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Abstract In view of the modeling of uncertainties which propagate in non lin-
ear transport equations and general hyperbolic systems, we review some recent
alternatives to the classical moment method. These approaches are obtained by
reconsidering the non linear structure with entropy considerations. It is shown that
the entropy variable and the kinetic formulation of conservation laws yield new
approaches with strong control of the maximum principle. A general minimization
principle is proposed for these kinetic polynomials, together with an original
reformulation as an optimal control problem. Basic numerical illustrations show
the properties of these new techniques. A surprising linked to quaternion algebras is
evoked in relation with kinetic polynomials. Natural limitations are discussed in the
conclusion.

1 Introduction

It is little less than 80 years since Norbert Wiener’s visionary article on “The
homogeneous chaos” [39] and some of the questions he addressed are still vividly
debated among the community that seeks for a comprehensive framework for
uncertainties in fluid mechanics. One question in [39] can be summed up as

Question 1 Is it possible to have a measurement of the dynamics of a flow via
polynomial expansions of certain quantities, where the polynomials are optimal with
respect to some underlying probability laws?
The engineering and computational community recognized that it is a fundamental
issue also for uncertainty calculations in many different fields, see [21] and
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references therein. Since then, any orthogonal polynomial expansion related to
a certain probability law (not only the Hermite expansion [39] well suited for
Gaussian processes and turbulence) is called a chaos polynomial expansion. There
is actually another question asked at the end of Wiener’s paper.

Question 2 What is the compatibility of these polynomial expansions with respect
to the PDE structure needed for fluid mechanics?
For the Burgers equations which is a paradigm, Wiener quickly realized that loss
of regularity may degrade the accuracy of polynomial approximations. This remark
looks evident nowadays since the theory [27] of shock waves and discontinuous
solutions is well established. It seems at the lecture of Wiener’s paper that he wanted
to address both questions at the same time, meaning a theory for the development
of turbulence—whatever it meant for him—and for the existence of shocks (which
degrades the regularity of the solutions so lessens the quality of polynomial approxi-
mations).

The purpose of this work is to review some recent progresses which try to answer
the second question, and only the second one. It will be presented following a
certain chronological order with which the author looked at these problems, so
the title of the present contribution. Even if some problems evoked below seem
at first sight extremely far from uncertainty propagation (such is the quaternion
structure at the end of this paper in Sect. 4), it is hoped the ensemble has a
coherent structure and reflects some scientific issues in the modeling of uncertainty
propagation in hyperbolic and kinetic equations. In a completely different direction,
the reader interested to a modern statistical but PDE based treatment of hyperbolic
conservation laws is strongly advised to refer to [19], and therein.

The plan is the following. Section 2 begins with the introduction of standard
notations and results about the hyperbolic structure of systems of conservation
laws with polynomial modeling of uncertainties. Section 3 takes advantage of the
rewriting of scalar conservation laws as the limit of kinetic equations. It will explain
nevertheless that another view is possible for polynomial expansions, denoted
as kinetic polynomials. Section 3.3 will provided advanced material on kinetic
polynomials. Section 3.4 will deal with a first formal extension to isentropic Euler
system with � D 3. Numerical illustrations are provided in Sect. 4.

Similar notations will sometimes be used for different uses. For example f
denotes the flux function in Sect. 2, but refers to the kinetic unknown in Sect. 3:
the context makes this abuse non ambiguous. On the contrary the indices are kept
the same: d is the space dimension, m the size of the system of conservation laws, p
the dimension of the uncertain space and n the polynomial degree.

2 Hyperbolic Structure

The modern mathematical treatment of non viscous compressible fluid mechanics
is based of the theory of hyperbolic systems of conservation laws [27]. Let us start
with the Euler system of compressible non viscous fluid mechanics written in the
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domain x 2 D � R
d

8
<

:

@t�Cr � .�u/ D 0;

@t.�u/Cr � .�u˝ u/Crp D 0;

@t.�e/Cr � .�ueC pu/ D 0;

(1)

where �.x; t/ > 0 stands for the density of a gas or a fluid, u.x; t/ 2 R
d is the

velocity and e is the total energy. The total energy is the sum of the internal energy
" and of the kinetic energy, that is e D "C 1

2
juj2. Considering that an equation of

state (EOS) is provided, the pressure law is p D EOS.�; "/. System (1) is rewritten
as a system of conservation laws

�
@tU Cr � f .U/ D 0; x 2 D ; t > 0;

U.x; 0/ D U0.x/; x 2 D ;
(2)

The unknownU.x; t/ 2 ˝ � R
m is assumed to live in the set ˝ of admissible states.

A minimal requirement for well posedness is to have the hyperbolic structure, which
means that the Jacobian matrix

A.U/ D rUf .U/ 2 R
m�m

is diagonalizable in R
m: for all U 2 ˝ , there is a set of real eigenvectors and

eigenvalues. This is guaranteed if one has a smooth entropy-entropy flux pair .S;F/

for the system. The entropy function S W ˝ ! R and the entropy pair function
F W ˝ ! R

d are such that S is strictly convex, that is r2S > 0, and

rSrf D rF; U 2 ˝:

The modeling of uncertainty propagation with chaos polynomials techniques is
usually performed with another variable, call it ! 2 � � R

p. The uncertainty can
be in the initial data U0.x; !/ 2 R

m or in the flux function f! W ˝ ! R
m�d which

displays a dependency with respect to !. One obtains the system of conservation
laws

�
@tU Cr � f!.U/ D 0; x 2 D ; ! 2 �; t > 0;

U.x; 0I!/ D U0.x; tI!/; x 2 D ; ! 2 �;
(3)

where the unknown U.x; tI!/ is function of the space-time variables and of the
uncertain variable. The mathematical structure of (3) is extremely simple since it
can be seen as an infinite collection of decoupled systems like (47), but for different
!.

For the simplicity of the exposure the function f is now considered as indepen-
dent of !. It is not really a restriction with respect to the main mathematical issues
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since it is possible to rewrite (3) as an augmented system

@t

�
U
!

�

Cr �
�
f!.U/

0

�

D 0; x 2 D ; ! 2 �; t > 0: (4)

Up to the definition of an augmented flux function f aug.U; !/ D
�
f!.U/

0

�

, the

system (4) is made of m C p conservation laws. An entropy can be defined under
natural conditions [17].

Since the number of variables of the generic system (3) is large, indeed the
dimension of the space of static variables is

dim .physical space/C dim .uncertain space/ D mC p;

the idea of model reduction is appealing. This is performed below with what is called
chaos expansion or chaos polynomials [8, 13, 21, 24, 28, 34, 39, 41]. For this task,
one adds for convenience one extremely important information which is the a priori
knowledge of an underlying probability law d�.!/: one has that

R
� d�.!/ D

1. One can argue that, for a practical problem, no such probability law is a priori
known. This is true in general, but there exists situations where the probability law
can be characterized by physical experiments. Three different examples are ICF
(Inertial Confinement Fusion) modeling [33], discussion of EOS for ICF modeling
[7] and in another direction signal processing [9].

The idea behind chaos polynomials is to use this information with optimal
accuracy [2, 10]. The procedure is as follows: one determines firstly a family of
orthogonal polynomial with increasing degree (partial or total)

Z

˝

pi.!/pj.!/d�.!/ D ıij:

A basic example is Legendre polynomials

pi.x/ D 1

2iiŠ

di

dxi
.x2 � 1/i

which are orthogonal for the uniform law d�.!/ D 1If�1<!1g
Z 1

�1

pi.x/pj.x/dx D 2

2iC 1
ıij:

For the simplicity of notations, the polynomials ordering is the simplest one, that is
i 2 N. All this motivates the definition of a truncated unknown

Un.x; tI �/ 2 Pn WD Span0�i�n f pig ; (5)
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that is

Un.x; tI!/ D
nX

iD0

Un
i .x; t/pi.!/ where Un

i .x; t/ D
Z

˝

Un.x; tI!/pi.!/d�.!/:

(6)

Since Un
i is the ith moment of Un with respect to pi, this modeling is strongly related

to two classical theories: the first one is the classical problem of moments [1, 11]
and the second one is the closure problem of moments for kinetic equations [12, 23,
26, 30].

If correctly solved, the closure problem yields a closed system for the evolution
of
�
Ui

n

�

0�i�n
. A naive method is to close readily as

@tU
n
i .x; t/Cr �

Z

˝

f .Un.x; tI!//pi.!/d�.!/ D 0; 0 � i � n: (7)

When using such structure for calculations on computers, the numerical evaluation
of the integrals

R

˝
f .Un.x; tI!//pi.!/d�.!/ is needed. These integrals are highly

non linear for many problems of interest. Some prescriptions can be found in [34].
Discarding these practical issues, there is a bad news [17].

Lemma 2.1 Take the uniform law d� D d! on the interval ˝ D .0; 1/. When
applied to the Euler system (48) or to the system of shallow water, the system (7)
with the closure (6) may be non hyperbolic even for physical correct datas.

So far, the only possibility to have an hyperbolic closure is to modify the
expansion (5) using the entropy variable V D rS which induces a diffeomorphism
written as '.U/ D rS D V . The expansion writes

Vn.x; tI �/ 2 Pn WD Span0�i�n f pig ; (8)

that is

Vn.x; tI!/ D
nX

iD0

Vn
i .x; t/pi.!/ where Vn

i .x; t/ D
Z

˝

Vn.x; tI!/pi.!/d�.!/

(9)
is the moment of the entropy variable. The closure is now written as

Un.x; tI!/ D '�1 .Vn.x; tI!// :

This method introduces additional non linearity in the model. There is however a
good news.

Theorem 2.1 (Proof in [17]) The system of conservation laws (7) with the clo-
sure (9) is hyperbolic unconditionally for U 2 ˝ . It admits the entropy-entropy pair
.S ;F /

S D
Z

˝

S .Un.!// d! andF D
Z

˝

F .Un.!// d!:
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Many different probability measures are available. An issue with such extended
systems is the discretization procedure, since the simplicity of the coding is a
highly desirable property. Since the situation is not very different from moment
models, efficient implementation is possible [17]. A variant adapted to quasi-linear
systems is proposed in [40], with a simpler implementation. Convergence to the
limit entropy solution with respect to n is challenging to establish [22]: results are
only partial. It seems that no theoretical result of convergence is available so far after
the appearance of shocks in the solution, see [17] with a weak-strong technique. In
the rest of this work, an alternative to chaos polynomials is considered. Following
[15], it is called kinetic polynomials.

3 Kinetic Structure

The kinetic formulation of conservation laws [4, 29, 31, 32] is another possibility to
model uncertainties. Let " > 0 be a small parameter which ultimately tends to zero.
The kinetic formulation of the conservation law with flux F W R! R

@tuC @xF.u/ D 0 (10)

writes as a Boltzmann equation for t � 0, x 2 R
d and � � 0, in a BGK (relaxation)

form,

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@tf" C a.�/:rf" C 1
"
f" D 1

"
M.u"I �/; a D rF;

u".x; t/ D
Z

f".x; �; t/d�;

f".t D 0/ D M
�
uinitI ��:

(11)

The right hand side

M.uI �/ D 1If0<�<ug (12)

is called a Maxwellian. The initial condition satisfies

0 � u.x; !; 0/ D uinit.x; !/ � umax;

Z

uinit.x; !/dxd�.!/ <1: (13)

The non negativity u � 0 is needed for (12) to make sense in our context. That is
why we assume the initial data is non negative uinit � 0. This assumption simplifies
some non essential technicalities and allows to disregard the negative part of M; the
reader can find in [29, 31, 32] the adaptation to general signs as well as convergence
proofs when "! 0C: typically u" ! u and f" ! M.u/ in natural functional spaces.
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The Maxwellian M.uI �/ is a universal minimizer for a family of entropy based
functionals [4, 29, 31, 32]. For all convex functionals S.�/, one has that

M.uI �/ D argmin
uDR gd�; 0�g�1

Z

S0.�/gd�: (14)

To model uncertainties, the idea is now to write (11) for all !, and then to modify it
in a polynomial manner so as to consider the intrusive kinetic formulation

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@tf n" C a.�/:rf n" C 1
"
f n" D 1

"
Mn
�
un"I �; !

�
;

un".x; !; t/ D
Z

f n" .x; �; !; t/d�;

f n" .t D 0/ D Mn
�
uinitI �; !

�
;

(15)

where 0 � Mn.un"I �; !/ � 1 is a suitable polynomial modification of the
Maxwellian M. Notice that

R
f n" .t D 0/d�d! D R

uinitd! but the initial data needs
not be at equilibrium since uinit usually does not belong to Pn

! . The solutions of (15)
depend now on two parameters " and n. Depending on the way Mn is defined, it is
possible to get various estimates which explain the theoretical interest of the method.

3.1 Convolution Techniques

A first series of polynomial Maxwellian is obtained with suitable convolution
techniques. One seeks Mn under the form

Mn.un"I �; !/ D Gn �! M.un"I �/ WD
Z

Gn.!; !0/M
�
un".!

0/I ��d�.!0/

where the convolution kernel Gn is decomposed as

Gn.!; !0/ D
nX

iD0

cipi.!/pi.!
0/; (16)

where ci are appropriate coefficients and Gn satisfies

Gn � 0;

Z

Gn.!; !0/d�.!0/ D c0 D 1 D
Z

Gn.!; !0/d�.!/: (17)

The theory of polynomial kernel approximation [18, 38] asserts that convolution
kernels exist which satisfy the requirements (16)–(17). We quote [15] 3 possibilities:
the Fejer kernel, the Jackson kernel and the modified Jackson kernel.
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For example, considering the measure d�.!/ D d!

�
p

1�!2
with support in the

interval ! 2 I D .�1; 1/ and the Tchebycheff orthonormal polynomials

Ti.!/ D cos .i arcos !/ ; �1 � ! � 1:

The Fejer kernel Gn
F is defined by the coefficients c0 D 1 and ci D 2 nC1�i

nC1
for

1 � i � n. The Jackson kernels have better approximation properties than the Fejer
kernel, with a slightly different definition of the coefficients ci. An example of strong
error bounds follows, see [15] for additional properties.

Proposition 3.1 Consider the Jackson kernel. One has the inequalities

Z

j f n" .t/ � Gn �! f".t/j dxd�d�.!/ � C
t

"

Z

mod1.u
init;

1

n
/dxd�; (18)

Z

j f n" .t/ � f".t/j dxd�d�.!/ � C
�
1C t

"

� Z

mod1.u
init;

1

n
/dxd�; (19)

Z

j f n" .t/ �M.uI �/j dxd�d�.!/ � c
p

"C C
�
1C t

"

� Z

mod1.u
init;

1

n
/dxd�:

(20)

Similar bounds are derived for un" � u.
However these estimates do not allow to pass to the limit " independently of N.

It is instructive to write the formal limit in the regime "n D O.1/. The unknowns of
the resulting moment system are the quantities

un";i.x; t/ D
Z

f n";i.x; !; t/d�; f n";i.x; !; t/ D
Z

f n" .x; �; !; t/Ti.!/d�.!/:

An artificial damping phenomenon arises. Set for convenience n C 1 D 1
"
. The

projected equation for the modified Jackson kernel are

@tu
n
";i C div

Z

a.�/f n";id� D 1

"

	
cmodJi un";i � un";i




D .nC 1/

 
.nC 1 � i/ cos � i

nC1
C sin � i

nC1
cot �

nC1

nC 1
� 1

!

un";i

D
�

.nC 1 � i/ cos
�i

nC 1
C sin

�i

nC 1
cot

�

nC 1
� n � 1

�

un";i D �hn.i/un";i:

Elementary calculations show that hn.0/ D 0, and that hn.x/ > 0 for 0 < x < n
with hn.x/! 0 for all x as n! 0. One also has that 0 < hn.i/ < i for 0 < i � n. It
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implies after integration in x

@t

Z

un";idx D �hn.i/
Z

un";idx H)
Z

un";idx.t/ (21)

D e�hn.i/t
Z

un";idx.0/ H) lim
t!1

Z

un";idx.t/ D 0:

A similar damping phenomenon of the moments i ¤ 0 also shows up if one uses the
Jackson kernel, and is even stronger starting from the Fejer kernel. This seems the
price to pay for the good convergence properties of Proposition 3.1.

3.2 Minimization Techniques

The initial purpose of the method proposed below was precisely to obtain a
polynomial modeling of uncertainties with good properties, such as the maximum
principle and no damping (by comparison with (21, it means hn.i/ D 0 for all
i). Quite fortunately the universal entropy principle (14) can be generalized in this
direction. It yields powerful tools with many good properties (even if some of them
are still under studies).

Let us take one entropy S and un 2 Pn with un � 0 for all !. Define

Kn.un/ D
�

gn.�; �/ 2 Pn
!; un.!/ D

Z

gn.�; !/d�; 0 � gn � 1

�

:

For any n � 0, one tries to construct an equilibrium Mn.unI �; !/ as a minimizer

Mn.un/ D argmin
gn2Kn.un/

Z

S0.�/gnd�d�.!/: (22)

For n D 0 this is a Brenier inequality [4, 5], it yields a unique minimizer. For general
n > 0, let us assume for a while that Mn exists and is unique. One has the following
a priori properties: under the assumption that a solution exists to the maximization
problem (27), then the solution of the kinetic equation

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@tf n" C a.�/:rf n" C 1
"
f n" D 1

"
Mn.un"I �; !/;

un".x; !; t/ D
Z

f n" .x; �; !; t/d�;

f n" .t D 0/ D Mn.uinit;nI �/;

(23)

satisfies the entropy principle under the form

@t

Z

S0.�/f n" .x; �; !; t/d�d�.!/C div
Z

a.�/S0.�/f n" .x; �; !; t/d�d�.!/ � 0:
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Moreover under the same assumption, if un" converges strongly to some un, then one
passes to the limit " ! 0 in (23) and obtains the system of conservation laws for
0 � i � n

@tu
n
i C div F n

i Œun� D 0; F n
i Œun� WD

Z

a.�/Mn.unI �; !/pi.!/d�d�.!/;

(24)

with the entropy inequality

@tS
nŒun�C div G nŒun� � 0;

where the entropy and entropy fluxes are defined by

S nŒun� WD
Z

S0.�/Mn.unI �; !/d�d�.!/

and

G nŒun� WD
Z

S0.�/a.�/Mn.unI �; !/d�d�.!/:

However a difficult question is to construct the solution of (22).

3.2.1 Quasi-Solution

A quasi-solution or feasible solution to the minimization problem (22) is proposed.
This construction has two goals. The first one is to establish Mn is a quasi-
minimizer (22) but for all S. The second one is to propose an implementable
algorithm, at least for small n.

Let us remark that

S0.�/ D
Z 1

0

S00.s/as.�/ds; as.�/ D 1If0<s<�g; (25)

meaning that any function S0 such that S00 � 0 and S0.0/ D 0 is a non-negative
integral of functions as.�/ which also satisfy a0

s � 0 and as.0/ D 0. That is the
family of functions .as/s>0 constitutes a generating family (actually the function
� 7! as.�/ is the derivative of a branch of a Kruzkov entropy). Let us replace (22)
with a family of similar problems

Mn.un/ D argmin
gn2Kn.un/

Z 1

�

gndsd�.!/; 8�: (26)

More precisely any solution of (26) (if it exists) is also a solution of (22) (with
the same restriction concerning the existence). Since the mass is preserved, that
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is
R
gn.s; !/dsd�.!/ D R

un.!/dsd�.!/, this problem can be rewritten with the
alternative formulation

Mn.un/ D argmax
gn2Kn.un/

Z �

0

gndsd�.!/; 8�: (27)

A quasi-solution is possible based on (27). The idea is to solve (27) progressively
with respect to �, starting from � D 0 and then increasing its value until uC D
maxI un.!/. A constructive method (an algorithm) [15] shows that the quasi-
solution writes

Mn.unI �; !/ D
X

l�0

hnl .!/1If�l<�<�lC1g (28)

with 0 D �0 < �1 < � � � < �L < �LC1 D uC. The construction also shows the
uniqueness of the feasible solution. The layer structure of this function is the key of
the construction. The integral identity

R uC
0

Mn.unI �; !/d� D un.!/ writes

X

l�0

.�lC1 � �l/h
n
l .!/ D un.!/; ! 2 I: (29)

This function is constructed step by step, the first step for the bottom layer being
trivial. The second step is the critical one where all the ideas of the method are
carefully explained, in particular the role of the Bojavic-Devore theorem [3] for one
sided approximation.

3.2.2 Discretization with Quasi-Solution

We discretize in time and space and implement the method issued from (28) under
the form

unj � unj
	t

C FnŒunj � � FnŒunj�1�

	x
D 0 (30)

where unj 2 Pn.!/ is a polynomial in ! of degree n (fixed), in cell j and at the current
time step. The generic flux FnŒunj � is constructed with (28). The value at next time
step tC	t in cell j is denoted with a bar unj 2 Pn.!/.

Let us assume the initial data is a positive and bounded polynomial

0 � Umin � unj .!/ � Umax <1; 8j and 8! 2 I: (31)

Consider the archetype of a convex flux which is the Burgers flux F.�/ D �2

2
. The

following result states that the explicit Euler scheme satisfies the maximum principle
(this is a minimal stability requirement) under a CFL condition which is independent
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of n. The property is here checked directly on the scheme (30) but can also be
derived as a consequence of the underlying kinetic formulation.

Theorem 3.1 Assume the CFL condition Umax	t � 	x. Then

Umin � unj .!/ � Umax; 8j and 8! 2 I: (32)

3.3 More on Kinetic Polynomials

This section is based on the results recently announced in [16]. Not only it is proved
that (22) is a well posed problem with existence and uniqueness of the minimizer,
but the problem shows nice reformulation as an optimal control problem [36]. The
minimization problem (22) concerns the variables .�; !/ but is independent of the
variables .x; t/. So we make for convenience a change of variables .x; t/  .!; �/

together with a change of functions qn  un and un  Mn. It yields simpler
notations, also better in terms of an optimal control problem.

Set G D Œ0; 1� (which stands for the space of uncertain variables ˝). Let T > 0,
n 2 N and qn 2 PnC. Define Un D

˚
qn 2 PnC; 1 � qn 2 PnC

�
. Set

Kn.T; qn/ WD
�

vn 2 L1.RC W Un/ W
Z T

0

vn.t/dt D qn; vn � 0 for t > T

�

:

(33)

Take a strictly convex function denoted as s D S and a Lebesgue integrable weight
w � 0 with

R
G w.x/dx > 0 (with the correspondence w.x/dx D d�.!/ and x D !).

Define the linear cost function

J.un/ WD
Z

G

Z

RC

un.t; x/ds.t/w.x/dx: (34)

Design of the polynomial Maxwellian (22) recasts as the following L1 minimization
problem.

Problem 1 Find un 2 Kn.T; qn/ such that

un D argmin
Kn.T;qn/

J.vn/ (35)

Theorem 3.2 Assume the weight w � 0 satisfies
R

G w.x/dx > 0. Assume s00 is lower
bounded from 0 and integrable. Assume T � kqnkL1.G/. Then there exists a unique
minimum to the problem (22).

The proof is based on some convenient space-time comparison inequalities using
ad-hoc tests functions. It is also proved that: (a) for T the solution un is vanishes for
large time; (b) there exists T� > 0 such that all solutions are the same for T > T�.
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A reformulation as an optimal control problem [35, 36] is appealing. Define

yn.t; x/ D
Z t

0

un.t; x/dt” y0
n.t/ D un.t/ with yn.0/ D 0: (36)

In this context, the function yn.t/ 2 Pn is called the state and un.t/ 2 Un is called
the control. The minimization problem (35) reformulates as follows.

Problem 2 Find an optimal control un 2 L1.0;T W Un/ which minimizes the cost
function and with the final state yn.T/ D qn 2 PC

n .
Let us first remind the PMP maximum principle. Since the set of controls is

discrete, convex and closed, one can invoke the PMP [35, 36]: for all optimal
trajectories, there exists a Pontryagin multiplier 
n 2 Pn such that

• the optimal control maximizes the criterion for almost all t 2 .0;T/

Z

G
.
n.x/� t/un.t; x/dx D max

vn2Un

Z

G
.
n.x/� t/v.x/dx: (37)

This is called a normal trajectory, or a normal pair un; 
n.
• or the optimal control maximizes the criterion for almost all t 2 .0;T/

Z

G

n.x/un.t; x/dx D max

vn2Un

Z

G

n.x/vn.x/dx: (38)

This is called a abnormal trajectory, or a abnormal pair un; 
n. The abnormality
or degeneracy comes from the fact that the criterion is independent of the time
variable.

Abnormal trajectories are easy to construct if qn.x/ vanishes at some point x? 2
Œ0; 1�. In this case one can consider the polynomial 
n 2 Pn with the quadrature
property

R
I 
n.x/vn.x/dx D �vn.x?/ for all 8vn 2 Pn. Since un.t; x?/ D 0 for all

time t, it clear that 
n satisfies (38).

Theorem 3.3 Assume qn.x/ � " > 0 over G. There exists an adjoint state 
n 2 Pn

such that the optimal solution of Problem 1–2 is solution of the PMP under the
normal form

un.t/ D argmax
vn2Un

�Z

G
.
n.x/� s0.t//vn.x/dtw.x/dx

�

for almost all t 2 Œ0;T�:

(39)

A proof can be performed by showing that 
 2 Pn is a minimizer of a convenient
cost function. Define the cost function as the integral in time of the criterion (37)

K.
n/ WD
Z 1

0

Z

G
.
n.x/� t/un.t; x/dxdt � 0
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where un.t/ satisfies the Pontryagin maximum principle. The cost is non negative
by construction. It is well defined since un vanishes for large t. The cost function K
is convex over Pn. The Danskin theorem yields that

dK.
n/ D
Z 1

0

un.t; x/dt; d
n

�

:

The shooting method which is the essence of the study of normal trajectories is as
follows.

Problem 3 (Shooting Method) Find 
n 2 Pn such that un.t/ solution of (37)
satisfies the endpoint condition

R1
0

un.t/dt D qn 2 PC
n .

The shooting method is conveniently studied with the Lagrangian

L.
n/ WD K.
n/�
Z

G

n.x/qn.x/dx

where qn 2 PC
n is the given endpoint. The polynomial 
n 2 Pn is solution of the

shooting method if and only if it is an extremal point of the Lagrangian

dL.
n/ D
Z 1

0

un.t; x/dt � qn.x/; d
n

�

D 0: (40)

Since L is convex and differentiable, a solution to (40) is also a minimum of the
Lagrangian. The cornerstone of the proof is to show that L is infinite at infinity.
Another interest of the PMP for our problem is the general principle.

Principle 3.2 The Pontryagin multiplier is formally the adjoint entropic variable
(in the sense of Godunov).

The formal proof proceeds as follows. For 
n 2 Pn, consider un.t/ the minimizer
of the cost function K and define

qn D
Z 1

0

un.t/dt:

Define K� the formal Legendre transform of K

K�.
n/ D
Z


n.x/qn.x/dx � K.
n/:

The main difference between L and K� is that qn is given in L but is function of 
n

in K�. One has

dK�.
n/ D
Z

.qnd
n C 
ndqn/ dx � dK.
n/

D
Z


ndqndxC
Z 1

0

�

qn �
Z 1

0

un.t/dt

�

d
ndx D
Z


ndqndx: (41)
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It can summarized as dK D hqn; d
ni and dK� D h
n; dqni. If one assumes that
the transformation 
n 7! qn is a diffeomorphism, then K� can be understood as a
function of qn. In this case K� is a candidate to be an entropy. Let us now determine
a candidate to be an entropy flux. We define

G.
n/ WD
Z 1

0

Z

G
t.
n.x/ � t/un.t; x/dxdt

which is well defined since un is defined in function of 
n. Another use of the
Danskin theorem yields

dG D
Z 1

0

tun.t/dt; d
n

�

:

The polar transform of G is

G�.
n/ D
Z 1

0


n.x/

�Z 1

0

tun.t/dt

�

dx �G.
n/:

One has

dG� D
Z 1

0

d
n.x/

�Z 1

0

tun.t/dt

�

dxC
Z 1

0


n.x/d

�Z 1

0

tun.t/dt

�

dx � dG D

D
Z 1

0


n.x/d

�Z 1

0

tun.t/dt

�

dx: (42)

One obtains the following formal result.

Lemma 3.3 The system of projected equations

@tqn.x; t/C @x

Z 1

0

tun.x; t/dt D 0

admits the formal additional law

@tK
�.
n/C @xG

�.
n/ D 0: (43)

Proof Indeed one has

Z 1

0


n.x/@tqn.x; t/dxC
Z 1

0


n.x/@x

Z 1

0

tun.x; t/dtdx D 0:

Using (41) and (42), it is rewritten as (43) and the proof is ended.
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3.4 Isentropic Euler System with � D 3

An interesting question is to extend the polynomial modeling of uncertainties into
systems of conservation laws with physical importance. A first example for the
isentropic Euler system with � D 3 in dimension one is as follows. Consider

�
@t�C @x.�u/ D 0;

@t.�u/C @x.�u2 C p/ D 0;

where p D 1
12

�3. It admits the kinetic formulation [6, 29]

@tf C v@xf D 1

"

�
M�;�u � f

�

where M�;�u.v/ � 1 for u��=2 < v < uC�=2 and M�;�u.v/ � 0 everywhere else.
The Maxwellian M�;�u minimizes

R
R
g.v/s0.v/dv over all functions 0 � g � 1 such

that
R
R
g.v/dv D � > 0 and

R
R
g.v/vdv D �u 2 R. A natural extension of the tools

proposed previously would be to consider

Mn
.�u/n;�n D argmin

gn2 admissible states

Z

R

Z 1

0

gn.v; !/v2dvd!:

4 Numerical Methods

This section is devoted to provide elementary explanations and illustrations of some
of the theoretical tools presented before and to explain advanced algorithms.

4.1 Regularity

A key feature is that weak solutions of a system of conservation laws with
uncertainties (47) or (7) propagate in the uncertain space [25].

We consider the initial data

uini.x; !/ D
8
<

:

3 for x < 1=2 and � 1 < ! < 0;

5 for x < 1=2 and 0 < ! < 1;

1 for 1=2 < x and � 1 < ! < 1:

(44)
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The exact solution is a shock at velocity 2 for ! < 0, and another shock at velocity
3 for 0 < !

u.x; !; t/ D
8
<

:

3 for x < 1=2C 2t and � 1 < ! < 0;

5 for x < 1=2C 3t and 0 < ! < 1;

1 elsewhere:

(45)

This is visible in [15, p. 1010, Figure 4] where the numerical solution captured with
a standard moment model is also represented.

4.2 Kinetic Polynomials

Kinetic polynomials can be used to design numerical methods with the preservation
of the maximum principle. This is illustrated with an elementary implementation of
the quasi-solutions.

We still consider the Burgers equation, but with a continuous initial data

uini.x; !/ D
8
<

:

12 for x � !=5 < 1=2;

1 for x � !=5 < 3=2;

12� 11 .x � !=5 � 1=2/ in between:

(46)

The exact solution is a compressive ramp on all lines, and a shock at time T D 1
11

. So
the exact solution is continuous in x and ! directions for t < T, and is discontinuous
in the ! direction for T < t. The results are shown in [15, p. 1011, Figure 5].

4.3 Numerical Construction of Kinetic Polynomials

The construction of kinetic polynomials via optimal control theory brings the
possibility to use many efficient numerical methods. For example it is proposed
in [16] to use the AMPL language [20] to discretize and minimize (34)–(35). Note
that L1 minimization problems in combination with polynomial chaos expansions is
pursued in [24].

An example of numerical implementation of the minimization problem (22)
within the AMPL high level language is in Table 1 and a typical result is in Fig. 1.
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Table 1 Script for an implementation of the solution of Problem 1 with the AMPL language [20]

##Parameters

param n := 3; # the polynomial degree

param T := 5;

param Nx := 40;

param Nt := 100;

## Variables

var y {k in 0..n, i in 0..Nt}; #y(t,x)=y_0(t)+y_1(t)x+...+y_n(t)xˆn

var u {k in 0..n, i in 0..Nt}; #u(t,x)=u_0(t)+u_1(t)x+...+u_n(t)xˆn

var utx {i in 0..Nt-1, j in 0..Nx} = sum\{k in 0..n\} u[k,i]*(j/Nx)ˆk;

## Cost

minimize cost: T/Nt*(sum{k in 0..n, i in 0..Nt-1}

(((i+1./2.)*T/Nt) *u[k,i]/(k+1.)));

## Constraints

subject to y_init {k in 0..n}: y[k,0] = 0;

subject to y_dyn {k in 0..n, i in 0..Nt-1}:

y[k,i+1] - y[k,i] - T/Nt*u[k,i]=0;

# q_n(x)=1+x+x**2+x**3

s.t. y_fin0: y[0,Nt]=1; s.t. y_fin1: y[1,Nt]=1;

s.t. y_fin2: y[2,Nt]=1; s.t. y_fin3: y[3,Nt]=1;

subject to cont {i in 0..Nt-1, j in 0..Nx}: 0 <= utx[i,j] <= 1;

## Inequalities in Un

data;

## Solver

option solver ipopt;

option ipopt_options " max_iter=10000 linear_solver=mumps

{halt_on_ampl_error yes}";

solve;

4.4 Connection with Polynomial Properties

Finally we evoke an axis of research [14] which is about a new way to construct
polynomials with two bounds, one lower bound and one upper bound, in relation
with a numerical implementation of kinetic polynomials. Some of the main results
can be summarized as follows.

Start from

pn 2 PC
n WD f pn 2 Pn.x/; such that 0 � pn.x/ 8x 2 Œ0; 1�g : (47)
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Fig. 1 Numerical computation of the polynomial Maxwellian-minimizer Mn (22), referred to as
un D Mn within this section. Numerical parameters: Nx D 80, Nt D 200, n D 6, q6 D 1 C x C
x2 C x3. The function .x; t/ 7! un.x; t/ is represented on top as a surface, and is represented on
bottom as many curves x 7! un.xI t/ parametrized by t
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Define the set of polynomials which enters in the construction of kinetic polynomi-
als as

pn 2 Un WD f pn 2 Pn.x/; such that 0 � pn.x/ � 1 8x 2 Œ0; 1�g : (48)

Simpler subsets of Un exist based on convex combinations qn D Pn
jD0 ˛juj where

the coefficients satisfy 0 � ˛j and
Pn

jD0 ˛j D 1: the generating polynomials uj can
be either the basis of the monomials xj, or the basis of the Berstein polynomials
Bn;j.x/ D nŠ

jŠ.n�j/Šx
j.1 � x/n�j, or the basis of the rescaled Tchebycheff polynomials

Tj.2x�1/C1

2
. However none of these subsets is able to generate all polynomials in Un

only by convex combinations.

Theorem 4.1 Let n 2 2N being even. There exists a smooth function from R
3n=2

onto Un. The smooth function is made explicit by a constructive algorithm and is
2�-periodic with respect to all its arguments.

The norm of a uniform convergence is k fk D max0�x�1 j f .x/j for f 2 C0Œ0; 1�.

Theorem 4.2 Assume f 2 C0Œ0; 1� and 0 � f .x/ � 1 for 0 � x � 1. Then

inf
pn2Un

k f � pnk � 2 inf
gn2Pn
k f � gnk: (49)

Even if completely elementary, this is a remarkable result since the constant
2 is independent of n. The right hand side shows spectral convergence. This
representation comes from quaternion algebras and the 4-squares Euler identity.

The next tests use this structure to minimize functionals like

J. pn/ WD
Z 1

0

.t � 
n.x// pn.x/dx; pn 2 Un (50)

where 
n 2 Pn is given and t may vary. This problem has interest in the context
of this review paper. A reference is provided by a recent work [16] where a
characterization of pn is provided with the notion of a point of contact that comes
from the seminal reference [3] is used. A point of contact of a function f 2 C1Œ0; 1�

with 0 � f � 1 is any point 0 � y � 1 such that f .y/ D 0 or f .y/ D 1. The
multiplicity order of the contact is the number of derivatives (+1) which vanish. For
example if the point of contact is inside the interval, 0 < y < 1, then necessarily
f 0.y/ D 0, so the multiplicity order at y is necessarily � 2. It is proved in [16] that
pn which realizes the minimum has not less than n C 1 points of contact counted
with order of multiplicity (this is similar to one-sided L1 minimization for which we
refer to [3]) for almost all t. We use this theoretical property to check the accuracy
of the approximation. We remark that the optimal solution pn (50) has the natural
tendency to vanish where t� 
n.x/ > 0 and to be equal to 1 where t � 
n.x/ < 0, it
is clearly a good strategy to minimize the cost function (50).

A numerical result representative of all the tests is the following. Take


2.x/ WD T2.2x � 1/� tC x and t D 0:3:
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Fig. 2 Plot of 
2.x/ � t and of a local minimum p1
n with J.p1

n/ � �0:16737. The total order of
contact if 1 C 2 C 2 D 5

A first numerical simulation yields the function displayed on Fig. 2, the numerical
value of the cost function is J.p1

n/ 	 �0:16737. This function does not have the
required number of contacts on the figure. But another minimum is captured by
numerical simulations with another starting point, for which J.p2

n/ 	 �0:188478 <

J.p1
n/: its total order of contact is large enough (equal to 2nC 1 D 7 since n D 3)

and this is in accordance with the theory. No other minimum with lower value of
the cost have been obtained by simulations, so it is the best candidate. Note that the
exact calculation of the derivative p0

n.x/ is convenient to count without ambiguity
the number of derivatives which vanish at points of contact (Fig. 3).

5 Conclusion

The examination of the challenges posed by polynomial modeling of uncertainties
shows that alternatives to standard moment methods with chaos polynomials do
exist. These new formulations try to introduce the polynomial structure used
to model the uncertain variable ! into standard PDEs, but preserving at best
the theoretical properties of the initial systems. Convolution techniques, kinetic
formulations of conservation laws, minimization formulations and construction of
quasi-solutions may have interest for non linear hyperbolic equations because they
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Fig. 3 On the top, plot of 
2.x/ � t and of another local minimum p2
n with J.p2

n/ � �0:188478.
The total order of contact if 1 C 2 C 2 C 2 D 7 D 2n C 1, and so is the best candidate to be the
global minimum. On the bottom, plot of the exact derivative .p2

n/
0
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address the maximum principle and the preservation of entropies, and so they
constitute an answer to the second question in the introduction. In certain cases, the
preservation of mathematical structures yields proofs of convergence with respect to
the parameters which control the polynomial degree in the uncertain space. However
one loses the simplicity of the implementation provided by moment models [37],
and so a clear path to the design of efficient, fast and multidimensional algorithms
based on these structures is still to invent.
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