exactly reflect the mathematical description of the problem.

The first one characterises a configuration config in which all robots inhabit
the very same position pt:
Definition gathered_at (pt : Loc.t) (config : Config.t) :=

∀ g : Names.G, Loc.eq (config (Good g)) pt.

The second one states that all robots inhabit forever the same position pt

along a given execution e. This is the execution we expect after a successful
gathering.
Definition Gather (pt: Loc.t) (e : execution) : Prop :=

Stream.forever (Streams.instant (gathered_at pt)) e.

Finally, the last property means that robots will all reach the same position pt

in finite time, and stay there forever.In other words, property Gather will hold
eventually.
Definition WillGather (pt : Loc.t) (e : execution) : Prop :=

Stream.eventually (Gather pt) e.

A robogram achieving gathering under a demon d without any additional
initial condition fulfils FullSolGathering.
Definition FullSolGathering (r : robogram) (d : demon) :=

∀ config, ∃ pt : Loc.t, WillGather pt (execute r d config).

If any condition on the initial configuration is required, the relevant property
is ValidSolGathering.
Definition ValidSolGathering (r : robogram) (d : demon) :=

∀ config,
¬invalid config → ∃ pt : Loc.t, WillGather pt (execute r d config).

Note that this is just the addition of a condition ¬invalid config over the starting
configuration in the expression of FullSolGathering, which expresses that the
starting configuration is not invalid.

Certified Gathering of Oblivious Mobile Robots 173

3.2 Robot Models Considered in This Study

Synchrony. The model is instantiated for semi-synchronous demons. In this case,
a demon is a stream of demonic actions which associate to each of the robots
an option value: either None meaning that the robot is not activated, or a value
Some carrying the new frame of reference of the (hence activated) robot. Fully
synchronous demons are obtained as the particular case in which the value None

is never used. Note that Obliviousness is achieved by providing a new frame at
each activation.

Different notions of fairness are provided (demons may be fair, unfair, k-fair,
etc.), and are to be used as assumptions in theorems if needed.

Multiplicity. As a robogram must compute the destination based only on the
information available to robots, we have to select a suitable spectrum, containing
only the information observable by the robots. When the considered capability is
strong global multiplicity, the robots have access to the number of robots located
at each point in space, that is: positions holding robots with their respective mul-
tiplicities. A suitable spectrum to compute from is thus the multiset of inhabited
positions, available in our libraries with relevant functions and properties. With
no multiplicity detection, we use instead the set of inhabited position.

3.3 SSYNC, Detection of Multiplicity, Rigid Movements

Impossibility: Theorem and Proof. Impossibility of Gathering for two
robots was established by Suzuki and Yamashita in their seminal paper [24].
A recent work [13] shows that by following almost exactly the steps of their
proof, we can establish a slightly stronger result: we relax the usual constraint
that initial configurations should have all their robots at distinct positions, and
we show impossibility for any positive even number of robots.

So as to keep the statement of the main theorem short, we state as parameter
that the number of robots N.nG is even.
Parameter N.nG : nat. (* number of robots *)
Hypothesis even_nG : Nat.Even N.nG. (* assumed to be even *)

We prove that no matter what the algorithm does, we can build a demon
such that starting from an invalid position, the execution resulting from the
algorithm and the demon always stays invalid, hence the algorithm fails.
Definition Always_invalid (e : execution) :=

Streams.forever (Streams.instant invalid) e.

Theorem different_no_gathering : ∀ (e : execution),
N.nG �= 0 → Always_invalid e → ∀ pt, ¬WillGather pt e.

Using similarities to convert from the global frame of reference to the local
one, we can ensure that robots not located on the same position are always
at (local) position 1, hence both towers of robots always perform the same
actions.As in the original proof, we consider two cases, whether the algorithm
sends one tower of robots on top of the other or not. In the first case, the demon

174 T. Balabonski et al.

activates all robots and they swap positions; after two rounds we are back to
the starting configuration. Notice that in this case, the demon is actually fully
synchronous, so in particular 1-fair.

In the second case, the demon only activates one tower of robots. After one
round, the robots may be closer to each other in the global frame but with a
similarity, the demon can scale this back to a unit distance for the next round.
Therefore, activated in the next round, the other tower will perform the same
move and both towers of robots will still be apart. Notice that in this case, the
demon is 1-fair. The final theorem we prove expresses that for all robograms r,
all integers k ≥ 1, r does not solve gathering against all k-fair demons d.

Theorem noGathering:
∀ r k, (1≤k) → ¬(∀ d, kFair k d → FullSolGathering r d).

This is a universal quantification over protocols.
Note that we use FullSolGathering, hence we put no restriction on the initial
configuration. The extension to k-fair demons (with k ≥ 1) comes from a theorem
in our formal library stating that any k-fair demon is also k′-fair for any k′ ≥ k.

Correctness: Theorem and Proof. The previous impossibility result is based
on the fact that we cannot break the symmetry between two towers of robots.
Thus, these bivalent configurations are exactly the ones we want to avoid for our
algorithms. We thus define invalid configurations to be the ones with exactly
two distinct towers, each consisting of half the robots.

Definition invalid (config : Config.t) :=
Nat.Even N.nG ∧ N.nG >=2
∧ let m := Spect.from_config(config) in

∃ pt1 pt2, ¬Loc.eq pt1 pt2
∧ m[pt1] = Nat.div2 N.nG
∧ m[pt2] = Nat.div2 N.nG.

We initially designed an algorithm for R [12] and later extended it for R2 [14].
As the former can be seen as a particular case of the latter case, we focus our
presentation on R

2.
The full algorithm is described in Fig. 1. It proceeds by computing a target

that only depends on “clean” robots, i.e. located on the smallest enclosing circle
(SEC). Robots that are not clean are allowed to move first, so that the target does
not change during their gathering. Then clean robots can move and modify the
SEC and hence the target. Its translation in Gallina is about 20 lines long for the
protocol itself, with an additional dozen of lines for properties over constituents
(essentially equivalences of results when provided equivalent entries). This count
does not include the geometrical characterisations for triangles, barycentres, etc.
We refer to [14] for further details.

The three main difficulties in the design of the algorithm are: first avoiding
the invalid configuration at all costs; second ensuring that all robots are in the
same phase of the algorithm; third ensuring that all robots compute the same
destination in the global frame. Avoiding the invalid configuration is done by
testing the existence of a unique tower of maximal height and moving towards

Certified Gathering of Oblivious Mobile Robots 175

Fig. 1. Gathering Protocol for R2. dest is the target position computed by the protocol.
The spectrum s is a multiset of positions, support(s) and max(s) denote respectively
the support set and set of maximal multiplicity elements of s. sec(s) denotes the
smallest enclosing circle of positions in s.

it if it exists: we then prove that starting from a non invalid configuration, an
invalid one can never appear.

Theorem never_invalid :
∀ da config, ¬invalid config → ¬invalid (round gatherR2 da config).

It is interesting to notice that the proof of this theorem in R
2 has been reused

from the R case as it is exactly the same.
To solve the second and third difficulty, we only use geometric properties

and shapes that are invariant by (conjugating by) similarities, in particular the
smallest enclosing circle (SEC). Thus, we ensure that all robots see the same
shape and compute the same position in the global frame, the center of the
SEC. The actual algorithm must take into account some corner cases where the
SEC changes, in particular when there are 3 or fewer robots on the SEC. Overall,
we get the following key property stating that all moving robots compute the
same target.

Lemma same_destination: ∀ da config id1 id2,
In id1 (moving gatherR2 da config) → In id2 (moving gatherR2 da config)
→ round gatherR2 da config id1 = round gatherR2 da config id2.

The most intricate part of the proof of the algorithm is not its partial correct-
ness but its termination. To prove it, we analyse the possible transitions between
all phases of the algorithm, and design a measure lt_config which decreases each
time a robot moves.

Theorem round_lt_config: ∀ da conf,
¬invalid conf → moving gatherR2 da conf �= nil
→ lt_config (round gatherR2 da conf) conf.

The main theorem states that for any fair demon, the robogram gatherR2

achieves gathering provided that the initial configuration is valid, i.e., not biva-
lent in this case. Hence we use the ValidSolGathering expression of the wanted
property.

176 T. Balabonski et al.

Theorem Gathering_in_R2: ∀ d, Fair d → ValidSolGathering gatherR2 d.

It is proven by well-founded induction on the measure lt_config and by case
analysis.

3.4 FSYNC, No Detection of Multiplicity, Flexible Movements

When movements are not rigid but, on the contrary, are flexible, robots can
be interrupted before they reach the destination they computed. In order to
prevent Zenon-based counterexamples, it is assumed that the length of any non-
conclusive movement is at least δ, an absolute distance that is unknown to
robots. In other words, robots either reach their goal when it is at most at
a certain absolute distance δ, or travel at least δ towards it, stopping to an
arbitrary position (possibly the computed goal).

Cohen and Peleg [11] proposed that robots aim for the position that is
the barycenter of all observed robots for the purpose of convergence (a weaker
requirement than gathering, which mandates robots to reach positions that are
arbitrarily close to one another) in the SSYNC model. They demonstrate that
for the FSYNC model, robots actually solve gathering since they eventually all
become closer than δ from the barycenter, and hence all reach it in the next
round.

However, this centre of gravity algorithm does not prevent more than one
robot to occupy the exact same position before gathering, even if they start from
distinct positions. For example, consider two robots r1 and r2 aligned toward
the barycenter at some round, at distances d1 and d2 (d1 < d2) that are both
greater than δ, respectively. Then, the demon stops r1 after δ and r2 at the same
position. Robots r1 and r2 now occupy the same position. From this observation
is it clear that in the next round, to compute the barycenter, observing robots
must take into account both r1 and r2. In other words, robots running this
algorithm must be able to detect how many robots occupy simultaneously a
given position, that is, make use of strong multiplicity detection. The question
of gathering feasibility in FSYNC without multiplicity detection (nor any other
additional assumption) has been solved using Pactole in [3].

Formal Specification and Certification. Switching from SSYNC to FSYNC
is easy as the demon just has now to activate the whole set of robots at each
round. The main changes in the setup lie in multiplicity detection, and move-
ments that can be interrupted.

Multiplicity. In the case where multiplicity is not to be considered, the robots
cannot receive any information about it. Thus a suitable definition of the spec-
trum they consider is to be devised. As the robograms can only rely on the
knowledge of a position in space being inhabited or not, it is sufficient to rep-
resent the environment as the set of inhabited positions (and not a multiset as
previously done). To this goal, we use the set-based spectra of our development.

Certified Gathering of Oblivious Mobile Robots 177

Flexible Movements. Flexible demons of our framework are streams of ‘flexible’
demonic actions, which in turn provide each of the (activated) robots with both
its new frame of reference and the ratio of its actual movement over its com-
puted destination. Demonic actions also contain the same well-defined logical
properties as before (for example ensuring that new frames of reference make
sense), and the additional property that the provided ratio belongs to the [0, 1]
interval. To avoid irrelevant details in rigid developments, and to allow for the
reuse of proofs and theorems, our demon libraries come with theorems stating
equivalence between flexible movements with ratio 1 and rigid movements.

Gathering in the Flexible Context. The formal definitions of the framework for
the flexible move setting only require very minor changes: demonic actions now
have an additional ratio (and proof of its bound) which is used in the round

function computing the next configuration, together with the δ parameter to
ensure that robots move a correct distance. This δ is only used in round, which
in turn requires to add it as an extra parameter to the function execute that
generates an execution from a demon and a robogram (by invoking repeatedly
round), and to the definition of Gathering (which uses execute). As gathered_at,
Gather, and WillGather stay exactly the same, the characterisation of a solution
to Gathering in the flexible context is simply:
Definition FullSolGathering (r : robogram) (d : demon) δ :=

∀ config, ∃ pt : Loc.t, WillGather pt (execute δ r d config).

Theorem and Proof. The solution proposed in [3] does not rely on the centre of
gravity of robots, but on the centre of gravity of inhabited positions. Remember
that the spectrum in this context is just the set of inhabited positions. Bringing
all robots to the centre of gravity of inhabited positions thus consists in bringing
them to the barycentre of the spectrum.
Definition ffgatherR2_pgm (s : Spect.t) : R2.t :=

barycenter (Spect.M.elements s).

From this code and the relevant properties (equivalence for equivalent per-
ceptions) we can build Robogram ffgatherR2.

The main difficulty is to establish that after a finite number of steps, no robot
will change its position. This amounts to finding a measure that decreases for a
well founded ordering along with the execution. To this goal, we consider for a
configuration C the maximal distance dm(C) between any two robots, denoted
by measure hereafter. Similarly to Sect. 3.3, we define a well-founded ordering
that decreases by at least δ for each new obtained configuration (unless the
distance is less than δ, in which case gathering is achieved in the next step).
Theorem round_lt_config:

∀ d conf δ, δ>0 → FullySynchronous d → δ ≤ measure conf
→ measure(round δ ffgatherR2 (Streams.hd d) conf) ≤ measure conf - δ.

The main statement, establishing correctness, is the following:
Theorem FSGathering_in_R2:

∀ δ d, δ>0 → FullySynchronous d → FullSolGathering ffgatherR2 d δ.

178 T. Balabonski et al.

Here again we are using FullSolGathering, hence we do not make any assump-
tions on the starting configuration.

This theorem is proven via well-founded induction over the ordering, and by
case analysis: if the robots are already gathered or will be gathered at the next
step then we are done, else we use round_lt_config.

3.5 Conclusion of This Study

We emphasise that the use of the Pactole framework allows for easy to write and
human readable definitions and specifications for programs and properties in the
context of oblivious mobile robots. During that phase, establishing the compat-
ibility property of the robogram is the only technical requirement. It is however
a composition of the compatibility proofs on the robogram’s constituents.

The common framework encompasses many models (FSYNC/SSYNC,
rigid/flexible moves, etc.), and allows for both impossibility results and proofs of
correctness. It thus permits to share definitions, and ensures consistency in the
notions and properties involved. It also prevents any shifting of models between
statements of theorems, their proofs, and their applications, hence providing
strong guarantees.

From a proving perspective, every time we follow the same methodology:
after defining and specifying the robogram, we provide a global description of
the execution of the robogram that does not make any reference to the local
frame of reference, and prove that it is sufficient. This allows us to perform
reasoning on the execution of the robogram in the global frame of reference,
which we always do intuitively on paper but requires a formal proof. This relies
crucially on the fact that computations performed by the robogram are invariant
by similarities. From this point on, partial correctness is usually easy to establish.
Proving termination is much harder, with arguments that are specific to each
situation. Most of the work is devoted to geometrical properties: either invariants
or transitions between given states of the algorithm.

4 Roadmap to a Complete Certified Characterisation

We summarise in Table 1 the certification progress for gathering and convergence
in oblivious mobile robot problems. Results in bold face are certified using the
Pactole framework. Extending the results will require to further develop the
framework along the following roadmap:

1. Impossibility of SSYNC n-gathering (with n ≥ 3) without multi-
plicity detection. An important (uncertified) impossibility result is due to
Prencipe [22]: for any number of robots that is greater to 3, it is impossible
to solve gathering without additional assumptions (e.g. multiplicity detec-
tion, agreement on direction, etc.). Prencipe’s proof argument is based on an
adaptive scheduling of robots: if the robots’ algorithm is to gather them, then
the scheduler only activates a subset of the robots to make the algorithm fail

Certified Gathering of Oblivious Mobile Robots 179

Table 1. Oblivious robot gathering certification progresses. Bold entries are formally
certified.

2-gathering n-gathering
(n ≥ 3)

n-gathering (n ≥ 3)
w. multiplicity
detection

wait-free n-gathering
(n ≥ 3)
w. multiplicity detection

FSYNC Yes Yes Yes Yes

SSYNC No No Yes Yes

ASYNC No No Yes ?

at each step. The certification of Prencipe’s proof thus requires the ability to
express such adaptive schedules in the Pactole framework, remaining agnostic
of the actual protocol that is executed by all robots.This would also certify
the impossibility for the ASYNC model.

2. Wait-freedom. As explained in Sect. 1.2 when robots may stop executing
their algorithm unexpectedly, guaranteeing that correct robots still gather in
finite time is a challenge. Wait-freedom refers to the fact that no robot “waits”
to observe the move of another robot before moving itself (hence, every correct
robot always moves until completion of the algorithm): otherwise a crashed
robot could prevent other correct robots from gathering. Certifying state of
the art results [8] in this context requires defining wait-freedom as a prop-
erty of the robots’ algorithm, and its integration in the relevant lemmas and
theorems.

3. ASYNC certification. To date, the only certified result in the ASYNC
model is the impossibility of gathering when started from a bivalent configu-
ration, as the impossibility proof for the SSYNC model naturally extends to
the ASYNC model. For positive results, we focused on the atomic FSYNC
and SSYNC models. Breaking the atomicity of the individual Look-Compute-
Move cycles (that is, considering algorithm certification for the ASYNC
model [18], or writing impossibility results that are specific to that model)
implies that robots cannot maintain a current global view of the system (their
own view may be outdated), nor be aware of the view of other robots (that
may be outdated as well). The modelling of ASYNC is feasible in a proof assis-
tant, and should not bring any additional difficulties in the specification of
properties in that context. However, it would have a significant cost in terms
of intricacy of the associated proofs. A really manageable formal development
in an ASYNC model requires more automation at the proof level.

When both wait-freedom and ASYNC issues are resolved, we will have all
required ingredients to tackle the currently open issue of the existence of wait-
free algorithms for gathering in the ASYNC model.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

180 T. Balabonski et al.

2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibil-
ity results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol.
8255, pp. 178–190. Springer, Cham (2013). doi:10.1007/978-3-319-03089-0 13

3. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit,
F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). doi:10.
1007/978-3-319-49259-9 2

4. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Dis. Comput. 29(6),
459–487 (2016)

5. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In: SRDS Workshops
2014, pp. 50–59. IEEE (2014)

6. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: ICDCS, pp. 337–346. IEEE Computer Society (2013)

7. Bouzid, Z., Dolev, S., Potop-Butucaru, M., Tixeuil, S.: Robocast: asynchronous
communication in robot networks. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 16–31. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-17653-1 2

8. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C.
(ed.) Structural Information and Communication Complexity. LNCS, vol. 9439,
pp. 313–327. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2 22

9. Bérard, B., Courtieu, P., Millet, L., Potop-Butucaru, M., Rieg, L., Sznajder, N.,
Tixeuil, S., Urbain, X.: Formal methods for mobile robots: current results and open
problems. Int. J. Inform. Soc. 7(3), 101–114 (2015). Invited Paper

10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

11. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

12. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: A certified universal gathering algo-
rithm for oblivious mobile robots. CoRR, abs/1506.01603 (2015)

13. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a Certi-
fication. Inf. Process. Lett. 115, 447–452 (2015)

14. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2 for

oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol.
9888, pp. 187–200. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53426-7 14

15. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.)
SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33536-5 7

16. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theoret. Comput. Sci. 428, 47–57 (2012)

17. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017). doi:10.
1007/978-3-319-57708-1 12

18. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis lectures on distributed computing theory. Morgan &
Claypool Publishers, San Rafael (2012)

http://dx.doi.org/10.1007/978-3-319-03089-0_13
http://dx.doi.org/10.1007/978-3-319-49259-9_2
http://dx.doi.org/10.1007/978-3-319-49259-9_2
http://dx.doi.org/10.1007/978-3-642-17653-1_2
http://dx.doi.org/10.1007/978-3-642-17653-1_2
http://dx.doi.org/10.1007/978-3-319-25258-2_22
http://dx.doi.org/10.1007/978-3-662-53426-7_14
http://dx.doi.org/10.1007/978-3-642-33536-5_7
http://dx.doi.org/10.1007/978-3-642-33536-5_7
http://dx.doi.org/10.1007/978-3-319-57708-1_12
http://dx.doi.org/10.1007/978-3-319-57708-1_12

Certified Gathering of Oblivious Mobile Robots 181

19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)

20. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33651-5 22

21. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of
mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.)
SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). doi:10.1007/
978-3-319-11764-5 17

22. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoret. Comput. Sci. 384(2–3), 222–231 (2007)

23. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of asynchronous
mobile-robots in partially-known environments. In: Chen, Q., Torroni, P., Villata,
S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 185–200.
Springer, Cham (2015). doi:10.1007/978-3-319-25524-8 12

24. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

25. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

26. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited
visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol.
8179, pp. 201–212. Springer, Cham (2013). doi:10.1007/978-3-319-03578-9 17

http://dx.doi.org/10.1007/978-3-642-33651-5_22
http://dx.doi.org/10.1007/978-3-642-33651-5_22
http://dx.doi.org/10.1007/978-3-319-11764-5_17
http://dx.doi.org/10.1007/978-3-319-11764-5_17
http://dx.doi.org/10.1007/978-3-319-25524-8_12
http://dx.doi.org/10.1007/978-3-319-03578-9_17

Modeling and Analysis Techniques

Learning-Based Testing the Sliding Window
Behavior of TCP Implementations

Paul Fiterău-Broştean1(B) and Falk Howar2

1 Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

fiteraup@yahoo.com
2 Institute for Applied Software Systems Engineering,

Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Abstract. We develop a learning-based testing framework for register
automaton models that can express the windowing behavior of TCP,
thereby presenting the first significant application of register automata
learning to realistic software for a class of automata with Boolean-
arithmetic constraints over data values. We have applied our framework
to TCP implementations belonging to different operating systems and
have found a violation of the TCP specification in Linux and Windows.
The violation has been confirmed by Linux developers.

1 Introduction

Automata provide both formal and intuitive means of specifying the behavior
for a wide range of applications, in particular network protocols. Unfortunately,
protocol specifications often are textual and rarely include state machine models.
Without such models, it is difficult to test if an application behaves as expected.
Manual construction of models is a laborious and error-prone process and models
become outdated as soon as the specification changes. Learning-based testing,
as sketched in Fig. 1, alleviates this problem by generating models while test-
ing a system. These models cannot serve as specifications but can be used to
check desired properties, which are usually easier to formalize and maintain than
complete behavioral models.

Integrating model learning, model-based testing, and model checking allows
a tester to automatically obtain a model for a system under test. For a set of test
inputs, model learning runs a series of tests on the system until, eventually, it
will produce a conjectured model of the system’s behavior. This model is used as
the basis for model-based testing. Testing can discover counterexamples, which
indicate incorrectness of the model. In such case, model learning is restarted,
being provided with the counterexample. Once no counterexample is found, the
model can be used for checking properties. The output of learning-based testing
is threefold: model learning produces a conformance test suite for the model [4],

P. Fiterău-Broştean—Supported by NWO project 612.001.216, Active Learning of
Security Protocols (ALSEP).

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 185–200, 2017.
DOI: 10.1007/978-3-319-67113-0 12

186 P. Fiterău-Broştean and F. Howar

Model
Learning

Model-based
Testing

Manual
Checking

Conjectured
Model

Counter-
Example

Validated
Model

Test
Inputs

Model and Conformance
Test-Suite for Model

(No Additional States)

Conformance Guarantee
Provided by Test Method

Property

Verdict /
Counterexample

Fig. 1. Learning-based testing with additional checking of properties.

checking of properties can produce examples that document the violation of a
specification, and in case no violation is found, testing can yields a conformance
guarantee.

In order to instantiate learning-based testing for a certain class of models,
one needs a learning algorithm and a testing algorithm for this class of models.
In this paper, we present a learning-based testing framework for a class of regis-
ter automata that can express the windowing behavior of TCP. Our framework
utilizes the SL∗ learning algorithm for register automata [6] and a random walk
testing algorithm for such register automaton models. The testing algorithm
ensures approximate correctness of models with a high confidence. We manu-
ally inspect models and find a violation of the TCP specification in Linux and
Windows implementations.

Our work is the first significant application of register automata learning to
realistic software for a class of automata with Boolean-arithmetic constraints
over data values. Our results show that, on the one hand, learning more expres-
sive models can ease the burden of manually constructed sophisticated test
harnesses. On the other hand, experiments show that model learning for more
expressive models is very expensive. Future work will focus on scaling learning-
based testing to industrial applications as well as on integrating automated
model checking into our approach.

Related Work. Learning-based testing in the form that we present here is based
on the observation that model learning and model-based testing are merely two
sides of the same coin [16]. The term has been introduced in [12] for a combina-
tion of model learning, model checking, and random testing. In contrast to our
work, the approach is based on finite state models. On the other hand, model
checking is automated and feed the model learning algorithm with counterex-
amples, leading to higher degree of automation.

Learning-based techniques have been steadily gaining traction for more than
a decade, after pioneering work on learning and testing CTI systems [10] and
learning and checking systems [13]. Previous applications of learning-based test-
ing or checking have lead to the discovery of flaws in TLS implementations [15]
and of various forms of specification non-compliance in TCP [7,8] and SSH [9]

Learning-Based Testing the Sliding Window Behavior 187

ignore

Fig. 2. TCP handshake, connection closure, and data transfer with re-transmission.
Labels show flags, sequence and acknowledgment numbers. 1 byte of payload marked
by (X). Initial Sequence Numbers marked by (ISN).

implementations. What all these case studies have in common, is the difficulty
of manually constructing a sophisticated test harness for the system. This is in
large part caused by the need to abstract away from system functionality, so
that the functionality seen by the learner fits within the less expressive formal-
ism the learner can infer, typically mealy machines or DFAs. Our learning setup
can infer more expressive register automata, and requires no form of abstraction
other than a general one for handling fresh values.

Outline. We provide a brief introduction to TCP in the next section before pre-
senting our learning-based testing framework in Sect. 3. We discuss application
of our framework on real TCP implementations in Sect. 4, before concluding in
Sect. 5.

2 The Sliding Window Behavior of TCP

The Transport Control Protocol (TCP) is a widely used transport layer protocol
of the TCP/IP stack, with implementations provided by all operating systems.
TCP ensures reliable data transfer between parties. In order to communicate, a
TCP client and server application must first establish a TCP connection, which
is done by way of a handshake. They can then exchange data over the established
connection until one of the parties decides to terminate the connection. A closure
procedure ensues, which ultimately removes the connection. In all stages of the
protocol, interaction is done by exchanging TCP segments. These segments are
often the result of calls on the socket interface, which is available to each side and
provides access to TCP services. Moreover, each side keeps track of the state of
the connection. TCP uses sequence numbers and a sliding receive window to keep
track of which segments have been received and acknowledged by the other party.
This helps compensate for a potentially lossy communication channel in which
reordering of segments can occur (e.g., due to changing routing of segments).

For the sake of exposition, let us assume a setting in which all segments are 1
byte in size. As sequence numbers encode the relative position of a segment in a
byte stream, this assumption allows us to confuse the relative position segment
in a sequence of segments with its position in a byte stream.

188 P. Fiterău-Broştean and F. Howar

48 49 50 51 … 59 60

next inside
window

.….…

a er
window

before(old) current

Fig. 3. Relevant relations of Sequence Numbers in TCP.

Sequence Numbers. To achieve reliable data transfer, TCP uses sequence
and acknowledgement numbers, and flags which are included in the header of all
TCP segments. In a stream of segments from a sender to a receiver, the sequence
number encodes the relative number of a segment in such a stream. The receiver
acknowledges a received segment by responding with a segment including as
acknowledgement number the next expected sequence number. Sequence num-
bers are generated relative to an Initial Sequence Number (ISN), so the first
segment has sequence number ISN, the second ISN+1... As data is sent, the
sequence number increases, as does the acknowledgement number in responses.

Receive Window. Segments received with a sequence number greater than the
one expected fall in two categories: those whose sequence number falls within a
receive window of that expected and those whose sequence number falls outside
of the receive window. The former should be processed by the receiver, the
latter should be treated as invalid. As a concrete example, only reset segments
(segments with the RST flag enabled) with the sequence number within the
receive window are processed, and may reset the connection, those whose number
lies outside should be ignored. The receive window is included in the TCP header
and its value is communicated in each TCP segment a side sends.

Sliding Windows. Once a received segment is successfully processed, the
receive window can be moved forward: if a sequence number of a received seg-
ment is equal to the sequence number expected, the expected sequence num-
ber is increased. If not equal, the expected sequence number is left unchanged.
Acknowledgement numbers are also checked. Those equal to the last sequence
number sent acknowledge all segments up to this last one. Those greater are
unacceptable as they acknowledge segments not yet sent. Those smaller than
the last sequence number sent are old acknowledgements. Segments with unac-
ceptable or old acknowledgement numbers are generally discarded.

As stated above, sequence numbers and receive windows are used, among other
things, to deal with reordering of routed segments and to prevent the process-
ing of (bytes in) old segments, which are segments carrying already seen data
with sequence numbers smaller than the those expected. Old segments are often
the result of re-transmissions, which happen when a timeout for receiving an
acknowledgement has expired. TCP is full duplex, which means communicating
sides maintain two byte streams, one for each direction. Each side keeps track of
the next sequence number to be sent, as well as the sequence number expected
from the other side. To open (via handshake), maintain and close the two byte

Learning-Based Testing the Sliding Window Behavior 189

SL∗

Algorithm
Tree

Oracle
Determinizer
Component

TCP Impl.
(SUT)

Tree-queries

Symbolic
Decision Tree

Output Queries
Sent

Packages

Received
Packages

Accept /
Reject

Fig. 4. Learning register automaton models from tests.

streams, TCP uses control flags. The SYN flag, for example, marks the beginning
of a byte stream, whereas the FIN flag marks the end. Figure 2 gives sequence
diagrams for typical TCP scenarios.

The description so far assumed that all segments were 1 byte in size. In
actuality, the size of a segment is the size of the payload carried, plus 1 if either
SYN or FIN flags are enabled, or 0 otherwise. We restrict the learning setting to
one where segments carry no payload (thus segments are either of size 0 or 1).

Figure 3 depicts the relevant relations sequence numbers may have relative
to a current sequence number, in line with our earlier description. These rela-
tions are equality and inequality over the current sequence number, and over
its summation to one (for segments including either FIN or SYN), and to the
receive window size.

3 Instantiating Learning-Based Testing for TCP

In order to apply learning-based testing to the windowing behavior of TCP,
we instantiate the components of the framework that were sketched in Sect. 1.
We use the SL∗ active learning algorithm for learning register automaton mod-
els [6]. Active learning algorithms rely on the existence of a minimally adequate
teacher (cf. [3]) that answers two kinds of queries for the learning algorithm:
output queries (i.e., execution of tests) and equivalence queries. The learning
algorithm submits a conjectured model to an equivalence oracle and expects a
counterexample to the model (if one exists). In our scenario, we implement this
oracle by performing model-based testing on the model.

The SL∗ algorithm additionally assumes the existence of a tree oracle. A tree
oracle produces register automata fragments that encode the relevant data rela-
tions for a sequence of actions on a SUT. The resulting setup is shown in Fig. 4.
In order to infer symbolic transitions, e.g., for input ACK(p1, p2) with two data
parameters p1 and p2 from a state that is reached in the protocol by sending a
message SY N(10, 0) and receiving message SY N+ACK(20, 11), the SL∗ algo-
rithm will perform a tree query for prefix SY N(10, 0) and suffix ACK. The tree
oracle will generate output queries for all relevant concrete instances of ACK
messages capturing possible relations between values of p1, p2 and data values
in the prefix (e.g., equality, being a sequence number, or being in a window).
The determinizer component will test if output queries are valid traces of a TCP
implementation by exchanging actual TCP packages with a system under testing
(SUT). The tree oracle encodes the observed behavior and relevant relations as
a symbolic decision tree.

190 P. Fiterău-Broştean and F. Howar

In the remainder of this section, we present register automata for the win-
dowing behavior of TCP, tree queries that capture all relevant data relations,
and use the presented ideas as a basis for instantiating model-based testing in
our framework.

3.1 Register Automata

We assume a set Σ of actions, each with an arity that determines how many
values from N it takes as parameters (e.g., ACK takes two data values). To
simplify presentation, we assume that all actions have arity 1, but it is straight-
forward to extend to the case where actions have arbitrary arity. A data symbol
is a term of form α(d), where α is an action and d ∈ N is a data value. A data
word is a sequence of data symbols. The concatenation of two data words w and
w′ is denoted ww′. In this context, we often refer to w as a prefix and w′ as a
suffix. For a data word w = α1(d1) . . . αn(dn), let Acts(w) denote its sequence
of actions α1 . . . αn, and V als(w) its sequence of data values d1 . . . dn. Let |w|
denote the number of symbols in w.

While there are infinitely many data words for every sequence of actions with
data parameters, many of these data words are equivalent when considering only
relations between data values (e.g., equality, being a sequence number, or being
in a window). For a set of relations R, data words w = α1(d1) . . . αn(dn) and w′ =
α1(d′

1) . . . αn(d′
n) are R-indistinguishable, denoted w ≈R w′, if R(di1 , . . . , dij) iff

R(d′
i1

, . . . , d′
ij

) whenever R is a relation in R and i1, · · · , ij are indices among
1 . . . n. We use [w]R to denote the set of words that are R-indistinguishable
from w. A data language L is a set of data words that respects R in the sense
that w ≈R w′ implies w ∈ L ↔ w′ ∈ L.

In order to capture the windowing behavior of TCP, we define the set of
relations R = {R⊗,c : ⊗ ∈ {<,≤,=,≥, >} ∧ c ∈ {0, 1, 100}}, and relation
R⊗,c ⊂ N×N such that xR⊗,cy iff x+ c⊗y. Relations R⊗,0 encode equality and
an order on the sets of sequence numbers. Relations in R⊗,1 encode the successor
relation between sequence numbers and R⊗,100 describes windows (of size 100).

We assume a set of registers x1, x2, . . . that can store data values of data
words. A parameterized symbol is a term of form α(p), where α is an action and p
a formal parameter. An atomic guard g over p is a logic formula of form (xi+c⊗p)
with ⊗ ∈ {<,≤,=,≥, >} and c ∈ {0, 1, 100}. We allow for aggregation of atomic
guards into intervals of form (g1 ∧ g2), where atomic guards g1 and g2 specify a
lower and an upper bound on p, respectively. A valuation ν : {p, x1, x2, . . .}
→ N

satisfies a guard g if g[ν] = g[ν(p)/p][ν(x1)/x1][. . .] is true and we write ν |= g
in this case.

An assignment is a simple parallel update of registers with values from reg-
isters or the formal parameter p. We represent an assignment which updates the
registers xi1 , . . . , xim with values from the registers xj1 , . . . , xjn or p as a map-
ping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn}∪{p}, meaning that the value of the
register or parameter π(xik) is assigned to the register xik , for k = 1, . . . , m.

Learning-Based Testing the Sliding Window Behavior 191

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}. ��

We require register automata to have no initial registers (i.e., X (l0) = ∅) and to
be completely specified in the sense that for each location l ∈ L and action α,
the disjunction of the guards on the α-transitions from l is equivalent to true.

RA Semantics. Let us formalize the semantics of RAs. A state of an RA
A = (L, l0,X , Γ, λ) is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over X (l),

i.e., a mapping from X (l) to D. A step of A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉, transfers
A from 〈l, ν〉 to 〈l′, ν′〉 on input of the data symbol α(d) if there is a transition
〈l, α(p), g, π, l′〉 ∈ Γ with

– ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and
– ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise

ν′(xi) = d if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps of A

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉

for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
(rejecting) run over w which starts in 〈l0, ν0〉. An RA is determinate if there is
no data word over which it has both accepting and rejecting runs. In this case we
interpret an RA A as a mapping from the set of data words to {+,−}, where +
stands for accept and − for reject. When using register automata as models
for reactive system, we refine the set of actions into inputs and outputs (cf. [5]).

3.2 Tree Queries

For a data language L, a data word u with V als(u) = d1, . . . , dk, and a set V of
sequences of actions (so-called abstract suffixes), a (u, V)-tree is a decision tree
(a tree-shaped RA) T = (L, l0,X , Γ, λ) with root l0 and X (l0) ⊆ {x1, . . . , xk}
that (1) has runs over exactly all data words v with Acts(v) ∈ V and that
(2) accepts a data word v from 〈l0, νu〉 iff uv ∈ L. Please note, that we do not
require X (l0) to be empty for decision trees and let νu such that νu(xi) = di for
xi ∈ X (l0) and di the i-th data value of u.

192 P. Fiterău-Broştean and F. Howar

x1[νu] = 1

x2[νu] = 2

(x1 + 1)[νu] = 2

(x2 + 1)[νu] = 3

(x1 + 100)[νu] = 101

(x2 + 100)[νu] = 102

p < x1

x1=p

x1 < p ∧ p < x2

x2=p

x2 < p ∧ p < x2 + 1

x2 + 1=p

x2 + 1 < p ∧ p < x1 + 100

x1 + 100=p

x1 + 100 < p ∧ p < x2 + 100

x2 + 100=p

x2 + 100 < p

p
<

x
2

x
2

≤
p

∧
p

<
x
1

+
1
0
0

x
1

+
1
0
0

≤
p

Fig. 5. Potential (left), maximally refined (u, v̂)-tree (center), and canonic guards
(right) for u with νu = {x1 �→ 1, x2 �→ 2} and v̂ with |v̂| = 1. Actions omitted.

A tree oracle for L is a function O that for any prefix u and set of abstract
suffixes V constructs a (u, V)-tree O(u, V). The SL∗ algorithm combines multi-
ple symbolic decision trees (SDTs) into a conjectured model. We can implement
a tree oracle by starting with a maximally refined symbolic decision tree that has
one unique sequence of transitions for every R-indistinguishable class of words
[uv]R with Acts(v) ∈ V and then compute a more concise tree by iteratively
merging equivalent subtrees.

Maximally refined SDTs. For simplicity, we describe the generation of a maxi-
mally refined symbolic decision tree for a prefix u and a single abstract suffix v̂.
This allows us to omit actions from the presentation. For |V als(u)| = k, the
potential of u is the set of terms (xi+c) with 1 ≤ i ≤ k and c ∈ {0, 1, 100}that can
appear in guards after u. The valuation νu (with νu(xi) = di for di ∈ V als(u))
induces an order on the terms in the potential. An example of this order is shown
on the left of Fig. 5 for a word u with two data values.

Omitting the trivial case of the empty sequence, let |v̂| = 1 for the moment.
We generate guards for cases p smaller than the smallest term in the potential of
u, p equal to one of the terms, p in the interval between two successive terms, and
p greater than any term in the potential of u. These guards are maximally refined:
each (satisfiable) guard describes one class [uv]R of R-indistinguishable words.
We instantiate each guard with the help of a constraint solver and use an output
query to determine if uv ∈ L. Figure 5 (middle) exemplifies the construction. As
indicated by gray lines on the left of the figure, some terms in the potential are
equal. For these cases we pick one of the equal terms as the basis for guards.
Gray colored guards cannot be instantiated and are omitted.

In the general case of |v̂| > 1, we apply the above technique iteratively, gen-
erating sequences of guards and transitions for the parameters of v̂. We main-
tain data values of the suffix symbolically during sequence generation and only
instantiate complete sequences of guards. The approach scales to sets of suffix
sequences as we construct maximally refined paths: paths of suffixes with com-
mon prefixes will have common guards for those prefixes and can be expressed
as trees.

Learning-Based Testing the Sliding Window Behavior 193

T : l
la ..

lb Tb

ga

gb
≡u

?
T ′: l

lb Tb

gab

Fig. 6. Merging sub-trees of an SDT.

Maximally abstract SDTs and Monotonicity. In order to guarantee convergence
of learning on a canonical automaton, the SL∗ makes some monotonicity require-
ments on tree oracles [6]. For growing sets of abstract suffixes V, V ′, . . . with
V ⊂ V ′, it has to be shown that O(u, V ′) refines O(u, V) by only adding registers
to X (l0), and only refining guards of transitions. Additionally, if decision trees
O(u, V) and O(u′, V) cannot be made equal under some renaming of registers
from X (l0) in one tree, trees O(u, V ′) and O(u′, V ′) cannot become equal either
by such a renaming. These conditions trivially hold on maximally refined SDTs.
Unfortunately, however, maximally refined SDTs do not lead to finite models
during learning as the shape of a tree depends on the length of the prefix. We
transform maximally refined SDTs into more abstract trees by merging tran-
sitions and equivalent sub-trees (akin to BDD minimization), thereby hiding
irrelevant structural differences between trees.

The essential idea is that two (u, V)-trees T and T ′ are semantically equiv-
alent after u, denoted by T ≡u T ′, if both trees accept the same set of suffixes
under initial valuation νu with νu(xi) = di for di ∈ V als(u). We can check
semantic equivalence with finitely many test runs (i.e., one for each path in a
maximally refined SDT for V). Let now l be a location in T with outgoing tran-
sitions to la and lb, guarded by ga and gb, respectively, as sketched in Fig. 6. For
some new guard gab, equivalent to (ga ∨ gb), we construct T ′ from T w.l.o.g.
by removing the transition from l to la and the sub-tree rooted at la. On the
transition from l to lb, we replace gb by gab (cf. right part of the figure). We
abstract ga and gb into gab if T ≡u T ′.

In order to arrive at a canonical representation, we perform merging in a
fixed order: we always merge guards for the smallest possible terms with respect
to the order on the potential (cf. maximally refined trees). This ensures that
merging always results in intervals. An example is shown on the right of Fig. 5.
Merged guards are obtained from top (smaller terms) to bottom (greater terms).

Our semantic merging process satisfies all three requirements: Adding more
suffixes (and hence paths) cannot lead to merging subtrees that could not be
merged before. Guards are refined into finer intervals. Since the original bound-
aries will be maintained, monotonic growth of registers follows. Finally, since
abstract trees are semantically equivalent to maximally refined trees, differences
between trees are preserved when adding suffixes.

Output queries observe the behavior of the SUT on a sequence of test inputs.
In learning-based testing, these queries are computed by executing tests on the
actual system under test.

194 P. Fiterău-Broştean and F. Howar

SL∗:

SUT :

SY N, 10, 0

SY N, 10, 0

λi

SY N + ACK, 20, 11

SY N + ACK, 99, 11

λor0 r1 r2

. . .

. . .

δi δo

Fig. 7. Translation between Neat Trace and SUT Trace.

Testing has to be done in an adaptive fashion, synchronizing data values that
are used in test inputs by the learning algorithm and those used in actual tests as
the SUT may introduce new sequence numbers during tests. As an example, the
learning algorithm may assume to receive a message SY N+ACK with (new)
sequence number 1. Then, in the actual communication the SUT sends a random
new sequence number.

To tackle this problem, the work [2] introduces a determinizer component,
placed between the learner and the SUT. This component provides the learner
with a deterministic, or ‘neat’ view of the SUT, by constructing and applying a
1 to 1 mapping from regular values to neat values. This mapping transforms all
relation equivalent traces (input/output sequences) encountered to a single neat
trace. The learner then infers the SUT only in terms of its neat traces.

Output Queries. We extend the determinizer concept to a setting with
inequalities and sums. Our definition focuses on data values and ignores actions,
which are invariant under mapping. The determinizer is the mapper D =
〈R, r0, δi, δo, λi, λo〉 over states R = {r ⊆ N × N | r finite and one-to-one} with
initial state r0 = ∅. Value transformations (λ) and mapper updates (δ) are
defined for c ∈ 0, 1, 100 and x, y, n,m ∈ N as follows.

λi(r, n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x + c if m + c = n for some (x, m) ∈ r
smaller(dom(r)) if m + c > n for all (·, m) ∈ r
fresh(dom(r)) if m + c < n for all (·, m) ∈ r
(x + y)/2 else; for (x − c1, ml − c1), (y − c2, mu − c2) ∈ r

s.t. (ml < n < mu) and (mu − ml) minimal

λo(r, x) =

{
n + c if y + c = x for some (y, n) ∈ r
fresh(ran(r)) otherwise

δi(r, n) =

{
r if (·, n) ∈ r
r ∪ { (λi(r, n), n) } otherwise

δo(r, x) =

{
r if (x, ·) ∈ r
r ∪ { (x, λo(r, x)) } otherwise

There, dom and ran denote domain and image of a function. Functions
fresh : N

∗ → N and smaller : N
∗ → N generate fresh values and smaller values.

For X ⊂ N we use the concrete functions fresh(X) := (�max(X))÷ su�+1)× su

and smaller(X) := (�min(X) ÷ sl� − 1) × sl. Step sizes su and sl are fixed
big enough to avoid collisions (accidental relations between data values) dur-
ing experiments.

Learning-Based Testing the Sliding Window Behavior 195

Figure 7 shows an example application of the mapper, producing a neat
trace from Fig. 2. Whenever the system generates an output, the determinizer
processes it by replacing the output values with neat values before delivering the
output to the learner . Conversely, on generating a concrete input, the learner
passes it to the determinizer which replaces neat input values with regular val-
ues, and sends the resulting input to the SUT. Every time it processes a value,
the determinizer updates its state.

3.3 Model-Based Testing

We instantiate the testing part of our framework with a relative simple adapta-
tion of a random algorithm to the scenario of register automaton models. For
a register automaton model A, each test run begins by traversing the model to
a randomly selected location of A and is continued by a random sequence of
inputs until either a discrepancy is discovered between model and system under
test, or until the run terminates and a new run starts.

Our extension consists in selecting data values for inputs. For a run with
current prefix w and next input α, we use the machinery introduced above (the
potential of a word, and symbolic guards that describe classes [wα(d)]R of data
words) as a basis for computing a pool of data values for α. The pool contains
one data value d for each R-indistinguishable class [wα(d)]R of data words. We
add a bias to the selection of data values, so that values in or related to those
stored in registers in A after running over w are more likely to be picked.

We can easily obtain a PAC-inspired conformance guarantee (cf. [17]) with
this testing method for the probability distribution on the set of data words
induced by a model A and the above strategy for selecting tests. With respect
to this distribution, A is an ε-approximation of SUT if

∑
w∈S Pr(w) ≤ ε for the

symmetric difference S of sets of words accepted by A and SUT. The probability
of A not being an ε-approximation of the SUT after performing k independent
test runs is at most (1 − ε)k. For some confidence value δ, we simply choose k
such that (1 − ε)k < δ (i.e., such that k > ln(δ)/ln(1 − ε)).

4 Testing TCP Implementations

We have implemented the theories introduced earlier into RaLib [5]. We then
set up an experimental setup through which we could connect RaLib to various
TCP clients. RaLib inferred models, which we checked manually for confor-
mance with the specification.

4.1 Experimental Setup

The experimental setup used to learn TCP is similar to the setup used in [7,8].
As in those works, the alphabet used to learn TCP defines two types of inputs.
The first type is packet inputs, used to describe TCP segments sent to the sys-
tem. These inputs are parameterized by TCP flag combinations, sequence and

196 P. Fiterău-Broştean and F. Howar

Table 1. Learning Statistics. BASE stands for Baseline. [T] marks Use of Typing.

SUL Alpha. Term. Inp. Loc. Num. Hyp. Learning Testing

Inputs Resets Inputs Resets

Linux 3.19 [T]BASE yes 6 15 4, 311 947 113, 921 11, 720

BASE yes 6 15 9, 930 2, 168 116, 479 12, 339

[T]BASE+ACK yes 8 21 77, 922 13, 414 119, 768 12, 289

FreeBSD 11.0 [T]BASE yes 6 16 4, 239 933 113, 953 11, 708

BASE yes 6 16 9, 958 2, 152 116, 446 12, 333

[T]BASE+ACK no 8 21 418, 977 80, 200 81, 024 8, 367

Windows 10 BASE-CLOSE no 6 14 193, 712 24, 848 119, 768 12, 289

acknowledgement numbers. The second type of inputs is socket inputs such as
connect and close, referring to the methods defined by the socket interface.
Outputs defined are packet outputs, which bear the same structure as packet
inputs and describe TCP segments generated by the system, and timeouts, which
suggest that no output was generated by the system. For model learning, we use
the SL∗ algorithm with the theory and optimizations discussed earlier. Addi-
tionally, we used techniques for reducing the size of counterexamples as shorter
counterexamples tend to lead to shorter suffixes, which greatly decreases the
number of inputs needed to run. For sample techniques and a corresponding dis-
cussion we refer to [11]. Finally, to speed up learning, we used multiple systems
under learning in parallel. Model-based testing was done using the algorithm
described in the previous section.

4.2 Experiments and Results

We attempted to learn TCP client implementations of Linux, FreeBSD and
Windows. We chose clients, since they are simpler to learn and contain less
redundancy compared to servers (cf. [8]). In terms of the configurations used, we
disabled adaptive receive windows (or window scale), so that receive windows
remain fixed over the course of each test. Moreover, in the segments sent to the
SUT we advertise the same receive window as that of the SUT. Doing so we
avoid having to include an additional sum constant for our own receive window.

Our baseline alphabet consists of the connect, SYN+ACK, ACK+RST, RST and
close inputs. This alphabet covers several states in the specification. The alpha-
bet should also reveal how SUTs in these states react to RST segments. These
segments are generated in cases where one side abruptly terminates a connection
and should be processed only if their sequence numbers are in window of the
expected. We have also extended the alphabet with the ACK input if learning
with the baseline was successful. To obtain models in an adequate time, we do
not explore data relations between all formal parameters in some experiments.
This optimization has been introduced as typing of symbolic parameters in [5].

Once a hypothesis was constructed, we tested it using the algorithm presented
earlier. We have set the size of the random sequence to 10 (sufficient for exploring

Learning-Based Testing the Sliding Window Behavior 197

l0
INIT

l1
SYN SENT

l5

CLOSED

l2

ESTABLISHED

l3

FIN WAIT

l4

FIN WAIT

CONNECT /SF (f ,0)
r1:=f

SA(p1,p2) | true
r1:=p2

/R|F (r1,0)
−

SA(p1,p2) | r1+1 �=p2
r1:=p2;r2:=r1

/R|F (r1,0)
r1:=r2

SA(p1,p2) | r1+1=p2
r1:=p1;r2:=p2

/A|F (r2,r1+1)
r1:=p2

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

CLOSE /FA|F (r2,r1)
−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

R(p1,p2) | r1=p1
− ,

RA(p1,p2) | r1=p1
− /TO

RA(p1,p2) | r1+1=p2
− /TO

Fig. 8. Model of Linux Client. Flags are replaced by their starting characters (i.e. FIN
by F, SYN by S). We group inputs with guards soliciting the same output and assign-
ment over registers and use input/output notation. Inputs have guards over parameters.
In outputs, parameters are instantiated.

the behavior we are interested in) and ran 15, 000 tests on the final hypothesis.
Using the confidence metric from the previous section, this yields a confidence
of more than 99,9% that a model is an 0.05%-approximation of the SUT for
data words up to a length of 10 — relative to the probability distribution our
randomized testing algorithm generates over the set of data words.

Table 1 reports the setting, termination status and learning statistics for all
experiments done. The setting indicates the concrete SUT, the alphabet relative
to the baseline and whether typing was used. Successful experiments took at
most two days to complete, the determining factors being the size in parameters
of the suffixes and the 0.3 s wait time used for each response before concluding a
timeout. We automatically terminated experiments still unresolved after 500, 000
inputs. For these experiments, we still display the last hypothesis and learning
numbers at the point of termination. Results are available on RaLib ’s website.1

Using both un-typed and typed baseline alphabets we inferred models for
Linux and FreeBSD. We inferred a model for Linux using the ACK-extended typed
alphabet, but not for BSD. Learning FreeBSD for this setting followed a similar
course to learning Linux, leading to a similar hypothesis. Testing generated a
counterexample, whose processing resulted in a long new suffix. The suffix proved
too expensive for tree queries to terminate within the input bounds set.

We couldn’t learn Windows models even after removing the CLOSE input.
Analysis of the last conjectured model and the generated tests revealed behavior
inconsistent with the specification: Windows accepts sequence numbers up to
and including window size plus one in the ESTABLISHED state for RST inputs.

1 See: https://goo.gl/23VNfv.

https://goo.gl/23VNfv

198 P. Fiterău-Broştean and F. Howar

#de f i n e a f t e r (seq2 , seq1) be f o r e (seq1 , seq2)
stat ic i n l i n e bool be f o r e (u32 seq1 , u32 seq2) {

return (s 3 2) (seq1−seq2) < 0 ;
}
stat ic i n l i n e bool t cp sequence (

const struct t cp sock ∗tp , u32 seq , u32 end seq) {
return ! b e f o r e (end seq , tp−>rcv wup) &&

! a f t e r (seq , tp−>r cv nxt + tcp rece ive window (tp)) ;
}

Listing 9. Relevant Code of TCP Implementation in Linux Kernel.

This helps demonstrate a limitation of our approach: relevant data relations R
are an input to learning and convergence is guaranteed only for systems that
respect R (cf. Sect. 3.1).

4.3 Analysis of Conformance to RFC

Figure 8 presents the model learned for Linux using the baseline alphabet. The
models learned for FreeBSD and Linux are near identical with one exception.
Linux defines an in-window sequence number as a value up to and including
rcv.nxt+win (for a next expected sequence number rcv.nxt). FreeBSD excludes
the higher bound. Windows, on the other hand, even seems to include rcv.nxt+
win+1. The RFC 793 [14, p. 26] specifies a closed upper bound. Thus, FreeBSD
conforms to the upper bound requirement whereas Linux and Windows do not.
For Linux, we trace this violation to code in the most recent kernel, v4.11.2

Listing 9 shows the relevant code snippets. To check whether a sequence number
is not after the window, they use the !(seq > rcv.nxt + win) conjunct, allowing
rcv.nxt + win to be within the window. We inquired Linux developers about
this issue and they confirmed it and said they would issue a fix for it. During
our experiments, we have uncovered a different, unrelated, bug relating to faulty
re-transmissions for which a fix has been issued.

Aside from that, reset processing seems to be implemented as stated in the
RFC with the remark that both systems implement the ’Blind Reset Attack
Using RST Bit’ safe guard introduced in RFC 5961 [1, p. 7], by which only RST
segments with the sequence number equal to the expected sequence number
cause the termination of a connection. RST segments whose sequence number is
in window but not equal to the expected sequence number prompt a ‘challenge
ACK response’. We can verify that this is the case by analyzing the Linux model’s
responses to RST segments in the ESTABLISHED and FIN WAIT1 states. As a note,
RFC 5961 might have been the cause of the inconsistency remarked previously.
As of this writing, RFC 5961 gives a wrong description of the within/outside
window conditions of RFC 793. The error had been reported in 2016 and is
included in the RFC errata3.

2 See: https://goo.gl/9A8ZYM.
3 See: https://www.rfc-editor.org/errata/rfc5961.

https://goo.gl/9A8ZYM
https://www.rfc-editor.org/errata/rfc5961

Learning-Based Testing the Sliding Window Behavior 199

5 Conclusion

Our work introduces the first application of register automata learning to real
networked systems, in the form of TCP clients. To that end, we have devel-
oped the theories needed to learn TCP into the learning framework of [6]. We
implemented heuristics that improve scalability of learning and developed a com-
ponent that deals with non-determinism in fresh data values. The application of
our learning-based testing setup resulted in models for TCP client implementa-
tions of Linux and FreeBSD. Our setup helped reveal violation of the RFC 793
standard [14] in Linux and Windows. In Linux we identified the root cause for
the violation in the Kernel code.

In a next step, we plan to produce models for extended sets of inputs and
models of TCP servers. Despite the optimizations used, we eventually faced
combinatorial blow up in the number of required tests. Combining learning with
static or symbolic analysis methods may help reducing this blow up by iden-
tifying more precisely the relations one should test for. This will also address
the limitation of fixed relations that prevented us from learning a model for
Windows.

References

1. Stewart, R., Ramaiah, A., Dalal, M.: Improving TCP’s Robustness to Blind In-
Window Attacks. RFC 5961, August 2010

2. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). doi:10.
1007/978-3-319-25150-9 11

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31984-9 14

5. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring
EFSMs. In: DIFTS 2015 (2015)

6. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016)

7. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP
network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 78–93. Springer, Cham (2014). doi:10.1007/978-3-319-10702-8 6

8. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). doi:10.
1007/978-3-319-41540-6 25

9. Fiterău-Broştean, P., Lenaerts, T., de Ruiter, J., Poll, E., Vaandrager, F.W.,
Verleg, P.: Model learning and model checking of SSH implementations. In: SPIN
Symposium (2017, to appear)

http://dx.doi.org/10.1007/978-3-319-25150-9_11
http://dx.doi.org/10.1007/978-3-319-25150-9_11
http://dx.doi.org/10.1007/978-3-540-31984-9_14
http://dx.doi.org/10.1007/978-3-319-10702-8_6
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1007/978-3-319-41540-6_25

200 P. Fiterău-Broştean and F. Howar

10. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol.
2306, pp. 80–95. Springer, Heidelberg (2002). doi:10.1007/3-540-45923-5 6

11. Koopman, P., Achten, P., Plasmeijer, R.: Model-based shrinking for state-based
testing. In: McCarthy, J. (ed.) TFP 2013. LNCS, vol. 8322, pp. 107–124. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-45340-3 7

12. Meinke, K., Sindhu, M.A.: Lbtest: a learning-based testing tool for reactive sys-
tems. In: ICST 2013, pp. 447–454. IEEE Computer Society (2013)

13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2001)

14. Postel, J.: Transmission Control Protocol. RFC 793, September 1981
15. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX

Security, pp. 193–206. USENIX Association, Washington, D.C. (2015)
16. Tretmans, J.: Model-based testing and some steps towards test-based modelling.

In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21455-4 9

17. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/978-3-642-45340-3_7
http://dx.doi.org/10.1007/978-3-642-21455-4_9

Optimizing Feature Interaction Detection

Alessandro Fantechi1,2, Stefania Gnesi2, and Laura Semini2,3(B)

1 Dip. di Ing. Dell’Informazione, Università di Firenze, Firenze, Italy
2 ISTI-CNR, Pisa, Italy

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
semini@di.unipi.it

Abstract. The feature interaction problem has been recognized as a
general problem of software engineering. The problem appears when
a combination of features interacts generating a conflict, exhibiting a
behaviour that is unexpected for the features considered in isolation,
possibly resulting in some critical safety violation. Verification of absence
of critical feature interactions has been the subject of several studies. In
this paper, we focus on functional interactions and we address the prob-
lem of the 3-way feature interactions, i.e. interactions that occur only
when three features are all included in the system, but not when only
two of them are. In this setting, we define a widely applicable definition
framework, within which we show that a 3 (or greater)-way interaction is
always caused by a 2-way interaction, i.e. that pairwise sampling is com-
plete, hence reducing to quadratic the complexity of automatic detection
of incorrect interaction.

1 Introduction

The specification of a complex software system may be simplified by decomposing
the system into features that identify units of functionality. Feature-oriented
software development of safety critical systems can simplify the configuration of
large systems, as well as their verification and certification, by concentrating the
verification efforts on single features, rather than on the whole system. But this
happens only if a high degree of independence between features can be assumed,
while frequently instead the feature interaction problem can be encountered, a
problem which occurs when the concurrent composition of two (or more) features
generates an unexpected behaviour.

The feature interaction problem has indeed been recognized as a general
problem of software engineering in all those contexts where features are the
basic functionality units that are composed to build up complex software sys-
tems [1,9,25,31], as also recently advocated in [2]. In particular, if a feature
interaction affects critical systems, it may cause safety requirements violation;
hence verification of the absence of feature interactions becomes a very important
aspect of safety certification. The question is how many features are required to
generate an interaction, two or more than two. In this paper, we concentrate on
the so-called “3-way interaction”. The problem was first discussed in the feature

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 201–216, 2017.
DOI: 10.1007/978-3-319-67113-0 13

202 A. Fantechi et al.

interaction detection contest at [18], where the community suggested that there
are two types of 3-way interaction: those reducible to an interaction between a
pair of features and those where the interaction only exists if all three features
are present. The latter were termed “true” 3-way interactions.

The very existence of such cases is still under discussion, in the sense that
there does not seem to be a consensus on the definition of the problem itself. For
example, in [17,18] the existence of 3-way interactions is negated but with no
proof. On the other end, in [3] an example of 3-way interaction is reported. The
question is quite important for the verification of safety critical systems that are
built by feature-oriented development: if we can limit the definition of features
to a framework where “true” 3-way feature interactions do not exist, then the
problem of checking for feature interactions can be reduced to checking features
pairwise, hence with reduced (quadratic) verification complexity. In order to give
a contribution to the New Feature Interaction Challenge [2], this paper offers a
framework of feature definition by condition-action rules and interleaved compo-
sition, and presents a definition of a feature interaction as when the execution of
one feature disallows the execution of another or when the two possible results
of the interleaved execution of two features are inconsistent with each other.
In this framework we then prove that any 3-way interaction is due to a 2-way
interaction. In regards to verification, this amounts to say that checking by pair-
wise sampling [20,21,26] the combinations of features is complete with respect
to feature interaction detection.

The proposed framework is contrasted with cases reported in the literature of
3-way interactions and discusses why these are not considered true 3-way interac-
tions according to our behavioural interpretation of composition and interaction.

In the following, we define a running example: the features of a metro train
(Sect. 2), and the formalisation of features and feature composition (Sect. 3). We
then prove that the interactions among three features can always be revealed
by checking for the 2-way interactions, therefore reducing the complexity of the
verification problem (Sect. 4). A section on related work concludes the paper.

2 Running Example

As an example, we consider a control system composed by the following features,
each feature devoted to the actuation of a separate requirement over safety-
related behaviour of a metro train, regarding the usage of emergency brakes and
the opening of doors, in normal situations or when a smoke sensor detects a
fire. The train can be travelling in a tunnel, in which case safety regulations
require that the train cannot be stopped even in case of fire. On the other hand,
doors, normally opened only at stations, cannot be opened, even in emergency
situations, when the train is running. If not in a tunnel, the train can normally
be running in the open air or at standstill in a station. We assume that there are
smoke sensors and that whether the train is running in a tunnel or at standstill
in a station or elsewhere is known to the system through proper positioning
sensors.

Optimizing Feature Interaction Detection 203

SD Station & Doors: If the train is at a station, the doors are opened
DS Danger in Station: If the train is at a station and there is a danger

in the station, doors are closed and the train
leaves the station

EH Emergency Handle: If the emergency handle is pulled, actuate the
emergency brake

TB Tunnel & Brake: If the train is in a tunnel, disable the emergency
brake

FA Fire alarm: Raise a fire alarm when smoke is sensed
FB Fire alarm & Brake: If fire alarm is raised and the train is running,

actuate the emergency brake
FE Fire alarm & Escape: If fire alarm is raised, open the doors

It is easy to note that, due to some interactions between the above features,
we may have interacting behaviours. It is also apparent that, in order to provide
a safe global behaviour, some form of conflict resolution is needed, possibly
prioritizing some features with respect to others.

Below, we discuss all the possible interactions between the metro features
and address their detection.

For instance, EH interferes with TB since, if applied concurrently, i.e. when
the emergency handle is pulled and the train is in a tunnel, their actions conflict.

A 3-way interaction refers to those cases in which the interaction is generated
by the composition of three features. Apparently, in the metro example there is
a 3-way interaction among FA, FB, and TB. Assume that smoke is sensed while
the train is in a tunnel, FA and FB are applied in sequence:

smoke sensed
FA−−→ fire alarm raised

FB−−→ emergency brake

and interact with TB disabling the emergency brake. In the paper we will provide
a constructive technique to detect these interactions with pairwise analysis: such
a technique will detect that the interaction is between FB and TB.

3 Formalisation of Features and Feature Interaction

Feature interaction is due to a mutual interference resulting in an unexpected
behaviour. The most common way to define a feature interaction is based on
behaviours:

“A feature interaction occurs when the behavior of one feature is affected
by the presence of another feature” [1].
“A feature interaction is some way in which a feature or features modify
or influence another feature in defining overall system behavior” [32].

204 A. Fantechi et al.

Similar definitions can be found e.g. in [11,23,27]. This mutual influence
of features is often described in an action oriented way, by listing the pairs
of conflicting actions, and then deriving possible interactions between features
including these actions. In a complementary way, we consider a state-based app-
roach [24] and look at the effect of the features on a shared state. Indeed, any
time two features F and F ′ access a shared state, and at least one of the accesses
updates it, there might be an interaction.

The main purpose of this paper is to prove that, in the considered frame-
work, the behavioural interactions between three features are always due to the
interaction between two of the three considered features, therefore reducing the
complexity of the verification problem to look for pairwise interaction. To do
this we need to perform an analysis of the functional behaviour of feature com-
binations.

Without loss of generality, we define a framework in which features are
described as condition-action rules and systems behave as the parallel compo-
sition of features [23,30]. In this framework, inspired by the action systems [5],
if the action part of a condition-action rule of a feature is executed, it changes
the state of the system: the state of a system is seen as a set of predicates that
hold on some global, shared variables. A feature is said to be enabled when its
condition is satisfied by the current state of the system. The application of the
feature can occur only when it is enabled, having the effect of changing the state
of the system according to its action. The computation of the system is given
by a sequence of feature applications. When two or more features are enabled,
one is selected non-deterministically.

In this section, we define a formalisation for the computation state and give
the semantics of features in terms of transition systems.

3.1 Semantics of a Feature

Definition 1. Let S be a finite set of states. Given a set AP of atomic propo-
sitions, with p ranging in AP , a computation state s ∈ S is defined as a
conjunction of literals:

s :: = ⊥|p| ∼ p|s ∧ s

where ⊥ is the empty state, in which nothing is said on any atomic proposition.

Example 1. Examples of computation states are: s1 = doors open, s2 =
tunnel∧ ∼ doors open, s3 =∼ tunnel ∧ doors open ∧ smoke sensed.

We include negative atoms for convenience. An alternative modeling would have
been defining states as conjunctions of atomic propositions, in a closed world
assumption.

We assume the set of actions to be in correspondence with the set of predi-
cates, i.e. each action α has an effect on the truth value of a predicate p: α can
make p true or make p false.

Optimizing Feature Interaction Detection 205

Definition 2. A feature is defined by a pair: F = 〈C, [A]〉, where C is a boolean
condition to be evaluated on the current state, and [A] is an (atomic) sequence
of actions on the state.

Example 2. The features of our running metro example can be specified as:
SD = 〈station, [open doors]〉
DS = 〈station ∧ danger, [close doors, leave station]〉
EH = 〈ehpulled, [activate emergency brake]〉
TB = 〈tunnel, [disable emergency brake]〉
FA = 〈smoke sensed, [raise fire alarm]〉
FB = 〈fire alarm raised ∧ running, [activate emergency brake]〉
FE = 〈fire alarm raised, [open doors]〉

An action α transforms a state s in a state α(s).

Definition 3. We say that action α writes p when α makes p true, i.e. α(⊥) =
p and that α writes ∼ p when α falsifies p, i.e. α(⊥) =∼ p.

For instance, action open doors writes doors open, disable emergency brake
writes ∼ emergency brake, and leave station writes ∼ station. We define now
the effect of an action on a general state.

Definition 4. Given a state s, and a literal p, we say that s |= p when p occurs
as a literal in the conjunction of literals representing s.

Definition 5. Let s be a state, p a predicate, and α an action writing p, we
define the effect of the application of α in s, α(s) by cases:

α(s) =

⎧
⎨

⎩

s ∧ p if s 	|= p and s 	|=∼ p
s if s |= p
ŝ ∧ p if s |=∼ p, i.e. s can be written as ŝ∧ ∼ p

We have a symmetric definition when α writes ∼p. For instance, let s be a
state not telling whether the doors are open or not, then:

close doors(s) = s∧ ∼ doors open

Therefore, action close doors is the identity when applied on a state with
doors already closed, and changes the truth value of doors open when initially
true, i.e.:

close doors(s∧ ∼ doors open) = s∧ ∼ doors open

close doors(s ∧ doors open) = s∧ ∼ doors open

To define the semantics of a feature, we model the effect on a state of a
sequence of actions as an atomic transition.

Definition 6. Let A be a sequence of actions α1, . . . , αn, we say s
A−→ s′ when

s′ = αn(αn−1(...α1(s)...)).

206 A. Fantechi et al.

Definition 7. We say that a feature F = 〈C, [A]〉 is enabled in a state s when
s |= C.

Definition 8. The semantics of feature F = 〈C, [A]〉 is the set of all pairs
of states (s, s′) ∈ S × S such that F is enabled in s and s

A−→ s′.
In such a case, we also write s

F−→ s′.

Example 3. As an example, consider feature FA, and a state s satisfying
smoke sensed. For simplicity we take s = smoke sensed. We have:

smoke sensed
FA−−→ smoke sensed ∧ fire alarm raised

3.2 Composition of Features

Definition 9. A software system is specified as the parallel composition of
features: F1|| . . . ||Fn.

Example 4. The metro system can be specified as : SD||DS||EH||TB||FA||
FB||FE.

The semantics of a software system composed of features is given as a
labeled transition system (S,S0,F ,→) where: S is the set of states, S0 ⊆ S is a
set of initial states, F is the set of features, and →⊆ S × F × S is a transition
relation, whose elements, written s

F−→ s′, are given by all the pairs of states s, s′

of the semantics of each feature F , according to Definition 8.

Definition 10. According to an interleaving semantics of the parallel composi-
tion, the semantics of a software system F1||F2, with F1 = 〈C1, A1〉 and
F2 = 〈C2, A2〉, is given by the labeled transition system (S,S0,F ,→), generated
by the alternative sequences of transitions possible from any initial state in S0,
applying one of the features, followed by the other one.

Hence, the application of features F1||F2 to an initial state s generates the
following transitions:

– s
F1−→ s′ F2−→ s′′ if s |= C1 and s′ |= C2

– s
F2−→ s′ F1−→ s′′ if s |= C2 and s′ |= C1

– s
F1−→ s′ if s |= C1 and s′ 	|= C2

– s
F2−→ s′ if s |= C2 and s′ 	|= C1

We write:

s
F1||F2====⇒ s′

as a shorthand for any sequence of transitions from s to s′ applying the features
in the parallel composition.

Optimizing Feature Interaction Detection 207

Definition 10 easily extends to the parallel composition of n features:
F1|| . . . ||Fn:

s
F1||...||Fn======⇒ s′

is the result of applying, in any possible ordering, the features F1, . . . Fn.

Example 5. Let us consider F1||F2, where: F1 = 〈p, [α1]〉, F2 = 〈p, [α2]〉, α1

writes r, and α2 writes q. We have:

p
F1−→ p∧r

F2−→ p∧r∧q and p
F2−→ p∧q

F1−→ p∧r∧q

i.e. p
F1||F2====⇒ p∧r∧q and we have two traces from p to p∧r∧q.

It is not guaranteed that all traces of F1||F2 from s converge in a unique

state: it can happen that s
F1||F2====⇒ s′ and s

F1||F2====⇒ s′′ with s′ 	= s′′, as in the
following example.

Example 6. Now consider F1||F3 where F1 is as above, F3 = 〈p, [α3]〉, and α3

writes ∼ r. We have:

p
F1−→ p∧r

F3−→ p∧∼ r and p
F3−→ p∧∼ r

F1−→ p∧r

i.e. p
F1||F3====⇒ p ∧r and p

F1||F3====⇒ p∧∼ r

Example 6 introduces a feature interaction: feature F1 interacts with F3 since
F1||F3 can lead to different states, depending on the order of feature application.

In Sect. 3.3, we formalise the concept of interaction.

3.3 Formalisation of Interaction

We now give a formal definition of interaction between pairs of features.

Definition 11. There is an interaction in F1||F2, where F1 = 〈C1, [A1]〉 and
F2 = 〈C2, [A2]〉, when, given a state s enabling both, i.e. such that s |= C1 ∧ C2,
one of the following two situations occurs:

1. s
F1−→ sa, and sa 	|= C2 , or s

F2−→ sb and sb 	|= C1, or both, i.e.:

s
F2

���
��F1

����
�

s
F2
���

��F1

����
�

s
F2
���

��F1

����
�

sa
×
��

sb
F1��

or sa
F2 ��

sb
×
��

or sa
×
��

sb
×
��sd sc

2. s
F1||F2====⇒ sc, s

F1||F2====⇒ sd and sc, sd are inconsistent (that is, sc ∧ sd = false)

208 A. Fantechi et al.

s
F2

�����
��F1

�����
��

sa
F2 ��

sb
F1��

sc sd with sc ∧ sd ⇔ false

Example 7. There is an interaction of the first kind in SD||DS. In fact, in
case of danger, if DS is applied first, it takes to a state that satisfies the condi-
tion: ∼ station and where SD is no longer enabled.
There is an interaction of the second kind in EH||TB since they both can be
applied if the condition ehpulled∧tunnel holds, and their executions go to incon-
sistent states.

Dually, according to Definition 11, the system F1||F2 is interaction free either
if the features can never be applied in the same state (C1 ∧ C2 ⇔ false) or if
the execution of any of them does not falsify the condition of the other and the
order of execution is irrelevant, i.e. the diagram commutes:

s
F1

�������F2

�������

sa

F2 �����
��

sb

F1��			
		

sc
Definition 11 is extended straightforwardly to the parallel composition of

three features: the features interact when there exists a state s enabling all
of them, and the paths of the transition system rooted in s do not converge
in a common final state. This happens, for instance, in FA||FB||TB, taking
s = smoke sensed ∧ tunnel.

We also consider a second form of 3-way interaction arising in a situation
where such a state cannot be built. This happens when a feature is enabled by
p and another by ∼ p, for some p, and a third feature writes ∼ p (p resp.). As
the most general case, consider F1||F2||F3, where:

F1 = 〈p, [writes r]〉 F2 = 〈∼ p, [writes s]〉 F3 = 〈q, [writes ∼ p]〉

In this case the three features are not enabled together in any state, but the
triggering of F3 enables F2 as well, so that starting from a state in which F1

and F3 are enabled, we can derive the following diagram, rooted in p ∧ q, which
does not converge to a unique state. Actually, this 3-way interaction is due to a
pairwise interaction in the subsystem F1||F3:

p ∧ q
F1

		

 F3

�����

p ∧ r ∧ q
F3 ��

∼ p ∧ q
×
��∼ p ∧ r ∧ q

Optimizing Feature Interaction Detection 209

4 No True 3-Way Interaction

Now, we can address the main point of the paper and prove that, under our
definition of feature interaction, any 3-way interaction is due to the interaction
between two of the considered features. We first observe that there is a construc-
tive way to find a (minimal) state enabling two (or more) features: it is sufficient
to take the conjunction of their conditions.

Proposition 1. Let F1, F2, and F3 be a triple of interacting features, then there
is an interaction between at least a pair of them.

Proof. The 3-way interaction means that for some s satisfying the conditions of
the three features we have one of the following cases:

Case 1. It is not possible to complete all the possible sequences of transitions

for s
F1||F2||F3======⇒ s′, i.e. one of the six sequences

s
F1 ��

F2

�������� F3

��

... sa
F3

��

F2

����
��

�
...

sc
F3 ��

sd
F2��

sg sh

stops either after one step or two steps, because the conditions of the remaining
feature(s) are not satisfied.

– Case 1a. (one step). Let a s
F1−→ sa with sa not satisfying the condition of F2

(resp. F3),

s
F1 ��

F2

�������� F3

��

... sa
F3

��

×��F2

���

...

sd
F2��

sh

then F1 interacts with F2 (resp.F3).

– Case 1b. (two steps). Let the subtree rooted in sa be incomplete, e.g.

s
F1 ��

F2

�������� F3

��

... sa
F3

��

F2

����
��

�
...

sc
×F3
��

sd
F2��

sh

210 A. Fantechi et al.

in this case, F2 interacts with F3.

Case 2. In the semantics of F1||F2||F3, there are (at least) two sequences of
transitions rooted in a common state and reaching two states which are incon-
sistent, i.e., for some s:

s
F1||F2||F3======⇒ s′ and s

F1||F2||F3======⇒ s′′

and s′ ∧ s′′ = false. We build the following tree and reason by cases. The tree
is partial since it is sufficient to find two sequences. We can assume that none
of them has F3 at the first step (the general result is obtained with a label
switching).

s
F2

������������
F1

		�����������

sa
F3

�����
��F2

�����
��

sb
F3

������F1

������

sc
F3 ��

sd
F2��

se
F3 ��

sf
F1��

sg sh si sj

– Case 2a. sg, sh are inconsistent (similar reasoning for si, sj): in this case the
subtree rooted in sa leads to inconsistent states, hence there is an interaction
in F2||F3.

– Case 2b. sg, si are inconsistent. Both sg and si are the result of the application
of F3. This means that already sc, se were inconsistent, hence the interaction
is in F1||F2.

– Case 2c. sh, sj are inconsistent. This entails that there is a predicate p true in
sh and false in sj (or vice-versa). We restrict our attention to the interested
tree fragment.

s
F2

����������
F1

���������

sa
F3 ��

sb
F3��

sd
F2 ��

sf
F1��

sh |= p sj |=∼ p

Assume p was false in s (similar reasoning with p true in s). Predicate p can
be true in sh only if there is a feature Fi writing p. As a consequence there is
another feature Fj writing ∼ p (otherwise, since Fi is also in the right path, p
would be true in sj). We can say that Fi 	= F1, since F1 makes the last step
before sj . Similarly, we can say that Fj 	= F2.

We are thus left with three cases:
(2.c.1) F2 writes p and F1 writes ∼ p
(2.c.2) F2 writes p and F3 writes ∼ p

Optimizing Feature Interaction Detection 211

(2.c.3) F3 writes p and F1 writes ∼ p
We only show the proof of the first one, since the other cases use the same
reasoning. Let F2 write p and F1 write ∼ p. We consider the tree rooted in the
subset of s satisfying C1 ∧ C2 (we recall that, for the initial hypothesis of the
proposition, s satisfies C1 ∧ C2 ∧ C3). Either one path is blocked after one step,
or the tree is the following:

C1 ∧ C2F1

��

 F2

����������

F2 ��

sd
F1��

sa |= p sb |=∼ p

In both cases there is an interaction between F1 and F2.

– Case 2d. sh, si are inconsistent (Similar reasoning for sg, sj).

We redraw the interested fragment of the initial tree:

s
F2

�����
��F1

�����
��

sa
F3 ��

sb
F1��

sd
F2 ��

se
F3��

sh si

As discussed above, there must be:

– a predicate p with sh |= p and si |=∼ p;
– a feature writing p and a feature writing ∼ p.

One of these features must be F3, otherwise there is an inconsistency at the first
step proving the interaction between F1 and F2.

State si |=∼ p implies that F3 writes ∼ p.
If F1 writes p we consider the tree rooted in C1∧C3 and prove the interaction

between F1 and F3. Otherwise, F2 writes p, we derive the interaction between
F2 and F3. �

5 Related Work

Li et al. [19] define a technique for the analysis of feature interactions where
features are complex state machines and the paper defines how to abstract their
behaviour in a compact model. Abstraction makes analysis of the composition
of the models much simpler, though sound and complete, with respect to the
analysis of the composition of the base machines. The approach for analysing
the composition of the models is not far from the one proposed in this paper

212 A. Fantechi et al.

for analysing the pairwise composition of features (in our setting features are
already abstract).

Previous work on feature interactions addressed logical inconsistencies
between features, due to conflicting actions, nondeterminism, deadlock, invari-
ant violation, or unsatisfiability, as reported in [4]: that paper presents a method
for measuring the degree to which features interact in feature-oriented software
development, extending the notion of simulation between transition systems to
a similarity measure and lifting it to compute a behavioural interaction score in
featured transition systems.

In [29] a more general definition of feature interaction, in terms of a feature
that is developed and verified to be correct in isolation but found to behave differ-
ently when combined with other features, has been presented showing how such
behavioral interactions could be detected as a violation of a bisimulation [22].

In the action-based way to analyse features to detect interactions, pairs of
actions are typically defined to be conflicting in the domain description by an
expert. An interaction arises when, as a result of the features application, two
actions are executed, which were defined as conflicting in the domain description.
In this setting a true 3-way interaction is possible only if a triple of conflicting
actions exists in the domain, and no combination of two of them does. This is an
expert evaluation and we can rely on the results of feature interaction detection
contest at FIW2000 [17,18] where no such an example was found.

The state-based approach addressed in this paper analyses interacting fea-
tures (and their actions) looking at their effect on a shared state. In this line
there is the abstract semantics given in [24], where the state is a set of resources
and the operations on the shared state are abstracted to consider only their
access mode, namely read or write to some resources. Then features interact
when one of them accesses in write mode a resource accessed also by the other,
in any mode. The results presented in Sect. 4 can be extended to this semantics,
which is indeed not far from the one presented here.

An alternative formalisation of the same problem can be obtained using con-
textual Petri Nets with inhibitor arcs [6,7]. Indeed, the read-only arcs of the
contextual nets permit to model a (positive) condition which is not overwritten,
and the inhibitor arcs permit to model the negative conditions. A result similar
to ours – reduction of all triples of conflicting transitions to the conflict of a
pair of them – exists for regular Petri Nets, while, to the best of our knowledge,
nothing has been proved yet for the enriched ones.

In case of an interaction, some conflict resolution strategy should be applied,
and several resolution techniques are proposed in the literature [3,8,10,14,15,24].

5.1 Different Computational Models and Non-functional
Interactions

In order to discuss feature interactions, we have assumed that features are com-
putational bricks that are independently developed and can freely be composed
to achieve the desired functionality, possibly in an incremental development. In

Optimizing Feature Interaction Detection 213

Fig. 1. This example appears in Sect. 9.1.1 “Higher-order Iteractions” of [3],

this setting, feature interactions resemble the classic notion of race condition in
multithreaded environments.

There are other ways to look at the feature interaction problem, either
because features are used to choose between alternative control flows or because
their composition is subject to non-functional constraints posed by available
resources. In both these views irreducible 3-way (or n-way) interactions can be
observed.

Features and Conditional Compilation. Within the Software Product Line
discipline, features are considered as units of functionality that may be present
or not in different products of the same family. According to our approach, this
can be obtained by composing or not certain features. An alternative common
way to achieve variability in product lines is by referring to presence conditions,
which tell which parts of a software component have to be included if a certain
feature is present.
In Apel et al. [3], presence conditions are configuration tags that drive condi-
tional compilation in a Java-like program including all the features. The example
reported in [3], which we reproduce in Fig. 1, is presented as a case of interac-
tion that occurs only if all three features are selected, and does not occur if only
two are. Indeed, the usage of conditional compilation directives makes line 29
executable only if all the three features UNDO, LOGGING and LOCKING are
selected. If line 29 contains an error (e.g. a null pointer access), this error occurs
only in products that include all the three features, and not in products that
include only two of them.

This case cannot be considered a 3-ways interaction according to our defi-
nition, since it is not an interaction error possibly occurring at run-time, but
rather an error that is present in the code anyway and is activated only if at the

214 A. Fantechi et al.

level of feature selection the proper feature combination is selected: in this way
it is not different from a similar error inside a single #ifdef, that is activated just
by selecting a single feature. For the detection of such an error it is not necessary
to recur to behavioral analysis, but for example a static analysis of the “150%
model”, that is, the code obtained by switching all the features on, can be able
to detect it.

Notice that the use of presence conditions reported in [3] is not amenable to
incremental development, as the code of each feature is intertwined with that of
the other features. A situation of this kind may occur also when delta-oriented
programming or modelling [28] is adopted, in which a new feature may be defined
as a set of changes to an existing program, or model. In this case, if a nested delta
contains an error (similarly to the null pointer access in line 29 in the example
above) this could be activated only if more features are included; again, a similar
error could be detected with proper static analysis techniques run on the deltas.
Notice also that similarly to this example, examples of interactions triggered by
the selection of n features but not triggered by the selection of n − 1 features
can be easily built for any n, as well as examples of interactions triggered only
by some particular set of selections of features.

Although presence conditions are of common use in product line development,
we tend to believe that in the case of incremental development of safety-critical
systems, even when configuration of different products is needed, the entangled
appearance of resulting code, as the one in Fig. 1, makes verification and cer-
tification of software more difficult. A development approach in which features
are separately implemented and verified and then composed appears to be more
suitable for this class of systems, and our results indicate that only pairwise
verification of possible interactions is needed.

Non-functional Interactions. Even if features are properly composed so that
they do not produce undesired functional feature interactions, non functional
ones can occur when features have to compete for the usage of shared (physical)
resources, other than shared variables. Typical cases are memory space and com-
putation time. The usage of such resources typically sums up, and if a maximum
usage threshold is globally reached, unexpected behaviour may occur. Hence, we
could have the case in which two out of three features do not exhaust available
memory, but all three of them do, or the case of a real-time system in which run-
ning only two out of three features satisfy real-time requirements, while running
all three does not.

In general, exceeding a resource usage threshold may be triggered by the
selection of n features but not triggered by the selection of n−1 features for any
given n, or may be triggered only by some particular set of selections of features.

6 Conclusions

We have addressed the problem of 3-way functional feature interactions, by giv-
ing a widely applicable definition framework within which we show that such

Optimizing Feature Interaction Detection 215

cases can be always reduced to 2-way interactions, hence reducing the com-
plexity of automatic verification of incorrect interactions. We believe that other
definition frameworks based on feature composition concepts share the same
property. However, we have also pointed out at different definitions of feature
interactions which admit “true” 3-way interactions, either because they define
features through presence conditions scattered in different software artifacts, or
because non functional feature interactions are considered.

Acknowledgements. This work has been partially supported by the Tuscany Region
project POR FESR 2014-2020 SISTER and the H2020 Shift2rail project ASTRail.

References

1. Feature Interactions: The Next Generation (Dagstuhl Seminar 14281), Dagstuhl
Reports, vol. 4, n.7. pp. 1–24. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2014)

2. Apel, S.: The new feature interaction challenge. In: Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-intensive Systems,
VAMOS 2017, p. 1. ACM, New York (2017)

3. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37521-7

4. Atlee, J.M., Fahrenberg, U., Legay, A.: Measuring behaviour interactions between
product-line features. In: Gnesi, S., Plat, N. (eds.) 3rd IEEE/ACM FME Workshop
on Formal Methods in Software Engineering, FormaliSE 2015, Florence, Italy, May
18, 2015, pp. 20–25. IEEE Computer Society (2015)

5. Back, R.-J., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst. 10(4), 513–554 (1988)

6. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri Nets with read and inhibitor arcs. Theor. Comput. Sci. 323(1–
3), 129–189 (2004)

7. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, asymmetric event
structures, and processes. Inf. Comput. 171(1), 1–49 (2001)

8. Boström, M., Engstedt, M.: Feature interaction detection and resolution in the
Delphi framework. In: [13], pp. 157–172, October 1995

9. Bruns, G.: Foundations for features. In: Reiff-Marganiec, S., Ryan, M. (eds.) Fea-
ture Interactions in Telecommunications and Software Systems VIII, pp. 3–11. IOS
Press, Amsterdam (2005)

10. Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., Mankovski, S.:
Feature-interaction visualization and resolution in an agent environment. In: [16],
pp. 135–149, September 1998

11. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a
critical review and considered forecast. Comput. Netw. 41, 115–141 (2001)

12. Calder, M., Magill, E. (eds.): Feature Interactions in Telecommunications and Soft-
ware Systems VI. IOS Press, Amsterdam (2000)

13. Cheng, K.E., Ohta, T. (eds.): Feature Interactions in Telecommunications Systems
III. IOS Press, Amsterdam (1995)

http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7

216 A. Fantechi et al.

14. Danelutto, M., Kilpatrick, P., Montangero, C., Semini, L.: Model checking sup-
port for conflict resolution in multiple non-functional concern management. In:
Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto,
M., Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L.,
Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011. LNCS, vol. 7155, pp.
128–138. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29737-3 16

15. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in policy-
based management systems. In: Enterprise Distributed Object Computing Confer-
ence, pp. 15–26. IEEE Computer Society (2002)

16. Kimbler, K., Bouma, L.G. (eds.): Feature Interactions in Telecommunications and
Software Systems V. IOS Press, Amsterdam (1998)

17. Kolberg, M., Magill, E.H., Marples, D., Reiff, S.: Results of the second feature
interaction contest. In: [12], pp. 311–325 (2000)

18. Kolberg, M., Magill, E.H., Marples, D., Reiff, S.: Second feature interaction contest.
In: [12], pp. 293–310, May 2000

19. Li, H., Krishnamurthi, S., Fisler, K.: Verifying cross-cutting features as open sys-
tems. SIGSOFT Softw. Eng. Notes 27(6), 89–98 (2002)

20. Marijan, D., Gotlieb, A., Sen, S., Hervieu, A.: Practical pairwise testing for software
product lines. In: Proceedings of the 17th International Software Product Line
Conference, SPLC 2013, pp. 227–235. ACM, New York (2013)

21. Medeiros, F., Kästner, C., Ribeiro, M., Gheyi, R., Apel, S.: A comparison of 10
sampling algorithms for configurable systems. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 2016, pp. 643–654. ACM, New
York (2016)

22. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall, New York (1989)

23. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based conflict detection for
distributed policies. Fundamenta Informaticae 89(4), 511–538 (2008)

24. Montangero, C., Semini, L.: Detection and resolution of feature interactions, the
early light way. Int. J. Adv. Syst. Measurements 8(34), 210–220 (2015)

25. Nhlabatsi, A., Laney, R., Nuseibeh, B.: Feature interaction: the security threat
from within software systems. Prog. Inform. 5, 75–89 (2008)

26. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise testing of soft-
ware product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 14

27. Reiff-Marganiec, S., Turner, K.J.: Feature interaction in policies. Comput. Net-
works 45(5), 569–584 (2004)

28. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

29. Shaker, P., Atlee, J.M.: Behaviour interactions among product-line features. In:
Gnesi, S., Fantechi, A., Heymans, P., Rubin, J., Czarnecki, K., Dhungana, D.
(eds.) 18th International Software Product Line Conference, SPLC 2014, Florence,
Italy, September 15–19, 2014, pp. 242–246. ACM (2014)

30. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland,
J.: Policy support for call control. Comput. Stand. Inter. 28(6), 635–649 (2006)

31. Various Editors. Series of International Conferences on Feature Interactions in
Software and Communication Systems (ICFI). IOS Press (1994–2009)

32. Zave, P.: An experiment in feature engineering. In: Morgan, C., McIver, A. (eds.)
Programming Methodology, pp. 353–377. Springer, New York (2003). doi:10.1007/
978-0-387-21798-7 17

http://dx.doi.org/10.1007/978-3-642-29737-3_16
http://dx.doi.org/10.1007/978-3-642-15579-6_14
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-0-387-21798-7_17
http://dx.doi.org/10.1007/978-0-387-21798-7_17

Formalising the Dezyne Modelling Language
in mCRL2

Rutger van Beusekom2, Jan Friso Groote1, Paul Hoogendijk2, Robert Howe2,
Wieger Wesselink1, Rob Wieringa2, and Tim A.C. Willemse1(B)

1 Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.c.willemse@tue.nl

2 Verum Software Tools B.V., Waalre, The Netherlands

Abstract. Dezyne is an industrial language with an associated set of
tools, allowing users to model interface behaviours and implementations
of reactive components and generate executable code from these. The
tool and language succeed the successful ASD:Suite tool set, which, in
addition to modelling reactive components, offers a set of verification
capabilities allowing users to check the conformance of implementations
to their interfaces. In this paper, we describe the Dezyne language and
a model transformation to the mCRL2 language, providing users access
to advanced model checking capabilities and refinement checks of the
mCRL2 tool set.

1 Introduction

Companies increasingly rely on model-driven engineering for developing their
(software) systems. The benefit of this approach, in which a high-level (often
domain-specific) modelling language is used for designing systems, is that it
raises the level of abstraction, resulting in an increased productivity and higher
dependability of the developed artefacts. Formal verification of the models may
help to further reduce development costs by detecting issues early and by further
increasing the overall reliability of the system. However, the success of formal
verification is directly linked to the maturity of the tooling used for performing
the analysis. Most of the available tooling requires highly skilled and experienced
verification engineers to tackle complex industrial problems.

The company Verum has created the ASD:Suite tool suite in the past, in an
attempt to shield the system designer from the complexity of the verification
language and technology by offering an intuitive integrated development envi-
ronment for specifying complex, concurrent, industrial systems. This tool suite
relies on a proprietary design language and associated development methodol-
ogy. The latter is built on top of the verification technology offered by the FDR
tool suite [4], which offers facilities for checking deadlock, livelock and refine-
ment. While ASD:Suite is easy to use for both novice and experienced system
designers, it limits more experienced designers in constructing more complex
models and accessing the full power of formal verification.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 217–233, 2017.
DOI: 10.1007/978-3-319-67113-0 14

218 R. van Beusekom et al.

In an effort to move beyond these limitations, Verum has designed a new,
open modelling language called Dezyne1, that, compared to ASD, is richer
in terms of constructs and facilities. FDR still is the de facto back-end for
conducting verifications, through a non-documented proprietary translation of
Dezyne models to FDR models, but the open nature of the language enables
offering alternative verification technology through other back-ends. This will
allow Verum and others to offer new services for expert users.

In this paper, we provide an encoding of the Dezyne modelling language
in the mCRL2 process algebra [5], thus giving a formal semantics to Dezyne
models. We address issues such as the transformation of Dezyne models to
mCRL2 process expressions, which we describe as formal as possible without
going into unnecessary detail. Moreover, we also discuss the technology that we
used to program the transformation between Dezyne and mCRL2, and illustrate
how the connection to mCRL2 and its analysis tool set [3] can be used as the
basis for future verification services that can check for a much wider range of
user-specific safety and liveness properties, and to offer advanced behavioural
visualisation tooling to end-users.

The work we report on has been conducted in the context of the FP7 TTP
VICTORIA. It took over 1 man-year of effort, of which a large portion was
spent on uncovering details about Dezyne’s (execution) semantics, but also on
improving the transformation to mCRL2 so that it yields mCRL2 models for
which verification scales well. Moreover, our efforts led to a few improvements in
the existing FDR translation, but also to some improvements and enhancements
in the mCRL2 tool set.

Structure of the Paper. We introduce the Dezyne language in Sect. 2 and our
mCRL2 encoding of Dezyne in Sect. 3. In Sect. 4, we discuss improvements
in the mCRL2 tool set that were a direct result of the project and in Sect. 5
we discuss experiments using two versions of our translation and we illustrate
some of the technology that becomes available through our translation. Section 6
finishes with closing remarks.

2 DEZYNE

Dezyne is a language and design methodology for specifying the behaviours
of interfaces and components and checking the compliance between these. The
language constructs for describing interfaces are, save some small details, iden-
tical to the language constructs available for describing components, and take
cues from the theory of Mealy machines and borrow concepts from process alge-
bras. Dezyne offers rudimentary facilities for using data variables of Boolean,
(bounded) integer or user-defined enumerated types.

Components specified in Dezyne assume a specific execution model, in which
a component deals with inputs one at a time. That is, in standard practice a

1 See https://www.verum.com; accessed 21 May 2017.

https://www.verum.com

Formalising the Dezyne Modelling Language in mCRL2 219

Fig. 1. Typical architecture in Dezyne. Components interact with other components
through ports. Components interact with other components in a hierarchical fashion.
Each component has an interface specification which formalises how its behaviour at the
provided port is expected to behave. A compliance check verifies whether a component
actually respects its interface.

single-threaded run-to-completion semantics is employed. A ‘user’ of a compo-
nent can interact with the component by sending events to it; these events are
handled synchronously in the sense that the component essentially will remain
blocked for unsolicited events from lower-level components (which run concur-
rently with the component) until the user receives a reply from the component,
while solicited events from lower-level components are buffered and dealt with
one at a time. Unsolicited events emitted by lower-level components are dealt
with in a similar fashion; such events may result in ‘spontaneous’ outputs emitted
asynchronously by the component.

The design methodology and system architecture implemented in Dezyne is
illustrated in Fig. 1. As a designer employing the Dezyne language and method-
ology, one is only concerned with specifying the behaviour of interfaces and com-
ponents. Subsequent checks compute whether the behaviour of a component as
observed at its provided port (i.e. as seen by the ‘user’ of the component), when
interacting with components through its required ports (i.e. the low-level com-
ponents), formally complies with the behaviour as specified by its interface. This
way one obtains a modular, hierarchical design of a software system. The modu-
lar design and compliance check are pivotal for designing large systems that are
correct-by-design.

The essential part of the grammar of Dezyne is depicted in Table 1; we
have omitted those parts that are required for describing a system; the latter
is essentially a collection of components and a static description of how they
are connected. Dezyne’s static semantics excludes models in which there are
obvious naming conflicts and consistency issues (e.g. multiple interface specifi-
cations with the same name are not permitted; events can be declared at most
once in an interface, etcetera). Some constraints are there to enforce the typical

220 R. van Beusekom et al.

Table 1. EBNF for (the essential part of) the Dezyne language. Terminal symbols are
typeset in bold. For brevity, optional productions are enclosed within parentheses and
a question mark ()? whereas repetition, resp. positive repetition of productions are
enclosed within ()∗, resp. ()+. Nonterminal ID represents the identifiers that can be
generated using standard ASCII characters; Expr represents typical expressions built
from operations on data types, function calls, etcetera.

tree-like architectural design pattern of Fig. 1, used in Dezyne (e.g. each com-
ponent has at most one provided port). Most importantly for our exposition is
the fact that correct interface specifications, components and recursive functions
can be rewritten to a normal form where the behaviour can be represented by
the following production rules:

BehaviourStmt ::= [Guard] OnEventStmt
. . .
FuncDecl ::= ID ID ((ID ID)?) { (ImperativeStmt)∗ }
. . .
OnEventStmt ::= on OnTrigger : ImperativeStmt
ImperativeStmt ::= CompoundImperativeStmt | ReplyStmt | IllegalStmt

AssignmentBehaviourStmt | ActionStmt | ReturnStmt| ConditionalStmt
CompoundImperativeStmt ::= { (ImperativeStmt)∗ }
ConditionalStmt ::= if Guard then ImperativeStmt else ImperativeStmt ;

In essence, this means that each interface and component specifies a sequence of
responses and assignments for each event stimulating the interface or component.

Example 1. Consider the description of a controller described in Dezyne, given
in Fig. 2(left). Its interface specification (not depicted here), describing the exter-
nal behaviour the component must comply with, is described by specification
IController, as indicated by the provides keyword; it communicates with the ‘out-
side world’ via the port called controller. The requires keyword indicates that
the controller communicates with a lower-level component, via a port named

Formalising the Dezyne Modelling Language in mCRL2 221

Fig. 2. Left: a Dezyne model describing a very simple controller. Right: a snippet of
a recursive function in Dezyne; i is a port over which events such as start, stop, on,
run and standby are sent.

actuator, behaving in line with the IActuator interface. Events can be received
via, or sent via the ports. The behaviour section prescribes the behaviour of the
component, indicating, e.g. that when s.Off holds (which is shorthand for s ==
Off) and a start event occurs at port controller (indicated by the on keyword),
the component invokes a start event on port actuator, assigns variable s the value
State.Init and subsequently returns control via an implicit reply message via the
controller port. Also, when s.Off holds, neither a shutdown event via port con-
troller, nor a fail event via port actuator, are permitted; this is indicated by the
illegal keyword. ��
Using (mutually) recursive functions, one can specify a finite or infinite sequence
of statements to be executed upon receiving an event. Recursion is limited to tail
recursion [2], allowing for predictable and effective implementations of Dezyne
models in standard programming languages such as C and C++. A typical
excerpt of a recursive function is given in Fig. 2(right).

Dezyne allows its users to read and update the values of the variables
declared in the variable section of a behaviour in recursive functions. Such manip-
ulations offer a high degree of flexibility to the modeller and are appealing to
those accustomed to using iteration rather than recursion. As a consequence,
the function g in Fig. 2(right) sets Boolean b to false so that the second time g
is called from f, no run event is emitted from port i. Another way for functions
to save part of their computation is to explicitly return a value via a return
keyword.

222 R. van Beusekom et al.

3 An mCRL2 Semantics for DEZYNE

Our formalisation of the Dezyne methodology includes both a transformation
of the core language constructs of Dezyne to mCRL2, and a sketch of our
formalisation of the underlying execution semantics which is used to analyse the
compliance of a component to its interface. We first give a cursory overview of
the mCRL2 language in Sect. 3.1, followed by the formalisation of the Dezyne
language in Sect. 3.2 and its execution semantics in Sect. 3.3. The implementation
and validation of our transformation is briefly discussed in Sect. 3.4.

3.1 The Process Algebra mCRL2

The mCRL2 language is a process algebra in the lineage of the Algebra of
Communicating Processes [1]. It consists of a data language for describing data
transformations and data types, and a process language for specifying system
behaviours. The semantics of mCRL2 processes is given both axiomatically and
operationally, associating a labelled transition system to process expressions. For
a comprehensive overview of the language, we refer to [5]; for the associated tool
set, we refer to [3]; due to page limits, we only informally explain the constructs
essential for understanding our work.

The data language includes built-in definitions for most of the commonly used
data types, such as Booleans, integers, natural numbers, etcetera. In addition,
container sorts, such as lists, sets and bags are available. Users can specify their
own data sorts using a basic equational data type specification mechanism.

The process specification language of mCRL2 consists of a relatively small
number of basic operators and primitives. Since we are concerned with only
a fragment of the language we focus on the intuition behind those operators
and constructs that are essential for the current exposition. The basic observ-
able events are modelled by parameterised (multi-)actions. Unobservable events
are modelled by the constant τ , and the constant δ represents inaction (the
process that performs no action, colloquially referred to as the deadlock process).
Processes are constructed compositionally: the non-deterministic choice between
processes p and q is denoted p+q; their sequential composition is denoted p·q,
and their parallel composition is denoted p‖q. A parallel composition of processes
may give rise to multi-actions: actions that occur simultaneously. A communi-
cation operator ΓC(p) can map such multi-actions to new actions when their
parameters coincide, thus modelling the synchronisation of actions. Using an
abstraction operator τH(p), one can turn observable actions into unobservable
actions. An allow operator ∇A(p) can be used to only allow (multi-)actions of
the set A that occur in process p.

Recursion can be used to specify processes with infinite behaviour. This is
typically achieved by specifying a recursive process of the form P(v:V) = p, where
P is a process variable, v is a vector of typed variables (where the type is given
by V), and p is a process expression that may contain process variables (and in
particular variable P). Note that in the next section, we often omit the type V
when specifying recursive processes.

Formalising the Dezyne Modelling Language in mCRL2 223

Process behaviour can be made to depend on data using the conditional
choice operator and a generalised choice operator. The process b→ p � q denotes
a conditional choice between processes p and q: if b holds, it behaves as process
p, and otherwise as process q. Process

∑
d:D.p(d) describes a (possibly infinite)

unconditional choice between processes p with different values for variable d.

Example 2. A simple one-place buffer for natural numbers can be represented
by a process Buffer =

∑
m:Nat.read(m) · send(m) · Buffer, where read and send

are actions that represent storing a value in the buffer and loading a buffered
value from the buffer. The process below represents the same behaviour:

Buffer(n:Nat,b:Bool) = b → (send(n) · Buffer(b = false))
� ∑

m:Nat. (read(m) · Buffer(n = m, b = true))

In this alternative formalisation of the buffer, variable b is used to keep track of
whether the buffer is filled, and, if so, the value currently stored in the buffer is
represented by variable n. Note that Buffer(b = false) is shorthand notation for
Buffer(n,false); i.e. in this notation, only updates to parameters are listed.

3.2 A Formal Description of the DEZYNE to mCRL2 Translation

We mainly focus on the transformation of behaviour statements that occur in
Dezyne models to mCRL2; i.e. we focus on those statements that correspond to
the BehaviourStmt element in the grammar. We omit details about expressions
and type declarations, as these map almost one-to-one on mCRL2 types and
data structures.

For our transformation, we assume that every statement s in a concrete
Dezyne model has a unique index (e.g. a program counter) given by index(s).
This index can easily be assigned while parsing the model. Every mCRL2 process
equation for a given Dezyne component (resp. interface specification), gener-
ated by our transformation, shares the same list v of typed process parameters.
This list contains all variables declared in a Dezyne component (resp. interface
specification). In particular, it includes all global and local variables of the behav-
iours, all function parameters and local function variables, and a small number
of additional variables that are needed as context for the translation. The list of
variables v over-approximates the list of variables that may be in scope at any
point in the execution of a component (resp. interface specification). The typed
list v can also be constructed while parsing the model. We assume that name
conflicts have been resolved using appropriate α-renaming.

Our translation of a behaviour statement s is given by Tr(s, v, i, j, g), where
mapping Tr yields a set of mCRL2 process equations, defined by the rules in
Table 2 (for basic statements and events), and in Table 3 (for function state-
ments). Here i is always equal to index(s), and j is the index corresponding to
the statement that is executed after termination of s, or −1 if there is no such
statement; i.e. j points to the next continuation. Each statement s with index i
has a corresponding process equation Pi(v), where v is the list of typed process

224 R. van Beusekom et al.

parameters. The parameter g determines the current scope in which statement s
resides; g can either be the name of a function (in which case s is in the function
body of g), or it can have the value ⊥ (in which case s is not in the scope of
any function). The actions inevitable, optional and illegal correspond to the trig-
gers and statement with the same name in Dezyne. The parameterised actions
snd r and rcv r are used to send and receive a value t that is set in a reply(t)
statement; the snd r action marks the end of an on e:s1 statement. The snd e
and rcv e actions correspond to sending and receiving of events.

In order to bridge the semantic gap between the Dezyne language and the
mCRL2 language, we have added a few statements that are not part of the
Dezyne language. A send reply statement is inserted at the end of each on e: s1
statement, to make it explicit that the value that is set using a reply(t) statement
inside s1 is eventually returned. In the Dezyne language, sending the reply
remains implicit. Dezyne has the requirement that a reply value is set exactly
once in an on e: s1 statement. It is straightforward to extend the translation of
Table 2 to check for this by recording the number of executed reply(t) statements
in a process parameter. Several other checks, such as out-of-bounds checks can
be added equally straightforward to our transformation. The choice statement
s1 ⊕ s2 and the sequential statement s1; s2 were introduced to make it explicit
that a compound statement that is directly in the scope of an on e:s1 statement
is different from a compound statement inside a behaviour section. The first
one acts like a choice between statements, while the latter acts as a sequential
composition of statements. Finally the skip statement corresponds to an empty
compound statement.

The translation of a behaviour s of a component (resp. an interface specifica-
tion) is given by Tr(s, v0, i, i,⊥), where i = index(s) and v0 contains the initial
values of the global variables of the behaviour, and default values for all other
parameters. The continuation variable j is set to i. The effect of this is that the
behaviour s will be repeated indefinitely. To reduce the size of the underlying
state space, in our implementation of our encoding we reset all non-global vari-
ables to their default value at the end of the execution of an on e:s1 statement.

Example 3. We exemplify the translation on a small part of the Dezyne model
of Fig. 2(left), using fictitious numbers as statement indices. We assume that all
events are void events, meaning that these do not return a value.

Controller1(s:State) = Controller2(s) + Controller12(s);
Controller2(s:State) = (s == Off) → Controller3(s) � δ;
Controller3(s:State) = Controller4(s) + Controller8(s);
Controller4(s:State) = rcv e(controller.start) · Controller5(s);
Controller5(s:State) = snd e(actuator.start) · rcv r(void) · Controller6(s);
Controller6(s:State) = Controller7(s = Init);
Controller7(s:State) = snd r(controller.start, void) · Controller1(s);
Controller8(s:State) = Controller9(s) + Controller11(s);
Controller9(s:State) = rcv e(controller.shutdown) · Controller10(s);
Controller10(s:State) = Illegal();
Controller11(s:State) = rcv e(actuator.fail) · Controller10(s);
Controller12(s:State) = ...
...
Illegal(s:State) = illegal · Illegal();

Formalising the Dezyne Modelling Language in mCRL2 225

Table 2. Mapping Tr, describing the translation of (extended) Dezyne statements
in normal form to mCRL2 processes and process expressions. Note that we used the
convention that i1 = index(s1) and i2 = index(s2), t is a data expression, b is a
Boolean expression, e is an event, x is a variable name, T is a type and Tx is the type
of x. The process parameter r is an element of v and may contain any value t that is
set using a reply(t) statement.

Statement s Translation Tr(s, v, i, j, g)

Basic statements

skip {Pi(v) = Pj()}
s1; s2 {Pi(v) = Pi1 ()} ∪ Tr(s1, v, i1, i2, g) ∪ Tr(s2, v, i2, j, g)

{s1; s2; · · · ; sn} Tr(s1; (s2; (· · · ; sn)), v, i, j, g)
s1 ⊕ s2 {Pi(v) = Pi1 () + Pi2 ()} ∪ Tr(s1, v, i1, j, g) ∪ Tr(s2, v, i2, j, g)

{s1 ⊕ s2 ⊕ · · · ⊕ sn} Tr(s1 ⊕ (s2 ⊕ (· · · ; sn)), v, i, j, g)
if b then s1 else s2 {Pi(v) = b → Pi1 () � Pi2 ()} ∪ Tr(s1, v, i1, j, g) ∪ Tr(s2, v, i2, j, g)

x = t {Pi(v) = Pj(x = t)}
T x = t Tr(x = t, v, i, j, g)

illegal {Pi(v) = Illegal()} where Illegal(v) = illegal · Illegal()

Event related statements

[b] s1 {Pi(v) = b → Pi1 () � δ} ∪ Tr(s1, v, i1, j, g)

on e:s1 {Pi(v) = rcv e(e) · Pi1 ()} ∪ Tr(s1, v, i1, j, g)

reply(t) {Pi(v) = Pj(r = t)}
send reply(e) {Pi(v) = snd r(e, r) · Pj()}
x = e {Pi(v) = snd e(e) ·∑ x′ : Tx.rcv r(e, x′) · Pj(x = x′)}

e

⎧
⎪⎪⎨

⎪⎪⎩

{Pi(v) = snd e(e) · rcv r(void) · Pj()} if e is an ‘in’ event

from a required port

{Pi(v) = snd e(e) · Pj()} otherwise

Note that the actual typing information for the events would be specified in the
interface specifications IController and IActuator, referred to in (but not detailed
in) Fig. 2(left). Furthermore, observe that equation Controller7 deals with the
send reply statement which is not part of the Dezyne language, but which we
need to include to signal the end of an on-event statement. ��

Formalising the recursive functions of the Dezyne language proved to be
the most involved part of the translation as it required several iterations to find
a translation that had a good enough performance for some industrial cases
with thousands of deeply nested function calls. One of the complications is that
functions can modify the global variables of a behaviour. In our first attempt, we
handled these modifications using a separate register process, but it turned out
that the additional communication needed for this could cause an unacceptable
blow up of the state space for some examples.

Our final solution was to introduce a process parameter c that contains the
function call stack, and process parameters rvarT for each function return type

226 R. van Beusekom et al.

T that contain function call results. Both c and rvarT are elements of the list of
variables v we maintain in our translation. In each return statement of a function
with return type T, the function result is stored in the parameter rvarT. In an
assignment statement x = f(t), the function result is retrieved from this parame-
ter rvarT. We ensure that each function body is translated only once. At first
sight this may seem problematic, since the translation of a function call depends
on the statement where the execution should continue after termination, which
is encoded in the parameter j. This problem has been solved by moving the
actual mapping of a function call statement with index i to the corresponding
continuation j in a separate Return process. The Return process contains a sum-
mand (c
= [] ∧ head(c) = i) → Pj(c = tail(c), x = rvarT) � δ for each assignment
statement x = f(t) with index i. Note that the indices of the function call state-
ments are stored in the function call stack c. In case of a nested function call
between mutually dependent tail-recursive functions, it is known that the con-
tinuation statement will not change. So in this particular case we do not add
the index of the statement to the function call stack c. We determine whether
functions are mutually dependent by checking that they are in the same strongly
connected component of the function call graph. The restriction to tail-recursive
functions ensures that it is not needed to put copies of local function variables
on the stack, see e.g. [2]. Details of the formalisation of function call statements
can be found in Table 3. For completeness, the translation Tr(sf , v, if ,−1, f) of
a function body sf is added to the translation of each function call f(t). In our
implementation it is generated only once. Note that the continuation parame-
ter j is set to the undefined value −1, since the actual continuation value of a
function call is stored in the Return process.

3.3 Formalising the Execution Model

Dezyne models that are converted to executable code and subsequently
deployed interact with other components following a run-to-completion regime
which is guaranteed by the Dezyne code generation. A faithful analysis of the

Table 3. Mapping Tr, describing the translation of Dezyne function calls and returns
in mCRL2. Note that t is a data expression, sf is the body of function f , if = index(sf),
and df is the function parameter of function f . By c = i � c we denoted that index i is
prepended to list c.

Statement s Translation Tr(s, v, i, j, g)

Function call statements

f(t)

{{
Pi(v) = Pif (df = t)

}
if f and g are mutually dependent{

Pi(v) = Pif (df = t, c = i � c)
}

otherwise

∪ Tr(sf , v, if , −1, f)

x= f(t)
{
Pi(v) = Pif (df = t, c = i � c)

} ∪ Tr(sf , v, if , −1, f)

return t {Pi(v) = Return(rvarT = t)} where T is the return type of f

Formalising the Dezyne Modelling Language in mCRL2 227

behaviour of Dezyne components therefore requires a formalisation of this exe-
cution model in mCRL2. This holds particularly true for the compliance test that
is conducted, which essentially checks whether the behaviour of a component C,
as can be observed from its provided port p, complies with the behaviour that is
specified by C’s interface specification. Formally, the compliance check decides
whether or not the labelled transition system underlying the behaviour of C
(when interacting with other components through its required ports r1 up to rn,
see also Fig. 1) is a correct failures-divergence refinement [6] of the labelled tran-
sition system underlying the behaviour of C’s interface specification. Relying on
an assume-guarantee style of reasoning, the behaviours of the components that
C interacts with through ports r1 up to rn, are represented by their respective
interface specifications (and their underlying labelled transition systems) in all
analyses of the behaviour of C in the Dezyne tool set.

Conceptually, the run-to-completion execution model ensures that compo-
nent C, when interacting with other components through C’s port p and ports
r1 up to rn, is blocked for unsolicited external stimuli as long as it has not
finished dealing with a previous stimulus. External stimuli that come via the
required ports are queued in a queue Q. This is not the case for the replies to
events submitted to a component via a required port. Unsolicited stimuli arriv-
ing at a required port are announced by an optional or inevitable trigger. The
execution model furthermore defines the semantic difference between the latter
two triggers, by non-deterministically deciding at any point in the execution of
C’s behaviour that optional triggers become disabled, whereas inevitable triggers
cannot be disabled. Such nuances make the effect of the execution model on the
interactions between components non-trivial.

Rather than presenting our mCRL2 formalisation of the run-to-completion
semantics, we explain its workings using a high-level state diagram of a part
of this formalisation, see Fig. 3. The diagram represents how unsolicited stimuli
arriving via the provided port are dealt with; the part dealing with unsolicited
stimuli arriving via the required port (initiated by an optional or inevitable trig-
ger, which fills buffer Q) is largely the same but lacks, e.g. transitions dealing
with sending reply values to the events taken from the queue. The execution
model enforces that stimuli at the provided port and optional and inevitable
triggers at the required ports are only accepted in state ‘Idle’ of Fig. 3. In
mCRL2, this can be modelled by a blocking synchronisation on actions such
as rcv e, optional and inevitable, using a combination of mCRL2’s parallel com-
position operator ||, its communication and restriction operator and its renaming
operator.

The state diagram of Fig. 3 illustrates the flow of events when a stimulus via
the provided port arrives. This causes a state change, leading to state ‘Process-
ing’. When the component reports that it has finished processing the event (indi-
cated by the snd r(e,v) action, which sets a value for reply variable r) it moves
to state ‘Finishing’. Once the component is in state ‘Finishing’, it will start
processing the solicited events that may have arrived in the queue in the mean-
time. Executing an event e′ from the queue (indicated by the rcv e(e′) action)

228 R. van Beusekom et al.

Fig. 3. Schematic overview of the run-to-completion semantics of Dezyne components.

takes the state diagram to state ‘Finished Blocked’; when the component reports
it is finished processing this event (indicated by the snd r(e′) action), it returns to
state ‘Finished’. When the queue is finally empty, the component again returns
to the ‘Idle’ state and returns the value stored in variable r that was determined
during the execution of event e. In all non-‘Idle’ states the component may send
out events via its provided port or via its required ports, and, in response to such
events, other components may fill the queue with new events; we have omitted
these self-loops from the diagram for simplicity.

3.4 Implementing and Validating the Transformation

The model transformation has been implemented using Python. The input of our
transformation is a Dezyne model stored in Scheme format. The Scheme file is
parsed into a Python class model of a Dezyne model, to which our generator is
applied. The result is a Python class model of an mCRL2 model. This mCRL2
model is then pretty printed to text format, after which the mCRL2 tools are
applied for further analysis.

Our preference for the general purpose programming language Python over
a specialised model transformation language such as, e.g. QVTo, is motivated
by the need to easily make changes to the generator. A scripting language like
Python is ideal for that. Since there is a large gap between the Dezyne language
and the process algebra mCRL2, it was clear from the start that the main effort
would be to experiment with different ways to do the transformation. The gener-
ator and its supporting data structures have been revised many times. What also
helped to support making changes is that we made specifications of the transla-
tion in an early stage, and kept it in sync with the implementation, ultimately
resulting in the specifications of Tables 2 and 3.

Note that the class models of Dezyne and mCRL2 were stable from the
start. The classes were kept very simple, and correspond in a one to one way
with UML metamodels of both languages. The mCRL2 classes could even be
generated from an input file containing merely 150 lines of text.

Formalising the Dezyne Modelling Language in mCRL2 229

We validated the relative correctness of our transformation using a set of test
cases provided by Verum, consisting of 168 component models and 224 interface
models, including several models taken from industry (see also Sect. 5). For all
these cases we were able to establish that the state spaces of the behaviours of the
components using our transformation and Verum’s transformation were strongly
bisimilar. Moreover, using the mCRL2 tool set we could reproduce the outcomes
to all checks currently performed by Dezyne on components, interfaces and
their interactions under the run-to-completion semantics on these test cases.

4 Improvements and Enhancements in mCRL2

As the previous section illustrates, from a language point of view, the mCRL2
language is sufficiently expressive for describing the Dezyne models and its
execution semantics. This opens up the possibility to analyse Dezyne models
using the mCRL2 tool set.

The mCRL2 tool set works by parsing, type-checking and subsequently
converting an mCRL2 specification to a normal form called a Linear Process
Specification (LPS). All analyses of the mCRL2 specification are subsequently
performed by tools operating on LPSs or its derived artefacts such as state
spaces. Analysing the mCRL2 models obtained by translating large Dezyne
models developed in industry led to several feature requests for various tools in
mCRL2 but also revealed a few bottlenecks and a thus far undiscovered error in
the mCRL2 tool set.

A major enhancement to the mCRL2 tool set concerns the addition of
algorithms for deciding several types of refinement relations. This was needed
to properly deal with Dezyne’s verification methodology which relies on an
assume-guarantee style of reasoning rooted in the notion of failures-divergence
refinement [6]. While this notion is one of the hallmark features of the FDR
tool set (in fact giving it its name), mCRL2 did not support this refinement
notion, and it could not be mimicked by any of the many behavioural equiva-
lences that were supported by mCRL2. An anti-chain-based algorithm, based
on [7], for deciding failures-divergence refinement was added to the mCRL2 tool
ltscompare.2 Another enhancement to the tool set concerns the generation of
witnesses to divergences—infinite sequences of internal actions—and the genera-
tion of counterexamples for failures-divergence refinement and other refinement
relations.

The larger Dezyne models we ran as test cases revealed that mCRL2 was
not optimised for dealing with the immense number of recursive process equa-
tions obtained from our automated translation. While the complexity of each
individual equation was low (some equations just refer to other equations, e.g.

2 The option to check for this refinement relation, and other refinement relations
such as trace inclusion, weak trace inclusion, failures, weak failures and simulation
preorder is available from mCRL2 revision 13875 and onward. The additions weigh
in at approximately 800 lines of code, which include, among others the additional
algorithms and test cases for these algorithms.

230 R. van Beusekom et al.

when translating assignments), the vast number of these equations meant that
some basic parts of the algorithms used to convert mCRL2 processes to LPSs
needed improvement. Examples include the removal of a linear search through a
list of global data variables and the addition of routines to merge similar equa-
tions. In particular, alphabet reduction, a preprocessing step of linearisation that
analyses possible occurrences of multi-actions, has been improved in a number
of ways. Due to the occurrence of large blocks of interdependent equations, it
turned out to be necessary to cache the alphabet of such equations. Also the
sets of possible multi-actions needed to be pruned more aggressively, to deal
with their huge sizes. At the same time, an error in the rules underlying the old
alphabet reduction algorithm surfaced, which was subsequently fixed.

5 Experiments

In the course of formalising Dezyne in mCRL2, we have experimented with sev-
eral different but semantically equivalent (modulo divergence-preserving branch-
ing bisimulation) translations. The main criterion, next to correctness, used in
our search for a proper formalisation was the scalability of verifying the mCRL2
models resulting from a translation. Typical verifications that are offered by
the Dezyne tool set, and which can be conducted by analysing the appropri-
ate mCRL2 model obtained from translating a Dezyne model, are absence of
deadlock and livelock, out-of-bound checks for variables, invoking events that
are marked illegal, and interface compliance of components. As we mentioned
before, the latter verification is essentially a check whether the behaviour as can
be observed at the provided port of a component is a correct failures-divergence
refinement of the behaviour as specified by the interface specification.

While it can be expected that the various ways of formalising a language
will have an effect on the size of the underlying labelled transition systems of
concrete Dezyne models, we had initially not expected the effects to be so dra-
matic. In fact, for small examples, the effects were marginal, but for the models
developed in the industry, the effects were surprisingly big. This was particularly
true for the compliance checks, which are computationally the most expensive
checks carried out by the Dezyne tool set: the check requires computing a
labelled transition system that represents the interaction between a component
and the interface specifications for its required ports, given the execution model
of Sect. 3.3. To illustrate the differences in scalability for the compliance check,
we compare the effect (on time and state space size) of translating functions
using a dedicated register process for recording the side effects functions can
have on global variables and the translation described in Sect. 3.2, see Table 4.3

These results clearly indicate that one can easily gain a factor 5 or more for the
larger models in terms of speed by choosing an appropriate translation. This
also holds for the other types of verification that can be conducted.

3 Unfortunately, we cannot disclose the origin of, nor further details about these indus-
trial models.

Formalising the Dezyne Modelling Language in mCRL2 231

Table 4. The effect on the size of the state space and the time to generate the transition
system and run the compliance test when translating Dezyne functions using either
a dedicated register process for recording side effects on global variables (translation
I) and when translating functions using the rules in Sect. 3.2 (translation II). Time is
in seconds; a dash indicates that the computation did not finish within the available
time or memory. The models are embedded software control models, developed (and
deployed) in industry using Verum’s software engineering tool suite. The lines of code
for mCRL2 correspond to translation II.

Model Time (s) Speedup # States Reduction Lines of code

I II I II Dezyne mCRL2

Model 1 155 13 11 715, 049 110, 773 6 3, 133 2, 157

Model 2 83 13 6 984, 167 43, 281 22 2, 808 3, 616

Model 3 37 10 3 33, 488 6, 700 4 2, 382 2, 838

Model 4 27 11 2 822 226 3 2, 904 2, 482

Model 5 45 11 4 443, 379 182, 367 2 1, 751 2, 114

Model 6 135 17 7 1, 039, 654 323, 023 3 4, 145 3, 114

Model 7 − 18 − − 74, 654 − 4, 328 3, 161

Model 8 − 21 − − 101, 948 − 4, 931 4, 434

Model 9 − 35 − − 215, 727 − 5, 721 4, 645

Model 10 2, 069 275 7 36, 140, 140 10, 967, 862 3 8, 169 8, 474

Fig. 4. Visualisations of the state space underlying an interface specification used in
‘Model 10’. The symmetry in the two branches at the bottom in the left picture is a
telltale sign of symmetry in the behaviour of the interface specification.

It is noteworthy that the verification times we obtain using the mCRL2 model
are currently roughly 2–5 times slower than the verification times reported by
Verum on the same models. This difference may be due to hardware differ-
ences, but we expect that FDR’s different state space exploration technique is
a main factor, which explores and minimises individual parallel processes before
combining these, whereas mCRL2 explores a monolithic model. Indeed, manu-
ally mimicking FDR’s compositional approach in mCRL2 shows an additional
speed-up of a factor 5–10 can be achieved.

Finally, we note that the translation to mCRL2 opens up the possibility to
use advanced technology for visually inspecting state spaces and tools to verify
more complex properties than the generic ones currently offered by the Dezyne

232 R. van Beusekom et al.

verification tool set. For instance, for ‘Model 10’, which models a complex piece
of software control in an embedded device of one of Verum’s customers, we have
verified typical properties relevant in this context such as:

– Invariantly, whenever the system receives an initialisation event, it remains
possible to successfully stop production;

– There is an infinite execution in which production is never stopped;
– It is impossible to initialise the system when it is already initialised unless

production is stopped.

Such properties are expressed in mCRL2’s modal μ-calculus with data, and all
three properties listed above are readily verified to hold on ‘Model 10’. Moreover,
we have verified several liveness properties that are true of the interface specifi-
cation of ‘Model 10’ but not of the component itself. Through such properties,
the relation between a component and its interface specification can be better
understood.

Figure 4 depicts a graphical simulation of a 3D depiction of the state space
of one of the interface specifications used in ‘Model 10’, giving an impression of
the type of visualisations that one can use to inspect the state space. Such a
visualisation help to, e.g. confirm expectations (such as an expected symmetry
in the system behaviour).

6 Concluding Remarks

Modelling languages used in the context of model driven engineering have gained
traction among industry over the last years. Such languages are predominantly
used to generate executable code, but tool sets supporting these languages rarely
offer forms of formal verification of the models. The Dezyne language and asso-
ciated tool set, developed by Verum, is one of these rare exceptions, with formal
verification support offered through a non-documented, proprietary mapping to
the FDR tool set [4].

We have described a formalisation of the Dezyne language in terms of
mCRL2 [5], providing a first publicly accessible formal semantics of Dezyne
models and their execution semantics. The formalisation and implementation of
the transformation, which was developed in a period of 2 years and took well in
excess of 1 man-year of effort, led to improvements and additions in both mCRL2
and the existing Dezyne to FDR translation, and served as an independent val-
idation of the ideas behind the methodology behind Dezyne. Moreover, the
transformation we developed is a first step to adding more advanced verification
and visualisation possibilities to the Dezyne tool set.

Acknowledgements. Wieger Wesselink and Tim Willemse were funded by the EU-
FP7 TTP VICTORIA project (project grant agreement 609491).

Formalising the Dezyne Modelling Language in mCRL2 233

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press, New York (2010)

2. Clinger, W.D.: Proper tail recursion and space efficiency. In: PLDI, pp. 174–185.
ACM (1998)

3. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink,
W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a parallel
refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167
(2016)

5. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

6. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Asp. Comput.
17(2), 93–112 (2005)

7. Wang, T., Song, S., Sun, J., Liu, Y., Dong, J.S., Wang, X., Li, S.: More anti-chain
based refinement checking. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol.
7635, pp. 364–380. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34281-3 26

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-642-34281-3_26

Erratum to: Certified Gathering of Oblivious
Mobile Robots: Survey of Recent Results

and Open Problems

Thibaut Balabonski6, Pierre Courtieu1, Lionel Rieg2,
Sébastien Tixeuil4,5, and Xavier Urbain3(&)

1 CÉDRIC, Conservatoire National des Arts et Métiers, Paris, France
2 Yale University, New Haven, USA

3 Université de Lyon, Université Claude Bernard Lyon 1,
CNRS, LIRIS UMR 5205, Lyon, France
Xavier.Urbain@liris.cnrs.fr

4 UPMC Sorbonne Universités, LIP6-CNRS 7606, Paris, France
5 Institut Universitaire de France, Paris, France
6 Université Paris-Sud, LRI, CNRS UMR 8623,

Université Paris-Saclay, Paris, France

Erratum to:
Chapter “Certified Gathering of Oblivious Mobile Robots:
Survey of Recent Results and Open Problems” in:
L. Petrucci et al. (Eds.), Critical Systems: Formal Methods
and Automated Verification, LNCS 10471,
https://doi.org/10.1007/978-3-319-67113-0_11

By mistake, the initially published version of chapter 11 omitted the author corrections.
This has been updated.

The updated original online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-67113-0_11

© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, p. E1, 2017.
https://doi.org/10.1007/978-3-319-67113-0_15

http://dx.doi.org/10.1007/978-3-319-67113-0_11
http://dx.doi.org/10.1007/978-3-319-67113-0_11

Author Index

André, Étienne 100

Balabonski, Thibaut 165
Biondi, Fabrizio 83

Chadli, Mounir 83
Cleaveland, Rance 34
Courtieu, Pierre 165

Dautenhahn, Kerstin 119
de Lima, Marcelo Lopes 51
de Queiroz, Max Hering 51
Dixon, Clare 119
Dodd, Tony J. 134, 150

Fantechi, Alessandro 201
Farines, Jean-Marie 51
Fisher, Michael 119
Fiterău-Broştean, Paul 185

Gainer, Paul 119
Given-Wilson, Thomas 83
Gnesi, Stefania 201
Graf-Brill, Alexander 66
Groote, Jan Friso 217
Gurov, Dilian 3

Hermanns, Holger 66
Hoogendijk, Paul 217
Howar, Falk 185

Howe, Robert 217
Huang, Samuel 34
Hustadt, Ullrich 119

Legay, Axel 83
Lidström, Christian 3
Lisper, Björn 19
Liu, Jun 134, 150

Montana, Felipe J. 134, 150

Nyberg, Mattias 3

Rieg, Lionel 165

Saunders, Joe 119
Semini, Laura 201

Tixeuil, Sébastien 165

Urbain, Xavier 165

van Beusekom, Rutger 217
Veiga, Hallan William 51

Webster, Matt 119
Wesselink, Wieger 217
Westman, Jonas 3
Wieringa, Rob 217
Willemse, Tim A.C. 217

	Preface
	Organization
	Replacing Store Buffers by Load Buffers in Total Store Ordering (Invited Lecture)
	Contents
	Automated Verification Techniques
	Deductive Functional Verification of Safety-Critical Embedded C-Code: An Experience Report
	1 Introduction
	2 Formalizing Functional Requirements
	3 The Verification Tool VCC
	4 The Case Study
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Verifying Event-Based Timing Constraints by Translation into Presburger Formulae
	1 Introduction
	2 Events
	3 TADL2
	4 Transforming TADL2 Constraints into Presburger Formulae
	5 An Experiment: The Box Service Generic-External
	6 Related Work
	7 Conclusions and Further Research
	References

	Query Checking for Linear Temporal Logic
	1 Introduction
	2 Related Work
	3 LTL, Kripke Structures and Büchi Automata
	3.1 LTL and Kripke Structures
	3.2 Büchi Automata and LTL Model Checking

	4 The LTL Query Checking Problem
	5 Automaton-Based LTL Query Checking
	5.1 Propositional Queries
	5.2 Büchi Query Automata
	5.3 LTL Query Checking via Büchi Query Automata

	6 Implementing an LTL Query Checker
	6.1 Construct Büchi Automaton BK
	6.2 Construct Büchi Query Automaton B[var]
	6.3 Construct Product Query Automaton BK, [var]
	6.4 Solve for Shattering Conditions of BK, [var]
	6.5 Implementation and Evaluation

	7 Conclusions and Directions for Future Research
	References

	Testing and Scheduling
	Automatic Conformance Testing of Safety Instrumented Systems for Offshore Oil Platforms
	1 Introduction
	2 Software Development for Safety PLC
	2.1 Cause and Effect Matrix

	3 A Method for Conformance Testing of PLC
	3.1 Generation of Test Cases
	3.2 Example
	3.3 Generation of Oracles

	4 Automatic Testing Tool
	5 Application of the Proposed Method
	6 Conclusion
	References

	Model-Based Testing for Asynchronous Systems
	1 Introduction
	2 Synchronous Input-Output Conformance Testing
	3 Asynchronous Input-Output Conformance Testing
	4 EnergyBus Case Study
	5 Conclusion
	References

	Information Leakage as a Scheduling Resource
	1 Introduction
	2 Background
	3 Model
	3.1 Concept
	3.2 Formal Model

	4 Our Approach
	4.1 Preprocessing
	4.2 Postprocessing

	5 Experimental Results
	6 Case Study: Modeling Cache Attacks
	7 Discussion
	8 Conclusions and Future Work
	References

	A Unified Formalism for Monoprocessor Schedulability Analysis Under Uncertainty
	1 Introduction
	2 Preliminaries: Task Automata
	2.1 Clocks, Parameters and Constraints
	2.2 Tasks
	2.3 Parametric Task Automata
	2.4 (Parametric) Timed and Stopwatch Automata
	2.5 Task Queue and Scheduling Strategy
	2.6 Semantics of Task Automata
	2.7 Decidability of Task Automata

	3 Decidability and Undecidability
	3.1 Undecidability
	3.2 Decidability

	4 Schedulability Analysis for Parametric Task Automata
	5 Parameter Synthesis for PTaskA Using IMITATOR
	5.1 IMITATOR
	5.2 Translation into Parametric Stopwatch Automata

	6 Experiments
	7 Conclusion
	References

	Special Track: Formal Methods for Mobile and Autonomous Robots
	CRutoN: Automatic Verification of a Robotic Assistant's Behaviours
	1 Introduction
	2 The Care-O-bot and the Robot House
	3 Intermediate Form Translation
	4 Property Specification
	5 Translation into SMV
	6 Results and Discussion
	7 Conclusion
	References

	Sampling-Based Reactive Motion Planning with Temporal Logic Constraints and Imperfect State Information
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 System Model
	2.2 Belief Space
	2.3 Linear Temporal Logic
	2.4 Deterministic Rabin Automaton
	2.5 Problem Formulation

	3 Solution
	3.1 Feedback-Based Information Roadmap
	3.2 Incremental Transition System
	3.3 Product MDP
	3.4 Optimal Policy Computation
	3.5 Local Targets
	3.6 Obstacle Avoidance

	4 Example
	5 Conclusions
	References

	Sampling-Based Path Planning for Multi-robot Systems with Co-Safe Linear Temporal Logic Specifications
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Deterministic Transition System
	2.2 Linear Temporal Logic
	2.3 Büchi Automaton
	2.4 Product Automaton
	2.5 Problem Formulation

	3 Solution
	3.1 Probabilistic Roadmap
	3.2 Composite Roadmap Exploration
	3.3 Product Automaton Update
	3.4 Guided Expansion
	3.5 Implementation

	4 Examples
	5 Conclusions
	References

	Certified Gathering of Oblivious Mobile Robots: Survey of Recent Results and Open Problems
	1 Introduction
	1.1 Oblivious Mobile Robots
	1.2 The Gathering Problem
	1.3 Contributions and Outline of the Paper

	2 Formal Models of Oblivious Mobile Robots
	2.1 Related Work/Overview
	2.2 The Pactole Framework
	2.3 Specifying in Pactole

	3 A Formal Study of Gathering with Pactole
	3.1 Formal Definitions in Pactole
	3.2 Robot Models Considered in This Study
	3.3 SSYNC, Detection of Multiplicity, Rigid Movements
	3.4 FSYNC, No Detection of Multiplicity, Flexible Movements
	3.5 Conclusion of This Study

	4 Roadmap to a Complete Certified Characterisation
	References

	Modeling and Analysis Techniques
	Learning-Based Testing the Sliding Window Behavior of TCP Implementations
	1 Introduction
	2 The Sliding Window Behavior of TCP
	3 Instantiating Learning-Based Testing for TCP
	3.1 Register Automata
	3.2 Tree Queries
	3.3 Model-Based Testing

	4 Testing TCP Implementations
	4.1 Experimental Setup
	4.2 Experiments and Results
	4.3 Analysis of Conformance to RFC

	5 Conclusion
	References

	Optimizing Feature Interaction Detection
	1 Introduction
	2 Running Example
	3 Formalisation of Features and Feature Interaction
	3.1 Semantics of a Feature
	3.2 Composition of Features
	3.3 Formalisation of Interaction

	4 No True 3-Way Interaction
	5 Related Work
	5.1 Different Computational Models and Non-functional Interactions

	6 Conclusions
	References

	Formalising the Dezyne Modelling Language in mCRL2
	1 Introduction
	2 DEZYNE
	3 An mCRL2 Semantics for DEZYNE
	3.1 The Process Algebra mCRL2
	3.2 A Formal Description of the DEZYNE to mCRL2 Translation
	3.3 Formalising the Execution Model
	3.4 Implementing and Validating the Transformation

	4 Improvements and Enhancements in mCRL2
	5 Experiments
	6 Concluding Remarks
	References

	Erratum to: Certified Gathering of Oblivious Mobile Robots: Survey of Recent Results and Open Problems
	Erratum to: Chapter “Certified Gathering of Oblivious Mobile Robots: Survey of Recent Results and Open Problems” in: L. Petrucci et al. (Eds.), Critical Systems: Formal Methods and Automated Verification, LNCS 10471, https://doi.org/10.1007/978-3-319-67113-0_11

	Author Index

