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Abstract We give the general principle of the Stochastic Finite Volume method
and show its versatility by many examples from standard ODE to fluid problems.
We derive the error estimates for the mean and variance resulting from the SFVM
and show that the convergence rates of the statistical quantities are equivalent to the
convergence rates of the deterministic solution. We propose the anisotropic choice
of the mesh nodes for high-dimensional stochastic parameter spaces and analyze the
efficiency of the anisotropic stochastic mesh adaptation algorithm.

We finally generalize the SFVM approach and apply the DG discretization on the
unstructured triangular grids in the physical space. We demonstrate the efficiency
and the scaling of the implemented methods on various numerical tests.

1 Introduction

1.1 Deterministic Scalar Hyperbolic Conservation Laws

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation or balance laws. As examples for these equations, we mention
only the Shallow Water Equations of hydrology, the Euler Equations for inviscid,
compressible flow and the Magnetohydrodynamic (MHD) equations of plasma
physics, see, e.g. [10, 15].

The simplest example for a system of hyperbolic conservation laws is the Cauchy
problem for the scalar (single) conservation law:
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augmented by the initial data

u.x; 0/ D u0.x/; x 2 R
d: (2)

Here the unknown is u W Rd 7! R and fj is the flux function in the j-th dimension.
Solutions of (1)–(2) develop discontinuities in finite time even when the initial

data u0.x/ is smooth and must be interpreted in the weak sense (e.g. [10, 15, 16, 32]).

1.2 Stochastic Conservation Laws

Many efficient numerical methods have been developed to approximate the entropy
solutions of systems of conservation laws [15, 21], e.g. finite volume or discontin-
uous Galerkin methods. The classical assumption in designing efficient numerical
methods is that the initial data U0 is known exactly. However, in many situations
of practical interest, these data are not known exactly due to inherent uncertainty in
modelling and measurements of physical parameters. In the present work, we follow
[25] and describe incomplete information in the uncertain data mathematically as
random fields. Such data are described in terms of statistical quantities of interest
like the mean, variance, higher statistical moments; in some cases the distribution
law of the stochastic data is also assumed to be known.

A mathematical framework of random entropy solutions for scalar conservation
laws with random initial data has been developed in [25]. There, existence and
uniqueness of random entropy solutions has been shown for scalar hyperbolic
conservation laws, also in multiple dimensions. Furthermore, the existence of the
statistical quantities of the random entropy solution such as the statistical mean
and k-point spatio-temporal correlation functions under suitable assumptions on the
random initial data have been proven. The existence and uniqueness of the random
entropy solutions for scalar conservation laws with random fluxes has been proven
in [27].

Numerical methods for uncertainty quantification in hyperbolic conservation
laws have been proposed and studied recently in e.g. [2, 8, 17, 22, 23, 25, 26, 29, 35,
36].

1.3 Random Fields and Probability Spaces

We introduce a probability space .˝;F ;P/, with ˝ being the set of all elementary
events, or space of outcomes, and F a �-algebra of all possible events, equipped
with a probability measure P. Random entropy solutions are random functions
taking values in a function space; to this end, let .E;G ;G/ denote any measurable
space. Then an E-valued random variable is any mapping Y W ˝ ! E such that
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8A 2 G the preimage Y�1.A/ D f! 2 ˝ W Y.!/ 2 Ag 2 F , i.e. such that Y is a
G -measurable mapping from ˝ into E.

We confine ourselves to the case that E is a complete metric space; then
.E;B.E// equipped with a Borel �-algebra B.E/ is a measurable space. By
definition, E-valued random variables Y W ˝ ! E are

�
E;B.E/

�
measurable.

Furthermore, if E is a separable Banach space with norm kıkE and with topological
dual E�, then B.E/ is the smallest �-algebra of subsets of E containing all sets

fx 2 E W '.x/ < ˛g; ' 2 E�; ˛ 2 R :

Hence, if E is a separable Banach space, Y W ˝ ! E is an E-valued random variable
if and only if for every ' 2 E�, ! 7! '

�
Y.!/

� 2 R is an R-valued random variable.
Moreover, there hold the following results on existence and uniqueness [25].

For a simple E-valued random variable Y and for any B 2 F we set

Z
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Y.!/P.d!/ D
Z

B

Y dP D
NX

iD1

xiP.Ai \ B/: (3)

For such Y.!/ and all B 2 F holds
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���
E
6
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B

kY.!/kE P.d!/: (4)

For any random variable Y W ˝ ! E which is Bochner integrable, there exists a
sequence fYmgm2N of simple random variables such that, for all ! 2 ˝; kY.!/ �
Ym.!/kE ! 0 as m ! 1. Therefore (3) and (4) can be extended to any E-valued
random variable. We denote the expectation of Y by

EŒY� D
Z

˝

Y.!/P.d!/ D lim
m!1

Z

˝

Ym.!/P.d!/ 2 E:

Denote by Lp.˝;F ;PIE/ for 1 6 p 6 1 the Bochner space of all p-summable,
E-valued random variables Y and equip it with the norm

kYkLp.˝IE/ D �
EŒkYkpE �

�1=p D
0

@
Z

˝

kY.!/kpE P.d!/

1

A
1=p

:

For p D 1 we can denote by L1.˝;F ;PIE/ the set of all E-valued random
variables which are essentially bounded and equip this space with the norm

kYkL1.˝IE/ D ess sup
!2˝

kY.!/kE:
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2 General Framework

2.1 General Principles

Assume a deterministic problem is written as

L .u/ D 0; (5)

defined in a domain K � R
d with boundary conditions, and if needed initial condi-

tions. Since the discussion of this section is formal, we include different initial and
boundary conditions of the problem in the symbol L . Let the operator L depend in
some way on parameters ( for example, considering fluids, in the equation of state,
or the parameter of a turbulent model), that in many cases are not known exactly.
Hence we assume that they are random variables defined on some random space ˝ ,
and that these random variables are measurable with respect to a measure d� defined
on ˝ . Hence our problem can formally be seen as a “stochastic” PDE of the type

L .u;X/ D 0; (6)

defined in a domain K � R
d, subject to initial and boundary conditions, and where

X is a random variable defined on ˝ . For simplicity, we use the same notation L
for the problem. The operator L depends on u � u.x; t;X/ and X � X.!/ where
x 2 R

s for s 2 f1; 2; 3g and t 2 R
C are respectively the space coordinate and time,

and the random event (or random parameter) ! belongs to ˝ . In the case of steady
problems, the time is omitted. The random variable may also depend on space and
time, as well as the measure �, and the technique in principle can be extended to this
case but the discussion is beyond the scope of this chapter for simplicity of exposure.

We will identify ˝ to some subset of R
s, s being the number of random

parameters to define X. Thus we can also see (6) as a problem defined on a subset
K � R

d of dimension d D s C p.
For any realization of ˝ , we are able to solve the following deterministic form

of (6) in space and time, by some numerical method:

Lh.uh;X.!// D 0: (7)

In order to approximate a solution of (6), the first step is to discretize the probability
space ˝ . We construct a partition of ˝ , i.e. a set of ˝j, j D 1; : : : ;N that are
mutually independent

P.˝i \ ˝j/ D 0 for any i ¤ j (8)

and that cover ˝

˝ D [N
iD1˝i: (9)
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We assume � .˝i/ D R
˝j
d� > 0 for any i. We wish to approximate the solution of

(6) by the average conditional expectancies E.uhj˝j/

E
�
uh j ˝j

� D
R

˝j
uhdP

R
˝j
dP

(10)

from the knowledge of the operator Lh and thanks to a reconstruction procedure
inspired from the methods for high order finite volume methods: ENO, WENO, etc.
This idea, initially developed in [2], will be detailed in Sects. 3 and 4 for the finite
volume method on Cartesian and unstructured meshes, but can be used for ODEs as
in [3] as we show now by an example.

Remark Depending on the context, the described method will either be named as
semi intrusive (SI) (since very few modifications of an existing code need to be
done), or stochastic finite volume (SFV) method since in essence the conditional
expectancies can also be seen as integrals over a stochastic finite volume.

2.2 A First Example: The Kraichnan-Orszag Three-Mode
Problem

The Kraichnan-Orszag three-mode problem has been introduced by Kraichnan [19]
and Orszag [28]. It has been intensively studied to demonstrate that gPC expansion
could suffer from accuracy loss for problems involving long time integration. In
[37], the exact solution is given, and different computations have been performed in
[7, 11, 13, 24, 37, 38]. This problem is defined by the following system of nonlinear
ordinary differential equations

dy1

dt
D y1y3;

dy2

dt
D �y2y3;

dy3

dt
D �y2

1 C y2
2

(11)

subject to stochastic initial conditions

y1.0/ D y1.0I !/; y2.0/ D y2.0I !/; y3.0/ D y3.0I !/: (12)

In the literature, generally uniform distributions are considered, except in [38] where
beta and Gaussian distributions are also taken into account. The computational
cost of our SI/SFV method for the Kraichnan-Orszag problem is compared to that
of other methods, a quasi-random Sobol (MC-SOBOL) sequence with 8 � 106
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iterations, and a Polynomial Chaos Method (PC) with Clenshaw-Curtis sparse grid.
The error in variance of y1 is considered at a final time tf of 50. We define the error
between two numerically integrated functions f1

�
tj
�

and f2
�
tj
�
, j D 1; � � � ; nt, as:

"L2 D
1
nt

qPnt
jD1

�
f1
�
tj
� � f2

�
tj
��2

1
nt

qPnt
jD1

�
f1
�
tj
��2 ; (13)

where f1 is considered the Monte Carlo converged solution. For different error
levels, corresponding computational cost is computed.

2.2.1 One Random Variable

First, we will study the 1D problem corresponding to initial conditions of the form

y1.0/ D 1:0; y2.0/ D 0:1!; y3.0/ D 0:0; (14)

where ! is a uniformly distributed random variable varying in Œ�1; 1�. We use SI,
MC-SOBOL and PC method to compute the variance of y1. In Table 1, we show
the results in terms of number of samples required to reach a prescribed error "L2 .
Performances of SI methods are comparable and even better than PC methods.

Then, the same problem described previously but with a different probability
distribution for y2.0/ has been considered. In particular, ! is discontinuous on
Œa; b� D Œ�1; 1� with probability density function (pdf) defined by:

f .�/ D 1

M
�

8
ˆ̂̂
<

ˆ̂̂
:

1 C cos.�x/

2
if x 2 Œ�1; 0�

10 C 1 C cos.�x/

2
if x 2 Œ0; 1�

0 else

(15)

and M D 11
2

to ensure normalization. Because of the discontinuous pdf, only MC-
SOBOL and SI solutions can be compared, showing the great flexibility given by SI
method with respect to the form of the pdf. In Fig. 1, variance of y1.t/ is reported for
the converged solutions obtained with MC-SOBOL and SI. The SI method permits
to reproduce exactly MC-SOBOL solution. In Fig. 2, a convergence study for SI
method is reported by using an increasing number of points in the stochastic space.
In Table 2, we reported number of samples required to reach a prescribed error "L2 .
SI method shows to be very competitive in terms of efficiency and computational

Table 1 Number of samples
required for the 1D K-O
problem for time t 2 Œ0; 10�

Error level "L2 MC-SOBOL PC SI

10�1 20 12 5

10�2 240 19 10

10�3 2200 23 20
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t

σ2
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1)
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0
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0.08
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0.14

MC-SOBOL
SI 1000

Fig. 1 Variance of y1 computed by means of SI and MC-SOBOL methods (Reproduced with
permission from [3])

t

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SI 250
SI 500
SI 1000

σ2
(y

1)

Fig. 2 Variance of y1 computed by means of SI for different meshes in the stochastic space
(Reproduced with permission from [3])
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Table 2 Number of samples
required for the
1D-discontinuous K-O
problem for time t 2 Œ0; 50�

Error level "L2 MC-SOBOL SI

10�1 35 7

10�2 250 160

10�3 2500 900

t

0 10 20 30 40 50

0

0.05

0.1

0.15

MC-SOBOL
SI 320x320

σ2
(y

1)

Fig. 3 Variance of y1 computed by means of SI and MC-SOBOL methods (Reproduced with
permission from [3])

cost with respect to MC-SOBOL method when whatever form of pdf is used (a
discontinuous pdf in this case). We remark that a uniform grid is used in the
stochastic plan without any type of adaptation. This displays the great potentiality
of this method if coupled with an adaptive method.

2.2.2 Two Random Variables

In this section, we use SI method to study the Kraichnan-Orszag problem with two-
dimensional random inputs:

y1.0/ D 1:0; y2.0/ D 0:1!1; y3.0/ D !2; (16)

where !1 is discontinuous on Œa; b� D Œ�1; 1� with a density defined by Eq. (15) and
!2 is a uniform random variable in Œ�1; 1�.

In Fig. 3, the SI capability to reproduce exactly MC-SOBOL solution is rep-
resented. SI and MC-SOBOL solutions are nearly coincident also for long time
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t

0 10 20 30 40 50

0

0.05

0.1

0.15

SI 40x40
SI 80x80
SI 160x160
SI 320x320

σ2
(y

1)

Fig. 4 Variance of y1 computed by means of SI for different meshes in the stochastic space
(Reproduced with permission from [3])

Table 3 Number of samples
required for the
2D-discontinuous K-O
problem for time t 2 Œ0; 50�

Error level "L2 MC-SOBOL SI

10�1 160 81

10�2 10;000 2500

10�3 300;000 102;400

(t D 50). The mesh convergence study in the stochastic space for SI is reported
in Fig. 4 showing that the solution obtained with a mesh of 320 � 320 is well
converged. In Table 3 computational cost required to reach a prescribed error of
"L2 is reported. Reductions from 50 to 66% are obtained using SI with respect to
MC-SOBOL solutions.

3 Stochastic Finite Volume Method on Cartesian Grids

In this chapter, we concentrate on the analysis of the stochastic hyperbolic conser-
vation laws with random initial data and flux coefficients. Many efficient numerical
methods have been developed to approximate the entropy solutions of systems of
conservation laws [15, 21], however, in many practical applications it is not always
possible to obtain exact data due to, for example, measurement or modeling errors.
We describe incomplete information in the conservation law mathematically as
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random fields. Such data are described in terms of statistical quantities of interest
like the mean, variance, higher statistical moments; in some cases the distribution
law of the stochastic initial data is also assumed to be known. There exist several
techniques to quantify the uncertainty (i.e. determine the mean flow and its statistical
moments), such as the Monte-Carlo (MC), the Multi-Level Monte Carlo (MLMC)
and Stochastic Galerkin method, see [17, 22, 23, 25, 26, 29, 35, 36]. Here we analyse
a different approach to the uncertainty quantification in the conservation laws, the
Stochastic Finite Volume Method (SFVM), which is based on the finite volume
framework and was first introduced in [2, 8]. The SFVM is formulated to solve
numerically the system of conservation laws with sources of randomness in both
flux coefficients and initial data.

Consider the hyperbolic system of conservation laws with random flux coeffi-
cients

@U
@t

C rx � F.U; !/ D 0; t > 0I (17)

x D .x1; x2; x3/ 2 Dx � R
3, U D Œu1; : : : ; up�>, F D ŒF1;F2;F3�, Fk D

Œf1; : : : ; fp�>, k D 1; 2; 3, and random initial data

U.x; 0; !/ D U0.x; !/; ! 2 ˝: (18)

A mathematical framework of random entropy solutions for scalar conservation
laws has been developed in [25]. There, existence and uniqueness of random entropy
solutions to (17)–(18) has been shown for scalar conservation laws, also in multiple
dimensions. Furthermore, the existence of the statistical quantities of the random
entropy solution such as the statistical mean and k-point spatio-temporal correlation
functions under suitable assumptions on the random initial data have been proven.

3.1 Stochastic Finite Volume Method

We parametrize all the random inputs in Eqs. (17)–(18) using the random variable
y D Y.!/ which takes values in Dy � R

q and rewrite the stochastic conservation
law in the parametric form:

@tU C rx � F.U; y/ D 0; x 2 Dx � R
3; y 2 Dy � R

q; t > 0I (19)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (20)

Let Tx D [Nx
iD1K

i
x be the triangulation of the computational domain Dx in the

physical space and Cy D [Ny

jD1K
j
y be the Cartesian grid in the domain Dy of the

parametrized probability space.
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We further assume the existence of the probability density function �.y/ and
compute the expectation of the n-th solution component of the conservation law
(19)–(20) as follows:

EŒun� D
Z

Dy

un�.y/ dy; n D 1; : : : ; p

The scheme of the Stochastic Finite Volume method (SFVM), see e.g. [34], can
be obtained from the integral form of Eqs. (19)–(20):

“

K
j
y Ki

x

@tU�.y/ dxdy C
“

K
j
y Ki

x

rx � F.U; y/ �.y/ dxdy D 0:

Introducing the cell average

NUij.t/ D 1

jKi
xjjKj

yj
“

K
j
y Ki

x

U.x; t; y/�.y/ dxdy

with the cell volumes

jKi
xj D

Z

Ki
x

dx; jKj
yj D

Z

K
j
y

�.y/ dy

and performing the partial integration over Ki
x we get

d NUij

dt
C 1

jKi
xjjKj

yj
Z

K
j
y

� Z

K
i
x

F.U; y/ � n dS
�
�.y/ dy D 0

Next, we use any standard numerical flux approximation OF� QUL.x; t; y/; QUR.x; t; y/; y
�

to replace the discontinuous flux through the element interface F.U; y/ � n. Here
QUL;R denote the boundary extrapolated solution values at the edge of the cell Ki

x,
obtained by the high order reconstruction from the cell averages. The complete
numerical flux is then approximated by a suitable quadrature rule as

NFij.t/ D 1

jKj
yj
Z

K
j
y

� Z

K
i
x

OF. QUL; QUR; y/

�
�.y/ dy � 1

jKj
yj
X

m

OF .t; ym/�.ym/wm;

(21)
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where we have denoted the flux integral over the physical cell as OF , m D
.m1; : : : ;mq/ is the multi-index, ym and wm are quadrature nodes and weights,
respectively.

The SFV method then results in the solution of the following ODE system:

d NUij

dt
C 1

jKi
xj

NFij.t/ D 0; (22)

for all i D 1; : : : ;Nx; j D 1; : : : ;Ny. Therefore, to obtain the high-order scheme we
first need to provide the high-order flux approximation based, for example, on the
ENO/WENO reconstruction in the physical space. Second, we have to guarantee
the high-order integration in (21) also by applying the ENO/WENO reconstruction
in the stochastic space and choosing the suitable quadrature rule. Finally, we need
the high-order time-stepping algorithm to solve the ODE system (22), such as
Runge-Kutta method.

3.2 Numerical Convergence Analysis

We perform the convergence analysis of the SFVM for a simple linear advection
equation with uncertain phase initial condition

ut C aux D 0; x 2 .0; 1/;

u.x; 0/ D sin
�
2�
�
x C 0:1Y.!/

��
:

The random variable y D Y.!/ is assumed to be distributed uniformly on Œ0; 1�.
The reference solution in this and other experiments of this chapter involving

convergence analysis has been computed exactly using the method of characteris-
tics.

In Figs. 5 and 6, we plot the L1.0; 1/ error for the expectation and the variance
of u with respect to the mesh size and the computational time. We investigate the
influence of different reconstruction orders in spatial and stochastic variables on the
convergence rates and therefore present the convergence plots for the SFVM based
on different combinations of ENO/WENO reconstruction in x and y. We compare
the SFVM with 1st, 2nd and 3rd order of accuracy in physical space combined with
3rd and 5th order reconstruction in stochastic variable. The type of reconstruction is
indicated in Figs. 5 and 6 as follows: for example, the line “SFV-x2y5” corresponds
to the 2nd order piecewise-linear ENO reconstruction in x and 5th order piecewise-
quadratic WENO reconstruction in y, the line “SFV-x3y5” stands for 3rd order
piecewise-linear WENO reconstruction in x with 5th order WENO reconstruction
in y, etc. The numerical flux used in all the numerical experiments of this paper is
the Rusanov flux. The results show that, while the convergence rate is dominated by
the order of accuracy in x, the algorithms with higher order reconstruction in y are
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Fig. 6 Variance: dependence of the error on the mesh resolution and computational time (Repro-
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more efficient computationally since the same error can be reached with less overall
computational time as compared to the lower order reconstruction in y.

3.3 Numerical Results

3.3.1 Buckley-Leverett Equation

As a second example for a scalar conservation law, we consider the Buckley-
Leverette equation with random flux:

@u

@t
C @f .!I u/

@x
D 0; x 2 .0;L/; t > 0I (23)

u.x; 0/ D u0.x/; (24)
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where

f .!I u/ D u2

u2 C ˛.!/.1 � u/2

and ˛ D ˛.!/ is the random variable with known distribution. Assume further that
u0.x/ is the Riemann initial data, that is

u0.x/ D
(
uL; if x < x0;

uR; if x > x0:

Note that the Buckley-Leverette equation models water flooding in a one-
dimensional petroleum reservoir and the above introduction of uncertainty reflects
the inherent uncertainty in measuring the relative permeability. We apply the
Stochastic Finite Volume method to solve (23)–(24) with L D 2:5, x0 D 1:0,
uL D 0:8, uR D 0:3 and uniformly distributed ˛.!/. The computational results for
two different distributions of ˛.!/ are presented in Figs. 7 and 8. The solution mean
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Fig. 7 Convergence w.r.t. resolution (upper left) and computational time (upper right) of the
Stochastic Finite Volume method and solution mean (lower) for Buckley-Leverett equation with
random flux, ˛.!/ � U Œ0:05; 0:15�
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Fig. 8 Convergence w.r.t. resolution (upper left) and computational time (upper right) of the
Stochastic Finite Volume method and solution mean (lower) for Buckley-Leverett equation with
random flux, ˛.!/ � U Œ0:8; 1:2�

is complicated on account of the formation of a compound shock. Furthermore,
increasing the order of the spatio-temporal discretization does lead to a better
approximation of the solution. Note that increasing the order does not imply an
increase in the convergence rate as the solution is discontinuous.

3.3.2 Stochastic Sod’s Shock Tube Problem with Random Initial Data

Consider the Riemann problem for the Euler equations

@U
@t

C @F.U/

@x
D 0; x 2 .0; 2/; (25)

U.x; 0; y/ D U0.x; y/ D
(
UL; x < Y.!/I
UR; x > Y.!/;

(26)
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Fig. 9 Sod’s shock tube problem with random shock location: density (left) and velocity (right)
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Fig. 10 Sod’s shock tube problem with random shock location: pressure

with y D Y.!/; ! 2 ˝ and

U D Œ�; �u;E�>; F D Œ�u; �u2 C p; �u.E C p/�>:

The initial data is set in primitive variables as

W0.x; !/ D Œ�0.x; !/; u0.x; !/; p0.x; !/�> D
(

Œ1:0; 0:0; 1:0� if x < Y.!/;

Œ0:125; 0:0; 0:1� if x > Y.!/:

We apply the SFV method to solve the system (25)–(26) with Y.!/ uniformly
distributed on Œ0:95; 1:05�. We have used the 3rd order WENO reconstruction in both
x and y variables. The results are presented in Figs. 9 and 10, in which the solution
mean (solid line) as well as mean plus/minus standard deviation (dashed lines) are
shown. The typical deterministic solution of the Sod’s shock tube problem with the
given initial conditions consists of the left-traveling rarefaction wave and the right-
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traveling shock wave separated by the contact discontinuity. However, a continuous
transition between the intermediate states instead of the discontinuities is observed
in the mean flow. This effect is unrelated to the diffusion of the numerical scheme
and is due to the smoothing properties of the probabilistic shock profile [31].

3.3.3 Stochastic Sod’s Shock Tube Problem with Random Flux and Initial
Data

Consider the Riemann problem for the one-dimensional Euler equations with
randomness in both flux and initial data

@U
@t

C @F.U; !/

@x
D 0; x 2 .0; 2/; (27)

U.x; 0; !/ D U0

�
x;Y1.!/;Y2.!/

� D
(
UL
�
Y2.!/

�
; x < Y1.!/I

UR; x > Y1.!/;
(28)

with yj D Yj.!/; j D 1; 2; 3; ! 2 ˝ and

U D Œ�; �u;E�>; F D Œ�u; �u2 C p; �u.E C p/�>;

p D .� � 1/
�
E � 1

2
�u2

�
:

We also assume the randomness in the adiabatic constant, � D �
�
Y3.!/

�
, and

therefore

F.U; !/ D F
�
U;Y3.!/

�
:

The initial data is set in primitive variables as

W0.x; !/ D Œ�0.x; !/; u0.x; !/; p0.x; !/�>

D
(

Œ1:0; 0:0; 1:0� if x < Y1.!/;

Œ0:125 C 0:5 Y2; 0:0; 0:1� if x > Y1.!/:

We apply the SFVM to solve the system (27)–(28) with Y1.!/ � U Œ0:95; 1:05�,
Y2.!/ � U Œ�0:1; 0:1�, Y3.!/ � U Œ1:2; 1:6� using the 3rd order WENO
reconstruction in both physical and stochastic variables. The results are presented in
Figs. 11 and 12, in which the solution mean (solid line) as well as mean plus/minus
standard deviation (dashed lines) are plotted.

The convergence results (dependence of the error on the number of mesh points
and on the computational time) for the solution mean are presented in Fig. 13. Due
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Fig. 11 Sod’s shock tube problem with random flux and initial data: density (left) and velocity
(right) (Reproduced with permission from [34])
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Fig. 12 Sod’s shock tube problem with random flux and initial data: pressure (Reproduced with
permission from [34])
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Fig. 13 Sod’s shock tube problem with random flux and initial data: convergence of the mean
w.r.t. physical mesh resolution (left) and computational time (right)
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to the shock formation in the path-wise solution the maximum order of convergence
for the mean is limited to 1.

3.4 Adaptive Parametrization of the Stochastic Space for
SFVM

In this section we introduce the mesh adaptation technique for the Stochastic
Collocation FVM and apply it to reduce the computational cost of the Stochastic
Finite Volume method. To this end, we consider the following model problem:

@u

@t
C @f .u; !/

@x
D 0; x 2 D D Œ0;L� � R; t > 0I (29)

u.x; 0; !/ D u0.x; !/; x 2 D; ! 2 ˝: (30)

Assume that the initial data is given as the Karhunen-Loève expansion:

u0.x; !/ D Nu0.x/ C
X

j>1

Yj.!/

q
�j˚j.x/; (31)

where ˚j.x/ and �j are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel:

Z

D

CY .x1; x2/˚.x1/ dx1 D �˚.x2/:

We can therefore choose the random variable to parametrize the stochastic
conservation law as y D .y1; y2; : : : / D Y.!/ D �

Y1.!/;Y2.!/; : : :
�
, then

u0.x; !/ D u0.x; y/
ˇ̌
ˇ
yDY.!/

D Nu0.x/ C
X

j>1

yj
q

�j˚j.x/;

The adaptation technique remains absolutely the same in the case of SCL with
random fluxes, e.g. when the flux has the form

f .uI !/ D Nf .u/ C
X

j>1

Yj.!/

q
�j˚j.u/;

where ˚j.u/ and �j are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel:

Z

D

CY.u1; u2/˚.u1/ du1 D �˚.u2/:
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Let u0.x; !/ be the Gaussian process with exponential covariance [14]

CY.x1; x2/ D �2
Ye

�jx1�x2j=	;

then

�j D 2	�2
Y

	2w2
j C 1

; ˚j.x/ D 1q
.	2w2

j C 1/L=2 C 	
Œ	wj cos.wjx/ C sin.wjx/�;

where wj are the roots of

.	2w2 � 1/ sin.wL/ D 2	w cos.wL/

and

Yj � N .0; 1/; EŒYj Yk� D ıjk

We next consider the Burgers’ equation with following initial conditions:

u0.x; y/ D sin.�x/ C 0:1x.x � L/
� qX

jD1

yj
q

�j˚j.x/
�

In order to reduce the computational cost of the SFV method, we propose the
mesh adaptation in the stochastic space based on the choice of the number of nodes
in each of the stochastic coordinates according to

Nj
y D C Nx

q
�j: (32)

Table 4 lists the convergence rates of the SFVM with adaptive meshing algo-
rithm, for the s-th order in the physical variable and pj-th order in the stochastic
variables.

Table 4 Convergence rates of the SFVM with anisotropic stochastic
mesh

Nx s D 1; pj D 1

4 –

8 1.100440

16 3.056992

32 0.741016

Nx s D 1; pj D 5

4 –

8 1.212217

16 3.024343

32 0.724594

Nx s D 2; pj D 2

4 –

8 1.408558

16 2.638068

32 2.723459

Nx s D 3; pj D 3

4 –

8 1.458768

16 2.553230

32 2.900257

Nx s D 3; pj D 5

4 –

8 1.558384

16 2.478849

32 2.817779

Nx s D 5; pj D 5

4 –

8 1.746105

16 2.204640

32 3.619253
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Fig. 15 Runtime (seconds) (Reproduced with permission from [34])

Figure 14 shows the convergence of the adaptive SFVM algorithm (“SFV adapt”)
and the SFVM without stochastic mesh adaptation (“SFV noadapt”). The non-
adaptive version of the SFVM simply uses equal number of cells in each stochastic
coordinate, while the adaptive version chooses the number of cells in each yj
according to (32). The computational time needed to perform both algorithms is
shown in Fig. 15. Clearly, the proposed adaptation of the algorithm improves the
convergence properties of the SFV method.

3.5 Efficiency of the SFVM

We compare the efficiencies of the SFV and MLMC methods [25, 26] for the
solution of the one-dimensional stochastic Sod’s problem for the Euler equations
described in Sect. 3.3.3. Figure 16 illustrates the convergence of SFVM and MLMC
based on 1st and 2nd order FV ENO/WENO solvers.
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Fig. 16 Convergence of the SFVM and MLMC (upper plots) and detail of the solution mean
(lower plot) (Reproduced with permission from [34])

Figure 16 demonstrates that both approaches lead to the same orders of conver-
gence in space while SFVM with properly chosen reconstruction orders appears
to be more efficient in terms of error-to-work estimates. Moreover, the solution
mean generated by the MLMC method contains spurious oscillations which do
not disappear by physical mesh refinement, while the SFVM produces monotone
statistical solution at the same level of stochastic resolution.

3.6 SFVM Error Estimates for the Statistical Solution

3.7 Estimates in L1-Norm

Consider the stochastic scalar conservation law in the parametric form

@u

@t
C @f .uI y/

@x
D 0; x 2 D; y 2 Y; t > 0; (33)

u.x; 0I y/ D u0.xI y/: (34)
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Let Y D
NyS
kD1

Yk, where Yk is the mesh cell in the stochastic variable y. Denote the

probability density function by �.y/.
Assume u D u.x; tI y/ is the exact solution to (33)–(34) and unik is its approxi-

mation at a fixed time moment t D tn, resulting from SFVM. Denote uh D funikg.
Assume further that the following error estimate holds:

ku � uhkL1.D�Y/ 6 C1
xp C C2
yr; (35)

where 
x and 
y are typical mesh sizes in the physical and stochastic coordinates,
respectively. Note that the error analysis for the L1-norm applies to the case of
smooth solutions; in the presence of shocks one should consider L1-norm instead.

3.7.1 Error Estimate for the Mean EhŒuh�

We have:

Lemma 1 The mean value of the exact solution at the point .xi; tn/ is

EŒu�.xi; t
n/ D

Z

Y

u.xi; t
nI y/�. y/ dy; (36)

and the corresponding SFVM approximation is computed as follows:

EhŒuh�
n
i D

NyX

kD1

unik!k; !k D
Z

Yk

�. y/ dy: (37)

Then

��EŒu� � EhŒuh�
��
L1.D/

6 ku � uhkL1.D�Y/: (38)

Proof

ˇ̌
EŒu�.xi; t

n/ � EhŒuh�
n
i

ˇ̌ D
ˇ̌
ˇ̌
Z

Y

u.xi; t
nI y/�. y/ dy �

X

k

unik!k

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌X

k

Z

Yk

u.xi; t
nI y/�.y/dy�

X

k

unik

Z

Yk

�.y/dy

ˇ̌
ˇ̌D
ˇ̌
ˇ̌X

k

Z

Yk

	
u.xi; t

nI y/�unik


�.y/dy

ˇ̌
ˇ̌
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6
X

k

Z

Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌
�.y/dy 6 sup

Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌X

k

Z

Yk

�. y/ dy

D sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌ Z

Y

�. y/ dy D sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌
; (39)

and

��EŒu� � EhŒuh�
��
L1.D/

6 ku � uhkL1.D�Y/:

3.7.2 Error Estimate for the Variance VhŒuh�

We have

Lemma 2 The variance of the exact solution at .xi; tn/ is equal to

VŒu�.xi; t
n/ D E

	�
u.xi; t

n/�EŒu�.xi; t
n/
�2
 D E

	
u2.xi; t

n/

� �EŒu�.xi; t

n/
�2

(40)

and is approximated by

VhŒuh�
n
i D Eh

	
u2
h


n
i

� �
EhŒuh�

n
i

�2
: (41)

Then

��VŒu� � VhŒuh�
��
L1.D/

6 Cku � uhkL1.D�Y/: (42)

Proof The approximation error for the variance can be computed as

��VŒu� � VhŒuh�
��
L1.D/

D ��E
	
u2

 � �

EŒu�
�2 � Eh

	
u2
h


C �
EhŒuh�

�2��
L1.D/

D ���E
	
u2

 � Eh

	
u2
h


� � ��
EŒu�

�2 � �
EhŒuh�

�2���
L1.D/

6
��E
	
u2

 � Eh

	
u2
h


��
L1.D/

C ���EŒu�
�2 � �

EhŒuh�
�2��

L1.D/
: (43)

We can estimate the first term as

ˇ̌
E
	
u2.xi; t

n/

 � Eh

	
u2
h


n
i

ˇ̌ D
ˇ̌
ˇ̌
Z

Y

u2.xi; t
nI y/�. y/ dy �

X

k

�
unik
�2

!k

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
X

k

Z

Yk

u2.xi; t
nI y/�. y/ dy �

X

k

�
unik
�2
Z

Yk

�. y/ dy

ˇ̌
ˇ̌
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D
ˇ̌
ˇ̌
X

k

Z

Yk

	
u2.xi; t

nI y/ � �
unik
�2


�. y/ dy

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌X

k

Z

Yk

	
u.xi; t

nI y/ � unik

p

�. y/
	
u.xi; t

nI y/ C unik

p

�. y/ dy

ˇ̌
ˇ̌

6
ˇ̌
ˇ̌X

k

�Z

Yk

	
u.xi; t

nI y/ � unik

2

�. y/ dy

�1=2

�
�Z

Yk

	
u.xi; t

nI y/ C unik

2

�. y/ dy

�1=2 ˇ̌
ˇ̌

6 C

ˇ̌
ˇ̌
X

k

�Z

Yk

	
u.xi; t

nI y/ � unik

2

�. y/ dy

�1=2ˇ̌
ˇ̌

6 C
X

k

�Z

Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌2

�. y/ dy

�1=2

6 C sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌� Z

Y

�. y/ dy

�1=2

D C sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌
; (44)

and hence

��EŒu2� � EhŒu
2
h�
��
L1.D/

6 Cku � uhkL1.D�Y/: (45)

For the second term we have

���EŒu�.xi; t
n/
�2 � �

EhŒuh�
n
i

�2��
L1.D/

D ���EŒu�.xi; t
n/ � EhŒuh�

n
i

��
EŒu�.xi; t

n/ C EhŒuh�
n
i

���
L1.D/

6
��EŒu�.xi; t

n/ � EhŒuh�
n
i

��
L1.D/

��EŒu�.xi; t
n/ C EhŒuh�

n
i

��
L1.D/

6 C
��EŒu�.xi; t

n/ � EhŒuh�
n
i

��
L1.D/

6 Cku � uhkL1.D�Y/: (46)

Finally,
��VŒu� � VhŒuh�

��
L1.D/

6 Cku � uhkL1.D�Y/:

Analogous estimates can be obtained for higher moments.
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3.8 Estimates in L1-Norm

Denote by u the exact solution of (33), by uyh the numerical solution which is exact in
x variable and discretized in y and by uxyh the numerical discretized in both variables.
Assume that the numerical solution converges with rate p in x variable and rate r in
y variable, that is

kuyh � uxyh kL1.D/ 6 C1
xp 8y 2 Y: (47)

ku � uyhkL1. Y/ 6 C2
yr 8x 2 D; (48)

The next estimate follows immediately from this assumption:

ku � uxyh kL1.D�Y/ 6 C1
xp C C2
yr: (49)

3.8.1 Convergence of EhŒuxyh � in L1-Norm

We have

Lemma 3 The expected value of the exact solution is a deterministic function

EŒu�.xi; t
n/ D

Z

Y

u.xi; t
nI y/�. y/ dy; (50)

and the approximation of the expectation of the numerical solution is, as before,
equal to

EhŒu
xy
h �ni D

NyX

kD1

unik!k D
NyX

kD1

unik

Z

Yk

�. y/ dy D
NyX

kD1

Z

Yk

unik �. y/ dy

D
Z

Y

unik �. y/ dy D EŒuxyh �.xi; t
n/: (51)

Then

��EŒu� � EŒuxyh �
��
L1.D/

6 C1
xp C C2
yr: (52)

Proof

��EŒu� � EŒuxyh �
��
L1.D/

D ��EŒu� � EŒuyh� C EŒuyh� � EŒuxyh �
��
L1.D/

6
��EŒu� � EŒuyh�

��
L1.D/

C ��EŒuyh� � EŒuxyh �
��
L1.D/
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D
Z

D

ˇ̌
EŒu� � EŒuyh�

ˇ̌
dx C

Z

D

ˇ̌
EŒuyh� � EŒuxyh �

ˇ̌
dx

D
Z

D

ˇ̌
ˇ̌
Z

Y

.u � uyh/�. y/ dy

ˇ̌
ˇ̌ dx C

Z

D

ˇ̌
ˇ̌
Z

Y

.uyh � uxyh /�. y/ dy

ˇ̌
ˇ̌ dx

6
Z

D

Z

Y

ju � uyhj�. y/ dydx C
Z

D

Z

Y

juyh � uxyh j�. y/ dydx: (53)

The first integral in (53) can be estimated as follows:

Z

D

Z

Y

ju � uyhj�. y/ dydx 6
Z

D

sup
Y

�. y/
Z

Y

ju � uyhj dydx

D Cku � uyhkL1. Y/ 6 C
yr; (54)

and for the second integral we have

Z

D

Z

Y

juyh � uxyh j�. y/ dydx D
Z

Y

h Z

D

juyh � uxyh j dx
i

�. y/ dy

D kuyh � uxyh kL1.D/

Z

Y

�. y/ dy D kuyh � uxyh kL1.D/ 6 C
xp: (55)

Hence, the convergence rate of the expectation in L1-norm can be estimated as

��EŒu� � EŒuxyh �
��
L1.D/

6 C1
xp C C2
yr:

3.8.2 Convergence of VhŒuxyh � in L1-Norm

We have:

Lemma 4 The variance of the exact solution at .xi; tn/ is equal to

VŒu�.xi; t
n/ D E

	�
u.xi; t

n/�EŒu�.xi; t
n/
�2
 D E

	
u2.xi; t

n/

��EŒu�.xi; t

n/
�2

; (56)

and can be approximated as

VhŒu
xy
h �ni D Eh

	
.uxyh /2


n
i � �EhŒu

xy
h �ni
�2 D E

	
.uxyh /2


n
i � �EŒuxyh �ni

�2 D VŒuxyh �ni : (57)
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Then

��VŒu� � VŒuxyh �
��
L1.D/

6 C1
xp C C2
yr: (58)

Proof

��VŒu� � VŒuxyh �
��
L1.D/

D ��E
	
u2

 � �

EŒu�
�2 � E

	
.uxyh /2


C �
EŒuxyh �

�2��
L1.D/

6
��E
	
u2

 � E

	
.uxyh /2


��
L1.D/

C ���EŒu�
�2 � �

EŒuxyh �
�2��

L1.D/
: (59)

The following estimate holds for the first integral in (59):

��E
	
u2

 � E

	
.uxyh /2


��
L1.D/

D
Z

D

ˇ̌
E
	
u2

 � E

	
.uxyh /2


ˇ̌
dx D

D
Z

D

ˇ̌
ˇ̌
Z

Y

	
u2 � .uxyh /2



�. y/ dy

ˇ̌
ˇ̌ dx 6

Z

D

Z

Y

ˇ̌
u2 � .uxyh /2

ˇ̌
�. y/ dydx D

D
Z

D

Z

Y

ˇ̌
u � uxyh

ˇ̌ˇ̌
u C uxyh

ˇ̌
�. y/ dydx 6 C

Z

D

Z

Y

ˇ̌
u � uxyh

ˇ̌
dydx D

D Cku � uxyh kL1.D�Y/ 6 C
xp C C7
yr: (60)

For the second integral in (59) we get

���EŒu�
�2 � �

EŒuxyh �
�2��

L1.D/
D
Z

D

ˇ̌�
EŒu�

�2 � �
EŒuxyh �

�2ˇ̌
dx D

D
Z

D

ˇ̌
EŒu� � EŒuxyh �

ˇ̌ˇ̌
EŒu� C EŒuxyh �

ˇ̌
dx 6

6 C
��EŒu� � EŒuxyh �

��
L1.D/

6 C1
xp C C2
yr: (61)

Finally, from (60)–(61) we get

��VŒu� � VŒuxyh �
��
L1.D/

6 C1
xp C C2
yr:

Similar estimates are also valid for higher moments of u.
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3.9 Error vs Work Estimates for SFVM

In the previous section it has been shown that the error of the expectation
approximation is given by

E D ��EŒu� � EŒuxyh �
��
L1.D/

6 C1
xp C C2
yr; (62)

where p and r are the convergence rates of the SFVM solver in physical and
stochastic variables, respectively. Based on this result, we derive the error vs work
estimates for SFVM.

Let x 2 R
n, y 2 R

m. Assume that the CFL condition is satisfied, such that

t D O.
x/. The total work W (or total time) required to compute the solution
of the stochastic scalar conservation law using SFVM is proportional to the total
numbers of grid points in x, y and t axes, denoted respectively by Nx, Ny and Nt, i.e.

W D CNxNyNt D C
1


xn
1


ym
1


t
D C


xnC1
ym
D C
x�.nC1/
y�m: (63)

Further derivation of the estimate depends on the choice of the mesh sizes
equilibration, that is, on the relation between 
x and 
y.

1. Assume that the mesh sizes are equilibrated according to the expected orders
of convergence p and r: 
y D 
xp=r. Then E D C
xp and 
x D CE1=p.
Substituting these relations into Eq. (63) we get

W D C
x�.nC1/
x�pm=r D C
x�.nC1Cpm=r/ D CE� nC1Cpm=r
p (64)

and hence

E D CW� p
nC1Cpm=r ; (65)

which is the desired error vs work estimated.
2. Assume now that the mesh size 
y is obtained by the following scaling: 
y D

	
x, where 	 is the constant scaling factor, meaning that the stochastic mesh
is isotropic (same 
y for all random variables). Define q D min.p; r/. Then
E D C
xq and 
x D CE1=q, and the total work is defined as

W D C
x�.nC1/
y�m D C
x�.nCmC1/ D CE� nCmC1
q ; (66)

which finally gives

E D CW� q
nCmC1 : (67)

Note that the estimate (67) is equivalent to the complexity result for the
deterministic finite-volume method in the .n C m/-dimensional space, which
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sets strict limitations on the number of random variables that can be handled
by the SFVM if the scaling factor 	 is close to 1. However, computational
practice shows that it is sufficient to use few computational cells to discretize the
equations in the stochastic space to obtain a good quality approximation of the
statistical quantities and therefore the SFVM is essentially much more efficient
as deterministic FVM. Another significant simplification of the approach is the
absence of the fluxes in the stochastic variables y, which also contributes to the
efficiency of the SFVM.

3. Assume that the stochastic mesh is anisotropic, that is the mesh sizes 
yk are
different for k D 1; : : : ;m: 
yk D 	k
x. Applying the same technique as above
we obtain

E D C1
xCC2

mX

kD1


yrk D C1
xCC2
xr
mX

kD1

	r
k 6 C
xq

�
1C

mX

kD1

	r
k

�
; (68)

where q D min.p; r/ as before. We have also assumed that 
x << 1 such that

xp < 
xq and 
xr < 
xq. Then the mesh size 
x can be represented as


x D
 

E

1 C
mP

kD1

	r
k

!1=q

: (69)

The total work is

W D C
� mY

kD1

	�1
k

�

x�.nCmC1/ D C

� mY

kD1

	�1
k

� E

1 C
mP

kD1

	r
k

!�.nCmC1/=q

;

(70)
and the resulting error vs work estimate is

E D C
�
1 C

mX

kD1

	r
k

�� mY

kD1

	
� q

nCmC1

k

�
W� q

nCmC1 : (71)

Note that in the isotropic case, when all 	k D 	 D const, formula (71) results
in

E D C.1 C m	r/ 	� qm
nCmC1 W� q

nCmC1 : (72)

Comparing (71) and (72) we notice that the proper choice of scaling factors
	k in the anisotropic stochastic mesh construction, while not affecting the
convergence rates, can reduce the convergence constant, which means increasing
computational efficiency. The choice of 	k should be based on the sensitivity
analysis of the random entropy solution to each of the m random variables.



The Stochastic Finite Volume Method 31

Let us demonstrate the efficiency provided by the anisotropic mesh adaptation.
We compare the convergence constants:

Ci D .1 C m	r/ 	� qm
nCmC1 (73)

for the isotropic mesh with equal mesh sizes in all stochastic coordinates, 
yk D
	
x, k D 1; : : : ;m, and

Ca D �
1 C

mX

kD1

	r
k

� mY

kD1

	
� q

nCmC1

k (74)

for the anisotropic stochastic mesh with mesh size scaling according to 
yk D
	k
x, k D 1; : : : ;m. Assume further that 	1 > 	2 > : : : 	m and 	k > 1 for all k,
such that 
yk > 
x.

Our goal is to show that the convergence constants ratio ım D Ci

Ca
> 1 as

m ! 1 if 	1 < 	 and r > q, that is, the anisotropic stochastic mesh increases the
algorithm efficiency as the number of random variables grows if the convergence
rate r in the stochastic space is higher than q, the minimum of the convergence
rates in physical and stochastic coordinates.

We start by noting that under the assumption 	1 < 	 the following inequality
is valid:

Ca D �
1 C

mX

kD1

	r
k

� mY

kD1

	
� q

nCmC1

k < .1 C m	r
1/	

� qm
nCmC1

1 D C1
a; (75)

and therefore

ım D Ci

Ca
>

Ci

C1
a

D .1 C m	r/ 	� qm
nCmC1

.1 C m	r
1/	

� qm
nCmC1

1

D
�

1 C m	r

1 C m	r
1

��
	

	1

�� qm
nCmC1

: (76)

Hence, the limit of the constants ratio is

ı D lim
m!1 ım D

�
	

	1

�r�q

; (77)

and clearly ı > 1 if r > q.
Let’s analyse in more detail the possible values of ı in dependence on the

convergence rates p and r in x and y variables, respectively.

Smooth Solution If the solution is smooth in x and y, then the convergence rate
of the SFVM is the expected one, therefore by applying high-order finite-volume
approximations in both variables one can obtain the full convergence rates p and
r.

• If p < r, then q D min.p; r/ D p and r � q D r � p > 0, ı > 1 and hence the
SFVM will converge faster on anisotropic stochastic mesh.
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• If p > r, then q D min.p; r/ D p and r � q D r � p < 0, ı < 1, therefore the
anisotropic mesh doesn’t improve the convergence.

Shock Solution Recall that if the shock wave appears in the physical space,
then it also propagates into the stochastic space, so that the solution becomes
discontinuous in both x and y. In this case one typically has p D 1=2

according to the Kuznetsov’s result [20] and r D 1 as shown in [27], therefore

q D min.p; r/ D 1=2 and ı D
q

	

	1
> 1. This means that the SFVM on

anisotropic mesh in the stochastic space is more efficient than SFVM on the
uniform mesh even if the solution has a shock.

3.10 Anisotropic Mesh Adaptation for Euler Equations

We reconsider the stochastic Sod’s shock tube problem and apply the anisotropic
stochastic mesh adaptation which is similar to the one proposed for the scalar
conservation laws with Karhunen-Loève flux (or initial data) expansion. Clearly,
such an expansion is not available for the realistic systems of conservation laws like
the Euler equations since the flux function and the random variables are pre-defined.
However, it is possible to scale the random variables according to their influence on
the random solution based on empirical considerations.

For the stochastic version of Sod’s shock tube problem studied above, one can
see that the uncertainty in the � flux coefficient is practically unimportant (but
not negligible) for the statistical solution, while the uncertain initial discontinuity
location as well as random density amplitude being most important. Therefore we
propose the following scaling for the number of cells in the stochastic coordinates:
Ni
y D CNx�i, where we take C D 1=32 and �1 D 3 (random shock location), �2 D 2

(random density amplitude) and �3 D 1 (random � ).
Figures 17, 18 and 19 demonstrate the convergence for the density for the 1st,

3rd and 5th order WENO reconstruction in stochastic coordinates yk, k D 1; 2; 3,
respectively. Each of the plots contains the results for 1st, 3rd and 5th order WENO
reconstruction in the physical coordinate x. The results are presented for both
adaptive and non-adaptive meshes in the stochastic space and clearly show the
superior efficiency of the adaptive SFVM algorithm.

3.11 Numerical Approximation of the Probability Density
Function for the Random Solution of Euler Equations

The advantage of the SFV method is the possibility to construct the empirical proba-
bility density functions (statistical histograms) after only one run since the complete
information about the random solution is generated (that is, its approximation as a
function of x and yk is provided).
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Fig. 17 Adaptive vs non-adaptive mesh, 1st order WENO in yk , k D 1; 2; 3
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Fig. 18 Adaptive vs non-adaptive mesh, 3rd order WENO in yk, k D 1; 2; 3
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Fig. 21 Velocity distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location

We demonstrate the performance of SFVM for the approximation of the proba-
bility density functions for the solution of the stochastic Sod’s shock tube problem.
To this end, we solve the problem using the SFVM with 5th order WENO
reconstruction in x and yk, k D 1; 2; 3 for two cases: (1) with one uniformly
distributed random variable for shock location, x0 � U Œ0:75; 1:25�; (2) with three
random variables on the anisotropic mesh (see previous section), and plot the
distribution histograms at x D 0:5 (rarefaction wave) and at x D 2 (shock wave).
The number of bins to plot the diagrams is chosen according to

• square-root choice: k D Œ
p
n �, if the total number of grid points is small

(practically, less than 30, like in case (1)),
• Sturges’ formula [33]: k D Œlog2 n C 1�, otherwise.

The corresponding histograms are presented in Figs. 20, 21, and 22 for one
random variable and in Figs. 23, 24, and 25 for three random variables. For
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Fig. 22 Pressure distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location
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Fig. 23 Density distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location, density amplitude and �

comparison, each of the plots contains the histograms for the exact solution of
the problem with fine resolution in the stochastic space. The computed probability
density functions indicate the bimodal character of gas parameter distributions in
the stochastic Sod’s problem.
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Fig. 25 Pressure distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location, density amplitude and �

4 Stochastic Finite Volume Method on Unstructured Grids

4.1 Mixed DG/FV Formulation for the Stochastic
Conservation Law in Multiple Dimensions

In this section we generalize the approach to uncertainty quantification described
previously in order to efficiently apply high-order approximation techniques on
unstructured grid in physical domains with complicated geometry. To this end,
we use the Discontinuous Galerkin (DG) method to discretize the equations in the
physical space and combine it with the finite-volume discretization in the stochastic
variables as described in Sect. 3. Note that we can still use Cartesian grids in the
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stochastic space since the computational domain in this space is a q-dimensional
rectangle.

As before, we start with the parametric form of the stochastic conservation law:

@U
@t

C rx � F.U; y/ D 0; x 2 Dx � R
3; y 2 Dy � R

q; t > 0I (78)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (79)

Let Tx D [Nx
iD1K

i
x be the triangulation of the computational domain Dx in

the physical space and Cy D [Ny

jD1K
j
y be the Cartesian grid in the domain Dy of

the parametrized probability space. On each element Ki
x of the physical domain

triangulation we apply the DG discretization of solution in the physical variable x,
that is, on each element of the triangulation we choose a system of basis functions
f'l.x/g, l D 1; : : : ; p, and represent the numerical solution as the decomposition
over the chosen basis

Uh.x; t; y/ D
pX

lD1

Ui
l.t; y/'l.x/; x 2 Ki

x; (80)

with the coefficients Ul.t; y/ to be determined. Next, according to the DG dis-
cretization procedure, we multiply the governing Eqs. (78)–(79) to each of the basis
functions 'k, k D 1; : : : ; p and integrate the result over the element Ki

x. Application
of the Gauss’ theorem to the volume integral yields the following semi-discrete DG
formulation 8k D 1; : : : ; p:

pX

lD1

@tUi
l.t; y/

Z

Ki
x

'l.x/'k.x/ dx C
Z

@Ki
x

F.Uh; y/ � n'k.x/ dx�

�
Z

Ki
x

F.Uh; y/r'k.x/ dx D 0: (81)

pX

lD1

Ui
l.0; y/

Z

Ki
x

'l.x/'k.x/ dx D
Z

Ki
x

U0.x; y/'k.x/ dx: (82)

The physical flux F.Uh; y/ � n is in general discontinuous across the cell boundary
and therefore needs to be replaced by any standard numerical flux approximation
OF.Uint

h ;Uext
h ; y/ depending on two boundary extrapolated solution values Uint

h and
Uext

h (inside and outside of the cell, respectively) Note that at this stage the DG
coefficients Ui

l.t; y/ are still functions of the random variable y and time t and thus
to get rid of this dependence we introduce the DG coefficients averaged over an
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element of the stochastic grid

Uij
l .t/ D 1

jKj
yj
Z

K
j
y

Ui
l.t; y/ �.y/ dy

and apply the finite-volume discretization over each cell Kj
y in the random variable,

which leads to

pX

lD1

Z

K
j
y

�
@tUi

l.t; y/

Z

Ki
x

'l.x/'k.x/ dx
�

�.y/ dyC

C
Z

K
j
y

� Z

@Ki
x

OF.Uint
h ;Uext

h ; y/ 'k.x/ dx
�

�.y/ dy�

�
Z

K
j
y

� Z

Ki
x

F.Uh; y/r'k.x/ dx
�

�.y/ dy D 0; k D 1; : : : ; p: (83)

Finally, the resulting scheme becomes

pX

lD1

dUij
l .t/

dt

Z

Ki
x

'l.x/'k.x/ dx C 1

jKj
yj
“

K
j
y@Ki

x

OF.Uint
h ;Uext

h ; y/ 'k.x/ �.y/dxdy�

� 1

jKj
yj
“

K
j
yKi

x

F.Uh; y/r'k.x/ �.y/dxdy D 0; k D 1; : : : ; p: (84)

The initial data for Uij
l .t/ is obtained similarly: for k D 1; : : : ; p

pX

lD1

Uij
l .0/

Z

Ki
x

'l.x/'k.x/ dx D 1

jKj
yj
“

K
j
yKi

x

U0.x; y/'k.x/ �.y/dxdy: (85)

Equations (84)–(85) form an ODE system with respect to the coefficients Uij
l .t/

which can be solved using the Runge-Kutta method of the appropriate order. The
slope limiting procedure has to be applied at each intermediate stage of the Runge-
Kutta method in order to ensure the stability of the resulting DG scheme. This is
done using the algorithm proposed in [9].
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4.2 Numerical Results

4.2.1 Stochastic Cloud-Shock Interaction Problem (Random Flux)

Consider the two-dimensional Euler equations with deterministic initial data

Œ�0; u0; v0; p0� D
(

Œ3:86859; 11:2536; 0; 167:345�; if x1 < 0:05;

Œ1; 0; 0; 1�; if x1 > 0:05;

and a high-density cloud lying to the right of the shock:

�0 D 10; if
p

.x1 � 0:25/2 C .x2 � 0:5/2 6 0:15:

Assume the random � D �.!/ in the equation of state (EOS)

p D .�.!/ � 1/
�
E � 1

2
�.u2 C v2/

�
;

�.!/ � U
�
5=3 � �; 5=3 C �

�
; � D 0:1

The results of the simulation are presented in Fig. 26. In our computations we
have used the 2nd order DG method in x variable and 3rd order WENO method in y
variable, triangular mesh in x consisting of about 170,000 cells and Cartesian mesh
in y consisting of 16 cells. Note that no symmetry conditions have been imposed on
the mesh. The results are plotted at T D 0:06.
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Fig. 26 Stochastic cloud-shock interaction problem (Reproduced with permission from [34])
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4.2.2 Forward-Facing Step Channel

Consider the stochastic flow in the channel with the forward facing step with random
Mach number of the inflowing gas: M � U .2:9; 3:1/. We have used the mesh of
about 13,000 triangular cells in the physical space and 15 equally-sized cells in
the stochastic space, the methods used are 2nd order DG and 3rd order WENO in
physical and random variables, respectively. The results of the simulation are given
in Fig. 27, indicating that the uncertainty in the Mach number influences the position
and intensity of shock in front of the step, while having little effect on the shocks
reflected from the channel walls.

4.2.3 Stochastic Cloud-Shock Interaction Problem (Random IC)

We use the mesh adaptation approach similar to the one described in Sect. 3.4 to
solve the stochastic cloud-shock interaction problem with initial data depending
on four random variables. Note that the usage of non-adaptive algorithm for such
simulation would lead to excessive computational cost of SFVM.

Consider the two-dimensional Euler equations with deterministic initial data

W0 D
(

Œ3:86859 C 0:1Y2.!/; 11:2536; 0; 167:345�; if x1 < 0:04 C 0:01Y1.!/;

Œ1; 0; 0; 1�; if x1 > 0:04 C 0:01Y1.!/;

with a high-density cloud to the right of the shock:

�0 D 10 C 0:5Y3.!/; if
p

.x1 � 0:25/2 C .x2 � 0:5/2 6 0:15 C 0:02Y4.!/:

The equations are closed by the following deterministic EOS: p D .� � 1/
�
E �

1
2
�.u2 C v2/

�
, � D 5=3. The random variables in the initial condition are uniformly

distributed on Œ0; 1�: Yk � U Œ0; 1�; k D 1; : : : ; 4:

We use the 2nd order DG in x variable and 3rd order WENO in y variable,
triangular mesh in x (170,000 cells) and adaptive Cartesian mesh in y (3 �2 �7 �11 D
462 cells), the output time is T D 0:06. The results of this simulation are illustrated
in Fig. 28.

4.2.4 Flow Past a Cylinder

We have applied the SDGFV method for the simulation of the stochastic flow
around a cylinder which is modeled by the Navier-Stokes equations. For this
study we have chosen one random variable random variables: Y0 � U Œ�1; 1�
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Fig. 27 Stochastic flow in a forward-facing step channel (Reproduced with permission from [34])
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Fig. 28 Stochastic cloud-shock interaction problem (Reproduced with permission from [34])

describing the uncertainty in the Reynolds number. The free-stream flow parameters
are following:

• Angle of attack (degrees): ˛ D 0

• Mach number: M D 0:1

• Reynolds number: Re D 2000:0 C 500:0 Y0.!/

Note that the difference of 500 in Reynolds numbers corresponds to the difference
in speeds of about 5 m/s which in turn leads to the fluctuation of Mach numbers of
only 5% which is negligible compared to 25% fluctuation of the Reynolds number.
Therefore the reduction of the number of random variables to one in this simulation
appears to be reasonable.

The results of the computations (mean, variance and deterministic distribution of
Mach numbers) are presented in Fig. 29. For this simulation we again use the 2nd
order DG in x variable and 3rd order WENO method in y variable, the computations
are performed on a physical mesh consisting of 6434 triangular cells and a Cartesian
mesh in stochastic space consisting of 16 elements, the output time is T D 18:0.

4.2.5 Flow Around NACA0012 Airfoil

We next study the stochastic transonic flow around the NACA0012 wing profile. The
flow is modeled by the system of Euler equations with uncertainty in the free-stream
parameters:

• Angle of attack (degrees): ˛ D 1:25 C 0:05 Y0.!/

• Mach number: M D 0:8 C 0:05 Y1.!/
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Fig. 29 Flow around a cylinder. Mach number contour lines
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Fig. 30 Inviscid transonic flow around NACA0012 airfoil. Mach number contour lines

The random variables Y0 and Y1 are uniformly distributed: Y0;Y1 � U Œ�1; 1�. The
results of this simulation are presented in Figs. 30, 31, and 32. We use the 2nd order
DG in x variable and 3rd order WENO method in y variable, triangular mesh in x
consisting of 92,023 elements and two-dimensional Cartesian mesh in y consisting
of 64 elements, the output time is T D 10:0. In Fig. 30, the contour lines illustrate
the mean value and variance of the Mach number as well as its deterministic values
around the wing profile. Clearly, two shock waves are present in the deterministic
run: one on the lower and one on the upper surface of the profile (see Fig. 31
for the distribution of the pressure coefficients). These shock waves however are
smoothed in the mean flow, which is in accordance with the results of [31]. Finally,
the approximations of the probability density functions for the distribution of the
drag and lift coefficients are given in Fig. 32.
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4.2.6 Flow Around NACA23012 Airfoil with Flap

We run the NACA23012 airfoil simulation with the following parameters:
Random variables: Y0;Y1 � U Œ�1; 1�.
Free-stream flow parameters:

• Angle of attack (degrees): ˛ D 8:0 C 0:5 Y0.!/

• Flap deflection angle (degrees): ˛f D 30

• Mach number: M D 0:1 C 0:015 Y1.!/

• Reynolds number: Re D 2100000:0 C 300000:0 Y1.!/

• Prandtl number: Pr D 0:72
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Fig. 33 Flow around NACA23012 airfoil with flap. Mach number contour lines

In order to run this simulation we adapt the stochastic mesh as follows: we take
N0
y D 3 cells in the stochastic coordinate Y0 and N1

y D 6 cells in the coordinate Y1.
The adaptation is based on a simple argument that the range of random angles of
attack makes about 6% of its mean value (0:5=8 D 0:0625) and the range of both
random Mach and Reynolds numbers makes 15% of the mean value, which results in
double number of cells. This simulation has been performed on a triangular physical
mesh of 17,418 cells, the numerical methods used are 2nd order DG in physical
variables and 1st order FV in stochastic variables. The results of the simulation at
time is T D 1:0 are presented in Fig. 33.
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4.2.7 Flow Around RAE2822 Airfoil

Finally, we perform the stochastic simulation of the flow around the RAE2822
airfoil. The setup of the deterministic problem is the following.

• Angle of attack (degrees): ˛1 D 2:31

• Mach number: M1 D 0:729

• Reynolds number: Re1 D 6:5 � 106

The random parameters are modeled by means of the Beta distribution on
Œ yL; yR�:

B. y; a; b/ D 1

B.a; b/
. y � yL/a�1. yR � y/b�1. yR � yL/�.aCb�1/

In this simulation, we assume that the angle of attach and the Mach numbers are
random variables defined by

• ˛1.!/ � B.y; a; b/ with a D b D 4, yL D 0:98˛1, yR D 1:02˛1
• M1.!/ � B.y; a; b/ with a D b D 4, yL D 0:95 M1, yR D 1:05 M1

We use the 2nd order DG method in x and 3rd order WENO reconstruction in y,
triangular mesh in x (258,476 elements) and 2D Cartesian mesh in y (64 elements).
The results of the simulation are presented in Fig. 34.

4.3 Parallel Algorithm and Parallel Efficiency of the SFVM

In the previous section we have presented a number of simulations of stochastic
flows performed with the SFV method. Clearly, simulations with high-order meth-
ods involving complicated geometries and flow phenomena are computationally
intensive even in the deterministic case and become much more costly in the
presence of uncertainly. Therefore all of the described algorithms have been
implemented in parallel using the Message Passing Interface (MPI) library. The
basic parallelization principle used is the domain decomposition method which
is applied in both physical space (on unstructured grid) and stochastic space
(on Cartesian grid). The DG method used to approximate the random solution
in the physical space allows to keep the approximation stencil compact. On the
unstructured triangular mesh the compact consists of four triangles regardless of the
order of the method. Therefore, the number of the mesh elements which need to
exchange information between the processors is relatively small compared to the
total number of elements in one subdomain.

In order to obtain partition of complicated computational domains we use the
METIS library. A typical partition generated by METIS is presented in Fig. 35.
Here, different colours indicate different subdomains.
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Fig. 34 Flow around RAE2822 airfoil

Table 5 lists the computational time per two timesteps, the speedup of the
algorithm and efficiency with respect to the number of cores, for the simulation of
the transonic flow around NACA0012 airfoil described in the previous section. The
physical mesh consists of approximately 90,000 triangles and the stochastic mesh
has 8 � 8 elements. The corresponding plot of the algorithm speedup is presented in
Fig. 36.

Therefore, the SFV method can be efficiently parallelized and used for uncer-
tainty quantification in multidimensional systems of conservation laws on compli-
cated physical domains with unstructured meshes.
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Fig. 35 Partition generated by METIS

Table 5 Parallel efficiency
of SFVM

N Time (s) Speedup Efficiency (%)

1 2663:99 1 100

2 1353:34 1:97 98:42

4 632:71 4:21 105:26

8 334:44 7:97 99:57

16 166:84 15:97 99:8

32 84:88 31:39 98:08

64 48:02 55:47 86:68

128 26:31 101:26 79:11

5 Other Applications

Thanks to its flexibility, this method has several other applications.

5.1 Nozzle Flow with Shock

The steady shocked flow in a convergent-divergent nozzle is taken into account with
a fixed (deterministic) geometry:

A.x/ D



1 C 6.x � 1
2
/2 for 0 < x 6 1

2

1 C 2.x � 1
2
/2 for 1

2
< x 6 1

(86)
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Fig. 36 Algorithm speedup

The outlet pressure (subsonic outlet flow with pe D 1:6529 bar) is chosen in order
to have a compression shock in the divergent part of the nozzle, exactly located at
x D 0:75. For the other boundary conditions a subsonic inlet flow with a stagnation
pressure p0 D 2 bar and a stagnation temperature T0 D 300 K are considered.
The mean of � is 1.4. Two test cases are considered. First, an uncertain heat
coefficient ratio � is assumed. The random parameter ! D � varies within the range
Œ1:33; 1:47�, following various choices of pdf (uniform and discontinuous) described
below. In the second test-case, two-uncertainties stochastic problem is solved where
� follows a discontinuous pdf and the subsonic outlet flow varies uniformly within
the range Œ1:6529 ˙ 0:98; 1:6529 ˙ 1:02�.

The random parameter ! (defining either the heat ratio or the subsonic outlet
flow) ranges between !min and !max; the interval Œ!min; !max� is mapped onto Œa; b�

by a linear transformation and the pdf on Œa; b� is either:

• uniform with ! 2 Œa; b� D Œ0; 1�,
• discontinuous on Œa; b� D Œ0; 1� with a density defined by:

f .�/ D 1

M
�

8
ˆ̂̂
<

ˆ̂̂
:

1 C cos.�x/

2
if x 2 Œ0:5; 1�

10 C 1 C cos.�x/

2
if x 2 Œ0; 0:5�

0 else

(87)

and M D 11
2

to ensure normalization.

Different stochastic methods are used to compute statistic solutions of the
supersonic nozzle. Different pdf are used for � , i.e. uniform in order to compare
MC-SOBOL, PC and SI, and the discontinuous pdf (87) in order to compare MC-
SOBOL and SI and to demonstrate the flexibility offered by the SI method. After
a study on the grid convergence, the 1D physical space is divided in 201 points
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(with the normalized geometric domain that varies from 0 to 1). A preliminary
convergence study with respect to the stochastic estimation has been realized, by
using an increasing refinement of the probabilistic space discretization in the case
of the SI method, and an increasing polynomial order in the case of PC method.
The probabilistic space discretization varies from 5 to 160 points (5, 10, 20, 40, 80,
160), while the polynomial order varies from 2 to 100. Next, the stochastic solutions
are compared by computing the mean and the variance of the Mach number and
pressure distributions along the nozzle using various choices of pdf for � . Finally,
a comparison in terms of computational cost is performed by computing error �L2

with respect to x.
In Fig. 37, the mean solutions of Mach number and the pressure along the 1D

nozzle are reported, where the mean stochastic solutions are computed with the
SI method using 10 points in the probabilistic space and the PC method using a
10th order polynomial, with � described by a uniform pdf (� varying between 1:33

and 1:47). As it can be observed in Fig. 37, the mean flow is characterized by an
isentropic region of increasing speed or Mach number between x D 0 and the mean
shock location in the divergent (the flow becoming supersonic at the nozzle throat
located at x D 0:5), followed by a subsonic flow behind the shock with decreasing
speed. The mean solutions computed by the two UQ methods are coincident. Next,
the standard deviation of the Mach number is computed along the nozzle by using
different refinement levels for the probabilistic space in the case of the SI method
and different polynomial orders in the case of the PC method, always keeping a
uniform pdf for � . In Table 6, the number of samples required to reach a prescribed
error "L2 is reported for each strategy. We observe that SI method demands fewer
points in the stochastic space for a given level of error.

Next, a discontinuous pdf is considered for the stochastic � . It is interesting to
note the innovative contribution the SI method can bring with respect to the PC



52 R. Abgrall and S. Tokareva

Table 6 Number of samples
required for the 1-uncertainty
nozzle problem, uniform pdf

Error level "L2 MC-SOBOL PC SI

10�1 5 6 5

10�2 24 19 10

10�3 70 59 40
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Fig. 38 Nozzle flow with uncertain � (discontinuous pdf). Convergence study for the standard
deviation on the Mach number distribution computed using the SI method

method (in its classical version). To this end, in Fig. 38 the standard deviation of
Mach number is reported along the nozzle when the discontinuous pdf (87) is
considered. Note that choosing (87) to describe the random variable � introduces no
change whatsoever in the application of the SI method (while the PC method can no
longer be used). The standard deviation of the Mach number distribution computed
for this discontinuous pdf is plotted in Fig. 38 for several levels of discretization
refinement in the probabilistic space: here again the result can be considered as
almost converged with no more than a 40-point discretization and fully converged
with a 80-point discretization. In Fig. 39, the standard deviation of the Mach number
is reported along the nozzle for the discontinuous pdf by using SI and MC-SOBOL
methods. The standard deviation distributions computed by means of SI and MC-
SOBOL are coincident, even for the maximal standard deviation. The stochastic
estimation remains globally very similar for the newly proposed SI approach and
the well-established MC-SOBOL method, which allows to validate the SI method
results for the case of a discontinuous pdf on � . Let us estimate the respective
computational cost of SI, MC-SOBOL for this case. In Table 7, the number of
samples required to reach a prescribed error for �L2 is reported for SI and MC-
SOBOL methods. A drastic reduction of the computational cost is obtained by using
SI methods with respect to MC-SOBOL solutions.

Next, a two-uncertainties stochastic problem is considered by assuming a
discontinuous pdf for � and a uniform pdf for pe. In Fig. 40, the standard deviation
of the Mach is reported along the nozzle for SI and MC-SOBOL. The standard
deviation distributions computed by means of SI and MC-SOBOL are coincident.
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Fig. 39 Nozzle flow with uncertain � (discontinuous pdf). Standard deviation for the Mach
number distribution for MC-SOBOL and SI methods. Left: global view; right: close-up on the
shock region

Table 7 Number of samples
required for the 1-uncertainty
nozzle problem,
discontinuous pdf

Error level "L2 MC-SOBOL SI

10�1 4 5

10�2 42 20

10�3 250 40
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Fig. 40 Nozzle flow with uncertain � (discontinuous pdf) and pe (uniform pdf). Standard deviation
for the Mach number distribution for MC-SOBOL and SI methods. Left: global view; right: close-
up on the shock region

As shown in Table 8, SI method allows strongly reducing the computational cost
until six times with respect to MC-SOBOL method.
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Table 8 Number of samples
required for the
2-uncertainties nozzle
problem, discontinuous pdf

Error level "L2 MC-SOBOL SI

10�1 35 25

10�2 1000 400

10�3 20,000 3600
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Fig. 41 RAE 2822 airfoil computed with a stochastic residual distribution method

5.2 Application with Other Schemes

The use of the SI/SFV method is not restricted to finite volume or discontinuous
Galerkin schemes, but it is indeed very general. To show this we give the example
of the residual distribution schemes of [1, 4] which can be seen as continuous finite
element methods with non linear stabilisation. Starting from a deterministic method,
one can again write the scheme for any random event and take a conditional average
on any of the stochastic finite volume, in exactly the same spirit as it is sketched in
Sect. 2. Consider for example the flow around RAE 2886 airfoil, with free-stream
Mach number M1 D 0:8 and velocity U1 which is given with 2% of fluctuation
with uniform or centered Gaussian law. The results are presented in Fig. 41. Again,
we see that using approximately five cells in the stochastic direction is enough.
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5.3 Overcoming the Curse of Dimensionality

In Sect. 3, the cost of the method has been analysed, and we see exponential
growth with respect to the number of random variables. In order to (partially)
tackle this problem, a technique issued from the Multi Resolution Analysis of A.
Harten [18] has been proposed. The idea is to use multi-resolution analysis in the
stochastic dimensions. This technique allows to store only the needed information to
reconstruct the random variables, leading potentially to important saving in memory,
to the price of added complexity. One can consult [6, 12] for more details.

5.4 Applications for Multiphase Flows

Because of the flexibility of the method, the same technique has been used in
multiphase simulation. In [30], a discrete equation method [5] for the simulation
of compressible multiphase flows including real-gas effects is coupled to the SI
algorithm, using a complex equation of state for both phases. This method is applied
to the computational study on the occurrence of rarefaction shock waves (RSW) in a
two-phase shock tube with dense vapors of complex organic fluids. Previous studies
have shown that a RSW is relatively weak in a single-phase (vapor) configuration,
its occurrence and intensity are investigated considering the influence of the initial
volume fraction, initial conditions and the thermodynamic model.

6 Conclusions

We have presented the scheme of the Stochastic Finite Volume method (SFVM)
and demonstrated the efficiency of the Karhunen–Loève-based adaptation algorithm
to construct the anisotropic mesh in the stochastic space. Several application of
this generic method has been proposed, from simple ODEs to the fluid mechanics
equations. The error estimates for SFVM have been derived. The extension of the
SFVM for the DG approximation in the physical space has been proposed. Various
numerical examples demonstrating the efficiency and robustness of the implemented
algorithms have been presented.

The SFV method studied in this paper appears to be a flexible and effective
approach to the solution of stochastic conservation laws. We have shown that the
SFV method it is applicable for the uncertainty quantification in a variety of complex
problems including systems of conservation laws with random flux coefficients and
initial data. The proper adaptation of the stochastic grid significantly reduces the
computational cost of the method and improves its convergence.
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