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Preface

Kinetic equations describe the probability density distribution of interacting parti-
cles, and often are also subject to the influence of external fields. The equations
consist of transport, collision, source and forcing terms. Although kinetic equations,
most notably the Boltzmann equation, are often derived from the mean-field
approximations of the first principle Newton’s Second Law for N-particles by taking
theN !1 limit, one can hardly exactly obtain the collision kernel, which is instead
determined empirically, giving rise to uncertainty. More recently, kinetic equations
have found applications in other fields, like socio-economy and life sciences. In all
these new emerging fields, the derivation from first principles is not possible and
the derivation of the kinetic models is based on empirical observations and contains
uncertain parameters.

Hyperbolic equations usually consist of some conservation laws which need to be
closed by equations of state or constitutive relations. These closures are empirical,
and thus will necessarily contain uncertainties.

Due to difficulty of measurement, in these problems uncertainty can also arise
from initial or boundary data, the source and forcing terms, or even geometry.

Uncertainty quantification (UQ) is important to study the propagation of uncer-
tainty, to identify sensitive input parameters, to determine the likelihood of certain
outcomes, and to help to validate and improve these equations (models). While UQ
has been a popular field in science, engineering and industry in the last two decades,
the study of UQ for hyperbolic and kinetic equations has encountered some major
difficulties, and relevant literature is scarce.

One of the main difficulties for (nonlinear) hyperbolic equations is the formation
of singular solutions, known as shocks and contact discontinuities, in the physical
space. When the uncertainty is modeled by random variables, the singularity in
the physical space will propagate into the random space, preventing many modern
UQ methods, for example, the polynomial chaos method—which boosts spectral
convergence (in contrast to the half-th order convergence of the classical Monte
Carlo method) given sufficient regularities in the random space—, from convergence
at a high order or from convergence at all. The singular solution also gives rise
to burdens for the theoretical investigation of the UQ method. For example, the
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vi Preface

stochastic Galerkin method is based on the L2 theory, while a discontinuous
solution is better described mathematically by the L1 norm. Furthermore, some
expansion methods, such as the polynomial chaos expansion, could lead to the loss
of hyperbolicity, triggering potential instability of the problem although the original
problem is well posed.

Kinetic equations, defined in the phase space, already suffer from the “dimension
curse”. The extra dependence on the random uncertainties—which are often
high dimensional—will only make the computation prohibitively expansive. The
nonlinearities in the kinetic equations provide further challenges for the theoretical
study of the UQ problems. Finally, possible multiple time and spatial scales in
kinetic equations make the computation of uncertain kinetic problems more difficult.

The various chapters collected in this book, from leading experts in the relevant
field, provide introductions to this exciting field, as well as surveys of state-of-
the-art computational tools for some of the aforementioned challenges. Among the
topics covered are stochastic finite element and Galerkin methods for hyperbolic
and kinetic equations, multi-level Monte Carlo methods for hyperbolic conservation
laws, kinetic formulation for conservation laws in the context of UQ, computational
methods to tackle high dimensional uncertain kinetic equations, kinetic formulation
of high-frequency wave propagations in random media, and applications of uncer-
tain kinetic equations to socio-economic and life sciences.

We hope, through this book, to attract more researchers into this important and
interesting, yet relatively unexplored field of applied mathematics and scientific
computing.

Madison, WI, USA Shi Jin
Ferrara, Italy Lorenzo Pareschi
July 2017
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The Stochastic Finite Volume Method

Rémi Abgrall and Svetlana Tokareva

Abstract We give the general principle of the Stochastic Finite Volume method
and show its versatility by many examples from standard ODE to fluid problems.
We derive the error estimates for the mean and variance resulting from the SFVM
and show that the convergence rates of the statistical quantities are equivalent to the
convergence rates of the deterministic solution. We propose the anisotropic choice
of the mesh nodes for high-dimensional stochastic parameter spaces and analyze the
efficiency of the anisotropic stochastic mesh adaptation algorithm.

We finally generalize the SFVM approach and apply the DG discretization on the
unstructured triangular grids in the physical space. We demonstrate the efficiency
and the scaling of the implemented methods on various numerical tests.

1 Introduction

1.1 Deterministic Scalar Hyperbolic Conservation Laws

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation or balance laws. As examples for these equations, we mention
only the Shallow Water Equations of hydrology, the Euler Equations for inviscid,
compressible flow and the Magnetohydrodynamic (MHD) equations of plasma
physics, see, e.g. [10, 15].

The simplest example for a system of hyperbolic conservation laws is the Cauchy
problem for the scalar (single) conservation law:

@u

@t
C

dX

jD1

@

@xj
. fj.u// D 0; x D .x1; : : : ; xd/ 2 R

d; t > 0 (1)
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2 R. Abgrall and S. Tokareva

augmented by the initial data

u.x; 0/ D u0.x/; x 2 R
d: (2)

Here the unknown is u W Rd 7! R and fj is the flux function in the j-th dimension.
Solutions of (1)–(2) develop discontinuities in finite time even when the initial

data u0.x/ is smooth and must be interpreted in the weak sense (e.g. [10, 15, 16, 32]).

1.2 Stochastic Conservation Laws

Many efficient numerical methods have been developed to approximate the entropy
solutions of systems of conservation laws [15, 21], e.g. finite volume or discontin-
uous Galerkin methods. The classical assumption in designing efficient numerical
methods is that the initial data U0 is known exactly. However, in many situations
of practical interest, these data are not known exactly due to inherent uncertainty in
modelling and measurements of physical parameters. In the present work, we follow
[25] and describe incomplete information in the uncertain data mathematically as
random fields. Such data are described in terms of statistical quantities of interest
like the mean, variance, higher statistical moments; in some cases the distribution
law of the stochastic data is also assumed to be known.

A mathematical framework of random entropy solutions for scalar conservation
laws with random initial data has been developed in [25]. There, existence and
uniqueness of random entropy solutions has been shown for scalar hyperbolic
conservation laws, also in multiple dimensions. Furthermore, the existence of the
statistical quantities of the random entropy solution such as the statistical mean
and k-point spatio-temporal correlation functions under suitable assumptions on the
random initial data have been proven. The existence and uniqueness of the random
entropy solutions for scalar conservation laws with random fluxes has been proven
in [27].

Numerical methods for uncertainty quantification in hyperbolic conservation
laws have been proposed and studied recently in e.g. [2, 8, 17, 22, 23, 25, 26, 29, 35,
36].

1.3 Random Fields and Probability Spaces

We introduce a probability space .˝;F ;P/, with ˝ being the set of all elementary
events, or space of outcomes, and F a �-algebra of all possible events, equipped
with a probability measure P. Random entropy solutions are random functions
taking values in a function space; to this end, let .E;G ;G/ denote any measurable
space. Then an E-valued random variable is any mapping Y W ˝ ! E such that
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8A 2 G the preimage Y�1.A/ D f! 2 ˝ W Y.!/ 2 Ag 2 F , i.e. such that Y is a
G -measurable mapping from˝ into E.

We confine ourselves to the case that E is a complete metric space; then
.E;B.E// equipped with a Borel �-algebra B.E/ is a measurable space. By
definition, E-valued random variables Y W ˝ ! E are

�
E;B.E/

�
measurable.

Furthermore, if E is a separable Banach space with norm kıkE and with topological
dual E�, then B.E/ is the smallest �-algebra of subsets of E containing all sets

fx 2 E W '.x/ < ˛g; ' 2 E�; ˛ 2 R :

Hence, if E is a separable Banach space, Y W ˝ ! E is an E-valued random variable
if and only if for every ' 2 E�, ! 7! '

�
Y.!/

� 2 R is an R-valued random variable.
Moreover, there hold the following results on existence and uniqueness [25].

For a simple E-valued random variable Y and for any B 2 F we set

Z

B

Y.!/P.d!/ D
Z

B

Y dP D
NX

iD1
xiP.Ai \ B/: (3)

For such Y.!/ and all B 2 F holds

���
Z

B

Y.!/P.d!/
���
E
6
Z

B

kY.!/kE P.d!/: (4)

For any random variable Y W ˝ ! E which is Bochner integrable, there exists a
sequence fYmgm2N of simple random variables such that, for all ! 2 ˝; kY.!/ �
Ym.!/kE ! 0 as m ! 1. Therefore (3) and (4) can be extended to any E-valued
random variable. We denote the expectation of Y by

EŒY� D
Z

˝

Y.!/P.d!/ D lim
m!1

Z

˝

Ym.!/P.d!/ 2 E:

Denote by Lp.˝;F ;PIE/ for 1 6 p 61 the Bochner space of all p-summable,
E-valued random variables Y and equip it with the norm

kYkLp.˝IE/ D
�
EŒkYkpE �

�1=p D
0

@
Z

˝

kY.!/kpE P.d!/
1

A
1=p

:

For p D 1 we can denote by L1.˝;F ;PIE/ the set of all E-valued random
variables which are essentially bounded and equip this space with the norm

kYkL1.˝IE/ D ess sup
!2˝
kY.!/kE:
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2 General Framework

2.1 General Principles

Assume a deterministic problem is written as

L .u/ D 0; (5)

defined in a domain K � R
d with boundary conditions, and if needed initial condi-

tions. Since the discussion of this section is formal, we include different initial and
boundary conditions of the problem in the symbol L . Let the operator L depend in
some way on parameters ( for example, considering fluids, in the equation of state,
or the parameter of a turbulent model), that in many cases are not known exactly.
Hence we assume that they are random variables defined on some random space˝ ,
and that these random variables are measurable with respect to a measure d� defined
on ˝ . Hence our problem can formally be seen as a “stochastic” PDE of the type

L .u;X/ D 0; (6)

defined in a domain K � R
d, subject to initial and boundary conditions, and where

X is a random variable defined on ˝ . For simplicity, we use the same notation L
for the problem. The operator L depends on u � u.x; t;X/ and X � X.!/ where
x 2 R

s for s 2 f1; 2; 3g and t 2 R
C are respectively the space coordinate and time,

and the random event (or random parameter) ! belongs to ˝ . In the case of steady
problems, the time is omitted. The random variable may also depend on space and
time, as well as the measure�, and the technique in principle can be extended to this
case but the discussion is beyond the scope of this chapter for simplicity of exposure.

We will identify ˝ to some subset of R
s, s being the number of random

parameters to define X. Thus we can also see (6) as a problem defined on a subset
K � R

d of dimension d D sC p.
For any realization of ˝ , we are able to solve the following deterministic form

of (6) in space and time, by some numerical method:

Lh.uh;X.!// D 0: (7)

In order to approximate a solution of (6), the first step is to discretize the probability
space ˝ . We construct a partition of ˝ , i.e. a set of ˝j, j D 1; : : : ;N that are
mutually independent

P.˝i \˝j/ D 0 for any i ¤ j (8)

and that cover˝

˝ D [N
iD1˝i: (9)
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We assume � .˝i/ D
R
˝j
d� > 0 for any i. We wish to approximate the solution of

(6) by the average conditional expectancies E.uhj˝j/

E
�
uh j ˝j

� D
R
˝j
uhdP

R
˝j
dP

(10)

from the knowledge of the operator Lh and thanks to a reconstruction procedure
inspired from the methods for high order finite volume methods: ENO, WENO, etc.
This idea, initially developed in [2], will be detailed in Sects. 3 and 4 for the finite
volume method on Cartesian and unstructured meshes, but can be used for ODEs as
in [3] as we show now by an example.

Remark Depending on the context, the described method will either be named as
semi intrusive (SI) (since very few modifications of an existing code need to be
done), or stochastic finite volume (SFV) method since in essence the conditional
expectancies can also be seen as integrals over a stochastic finite volume.

2.2 A First Example: The Kraichnan-Orszag Three-Mode
Problem

The Kraichnan-Orszag three-mode problem has been introduced by Kraichnan [19]
and Orszag [28]. It has been intensively studied to demonstrate that gPC expansion
could suffer from accuracy loss for problems involving long time integration. In
[37], the exact solution is given, and different computations have been performed in
[7, 11, 13, 24, 37, 38]. This problem is defined by the following system of nonlinear
ordinary differential equations

dy1
dt
D y1y3;

dy2
dt
D �y2y3;

dy3
dt
D �y21 C y22

(11)

subject to stochastic initial conditions

y1.0/ D y1.0I!/; y2.0/ D y2.0I!/; y3.0/ D y3.0I!/: (12)

In the literature, generally uniform distributions are considered, except in [38] where
beta and Gaussian distributions are also taken into account. The computational
cost of our SI/SFV method for the Kraichnan-Orszag problem is compared to that
of other methods, a quasi-random Sobol (MC-SOBOL) sequence with 8 � 106
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iterations, and a Polynomial Chaos Method (PC) with Clenshaw-Curtis sparse grid.
The error in variance of y1 is considered at a final time tf of 50. We define the error
between two numerically integrated functions f1

�
tj
�

and f2
�
tj
�
, j D 1; � � � ; nt, as:

"L2 D
1
nt

qPnt
jD1

�
f1
�
tj
� � f2

�
tj
��2

1
nt

qPnt
jD1

�
f1
�
tj
��2 ; (13)

where f1 is considered the Monte Carlo converged solution. For different error
levels, corresponding computational cost is computed.

2.2.1 One Random Variable

First, we will study the 1D problem corresponding to initial conditions of the form

y1.0/ D 1:0; y2.0/ D 0:1!; y3.0/ D 0:0; (14)

where ! is a uniformly distributed random variable varying in Œ�1; 1�. We use SI,
MC-SOBOL and PC method to compute the variance of y1. In Table 1, we show
the results in terms of number of samples required to reach a prescribed error "L2 .
Performances of SI methods are comparable and even better than PC methods.

Then, the same problem described previously but with a different probability
distribution for y2.0/ has been considered. In particular, ! is discontinuous on
Œa; b� D Œ�1; 1� with probability density function (pdf) defined by:

f .�/ D 1

M
�

8
ˆ̂̂
<

ˆ̂̂
:

1C cos.�x/

2
if x 2 Œ�1; 0�

10C 1C cos.�x/

2
if x 2 Œ0; 1�

0 else

(15)

and M D 11
2

to ensure normalization. Because of the discontinuous pdf, only MC-
SOBOL and SI solutions can be compared, showing the great flexibility given by SI
method with respect to the form of the pdf. In Fig. 1, variance of y1.t/ is reported for
the converged solutions obtained with MC-SOBOL and SI. The SI method permits
to reproduce exactly MC-SOBOL solution. In Fig. 2, a convergence study for SI
method is reported by using an increasing number of points in the stochastic space.
In Table 2, we reported number of samples required to reach a prescribed error "L2 .
SI method shows to be very competitive in terms of efficiency and computational

Table 1 Number of samples
required for the 1D K-O
problem for time t 2 Œ0; 10�

Error level "L2 MC-SOBOL PC SI

10�1 20 12 5

10�2 240 19 10

10�3 2200 23 20
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t

σ2
(y

1)

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

MC-SOBOL
SI 1000

Fig. 1 Variance of y1 computed by means of SI and MC-SOBOL methods (Reproduced with
permission from [3])

t

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SI 250
SI 500
SI 1000

σ2
(y

1)

Fig. 2 Variance of y1 computed by means of SI for different meshes in the stochastic space
(Reproduced with permission from [3])
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Table 2 Number of samples
required for the
1D-discontinuous K-O
problem for time t 2 Œ0; 50�

Error level "L2 MC-SOBOL SI

10�1 35 7

10�2 250 160

10�3 2500 900

t

0 10 20 30 40 50

0

0.05

0.1

0.15

MC-SOBOL
SI 320x320

σ2
(y

1)

Fig. 3 Variance of y1 computed by means of SI and MC-SOBOL methods (Reproduced with
permission from [3])

cost with respect to MC-SOBOL method when whatever form of pdf is used (a
discontinuous pdf in this case). We remark that a uniform grid is used in the
stochastic plan without any type of adaptation. This displays the great potentiality
of this method if coupled with an adaptive method.

2.2.2 Two Random Variables

In this section, we use SI method to study the Kraichnan-Orszag problem with two-
dimensional random inputs:

y1.0/ D 1:0; y2.0/ D 0:1!1; y3.0/ D !2; (16)

where !1 is discontinuous on Œa; b� D Œ�1; 1� with a density defined by Eq. (15) and
!2 is a uniform random variable in Œ�1; 1�.

In Fig. 3, the SI capability to reproduce exactly MC-SOBOL solution is rep-
resented. SI and MC-SOBOL solutions are nearly coincident also for long time
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t

0 10 20 30 40 50

0

0.05

0.1

0.15

SI 40x40
SI 80x80
SI 160x160
SI 320x320

σ2
(y

1)

Fig. 4 Variance of y1 computed by means of SI for different meshes in the stochastic space
(Reproduced with permission from [3])

Table 3 Number of samples
required for the
2D-discontinuous K-O
problem for time t 2 Œ0; 50�

Error level "L2 MC-SOBOL SI

10�1 160 81

10�2 10;000 2500

10�3 300;000 102;400

(t D 50). The mesh convergence study in the stochastic space for SI is reported
in Fig. 4 showing that the solution obtained with a mesh of 320 � 320 is well
converged. In Table 3 computational cost required to reach a prescribed error of
"L2 is reported. Reductions from 50 to 66% are obtained using SI with respect to
MC-SOBOL solutions.

3 Stochastic Finite Volume Method on Cartesian Grids

In this chapter, we concentrate on the analysis of the stochastic hyperbolic conser-
vation laws with random initial data and flux coefficients. Many efficient numerical
methods have been developed to approximate the entropy solutions of systems of
conservation laws [15, 21], however, in many practical applications it is not always
possible to obtain exact data due to, for example, measurement or modeling errors.
We describe incomplete information in the conservation law mathematically as
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random fields. Such data are described in terms of statistical quantities of interest
like the mean, variance, higher statistical moments; in some cases the distribution
law of the stochastic initial data is also assumed to be known. There exist several
techniques to quantify the uncertainty (i.e. determine the mean flow and its statistical
moments), such as the Monte-Carlo (MC), the Multi-Level Monte Carlo (MLMC)
and Stochastic Galerkin method, see [17, 22, 23, 25, 26, 29, 35, 36]. Here we analyse
a different approach to the uncertainty quantification in the conservation laws, the
Stochastic Finite Volume Method (SFVM), which is based on the finite volume
framework and was first introduced in [2, 8]. The SFVM is formulated to solve
numerically the system of conservation laws with sources of randomness in both
flux coefficients and initial data.

Consider the hyperbolic system of conservation laws with random flux coeffi-
cients

@U
@t
Crx � F.U; !/ D 0; t > 0I (17)

x D .x1; x2; x3/ 2 Dx � R
3, U D Œu1; : : : ; up�>, F D ŒF1;F2;F3�, Fk D

Œf1; : : : ; fp�>, k D 1; 2; 3, and random initial data

U.x; 0; !/ D U0.x; !/; ! 2 ˝: (18)

A mathematical framework of random entropy solutions for scalar conservation
laws has been developed in [25]. There, existence and uniqueness of random entropy
solutions to (17)–(18) has been shown for scalar conservation laws, also in multiple
dimensions. Furthermore, the existence of the statistical quantities of the random
entropy solution such as the statistical mean and k-point spatio-temporal correlation
functions under suitable assumptions on the random initial data have been proven.

3.1 Stochastic Finite Volume Method

We parametrize all the random inputs in Eqs. (17)–(18) using the random variable
y D Y.!/ which takes values in Dy � R

q and rewrite the stochastic conservation
law in the parametric form:

@tUCrx � F.U; y/ D 0; x 2 Dx � R
3; y 2 Dy � R

q; t > 0I (19)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (20)

Let Tx D [Nx
iD1Ki

x be the triangulation of the computational domain Dx in the

physical space and Cy D [Ny

jD1Kj
y be the Cartesian grid in the domain Dy of the

parametrized probability space.
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We further assume the existence of the probability density function �.y/ and
compute the expectation of the n-th solution component of the conservation law
(19)–(20) as follows:

EŒun� D
Z

Dy

un�.y/ dy; n D 1; : : : ; p

The scheme of the Stochastic Finite Volume method (SFVM), see e.g. [34], can
be obtained from the integral form of Eqs. (19)–(20):

“

K
j
y Ki

x

@tU�.y/ dxdyC
“

K
j
y Ki

x

rx � F.U; y/ �.y/ dxdyD 0:

Introducing the cell average

NUij.t/ D 1

jKi
xjjKj

yj
“

K
j
y Ki

x

U.x; t; y/�.y/ dxdy

with the cell volumes

jKi
xj D

Z

Ki
x

dx; jKj
yj D

Z

K
j
y

�.y/ dy

and performing the partial integration over Ki
x we get

d NUij

dt
C 1

jKi
xjjKj

yj
Z

K
j
y

� Z

K
i
x

F.U; y/ � n dS
�
�.y/ dy D 0

Next, we use any standard numerical flux approximation OF� QUL.x; t; y/; QUR.x; t; y/; y
�

to replace the discontinuous flux through the element interface F.U; y/ � n. Here
QUL;R denote the boundary extrapolated solution values at the edge of the cell Ki

x,
obtained by the high order reconstruction from the cell averages. The complete
numerical flux is then approximated by a suitable quadrature rule as

NFij.t/ D 1

jKj
yj
Z

K
j
y

� Z

K
i
x

OF. QUL; QUR; y/
�
�.y/ dy � 1

jKj
yj
X

m

OF .t; ym/�.ym/wm;

(21)
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where we have denoted the flux integral over the physical cell as OF , m D
.m1; : : : ;mq/ is the multi-index, ym and wm are quadrature nodes and weights,
respectively.

The SFV method then results in the solution of the following ODE system:

d NUij

dt
C 1

jKi
xj
NFij.t/ D 0; (22)

for all i D 1; : : : ;Nx; j D 1; : : : ;Ny. Therefore, to obtain the high-order scheme we
first need to provide the high-order flux approximation based, for example, on the
ENO/WENO reconstruction in the physical space. Second, we have to guarantee
the high-order integration in (21) also by applying the ENO/WENO reconstruction
in the stochastic space and choosing the suitable quadrature rule. Finally, we need
the high-order time-stepping algorithm to solve the ODE system (22), such as
Runge-Kutta method.

3.2 Numerical Convergence Analysis

We perform the convergence analysis of the SFVM for a simple linear advection
equation with uncertain phase initial condition

ut C aux D 0; x 2 .0; 1/;
u.x; 0/ D sin

�
2�
�
xC 0:1Y.!/�� :

The random variable y D Y.!/ is assumed to be distributed uniformly on Œ0; 1�.
The reference solution in this and other experiments of this chapter involving

convergence analysis has been computed exactly using the method of characteris-
tics.

In Figs. 5 and 6, we plot the L1.0; 1/ error for the expectation and the variance
of u with respect to the mesh size and the computational time. We investigate the
influence of different reconstruction orders in spatial and stochastic variables on the
convergence rates and therefore present the convergence plots for the SFVM based
on different combinations of ENO/WENO reconstruction in x and y. We compare
the SFVM with 1st, 2nd and 3rd order of accuracy in physical space combined with
3rd and 5th order reconstruction in stochastic variable. The type of reconstruction is
indicated in Figs. 5 and 6 as follows: for example, the line “SFV-x2y5” corresponds
to the 2nd order piecewise-linear ENO reconstruction in x and 5th order piecewise-
quadratic WENO reconstruction in y, the line “SFV-x3y5” stands for 3rd order
piecewise-linear WENO reconstruction in x with 5th order WENO reconstruction
in y, etc. The numerical flux used in all the numerical experiments of this paper is
the Rusanov flux. The results show that, while the convergence rate is dominated by
the order of accuracy in x, the algorithms with higher order reconstruction in y are
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more efficient computationally since the same error can be reached with less overall
computational time as compared to the lower order reconstruction in y.

3.3 Numerical Results

3.3.1 Buckley-Leverett Equation

As a second example for a scalar conservation law, we consider the Buckley-
Leverette equation with random flux:

@u

@t
C @f .!I u/

@x
D 0; x 2 .0;L/; t > 0I (23)

u.x; 0/ D u0.x/; (24)
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where

f .!I u/ D u2

u2 C ˛.!/.1 � u/2

and ˛ D ˛.!/ is the random variable with known distribution. Assume further that
u0.x/ is the Riemann initial data, that is

u0.x/ D
(
uL; if x < x0;

uR; if x > x0:

Note that the Buckley-Leverette equation models water flooding in a one-
dimensional petroleum reservoir and the above introduction of uncertainty reflects
the inherent uncertainty in measuring the relative permeability. We apply the
Stochastic Finite Volume method to solve (23)–(24) with L D 2:5, x0 D 1:0,
uL D 0:8, uR D 0:3 and uniformly distributed ˛.!/. The computational results for
two different distributions of ˛.!/ are presented in Figs. 7 and 8. The solution mean
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Fig. 7 Convergence w.r.t. resolution (upper left) and computational time (upper right) of the
Stochastic Finite Volume method and solution mean (lower) for Buckley-Leverett equation with
random flux, ˛.!/ � U Œ0:05; 0:15�
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random flux, ˛.!/ � U Œ0:8; 1:2�

is complicated on account of the formation of a compound shock. Furthermore,
increasing the order of the spatio-temporal discretization does lead to a better
approximation of the solution. Note that increasing the order does not imply an
increase in the convergence rate as the solution is discontinuous.

3.3.2 Stochastic Sod’s Shock Tube Problem with Random Initial Data

Consider the Riemann problem for the Euler equations

@U
@t
C @F.U/

@x
D 0; x 2 .0; 2/; (25)

U.x; 0; y/ D U0.x; y/ D
(
UL; x < Y.!/I
UR; x > Y.!/;

(26)
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Fig. 9 Sod’s shock tube problem with random shock location: density (left) and velocity (right)
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Fig. 10 Sod’s shock tube problem with random shock location: pressure

with y D Y.!/; ! 2 ˝ and

U D Œ�; �u;E�>; F D Œ�u; �u2 C p; �u.EC p/�>:

The initial data is set in primitive variables as

W0.x; !/ D Œ�0.x; !/; u0.x; !/; p0.x; !/�> D
(
Œ1:0; 0:0; 1:0� if x < Y.!/;

Œ0:125; 0:0; 0:1� if x > Y.!/:

We apply the SFV method to solve the system (25)–(26) with Y.!/ uniformly
distributed on Œ0:95; 1:05�. We have used the 3rd order WENO reconstruction in both
x and y variables. The results are presented in Figs. 9 and 10, in which the solution
mean (solid line) as well as mean plus/minus standard deviation (dashed lines) are
shown. The typical deterministic solution of the Sod’s shock tube problem with the
given initial conditions consists of the left-traveling rarefaction wave and the right-
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traveling shock wave separated by the contact discontinuity. However, a continuous
transition between the intermediate states instead of the discontinuities is observed
in the mean flow. This effect is unrelated to the diffusion of the numerical scheme
and is due to the smoothing properties of the probabilistic shock profile [31].

3.3.3 Stochastic Sod’s Shock Tube Problem with Random Flux and Initial
Data

Consider the Riemann problem for the one-dimensional Euler equations with
randomness in both flux and initial data

@U
@t
C @F.U; !/

@x
D 0; x 2 .0; 2/; (27)

U.x; 0; !/ D U0
�
x;Y1.!/;Y2.!/

� D
(
UL
�
Y2.!/

�
; x < Y1.!/I

UR; x > Y1.!/;
(28)

with yj D Yj.!/; j D 1; 2; 3; ! 2 ˝ and

U D Œ�; �u;E�>; F D Œ�u; �u2 C p; �u.EC p/�>;

p D .� � 1/
�
E � 1

2
�u2

�
:

We also assume the randomness in the adiabatic constant, � D �
�
Y3.!/

�
, and

therefore

F.U; !/ D F
�
U;Y3.!/

�
:

The initial data is set in primitive variables as

W0.x; !/ D Œ�0.x; !/; u0.x; !/; p0.x; !/�>

D
(
Œ1:0; 0:0; 1:0� if x < Y1.!/;

Œ0:125C 0:5 Y2; 0:0; 0:1� if x > Y1.!/:

We apply the SFVM to solve the system (27)–(28) with Y1.!/ � U Œ0:95; 1:05�,
Y2.!/ � U Œ�0:1; 0:1�, Y3.!/ � U Œ1:2; 1:6� using the 3rd order WENO
reconstruction in both physical and stochastic variables. The results are presented in
Figs. 11 and 12, in which the solution mean (solid line) as well as mean plus/minus
standard deviation (dashed lines) are plotted.

The convergence results (dependence of the error on the number of mesh points
and on the computational time) for the solution mean are presented in Fig. 13. Due
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to the shock formation in the path-wise solution the maximum order of convergence
for the mean is limited to 1.

3.4 Adaptive Parametrization of the Stochastic Space for
SFVM

In this section we introduce the mesh adaptation technique for the Stochastic
Collocation FVM and apply it to reduce the computational cost of the Stochastic
Finite Volume method. To this end, we consider the following model problem:

@u

@t
C @f .u; !/

@x
D 0; x 2 D D Œ0;L� � R; t > 0I (29)

u.x; 0; !/ D u0.x; !/; x 2 D; ! 2 ˝: (30)

Assume that the initial data is given as the Karhunen-Loève expansion:

u0.x; !/ D Nu0.x/C
X

j>1
Yj.!/

q
�j˚j.x/; (31)

where ˚j.x/ and �j are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel:

Z

D

CY .x1; x2/˚.x1/ dx1 D �˚.x2/:

We can therefore choose the random variable to parametrize the stochastic
conservation law as y D .y1; y2; : : : / D Y.!/ D �Y1.!/;Y2.!/; : : :

�
, then

u0.x; !/ D u0.x; y/
ˇ̌
ˇ
yDY.!/

D Nu0.x/C
X

j>1
yj
q
�j˚j.x/;

The adaptation technique remains absolutely the same in the case of SCL with
random fluxes, e.g. when the flux has the form

f .uI!/ D Nf .u/C
X

j>1
Yj.!/

q
�j˚j.u/;

where ˚j.u/ and �j are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel:

Z

D

CY.u1; u2/˚.u1/ du1 D �˚.u2/:
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Let u0.x; !/ be the Gaussian process with exponential covariance [14]

CY.x1; x2/ D �2Ye�jx1�x2j=	;

then

�j D 2	�2Y
	2w2j C 1

; ˚j.x/ D 1q
.	2w2j C 1/L=2C 	

Œ	wj cos.wjx/C sin.wjx/�;

where wj are the roots of

.	2w2 � 1/ sin.wL/ D 2	w cos.wL/

and

Yj � N .0; 1/; EŒYj Yk� D ıjk
We next consider the Burgers’ equation with following initial conditions:

u0.x; y/ D sin.�x/C 0:1x.x � L/
� qX

jD1
yj
q
�j˚j.x/

�

In order to reduce the computational cost of the SFV method, we propose the
mesh adaptation in the stochastic space based on the choice of the number of nodes
in each of the stochastic coordinates according to

Nj
y D C Nx

q
�j: (32)

Table 4 lists the convergence rates of the SFVM with adaptive meshing algo-
rithm, for the s-th order in the physical variable and pj-th order in the stochastic
variables.

Table 4 Convergence rates of the SFVM with anisotropic stochastic
mesh

Nx s D 1; pj D 1

4 –

8 1.100440

16 3.056992

32 0.741016

Nx s D 1; pj D 5

4 –

8 1.212217

16 3.024343

32 0.724594

Nx s D 2; pj D 2

4 –

8 1.408558

16 2.638068

32 2.723459

Nx s D 3; pj D 3

4 –

8 1.458768

16 2.553230

32 2.900257

Nx s D 3; pj D 5

4 –

8 1.558384

16 2.478849

32 2.817779

Nx s D 5; pj D 5

4 –

8 1.746105

16 2.204640

32 3.619253
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Figure 14 shows the convergence of the adaptive SFVM algorithm (“SFV adapt”)
and the SFVM without stochastic mesh adaptation (“SFV noadapt”). The non-
adaptive version of the SFVM simply uses equal number of cells in each stochastic
coordinate, while the adaptive version chooses the number of cells in each yj
according to (32). The computational time needed to perform both algorithms is
shown in Fig. 15. Clearly, the proposed adaptation of the algorithm improves the
convergence properties of the SFV method.

3.5 Efficiency of the SFVM

We compare the efficiencies of the SFV and MLMC methods [25, 26] for the
solution of the one-dimensional stochastic Sod’s problem for the Euler equations
described in Sect. 3.3.3. Figure 16 illustrates the convergence of SFVM and MLMC
based on 1st and 2nd order FV ENO/WENO solvers.
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Figure 16 demonstrates that both approaches lead to the same orders of conver-
gence in space while SFVM with properly chosen reconstruction orders appears
to be more efficient in terms of error-to-work estimates. Moreover, the solution
mean generated by the MLMC method contains spurious oscillations which do
not disappear by physical mesh refinement, while the SFVM produces monotone
statistical solution at the same level of stochastic resolution.

3.6 SFVM Error Estimates for the Statistical Solution

3.7 Estimates in L1-Norm

Consider the stochastic scalar conservation law in the parametric form

@u

@t
C @f .uI y/

@x
D 0; x 2 D; y 2 Y; t > 0; (33)

u.x; 0I y/ D u0.xI y/: (34)
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Let Y D
NyS
kD1

Yk, where Yk is the mesh cell in the stochastic variable y. Denote the

probability density function by �.y/.
Assume u D u.x; tI y/ is the exact solution to (33)–(34) and unik is its approxi-

mation at a fixed time moment t D tn, resulting from SFVM. Denote uh D funikg.
Assume further that the following error estimate holds:

ku � uhkL1.D�Y/ 6 C1
x
p C C2
y

r; (35)

where 
x and 
y are typical mesh sizes in the physical and stochastic coordinates,
respectively. Note that the error analysis for the L1-norm applies to the case of
smooth solutions; in the presence of shocks one should consider L1-norm instead.

3.7.1 Error Estimate for the Mean EhŒuh�

We have:

Lemma 1 The mean value of the exact solution at the point .xi; tn/ is

EŒu�.xi; t
n/ D

Z

Y

u.xi; t
nI y/�. y/ dy; (36)

and the corresponding SFVM approximation is computed as follows:

EhŒuh�
n
i D

NyX

kD1
unik!k; !k D

Z

Yk

�. y/ dy: (37)

Then

��EŒu� � EhŒuh�
��
L1.D/ 6 ku � uhkL1.D�Y/: (38)

Proof

ˇ̌
EŒu�.xi; t

n/� EhŒuh�
n
i

ˇ̌ D
ˇ̌
ˇ̌
Z

Y

u.xi; t
nI y/�. y/ dy�

X

k

unik!k

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌X

k

Z

Yk

u.xi; t
nI y/�.y/dy�

X

k

unik

Z

Yk

�.y/dy

ˇ̌
ˇ̌D
ˇ̌
ˇ̌X

k

Z

Yk

	
u.xi; t

nI y/�unik


�.y/dy

ˇ̌
ˇ̌
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6
X

k

Z

Yk

ˇ̌
u.xi; t

nI y/� unik
ˇ̌
�.y/dy 6 sup

Yk

ˇ̌
u.xi; t

nI y/� unik
ˇ̌X

k

Z

Yk

�. y/ dy

D sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌ Z

Y

�. y/ dy D sup
Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌
; (39)

and

��EŒu� � EhŒuh�
��
L1.D/

6 ku � uhkL1.D�Y/:

3.7.2 Error Estimate for the Variance VhŒuh�

We have

Lemma 2 The variance of the exact solution at .xi; tn/ is equal to

VŒu�.xi; t
n/ D E

	�
u.xi; t

n/�EŒu�.xi; tn/
�2
 D E

	
u2.xi; t

n/

� �EŒu�.xi; tn/

�2
(40)

and is approximated by

VhŒuh�
n
i D Eh

	
u2h

n
i
� �EhŒuh�

n
i

�2
: (41)

Then

��VŒu� � VhŒuh�
��
L1.D/

6 Cku � uhkL1.D�Y/: (42)

Proof The approximation error for the variance can be computed as

��VŒu� � VhŒuh�
��
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��E
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 � �EŒu��2 � Eh

	
u2h

C �EhŒuh�

�2��
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��E
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�2��
L1.D/

: (43)

We can estimate the first term as
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E
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p
�. y/
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nI y/C unik

p
�. y/ dy
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6
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ˇ̌X

k

�Z

Yk

	
u.xi; t

nI y/� unik

2
�. y/ dy
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�
�Z
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u.xi; t

nI y/C unik

2
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ˇ̌

6 C

ˇ̌
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k
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2
�. y/ dy
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X

k

�Z
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ˇ̌
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nI y/� unik
ˇ̌2
�. y/ dy
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6 C sup
Yk

ˇ̌
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nI y/� unik
ˇ̌� Z

Y

�. y/ dy

�1=2
D C sup

Yk

ˇ̌
u.xi; t

nI y/ � unik
ˇ̌
; (44)

and hence

��EŒu2� � EhŒu
2
h�
��
L1.D/

6 Cku � uhkL1.D�Y/: (45)

For the second term we have

���EŒu�.xi; tn/
�2 � �EhŒuh�

n
i

�2��
L1.D/

D ���EŒu�.xi; tn/� EhŒuh�
n
i

��
EŒu�.xi; t

n/C EhŒuh�
n
i

���
L1.D/

6
��EŒu�.xi; tn/ � EhŒuh�

n
i

��
L1.D/

��EŒu�.xi; tn/C EhŒuh�
n
i

��
L1.D/

6 C
��EŒu�.xi; tn/� EhŒuh�

n
i

��
L1.D/

6 Cku � uhkL1.D�Y/: (46)

Finally,
��VŒu� � VhŒuh�

��
L1.D/

6 Cku � uhkL1.D�Y/:

Analogous estimates can be obtained for higher moments.
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3.8 Estimates in L1-Norm

Denote by u the exact solution of (33), by uyh the numerical solution which is exact in
x variable and discretized in y and by uxyh the numerical discretized in both variables.
Assume that the numerical solution converges with rate p in x variable and rate r in
y variable, that is

kuyh � uxyh kL1.D/ 6 C1
x
p 8y 2 Y: (47)

ku � uyhkL1. Y/ 6 C2
y
r 8x 2 D; (48)

The next estimate follows immediately from this assumption:

ku � uxyh kL1.D�Y/ 6 C1
x
p C C2
y

r: (49)

3.8.1 Convergence of EhŒuxyh � in L1-Norm

We have

Lemma 3 The expected value of the exact solution is a deterministic function

EŒu�.xi; t
n/ D

Z

Y

u.xi; t
nI y/�. y/ dy; (50)

and the approximation of the expectation of the numerical solution is, as before,
equal to

EhŒu
xy
h �

n
i D

NyX

kD1
unik!k D

NyX

kD1
unik

Z

Yk

�. y/ dy D
NyX

kD1

Z

Yk

unik �. y/ dy

D
Z

Y

unik �. y/ dy D EŒuxyh �.xi; t
n/: (51)

Then

��EŒu� � EŒuxyh �
��
L1.D/

6 C1
x
p C C2
y

r: (52)

Proof

��EŒu� � EŒuxyh �
��
L1.D/
D ��EŒu� � EŒuyh�C EŒuyh� � EŒuxyh �

��
L1.D/

6
��EŒu� � EŒuyh�

��
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��
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Z

D

Z

Y
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The first integral in (53) can be estimated as follows:

Z

D

Z

Y

ju � uyhj�. y/ dydx 6
Z

D

sup
Y
�. y/

Z

Y

ju � uyhj dydx

D Cku � uyhkL1. Y/ 6 C
yr; (54)

and for the second integral we have

Z

D

Z

Y

juyh � uxyh j�. y/ dydx D
Z

Y

h Z

D

juyh � uxyh j dx
i
�. y/ dy

D kuyh � uxyh kL1.D/
Z

Y

�. y/ dy D kuyh � uxyh kL1.D/ 6 C
xp: (55)

Hence, the convergence rate of the expectation in L1-norm can be estimated as

��EŒu� � EŒuxyh �
��
L1.D/

6 C1
x
p C C2
y

r:

3.8.2 Convergence of VhŒuxyh � in L1-Norm

We have:

Lemma 4 The variance of the exact solution at .xi; tn/ is equal to

VŒu�.xi; t
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	�
u.xi; t

n/�EŒu�.xi; tn/
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; (56)

and can be approximated as
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2

n
i �

�
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n
i
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n
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Then

��VŒu� �VŒuxyh �
��
L1.D/ 6 C1
x

p C C2
y
r: (58)

Proof
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C ���EŒu��2 � �EŒuxyh �

�2��
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: (59)

The following estimate holds for the first integral in (59):
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xp C C7
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For the second integral in (59) we get

���EŒu�
�2 � �EŒuxyh �

�2��
L1.D/
D
Z

D

ˇ̌�
EŒu�

�2 � �EŒuxyh �
�2ˇ̌

dx D

D
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ˇ̌
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ˇ̌ˇ̌
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dx 6

6 C
��EŒu� � EŒuxyh �
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6 C1
x
p C C2
y
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Finally, from (60)–(61) we get

��VŒu� �VŒuxyh �
��
L1.D/

6 C1
x
p C C2
y

r:

Similar estimates are also valid for higher moments of u.
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3.9 Error vs Work Estimates for SFVM

In the previous section it has been shown that the error of the expectation
approximation is given by

E D ��EŒu� � EŒuxyh �
��
L1.D/

6 C1
x
p C C2
y

r; (62)

where p and r are the convergence rates of the SFVM solver in physical and
stochastic variables, respectively. Based on this result, we derive the error vs work
estimates for SFVM.

Let x 2 R
n, y 2 R

m. Assume that the CFL condition is satisfied, such that

t D O.
x/. The total work W (or total time) required to compute the solution
of the stochastic scalar conservation law using SFVM is proportional to the total
numbers of grid points in x, y and t axes, denoted respectively by Nx, Ny and Nt, i.e.

W D CNxNyNt D C
1


xn
1


ym
1


t
D C


xnC1
ym
D C
x�.nC1/
y�m: (63)

Further derivation of the estimate depends on the choice of the mesh sizes
equilibration, that is, on the relation between 
x and 
y.

1. Assume that the mesh sizes are equilibrated according to the expected orders
of convergence p and r: 
y D 
xp=r. Then E D C
xp and 
x D CE1=p.
Substituting these relations into Eq. (63) we get

W D C
x�.nC1/
x�pm=r D C
x�.nC1Cpm=r/ D CE� nC1Cpm=r
p (64)

and hence

E D CW� p
nC1Cpm=r ; (65)

which is the desired error vs work estimated.
2. Assume now that the mesh size 
y is obtained by the following scaling: 
y D
	
x, where 	 is the constant scaling factor, meaning that the stochastic mesh
is isotropic (same 
y for all random variables). Define q D min.p; r/. Then
E D C
xq and
x D CE1=q, and the total work is defined as

W D C
x�.nC1/
y�m D C
x�.nCmC1/ D CE� nCmC1
q ; (66)

which finally gives

E D CW� q
nCmC1 : (67)

Note that the estimate (67) is equivalent to the complexity result for the
deterministic finite-volume method in the .n C m/-dimensional space, which
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sets strict limitations on the number of random variables that can be handled
by the SFVM if the scaling factor 	 is close to 1. However, computational
practice shows that it is sufficient to use few computational cells to discretize the
equations in the stochastic space to obtain a good quality approximation of the
statistical quantities and therefore the SFVM is essentially much more efficient
as deterministic FVM. Another significant simplification of the approach is the
absence of the fluxes in the stochastic variables y, which also contributes to the
efficiency of the SFVM.

3. Assume that the stochastic mesh is anisotropic, that is the mesh sizes 
yk are
different for k D 1; : : : ;m: 
yk D 	k
x. Applying the same technique as above
we obtain

E D C1
xCC2

mX

kD1

yrk D C1
xCC2
x

r
mX

kD1
	rk 6 C
xq

�
1C

mX

kD1
	rk
�
; (68)

where q D min.p; r/ as before. We have also assumed that 
x << 1 such that

xp < 
xq and 
xr < 
xq. Then the mesh size 
x can be represented as


x D
 

E

1C
mP

kD1
	rk

!1=q
: (69)

The total work is

W D C
� mY

kD1
	�1
k

�

x�.nCmC1/ D C

� mY

kD1
	�1
k

� E

1C
mP

kD1
	rk

!�.nCmC1/=q
;

(70)
and the resulting error vs work estimate is

E D C
�
1C

mX

kD1
	rk
�� mY

kD1
	

� q
nCmC1

k

�
W� q

nCmC1 : (71)

Note that in the isotropic case, when all 	k D 	 D const, formula (71) results
in

E D C.1C m	r/ 	� qm
nCmC1 W� q

nCmC1 : (72)

Comparing (71) and (72) we notice that the proper choice of scaling factors
	k in the anisotropic stochastic mesh construction, while not affecting the
convergence rates, can reduce the convergence constant, which means increasing
computational efficiency. The choice of 	k should be based on the sensitivity
analysis of the random entropy solution to each of the m random variables.
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Let us demonstrate the efficiency provided by the anisotropic mesh adaptation.
We compare the convergence constants:

Ci D .1C m	r/ 	� qm
nCmC1 (73)

for the isotropic mesh with equal mesh sizes in all stochastic coordinates,
yk D
	
x, k D 1; : : : ;m, and

Ca D
�
1C

mX

kD1
	rk
� mY

kD1
	

� q
nCmC1

k (74)

for the anisotropic stochastic mesh with mesh size scaling according to 
yk D
	k
x, k D 1; : : : ;m. Assume further that 	1 > 	2 > : : : 	m and 	k > 1 for all k,
such that 
yk > 
x.

Our goal is to show that the convergence constants ratio ım D Ci

Ca
> 1 as

m!1 if 	1 < 	 and r > q, that is, the anisotropic stochastic mesh increases the
algorithm efficiency as the number of random variables grows if the convergence
rate r in the stochastic space is higher than q, the minimum of the convergence
rates in physical and stochastic coordinates.

We start by noting that under the assumption 	1 < 	 the following inequality
is valid:

Ca D
�
1C

mX

kD1
	rk
� mY

kD1
	

� q
nCmC1

k < .1C m	r1/	
� qm

nCmC1

1 D C1a; (75)

and therefore

ım D Ci

Ca
>

Ci

C1a
D .1Cm	r/ 	� qm

nCmC1

.1C m	r1/	
� qm

nCmC1

1

D
�
1C m	r

1C m	r1

��
	

	1

�� qm
nCmC1

: (76)

Hence, the limit of the constants ratio is

ı D lim
m!1 ım D

�
	

	1

�r�q

; (77)

and clearly ı > 1 if r > q.
Let’s analyse in more detail the possible values of ı in dependence on the

convergence rates p and r in x and y variables, respectively.

Smooth Solution If the solution is smooth in x and y, then the convergence rate
of the SFVM is the expected one, therefore by applying high-order finite-volume
approximations in both variables one can obtain the full convergence rates p and
r.

• If p < r, then q D min.p; r/ D p and r � q D r � p > 0, ı > 1 and hence the
SFVM will converge faster on anisotropic stochastic mesh.
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• If p > r, then q D min.p; r/ D p and r � q D r � p < 0, ı < 1, therefore the
anisotropic mesh doesn’t improve the convergence.

Shock Solution Recall that if the shock wave appears in the physical space,
then it also propagates into the stochastic space, so that the solution becomes
discontinuous in both x and y. In this case one typically has p D 1=2

according to the Kuznetsov’s result [20] and r D 1 as shown in [27], therefore

q D min.p; r/ D 1=2 and ı D
q

	

	1
> 1. This means that the SFVM on

anisotropic mesh in the stochastic space is more efficient than SFVM on the
uniform mesh even if the solution has a shock.

3.10 Anisotropic Mesh Adaptation for Euler Equations

We reconsider the stochastic Sod’s shock tube problem and apply the anisotropic
stochastic mesh adaptation which is similar to the one proposed for the scalar
conservation laws with Karhunen-Loève flux (or initial data) expansion. Clearly,
such an expansion is not available for the realistic systems of conservation laws like
the Euler equations since the flux function and the random variables are pre-defined.
However, it is possible to scale the random variables according to their influence on
the random solution based on empirical considerations.

For the stochastic version of Sod’s shock tube problem studied above, one can
see that the uncertainty in the � flux coefficient is practically unimportant (but
not negligible) for the statistical solution, while the uncertain initial discontinuity
location as well as random density amplitude being most important. Therefore we
propose the following scaling for the number of cells in the stochastic coordinates:
Ni
y D CNx�i, where we take C D 1=32 and �1 D 3 (random shock location),�2 D 2

(random density amplitude) and �3 D 1 (random � ).
Figures 17, 18 and 19 demonstrate the convergence for the density for the 1st,

3rd and 5th order WENO reconstruction in stochastic coordinates yk, k D 1; 2; 3,
respectively. Each of the plots contains the results for 1st, 3rd and 5th order WENO
reconstruction in the physical coordinate x. The results are presented for both
adaptive and non-adaptive meshes in the stochastic space and clearly show the
superior efficiency of the adaptive SFVM algorithm.

3.11 Numerical Approximation of the Probability Density
Function for the Random Solution of Euler Equations

The advantage of the SFV method is the possibility to construct the empirical proba-
bility density functions (statistical histograms) after only one run since the complete
information about the random solution is generated (that is, its approximation as a
function of x and yk is provided).
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Fig. 17 Adaptive vs non-adaptive mesh, 1st order WENO in yk , k D 1; 2; 3
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Fig. 18 Adaptive vs non-adaptive mesh, 3rd order WENO in yk, k D 1; 2; 3
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Fig. 19 Adaptive vs non-adaptive mesh, 5th order WENO in yk , k D 1; 2; 3
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Fig. 20 Density distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location
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Fig. 21 Velocity distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location

We demonstrate the performance of SFVM for the approximation of the proba-
bility density functions for the solution of the stochastic Sod’s shock tube problem.
To this end, we solve the problem using the SFVM with 5th order WENO
reconstruction in x and yk, k D 1; 2; 3 for two cases: (1) with one uniformly
distributed random variable for shock location, x0 � U Œ0:75; 1:25�; (2) with three
random variables on the anisotropic mesh (see previous section), and plot the
distribution histograms at x D 0:5 (rarefaction wave) and at x D 2 (shock wave).
The number of bins to plot the diagrams is chosen according to

• square-root choice: k D Œ
p
n �, if the total number of grid points is small

(practically, less than 30, like in case (1)),
• Sturges’ formula [33]: k D Œlog2 nC 1�, otherwise.

The corresponding histograms are presented in Figs. 20, 21, and 22 for one
random variable and in Figs. 23, 24, and 25 for three random variables. For
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Fig. 22 Pressure distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location
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Fig. 23 Density distribution at x D 0:5 (left) and x D 2 (right). Random initial discontinuity
location, density amplitude and �

comparison, each of the plots contains the histograms for the exact solution of
the problem with fine resolution in the stochastic space. The computed probability
density functions indicate the bimodal character of gas parameter distributions in
the stochastic Sod’s problem.
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4 Stochastic Finite Volume Method on Unstructured Grids

4.1 Mixed DG/FV Formulation for the Stochastic
Conservation Law in Multiple Dimensions

In this section we generalize the approach to uncertainty quantification described
previously in order to efficiently apply high-order approximation techniques on
unstructured grid in physical domains with complicated geometry. To this end,
we use the Discontinuous Galerkin (DG) method to discretize the equations in the
physical space and combine it with the finite-volume discretization in the stochastic
variables as described in Sect. 3. Note that we can still use Cartesian grids in the
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stochastic space since the computational domain in this space is a q-dimensional
rectangle.

As before, we start with the parametric form of the stochastic conservation law:

@U
@t
Crx � F.U; y/ D 0; x 2 Dx � R

3; y 2 Dy � R
q; t > 0I (78)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (79)

Let Tx D [Nx
iD1Ki

x be the triangulation of the computational domain Dx in

the physical space and Cy D [Ny

jD1Kj
y be the Cartesian grid in the domain Dy of

the parametrized probability space. On each element Ki
x of the physical domain

triangulation we apply the DG discretization of solution in the physical variable x,
that is, on each element of the triangulation we choose a system of basis functions
f'l.x/g, l D 1; : : : ; p, and represent the numerical solution as the decomposition
over the chosen basis

Uh.x; t; y/ D
pX

lD1
Ui

l.t; y/'l.x/; x 2 Ki
x; (80)

with the coefficients Ul.t; y/ to be determined. Next, according to the DG dis-
cretization procedure, we multiply the governing Eqs. (78)–(79) to each of the basis
functions 'k, k D 1; : : : ; p and integrate the result over the element Ki

x. Application
of the Gauss’ theorem to the volume integral yields the following semi-discrete DG
formulation 8k D 1; : : : ; p:

pX

lD1
@tUi

l.t; y/
Z

Ki
x

'l.x/'k.x/ dxC
Z

@Ki
x

F.Uh; y/ � n'k.x/ dx�

�
Z

Ki
x

F.Uh; y/r'k.x/ dx D 0: (81)

pX

lD1
Ui

l.0; y/
Z

Ki
x

'l.x/'k.x/ dx D
Z

Ki
x

U0.x; y/'k.x/ dx: (82)

The physical flux F.Uh; y/ � n is in general discontinuous across the cell boundary
and therefore needs to be replaced by any standard numerical flux approximation
OF.Uint

h ;U
ext
h ; y/ depending on two boundary extrapolated solution values Uint

h and
Uext

h (inside and outside of the cell, respectively) Note that at this stage the DG
coefficients Ui

l.t; y/ are still functions of the random variable y and time t and thus
to get rid of this dependence we introduce the DG coefficients averaged over an
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element of the stochastic grid

Uij
l .t/ D

1

jKj
yj
Z

K
j
y

Ui
l.t; y/ �.y/ dy

and apply the finite-volume discretization over each cell Kj
y in the random variable,

which leads to

pX

lD1

Z

K
j
y

�
@tUi

l.t; y/
Z

Ki
x

'l.x/'k.x/ dx
�
�.y/ dyC

C
Z

K
j
y

� Z

@Ki
x

OF.Uint
h ;U

ext
h ; y/ 'k.x/ dx

�
�.y/ dy�

�
Z

K
j
y

� Z

Ki
x

F.Uh; y/r'k.x/ dx
�
�.y/ dy D 0; k D 1; : : : ; p: (83)

Finally, the resulting scheme becomes

pX

lD1

dUij
l .t/

dt

Z

Ki
x

'l.x/'k.x/ dxC 1

jKj
yj
“

K
j
y@Ki

x

OF.Uint
h ;U

ext
h ; y/ 'k.x/ �.y/dxdy�

� 1

jKj
yj
“

K
j
yKi

x

F.Uh; y/r'k.x/ �.y/dxdy D 0; k D 1; : : : ; p: (84)

The initial data for Uij
l .t/ is obtained similarly: for k D 1; : : : ; p

pX

lD1
Uij

l .0/

Z

Ki
x

'l.x/'k.x/ dx D 1

jKj
yj
“

K
j
yKi

x

U0.x; y/'k.x/ �.y/dxdy: (85)

Equations (84)–(85) form an ODE system with respect to the coefficients Uij
l .t/

which can be solved using the Runge-Kutta method of the appropriate order. The
slope limiting procedure has to be applied at each intermediate stage of the Runge-
Kutta method in order to ensure the stability of the resulting DG scheme. This is
done using the algorithm proposed in [9].
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4.2 Numerical Results

4.2.1 Stochastic Cloud-Shock Interaction Problem (Random Flux)

Consider the two-dimensional Euler equations with deterministic initial data

Œ�0; u0; v0; p0� D
(
Œ3:86859; 11:2536; 0; 167:345�; if x1 < 0:05;

Œ1; 0; 0; 1�; if x1 > 0:05;

and a high-density cloud lying to the right of the shock:

�0 D 10; if
p
.x1 � 0:25/2 C .x2 � 0:5/2 6 0:15:

Assume the random � D �.!/ in the equation of state (EOS)

p D .�.!/� 1/
�
E � 1

2
�.u2 C v2/

�
;

�.!/ � U
�
5=3� �; 5=3C ��; � D 0:1

The results of the simulation are presented in Fig. 26. In our computations we
have used the 2nd order DG method in x variable and 3rd order WENO method in y
variable, triangular mesh in x consisting of about 170,000 cells and Cartesian mesh
in y consisting of 16 cells. Note that no symmetry conditions have been imposed on
the mesh. The results are plotted at T D 0:06.

log10 of density variancedensity mean

1

1.5

4.5

7.5
10.5

13.5
16.5
19.5

22.5
25.5

28.5
31.5

rho

0.80.60.40.20
0

0.2

0.4

0.6

0.8

1

X
2

X1
1

–2
–1.6
–1.2

–0.8
–0.4
0
0.4

0.8
1.2

1.6

2

0.80.60.40.20
0

0.2

0.4

0.6

0.8

1

X
2

X1

rho

Fig. 26 Stochastic cloud-shock interaction problem (Reproduced with permission from [34])
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4.2.2 Forward-Facing Step Channel

Consider the stochastic flow in the channel with the forward facing step with random
Mach number of the inflowing gas: M � U .2:9; 3:1/. We have used the mesh of
about 13,000 triangular cells in the physical space and 15 equally-sized cells in
the stochastic space, the methods used are 2nd order DG and 3rd order WENO in
physical and random variables, respectively. The results of the simulation are given
in Fig. 27, indicating that the uncertainty in the Mach number influences the position
and intensity of shock in front of the step, while having little effect on the shocks
reflected from the channel walls.

4.2.3 Stochastic Cloud-Shock Interaction Problem (Random IC)

We use the mesh adaptation approach similar to the one described in Sect. 3.4 to
solve the stochastic cloud-shock interaction problem with initial data depending
on four random variables. Note that the usage of non-adaptive algorithm for such
simulation would lead to excessive computational cost of SFVM.

Consider the two-dimensional Euler equations with deterministic initial data

W0 D
(
Œ3:86859C 0:1Y2.!/; 11:2536; 0; 167:345�; if x1 < 0:04C 0:01Y1.!/;
Œ1; 0; 0; 1�; if x1 > 0:04C 0:01Y1.!/;

with a high-density cloud to the right of the shock:

�0 D 10C 0:5Y3.!/; if
p
.x1 � 0:25/2 C .x2 � 0:5/2 6 0:15C 0:02Y4.!/:

The equations are closed by the following deterministic EOS: p D .� � 1/
�
E �

1
2
�.u2Cv2/

�
, � D 5=3. The random variables in the initial condition are uniformly

distributed on Œ0; 1�: Yk � U Œ0; 1�; k D 1; : : : ; 4:
We use the 2nd order DG in x variable and 3rd order WENO in y variable,

triangular mesh in x (170,000 cells) and adaptive Cartesian mesh in y (3 �2 �7 �11 D
462 cells), the output time is T D 0:06. The results of this simulation are illustrated
in Fig. 28.

4.2.4 Flow Past a Cylinder

We have applied the SDGFV method for the simulation of the stochastic flow
around a cylinder which is modeled by the Navier-Stokes equations. For this
study we have chosen one random variable random variables: Y0 � U Œ�1; 1�
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Fig. 27 Stochastic flow in a forward-facing step channel (Reproduced with permission from [34])
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Fig. 28 Stochastic cloud-shock interaction problem (Reproduced with permission from [34])

describing the uncertainty in the Reynolds number. The free-stream flow parameters
are following:

• Angle of attack (degrees): ˛ D 0
• Mach number: M D 0:1
• Reynolds number: Re D 2000:0C 500:0 Y0.!/
Note that the difference of 500 in Reynolds numbers corresponds to the difference
in speeds of about 5m/s which in turn leads to the fluctuation of Mach numbers of
only 5% which is negligible compared to 25% fluctuation of the Reynolds number.
Therefore the reduction of the number of random variables to one in this simulation
appears to be reasonable.

The results of the computations (mean, variance and deterministic distribution of
Mach numbers) are presented in Fig. 29. For this simulation we again use the 2nd
order DG in x variable and 3rd order WENO method in y variable, the computations
are performed on a physical mesh consisting of 6434 triangular cells and a Cartesian
mesh in stochastic space consisting of 16 elements, the output time is T D 18:0.

4.2.5 Flow Around NACA0012 Airfoil

We next study the stochastic transonic flow around the NACA0012 wing profile. The
flow is modeled by the system of Euler equations with uncertainty in the free-stream
parameters:

• Angle of attack (degrees): ˛ D 1:25C 0:05 Y0.!/
• Mach number: M D 0:8C 0:05 Y1.!/
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Fig. 29 Flow around a cylinder. Mach number contour lines
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Fig. 30 Inviscid transonic flow around NACA0012 airfoil. Mach number contour lines

The random variables Y0 and Y1 are uniformly distributed: Y0;Y1 � U Œ�1; 1�. The
results of this simulation are presented in Figs. 30, 31, and 32. We use the 2nd order
DG in x variable and 3rd order WENO method in y variable, triangular mesh in x
consisting of 92,023 elements and two-dimensional Cartesian mesh in y consisting
of 64 elements, the output time is T D 10:0. In Fig. 30, the contour lines illustrate
the mean value and variance of the Mach number as well as its deterministic values
around the wing profile. Clearly, two shock waves are present in the deterministic
run: one on the lower and one on the upper surface of the profile (see Fig. 31
for the distribution of the pressure coefficients). These shock waves however are
smoothed in the mean flow, which is in accordance with the results of [31]. Finally,
the approximations of the probability density functions for the distribution of the
drag and lift coefficients are given in Fig. 32.
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4.2.6 Flow Around NACA23012 Airfoil with Flap

We run the NACA23012 airfoil simulation with the following parameters:
Random variables: Y0;Y1 � U Œ�1; 1�.
Free-stream flow parameters:

• Angle of attack (degrees): ˛ D 8:0C 0:5 Y0.!/
• Flap deflection angle (degrees): ˛f D 30
• Mach number: M D 0:1C 0:015 Y1.!/
• Reynolds number: Re D 2100000:0C 300000:0 Y1.!/
• Prandtl number: Pr D 0:72
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Fig. 33 Flow around NACA23012 airfoil with flap. Mach number contour lines

In order to run this simulation we adapt the stochastic mesh as follows: we take
N0y D 3 cells in the stochastic coordinate Y0 and N1y D 6 cells in the coordinate Y1.
The adaptation is based on a simple argument that the range of random angles of
attack makes about 6% of its mean value (0:5=8 D 0:0625) and the range of both
random Mach and Reynolds numbers makes 15% of the mean value, which results in
double number of cells. This simulation has been performed on a triangular physical
mesh of 17,418 cells, the numerical methods used are 2nd order DG in physical
variables and 1st order FV in stochastic variables. The results of the simulation at
time is T D 1:0 are presented in Fig. 33.
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4.2.7 Flow Around RAE2822 Airfoil

Finally, we perform the stochastic simulation of the flow around the RAE2822
airfoil. The setup of the deterministic problem is the following.

• Angle of attack (degrees): ˛1 D 2:31
• Mach number: M1 D 0:729
• Reynolds number: Re1 D 6:5 � 106

The random parameters are modeled by means of the Beta distribution on
Œ yL; yR�:

B. y; a; b/ D 1

B.a; b/
. y � yL/

a�1. yR � y/b�1. yR � yL/
�.aCb�1/

In this simulation, we assume that the angle of attach and the Mach numbers are
random variables defined by

• ˛1.!/ � B.y; a; b/ with a D b D 4, yL D 0:98˛1, yR D 1:02˛1
• M1.!/ � B.y; a; b/ with a D b D 4, yL D 0:95M1, yR D 1:05M1

We use the 2nd order DG method in x and 3rd order WENO reconstruction in y,
triangular mesh in x (258,476 elements) and 2D Cartesian mesh in y (64 elements).
The results of the simulation are presented in Fig. 34.

4.3 Parallel Algorithm and Parallel Efficiency of the SFVM

In the previous section we have presented a number of simulations of stochastic
flows performed with the SFV method. Clearly, simulations with high-order meth-
ods involving complicated geometries and flow phenomena are computationally
intensive even in the deterministic case and become much more costly in the
presence of uncertainly. Therefore all of the described algorithms have been
implemented in parallel using the Message Passing Interface (MPI) library. The
basic parallelization principle used is the domain decomposition method which
is applied in both physical space (on unstructured grid) and stochastic space
(on Cartesian grid). The DG method used to approximate the random solution
in the physical space allows to keep the approximation stencil compact. On the
unstructured triangular mesh the compact consists of four triangles regardless of the
order of the method. Therefore, the number of the mesh elements which need to
exchange information between the processors is relatively small compared to the
total number of elements in one subdomain.

In order to obtain partition of complicated computational domains we use the
METIS library. A typical partition generated by METIS is presented in Fig. 35.
Here, different colours indicate different subdomains.
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Fig. 34 Flow around RAE2822 airfoil

Table 5 lists the computational time per two timesteps, the speedup of the
algorithm and efficiency with respect to the number of cores, for the simulation of
the transonic flow around NACA0012 airfoil described in the previous section. The
physical mesh consists of approximately 90,000 triangles and the stochastic mesh
has 8� 8 elements. The corresponding plot of the algorithm speedup is presented in
Fig. 36.

Therefore, the SFV method can be efficiently parallelized and used for uncer-
tainty quantification in multidimensional systems of conservation laws on compli-
cated physical domains with unstructured meshes.
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Fig. 35 Partition generated by METIS

Table 5 Parallel efficiency
of SFVM

N Time (s) Speedup Efficiency (%)

1 2663:99 1 100

2 1353:34 1:97 98:42

4 632:71 4:21 105:26

8 334:44 7:97 99:57

16 166:84 15:97 99:8

32 84:88 31:39 98:08

64 48:02 55:47 86:68

128 26:31 101:26 79:11

5 Other Applications

Thanks to its flexibility, this method has several other applications.

5.1 Nozzle Flow with Shock

The steady shocked flow in a convergent-divergent nozzle is taken into account with
a fixed (deterministic) geometry:

A.x/ D

1C 6.x � 1

2
/2 for 0 < x 6 1

2

1C 2.x � 1
2
/2 for 1

2
< x 6 1

(86)
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Fig. 36 Algorithm speedup

The outlet pressure (subsonic outlet flow with pe D 1:6529 bar) is chosen in order
to have a compression shock in the divergent part of the nozzle, exactly located at
x D 0:75. For the other boundary conditions a subsonic inlet flow with a stagnation
pressure p0 D 2 bar and a stagnation temperature T0 D 300K are considered.
The mean of � is 1.4. Two test cases are considered. First, an uncertain heat
coefficient ratio � is assumed. The random parameter! D � varies within the range
Œ1:33; 1:47�, following various choices of pdf (uniform and discontinuous) described
below. In the second test-case, two-uncertainties stochastic problem is solved where
� follows a discontinuous pdf and the subsonic outlet flow varies uniformly within
the range Œ1:6529˙ 0:98; 1:6529˙ 1:02�.

The random parameter ! (defining either the heat ratio or the subsonic outlet
flow) ranges between !min and !max; the interval Œ!min; !max� is mapped onto Œa; b�
by a linear transformation and the pdf on Œa; b� is either:

• uniform with ! 2 Œa; b� D Œ0; 1�,
• discontinuous on Œa; b� D Œ0; 1� with a density defined by:

f .�/ D 1

M
�

8
ˆ̂̂
<

ˆ̂̂
:

1C cos.�x/

2
if x 2 Œ0:5; 1�

10C 1C cos.�x/

2
if x 2 Œ0; 0:5�

0 else

(87)

and M D 11
2

to ensure normalization.

Different stochastic methods are used to compute statistic solutions of the
supersonic nozzle. Different pdf are used for � , i.e. uniform in order to compare
MC-SOBOL, PC and SI, and the discontinuous pdf (87) in order to compare MC-
SOBOL and SI and to demonstrate the flexibility offered by the SI method. After
a study on the grid convergence, the 1D physical space is divided in 201 points
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(with the normalized geometric domain that varies from 0 to 1). A preliminary
convergence study with respect to the stochastic estimation has been realized, by
using an increasing refinement of the probabilistic space discretization in the case
of the SI method, and an increasing polynomial order in the case of PC method.
The probabilistic space discretization varies from 5 to 160 points (5, 10, 20, 40, 80,
160), while the polynomial order varies from 2 to 100. Next, the stochastic solutions
are compared by computing the mean and the variance of the Mach number and
pressure distributions along the nozzle using various choices of pdf for � . Finally,
a comparison in terms of computational cost is performed by computing error �L2
with respect to x.

In Fig. 37, the mean solutions of Mach number and the pressure along the 1D
nozzle are reported, where the mean stochastic solutions are computed with the
SI method using 10 points in the probabilistic space and the PC method using a
10th order polynomial, with � described by a uniform pdf (� varying between 1:33
and 1:47). As it can be observed in Fig. 37, the mean flow is characterized by an
isentropic region of increasing speed or Mach number between x D 0 and the mean
shock location in the divergent (the flow becoming supersonic at the nozzle throat
located at x D 0:5), followed by a subsonic flow behind the shock with decreasing
speed. The mean solutions computed by the two UQ methods are coincident. Next,
the standard deviation of the Mach number is computed along the nozzle by using
different refinement levels for the probabilistic space in the case of the SI method
and different polynomial orders in the case of the PC method, always keeping a
uniform pdf for � . In Table 6, the number of samples required to reach a prescribed
error "L2 is reported for each strategy. We observe that SI method demands fewer
points in the stochastic space for a given level of error.

Next, a discontinuous pdf is considered for the stochastic � . It is interesting to
note the innovative contribution the SI method can bring with respect to the PC
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Table 6 Number of samples
required for the 1-uncertainty
nozzle problem, uniform pdf

Error level "L2 MC-SOBOL PC SI

10�1 5 6 5

10�2 24 19 10

10�3 70 59 40
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Fig. 38 Nozzle flow with uncertain � (discontinuous pdf). Convergence study for the standard
deviation on the Mach number distribution computed using the SI method

method (in its classical version). To this end, in Fig. 38 the standard deviation of
Mach number is reported along the nozzle when the discontinuous pdf (87) is
considered. Note that choosing (87) to describe the random variable � introduces no
change whatsoever in the application of the SI method (while the PC method can no
longer be used). The standard deviation of the Mach number distribution computed
for this discontinuous pdf is plotted in Fig. 38 for several levels of discretization
refinement in the probabilistic space: here again the result can be considered as
almost converged with no more than a 40-point discretization and fully converged
with a 80-point discretization. In Fig. 39, the standard deviation of the Mach number
is reported along the nozzle for the discontinuous pdf by using SI and MC-SOBOL
methods. The standard deviation distributions computed by means of SI and MC-
SOBOL are coincident, even for the maximal standard deviation. The stochastic
estimation remains globally very similar for the newly proposed SI approach and
the well-established MC-SOBOL method, which allows to validate the SI method
results for the case of a discontinuous pdf on � . Let us estimate the respective
computational cost of SI, MC-SOBOL for this case. In Table 7, the number of
samples required to reach a prescribed error for �L2 is reported for SI and MC-
SOBOL methods. A drastic reduction of the computational cost is obtained by using
SI methods with respect to MC-SOBOL solutions.

Next, a two-uncertainties stochastic problem is considered by assuming a
discontinuous pdf for � and a uniform pdf for pe. In Fig. 40, the standard deviation
of the Mach is reported along the nozzle for SI and MC-SOBOL. The standard
deviation distributions computed by means of SI and MC-SOBOL are coincident.
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Fig. 39 Nozzle flow with uncertain � (discontinuous pdf). Standard deviation for the Mach
number distribution for MC-SOBOL and SI methods. Left: global view; right: close-up on the
shock region

Table 7 Number of samples
required for the 1-uncertainty
nozzle problem,
discontinuous pdf

Error level "L2 MC-SOBOL SI

10�1 4 5

10�2 42 20

10�3 250 40
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Fig. 40 Nozzle flow with uncertain � (discontinuous pdf) and pe (uniform pdf). Standard deviation
for the Mach number distribution for MC-SOBOL and SI methods. Left: global view; right: close-
up on the shock region

As shown in Table 8, SI method allows strongly reducing the computational cost
until six times with respect to MC-SOBOL method.
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Table 8 Number of samples
required for the
2-uncertainties nozzle
problem, discontinuous pdf

Error level "L2 MC-SOBOL SI

10�1 35 25

10�2 1000 400

10�3 20,000 3600
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Fig. 41 RAE 2822 airfoil computed with a stochastic residual distribution method

5.2 Application with Other Schemes

The use of the SI/SFV method is not restricted to finite volume or discontinuous
Galerkin schemes, but it is indeed very general. To show this we give the example
of the residual distribution schemes of [1, 4] which can be seen as continuous finite
element methods with non linear stabilisation. Starting from a deterministic method,
one can again write the scheme for any random event and take a conditional average
on any of the stochastic finite volume, in exactly the same spirit as it is sketched in
Sect. 2. Consider for example the flow around RAE 2886 airfoil, with free-stream
Mach number M1 D 0:8 and velocity U1 which is given with 2% of fluctuation
with uniform or centered Gaussian law. The results are presented in Fig. 41. Again,
we see that using approximately five cells in the stochastic direction is enough.
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5.3 Overcoming the Curse of Dimensionality

In Sect. 3, the cost of the method has been analysed, and we see exponential
growth with respect to the number of random variables. In order to (partially)
tackle this problem, a technique issued from the Multi Resolution Analysis of A.
Harten [18] has been proposed. The idea is to use multi-resolution analysis in the
stochastic dimensions. This technique allows to store only the needed information to
reconstruct the random variables, leading potentially to important saving in memory,
to the price of added complexity. One can consult [6, 12] for more details.

5.4 Applications for Multiphase Flows

Because of the flexibility of the method, the same technique has been used in
multiphase simulation. In [30], a discrete equation method [5] for the simulation
of compressible multiphase flows including real-gas effects is coupled to the SI
algorithm, using a complex equation of state for both phases. This method is applied
to the computational study on the occurrence of rarefaction shock waves (RSW) in a
two-phase shock tube with dense vapors of complex organic fluids. Previous studies
have shown that a RSW is relatively weak in a single-phase (vapor) configuration,
its occurrence and intensity are investigated considering the influence of the initial
volume fraction, initial conditions and the thermodynamic model.

6 Conclusions

We have presented the scheme of the Stochastic Finite Volume method (SFVM)
and demonstrated the efficiency of the Karhunen–Loève-based adaptation algorithm
to construct the anisotropic mesh in the stochastic space. Several application of
this generic method has been proposed, from simple ODEs to the fluid mechanics
equations. The error estimates for SFVM have been derived. The extension of the
SFVM for the DG approximation in the physical space has been proposed. Various
numerical examples demonstrating the efficiency and robustness of the implemented
algorithms have been presented.

The SFV method studied in this paper appears to be a flexible and effective
approach to the solution of stochastic conservation laws. We have shown that the
SFV method it is applicable for the uncertainty quantification in a variety of complex
problems including systems of conservation laws with random flux coefficients and
initial data. The proper adaptation of the stochastic grid significantly reduces the
computational cost of the method and improves its convergence.
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Uncertainty Modeling and Propagation
in Linear Kinetic Equations

Guillaume Bal, Wenjia Jing, and Olivier Pinaud

Abstract This paper reviews recent work in two complementary aspects of uncer-
tainty quantification of linear kinetic models. First, we review the modeling of
uncertainties in linear kinetic equations as high frequency limits of models for
wave propagations in heterogeneous media. Second, we analyze the propagation
of stochasticity from the constitutive coefficients to the solutions of linear kinetic
equations. Such uncertainty quantifications find many important applications, e.g.
in physics-based modeling of errors in inverse problems measurement.

1 Introduction

Uncertainties in measurements of interest come from a very broad spectrum of
reasons. One such component arises from the propagation of uncertainty in the
constitutive coefficients of a differential equation to the solutions of said equation.
Some recent results obtained in the context of elliptic equations were summarized in
the review [4]. Here, we consider such a propagation in the context of (phase space
linear) transport equations and summarize results obtained primarily by the authors.
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Two different propagations, occurring at physically different scales, are pre-
sented. The first one concerns the derivation of the transport equation from models
of high frequency waves propagating in heterogeneous (scattering) media. Transport
equations are deterministic models for wave field correlations (or wave field
energies) of waves propagating in heterogeneous media modeled as random media.
Their derivation may be seen as a homogenization (law of large number) result for
phase space descriptions of field-field correlations; see the review [19]. As such,
however, the field-field correlations are modeled by a deterministic equation even
though the underlying wave fields are inherently random. Characterizing the random
fluctuations (random corrections) in the field-field correlations remains a relatively
little studied subject. Section 2 present several results obtained in this direction.

Once a kinetic model has been derived, either as an approximation for the energy
of wave fields as described above or by any other means, it typically involves
constitutive coefficients, such as scattering and absorbing coefficients, that depend
on phase space variables and are typically not perfectly known. Such uncertainties
have an effect on the transport solution. Recent results obtained in this direction
are summarized in Sect. 4 after relevant material and notation on the transport
equation are presented in Sect. 3. Several results in Sect. 4 are based on moment
estimates proved in [5] for specific random models. These moment estimates are
presented in detail and generalized to a large class of sufficiently mixing coefficients
in Sect. 4.4.2.

The characterization of the random fluctuations in a transport solution is a
problem of independent interest, and allows us to quantify the uncertainty in various
functionals of the transport solution of interest. As for the elliptic case considered in
[4], we mention two additional applications. The first one pertains to the calibration
of upscaling numerical codes. We refer the reader to [8, 9] for such applications
in the context of elliptic equations. The second one concerns inverse problems. In
typical inverse problems, the reconstruction of the high frequency of the constitutive
coefficients is unaccessible from inevitably noisy measurements. Yet, such not-
reconstructed components, which we may as well model as random, have an
influence on the solutions and hence the available measurements. Uncertainty
propagation provides quantitative, physics-based, models for such an influence and
allow for more accurate reconstructions of the low frequency components of the
coefficients. For an application in the reconstruction of potentials from spectral
information, see [15].

2 Uncertainties in the Derivation of Kinetic Equations

2.1 Setting of the Problem

In the context of wave propagation in heterogeneous media, kinetic equations
generally describe quadratic quantities in the wavefield, for instance the wave
energy. They are derived in the high frequency limit, and offer therefore an
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approximate description of the propagation up to some errors due to the finiteness
of the frequency. Our goal in this section is to quantify these errors, in particular
to obtain optimal convergence estimates, and when possible to characterize the first
order corrector. We first review in Sect. 2.3 the derivation of transport models and
address the corrector analysis in Sect. 2.4.

Kinetic models can be derived for several types of waves, e.g. acoustic, elec-
tromagnetic, quantum, and elastic waves. We will focus here on acoustic waves
described by the scalar wave equation; see [47] for more general models. For p.t; x/
the wavefield, �.x/ the medium density, and �.x/ its compressibility, our starting
point is the wave equation

@2p

@t2
D �.x/�1r � �.x/�1rpC f .t; x/; x 2 R

d; t > 0; (1)

supplemented with initial conditions p.t D 0; x/ and @p
@t .t D 0; x/. Above, f is

a source term and d is spatial dimension. While the large scale features of the
underlying heterogeneous medium are often known, or at least can be reconstructed,
the fine details might not be accessible and are therefore modeled by a random
medium with a given statistics. We then assume the following form for � and �:
�.x/ D �0 D 1 for simplicity (generalizations are possible), and

�.x/�1 D �0.x/�1
�
1C �0V

�
x

`c

��
:

In the latter equation, �0 is the background compressibility modeling the large scale
structure of the medium (that we recall is supposed to be known), and V accounts
for random fluctuations of strength �0 and correlation length `c, which model the
fine details. The term V is a mean zero, stationary random field with correlation
function

EfV.x/V. y/g D R.x � y/:

Above, Ef�g denotes ensemble average over the different realizations of the random
medium.

We will present the kinetic equations derived from (1) in Sect. 2.3 further.
The wave equation is often reduced to a simpler model of propagation in order
to make the mathematical analysis more amenable. This is done in the paraxial
approximation that we introduce below.

2.2 The Paraxial Regime

The main assumption in this regime is that the waves propagate along a privileged
direction, say z, and that backscattering is negligible. We then write x D .z; x?/
accordingly, for x? 2 R

d�1. We suppose moreover that �0 is constant, and introduce
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c.x/ D .�.x/�.x//�1=2 as well as c0 D .�0�0/
�1=2. We also assume that the source

f is supported in the region z < 0, and that the initial conditions vanish, that is
p.t D 0; x/ D 0 and @p

@t .t D 0; x/ D 0. For Op!.z; x?/ the Fourier transform of p with
respect to the variable t (after appropriate extension to t < 0) and with dual variable
!, we obtain the following Helmholtz equation:

@2z Op! C
x?
Op! C !2

c.x/2
Op! D 0; z > 0: (2)

For k! D !=c0, plugging the ansatz Op!.z; x?/ D eik!z !.z; x?/ in (2), where
the function  ! is assumed to vary slowly in the z variable, and neglecting as a
consequence the term @2z ! , one obtains the Schrödinger equation

ik!@z ! C
x?
 ! C �0k2!V ! D 0; z > 0: (3)

The equation is augmented with an initial condition  !.z D 0; x?/ D  0!.x?/,
that depends on the source term f . See [22, 50] for more details about the paraxial
approximation in heterogeneous media.

In the next section, we present the kinetic models obtained from asymptotics of
(1) and (3). We start with the wave equation, and continue with the Schrödinger
equation.

2.3 High Frequency Limit

2.3.1 The Wave Equation

We give here a formal derivation following the lines of [47]. Comments and
references about rigorous results are given at the end of the section. We begin with
the scalings.

We suppose here that the source term vanishes, i.e. f D 0, with non zero initial
conditions. The kinetic limit is done in the regime of weak coupling [26, 48], where
it is assumed that the strength of the fluctuations �0 is weak and that the correlation
length of the medium `c and the wavelength of the initial condition � are same
order. The stochastic homogenization case � 	 `c leads to waves propagating in
an effective medium, see [2], while the case � 
 `c leads to random Liouville
equations [17]. If L is a typical distance of propagation, we then set

`c

L
D �

L
D �20 D "
 1:

The fact that �0 D p" ensures the random medium has a non negligible effect at
the macroscopic level. We rewrite (1) to obtain the following high frequency wave
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equation:

@2p"

@t2
D c2".x/
p

"; p".t D 0; x/ D p0
�x
"

�
;

@p"

@t
.t D 0; x/ D p1

�x
"

�
;

(4)

where c".x/ D .�0�".x//�1=2 with

�".x/
�1 D �0.x/�1

�
1Cp"V

�x
"

��
:

The asymptotic analysis of (4) as " ! 0 is done by means of Wigner transforms.
We recast first the scalar wave equation as a first-order hyperbolic system on the
acoustic field u" D .v"; p"/, where v" is velocity, and obtain the following system:

�0
@v"

@t
Crp" D 0; �"

@p"

@t
Cr � v" D 0:

The system is augmented with initial conditions p".t D 0; x/ and v".t D 0; x/ D
r'".x/ where the pressure potential '" is obtained by solving


'" D ��" @p
"

@t
.t D 0; �/:

Kinetic Equations

Wigner transforms provide a phase space description of the propagation of the
wave energy, see [36, 44] for a detailed mathematical analysis of their properties.
In the high frequency limit, the wave energy satisfies transport equations whose
constitutive parameters are deduced from the sound speed c". The Wigner transform
of the field u" is defined as the following matrix-valued function,

W".t; x; k/ D 1

.2�/d

Z

Rd
ei k�y u".t; x � "y

2
/˝ u".t; xC "y

2
/ dy:

It is shown in [47] that in the limit "! 0, the expectation of the Wigner transform
EfW"g converges to a measure W admitting the following decomposition (there are
no vortical modes because of the form of the initial condition):

W.t; x; k/ D aC.t; x; k/ bC.k/˝ bC.k/C a�.t; x; k/ b�.k/˝ b�.k/;

where we have defined

b˙.k/ D 1p
2�0

� Ok
˙�0c�1

0

�
; Ok D k

jkj :
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The amplitude aC solves the radiative transfer equation below,

@aC

@t
C c0 Ok � rxa

C C˙.k/aC D Q.aC/; (5)

where Q and ˙�1 are the collision operator and the mean free time, respectively.
For ı the Dirac measure, they are given by,

Q.a/.k/ D
Z

Rd
a. p/�.k; p/ı.c0j pj � c0jkj/dp;

and

˙.k/ D
Z

Rd
�.k; p/ı.c0j pj � c0jkj/dp:

The cross section �.k; p/ appearing in these expressions is

�.k; p/ D �c20jkj2
2.2�/d

OR.k � p/;

where OR is the Fourier transform of the correlation function R with the convention

OR. p/ D
Z

Rd
e�ip�xR.x/dx:

A similar equation is obtained for a�.t; x; k/ D aC.t; x;�k/. It is interesting to
notice that the transport equation depends on the fluctuations of the random medium
only through its power spectrum OR. The amplitude aC is related to the wave energy
as follows. Defining the latter by

E ".t; x/ D 1

2

�
�".x/. p

".t; x//2 C �0jv".t; x/j2
�
;

we have

lim
"!0

EfE "g.t; x/ D
Z

Rd
aC.t; x; k/dk:

The initial condition for (5) is the limit of the Wigner transform of the initial
condition after appropriate projection, see [47].
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Rigorous Results

The main question is to justify of the convergence of W" to W, and to define in
which sense this takes place. This is a difficult matter, and up to our knowledge
there are only two references in the literature. The article [45] deals with lattice
waves, described by an equation of the form (4) with Laplacian replaced by its finite
differences approximation. Under various assumptions on the random potential V ,
it is shown that the average EfW"g converges in the distribution sense to W. The
thesis [25] concerns precisely (4). The obtained results are much stronger: it is
proved that the random process W" converges almost surely and in the distribution
sense to the deterministic W. The quantity W" is then referred to as statistically
stable, in the sense that it is weakly random for " small. Such a property is at the
core of transport-based imaging techniques in random media, see [12, 14]. Note
that the proofs presented in [45] and [25] are technically involved and based on
diagrammatic expansions.

2.3.2 The Schrödinger Equation

The analysis is somewhat simpler than in the previous case. There are many possible
scalings for (3), we present here only one and point the reader to [19] for other
regimes. We consider a semi-classical Schrödinger equation of the form

i"@z " C "2

2

x?

 " C
p
"V
� z
"
;
x?
"

�
 " D 0; z > 0; (6)

augmented with  ".z D 0; x?/ D  0" .x?/. The Wigner transform is now scalar and
given by

W".z; x?; k/ D 1

.2�/d�1

Z

Rd�1

ei k�y  ".z; x? � "y
2
/ �

" .z; x? C "y

2
/ dy:

It is then shown that EfW"g converges to W, solution to

@W

@z
C k � rx?

W C˙.k/W D Q.W/; (7)

where Q and ˙ now read

Q.W/.k/ D 1

.2�/d�1

Z

Rd�1

OR
� j pj2
2
� jkj

2

2
; p � k

�
W. p/dp

˙.k/ D 1

.2�/d�1

Z

Rd�1

OR
� j pj2
2
� jkj

2

2
; p � k

�
dp:
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In these definitions, the power spectrum OR.!; p/ is still the Fourier transform of
R.x/, written as R.x/ D R.z; x?/. The initial condition for (7) is the limit of the
Wigner transform of the initial condition  0" .

Rigorous Results

More results are available than in the case of the wave equation, see [19] for a review.
It is generally assumed that the random potential V is either a Markov process in
the z variable, or a gaussian field. With these hypotheses, the proof of convergence
follows from martingale and perturbed test functions methods, see e.g. [16, 32, 37].
The convergence holds in probability and in distribution. When V is independent of
z, the analysis is more delicate, and a proof of convergence of EfW"g can be found
in [31].

2.4 Corrector Analysis

Now that the convergence of W" to W is established, we turn to the main topic of
this section of the chapter, that is the error analysis. We are not aware of any results
about the wave equation, and concentrate therefore on the paraxial regime. The first
set of results concerns an even simpler description of the wave propagation offered
by the Itô-Schrödinger equation. In a second step, we present the results that are
available for more general models.

2.4.1 The Itô-Schrödinger Regime

In this regime, the fluctuations of the random medium in the direction of propagation
are supposed to be much faster than in the transverse plane. After an appropriate
rescaling, and based on central limit type arguments, the random potential can be
approximated (in a statistical sense) by a Brownian field. This leads to a Schrödinger
equation of the form

id " C "

2

x?

 " C  " ı dB
�
z;
x?
"

�
D 0; z > 0; (8)

where ı stands for the Stratonovich product and B is a Brownian field with
autocorrelation

EfB.z; x0?/B.z0; x? C x0?/g D min.z; z0/R0.x?/:

This is the most amenable regime for an error analysis since Itô calculus can be
used and yields closed-form equations. See [1, 33, 38] for a rigorous derivation of
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the Itô-Schrödinger equation. With W" the Wigner transform as before and W its
limit, the goal is to quantify the error W" �W as "! 0.

Full Characterization of the Corrector for a Particular Initial Condition

The following results are taken from [43]. From (8), direct calculations show that
the Wigner transform satisfies the equation

dW".z; x?; k/C k � rx?
W".z; x?; k/

D 1

.2�/d�1

Z

Rd�1

eip�x?="
�
W".z; x?; k � p

2
/ �W".z; x?; kC p

2
/
�
ı d OB.z; p/;

where OB.z; p/ is the Fourier transform of B.z; x?/ in the variable x?. Suppose that
initial Wigner transform satisfies

W".z D 0; x?; k/ D ı.x?/'.k/; (9)

where ı is the Dirac measure and ' is a smooth function, and define the corrector

Z".z; x?; k/ D W".z; x?; k/�W.z; x?; k/p
"

:

The main result of [43] characterizes the limit of Z" as follows, see therein for the
mathematical details and technical assumptions: the process Z" converges weakly
in law to a process Z solution to the radiative transfer equation

@Z.z; x?; k/
@z

Ck � rx?
Z.z; x?; k/

D 1

.2�/d�1

Z

Rd�1

OR0.k � p/ .Z.z; x?; p/� Z.z; x?; k// dp;
(10)

with initial condition

Z.0; x?; k/ D ı.x?/X.k/;

where X.k/ is a distribution valued Gaussian random variable. Its (somewhat
complex) expression can be found in [43], the main information that it yields is that
X is linear in the random potential B. The result can then be interpreted as follows:
the leading instabilities are created in a boundary layer around the initial position
z D 0, and then propagate according to the kinetic equation (10). These instabilities
are generated by the single scattering of the ballistic part of the limit W (i.e. the part
of W that propagates freely in the medium and is exponentially decreasing) by the
potential B.
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This behavior is actually not universal as we will see in the next section. Indeed,
other types of initial conditions lead to instabilities of different amplitudes and
nature.

Characterization of the Covariance of the Corrector for More General Initial
Conditions

The results presented here are taken from [11]. The error W" � W is recast as
W" � EfW"g C EfW"g � W. It is direct to see that the second piece is simply
the propagation via the radiative transfer equation of the difference between the
initial Wigner transform and its limit. We therefore focus on the first contribution
W" � EfW"g to the error that is the most interesting. We analyze the covariance of
the corrector W" � EfW"g and not the process itself, which allows us to consider
more general settings. More specifically, we introduce the scintillation function J"

defined by

J".z; x?; k; x0?; k0/ D Ef.W" � EfW"g/.z; x?; k/.W" � EfW"g/.z; x0?; k0/g:

In the Itô-Schrödinger regime, J" satisfies a closed-form equation (it does not for
other classes of potentials), that reads

� @
@z
CT2 C 2R0.0/� Q2 �K"

�
J" DK"a" ˝ a"; (11)

equipped with vanishing initial conditions J".0; x?; k; x0?; k0/ D 0 when the initial
condition of the Schrödinger equation is deterministic. Here, we have defined

a" D EfW"g
T2 D k � rx?

C p � rx0

?

Q2h D
Z

R2.d�1/

� OR0.k � p/ı.k0 � p0/C OR0.k0 � p0/ı.k � p/
�h.x?; p; x0?; p0/dpdp0

.2�/2.d�1/

K"h D
X

�i ;�jD˙1
�i�j

Z

R2.d�1/

OR0.u/ei
.x

?
�x0

?
/�u

" h
�
x?; kC �i u

2
; x0?; k0 C �j u

2

� du

.2�/d�1 :

Equation (11) is obtained by computing the fourth moment of the wave function.
Consider an initial condition of the Schrödinger equation that has the form of a
coherent state,

 0" .x?/ D 1

"
.d�1/˛
2


�x?
"˛

�
ei

x
?

�k0
" ;

where ˛ 2 Œ0; 1�,  is a smooth function with compact support, and k0 2 R
d�1 is the

direction of propagation in the transverse plane. The associated Wigner transform
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reads

W"
0.x?; k/ D 1

"d�1W0

�
x?
"˛
;
k � k0
"1�˛

�
; (12)

whereW0 is the Wigner transform of the rescaled initial condition 0"D1 with k0 D 0.
The parameter ˛ measures the concentration of the initial conditions in the spatial
variables which, according the uncertainty principle, quantifies as well for coherent
states the concentration in the momentum variables. Note that the initial condition
(9) of the previous section corresponds essentially to the case ˛ D 1.

The limit of J" as "! 0 for initial conditions of the form (12) was characterized
in [11]. We summarize here the most important points and refer the reader to [11]
for complete results and formulas. We focus on the physical case d D 3.

• The most stable case corresponds to ˛ D 0, with a scintillation of order "d�1 D
"2, while the least stable case corresponds to ˛ D 1, with a scintillation of order
". This is a somewhat intuitive result as when the support of the initial condition
 0" grows, we can expect the instabilities to be averaged over a larger domain.

• When ˛ > 1=2, the (appropriately rescaled) limit of J" satisfies a kinetic equation
of the form (11) with K" D 0 and a non vanishing initial condition. As in the
previous section, instabilities are created in a boundary layer around the initial z
position and then propagates according to a transport equation. When ˛ � 1=2,
the limit of J" still satisfies a kinetic equation of the form (11) with K" D 0, with
now a vanishing initial condition and a non zero right-hand side in (11). In the
latter configuration, instabilities are created as the wave propagates and not just
around the initial position.

• There is a transition in the nature of the corrector defined by a critical value
˛?."/ solution to the equation "2�3˛?."/ D log "2˛

?."/�1 (˛? is close to 2=3):
when ˛ < ˛?."/, the source term (when ˛ � 1=2) and the initial condition (for
˛ > 1=2) for the transport equation satisfied by the limit of J" are quadratic in
the power spectrum OR0; when ˛ > ˛?."/, the initial condition is linear in OR0. This
is an interesting result as it shows that the leading instabilities are generated by
the fraction of the wave that was scattered at most twice by the random medium.
An interpretation of this fact is that instabilities are created by the most singular
components of the wave, and since higher order scattering terms are more regular,
they lead to negligible contributions.

As a conclusion, the main factor that influences the size of the corrector and its
structure is the regularity of the initial condition, which was measured here in terms
of concentration in phase space. The instabilities satisfy transport equations driven
by either a source term or initial conditions. See [34, 35] for additional references
on scintillation analysis. In the next section, we present a few results available in
situations other than the Itô-Schrödinger regime we just considered.
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2.4.2 Other Regimes

Schrödinger Equations with an Ornstein-Uhlenbeck Potential

It is proved in [42], that as in the Itô-Schrödinger case addressed earlier, the
corrector Z" converges weakly in law to a process Z1 that has a similar structure
as the limit Z solution to (10). Namely, Z1 verifies a radiative transfer equation with
a random initial condition. The proof is more involved than [43], as now one cannot
rely on Itô calculus and one has to resort to diagrammatic expansions.

Schrödinger Equations with z-Independent Random Potentials

This case is the most difficult to study as there is not direct averaging induced by
the z component of the potential. The Wigner transform of a solution to (6) satisfies
the equation

@W".z; x?; k/
@z

C k � rx?
W".z; x?; k/

D i

.2�/d�1p"
Z

Rd�1

eip�x?="
�
W.z; x?; k � p

2
/ �W.z; x?; kC p

2
/
� OV. p/dp;

where OV is the Fourier transform of the potential V.x?/. The analysis of the
scintillation J" is considerably more difficult in this situation since it does satisfy
a closed-form equation. Motivated by the results of the previous section where it
was shown that only the single and double scattering of the wave contribute to
the instabilities in the Itô-Schrödinger regime, the terms in J" linear and quadratic
in the power spectrum OR were characterized in [13, 20]. The results are similar
to those of the Itô-Schrödinger case as the largest corrector is of order " and the
smallest of order "d�1. There is also a transition for a critical ˛ in the structure of
the instabilities.

The case of long-range correlations in the underlying random medium is
addressed in [13, 20]. This situation corresponds to a non-integrable correlation
function and is modeled by a power spectrum of the form

OR.k/ D S.k/

jkj� ; 0 < � < d:

The central observation made in [13] is that, contrary to the single scattering case
of [20] where the scintillation is approximately of order

p
" when � � d, the

scintillation of the double scattering is of order "d�ı and therefore close to one when
� � d. This indicates that correlations in the medium have a strong influence on the
size of the corrector. Determining whether or not high order scattering is statistically
stable in media with long-range correlations requires the analysis of the whole series
of W" in terms of OR and remains an open problem.
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3 Transport Equation

For the rest of the paper, we consider the following boundary value problem for the
stationary linear transport equation:

8
<̂

:̂

v � rxu.x; v/C a.x/u.x; v/ D
Z

V
k.x; v; v0/u.x; v0/dv0; .x; v/ 2 X � V;

u.x; v/ D g.x; v/; .x; v/ 2 ��:
(13)

Besides the applications in wave propagation considered in the preceding section,
such equations model the transport and scattering of particles in the spatial domain
X with velocities in V in the steady state regime. Here, X � R

d, d D 2; 3, is a
bounded convex open set with smooth boundary @X. The velocity space V is in
general a subset of Rd (typically excluding an open vicinity of 0) although only the
case V D Sd�1 (with velocities constrained to the unit sphere) is considered here for
simplicity. The particle density is prescribed on the incoming part of the boundary
which, together with the outgoing boundary, is defined as

�˙ WD f.x; v/ W x 2 @X; v 2 V; and ˙ nx � v > 0g: (14)

Here, for a point x on the spatial boundary @X, nx is the outer normal vector at the
point. In particular, the projection of �� onto its first component is precisely @X,
and given x 2 @X, the projection of �� at x onto its second component consists of
velocity vectors that point into the interior of X.

3.1 Decomposition of the Transport Solution

We review some basic theoretical results regarding the stationary linear transport
equation with vanishing data on the incoming boundary �� and with a source term
f in X:

v � rxu.x; v/C a.x/u.x; v/�
Z

V
k.x; v; v0/u.x; v/dv0 D f .x; v/: (15)

Such a situation arises naturally when differences of two solutions with the same
incoming data are concerned; see [30, Chap. XXI] and [10, 23, 27, 49] for the
detailed mathematical theory. In particular, the solution of the transport equation
can be decomposed into a ballistic part, a single scattering part and the remaining
multiple scattering part. The mathematical foundation for this decomposition can be
explained as follows. The components of the integro-differential operator involved
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in (15) can be identified as

T0� D v � rx�; A1� D a�; A2� D �
Z

V
k.x; v; v0/�.x; v0/dv0:

T1 D T0 C A1; T D T1 C A2:

An appropriate functional setting, for 1 � p � 1, involves the spaces

W p WD f� 2 Lp.X � V/; T0� 2 Lp.X � V/g;

and the following differential or integro-differential operators:

T1� D T1� T� D T�; D.T1/ D D.T/ D f� 2 W p; �j��
D 0g:

The fact that a function in W p has a trace on �˙ is proved in [27, 30].
Equation (15) is then understood as

Tu D f :

For simplicity, we restrict the problem to the so-called subcritical setting where the
constitutive coefficients .ar; k/ are assumed to satisfy:

(S1) a; k � 0 a.e. on X, a; k 2 L1.X/ and k is isotropic.
(S2) There exists ˇ > 0, such that a � �dk � ˇ a.e. on X.

Here and below, �d is the volume of the unit sphere Sd�1. When there is no
scattering, the equation reduces to T1u D f , and its solution is explicitly given
by

u.x; v/ D T�1
1 f D

Z ��.x;v/

0

E.x; x � tv/f .x � tv; v/dt;

where E is a function defined by E.x; y/ WD expf� R jx�yj
0

a.x � s x�y
jx�yj /dsg. Under

condition (S2), it is easy to verify (see e.g. [10]) that T�1
1 is a bounded linear trans-

form on Lp.X � V/, with an operator norm bounded by diam.X/ exp.�ˇdiam.X//,
where ˇ is the positive constant in (S2) and diam.X/ denotes the maximal distance
between points in X.

The problem (15) can be viewed as a “perturbation” of the non-scattering
transport. By using semi-group techniques, it is proved in [30] that T is invertible for
all 1 � p � 1. The operator norm of T�1 has an upper bound that only depends on
the parameter ˇ in (S2). Moreover, when the constitutive coefficients are random,
this bound can be made independent of ! as long as the parameter ˇ > 0 in (S2)
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can be made uniform for almost all realizations; Let

K u WD A2T�1
1 u D �

Z

V

Z ��.x;v0/

0

E.x; x � tv0/k.x; v; v0/u.x � tv0; v0/dtdv0

D �
Z

X

E.x; y/k.x; v; v0/
jx � yjd�1 u. y; v0/dy;

with v0 D .x � y/=jx� yj. Then one checks that

T�1 D T�1
1 .I CK /�1; (16)

holds in the L1 settings. This relation can be expanded to a truncated Neumann series
with controlled remainder term. More precisely, one has

T�1f D T�1
1 . f �K f CfK K f /: (17)

The term T�1
1 f corresponds to the non-scattering transport and is referred to

as the ballistic part, the term �T�1
1 K f is the first order scattering part which

takes considerations of particle trajectories that are scattered once, and T�1
1
fK K f

corresponds to the multiple scattering part. Moreover, fK is a weakly singular
integral operator on L1.X/ with a kernel bounded by Cjx � yj�dC1 and, hence, the
multiple scattering part is smoothing. The proof of this decomposition of T�1 can
be found, for example, in [5, 10].

Remark 1 A parallel theory can be developed for the adjoint transport equation.
Denote

T�
1u D �T0uC A1u; T�u D T�

1 u � A0
2u;

and D.T�
1/ D D.T�/ D fu 2 W p; uj�C

D 0g, and A0
2 is of the same form as A2

but with the variables v and v0 of k swapped. When k is assumed to be isotropic,
then A0

2 D A2. In particular, T��1 is a bounded linear transform on Lp.X � V/ for
all p 2 Œ1;1�. The bound on the operator norm of T��1 and the expansion formula
still hold, provided that K is replaced by its formal adjoint. For any Hölder pair
.p; q/, u 2 Lp and w 2 Lq, it holds that hu;T�1wi D hT��1u;wi.

4 Uncertainty Propagation in Transport Equations

In this section, we review the propagation of uncertainty from the constitutive
coefficients to the solutions of kinetic equations. We start by modeling the uncer-
tainty in the coefficients decomposed as a smoothly varying deterministic part
plus a highly oscillating (in space) random part. We assume that the random parts
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are sufficiently mixing, or roughly speaking, very short-range correlated. We then
review some homogenization and corrector theory that show how the uncertainty of
the coefficients propagates to the random fluctuations in the kinetic solutions.

4.1 Uncertainty Modeling for the Constitutive Coefficients

The constitutive coefficients consist of two parts: a deterministic part that we assume
to be known and an uncertain part, which we model as random fields. In many
situations and in particular with the applications to inverse problems [15] in mind,
we assume the uncertainty part is noise-like, in the sense that it models fluctuations
around some average occurring on a very small scale 0 < "
 1. Hence, we set:

ar"
�
x;

x

"
; !
�
D ar0.x/C�

� x
"
; !
�
; k"

�
x;

x

"
; !
�
D k0.x/C�

�x
"
; !
�
; (18)

for the intrinsic absorption coefficient and the isotropic scattering cross section,
respectively. The deterministic part of the coefficients are ar0.x/ and k0.x/, and the
uncertainty parts are modeled as random fields scaled from �.y; !/ and �.y; !/,
which are mean-zero random fields defined on some probability space .˝;F ;P/.
The apparent total attenuation coefficient is then

a"
�
x;

x

"
; !
�
D ar" C

Z

Sd�1

k".x/d� D a0.x/C �
�x
"
; !
�
C �d�

�x
"
; !
�
; (19)

where a0.x/ D ar0.x/C �dk0.x/. We henceforth refer to (13), with a.x/ replaced by
a".x; x="; !/ and with k.x/ replaced by k".x; x="; !/, as the random linear transport
equation. For notational convenience, the dependence of a" and k" on x=" and ! is
usually suppressed.

4.1.1 Stationarity, Ergodicity, and Mixing Properties

At the macroscopic length scale (much larger than "), the random fluctuations
of the constitutive coefficients have a homogenized effect. This means that the
solution of the random transport equation can be well approximated by that of
an effective equation with homogenized coefficients. The (stochastic) error of this
approximation should then be quantified. To rigorously establish such results, we
assume that the random fields �.x; !/ and �.x; !/ are stationary, ergodic, and
sufficiently mixing as defined below.

Stationarity and Ergodicity A random process �.x; !/ on .˝;F ;P/ is called
R

d-stationary if for any positive integer k, for any k-tuple .x1; x2; � � � ; xk/ 2 .Rd/k,
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and for any z 2 R
d,

.�.x1; �/; �.x2; �/; � � � ; �.xk; �// and .�.x1 C z; �/; �.x2 C z; �/; � � � ; �.xk C z; �/;

have the same probability distribution. This means the statistics of the random field
is homogeneous with respect to spatial translations.

An equivalent formulation can be done on the canonical probability space of
�, which is still denoted by .˝;F ;P/. Then R

d-stationarity means: there exist a
random variable O� W ˝ ! R and a group action f�zgz2Rd that is P-preserving, and
�.x; !/ D O�.�x!/. The set f�zgz2Rd being a P-preserving group action means: for
every z 2 R

d, �z W ˝ ! ˝ preserves the measure P, i.e. P.A/ D P.��1A/ for every
A 2 F , and �zCy D �z�y. We say � is ergodic if the underlying group action f�zgz2Rd

is ergodic. That is, if A 2 F and �zA D A for all z 2 R
d, then P.A/ 2 f0; 1g:

Stationary and ergodicity are the essential properties of random fields that yield
qualitative homogenization result which, in some sense, only captures the mean
effect of the uncertainty. To quantify the convergence and to further study the
uncertainties in the solutions, however, stronger assumption on the decorrelation
structure of the random field, such as mixing properties, is often needed.

Mixing Properties We quantify the decorrelation structure of � by the so-called
“maximal correlation coefficient” %, which is a decreasing function % W Œ0;1/ !
Œ0; 1�, �.r/! 0 as r !1, and for each r > 0, %.r/ is the smallest value such that
the bound

E .V1.�/V2.�// � %.r/
q
E
�
V21 .�/

�
E
�
V22 .�/

�
(20)

holds for any two compact sets K1;K2 2 C satisfying d.K1;K2/ � r and for any
two random variables of the form Vi.�/, i D 1; 2, such that Vi.q/ is FKi -measurable
and EVi.q/ D 0.

Here, C denotes the set of compact sets in R
d. GivenK � C , FK is the �-algebra

generated by the random variables f�.x/ W x 2 Kg. For K1;K2 in C , the distance
d.K1;K2/ is defined to be

d.K1;K2/ D min
x2K1;y2K2

jx � yj:

Remark 2 It is an important fact that %-mixing fields are ergodic. For a stationary
random field �, the autocorrelation function is defined by

R.x/ WD E�.xC y; �/�. y; �/:

Note that by stationarity, the y variable in this definition does not play any role.
R�.x/ can be bounded by %. Indeed, for any x 2 R

d,

jR�.x/j D jE.�.x/�.0//j � %.jxj/k�k2L2.˝/: (21)
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In view of this relation, the decay rate of mixing coefficient % yields decay rate of
second order moments of�. Such relations for higher order moments will be derived
in Sect. 4.4.2.

Main Assumptions We impose the following assumptions on the intrinsic absorp-
tion and scattering random fields ar" and k".

(A) Let d D 2; 3. We assume that the random fields �.x; !/ and �.x; !/ in (18)
are R

d-stationary and they admit a maximal correlation function % satisfying
%
1
8 2 L1.RC; rd�1dr/, that is

Z 1

0

%
1
8 .r/rd�1dr <1:

(B) Let the deterministic part .a; k/ satisfies condition (S). Let� and � be uniformly
bounded so that ar C � � ˇ > 0 a.e. in ˝ .

Hypothesis (B), by the discussion in Sect. 3, guarantees that a.e. in˝ , the random
transport equations are well posed. Let .T"/�1 be the inverse transport operator, it
has bounded operator norm on Lp.X � V/ essentially uniformly in ˝ .

Hypothesis (A), in view of (21), implies that R� is integrable. Random fields
with correlation functions satisfying such decay properties are referred to as short-
range correlated. Since � is stationary, the autocorrelation function R�.x; y/ is a
non-negative definite function in the sense that, for any N 2 N and for any xi 2 R

n,
yj 2 R

n, i; j D 1; 2; � � � ;N, the matrix .Mij/ 2 R
N�N given by Mij WD R�.xi; yj/ is

non-negative definite. Let

�2� D
Z

Rn
R�.x; 0/dx; �2� D

Z

Rn
R�.x; 0/dx:

Then by (A) and (21), �2� and �2� are finite real numbers and, thanks to Bôchner’s
theorem, they are nonnegative. Throughout the paper, we assume those numbers are
positive.

When the decay rate of % is much weaker, so that (A) is violated, the random
variations of the coefficients are in a different setting, and the quantitative results for
the random fluctuations in the transport solutions will be changed; see Sect. 4.4.1.

Remark 3 (Poisson Bumps Model) Assumptions on the mixing coefficient % of
random media have been used in [3, 7, 39]; we refer to these papers for explicit
examples of random fields satisfying the assumptions.

A widely used mixing random field model is the so-called Poisson bumps
model; see e.g. [5]. The model is constructed as follows. We start with a spatial
Poisson point process with intensity � > 0, which is a countable random subset
Y�.!/ WD f yj.!/ W j 2 Ng  R

d defined on an abstract probability space .˝;F ;P/

satisfying, for any bounded Borel set A  R
d, that the random variable N.A/, which
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is the cardinality of A\ Y�, follows the Poisson distribution with intensity �jAj, i.e.,

PfN.A/ D mg D e��jAj.�jAj/m
mŠ

: (22)

See [28] for details. For any disjoint Borel sets A1; � � � ;An, n � 2, the random
variables N.Ai/, 1 � i � n are independent. The Poisson bumps model for the
constitutive coefficients are then defined by

ar.xI!/ D
X

j

 .x � yj.!//; k.xI!/ D
X

j

�.x � yj.!//: (23)

Here,  and � are smooth functions satisfying

0 �  ; � � 1; �.0/ D  .0/ D 1; and  ; � have compact supports:

Using the properties of Poisson point process [28], one can show that ar and k so
defined are stationary and have finite range correlations and, hence, are mixing and
ergodic. The mean values E.ar.x; �// and Ek.x; �/ are constant; in fact, they are given
by �k kL1 and �k�kL1 , respectively. Let

�.x; !/ D ar.x; !/ � E.ar.x; �// and �.x; !/ D k.x; !/ � Ek.x; �/:

They are the mean-zero random parts of ar and k.
Finally, by scaling the spatial variables, the formulas in (18) provide random field

models for the constitutive coefficients which satisfies (A) and (B).

4.2 Homogenization Result and the Convergence Rate

It is well known that the random transport equation homogenizes if the random
fluctuations of the constitutive coefficients are periodic or stationary ergodic random
fields, see e.g. [23, 29], and the effective coefficients are then given by the statistical
average. The assumption (A) gives further quantitative information of the random
fluctuations, such as the convergence rates. Throughout this section, u" denotes
the solution to the random transport equation, and u0 denotes the solution for the
transport equation with the effective (mean) coefficients.

Theorem 1 Assume (A) and (B). Assume further that the boundary data g 2
L1.��/ so u0 2 L1.X � V/. Then there exists some constant C > 0 depending
only on the diameter of X, kgkL1 and ˇ such that, as "! 0,

�
Eku" � u0k2L2.X�V/

� 1
2 � C"

1
2 : (24)
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This theorem implies that the convergence rate of the homogenization is of orderp
" in the energy norm L2.˝;L2.X�V//. The proof of this theorem can be found in

[5]. In particular, the main contribution comes from the energy of the ballistic parts
which amounts to weighted average of the random fluctuations in the coefficients
over lines. Since the central limit scaling of the average of random fields is "d=2,
where d is the dimension over which the average is taken, the scaling

p
" above is

reasonable.
The leading terms in the homogenization error u"�u, i.e. the so-called correctors,

contain two parts that play dominating roles at different scales. The mean-zero
random part " is defined by

v � rx" C a.x/" � k.x/
Z

V
".x; v

0/dv0 D ��".x/u0.x; v/C �".x/
Z

V
u0.x; v

0/dv0:
(25)

We simply refer to it as T�1A"u0, where the definition of A" can be read from above.
" is the response of the transport equation to a source term given by A"u0. The
other part is deterministic and solves

v � rxU C a.x/U � k.x/
Z

V
U.x; v0/dv0 D q.x; v/; (26)

where the source term q.x; v/ is given by:

Z

R

�
R�.tv/u0.x; v/ � R��.tv/u0.x/�

Z

V

�
R��.tw/u0.x;w/ � R�.tw/u0.x/

�
dw

�
dt:

Here, R�, R� and R�� correspond to, respectively, the auto-correlation functions of
�, �, and the cross-correlation function of the two. Note also U is essentially the
average of T�1A"". We have the following result.

Theorem 2 Under the assumptions of Theorem 1, for any test function ', we have

jhE.u" � u0/� "U; 'ij . "2: (27)

This theorem concerns the mean value of the homogenization error which lives
on the large scale. Clearly, the term " is mean zero and does not contribute to Eu",
so the deterministic corrector U is indeed the dominating term. In the subsection
below, we check that the variance of the homogenization error, integrated with a
test function over space and velocity, is of order "d, and " is responsible for the
main contribution.
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4.3 Central Limit Theory for the Random Fluctuations

In this section, we study the random fluctuation u" � Eu" and characterize their
probability distribution at various observation scales.

Observations of the Solutions We consider three different scales of observation
of the transport solutions:

• the pointwise data u".x; v/ for fixed .x; v/,
• the angularly averaged data J".x/ WD

R
V u".x; v/'.v/dv for fixed x 2 X and some

averaging kernel ' over V ,
• the fully averaged data

R
X�V u".x; v/'.x; v/ for some averaging kernel ' over

X � V .

When the application to inverse problems is considered, the angularly averaged
or the fully averaged data are not uncommon. Below, we focus on the setting of
fully averaged data since it is simpler to present. We first briefly comment on other
settings of interest.

An interesting fact is that the size of the random fluctuations in u" depend on
the observation scales. In [6], it is shown that, for pointwise data, the variance
of u".x; v/ is of order " for all dimensions d � 2. This property arises from
integrating random fields along (one-dimensional) lines. For the angularly averaged
data J".x; !/ defined above, its variance is of order "2j log "j in dimension two and
"2 in dimension d � 3. Angular averaging introduces additional mixing along the
angular direction and therefore significantly reduces the variance of the corrector.
Finally, as we show in detail below, the variance of the fully averaged data hu"; 'i is
of order "d in dimension d � 2. The random corrector is therefore of smallest size
when averaged over the whole phase space. This is consistent with the central limit
theorem.

Fluctuation Theory for the Fully Averaged Data We take a sufficiently smooth
functions ' and consider the fully averaged data h'; u" � Eu"i. To describe the
limiting probability distribution of this random variable, we introduce additional
notation. Let  WD T��1'; in other words, is the solution of the following adjoint
transport equation:
8
<̂

:̂

� v � rx C a �
Z

V
k.x; v; v0/ .x; v0/dv0 D '; .x; v/ 2 X � V;

 .x; v/ D 0; .x; v/ 2 �C:
(28)

We denote by ��;� the correlation factor between the random fields � and �; it is
defined by ��1

� ��1
�

R
Rn E�.x; �/�.0; �/dx. Let ˙ denote the non-negative matrix

˙ WD
 

�2� ��;�����

��;����� �2�

!
:

We have the following result.
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Theorem 3 Let the dimension d D 2; 3. Under the same condition of Theorem 1,
we have

�
';

u" � Eu"
"d=2

�
distr:���!
"!0

Z

X

�Z

V

� � .x; v/u0.x; v/
 .x; v/Œ��du0.x; v/C hu0iV.x/�

�
dv

�p
˙dW. y/:

(29)

Here, W.y/ D .Wa.y/;Wk.y//0 is a two dimensional 2d-parameter Wiener process
and hu0iV.x/ denotes the angular average

R
V u0.x; v

0/dv0.
This theorem says that the random fluctuations of the fully averaged data are of

order "
d
2 , satisfy a functional central limit theory with limiting Gaussian distribution.

The right-hand side of (29) is a Gaussian distribution N .0; �2/ with the variance
�2 given by

Z

X

�Z

V

� � .x; v/u0.x; v/
 .x; v/Œ��du0.x; v/C hu0iV.x/�

�
dv

�T
˙

�
�Z

V

� � .x; v/u0.x; v/
 .x; v/Œ��du0.x; v/C hu0iV.x/�

�
dv

�
dx:

We refer the reader to [41] for more details on multi-parameter Wiener process.
An R

2 valued Wiener process is needed in the limit since two random fields
are involved in the random transport equation. For the Poisson bumps model of
Remark 3, the correlation factor ��;� above is 1, but more general situations still
based on Poisson point process may be considered; see [5].

Finally, it is worth mentioning that for d D 2; 3, the term Eu" in the statement of
the theorem above can be replaced by "U of Theorem 2. In other words, "U is the
only term in the mean errorE.u"�u0/ that is larger than the random fluctuations. The
competition between the deterministic and the random parts of the homogenization
error is, hence, clearly characterized in dimensions d � 3.

Outline of the Proof We now outline the proofs of the main theorems. It clearly
appears from these proofs that the key ingredients about the random coefficients that
allow one to quantify the homogenization are moments estimates.

The required moments estimates and their decay rates were obtained in [5]
for the Poisson bumps model and strongly depended on the statistical properties
of Poisson point processes. At the end of this section, we extend such moments
estimates to general random fields whose mixing coefficient %, defined in (20),
decays sufficiently fast. The results of [5] thus generalize to the versions stated in
this review.

To get the convergence rate in Theorem 1, we observe that " defined in (25)
satisfies

u" � u D " C T�1
" A"":
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Since T�1
" and A" are uniformly bounded (in " and ! 2 ˝) linear transformations

on L2.X � V/, due to assumption (B), it suffices to show that Ek"k2L2 . ". Using
the representation formula (17) of T�1, we have rather explicit formula for "
and quantifying its mean square norm is straightforward, given the second order
moments of the random fields.

For Theorems 2 and 3, the starting point is the following expansion formula:

u" � u0 D T�1A"u0 C T�1A"T�1A"u0 C T�1A"T�1A"T�1A"u0

C T�1A"T�1A"T�1A".u" � u0/:
(30)

This formula is obtained by iterating the relation u" � u0 D T�1A"u" three times,
and the iteration process could be continued further. We focus on the case d D 2

below. For the case d D 3, another iteration is needed for the argument below to
hold.

Consider the inner product of (30). The first term on the right-hand side is
mean-zero and has no contribution. The second term is hA"T�1A"u0;  i where
 D T��1'. Using second order moments again, the main contribution to its
statistical mean comes from EhA"T�1

1 A"u0;  i, and it converges to hU; 'i. Using
the third and higher order moments of mixing random fields obeying (A), all the
remainder terms are of smaller orders than "2. Theorem 2 is then proved. Note that
the remainder terms in the mean is even smaller than the central limit scaling "d=2.

For the fluctuation theory, we consider the variances of the terms in (30) after
taking inner products with the test function and subtracting the mean values. The
first term has variance of order "d, agreeing with the central limit setting. To prove
Theorem 3, it suffices to establish

Var .hT�1A"T�1A"u0; 'i/
 O."d/; (31)

Var .hT�1A"T�1A"T�1A"u0; 'i/
 O."d/; (32)

EjhT�1A"T�1A"T�1A".u" � u0/; 'ij 
 O."
d
2 /; (33)

"�d=2hT�1A"u0; 'i converges in distribution to the right hand side of (29): (34)

Let us start with the estimate (33) for the remainder. This is an L1.˝/ estimate,
which is sufficient to show that this term, divided by "d=2, converges to zero in
distribution. We apply Hölder inequality and get

EjhT�1A"T�1A"T�1A".u" � u0/; 'ij � CEfku" � u0kL2kT��1A"T��1A" kL2 g

� C
�
Eku" � u0k2L2

� 1
2

�
EkT��1A"T��1A" k2L2

� 1
2
:
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This reduce (33) to EkT��1A"T��1A" k2L2 
 O."d�1/. Using fourth-order
moments, this term is of order "2, and hence the desired result follows for d D 2.
This estimate also shows that, for d D 3, another iteration is needed in (30).

For the second and the third terms in the expansion (30), by similar estimates
as above, we see that their L1.˝/ norms are not small enough. Hence we need
the variance estimates, which are enough for the convergence in distribution. For
(31), we appeal to the fourth-order variance estimate in Proposition 3, and for (32),
we appeal to the sixth-order variance estimate in Proposition 6. From a technical
point of view, the variances are of much smaller order because, in the corresponding
variance estimates (37) and (44) for the products of the random fields, the terms
which are responsible for the largeness of the L1.˝/ controls are eliminated.

Finally, the limiting distribution of "�d=2hu" � u0; 'i is given by the limiting
distribution of 1p

"d
hT�1A"u0; 'i, which has the expression

1p
"d

Z

X
�
�x
"
; !
�
h u0iV.x/C �

�x
"
; !
�
Œ��dh iV.x/hu0iV.x/C h u0iV.x/� dx:

Again, h u0iV denotes the angular average of the pointwise product  u0. This is
an oscillatory integral of random fields with short range correlations, and the central
limit theorem of such integrals was proved in [3, 24]. The above integral hence has
the desired limit as in (29). This proves Theorem 3.

In three dimensions, d D 3, the analysis is more involved. A further iteration
should be added to (30). The resulted remainder term, and the first three terms are
controlled as above. An additional term appears, which, after taking inner product
with the test function, becomes hT�1A"T�1A"T�1A"T�1A"u0; 'i. We consider its
L2.˝/ norm

E
ˇ̌hT�1A"T�1A"T�1A"T�1A"u0; 'i

ˇ̌2 D E
ˇ̌hA"T�1A"T�1A"T�1A"u0;  i

ˇ̌2
:

By appealing to the eighth-order moment estimates, one can check that this term is
of order o."3/ and hence does not contribute to the limit.

4.4 Further Remarks

4.4.1 Long Range Correlated Random Media

When the random fluctuations in the constitutive coefficients have long range
correlations and the assumptions (A) is violated, it is still possible to quantify the
convergence rate and to analyze the random part of the homogenization error, if
sufficient quantitative information about the random fields is given.
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For instance, in [6], random fields � and � of the form ˚.g.x; !// are studied,
where g.x; !/ is some underlying Gaussian random field with heavy tail Rg.x/, and
Rg.r/ � r�˛ for some 0 < ˛ < 1 asymptotically at infinity. Here, ˚ is a bounded
real function with sufficient regularity and of Hermite rank one; see [8, 46]. It is
then shown that the pointwise data have random fluctuations of order

p
"˛, which is

much larger than
p
" for the short range setting. We refer the reader to [18, 21, 40]

for more discussions on random fields with long range correlations.

4.4.2 Moments Estimates for Mixing Random Fields

In [5], Theorems 1–3 were proved only for the Poisson bumps model. We now
show that such results hold for more general random fields satisfying (A) as the
moment and variance estimates enjoyed by the Poisson points model also hold for
generalized mixing random fields.

Below, we first recall the crucial moments formulae (hence moments estimates)
of the Poisson bumps model, and then show that those estimates hold for sufficiently
mixing random fields. Even though much more general results can be produced,
only the first several (up to eighth-order) moments estimates are provided.

Moments Formulas for the Poisson Bumps Model Let n be a positive integer
and let In denote the index set f1; 2; � � � ; ng. Given a set fx1; x2; � � � ; xng � R

d and
J  In, xJ denotes the subset fxj W j 2 Jg. For a random field �.x; !/, we are
interested in getting estimates for

˚.n/
� .xIn/ WD EŒ�.x1/�.x2/ � � ��.xn/�;

which is the nth order moments of the random field � evaluated at xIn . We note that
˚ is viewed as a function of set-valued arguments, since the order of the elements
in the set plays no role. In the sequel, the dependence on � is omitted when the
random field under study is clear.

For the set In, we say .n1; n2; � � � ; nk/ is a k-partition of In if 1 � n1 � n2 �
� � � � nk and

Pk
iD1 ni D n. A partition is called non-single if n1 � 2. We denote by

Gn the set of all non-single partitions of In. Given .n1; n2; � � � ; nk/, there are finitely
many possible ways to divide In (hence xIn ) into k disjoint subsets J1; � � � ; Jk of
cardinalities n1; n2; � � � ; nk, respectively. We denote this finite number by Cn1;n2;��� ;nk

n ,
and we order those possibilities following the dictionary order of the array formed
by .max J1; � � � ;max Jk/. The `-th choice is hence denoted by . J`1; � � � ; J`k /.
Proposition 1 ([5]) Let �.x; !/ be the mean-zero part of the Poisson bumps
potential. Fix a positive integer n. For any integer k � n and any subset J  In
with cardinality k, define

T.k/.xJ/ WD �
Z Y

j2J
 .xj � z/dz: (35)



84 G. Bal et al.

Then we have the following formula for ˚.n/.xIn/

˚.n/.xIn/ D
X

.n1;��� ;nk/2Gn

C
n1;��� ;nk
nX

`D1

kY

jD1
T.nj/.xJ`j /: (36)

In [5], we also need to have estimates on variances of products of � evaluated at
several points. More precisely, if p is a positive integer such that p � n=2, we are
interested in

�. p;n�p/.xIp ; xInnIp/ WD E

h�Q
j2Ip �.xj/ �˚p.xIp/

��Q
k2InnIp �.xk/� ˚n�p.xInnIp/

�i
;

which is the covariance of the random variables
Q

j2Ip �.xj/ and
Q

k2InnIp �.xk/. It
is clear that formulae for those covariance functions can be read from the formulae
for moments of �.

Moments Estimates for Mixing Random Fields In the rest of this section, we
fix a random field �.x; !/ satisfying the assumption (A). All of the moment and
variance functions ˚ and � are understood as those of �. The first theorem deals
with the third order moment.

Proposition 2 Let C D k�kL2.˝/k�2kL2.˝/, and let 	.r/ D
p
�.r=2/. Then

ˇ̌
˚.3/.fx1; x2; x3g/

ˇ̌ � C	.jx2 � x1j/	.jx3 � x1j/:

From the proof below, it is clear that after a permutation of .x1; x2; x3/ on the
right hand side, the resulted estimate still holds. Hence, the right hand side can be
thought as depending only on the set fx1; x2; x3g.

Before proceeding to the proof of this result, we introduce some more notation.
Recall that In WD f1; 2; � � � ; ng. We consider dividing the set In into two subsets of
positive cardinality p and n � p. For each 0 < p � n=2, let

I p
n D f J W J  In; card. J/ D pg:

Given a J 2 I p
n , let Jc denote the complement of J in In. Then . J; Jc/ corresponds

to a division of In, and .xJ ; xJc/ corresponds to a division of the set xIn into two
subsets of cardinality p and n � p. Define

Lp D max
J2I p

n

dist .xJ; xJc/ :

Then Lp is the maximum separation distance among divisions of xIn into two subsets
of cardinality p and n � p. Finally, let

L D max
0<p�n=2

Lp:
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Then L is the maximum separation distance between possible divisions of xIn into
two subsets of positive cardinalities.

Proof (Proof of Proposition 2) In view of the discussion above, since n D 3, the
largest integer smaller or equal to n=2 is 1. So, L D L1. Let J 2 I 1

3 be arg maxL1.
We consider two scenarios.

If x1 2 xJ, without loss of generality, we assume L D jx1 � x2j. It is then clear
that jx3 � x1j � 2L because if otherwise, jx3 � x2j � jx3 � x1j � jx2 � x1j > L and
hence fx3g [ fx1; x2g would be a division yielding larger L1. Applying the mixing
condition, we get

˚.3/.x1; x2; x3/ D Ef�.x1/Œ�.x2/�.x3/ � E.�.x2/�.x3//�g
� %.L/k�k3L1 .˝/

� %1=2.jx1 � x2j/%1=2.jx1 � x3j=2/k�k3L1.˝/

� 	.jx1 � x2j/	.jx1 � x3j/:

If x1 2 xJc , without loss of generality, assume the division is given by fx2g [
fx1; x3g. We consider two further sub-cases. If the separating distance is L D jx2 �
x1j, then jx1 � x3j � L. If, instead, the separating distance is L D jx2 � x3j, then
jx1 � x3j � L and L � jx1 � x2j � 2L. In both cases, we have

˚.3/.x1; x2; x3/ D EfV.x2/ŒV.x1/V.x3/� E.V.x1/V.x3//�g
� %.L/k�k3L1.˝/ � 	.jx1 � x2j/	.jx1 � x3j/:

The conclusion of the theorem, hence, is established.
The fourth-order moment was considered in [39] and in [3]; see also [8]. For the

convenience of the reader, we recall the following estimate of [39].

Proposition 3 Let C D 4.k�kL2.˝/k�3kL2.˝/ C k�2k2L2.˝// and let 	.r/ D
p
�.r=3/. Then

ˇ̌
˚.2;2/.x1; x2; x3; x4/� R.x1 � x2/R.x3 � x4/

ˇ̌

� C	.jx1 � x3j/	.x2 � x4/C C	.jx1 � x4j/	.jx2 � x3j/:
(37)

Note that the estimate (21) implies jR.x� y/j � 	.jx� yj/. The variance estimate
above also yields the following moment estimate:

ˇ̌
˚.4/.xI4 /

ˇ̌ � C

2

X

J2I 2
4

	.xJ/	.xJc/: (38)

For more general results, the following fact will be helpful.
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Proposition 4 Let n 2 N and n � 2, and let In and L be defined as above, then

dist.xj; xk/ � 2.n� 1/L; 8j; k 2 In: (39)

Proof Let L be achieved by a division .xJ ; xJc/. Let p D card. J/ and, without loss
of generality, L D dist.x1; x2/ for some x1 2 J, x2 2 Jc. We show that

dist.xj; fx1; x2g/ � .n � 1/L; 8j 2 In: (40)

If this fails, say dist.x3; x2/ > .n � 1/L, then since L � L1, there must be a point,
say x4, such that x4 2 BL.x3/. Indeed, if otherwise, then L1 � dist.x3; xInnf3g/ > L,
which is impossible. Similarly, since L � L2, there must be another point, say x5,
such that x5 2 BL.x3/[ BL.x4/. Note that x5 2 B2L.x3/. By repeating this argument,
we hence find p points

fx3; x4; � � � ; x3Cp�1g  B. p�1/L.x3/: (41)

Let q D n�p. Applying the same argument above with fx3g replaced by fx1; x2g,
we find that the remaining set xInnf3;��� ;3Cp�1g, which contains fx1; x2g, must satisfy

fx3Cp; � � � ; xng  B.q�2/L.x1/ [ B.q�2/L.x1/  B.q�1/L.x2/: (42)

Let K D f3; 4; � � � ; 3 C p � 1g and Kc D f1; 2; 3 C p; � � � ; ng. Then (41), (42)
and the assumption dist.x2; x3/ > .n � 1/L imply that dist.xK ; xKc/ > L, which is
impossible. Therefore, (40) holds and, by an application of triangle inequality, (39)
is established.

We move to the fifth-order moments, and obtain the following estimate.

Proposition 5 Let C denote the constant k�kL2.˝/k�4kL2.˝/Ck�2kL2.˝/k�3kL2.˝/
Ck�k3

L2.˝/
k�2kL2.˝/. Let 	 be defined as in Proposition 2 and define  .3/.fx; y; zg/

as %
1
4 .jx � zj/% 1

4 .j y � zj/. Then
ˇ̌
˚.5/.xI5 /

ˇ̌ � C
X

J2I 2
5

	. 1
4
jxj1 � xj2 j/ .3/. 18fxJcg/: (43)

Proof Recall the definition of L;L1 and L2 after the statement of Proposition 2. We
only need to consider two cases.

Case 1 L D L1 � L2. Without loss of generality, assume that L D dist.x1; x2/ D
dist.fx1g; fx2; � � � ; x5g/. Then we have, due to the mixing property of the random
field �,

ˇ̌
˚.5/.xI5 /

ˇ̌ D
ˇ̌
ˇE
�
�.x1/

hQ5
jD2 �.xj/� ˚.4/.fx2; � � � ; x5g/

i�ˇ̌
ˇ

� %.L/k�kL2.˝/k�4kL2.˝/:
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In view of (39), the above is bounded by C%.jx1�x2j/ .3/.fx3; x4; x5g/. Since % and
hence 	 are decreasing functions, this bound is smaller than some of the terms of
the right-hand side of (43).

Case 2 L D L2 > L1. Let L be maximized by the division given by xJ D f y1; y2g
and xJc D f y3; y4; y5g. Then, by the mixing property,

ˇ̌
˚.5/.xI5 /� R. y1 � y2/˚

.3/.f y3; y4; y5g/
ˇ̌ � %.L/k�2kL2.˝/k�3kL2.˝/:

We can find some J0 D . j01; j02/ 2 I 2
5 such that J0 ¤ J. Then in view of (39), the

right-hand side above can be bounded by C%1=2. 1
8
jxj01 � xj02 j/ .3/. 18x. J0/c/.

Moreover, in view of (39), we have

ˇ̌
R. y1 � y2/˚

.3/.f y3; y4; y5g/
ˇ̌ � C%.j y1 � y2j/ .3/.f y3; y4; y5g/:

The bounds we have for the preceding two quantities correspond to two different
terms in the right-hand side of (43). The desired result is hence established.

Next, we study the sixth-order moments of �. We first derive a variance type
estimate, from which the moment estimate follows easily. Let I 2;2;2

6 denote the set

f. J1; J2; J3/ W card. J1/ D card. J2/ D card. J3/ D 2;[3iD1Ji D I6g;

which is the collection of partitions of I6 into three disjoint subsets of cardinality 2.

Proposition 6 Let C denote the constant k�kL2.˝/k�5kL2.˝/Ck�2kL2.˝/.k�4kL2.˝/
Ck�k3

L3.˝/
k�kL2.˝//Ck�3k2L2.˝/. Let 	 be defined as in Proposition 2 and let  .3/

be defined as in Proposition 5. Define �.2/ D 	23 . Then
ˇ̌
�.3;3/.fx1; x2; x3g; fx4; x5; x6g/

ˇ̌ �
X

. J1;J2;J3/2I 2;2;2
6

C�.2/.
xJ1
20
/�.2/.

xJ2
20
/�.2/.

1

20
xJ3 /

C C

2

X

K2I 3
6 nff1;2;3g;f4;5;6gg

 .3/.
1

20
xK/ 

3.
1

20
xKc/:

(44)

We note that, as in the variance estimate (37), the partition f1; 2; 3g [ f4; 5; 6g
does not appear on the right-hand side.

Proof Recall the definition of L, L1, L2 and L3 after the statement of Proposition 2.
We study several cases.
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Case 1 L D L1 � max.L2;L3/. Without loss of generality, let arg maxL D f1g.
Then we have

ˇ̌
˚.6/.xI6 /

ˇ̌ D
ˇ̌
ˇE.�.x1/Œ

Q
j2f1gc �.xj/� ˚.5/.xf1gc/�/

ˇ̌
ˇ � %.L/k�kL2.˝/k�5kL2 :

Meanwhile, dist.x1; xj/ � L for j D 2; 3. It follows that dist.fx1g; fx2; x3g/ � L and

ˇ̌
˚.3/.fx1; x2; x3g/˚.3/.fx4; x5; x6g/

ˇ̌ � k�k3L3.˝/k�kL2.˝/k�2kL2.˝/%.L/: (45)

Finally, in view of (39), we may choose any J 2 I 3
6 such that J ¤ f1; 2; 3g, and we

verify that

%.L/ �
�
%
1
4 . 1
10
jxj1 � xj2 j/% 1

4 . 1
10
jxj1 � xj3 j/

��
%
1
4 . 1
10
jxj4 � xj5 j/% 1

4 . 1
10
jxj4 � xj6 j/

�
;

where J D f j1; j2; j3g and Jc D f j4; j5; j6g. It follows that in this case,

ˇ̌
�.3;3/.fx1; x2; x3g; fx4; x5; x6g/

ˇ̌ � C .3/. 1
10
xJ/ .3/. 110xJc/;

which is a term on the right hand side of (44).

Case 2 L D L2 � L3 and L2 > L1. Renaming the points, we assume L is obtained
by the division xJ D f y1; y2g, xJc D f y3; � � � ; y6g and dist.y2; y3/ D L. Then we
note that

ˇ̌
˚.6/.xI6 /� ˚.2/.f y1; y2g/˚.4/.f y3; � � � ; y6g/

ˇ̌ � %.L/k�2kL2.˝/k�4kL2.˝/:

Moreover, if xJ  fx1; x2; x3g or xJ  fx4; x5; x6g, then (45) holds. If otherwise,
then we may assume that y2 D x1 and y3 D x4. Since fx2; x3g must contain
at least one point from xJc , and because dist.fx1g; xJc/ D L, we conclude that
maxjD2;3 dist.x1; xj/ � L. It follows that

max
j2I3

dist.fxjg; xI3 n fxjg/ � L=2: (46)

Then we have

ˇ̌
˚.3/.fx1; x2; x3g/˚.3/.fx4; x5; x6g/

ˇ̌ � k�k3L3.˝/k�kL2.˝/k�2kL2.˝/%.L=2/:
(47)

We then repeat the argument in Case 1 to control the %.L/ and %.L=2/ terms. Finally,
we get

ˇ̌
�.3;3/.fx1; x2; x3g; fx4; x5; x6g/

ˇ̌ � ˇ̌R. y1 � y2/˚
.4/.f y3; y4; y5; y6g/

ˇ̌

C C .3/. 1
20
xK/ .3/. 120xKc/
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where both K and Kc are different from f1; 2; 3g. For the jR˚.4/j term above, we
combine the estimates (21) and (38) to get

ˇ̌
R. y1 � y2/˚

.4/.f y3; y4; y5; y6g/
ˇ̌ � C

2
%1=3.j y1 � y2j/

X

J

	.xJ/	.xf3;4;5;6gnJ/

where J runs in the set f J � f3; 4; 5; 6g j card. J/ D 2g. Since by definition 	 � �.2/,
the error bound above is dominated by some term on the right-hand side of (44).

Case 3 L D L3 > max.L1;L2/. If dist.fx1; x2; x3g; fx4; x5; x5g/ D L, then we have

j�.3;3/.fx1; x2; x3g; fx4; x5; x6g/j � %.L/k�3k2L2.˝/:

If otherwise, dist.fx1; x2; x3g; fx4; x5; x5g/ < L and there exists xJ D f y1; y2; y3g,
with xJ ¤ f1; 2; 3g but xJ \ fx1; x2; x3g ¤ ;, such that dist.xJ ; xJc/ D L. Then we
have

ˇ̌
˚.6/.xI6 /� ˚.3/.xJ/˚

.3/.xJc/
ˇ̌ � %.L/k�3k2L2.˝/:

Without loss of generality, assume x1 2 J, x4 2 Jc and dist.x1; x4/ D L. Then
fx2; x3g \ Jc is non-empty, and the element in this intersection has distance larger
than L from x1. Hence, (46) holds, and the rest of the analysis can be carried out as
in Case 2.

In all three cases, we can bound the left-hand side of (44) by some terms on the
right-hand side, and, hence, the desired result is established.

As a corollary, we have the following estimate for the full sixth-order moments:

Corollary 1 Let C be defined as in Proposition 6. Then

1

C

ˇ̌
˚.6/.xI6 /

ˇ̌ �
X

. J1;J2;J3/2I 2;2;2
6

�.2/. 1
10
xJ1 /�

.2/. 1
10
xJ2 /�

.2/. 1
10
xJ3 /

C 1

2

X

K2I 3
6

 .3/.
1

20
xK/ 

3.
1

20
xKc/:

Finally, we have the following result for the eighth-order moments. Define

I 2;2;2;2
8 WD f. J1; J2; J3; J4/ W card. Ji/ D 2; j D 1; 2; 3; 4; and [4iD1 Ji D I8g;
I 2;3;3
8 WD f. J1; J2; J3/ W card. J1/ D 2; card. J2/ D card. J3/ D 3;[3iD1Ji D I8g:

I 2;2;2;2
8 is the collection of partitions of I8 into four mutually disjoint subsets, each

of which has cardinality two. I 2;3;3
8 is the collection of partitions of I8 into four

mutually disjoint subsets of cardinalities two, three and three, respectively.



90 G. Bal et al.

Proposition 7 Define �.2/ D p	 and �.3/ D p
 .3/. Then there exists some

constant C > 0 so that

1

C

ˇ̌
˚.8/.xI8 /

ˇ̌ �
X

. J1;J2;J3;J4/2I 2;2;2;2
8

�.2/. 1
14
xJ1/�

.2/. 1
14
xJ2/�

.2/. 1
14
xJ3/�

.2/. 1
14
xJ4/

C
X

J2I 2;3;3
8

	. 1
14
xJ1 /�

.3/. 1
28
xJ2 /�

.3/. 1
28
xJ3 /:

This result can be proved using the same methods as in the proofs of Proposi-
tions 5 and 6. We do not reproduce the details.

The function �.3/ defined above has the expression �.3/.fx1; x2; x3g/ D %
1
8 .x2 �

x1/%
1
8 .x3 � x1/. For the fluctuation theory that will be reviewed in Sect. 4, we

need �.3/ to be integrability for each of its variables, and hence %
1
8 should decay

sufficiently fast. This explains the integrability condition of the maximal correlation
function % that is required in assumption (A).

Acknowledgements GB’s contribution was partially funded by NSF Grant DMS-1408867 and
ONR Grant N00014-17-1-2096. OP’s work is supported by NSF CAREER Grant DMS-1452349.

References

1. F. Bailly, J.F. Clouet, J.-P. Fouque, Parabolic and gaussian white noise approximation for wave
propagation in random media. SIAM J. Appl. Math. 56(5), 1445–1470 (1996)

2. G. Bal, Homogenization in random media and effective medium theory for high frequency
waves. Discrete Contin. Dyn. Sys. Ser. B 8(2), 473–492 (electronic) (2007)

3. G. Bal, Central limits and homogenization in random media. Multiscale Model. Simul. 7(2),
677–702 (2008)

4. G. Bal, Propagation of Stochasticity in Heterogeneous Media and Applications to Uncertainty
Quantification (Springer International Publishing, Cham, 2016), pp. 1–24

5. G. Bal, W. Jing, Homogenization and corrector theory for linear transport in random media.
Discrete Contin. Dyn. Sys. 28(4), 1311–1343 (2010)

6. G. Bal, W. Jing, Fluctuation theory for radiative transfer in random media. J. Quant. Spectrosc.
Radiat. Transf. 112(4), 660–670 (2011)

7. G. Bal, W. Jing, Corrector theory for elliptic equations in random media with singular Green’s
function. Application to random boundaries. Commun. Math. Sci. 19(2), 383–411 (2011)

8. G. Bal, W. Jing, Corrector theory for MsFEM and HMM in random media. Multiscale Model.
Simul. 9, 1549–1587 (2011)

9. G. Bal, W. Jing, Corrector analysis of FEM-based multiscale algorithms for PDEs with random
coefficients. ESAIM: Math. Model. Numer. Anal. 48(2), 387–409 (2014)

10. G. Bal, A. Jollivet, Stability estimates in stationary inverse transport. Inverse Probl. Imag. 2(4),
427–454 (2008)

11. G. Bal, O. Pinaud, Dynamics of wave scintillation in random media. Commun. Partial Differ.
Equ. 35(7), 1176–1235 (2010)

12. G. Bal, O. Pinaud, Imaging using transport models for wave-wave correlations. Math. Models
Methods Appl. Sci. 21(5), 1071–1093 (2011)



Uncertainty Modeling and Propagation in Linear Kinetic Equations 91

13. G. Bal, O. Pinaud, Analysis of the double scattering scintillation of waves in random media.
Commun. Partial Differ. Equ. 38(6), 945–984 (2013)

14. G. Bal, K. Ren, Transport-based imaging in random media. SIAM Applied Math. 68(6),
1738–1762 (2008)

15. G. Bal, K. Ren, Physics-based models for measurement correlations. Application to an inverse
Sturm-Liouville problem. Inverse Probl. 25, 055006 (2009)

16. G. Bal, G. Papanicolaou, L. Ryzhik, Self-averaging in time reversal for the parabolic wave
equation. Stochastics Dyn. 4, 507–531 (2002)

17. G. Bal, T. Komorowski, L. Ryzhik, Self-averaging of Wigner transforms in random media.
Commun. Math. Phys. 242(1–2), 81–135 (2003)

18. G. Bal, J. Garnier, S. Motsch, V. Perrier, Random integrals and correctors in homogenization.
Asymptot. Anal. 59(1–2), 1–26 (2008)

19. G. Bal, T. Komorowski, L. Ryzhik, Kinetic limits for waves in random media. Kinetic Related
Models 3(4), 529–644 (2010)

20. G. Bal, I. Langmore, O. Pinaud, Single scattering estimates for the scintillation function of
waves in random media. J. Math. Phys. 51(2), 022903, 18 (2010)

21. G. Bal, J. Garnier, Y. Gu, W. Jing, Corrector theory for elliptic equations with long-range
correlated random potential. Asymptot. Anal. 77(3–4), 123–145 (2012)

22. A. Bamberger, E. Engquist, L. Halpern, P. Joly, Parabolic wave equation approximations in
heterogeneous media. SIAM J. Appl. Math. 48, 99–128 (1988)

23. A. Bensoussan, J.-L. Lions, G.C. Papanicolaou, Boundary layers and homogenization of
transport processes. Publ. Res. Inst. Math. Sci. 15(1), 53–157 (1979)

24. E. Bolthausen, On the central limit theorem for stationary mixing random fields. Ann. Probab.
10(4), 1047–1050 (1982)

25. M. Butz, Kinetic limit for wave propagation in a continuous, weakly random medium. Ph.D.
thesis, TU Munich, 2015

26. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960)
27. M. Choulli, P. Stefanov, An inverse boundary value problem for the stationary transport

equation. Osaka J. Math. 36(1), 87–104 (1999)
28. D.R. Cox, V. Isham, Point Processes. Monographs on Applied Probability and Statistics

(Chapman & Hall, London, 1980)
29. A.-L. Dalibard, Homogenization of linear transport equations in a stationary ergodic setting.

Commun. Partial Differ. Equ. 33(4–6), 881–921 (2008)
30. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and

Technology. Volume 6 (Springer, Berlin, 1993). Evolution problems. II, With the collaboration
of Claude Bardos, Michel Cessenat, Alain Kavenoky, Patrick Lascaux, Bertrand Mercier,
Olivier Pironneau, Bruno Scheurer and Rémi Sentis, Translated from the French by Alan Craig

31. L. Erdös, H.T. Yau, Linear Boltzmann equation as the weak coupling limit of a random
Schrödinger Equation. Commun. Pure Appl. Math. 53(6), 667–735 (2000)

32. A.C. Fannjiang, Self-averaging scaling limits for random parabolic waves. Arch. Ration.
Mech. Anal. 175(3), 343–387 (2005)

33. J. Garnier, K. Sølna, Coupled paraxial wave equations in random media in the white-noise
regime. Ann. Appl. Probab. 19(1), 318–346 (2009)

34. J. Garnier, K. Sølna, Scintillation in the white-noise paraxial regime. Commun. Partial Differ.
Equ. 39, 626–650 (2014)

35. J. Garnier, K. Sølna, Fourth-moment analysis for wave propagation in the white-noise paraxial
regime. Arch. Ration. Mech. Anal. 220, 37–81 (2016)

36. P. Gérard, P.A. Markowich, N.J. Mauser, F. Poupaud, Homogenization limits and Wigner
transforms. Commun. Pure Appl. Math. 50, 323–380 (1997)

37. C. Gomez, Radiative transport limit for the random Schrödinger equation with long-range
correlations. J. Math. Pures. Appl. 98, 295–327 (2012)

38. C. Gomez, O. Pinaud, Fractional white-noise limit and paraxial approximation for waves in
random media. Arch. Ration. Mech. Anal. 226(3), 1061–1138 (2017)



92 G. Bal et al.

39. M. Hairer, E. Pardoux, A. Piatnitski, Random homogenisation of a highly oscillatory singular
potential. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 571–605 (2013)

40. W. Jing, Limiting distribution of elliptic homogenization error with periodic diffusion and
random potential. Anal. Partial Differ. Equ. 9(1), 193–228 (2016)

41. D. Khoshnevisan, Multiparameter Processes. An Introduction to Random Fields. Springer
Monographs in Mathematics (Springer, New York, 2002)

42. T. Komorowski, L. Ryzhik, Fluctuations of solutions to Wigner equation with an Ornstein-
Uhlenbeck potential. Discrete Contin. Dyn. Sys. B 17, 871–914 (2012)

43. T. Komorowski, S. Peszat, L. Ryzhik, Limit of fluctuations of solutions of Wigner equation.
Commun. Math. Phys. 292(2), 479–510 (2009)

44. P.-L. Lions, T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)
45. J. Lukkarinen, H. Spohn, Kinetic limit for wave propagation in a random medium. Arch.

Ration. Mech. Anal. 183, 93–162 (2007)
46. V. Pipiras, M.S. Taqqu, Integration questions related to fractional Brownian motion. Probab.

Theory Related Fields 118(2), 251–291 (2000)
47. L. Ryzhik, G. Papanicolaou, J.B. Keller, Transport equations for elastic and other waves in

random media. Wave Motion 24, 327–370 (1996)
48. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Aca-

demic, New York, 1995)
49. P. Stefanov, G. Uhlmann, An inverse source problem in optical molecular imaging. Anal.

Partial Differ. Equ. 1(1), 115–126 (2008)
50. F. Tappert, The parabolic approximation method, in Wave Propagation and Underwater

Acoustics, ed. by J.B. Keller, J.S. Papadakis. Lecture Notes in Physics, vol. 70 (Springer,
Berlin, 1977), pp. 224–287



Numerical Methods for
High-Dimensional Kinetic Equations

Heyrim Cho, Daniele Venturi, and George Em Karniadakis

Abstract High-dimensionality is one of the major challenges in kinetic modeling
and simulation of realistic physical systems. The most appropriate numerical
scheme needs to balance accuracy and computational complexity, and it also
needs to address issues such as multiple scales, lack of regularity, and long-term
integration. In this chapter, we review state-of-the-art numerical techniques for high-
dimensional kinetic equations, including low-rank tensor approximation, sparse grid
collocation, and ANOVA decomposition.

1 Introduction

Kinetic equations are partial differential equations involving probability density
functions (PDFs). They arise naturally in many different areas of mathematical
physics. For example, they play an important role in modeling rarefied gas
dynamics [12, 13], semiconductors [68], stochastic dynamical systems [18, 63, 74–
76, 103, 114], structural dynamics [9, 60, 100], stochastic partial differential
equations (PDEs) [19, 57, 66, 111, 112], turbulence [35, 71, 72, 90], system biology
[30, 85, 123], etc. Perhaps, the most well-known kinetic equation is the Fokker-
Planck equation [74, 96, 107], which describes the evolution of the probability
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density function of Langevin-type dynamical systems subject to Gaussian white
noise. Another well-known example of kinetic equation is the Boltzmann equation
[115] describing a thermodynamic system involving a large number of interacting
particles [13]. Other examples that may not be widely known are the Dostupov-
Pugachev equations [26, 60, 103, 114], the reduced-order Nakajima-Zwanzig-Mori
equations [24, 112, 127], and the Malakhov-Saichev PDF equations [66, 111] (see
Table 1). Computing the numerical solution to a kinetic equation is a challenging
task that needs to address issues such as:

1. High-dimensionality: Kinetic equations describing realistic physical systems
usually involve many phase variables. For example, the Fokker-Planck equation
of classical statistical mechanics is an evolution equation for a joint probability
density function in n phase variables, where n is the dimension of the underlying
stochastic dynamical system, plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and
time, which could be hardly accessible by conventional numerical methods. For
example, the Liouville equation is a hyperbolic conservation law whose solution
is purely advected (with no diffusion) by the underlying system’s flow map. This
can easily yield mixing, fractal attractors, and all sorts of complex dynamics.

3. Lack of regularity: The solution to a kinetic equation is, in general, a distribution
[50]. For example, it could be a multivariate Dirac delta function, a function with
shock-type discontinuities [19], or even a fractal object (see Figure 1 in [112]).
From a numerical viewpoint, resolving such distributions is not trivial although in
some cases it can be done by taking integral transformations or projections [120].

4. Conservation properties: There are several properties of the solution to a kinetic
equation that must be conserved in time. The most obvious one is mass, i.e.,

Table 1 Examples of kinetic equations in different areas of mathematical physics

Fokker-Planck [74, 96]
@p

@t
C

nX

iD1

@

@zi
.Gip/ D 1

2

nX

i;jD1

@2

@zi@zj

�
bijp

�

Boltzmann [12, 67]
@p

@t
C

3X

jD1

vj
@p

@zj
D H.p; p/

Liouville [26, 57, 60, 103]
@p

@t
C

nX

jD1

@

@zj

�
Gjp

� D 0

Malakhov-Saichev [66, 111]
@p

@t
C @

@z

0

@
3X

jD1

Gj

Z z

�1

@p

@xj
dz0

1

A D �@.Hp/
@z

Mori-Zwanzig [112, 127]
@p1
@t

D PLp1 C PLetQLp2.0/C PL

Z t

0

e.t�s/QLQLp1ds
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the solution to a kinetic equation always integrates to one. Another property that
must be preserved is the positivity of the joint PDF, and the fact that a partial
marginalization still yields a PDF.

5. Long-term integration: The flow map defined by nonlinear dynamical systems
can yield large deformations, stretching and folding of the phase space. As a con-
sequence, numerical schemes for kinetic equations associated with such systems
will generally loose accuracy in time. This is known as long-term integration
problem and it can be eventually mitigated by using adaptive methods.

Over the years, many different techniques have been proposed to address these
issues, with the most efficient ones being problem-dependent. For example, a widely
used method in statistical fluid mechanics is the particle/mesh method [77, 89–
91], which is based directly on stochastic Lagrangian models. Other methods are
based on stochastic fields [109] or direct quadrature of moments [33]. In the case
of Boltzmann equation, there is a very rich literature. Both probabilistic approaches
such as direct simulation Monte Carlo [8, 97], as well as deterministic methods,
e.g., discontinuous Galerkin and spectral methods [15, 16, 31], have been proposed
to perform simulations. However, classical techniques such as finite-volumes,
finite-differences or spectral methods, are often prohibitive in terms of memory
requirements and computational cost. Probabilistic methods such as direct Monte
Carlo are extensively used instead because of their very low computational cost
compared to the classical techniques. However, Monte Carlo usually yields poorly
accurate and fluctuating solutions, which need to be post-processed appropriately,
for example through variance reduction techniques. We refer to Di Marco and
Pareschi [67] for a recent excellent review.

In this chapter, we review the state-of-the-art in numerical techniques to address
the high-dimensionality challenge in both the phase space and the space of param-
eters of kinetic systems. In particular, we discuss the sparse grid method [84, 102],
low-rank tensor approximation [6, 17, 29, 40, 59, 79, 80], and analysis of variance
(ANOVA) decomposition [11, 36, 61, 125] including Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) [73] closures. These methods have been established
as new tools to address high-dimensional problems in scientific computing during
the last years, and here we discuss those in the context of kinetic equations,
particularly in the deterministic Eulerian approach. As we will see, most of these
methods allow us to reduce the problem of computing high-dimensional PDF
solutions to sequences of problems involving low-dimensional PDFs. The range
of applicability of the numerical methods is sketched in Fig. 1 as a function of the
number of phase variables n and the number of parametersm appearing in the kinetic
equation.
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Fig. 1 Range of applicability of different numerical methods for solving kinetic equations as a
function of the number of phase variables and the number of parameters appearing in the equation.
The first name refers to the numerical method we employ to discretize the phase variables, the
second name we employ to discretize the space of parameters. For example, DG-PCM refers to
an algorithm in which we discretize the phase variables with discontinuous Galerkin methods
(DG), and random parameters with tensor product probabilistic collocation (PCM). Other methods
listed are: canonical tensor decomposition (CTD), tensor train (TT), high-dimensional model
representation (ANOVA), sparse grids (SG), and quasi Monte Carlo (QMC). Reproduced with
permission from [20]

2 Numerical Methods

This chapter discuss three classes of algorithms to compute the numerical solution
of high-dimensional kinetic equations. The first class is based on sparse grids, and
we discuss its construction in both the phase space and the space of parameters. The
second class is based on low-rank tensor approximation and alternating direction
methods, such as alternating least squares (ALS). The third class is based on
ANOVA decomposition and BBGKY closures.

2.1 Sparse Grids

The sparse grid technique [10, 37] has been developed as a major tool to break the
curse of dimensionality of grid-based approaches. The key idea relies on a tensor
product hierarchical basis representation, which can reduce the degrees of freedom
without losing much accuracy. Early work on sparse grid techniques can be traced
back to Smolyak [102], in the context of high-dimensional numerical integration.
The scheme is based on a proper balancing between the computational cost and the
corresponding accuracy by seeking a proper truncation of the tensor product hierar-
chical bases, which can be formally derived by solving an optimization problem of
cost/benefit ratios [41]. Sparse grid techniques have been incorporated in various
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numerical methods for high-dimensional PDEs, e.g., in finite element methods
[10, 99], finite difference methods [42], spectral methods [38, 101], and collocation
methods for stochastic differential equations [64, 78, 117]. More recently, sparse
grids have been proposed within the discontinuous Galerkin (DG) framework to
simulate elliptic and hyperbolic systems using wavelet bases [43, 116].

The sparse grid formulation is based on a hierarchical set of basis functions
in one-dimension. For instance, we can consider basis functions in a space Vk of
piecewise polynomials of degree at most q on the k-th level grid that consists of 2k

uniform intervals, i.e.,

Vk
:D fv j v 2 Pq.Ijk/; I

j
k D Œ2�kj; 2�k. jC 1/�; j D 0; � � � ; 2k � 1g;

on ˝ D Œ0; 1�. Clearly, we have

V0 � V1 � V2 � V3 � � � � :

These basis functions are suitable for the discontinuous Galerkin framework. Then,
we define Wk as the orthogonal complement of Vk�1 on Vk with respect to the L2
inner product on˝ , that is,

Vk�1 ˚Wk D Vk; Vk�1 ? Wk;

with W0 D V0. This yields the hierarchical representation of

Vk D ˚0�j�kWj:

Next, define the multidimensional increment space as defined as Wl D Wl1;z1 ˝
Wl2;z2˝� � �˝WlN ;zN with l D .l1; � � � ; lN/ as the multivariate mesh level. Accordingly,
the standard tensor product space V` can be represented as

V` D
[

jlj1�`
Wl; (1)

and the sparse grid approximation space as

eV` D
[

jlj�`
Wl; (2)

where jlj1 D maxi li and jlj D PN
iD1 li. Then, eV` � V`. The number of

degrees of freedom of eV` is significantly smaller than the one of V`. This set
of basis functions is also called multi-wavelet basis and it has been employed
with the discontinuous Galerkin method to study the Vlasov and the Boltzmann
equations [43, 101]. In particular, for sufficiently smooth solutions, it was shown
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in [101, 116] that a semi-discrete L2 stability condition and an error estimate of
the order O

�
.log h/NhqC1=2� can be obtained. We emphasize that although the

computational cost of the sparse grid formulation is significantly smaller than the
full tensor product, the curse of dimensionality still remains as the sparse grid level
` increases. For this reason, [43, 101, 116] can handle problems with less than ten
dimensions in the phase space.

The application of the sparse grid technique in the space of parameters differs
from the one we just described only in regard of the choice of the basis functions. In
fact, in this case, we are usually interested in computing multi-dimensional integrals
in the form

p.z/ D
Z

Rm
p.z;b/db '

qX

kD1
wkp.z;bk/; (3)

where b D .b1; : : : ; bm/. The collocation points bk D .bk1; : : : ; b
k
m/ and quadrature

weights wk are obtained by suitable cubature rules with high polynomial exactness,
e.g., Clenshaw-Curtis or Gauss abscissae [118]. More recent sparse collocation
techniques can increase the number of dimensions that can be handled in the space
of parameters up to hundreds [119, 122].

2.2 Low-Rank Tensor Approximation

Low-rank tensor approximation has been established as a new tool to overcome the
curse of dimensionality in representing high-dimensional functions and the solution
to high-dimensional PDEs. The method has been recently applied to stochastic
PDEs [25, 29, 56, 69, 79], approximation of high-dimensional Green’s functions
[44], the Boltzmann equation [48, 55], and Fokker-Planck equation [2, 22, 49, 54].
The key idea of low-rank tensor approximation [17, 40, 81] is to represent a
multivariate function in terms of series involving products of low-dimensional
functions. This allows us to reduce the problem of computing the solution from
high-dimensional PDEs to a sequence of low-dimensional problems that can be
solved recursively and in parallel, e.g., by alternating direction algorithms such as
alternating least squares [20, 25] and its parallel extension [52]. These algorithms
are usually based on low-rank matrix techniques [39], and they have a convergence
rate that depends on the type of kinetic equation and on its solution.

The most simplest tensor format is a rank one tensor of an N-dimensional
function, p.z1; � � � ; zN/ D p1.z1/p2.z2/ � � � pN.zN/, where pj.zj/ are one-dimensional
functions. Upon discretization we can write p in a tensor notation as

p D p1 ˝ � � � ˝ pN ; (4)
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where pj is a vector of length qz corresponding to the discretization of pj.zj/ with qz
degrees of freedom.1 More generally, we have a summation of rank-one tensors

p.z1; � � � ; zN/ D
RX

rD1
˛rp

r
1.z1/p

r
2.z2/ � � � prN.zN/; (5)

and

p D
RX

rD1
˛rpr1 ˝ pr2 ˝ � � � ˝ prN ; (6)

where R is the tensor rank or separation rank. This representation is also known as
separated series expansion or canonical tensor decomposition. The main advantage
of using a representation in the form (5)–(6) to solve a high-dimensional kinetic PDE
relies on the fact that the algorithms to compute prj and the normalization factors ˛r
involve operations with one-dimensional functions. In principle, the computational
cost of such algorithms scales linearly with respect to the dimension N of the phase
space, thus potentially avoiding the curse of dimensionality. The representation
can be generalized to any combination of low-dimensional separated functions.
Canonical tensor decompositions have been employed to compute the solution to
the Malakhov-Saichev kinetic equation [20], the Vlasov-Poisson equation [27], and
functional differential equations [110].

More advanced tensor decomposition techniques involve Tucker decomposition,
tensor train decomposition (TT), and hierarchical Tucker decomposition (HT). In
particular, the tensor train decomposition is in the form of

p.z1; � � � ; zN/ D Q1.z1/Q2.z2/ � � �QN.zN/; Qj.zj/ 2 R
Rj�1�Rj ; (7)

where the tensor rank becomes a tuple of .R1; � � � ;RN�1/ with R0 D RN D 1. In
each direction j, the index that runs over RRj�1 and R

Rj takes care of the coupling to
the j � 1-th and the jC 1-th dimension, respectively. A discretization of (7) with qz
degrees of freedom in each dimensions yields

p D
R0X

r0D1
� � �

RNX

rND1
Qr0;r1
1 ˝Qr1;r2

2 ˝ � � � ˝QrN�1;rN
N ; (8)

1For instance, if we represent pj.zj/ in terms of an interpolant

pj.zj/ D
qzX

kD1

pj;k�j;k.zj/;

then pj D .pj;1; � � � ; pj;qz /.
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where Q
rj�1;rj
j is a vector of length qz. With a payoff of an additional tensor rank

dimension, the problem of constructing a tensor train decomposition is closed and it
can be solved to any given error tolerance or fixed rank [86]. The algorithm is based
on a sequence of SVD applied to the matricizations of the tensor, i.e. the so-called
high-order singular value decomposition (HOSVD) [39]. Methods for reducing the
computational cost of tensor train are discussed in [82, 87, 126]. Applications to the
Vlasov kinetic equation can be found in [23, 46, 58].

2.2.1 Temporal Dynamics

To include temporal dynamics in the low rank tensor representation of a field we
can simply add additional time-dependent functions, i.e., represent p.t; z1; : : : ; zN/
as

p.t; z1; � � � ; zN/ D
RX

rD1
˛rp

r
t .t/p

r
1.z1/p

r
2.z2/ � � � prN.zN/: (9)

This approach has been considered by several authors, e.g., [2, 17], and it was shown
to be effective for problems dominated by diffusion. However, for complex transient
problems (e.g., hyperbolic dynamics), such approach is not practical as it requires a
high resolution in the time domain. To address this issue, a discontinuous Galerkin
method in time was proposed by Nouy in [79]. The key idea is to split the integration
period into small intervals (finite elements in time) and then consider a space-time
separated representation of the solution within each interval.

Alternatively, one can consider an explicit or implicit time-integration schemes
[20, 59]. In this case, the separated representation of the solution is computed at
each time step. In such representations we look for expansions in the form

p.t; z1; � � � ; zN/ D
RX

rD1
˛r.t/p

r
1.z1; t/p

r
2.z2; t/ � � � prN.zN ; t/: (10)

Here, we demonstrate the procedure with reference to the simple Crank-Nicolson
scheme. To this end, we consider the linear kinetic equation in the form

@p.z; t/
@t

D L.z/p.z; t/; (11)

where z D .z1; : : : ; zN/ is the vector of phase variables and L.z/ is a linear operator.
For instance, in the case of the Fokker-Planck equation we have

L.z/ D �
NX

jD1

�
@Gj

@zj
C Gj

@

@zj

�
C 1

2

NX

i;jD1

�
@2bij
@zi@zj

C bij
@2

@zi@zj
C 2@bij

@zi

@

@zj

�
:
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We discretize (11) in time by using the Crank-Nicolson scheme. This yields

p.z; tkC1/ � p.z; tk/

t

D 1

2
.L.z/p.z; tkC1/C L.z/p.z; tk//C �k.z/; 
t D tkC1 � tk;

i.e.,

�
I � 1

2

tL.z/

�
p.z; tkC1/ D

�
I C 1

2

tL.z/

�
p.z; tk/C �k.z/; (12)

where �k.z/ is the truncation error arising from the temporal discretization. Assum-
ing that p.z; tk/ is known, (12) is a linear equation for p.z; tkC1/which can be written
concisely (at each time step) as

A.z/ p.z/ D f .z/C �.z/; (13)

where

A.z/
:D
�
I � 1

2

tL.z/

�
; f .z/

:D
�
I C 1

2

tL.z/

�
p.z; tk/:

Note that we dropped the time tkC1 in p.z; tkC1/ with the understanding that the
linear system (13) has to be solved at each time step. We emphasize that other multi-
step and time-splitting schemes [27, 58]—including geometric integrators [45]—
can be used instead of the Crank-Nicolson method.

2.2.2 Alternating Direction Algorithms

The low-rank tensor decomposition is particularly convenient when the system
operator A.z/ and the right-hand-side f .z/ are separable with respect to z, i.e.,

A.z/ D
nAX

kD1
Ak
1.z1/ � � �Ak

N.zN/; f .z/ D
nfX

kD1
f k1 .z1/ � � � f kN.zN/: (14)

Note that A.z/ is separable if L.z/ is separable. A simple example of a two-
dimensional separable operator L.z/ with separation rank nL D 3 is

L.z1; z2/ D z2
@2

@z1@z2
C sin.z1/z2

@2

@z21
C e�z21

@

@z2
: (15)

Another example is the Liouville operator associated to nonlinear dynamical
systems with polynomial nonlinearities. A substitution of the tensor representation
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(5) into (12) yields the residual2

W.z/ D A.z/p.z/� f .z/; (16)

which depends on z and on all degrees of freedom associated with prj . To determine
such degrees of freedom we require that

kW.z/k D kA.z/p.z/� f .z/k � "; (17)

in an appropriately chosen norm, and for a prescribed target accuracy ". Ideally,
the optimal tensor rank of can be defined as the minimal R such that the solution
has an exact tensor decomposition with R terms, i.e., � D 0. However, the storage
requirements and the computational cost increase with R, which makes the tensor
decomposition attractive for small R. Therefore, we look for a low-rank tensor
approximation of the solution to (13), with a reasonable accuracy �. Although
there are at present no useful theorems on the size R needed for a general class
of functions, there are examples where tensor expansions are exponentially more
efficient than one would expect a priori (see [6]).

Many existing algorithms to determine the best low-rank approximation of
the solution to (13) are based on alternating direction methods. The key idea is
to construct the tensor expansion (5) iteratively by determining prj .zj/ one at a
time while freezing the degrees of freedom associated with all other functions.
This yields a sequence of low-dimensional problems that can be solved efficiently
[5, 6, 59, 79, 80, 83], eventually in parallel [52]. Perhaps, one of the first alternating
direction algorithms to compute a low rank representation of the solution of a high-
dimensional PDE was the one proposed in [2]. To clarify how the method works in
simple terms, suppose we have constructed an approximated solution to the system
(12) in the form (5), i.e., suppose we have available pR.z/ with tensor rank R. Then
we look for an enriched solution in the form

pR.z/C r1.z1/ � � � rN.zN/;

where fr1.z1/; : : : ; rN.zN/g are N unknown functions to be determined. In the
alternating direction method, such functions are determined iteratively, one at a
time. Typical algorithms to perform such iterations are based on alternating least
squares (ALS),

min
rj

�����

nAX

kD1
Ak
1 � � �Ak

N

�
pR C r1 � � � rN

� �
nfX

kD1
f k1 � � � f kN

�����

2

; (18)

2The residual W.z/ incorporates both the truncation error arising from the time discretization as
well as the error arising from the finite-dimensional expansion (5).
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or alternating Galerkin methods,

*
q;

nAX

kD1
Ak
1 � � �Ak

N

�
pR C r1 � � � rN

�
+
D
*
q;

nfX

kD1
f k1 � � � f kN

+
; (19)

where h�i is an inner product (multi-dimensional integral with respect to z), and q
is a test function, typically chosen as q.z/ D r1.z1/ � � ��j;k.zj/ � � � rN.zN/ for k D
1; : : : ; qz. In a finite-dimensional setting, the minimization problem (18) reduces to
the problem of finding the minimum of a scalar function in as many variables as the
number of unknowns we consider in each basis function rj.zj/, say qz. Similarly, the
alternating direction solution to (19) yields a sequence of low-dimensional linear
systems of size qz � qz. If A.z/ is a nonlinear operator, then we can still solve (18)
or (19), e.g., by using Newton iterations. Once the functions fr1.z1/; : : : ; rN.zN/g
are computed, they are normalized (yielding the normalization factor ˛RC1) and
added to pR.z/ to obtain pRC1.z/. The tensor rank is increased until the norm of the
residual (16) is smaller than the desired target accuracy " (see Eq. (17)). We would
like to emphasize that it is possible to include additional constraints when solving
the linear system (13) with alternating direction algorithms. For example, one can
impose that the solution p.z/ is positive and it integrates to one [59], i.e., it is a
probability density function.

The enrichment procedure just described has been criticized in the literature due
to its slow convergence rate, in particular for equations dominated by advection
[79]. Depending on the criterion used to construct the tensor decomposition, the
enrichment procedure might not even converge. To overcome this problem, Doostan
and Iaccarino [25] proposed an alternating least-square (ALS) algorithm with
granted convergence properties. The algorithm simultaneously updates the entire
rank of the basis set in the j-th direction. In this formulation, the least square
approach (18) becomes

minn
p1j ;:::;p

R
j

o

�����

nAX

kD1
Ak
1 � � �Ak

N

 
RX

rD1
˛rp

r
1 � � � prN

!
�

nfX

kD1
f k1 � � � f kN

�����

2

:

The computational cost of this method clearly increases compared to (18). In fact, in
a finite dimensional setting, the simultaneous determination of fp1j ; : : : ; pRj g requires
the solution of a Rqz � Rqz linear system. However, this algorithm usually results
in a separated solution with a lower tensor rank R than the regular approach, which
makes the algorithm more favorable to advection dominated kinetic systems. The
basic idea of updating the entire rank of functions depending on a specific variable
can be also applied to the alternating Galerkin formulation (19) (see [20]). In Sect. 4
we provide a numerical example of such algorithm—see also Algorithm 1.

Further developments and applications of low-rank tensor approximation meth-
ods can be found in the excellent reviews papers [3, 40, 81]. Gradient-based
and Newton-like methods modifying and improving the basic ALS algorithm are
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Algorithm 1 Alternating least squares with canonical tensor decomposition
Compute the tensor representation of the initial condition p.t0/
for t1 � tk � tnT do

Compute f by using p.tk�1/

Set R D 1

while
��ApR.tk/� f

�� > " do
Initialize

˚
pR1 .tk/; : : : ; p

R
N.tk/

�
at random

while
��ApR.tk/� f

�� does not decrease do
Solve BnpRn D gn (38) in each direction for 1 � n � N

end while
Normalize the basis set and solve D˛ D d (39) to compute the coefficients ˛

Set R D R C 1

end while
end for

discussed in [1, 14, 28, 34, 53, 88, 93, 105, 106], Convergence of ALS and its parallel
implementation has been studied in [21, 52, 70, 108].

2.3 ANOVA Decomposition and BBGKY Hierarchies

Another typical approach to model high-dimensional functions is based on the
truncation of interactions. Hereafter we discuss two different methods to perform
such approximation, namely, the ANOVA decomposition [11, 36, 61, 125] and the
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) technique. Both these meth-
ods rely on a representation of multivariate functions in terms of series expansions
involving functions with a smaller number of variables. For example, a second-order
ANOVA approximation of a multivariate PDF in N variables is a series expansion
involving functions of at most two variables. As we will see, both the ANOVA
decomposition and the BBGKY technique [73] yield a hierarchy of coupled PDF
equations for each given stochastic dynamical system. These methods are especially
appropriate for anisotropic problems where dimensional adaptivity can be pursued.

The ANOVA series expansion [11, 41, 121] involves a superimposition of
functions with an increasing number of variables. Specifically, the ANOVA decom-
position of an N-dimensional PDF takes the from

p.z1; z2; : : : ; zN/ D p0 C
NX

iD1
pi.zi/C

NX

i<j

pij.zi; zj/C
NX

i<j<k

pijk.zi; zj; zk/C � � � :

(20)

The function p0 is a constant. The functions pi.zi/, which we shall call first-order
interaction terms, give us the overall effects of the variables zi in p as if they were
acting independently of the other variables. The functions pij.zi; zj/ represent the
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interaction effects of the variables zi and zj, and therefore they will be called second-
order interactions. Similarly, higher-order terms reflect the cooperative effects of
an increasing number of variables, and the series is usually truncated at a certain
interaction order. These terms can be computed in different ways [92, 124], however,
we point out the following procedure,

pK.zK/ D
Z

p.z/d�.zK0/�
X

S�K

pT.zS/; (21)

where S � K � f1; � � � ;Ng, K0 is the complement of K in f1; � � � ;Ng, pK.zK/ D
pj1;:::;jk .zj1 ; � � � ; zjk / for K D f j1; � � � ; jkg, and � is the Lebesgue measure. Due to
its construction, this procedure generates ANOVA terms that are orthogonal with
respect to�, that is,

R
pK.zK/pS.zS/d�.z/, for all S ¤ K, which provides an effective

criterion for dimensional adaptivity [65, 121].
The ANOVA expansion can be readily applied in the space of parameters

of kinetic systems since the parameters do not depend on time and each terms
computed at the initial time can be updated independently. To pursue a collocation
approach similar to the sparse grid collocation method (3), we replace the Lebesgue
measure with a Dirac measure d� D ı.z � c/ at an appropriate anchor point c,
and consider the corresponding collocation scheme [118]. This method is called the
anchored-ANOVA method (PCM-ANOVA) [7, 32, 36, 121]. The anchor points are
often taken as the mean value of the random variable in each dimension [125]. Then,
each PDF equations in Table 1 can be solved at the PCM-ANOVA collocation points
in the space of parameters.

On the other hand, representing the dependence of the solution PDF on the
phase variables through the ANOVA expansion yields a hierarchy of coupled PDF
equations that resembles the BBGKY hierarchy of classical statistical mechanics.
Let us briefly review the BBGKY technique type with reference to a nonlinear
dynamical system in the form

Pz.t/ D G.z; t/; z.0/ D z0.!/; (22)

where z.t/ 2 R
N is a multi-dimensional stochastic process including both phase and

parametric variables, G W RNC1 ! R
N is a Lipschitz continuous (deterministic)

function, and z0 2 R
N is a random initial state. The joint PDF of z.t/ evolves

according to the Liouville equation

@p.z; t/
@t

Cr � ŒG.z; t/p.z; t/� D 0; z 2 R
N ; (23)

whose solution can be computed numerically with standard discretization methods
only for relatively small N. This leads us to look for PDF equations involving only
a reduced number of phase variables, for instance, the PDF of each component
zi.t/. Such equations can be formally obtained by marginalizing (23) with respect to
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different phase variables and discarding terms at infinity. This yields, for example,

@pi.zi; t/

@t
D � @

@zi

Z
ŒGi.y; t/ı.zi � yi.t//p.y; t/� dy; (24)

@pij.zi; zj; t/

@t
D � @

@zi

Z 	
Gi.y; t/ı.zi � yi.t//ı.zj � yj.t//p.y; t/



dy

� @

@zj

Z 	
Gj.y; t/ı.zi � yi.t//ı.zj � yj.t//p.y; t/



dy: (25)

Higher-order PDF equations can be derived similarly. The computation of the
integrals in (24) and (25) requires the full joint PDF of z.t/, which is available only
if we solve the full Liouville equation (23). Alternatively, we can solve (24) or (25)
directly, provided we need to introduce approximations. The most common one is to
assume that the joint PDF p.z; t/ can be written in terms of lower-order PDFs, e.g.,
as p.z; t/ D p.z1; t/ � � � p.zN ; t/ (mean-field approximation). By using integration
by parts, this assumption reduces the Liouville equation to a hierarchy of low-
dimensional PDF equations (see, e.g., [20, 112]). An example of such approximation
will be presented later in this chapter with an application to Lorenz-96 model.

3 Computational Cost

Consider a kinetic partial differential equation with n phase variables and m
parameters, i.e., a total number of N D nC m variables. Suppose that we represent
the solution by using qz degrees of freedom in each phase variable and qb degrees
of freedom in each parameter. If we employ a tensor product discretization, the
number of degrees of freedom becomes qnz � qmb and the computational cost grows
exponentially as O.q2nz � qmb /. Hereafter we compare the computational cost of the
methods we discussed in the previous sections. Table 2 summarizes the main results.

Table 2 Number of degrees of freedom and computational cost of solving kinetic equations by
using different methods

Degrees of freedom Computational cost

Sparse grids O.qzj log.qz/jn�1/ O
�
q2z j log.qz/j2n�2

�

ANOVA or BBGKY
X̀

sD0

qsz
nŠ

.n � s/ŠsŠ
O

�
q2`z

nŠ

.n � `/Š`Š

�

Canonical tensor decomposition qzR n O
�
q2z R

3n
�

Shown are results for sparse grid, ANOVA decomposition, and low-rank canonical tensor
decomposition. In the table, n is the phase space dimension in the kinetic equation assuming that
the PDF solution is discretized with qz degrees of freedom in each phase variable. Also, R is the
tensor rank and ` is the interaction orders of the ANOVA expansion or the BBGKY closure
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3.1 Sparse Grids

The computational complexity of sparse grids grows logarithmically with the
number of degrees of freedom in each dimension, i.e., O.qzj log2.qz/jn�1/. If
we employ the multi-wavelet basis we mentioned before in the context of the
discontinuous Galerkin framework, then it can be shown that the computational
complexity is O..qz C 1/n2``n�1/, where ` is the element level and qz is the
polynomial order in each element (see [43]). In the space of parameters, the sparse
grid collocation method yields 2l.m C l/Š=.mŠlŠ/ points, where l is the sparse grid
level and m is the number of parameters. Thus, if we consider sparse grid in
both phase and parametric space, the total computational cost can be estimated as
O.q2z j log2.qz/j2n�2/ �P`

lD0 2l.mC l/Š=.mŠlŠ/.

3.2 Low-Rank Tensor Approximation

The total number of degrees of freedom in a low-rank tensor decomposition grows
linearly with both n and m. For instance, we have R.nqz C mqb/ in the canonical
tensor decomposition (6), and R2.nqz C mqb/ in the tensor train approach (8). If
the tensor rank R turns out to be relatively small, then the tensor approximation
is far more efficient than full tensor product, sparse grid, or ANOVA approaches,
in terms of memory requirements as well as the computational cost. The classical
alternating direction algorithm at the basis of the canonical tensor decomposition
can be divided into two steps, i.e., the enrichment and the projection steps (see
Algorithm 1). The computational cost of the projection step can be neglected with
respect to the one of the enrichment step, as it reduces to solving a linear system of
rather small size (r � r). The enrichment step at tensor rank r requires O..rqz/2 C
.rqz/2/ operations—provided we employ appropriate iterative linear solvers. If we
assume that the average number of iterations is nitr, and sum up the cost for r D
1; : : : ;R, the overall computational cost of canonical tensor decomposition can be
estimated as O

�
R3
�
nq2z Cmq2b

�� � nitr. In the tensor train approach, the cost also
depends on the matrix rank S that comes from the procedure of HOSVD, and it
becomes O

�
R2S2nq2z C R3S3nqz

�
[58].

3.3 ANOVA Decomposition

If we consider the ANOVA expansion or the BBGKY hierarchy, the computational
complexity has a factorial dependency on the dimensionality n C m and the
interaction orders of the variables [32]. In particular, the total number of degrees
of freedom for a fixed interaction order ` and assuming qb D qz is

X̀

lD0
C.nCm; l; qz/ where C.N; l; qz/ D qlz

NŠ

.N � l/ŠlŠ
: (26)
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The computational cost of matrix-vector operations involving discretized variables
in each level is O

�
C.nCm; `; q2`z /

�
. It is possible to combine the BBGKY

technique with the PCM-ANOVA approach to improve the accuracy, since the
interaction order of the phase variables and the parameters, denoted as ` and `0, can
be controlled separately. In this case, the total number of degrees of freedom and the
corresponding computational cost become, .

P`
lD0 C.n; l; qz// � .

P`0

lD0 C.m; l; qb//
and O

�
C.n; `; q2`z / � .

P`0

lD0 C.m; l; qb//
�

, respectively.

4 Applications

In this section, we present numerical examples to illustrate the performance and
accuracy of the algorithms we discussed in this chapter. Specifically, we study
the alternating Galerkin formulation (canonical tensor decomposition) of a kinetic
model describing stochastic advection of a scalar field. We also study the BBGKY
hierarchy of the Lorentz-96 model evolving from a random initial state.

4.1 Stochastic Advection of Scalar Fields

Let us consider the following stochastic advection equations

@u

@t
C
 
1C

mX

kD1

1

2k
sin.kt/�k.!/

!
@u

@x
D 0; (27)

@u

@t
C @u

@x
D sin.t/

mX

kD1

1

5.kC 1/ sin..kC 1/x/�k.!/; (28)

where x 2 Œ0; 2�� and f�1; : : : ; �mg are i.i.d. uniform random variables in
Œ�1; 1�. The kinetic equations governing the joint probability density function
of f�1; : : : ; �mg and the solution to (27) or (28) are, respectively,

@p

@t
C
 
1C

mX

kD1

1

2k
sin.kt/bk

!
@p

@x
D 0; (29)

@p

@t
C @p

@x
D �

 
sin.t/

mX

kD1

1

5.kC 1/ sin..kC 1/x/bk
!
@p

@a
; (30)

where p D p.x; t; a;b/, b D fb1; : : : ; bmg (see [111] for a derivation). Note that
this PDF depends on x, t, one phase variable a (corresponding to u.x; t/), and m
parameters b (corresponding to f�1; : : : ; �mg). The analytical solutions to Eqs. (29)
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and (30) can be obtained by using the method of characteristics [95]. They are both
in the form

p .x; t; a;b/ D p0 .x � X.t;b/; a � A.x; t;b/;b/ (31)

where

X.t;b/ D t �
mX

kD1

.cos.kt/ � 1/bk
2k2

; A.x; t;b/ D 0 (32)

in the case of Eq. (29) and

X .t;b/ D t; A .x; t;b/ D
mC1X

kD2

bk�1
10k

�
sin.kx � t/

k � 1 � sin.kxC t/

kC 1 � 2 sin.k.x � t//

.k � 1/.k C 1/
�

(33)

in the case of Eq. (30). Also, p0 .x; a; b/ is the joint PDF of u.x; t0/ and f�1; : : : ; �mg.
In our simulations we take

p0.x; a;b/ D 1

2

 
sin2.x/

2��1
exp

�
� .a � �1/

2

2�1

�
C cos2.x/

2��2
exp

�
� .a � �2/

2

2�2

�!
;

which has tensor rank R D 2. Non-separable initial conditions can be approximated
in the tensor format (5). Also, we consider different number of parameters in
Eqs. (29) and (30), i.e., m D 3; 13; 24; 54; 84; 114.

4.1.1 Finite-Dimensional Representations

Let us represent the joint probability density function (5) in terms of polynomial
basis functions as

prn.zn/ D
qzX

kD1
prn;k�n;k.zn/; (34)

where qz is the number of degrees of freedom in each variable. In particular,
for (29) and (30), we consider a spectral collocation method in which f�1;jg and
f�2;jg are trigonometric polynomials, while f�n;jgNnD3 (basis elements for the space
of parameters) are Lagrange interpolants at Gauss-Legendre-Lobatto points. The
finite-dimensional representation of the joint PDF admits the following canonical
tensor form

p D
RX

rD1
˛dpr1 ˝ � � � ˝ prN ;
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where the vector

prn D
h
prn;1; � � � ; prn;qz

i
;

collects the (normalized) values of the solution at the collocation points. The fully
discrete Galerkin formulation of our kinetic equations takes the form

Ap D f; (35)

where

A D
nAX

kD1
Ak
1 ˝ � � � ˝ Ak

N ; f D
nfX

kD1
fk1 ˝ � � � ˝ fkN ; (36)

Ak
nŒi; j� D

Z
�n;i.zn/A

k
n.zn/�n;j.zn/ dzn; fknŒi� D

Z
f kn .zn/�n;i.zn/ dzn: (37)

By using a Gauss quadrature rule to evaluate the integrals, we obtain system
matrices Ak

n that are either diagonal or coincide with the classical differentiation
matrices of spectral collocation methods [47]. For example, in the case of Eq. (29)
we have

A11Œi; j� D wxŒi�ıij; Ak
1Œi; j� D


t

2
wxŒi�DxŒi; j�; k D 2; : : : ; nA;

A12Œi; j� D A22Œi; j� D wzŒi�ıij; AkC2
2 Œi; j� D sin.ktnC1/

2k
wzŒi�ıij; k D 1; : : : ;m;

Ak
3Œi; j� D wbŒi�ıij; k ¤ 3; A33Œi; j� D wbŒi�qbŒi�ıij; � � �

where qb denotes the vector of collocation points, wx, wz, and wb are collocation
weights, Dx is the differentiation matrix, and ıij is the Kronecker delta function. In
an alternating direction setting, we aim at solving the system (35) in a greedy way,
by freezing all degrees of freedom except those representing the dimension n. This
yields a sequence of linear systems

BnpRn D gn; (38)

where Bn is a block matrix with R � R blocks of size qz � qz, and gn is multi-
component vector. Specifically, the hv-th block of Bn and the h-th component of gn
are obtained as

Bhv
n D

nAX

kD1

0

@
NY

i¤n

	
phi

T

Ak
i p
v
i

1

AAk
n; ghn D

nfX

kD1

0

@
NY

i¤n

	
phi

T

fki

1

A fkn:
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The solution vector

pRn D
	
p1n; : : : ;p

R
n


T

is normalized as prn=
��prn

�� for all r D 1; ::;R and n D 1; : : : ;N. This operation
yields the coefficients ˛ D .˛1; : : : ; ˛R/ as a solution to the linear systems

D˛ D d; (39)

where the entries of the matrix D and the vector d are, respectively

Dhv D
nAX

kD1

NY

iD1

	
phi

T

Ak
i p
v
i ; dh D

nfX

kD1

NY

iD1

	
phi

T

fki :

The main steps of the computational scheme are summarized in Algorithm 1. We
also refer the reader to [21, 70, 108] for a convergence analysis of the alternating
direction algorithm.

The iterative procedure at each time step is terminated when the norm of the
residual is smaller than a tolerance, i.e., when kApR � fk � ". This usually involves
the computation of an N-dimensional tensor norm, which can be expensive and
compromise the computational efficiency of the whole algorithm. To avoid this
problem, we replace the condition kApR � fk � " with the simpler convergence
criterion

max

( ��epR
1 � pR1

��
��pR1

�� ; : : : ;

��epRN � pRN
��

��pRN
��

)
� "1; (40)

where
˚
epR1 ; : : : ;epRN

�
denotes the solution at the previous iteration. This criterion

involves the computation of N vector norms instead of one N-dimensional tensor
norm.

4.1.2 Numerical Results: Low-Rank Tensor Approximation

We compute the solution to the kinetic equations (29) and (30) by using Algorithm 1.
The PDF solution is represented in the canonical tensor format as

p.x; t; a;b/ '
RX

rD1
˛r.t/p

r
x.x; t/p

r
a.a; t/P

r
1.b1; t/ � � �Pr

m.bm; t/: (41)

We chose the degrees of freedom of the expansion to carefully balance the error
between the space and time discretization, as well as the truncation error due to the
finite rank R. In particular, x and a are discretized in terms of an interpolant with
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Fig. 2 Tensor modes of the kinetic solution to the stochastic advection equations at t D 2.
Reproduced with permission from [20]

collocation points qz D 50 in each variable, while the parametric dependence on bj
(j D 1; ::;m) is represented with Legendre polynomials of order qb D 7.

In Fig. 2 we plot the first few tensor modes pr.x; a; t/
:D prx.x; t/p

r
a.a; t/ of the

solution to Eqs. (29) and (30) at time t D 2. Specifically, we considered m D 54 in
(29) and m D 3 in (30). Note that the tensor modes we obtain from Eq. (29), pr, are
very similar to each other for r � 2, while in the case of Eq. (30) the modes are quite
distinct, suggesting the presence of modal interactions and the need of a larger tensor
rank to achieve a certain accuracy. This is also observed in Fig. 3, where we plot the
normalization coefficients f˛1; : : : ; ˛Rg, which can be interpreted as the spectrum of
the tensor solution. The stochastic advection problem with random forcing yields a
stronger coupling between the tensor modes, i.e., a slower spectral decay than the
problem of random coefficient.

In Fig. 4 we plot the error of the low-rank tensor approximation of the solution
versus the number of parameters m for different tensor rank R. As it is predicted
from the spectra shown in Fig. 3, the overall relative error of the solution in
the random forcing case is larger than in the random coefficient case (see also
Fig. 5 for the convergence with respect to R). This is due to the presence of the
time-dependent forcing term in Eq. (28), which injects additional energy in the
system and activates new modes. This yields a higher tensor rank for a prescribed
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Fig. 3 Spectra of the canonical tensor decomposition of the stochastic advection problem at t D 2.
Reproduced with permission from [20]

Fig. 4 Relative L2 errors of the low-rank tensor approximation of the solution with respect to the
analytical solution (31). Shown are results for different number of random variables m in (27)–(28)
and different tensor ranks R. It is seen that the accuracy of the tensor method mainly depends on
the actual tensor rank rather than on the dimensionality. Reproduced with permission from [20]

level of accuracy. In addition, the plots suggest that the accuracy of the low-rank
tensor approximation method depends primarily on the tensor rank rather than on
the number of parameters of the problem. The choice of the tensor format that
yields the smallest possible tensor rank for a specific problem is an open question.
Recent studies suggest that the answer is usually problem-dependent. For instance,
Kormann [58] has recently shown that a semi-Lagrangian solver for the Vlasov
equation in tensor train format achieves best performances if the phase variables are
sorted as .v1; x1; x2; v2; x3; v3/.
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Fig. 5 Relative L2 errors of the tensor solution and the ANOVA solution of level ` D 2 with
respect to the analytical solution (31). Shown are results of the kinetic equation (29) at t D 0:5,
t D 1 and t D 3 for different tensor ranks R and dimensionality m. Reproduced with permission
from [20]

4.1.3 Comparison Between Tensor Approximation and ANOVA

In this section we compare the accuracy and the computational cost of the low-rank
alternating Galerkin method with the ANOVA expansion technique to compute the
solution to Eqs. (29) and (30). The PCM-ANOVA representation of the solution is

p.x; t; a;b/ '
X

jKj�`
pK.t; x; a/PK.bK/: (42)

For ` D 2 (level 2) and m parameters, the expansion (42) has 1C mC m.m � 1/=2
terms.

In Fig. 5 we compare the accuracy of the low-rank tensor approximation and the
PCM-ANOVA expansion in computing the solution to the kinetic equation (29). In
particular, the convergence of the tensor solution with respect to R is demonstrated.
Note that the tensor solution attains the same level of accuracy as the ANOVA
decomposition with just five modes for t � 1. Therefore the low-rank tensor
approximation is preferable over ANOVA especially when m � 54. However, this is
not true in the case of Eq. (30) due to its relatively large tensor ranks. To overcome
this problem, we developed an adaptive algorithm that sets the separation rank of
the solution based on a prescribed target accuracy on the residual of the kinetic
equation, or other quantities related to it.

In Fig. 6 (left) we plot the temporal dynamics of the tensor rank R.t/ obtained by
setting a threshold on the spectral condition number defined as the ratio between the
smallest and the largest ˛i. Specifically, we increase R by one at t D t� whenever
the following condition is verified ˛R.t�/=˛1.t�/ > � . For a small threshold � , we



Numerical Methods for High-Dimensional Kinetic Equations 115

0 1 2 3
0

5

10

15

20

1 2 3  
10-5

10-4

10-3

10-2

10-1

Fig. 6 Comparison between the relative L2 errors of the adaptive tensor method and the ANOVA
method of level ` D 2. Results are for the kinetic equation (30) with threshold � D 5 � 10�4. It
is seen that the error of the tensor solution is slightly independent of m, while the error of ANOVA
level 2 increases as we increase m. Reproduced with permission from [20]

notice that R can increase to 20 and more at later times. This result reveals two
key aspects of efficient tensor algorithms in practical applications. It is essential to
develop a robust adaptive procedure that can identify the proper tensor rank on-the-
fly and an effective compression technique that can reduce the tensor rank in time.
This is critical especially when computing long term behavior of kinetic systems.

In Fig. 6 (right) we plot the error of the adaptive tensor method and the level 2
ANOVA method versus time. It is seen that error in the tensor method is almost
independent of m, while the error of ANOVA increases with m. The accuracy can
be improved either by increasing the tensor rank (canonical tensor decomposition)
or increasing the interaction order (ANOVA method). Before doing so, however,
one should carefully examine the additional computational cost incurred by each
method. For example, increasing the interaction order from two to three in the PCM-
ANOVA expansion would increase the number of collocation points from 70;498 to
8;578;270 (case m D 54). In Fig. 7 we compare the computational cost of canonical

3 13 24 54 84 114
100

102

104

Fig. 7 Computational time of the tensor decomposition, ANOVA level 2, and sparse grid (SG)
level 3 with respect to the dimensionality m and the tensor rank R. The results are normalized with
respect to the computing time of ANOVA when m D 3. Reproduced with permission from [20]
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tensor decomposition with different ranks, ANOVA of level two, and sparse grid of
level three in computing the solution to Eq. (30). It is seen that the tensor method is
the most efficient one, in particular for high dimensions and low tensor rank, e.g.,
m � 24 and R � 8.

4.2 The Lorenz-96 Model

The Lorenz-96 model is a continuous in time and discrete in space model often used
in atmospheric sciences to study fundamental issues related to forecasting and data
assimilation [51, 62]. The basic equations are

dxi
dt
D .xiC1 � xi�2/ xi�1 � xi C F; i D 1; : : : ; n: (43)

Here we consider n D 40, F D 1, and assume that the initial state Œx1.0/; : : : ; x40.0/�
is jointly Gaussian with PDF

p0.z1; : : : ; z40/ D
�
25

2�

�20 40Y

iD1
exp

"
�25
2

�
zi � i

40

�2#
: (44)

Without an additional parametric space, the dimensionality of this system is
n D 40. The kinetic equation governing the joint PDF of the phase variables
Œx1.t/; : : : ; x40.t/� is

@p.z; t/
@t

D �
40X

iD1

@

@zi
Œ..ziC1 � zi�2/zi�1 � zi C F/ p.z; t/� ; z 2 R

40: (45)

Such hyperbolic conservation law cannot be obviously solved in a classical tensor
product representation because of high-dimensionality and possible lack of regular-
ity (for F > 10) related to the fractal structure of the attractor [51]. Thus, we are led
to look for reduced-order PDF equations.

4.2.1 Truncation of the BBGKY Hierarchy

In this section we illustrate how to compute low order probability density function
equations by truncations of the BBGKY hierarchy. To this end, consider the
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dynamical system

dyi
dt
D Gi.y; t/;

where

Gi.y; t/ D gii. yi; t/C
NX

kD1
k¤i

gik. yi; yk; t/:

With such velocity field Gi.y; t/ we can calculate the integrals at the right hand side
of the one-point PDF equation (24) exactly as

@pi
@t
D � @

@zi

2

4gii.zi; t/pi C
NX

k¤i

Z
gik.zi; zk; t/pikdzk

3

5 ; (46)

where pi D p.zi; t/ and pik D p.zi; zk; t/. Similarly, the two-point PDF equations (25)
can be approximated as

@pij
@t
D � @

@zi

2

4�gii.zi; t/C gij.zi; zj; t/
�
pij C

0

@
NX

k¤i;j

Z
gik.zi; zk; t/pikdzk

1

A pj

3

5

� @

@zj

2

4�gjj.zj; t/C gji.zj; zi; t/
�
pij C

0

@
NX

k¤i;j

Z
gjk.zj; zk; t/pjkdzk

1

A pi

3

5 ;

(47)

where we discarded all contributions from the three-point PDFs and the two-point
PDFs except the ones interacting with the i-th variable. A variance-based sensitivity
analysis in terms of Sobol indices [98, 104, 113] can be performed to identify the
system variables with strong correlations. This allows us to determine whether it is
necessary to add the other two-points correlations or the three-points PDF equations
for a certain triple fxk.t/; xi.t/; xj.t/g, and to further determine the equation for a
general form of Gi.

In the specific case of the Lorenz-96 system, we can write Eq. (46) as

@pi
@t
D � @

@zi

	
.hziC1i � hzi�2i/ hzi�1ii�1ji � .zi � F/pi



; (48)

where hf .z/iij j :D R
f .z/pij.zi; zj; t/dzi. In order to close such a system within

the level of one-point PDFs, hzi�1ii�1ji could be replaced, e.g., by hzi�1i pi.zi; t/.
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Similarly, Eq. (47) can be written for the two adjacent nodes as

@pi iC1

@t
D� @

@zi

h
ziC1
hzi�1ii�1ji piC1

� hzi�2i hzi�1ii�1ji piC1
� .zi � F /pi iC1

i

� @

@ziC1

h˝
ziC2

˛
iC2jiC1

zipi � hzi�1i zipi iC1
� .ziC1

� F/ pi iC1

i
: (49)

By adding the two-points closure of one node apart, i.e., pi�1 iC1
.zi�1 ; ziC1

; t/, the
quantity hzi�2i hzi�1ii�1ji piC1

in the first row and hzi�1i zipi iC1
in the second row can

be substituted by hzi�2ii�2ji hzi�1ii�1jiC1 and hzi�1ii�1jiC1 zipi , respectively. In Fig. 8,
we compare the mean and the standard deviation of the solution to (43) as computed
by the one- and two-points BBGKY closures (Eqs. (48) and (49), respectively) and
a Monte Carlo simulation with 50,000 solution samples. It is seen that the mean of
both the one-point and the two-points BBGKY closures basically coincide with the
Monte Carlo results. On the other hand, the error in standard deviation is slightly
different, and it can be improved in the two-points BBGKY closure (Fig. 9).
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Fig. 8 Mean (a, b) and standard deviation (c, d) of the Lorenz-96 system computed by the one-
point (a) and two-points (c) BBGKY closure compared to the Monte-Carlo simulation (b, d).
Reproduced with permission from [20]
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Fig. 9 The absolute error of the mean (a) and standard deviation (c, d) of the Lorenz-96 system
by using the BBGKY closure compared to the Monte-Carlo simulation in log-scale. In (c) and (d),
the results are computed by the one- and two-points BBGKY closure, respectively, and the L1 error
is shown in (b). Reproduced with permission from [20]

5 Summary

In this chapter we reviewed state-of-the-art algorithms to compute the numerical
solution of high-dimensional kinetic equations. The algorithms are based on low-
rank tensor approximation, sparse grids, and ANOVA decomposition. A common
feature of these methods is that they allow us to reduce the problem of computing
the solution to a high-dimensional PDE to a sequence of low-dimensional problems.
The range of applicability of the algorithms is sketched in Fig. 1 as a function of the
number of phase variables and the number of parameters appearing in the kinetic
equation. The computational complexity ranges from logarithmic (sparse grids) to
linear (canonical tensor decomposition) with respect to the dimension of the system.
Further extensions of the proposed algorithms can be addressed along different
directions. For example, adaptive procedures capable of resolving different phase
variables with different accuracy may allow applications to kinetic systems with
non-smooth solutions and scaling to extremely high-dimensions. In the context of
low-rank tensor approximation methods [20, 27, 58], a fundamental question is the
development of effective techniques for rank reduction [4, 94]. This is especially
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challenging for hyperbolic PDEs, since such equations can yield a slow convergence
rate when solved with canonical tensor decompositions [20, 79]. Future work should
address the development of adaptive algorithms for the construction of controlled
low-rank approximations and an adaptive selection of separation ranks and tensor
formats.
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From Uncertainty Propagation
in Transport Equations to Kinetic
Polynomials

Bruno Després

Abstract In view of the modeling of uncertainties which propagate in non lin-
ear transport equations and general hyperbolic systems, we review some recent
alternatives to the classical moment method. These approaches are obtained by
reconsidering the non linear structure with entropy considerations. It is shown that
the entropy variable and the kinetic formulation of conservation laws yield new
approaches with strong control of the maximum principle. A general minimization
principle is proposed for these kinetic polynomials, together with an original
reformulation as an optimal control problem. Basic numerical illustrations show
the properties of these new techniques. A surprising linked to quaternion algebras is
evoked in relation with kinetic polynomials. Natural limitations are discussed in the
conclusion.

1 Introduction

It is little less than 80 years since Norbert Wiener’s visionary article on “The
homogeneous chaos” [39] and some of the questions he addressed are still vividly
debated among the community that seeks for a comprehensive framework for
uncertainties in fluid mechanics. One question in [39] can be summed up as

Question 1 Is it possible to have a measurement of the dynamics of a flow via
polynomial expansions of certain quantities, where the polynomials are optimal with
respect to some underlying probability laws?
The engineering and computational community recognized that it is a fundamental
issue also for uncertainty calculations in many different fields, see [21] and
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references therein. Since then, any orthogonal polynomial expansion related to
a certain probability law (not only the Hermite expansion [39] well suited for
Gaussian processes and turbulence) is called a chaos polynomial expansion. There
is actually another question asked at the end of Wiener’s paper.

Question 2 What is the compatibility of these polynomial expansions with respect
to the PDE structure needed for fluid mechanics?
For the Burgers equations which is a paradigm, Wiener quickly realized that loss
of regularity may degrade the accuracy of polynomial approximations. This remark
looks evident nowadays since the theory [27] of shock waves and discontinuous
solutions is well established. It seems at the lecture of Wiener’s paper that he wanted
to address both questions at the same time, meaning a theory for the development
of turbulence—whatever it meant for him—and for the existence of shocks (which
degrades the regularity of the solutions so lessens the quality of polynomial approxi-
mations).

The purpose of this work is to review some recent progresses which try to answer
the second question, and only the second one. It will be presented following a
certain chronological order with which the author looked at these problems, so
the title of the present contribution. Even if some problems evoked below seem
at first sight extremely far from uncertainty propagation (such is the quaternion
structure at the end of this paper in Sect. 4), it is hoped the ensemble has a
coherent structure and reflects some scientific issues in the modeling of uncertainty
propagation in hyperbolic and kinetic equations. In a completely different direction,
the reader interested to a modern statistical but PDE based treatment of hyperbolic
conservation laws is strongly advised to refer to [19], and therein.

The plan is the following. Section 2 begins with the introduction of standard
notations and results about the hyperbolic structure of systems of conservation
laws with polynomial modeling of uncertainties. Section 3 takes advantage of the
rewriting of scalar conservation laws as the limit of kinetic equations. It will explain
nevertheless that another view is possible for polynomial expansions, denoted
as kinetic polynomials. Section 3.3 will provided advanced material on kinetic
polynomials. Section 3.4 will deal with a first formal extension to isentropic Euler
system with � D 3. Numerical illustrations are provided in Sect. 4.

Similar notations will sometimes be used for different uses. For example f
denotes the flux function in Sect. 2, but refers to the kinetic unknown in Sect. 3:
the context makes this abuse non ambiguous. On the contrary the indices are kept
the same: d is the space dimension, m the size of the system of conservation laws, p
the dimension of the uncertain space and n the polynomial degree.

2 Hyperbolic Structure

The modern mathematical treatment of non viscous compressible fluid mechanics
is based of the theory of hyperbolic systems of conservation laws [27]. Let us start
with the Euler system of compressible non viscous fluid mechanics written in the
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domain x 2 D � R
d

8
<

:

@t�Cr � .�u/ D 0;
@t.�u/Cr � .�u˝ u/Crp D 0;
@t.�e/Cr � .�ueC pu/ D 0;

(1)

where �.x; t/ > 0 stands for the density of a gas or a fluid, u.x; t/ 2 R
d is the

velocity and e is the total energy. The total energy is the sum of the internal energy
" and of the kinetic energy, that is e D "C 1

2
juj2. Considering that an equation of

state (EOS) is provided, the pressure law is p D EOS.�; "/. System (1) is rewritten
as a system of conservation laws


@tU Cr � f .U/ D 0; x 2 D ; t > 0;
U.x; 0/ D U0.x/; x 2 D ;

(2)

The unknownU.x; t/ 2 ˝ � R
m is assumed to live in the set˝ of admissible states.

A minimal requirement for well posedness is to have the hyperbolic structure, which
means that the Jacobian matrix

A.U/ D rUf .U/ 2 R
m�m

is diagonalizable in R
m: for all U 2 ˝ , there is a set of real eigenvectors and

eigenvalues. This is guaranteed if one has a smooth entropy-entropy flux pair .S;F/
for the system. The entropy function S W ˝ ! R and the entropy pair function
F W ˝ ! R

d are such that S is strictly convex, that is r2S > 0, and

rSrf D rF; U 2 ˝:

The modeling of uncertainty propagation with chaos polynomials techniques is
usually performed with another variable, call it ! 2 � � R

p. The uncertainty can
be in the initial data U0.x; !/ 2 R

m or in the flux function f! W ˝ ! R
m�d which

displays a dependency with respect to !. One obtains the system of conservation
laws


@tU Cr � f!.U/ D 0; x 2 D ; ! 2 �; t > 0;
U.x; 0I!/ D U0.x; tI!/; x 2 D ; ! 2 �; (3)

where the unknown U.x; tI!/ is function of the space-time variables and of the
uncertain variable. The mathematical structure of (3) is extremely simple since it
can be seen as an infinite collection of decoupled systems like (47), but for different
!.

For the simplicity of the exposure the function f is now considered as indepen-
dent of !. It is not really a restriction with respect to the main mathematical issues
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since it is possible to rewrite (3) as an augmented system

@t

�
U
!

�
Cr �

�
f!.U/
0

�
D 0; x 2 D ; ! 2 �; t > 0: (4)

Up to the definition of an augmented flux function f aug.U; !/ D
�
f!.U/
0

�
, the

system (4) is made of m C p conservation laws. An entropy can be defined under
natural conditions [17].

Since the number of variables of the generic system (3) is large, indeed the
dimension of the space of static variables is

dim .physical space/C dim .uncertain space/ D mC p;

the idea of model reduction is appealing. This is performed below with what is called
chaos expansion or chaos polynomials [8, 13, 21, 24, 28, 34, 39, 41]. For this task,
one adds for convenience one extremely important information which is the a priori
knowledge of an underlying probability law d�.!/: one has that

R
� d�.!/ D

1. One can argue that, for a practical problem, no such probability law is a priori
known. This is true in general, but there exists situations where the probability law
can be characterized by physical experiments. Three different examples are ICF
(Inertial Confinement Fusion) modeling [33], discussion of EOS for ICF modeling
[7] and in another direction signal processing [9].

The idea behind chaos polynomials is to use this information with optimal
accuracy [2, 10]. The procedure is as follows: one determines firstly a family of
orthogonal polynomial with increasing degree (partial or total)

Z

˝

pi.!/pj.!/d�.!/ D ıij:

A basic example is Legendre polynomials

pi.x/ D 1

2iiŠ

di

dxi
.x2 � 1/i

which are orthogonal for the uniform law d�.!/ D 1If�1<!1g
Z 1

�1
pi.x/pj.x/dx D 2

2iC 1ıij:

For the simplicity of notations, the polynomials ordering is the simplest one, that is
i 2 N. All this motivates the definition of a truncated unknown

Un.x; tI �/ 2 Pn WD Span0�i�n f pig ; (5)
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that is

Un.x; tI!/ D
nX

iD0
Un

i .x; t/pi.!/ where Un
i .x; t/ D

Z

˝

Un.x; tI!/pi.!/d�.!/:
(6)

Since Un
i is the ith moment of Un with respect to pi, this modeling is strongly related

to two classical theories: the first one is the classical problem of moments [1, 11]
and the second one is the closure problem of moments for kinetic equations [12, 23,
26, 30].

If correctly solved, the closure problem yields a closed system for the evolution
of
�
Ui

n

�
0�i�n

. A naive method is to close readily as

@tU
n
i .x; t/Cr �

Z

˝

f .Un.x; tI!//pi.!/d�.!/ D 0; 0 � i � n: (7)

When using such structure for calculations on computers, the numerical evaluation
of the integrals

R
˝
f .Un.x; tI!//pi.!/d�.!/ is needed. These integrals are highly

non linear for many problems of interest. Some prescriptions can be found in [34].
Discarding these practical issues, there is a bad news [17].

Lemma 2.1 Take the uniform law d� D d! on the interval ˝ D .0; 1/. When
applied to the Euler system (48) or to the system of shallow water, the system (7)
with the closure (6) may be non hyperbolic even for physical correct datas.

So far, the only possibility to have an hyperbolic closure is to modify the
expansion (5) using the entropy variable V D rS which induces a diffeomorphism
written as '.U/ D rS D V . The expansion writes

Vn.x; tI �/ 2 Pn WD Span0�i�n f pig ; (8)

that is

Vn.x; tI!/ D
nX

iD0
Vn
i .x; t/pi.!/ where Vn

i .x; t/ D
Z

˝

Vn.x; tI!/pi.!/d�.!/
(9)

is the moment of the entropy variable. The closure is now written as

Un.x; tI!/ D '�1 .Vn.x; tI!// :

This method introduces additional non linearity in the model. There is however a
good news.

Theorem 2.1 (Proof in [17]) The system of conservation laws (7) with the clo-
sure (9) is hyperbolic unconditionally for U 2 ˝ . It admits the entropy-entropy pair
.S ;F /

S D
Z

˝

S .Un.!// d! andF D
Z

˝

F .Un.!// d!:
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Many different probability measures are available. An issue with such extended
systems is the discretization procedure, since the simplicity of the coding is a
highly desirable property. Since the situation is not very different from moment
models, efficient implementation is possible [17]. A variant adapted to quasi-linear
systems is proposed in [40], with a simpler implementation. Convergence to the
limit entropy solution with respect to n is challenging to establish [22]: results are
only partial. It seems that no theoretical result of convergence is available so far after
the appearance of shocks in the solution, see [17] with a weak-strong technique. In
the rest of this work, an alternative to chaos polynomials is considered. Following
[15], it is called kinetic polynomials.

3 Kinetic Structure

The kinetic formulation of conservation laws [4, 29, 31, 32] is another possibility to
model uncertainties. Let " > 0 be a small parameter which ultimately tends to zero.
The kinetic formulation of the conservation law with flux F W R! R

@tuC @xF.u/ D 0 (10)

writes as a Boltzmann equation for t � 0, x 2 R
d and � � 0, in a BGK (relaxation)

form,

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@tf" C a.�/:rf" C 1
"
f" D 1

"
M.u"I �/; a D rF;

u".x; t/ D
Z

f".x; �; t/d�;

f".t D 0/ D M
�
uinitI ��:

(11)

The right hand side

M.uI �/ D 1If0<�<ug (12)

is called a Maxwellian. The initial condition satisfies

0 � u.x; !; 0/ D uinit.x; !/ � umax;

Z
uinit.x; !/dxd�.!/ <1: (13)

The non negativity u � 0 is needed for (12) to make sense in our context. That is
why we assume the initial data is non negative uinit � 0. This assumption simplifies
some non essential technicalities and allows to disregard the negative part of M; the
reader can find in [29, 31, 32] the adaptation to general signs as well as convergence
proofs when "! 0C: typically u" ! u and f" ! M.u/ in natural functional spaces.
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The Maxwellian M.uI �/ is a universal minimizer for a family of entropy based
functionals [4, 29, 31, 32]. For all convex functionals S.�/, one has that

M.uI �/ D argmin
uDR gd�; 0�g�1

Z
S0.�/gd�: (14)

To model uncertainties, the idea is now to write (11) for all !, and then to modify it
in a polynomial manner so as to consider the intrusive kinetic formulation

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@tf n" C a.�/:rf n" C 1
"
f n" D 1

"
Mn
�
un"I �; !

�
;

un".x; !; t/ D
Z

f n" .x; �; !; t/d�;

f n" .t D 0/ D Mn
�
uinitI �; !�;

(15)

where 0 � Mn.un"I �; !/ � 1 is a suitable polynomial modification of the
Maxwellian M. Notice that

R
f n" .t D 0/d�d! D R

uinitd! but the initial data needs
not be at equilibrium since uinit usually does not belong to Pn

! . The solutions of (15)
depend now on two parameters " and n. Depending on the way Mn is defined, it is
possible to get various estimates which explain the theoretical interest of the method.

3.1 Convolution Techniques

A first series of polynomial Maxwellian is obtained with suitable convolution
techniques. One seeks Mn under the form

Mn.un"I �; !/ D Gn �! M.un"I �/ WD
Z

Gn.!; !0/M
�
un".!

0/I ��d�.!0/

where the convolution kernel Gn is decomposed as

Gn.!; !0/ D
nX

iD0
cipi.!/pi.!

0/; (16)

where ci are appropriate coefficients and Gn satisfies

Gn � 0;
Z

Gn.!; !0/d�.!0/ D c0 D 1 D
Z

Gn.!; !0/d�.!/: (17)

The theory of polynomial kernel approximation [18, 38] asserts that convolution
kernels exist which satisfy the requirements (16)–(17). We quote [15] 3 possibilities:
the Fejer kernel, the Jackson kernel and the modified Jackson kernel.
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For example, considering the measure d�.!/ D d!
�

p
1�!2 with support in the

interval ! 2 I D .�1; 1/ and the Tchebycheff orthonormal polynomials

Ti.!/ D cos .i arcos !/ ; �1 � ! � 1:

The Fejer kernel Gn
F is defined by the coefficients c0 D 1 and ci D 2 nC1�i

nC1 for
1 � i � n. The Jackson kernels have better approximation properties than the Fejer
kernel, with a slightly different definition of the coefficients ci. An example of strong
error bounds follows, see [15] for additional properties.

Proposition 3.1 Consider the Jackson kernel. One has the inequalities

Z
j f n" .t/ � Gn �! f".t/j dxd�d�.!/ � C

t

"

Z
mod1.uinit;

1

n
/dxd�; (18)

Z
j f n" .t/ � f".t/j dxd�d�.!/ � C

�
1C t

"

� Z
mod1.u

init;
1

n
/dxd�; (19)

Z
j f n" .t/ �M.uI �/j dxd�d�.!/ � c

p
"C C

�
1C t

"

� Z
mod1.u

init;
1

n
/dxd�:

(20)

Similar bounds are derived for un" � u.
However these estimates do not allow to pass to the limit " independently of N.

It is instructive to write the formal limit in the regime "n D O.1/. The unknowns of
the resulting moment system are the quantities

un";i.x; t/ D
Z

f n";i.x; !; t/d�; f n";i.x; !; t/ D
Z

f n" .x; �; !; t/Ti.!/d�.!/:

An artificial damping phenomenon arises. Set for convenience n C 1 D 1
"
. The

projected equation for the modified Jackson kernel are

@tu
n
";i C div

Z
a.�/f n";id� D

1

"

	
cmodJi un";i � un";i




D .nC 1/
 
.nC 1 � i/ cos � i

nC1 C sin � i
nC1 cot �

nC1
nC 1 � 1

!
un";i

D
�
.nC 1 � i/ cos

�i

nC 1 C sin
�i

nC 1 cot
�

nC 1 � n � 1
�
un";i D �hn.i/un";i:

Elementary calculations show that hn.0/ D 0, and that hn.x/ > 0 for 0 < x < n
with hn.x/! 0 for all x as n! 0. One also has that 0 < hn.i/ < i for 0 < i � n. It
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implies after integration in x

@t

Z
un";idx D �hn.i/

Z
un";idx H)

Z
un";idx.t/ (21)

D e�hn.i/t
Z

un";idx.0/ H) lim
t!1

Z
un";idx.t/ D 0:

A similar damping phenomenon of the moments i ¤ 0 also shows up if one uses the
Jackson kernel, and is even stronger starting from the Fejer kernel. This seems the
price to pay for the good convergence properties of Proposition 3.1.

3.2 Minimization Techniques

The initial purpose of the method proposed below was precisely to obtain a
polynomial modeling of uncertainties with good properties, such as the maximum
principle and no damping (by comparison with (21, it means hn.i/ D 0 for all
i). Quite fortunately the universal entropy principle (14) can be generalized in this
direction. It yields powerful tools with many good properties (even if some of them
are still under studies).

Let us take one entropy S and un 2 Pn with un � 0 for all !. Define

Kn.un/ D

gn.�; �/ 2 Pn

!; u
n.!/ D

Z
gn.�; !/d�; 0 � gn � 1

�
:

For any n � 0, one tries to construct an equilibrium Mn.unI �; !/ as a minimizer

Mn.un/ D argmin
gn2Kn.un/

Z
S0.�/gnd�d�.!/: (22)

For n D 0 this is a Brenier inequality [4, 5], it yields a unique minimizer. For general
n > 0, let us assume for a while that Mn exists and is unique. One has the following
a priori properties: under the assumption that a solution exists to the maximization
problem (27), then the solution of the kinetic equation

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@tf n" C a.�/:rf n" C 1
"
f n" D 1

"
Mn.un"I �; !/;

un".x; !; t/ D
Z

f n" .x; �; !; t/d�;

f n" .t D 0/ D Mn.uinit;nI �/;

(23)

satisfies the entropy principle under the form

@t

Z
S0.�/f n" .x; �; !; t/d�d�.!/C div

Z
a.�/S0.�/f n" .x; �; !; t/d�d�.!/ � 0:
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Moreover under the same assumption, if un" converges strongly to some un, then one
passes to the limit " ! 0 in (23) and obtains the system of conservation laws for
0 � i � n

@tu
n
i C div F n

i Œu
n� D 0; F n

i Œu
n� WD

Z
a.�/Mn.unI �; !/pi.!/d�d�.!/;

(24)

with the entropy inequality

@tS
nŒun�C div G nŒun� � 0;

where the entropy and entropy fluxes are defined by

S nŒun� WD
Z

S0.�/Mn.unI �; !/d�d�.!/

and

G nŒun� WD
Z

S0.�/a.�/Mn.unI �; !/d�d�.!/:

However a difficult question is to construct the solution of (22).

3.2.1 Quasi-Solution

A quasi-solution or feasible solution to the minimization problem (22) is proposed.
This construction has two goals. The first one is to establish Mn is a quasi-
minimizer (22) but for all S. The second one is to propose an implementable
algorithm, at least for small n.

Let us remark that

S0.�/ D
Z 1

0

S00.s/as.�/ds; as.�/ D 1If0<s<�g; (25)

meaning that any function S0 such that S00 � 0 and S0.0/ D 0 is a non-negative
integral of functions as.�/ which also satisfy a0

s � 0 and as.0/ D 0. That is the
family of functions .as/s>0 constitutes a generating family (actually the function
� 7! as.�/ is the derivative of a branch of a Kruzkov entropy). Let us replace (22)
with a family of similar problems

Mn.un/ D argmin
gn2Kn.un/

Z 1

�

gndsd�.!/; 8�: (26)

More precisely any solution of (26) (if it exists) is also a solution of (22) (with
the same restriction concerning the existence). Since the mass is preserved, that
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is
R
gn.s; !/dsd�.!/ D R

un.!/dsd�.!/, this problem can be rewritten with the
alternative formulation

Mn.un/ D argmax
gn2Kn.un/

Z �

0

gndsd�.!/; 8�: (27)

A quasi-solution is possible based on (27). The idea is to solve (27) progressively
with respect to �, starting from � D 0 and then increasing its value until uC D
maxI un.!/. A constructive method (an algorithm) [15] shows that the quasi-
solution writes

Mn.unI �; !/ D
X

l	0
hnl .!/1If�l<�<�lC1g (28)

with 0 D �0 < �1 < � � � < �L < �LC1 D uC. The construction also shows the
uniqueness of the feasible solution. The layer structure of this function is the key of
the construction. The integral identity

R uC

0
Mn.unI �; !/d� D un.!/ writes

X

l	0
.�lC1 � �l/hnl .!/ D un.!/; ! 2 I: (29)

This function is constructed step by step, the first step for the bottom layer being
trivial. The second step is the critical one where all the ideas of the method are
carefully explained, in particular the role of the Bojavic-Devore theorem [3] for one
sided approximation.

3.2.2 Discretization with Quasi-Solution

We discretize in time and space and implement the method issued from (28) under
the form

unj � unj

t

C FnŒunj � � FnŒunj�1�

x

D 0 (30)

where unj 2 Pn.!/ is a polynomial in ! of degree n (fixed), in cell j and at the current
time step. The generic flux FnŒunj � is constructed with (28). The value at next time
step tC
t in cell j is denoted with a bar unj 2 Pn.!/.

Let us assume the initial data is a positive and bounded polynomial

0 � Umin � unj .!/ � Umax <1; 8j and 8! 2 I: (31)

Consider the archetype of a convex flux which is the Burgers flux F.�/ D �2

2
. The

following result states that the explicit Euler scheme satisfies the maximum principle
(this is a minimal stability requirement) under a CFL condition which is independent
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of n. The property is here checked directly on the scheme (30) but can also be
derived as a consequence of the underlying kinetic formulation.

Theorem 3.1 Assume the CFL condition Umax
t � 
x. Then

Umin � unj .!/ � Umax; 8j and 8! 2 I: (32)

3.3 More on Kinetic Polynomials

This section is based on the results recently announced in [16]. Not only it is proved
that (22) is a well posed problem with existence and uniqueness of the minimizer,
but the problem shows nice reformulation as an optimal control problem [36]. The
minimization problem (22) concerns the variables .�; !/ but is independent of the
variables .x; t/. So we make for convenience a change of variables .x; t/  .!; �/

together with a change of functions qn  un and un  Mn. It yields simpler
notations, also better in terms of an optimal control problem.

Set G D Œ0; 1� (which stands for the space of uncertain variables˝). Let T > 0,
n 2 N and qn 2 PnC. Define Un D

˚
qn 2 PnC; 1 � qn 2 PnC

�
. Set

Kn.T; qn/ WD

vn 2 L1.RC W Un/ W

Z T

0

vn.t/dt D qn; vn � 0 for t > T

�
:

(33)

Take a strictly convex function denoted as s D S and a Lebesgue integrable weight
w � 0 with

R
G w.x/dx > 0 (with the correspondence w.x/dx D d�.!/ and x D !).

Define the linear cost function

J.un/ WD
Z

G

Z

RC

un.t; x/ds.t/w.x/dx: (34)

Design of the polynomial Maxwellian (22) recasts as the following L1 minimization
problem.

Problem 1 Find un 2 Kn.T; qn/ such that

un D argmin
Kn.T;qn/

J.vn/ (35)

Theorem 3.2 Assume the weight w � 0 satisfies RG w.x/dx > 0. Assume s00 is lower
bounded from 0 and integrable. Assume T � kqnkL1.G/. Then there exists a unique
minimum to the problem (22).

The proof is based on some convenient space-time comparison inequalities using
ad-hoc tests functions. It is also proved that: (a) for T the solution un is vanishes for
large time; (b) there exists T� > 0 such that all solutions are the same for T > T�.
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A reformulation as an optimal control problem [35, 36] is appealing. Define

yn.t; x/ D
Z t

0

un.t; x/dt” y0
n.t/ D un.t/ with yn.0/ D 0: (36)

In this context, the function yn.t/ 2 Pn is called the state and un.t/ 2 Un is called
the control. The minimization problem (35) reformulates as follows.

Problem 2 Find an optimal control un 2 L1.0;T W Un/ which minimizes the cost
function and with the final state yn.T/ D qn 2 PC

n .
Let us first remind the PMP maximum principle. Since the set of controls is

discrete, convex and closed, one can invoke the PMP [35, 36]: for all optimal
trajectories, there exists a Pontryagin multiplier �n 2 Pn such that

• the optimal control maximizes the criterion for almost all t 2 .0;T/
Z

G
.�n.x/� t/un.t; x/dx D max

vn2Un

Z

G
.�n.x/� t/v.x/dx: (37)

This is called a normal trajectory, or a normal pair un; �n.
• or the optimal control maximizes the criterion for almost all t 2 .0;T/

Z

G
�n.x/un.t; x/dx D max

vn2Un

Z

G
�n.x/vn.x/dx: (38)

This is called a abnormal trajectory, or a abnormal pair un; �n. The abnormality
or degeneracy comes from the fact that the criterion is independent of the time
variable.

Abnormal trajectories are easy to construct if qn.x/ vanishes at some point x? 2
Œ0; 1�. In this case one can consider the polynomial �n 2 Pn with the quadrature
property

R
I �n.x/vn.x/dx D �vn.x?/ for all 8vn 2 Pn. Since un.t; x?/ D 0 for all

time t, it clear that �n satisfies (38).

Theorem 3.3 Assume qn.x/ � " > 0 over G. There exists an adjoint state �n 2 Pn

such that the optimal solution of Problem 1–2 is solution of the PMP under the
normal form

un.t/ D argmax
vn2Un

�Z

G
.�n.x/� s0.t//vn.x/dtw.x/dx

�
for almost all t 2 Œ0;T�:

(39)

A proof can be performed by showing that � 2 Pn is a minimizer of a convenient
cost function. Define the cost function as the integral in time of the criterion (37)

K.�n/ WD
Z 1

0

Z

G
.�n.x/� t/un.t; x/dxdt � 0
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where un.t/ satisfies the Pontryagin maximum principle. The cost is non negative
by construction. It is well defined since un vanishes for large t. The cost function K
is convex over Pn. The Danskin theorem yields that

dK.�n/ D
�Z 1

0

un.t; x/dt; d�n

�
:

The shooting method which is the essence of the study of normal trajectories is as
follows.

Problem 3 (Shooting Method) Find �n 2 Pn such that un.t/ solution of (37)
satisfies the endpoint condition

R1
0

un.t/dt D qn 2 PC
n .

The shooting method is conveniently studied with the Lagrangian

L.�n/ WD K.�n/�
Z

G
�n.x/qn.x/dx

where qn 2 PC
n is the given endpoint. The polynomial �n 2 Pn is solution of the

shooting method if and only if it is an extremal point of the Lagrangian

dL.�n/ D
�Z 1

0

un.t; x/dt � qn.x/; d�n

�
D 0: (40)

Since L is convex and differentiable, a solution to (40) is also a minimum of the
Lagrangian. The cornerstone of the proof is to show that L is infinite at infinity.
Another interest of the PMP for our problem is the general principle.

Principle 3.2 The Pontryagin multiplier is formally the adjoint entropic variable
(in the sense of Godunov).

The formal proof proceeds as follows. For �n 2 Pn, consider un.t/ the minimizer
of the cost function K and define

qn D
Z 1

0

un.t/dt:

Define K� the formal Legendre transform of K

K�.�n/ D
Z
�n.x/qn.x/dx � K.�n/:

The main difference between L and K� is that qn is given in L but is function of �n
in K�. One has

dK�.�n/ D
Z
.qnd�n C �ndqn/ dx � dK.�n/

D
Z
�ndqndxC

Z 1

0

�
qn �

Z 1

0

un.t/dt

�
d�ndx D

Z
�ndqndx: (41)
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It can summarized as dK D hqn; d�ni and dK� D h�n; dqni. If one assumes that
the transformation �n 7! qn is a diffeomorphism, then K� can be understood as a
function of qn. In this case K� is a candidate to be an entropy. Let us now determine
a candidate to be an entropy flux. We define

G.�n/ WD
Z 1

0

Z

G
t.�n.x/ � t/un.t; x/dxdt

which is well defined since un is defined in function of �n. Another use of the
Danskin theorem yields

dG D
�Z 1

0

tun.t/dt; d�n

�
:

The polar transform of G is

G�.�n/ D
Z 1

0

�n.x/

�Z 1

0

tun.t/dt

�
dx �G.�n/:

One has

dG� D
Z 1

0

d�n.x/

�Z 1

0

tun.t/dt

�
dxC

Z 1

0

�n.x/d

�Z 1

0

tun.t/dt

�
dx � dG D

D
Z 1

0

�n.x/d

�Z 1

0

tun.t/dt

�
dx: (42)

One obtains the following formal result.

Lemma 3.3 The system of projected equations

@tqn.x; t/C @x
Z 1

0

tun.x; t/dt D 0

admits the formal additional law

@tK
�.�n/C @xG�.�n/ D 0: (43)

Proof Indeed one has

Z 1

0

�n.x/@tqn.x; t/dxC
Z 1

0

�n.x/@x

Z 1

0

tun.x; t/dtdx D 0:

Using (41) and (42), it is rewritten as (43) and the proof is ended.
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3.4 Isentropic Euler System with � D 3

An interesting question is to extend the polynomial modeling of uncertainties into
systems of conservation laws with physical importance. A first example for the
isentropic Euler system with � D 3 in dimension one is as follows. Consider


@t�C @x.�u/ D 0;
@t.�u/C @x.�u2 C p/ D 0;

where p D 1
12
�3. It admits the kinetic formulation [6, 29]

@tf C v@xf D 1

"

�
M�;�u � f

�

where M�;�u.v/ � 1 for u��=2 < v < uC�=2 and M�;�u.v/ � 0 everywhere else.
The Maxwellian M�;�u minimizes

R
R
g.v/s0.v/dv over all functions 0 � g � 1 such

that
R
R
g.v/dv D � > 0 and

R
R
g.v/vdv D �u 2 R. A natural extension of the tools

proposed previously would be to consider

Mn
.�u/n;�n D argmin

gn2 admissible states

Z

R

Z 1

0

gn.v; !/v2dvd!:

4 Numerical Methods

This section is devoted to provide elementary explanations and illustrations of some
of the theoretical tools presented before and to explain advanced algorithms.

4.1 Regularity

A key feature is that weak solutions of a system of conservation laws with
uncertainties (47) or (7) propagate in the uncertain space [25].

We consider the initial data

uini.x; !/ D
8
<

:

3 for x < 1=2 and � 1 < ! < 0;
5 for x < 1=2 and 0 < ! < 1;
1 for 1=2 < x and � 1 < ! < 1:

(44)
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The exact solution is a shock at velocity 2 for ! < 0, and another shock at velocity
3 for 0 < !

u.x; !; t/ D
8
<

:

3 for x < 1=2C 2t and � 1 < ! < 0;
5 for x < 1=2C 3t and 0 < ! < 1;
1 elsewhere:

(45)

This is visible in [15, p. 1010, Figure 4] where the numerical solution captured with
a standard moment model is also represented.

4.2 Kinetic Polynomials

Kinetic polynomials can be used to design numerical methods with the preservation
of the maximum principle. This is illustrated with an elementary implementation of
the quasi-solutions.

We still consider the Burgers equation, but with a continuous initial data

uini.x; !/ D
8
<

:

12 for x � !=5 < 1=2;
1 for x � !=5 < 3=2;
12� 11 .x � !=5 � 1=2/ in between:

(46)

The exact solution is a compressive ramp on all lines, and a shock at time T D 1
11

. So
the exact solution is continuous in x and ! directions for t < T, and is discontinuous
in the ! direction for T < t. The results are shown in [15, p. 1011, Figure 5].

4.3 Numerical Construction of Kinetic Polynomials

The construction of kinetic polynomials via optimal control theory brings the
possibility to use many efficient numerical methods. For example it is proposed
in [16] to use the AMPL language [20] to discretize and minimize (34)–(35). Note
that L1 minimization problems in combination with polynomial chaos expansions is
pursued in [24].

An example of numerical implementation of the minimization problem (22)
within the AMPL high level language is in Table 1 and a typical result is in Fig. 1.
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Table 1 Script for an implementation of the solution of Problem 1 with the AMPL language [20]

##Parameters

param n := 3; # the polynomial degree

param T := 5;

param Nx := 40;

param Nt := 100;

## Variables

var y {k in 0..n, i in 0..Nt}; #y(t,x)=y_0(t)+y_1(t)x+...+y_n(t)xˆn

var u {k in 0..n, i in 0..Nt}; #u(t,x)=u_0(t)+u_1(t)x+...+u_n(t)xˆn

var utx {i in 0..Nt-1, j in 0..Nx} = sum\{k in 0..n\} u[k,i]*(j/Nx)ˆk;

## Cost

minimize cost: T/Nt*(sum{k in 0..n, i in 0..Nt-1}

(((i+1./2.)*T/Nt) *u[k,i]/(k+1.)));

## Constraints

subject to y_init {k in 0..n}: y[k,0] = 0;

subject to y_dyn {k in 0..n, i in 0..Nt-1}:

y[k,i+1] - y[k,i] - T/Nt*u[k,i]=0;

# q_n(x)=1+x+x**2+x**3

s.t. y_fin0: y[0,Nt]=1; s.t. y_fin1: y[1,Nt]=1;

s.t. y_fin2: y[2,Nt]=1; s.t. y_fin3: y[3,Nt]=1;

subject to cont {i in 0..Nt-1, j in 0..Nx}: 0 <= utx[i,j] <= 1;

## Inequalities in Un

data;

## Solver

option solver ipopt;

option ipopt_options " max_iter=10000 linear_solver=mumps

{halt_on_ampl_error yes}";

solve;

4.4 Connection with Polynomial Properties

Finally we evoke an axis of research [14] which is about a new way to construct
polynomials with two bounds, one lower bound and one upper bound, in relation
with a numerical implementation of kinetic polynomials. Some of the main results
can be summarized as follows.

Start from

pn 2 PC
n WD f pn 2 Pn.x/; such that 0 � pn.x/ 8x 2 Œ0; 1�g : (47)
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Fig. 1 Numerical computation of the polynomial Maxwellian-minimizer Mn (22), referred to as
un D Mn within this section. Numerical parameters: Nx D 80, Nt D 200, n D 6, q6 D 1C x C
x2 C x3. The function .x; t/ 7! un.x; t/ is represented on top as a surface, and is represented on
bottom as many curves x 7! un.xI t/ parametrized by t
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Define the set of polynomials which enters in the construction of kinetic polynomi-
als as

pn 2 Un WD f pn 2 Pn.x/; such that 0 � pn.x/ � 1 8x 2 Œ0; 1�g : (48)

Simpler subsets of Un exist based on convex combinations qn D Pn
jD0 ˛juj where

the coefficients satisfy 0 � ˛j and
Pn

jD0 ˛j D 1: the generating polynomials uj can
be either the basis of the monomials xj, or the basis of the Berstein polynomials
Bn;j.x/ D nŠ

jŠ.n�j/Šx
j.1 � x/n�j, or the basis of the rescaled Tchebycheff polynomials

Tj.2x�1/C1
2

. However none of these subsets is able to generate all polynomials in Un

only by convex combinations.

Theorem 4.1 Let n 2 2N being even. There exists a smooth function from R
3n=2

onto Un. The smooth function is made explicit by a constructive algorithm and is
2�-periodic with respect to all its arguments.

The norm of a uniform convergence is k fk D max0�x�1 j f .x/j for f 2 C0Œ0; 1�.

Theorem 4.2 Assume f 2 C0Œ0; 1� and 0 � f .x/ � 1 for 0 � x � 1. Then

inf
pn2Un

k f � pnk � 2 inf
gn2Pn
k f � gnk: (49)

Even if completely elementary, this is a remarkable result since the constant
2 is independent of n. The right hand side shows spectral convergence. This
representation comes from quaternion algebras and the 4-squares Euler identity.

The next tests use this structure to minimize functionals like

J. pn/ WD
Z 1

0

.t � �n.x// pn.x/dx; pn 2 Un (50)

where �n 2 Pn is given and t may vary. This problem has interest in the context
of this review paper. A reference is provided by a recent work [16] where a
characterization of pn is provided with the notion of a point of contact that comes
from the seminal reference [3] is used. A point of contact of a function f 2 C1Œ0; 1�
with 0 � f � 1 is any point 0 � y � 1 such that f .y/ D 0 or f .y/ D 1. The
multiplicity order of the contact is the number of derivatives (+1) which vanish. For
example if the point of contact is inside the interval, 0 < y < 1, then necessarily
f 0.y/ D 0, so the multiplicity order at y is necessarily � 2. It is proved in [16] that
pn which realizes the minimum has not less than n C 1 points of contact counted
with order of multiplicity (this is similar to one-sided L1 minimization for which we
refer to [3]) for almost all t. We use this theoretical property to check the accuracy
of the approximation. We remark that the optimal solution pn (50) has the natural
tendency to vanish where t� �n.x/ > 0 and to be equal to 1 where t � �n.x/ < 0, it
is clearly a good strategy to minimize the cost function (50).

A numerical result representative of all the tests is the following. Take

�2.x/ WD T2.2x � 1/� tC x and t D 0:3:
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Fig. 2 Plot of �2.x/ � t and of a local minimum p1n with J.p1n/ 
 �0:16737. The total order of
contact if 1C 2C 2 D 5

A first numerical simulation yields the function displayed on Fig. 2, the numerical
value of the cost function is J.p1n/ � �0:16737. This function does not have the
required number of contacts on the figure. But another minimum is captured by
numerical simulations with another starting point, for which J.p2n/ � �0:188478 <
J.p1n/: its total order of contact is large enough (equal to 2nC 1 D 7 since n D 3)
and this is in accordance with the theory. No other minimum with lower value of
the cost have been obtained by simulations, so it is the best candidate. Note that the
exact calculation of the derivative p0

n.x/ is convenient to count without ambiguity
the number of derivatives which vanish at points of contact (Fig. 3).

5 Conclusion

The examination of the challenges posed by polynomial modeling of uncertainties
shows that alternatives to standard moment methods with chaos polynomials do
exist. These new formulations try to introduce the polynomial structure used
to model the uncertain variable ! into standard PDEs, but preserving at best
the theoretical properties of the initial systems. Convolution techniques, kinetic
formulations of conservation laws, minimization formulations and construction of
quasi-solutions may have interest for non linear hyperbolic equations because they
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global minimum. On the bottom, plot of the exact derivative .p2n/

0
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address the maximum principle and the preservation of entropies, and so they
constitute an answer to the second question in the introduction. In certain cases, the
preservation of mathematical structures yields proofs of convergence with respect to
the parameters which control the polynomial degree in the uncertain space. However
one loses the simplicity of the implementation provided by moment models [37],
and so a clear path to the design of efficient, fast and multidimensional algorithms
based on these structures is still to invent.
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Uncertainty Quantification for Kinetic
Models in Socio–Economic and Life
Sciences

Giacomo Dimarco, Lorenzo Pareschi, and Mattia Zanella

Abstract Kinetic equations play a major rule in modeling large systems of interact-
ing particles. Recently the legacy of classical kinetic theory found novel applications
in socio-economic and life sciences, where processes characterized by large groups
of agents exhibit spontaneous emergence of social structures. Well-known examples
are the formation of clusters in opinion dynamics, the appearance of inequalities
in wealth distributions, flocking and milling behaviors in swarming models, syn-
chronization phenomena in biological systems and lane formation in pedestrian
traffic. The construction of kinetic models describing the above processes, however,
has to face the difficulty of the lack of fundamental principles since physical
forces are replaced by empirical social forces. These empirical forces are typically
constructed with the aim to reproduce qualitatively the observed system behaviors,
like the emergence of social structures, and are at best known in terms of statistical
information of the modeling parameters. For this reason the presence of random
inputs characterizing the parameters uncertainty should be considered as an essential
feature in the modeling process. In this survey we introduce several examples
of such kinetic models, that are mathematically described by nonlinear Vlasov
and Fokker–Planck equations, and present different numerical approaches for
uncertainty quantification which preserve the main features of the kinetic solution.

1 Introduction

Kinetic models describing the collective behavior of a large group of interacting
agents have attracted a lot of interest in the recent years in view of their poten-
tial applications to various fields, like sociology, economy, finance and biology
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[1, 2, 4, 6, 7, 11, 12, 23–25, 33–35, 40, 41, 51, 72, 74]. One of the major difficulties
in applying the classical toolbox of kinetic theory to these systems is the lack
of fundamental principles which define the microscopic dynamic. In addition,
experimental results are typically non reproducible and, as a consequence, the model
construction is dictated by its ability to describe qualitatively the system behavior
and the formation of emergent social structures. A degree of uncertainty is therefore
implicitly embedded in such models, since most modeling parameters can be only
as statistical information from experimental results [5, 8, 15, 52, 65].

From a mathematical viewpoint, the kinetic models we will consider in the
present survey are characterized by nonlinear Vlasov–Fokker–Planck equations
with random inputs taking into account uncertainties in the initial data, in the
interaction terms and/or in the boundary conditions. The models describe the
evolution of a distribution function f D f .�; x;w; t/, t � 0, x 2 R

dx , w 2 R
dw ,

dx; dw � 1, and � 2 ˝  R
d� a random field, accordingly to

@tf CL Œ f � D rw � ŒBŒ f � f Crw.Df /� ; (1)

where L Œ�� is a linear operator describing the agents’ dynamics with respect to the
x-variable, typically L Œ f � D w � rxf , BŒ�� is a non-local operator of the form

BŒ f �.�; x;w; t/ D
Z

Rdx

Z

Rdw

P.x; x�Iw;w�; �/.w � w�/f .�; x�;w�; t/dw�dx�;
(2)

and D.�;w/ � 0, for all w 2 R
dw , is a function describing the local relevance of the

diffusion. We refer to [27, 39, 80, 86, 87] for an introduction to the subject in relation
with kinetic theory. In the rest of the chapter, to avoid unnecessary difficulties, we
will mainly restrict to the case of a one-dimensional random input d� D 1 distributed
as p.�/. In the homogeneous case f D f .�;w; t/, L Œ f � � 0 the kinetic models are
characterized by nonlinear Fokker-Planck equations.

1.1 The Classic Fokker-Planck Equation with Uncertainties

The most classical example is represented by the linear Fokker-Planck model
obtained for P � 1 corresponding to

BŒ f �.�;w/ D .w � u.�//; D.�/ D T.�/; (3)

where

u.�/ D
Z

Rdw

f .�;w; t/wdw; T.�/ D 1

dw

Z

Rdw

f .�;w; t/.w � u.�//2f .�;w; t/ dw
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are the (conserved) mean velocity and temperature of the particles. In the above
expressions we assumed an uncertain initial data such that

R
Rdw f .�;w; 0/ dw D 1

for all � 2 ˝ . The stationary solution in this case is represented by a Maxwellian
distribution with uncertain momentum and temperature given by

f1.�;w/ D 1

.2�T.�//dw=2
exp


�jw� u.�/j2

2T.�/

�
: (4)

1.2 Opinion Formation with Uncertain Interaction

A kinetic Fokker-Planck model of opinion formation for w 2 I D Œ�1; 1�, where
˙1 denote the two extremal opinions, corresponds to the choices [74, 84]

BŒ f �.�;w; t/ D
Z

I
P.�;w;w�/.w � w�/f .�;w�; t/dw�; D.w/ D �2

2
.1 � w2/2:

(5)

In the above nonlocal interaction term P.�; �; �/ 2 Œ0; 1� is a function taking into
account uncertainties in the compromise propensity between the agents’ opinions.

In the simple case P.w;w�; �/ D P.�/ and deterministic initial data, the model
preserves the mean opinion u D R

I wf .�;w; t/dw and we can analytically compute
the steady state distribution

f1.�;w/ D C

.1 � w2/2
.1C w/

P.�/u
2�2 .1 � w/

P.�/u
2�2 exp

n
� P.�/.1 � uw/

�2.1 � w2/

o
; (6)

with C > 0 a normalization constant.

1.3 Wealth Distribution with Uncertain Diffusion

If we now consider w 2 Œ0;1/ a measure of the agents’ wealth, a Fokker-Planck
model describing the wealth evolution of agents is obtained taking [33, 74]

BŒ f �.�;w; t/ D
Z

Œ0;1�

a.w;w�/.w � w�/f .�;w�; t/dw�; D.�;w/ D �.�/2

2
w2;

(7)

where the term �.�/ characterizes the uncertain strength of diffusion. An explicit
expression of the steady state distribution is given in the case a.w;w�/ � 1

f1.�;w/ D .�.�/ � 1/�.�/
� .�.�//w1C�.�/

exp
n
� �.�/� 1

w

o
; (8)
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where � .�/ is the Gamma function and �.�/ D 1C 2=�2.�/ is the so-called Pareto
exponent, which is now dependent on the random input.

1.4 Swarming Models with Uncertainties

As a final example we consider a kinetic model for the swarming behavior [11, 23–
25, 32, 38, 40, 48, 58, 59]. In particular we focus on a model with self-propulsion
and uncertain diffusion, see [9, 10]. The dynamics for the density f D f .�; x;w; t/
of agents in position x 2 R

dx with velocity w 2 R
dw is described by the Vlasov-

Fokker-Planck equation (1) characterized by

L Œ f � D w � rx f ; BŒ f �.�; x;w; t/ D ˛w.1 � jwj2/C .w � uf .�; x; t//; (9)

where

uf .�; x; t/ D
R
Rdx�Rdw K.x; y/wf .�; y;w; t/ dw dyR
Rdx�Rdw K.x; y/f .�; y;w; t/ dw dy

; (10)

with K.x; y/ > 0 a localization kernel, ˛ > 0 a self-propulsion term and D.�/ > 0

the uncertain noise intensity.
In the space-homogeneous case f D f .�;w; t/, stationary solutions have the form

f1.w; �/ D C exp


� 1

D.�/

�
˛
jwj4
4
C .1 � ˛/ jwj

2

2
� uf1.�/ � w

��
; (11)

with C > 0 a normalization constant and

uf1.�/ D
R
Rdw wf

1.w; �/dwR
Rdw f1.w; �/dw

:

We stress that, in all the above reported examples, uncertainty may be present
in other modeling parameters, like boundary conditions, external forces, etc., by
further increasing the dimensionality and the complexity of the kinetic model.

The development of numerical methods for kinetic equations presents several
difficulties due to the high dimensionality and the intrinsic structural properties of
the solution. Non negativity of the distribution function, conservation of invariant
quantities, entropy dissipation and steady states are essential in order to compute
qualitatively correct solutions. Preservation of these structural properties is even
more challenging in presence of uncertainties which contribute to the curse of
dimensionality. We refer to [43, 63, 82] for recent surveys on numerical methods
for kinetic equations in the deterministic case.

For this reason we will focus on the construction of numerical methods for
uncertainty quantification (UQ) which preserves the structural properties of the
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kinetic equation and, in particular, which are able to capture the correct steady
state of the problem with arbitrary accuracy. We will discuss different numerical
approaches based on the major techniques used for uncertainty quantification. In
the deterministic case, similar approaches for nonlinear Fokker-Planck equations
were previously derived in [17, 18, 29, 66, 71, 81]. Related methods for the case
of nonlinear degenerate diffusions equations were proposed in [14, 28] and with
nonlocal terms in [19, 26]. We refer also to [3] for the development of methods
based on stochastic approximations and to [56] for a recent survey on schemes
which preserve steady states of balance laws and related problems.

The simplest class of methods for quantifying uncertainty in partial differential
equations (PDEs) are the stochastic collocation methods. Stochastic collocation
methods are non-intrusive, so they preserve all properties of the deterministic
numerical scheme, and easy to parallelize. In Sect. 3 we describe the structure pre-
serving methods recently developed in [75, 76] together with a collocation approach
and show how the resulting schemes preserve non negativity, conservation and
entropy dissipation. In addition they capture the steady states with arbitrary accuracy
and may achieve high convergence rates in the random space (spectral convergence
for smooth solutions). Next in Sect. 4, we consider the closely related class of
statistical sampling methods, most notably Monte Carlo (MC) sampling. In order to
address the slow convergence of MC methods, we discuss here the development of
Monte Carlo methods based on a Micro–Macro decomposition approach introduced
in [44]. These methods preserve the structural properties of the kinetic problem, are
capable to significatively reduce the statistical fluctuations of standard Monte Carlo
and increase their computational efficiency by reducing the number of statistical
samples in time. Section 5 is devoted to stochastic Galerkin methods based on gener-
alized Polynomial Chaos (gPC). Although these deterministic methods may achieve
high convergence rates for smooth solutions, they suffer from the disadvantage that
they are highly intrusive and that increase the computational complexity of the prob-
lem. As a consequence, the main physical properties of the solution are typically lost
at a numerical level. For this class of methods we show how to construct generalized
Polynomial Chaos schemes based on the Micro–Macro formalism which preserve
the steady states of the system [46]. Finally, in Sect. 6 several numerical applications
to problem in socio-economy and life sciences are presented.

2 Preliminaries

In this section we recall some analytical properties of the considered kinetic models
which will be useful for the development of the different numerical methods. Except
in some simple case, a precise analytic description of the global equilibria of Eq. (1)
is very difficult [21, 22, 85]. A deeper insight into the large time behavior can be
achieved by resorting to the asymptotic behavior of the corresponding space homo-
geneous models, characterized by nonlinear Fokker–Planck type equations [83].
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2.1 Fokker-Planck Type Equations

In the space homogeneous case the distribution function reduces to f D f .�;w; t/,
w 2 R

dw , � 2 R
d� , t > 0 and is solution of the following problem

@tf .�;w; t/ DJ . f ; f /.�;w; t/; (12)

where

J . f ; f /.�;w; t/ D rw �
h
BŒ f �.�;w; t/f .�;w; t/ CrwD.�;w/f .�;w; t/

i
; (13)

together with an initial datum f .�;w; 0/ D f0.�;w/ and suitable boundary conditions
on w 2 R

dw .
We review in the present stochastic setting the classical results for the trend to

equilibrium of problem (12) in the one-dimensioal case w 2 I  R with a linear
drift term, i.e.

@t f .�;w; t/ D @w
h
.w � u/f .�;w; t/C @w.D.�;w/f .�;w; t//

i
: (14)

Conservation of mass is imposed on the previous equation by considering suitable
boundary conditions [74]. The stochastic stationary solution f1.�;w/ of Eq. (14) is
given by the solution of

.w � u/f1.�;w/C @wD.�;w/f1.�;w/:

The stochastic Fokker–Planck equation (14) may be rewritten in the equivalent
forms

@t f .�;w; t/ D @w
h
D.�;w/f .�;w; t/@w log

f .�;w; t/

f1.�;w; t/

i
; (15)

which corresponds to the stochastic Landau form, whereas the stochastic non
logarithmic Laundau form of the equation is the following

@t f .�;w; t/ D @w
h
D.�;w/f1.�;w; t/@w

f .�;w; t/

f1.�;w/

i
: (16)

Convergence to equilibrium is usually determined through estimates of the entropy
production. We define the relative entropy for all positive functions f ; Qf as follows

H Œ f ; Qf �.�;w; t/ D
Z

I
f .�;w; t/ log

�
f .�;w; t/
Qf .�;w; t/

�
dw; (17)
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we have [54]

d

dt
H Œ f ; f1�.�;w; t/ D �IDŒ f ; f

1�.�;w; t/; (18)

where the dissipation functional IDŒ�; �� is defined as

IDŒ f ; f
1� D

Z

I

D.�;w/f .�;w; t/

�
@w log

�
f .�;w; t/

f1.�;w/

��2
dw: (19)

In the classical setting w 2 R and D.�;w/ D T.�/, where T.�/ is the temperature,
the steady state is given by the Maxwellian density (4) with dw D 1 and relation
(18) coupled with the log-Sobolev inequality

H Œ f ; f1�.�;w; t/ � 1

2
IDŒ f ; f

1�.�;w; t/; (20)

leads to the exponential decay of the relative entropy as proved in the following
result [83].

Theorem 1 Let f .�;w; t/ be the solution to the initial value problem

@t f .�;w; t/ D @w.w � u.�//f .�;w; t/C T.�/@2w f .�;w; t/

with the initial condition f .�;w; 0/ D f0.�;w/ with finite entropy. Then f .�;w; t/
converges for all � 2 ˝ to f1.�;w/ given by (4) and

H Œ f ; f1� � e�2t=T.�/H Œ f0; f
1�:

For more general diffusion functions D.�;w/ analogous log-Sobolev inequality are
not available. A strategy to study the convergence to equilibrium is to investigate
the relation of relative entropy with the relative weighted Fisher information, see
[21, 54, 70, 83] for more details.

2.2 Micro–Macro Formulation

In this paragraph we describe the Micro–Macro approach to kinetic equations of
the form (12). The approach is based on the classical Micro–Macro decomposition
originally developed by Liu and Yu in [69] for the fluid limit of the Boltzmann equa-
tion. The method has been fruitfully employed for the development of numerical
methods by several authors (see [13, 36, 37, 47, 67, 91] and the references therein).
These techniques has been also recently developed in [45, 53, 73] to construct
spectral methods for the collisional operator of the Boltzmann equation that
preserves exactly the Maxwellian steady state of the system. Since under suitable
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regularity assumptions on the initial distribution the Fokker-Planck equation admits
a unique steady state solution f1.�;w/, the Micro–Macro formulation is obtained
decomposing the solution of the differential problem into the equilibrium part f1
and the non-equilibrium part g as follows

f .�;w; t/ D f1.�;w/C g.�;w; t/; (21)

where g.�;w; t/ is a distribution function such that
Z

Rdw

�.w/g.�;w; t/dw D 0

for some moments �.w/ D 1;w. The above decomposition (21) applied to the
Fokker-Planck problem (12)–(13) yields the following result.

Proposition 1 If the nonlinear Fokker-Planck equations (12)–(13) admits the
unique equilibrium state f1.�;w/, the differential operator J .�; �/ defined in (13)
with BŒ f � given by (2) may be rewritten as

J . f ; f /.�;w; t/ DJ .g; g/.�;w; t/CN . f1; g/.�;w; t/; (22)

whereN .�; �/ is a linear operator defined as

N . f1; g/.�;w; t/ D rw

h
BŒ f1�g.�;w; t/CBŒg� f1.�;w/

i
:

The only admissible steady state solution of the problem
(
@tg.�;w; t/ DJ .g; g/.�;w; t/CN . f1; g/.�;w; t/;
f .�;w; t/ D f1.�;w/C g.�;w; t/

(23)

is given by g1.�;w/ � 0.
The proof is an immediate consequence of the fact that at the steady state we have
J . f1; f1/ D 0. Note that the steady state solution of the reformulated problem
(23) is therefore independent of the uncertainty.

Remark 1 Under suitable assumptions, see Theorem 1, one can show that f .�;w; t/
exponentially decays to the equilibrium solution. As a consequence, the non-
equilibrium part of the Micro–Macro approximation g.�;w; t/ exponentially decays
to g1.�;w/ � 0 for all � 2 ˝ .

3 Collocation Methods

One of the most popular computational approaches for UQ relies on the class of
collocation methods [88, 89]. These methods are non intrusive and permit to couple
existing deterministic solvers for the PDEs with techniques for the quantification of
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the uncertainty. Moreover, since the structure of the solution remains unchanged,
numerical analysis of collocation methods is a straightforward consequence of the
results obtained for the underlying method used for solving the original equation.

In the following, since the linear transport part in (1) can be discretized using
standard approaches, see for instance [43], we concentrate on homogeneous Fokker-
Planck problem of the form (12)–(13). Connections with the full problem are then
recovered using splitting methods or other partitioned time discretization schemes,
like additive Runge-Kutta methods [60].

Collocation methods consist in solving the problem in a finite set of nodes
f�kgMkD0 of the random field. In this class of methods belongs the usual Monte
Carlo sampling which will be treated in Sect. 4. If the distribution of the random
input � � p.�/ is known, an efficient way to treat the uncertainty is to select the
nodes in the random space according to Gaussian quadrature rules related to such
distribution. This is straightforward in the univariate case, whereas becomes more
challenging in the multivariate case [50].

For each k D 0; : : : ;M we obtain a totally deterministic and decoupled problem
since the value of the random variable is fixed. Therefore, solving this system
of equations poses no difficulty provided one has a well-established deterministic
algorithm. The result is an ensemble of M C 1 deterministic solutions which can
be post-processed to recover the statistical values of interest. For example, in the
univariate case if f!kgMkD0 are the Gaussian weights on ˝  R corresponding to
p.�/ we can use the approximations

EŒ f �.w; t/ D
Z

˝

f .�;w; t/p.�/ d� � EMŒ f �.w; t/ D
MX

kD0
!k f .�k;w; t/; (24)

VarŒ f �.w; t/ D
Z

˝

. f .�;w; t/ � EŒ f �.w; t//2p.�/ d�

(25)

� VarMŒ f �.w; t/ D
MX

kD0
!k. f .�k;w; t/ � EMŒ f �.w; t//

2;

where EŒ�� and VarŒ�� denote the mean and the variance respectively. In the following
we concentrates on the construction of numerical schemes which preserve the
structural properties of the solution, like non-negativity, entropy dissipation and
accurate asymptotic behavior [75, 76].

3.1 Structure Preserving Methods

In the one-dimensional case dw D 1 for all k D 0; : : : ;M the Fokker-Planck
equation (12)–(13) may be written as

@tf .�k;w; t/ D @wF Œ f �.�k ;w; t/; w 2 I  R (26)
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where now

F Œ f �.�k;w; t/ D .BŒ f �.�k;w; t/C D0.w//f .�k;w; t/C D.w/@wf .�k;w; t/ (27)

using the compact notation D0.w/ D @wD.w/. Typically, when I is a finite size
set the problem is complemented with no-flux boundary conditions at the extremal
points. In the sequel we assume D.w/ > 0 in the internal points of I.

We introduce an uniform spatial grid wi 2 I, such that wiC1 � wi D 
w. We
denote as usualwi˙1=2 D wi˙
=2 and consider a conservative discretization of (26)

d

dt
fi.�k; t/ D FiC1=2Œ f �.�k; t/ �Fi�1=2Œ f �.�k; t/


w
; (28)

where for each t � 0 Fi˙1=2Œ f �.�k; t/ is the numerical flux function characterizing
the discretization.

Let us set C Œ f �.w; �k ; t/ D BŒ f �.w; �k ; t/ C D0.w/ and adopt the notations
DiC1=2 D D.wiC1=2/, D0

iC1=2 D D0.wiC1=2/. We will consider a general flux function
which is combination of the grid points iC 1 and i

FiC1=2Œ f � D QC k
iC1=2 QfiC1=2.�k; t/C DiC1=2

fiC1.�k; t/ � fi.�k; t/


w
; (29)

where

QfiC1=2.�k; t/ D .1� ıkiC1=2/fiC1.�k; t/C ıkiC1=2 fi.�k; t/: (30)

For example, the standard approach based on central difference is obtained by
considering for all i the quantities

ıkiC1=2 D 1=2; QC k
iC1=2 D C Œ f �.wiC1=2; �k; t/:

It is well-known, however, that such a discretization method is subject to restrictive
conditions over the mesh size 
w in order to keep non negativity of the solution.

Here, we aim at deriving suitable expressions for the family of weight functions
ıkiC1=2 and for QC k

iC1=2 in such a way that the method yields nonnegative solutions,
without restriction on
w, and preserves the steady state of the system with arbitrary
order of accuracy.

First, observe that at the steady state the numerical flux should vanish. From (29)
we get

fiC1.�k; t/
fi.�k; t/

D
�ıkiC1=2 QC k

iC1=2 C
DiC1=2

w

.1 � ıkiC1=2/ QC k
iC1=2 C

DiC1=2

w

: (31)
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Similarly, if we consider the analytical flux imposing F Œ f �.�k;w; t/ � 0, we have

D.w/@wf .�k;w; t/ D �.BŒ f �.�k;w; t/C D0.w//f .�k;w; t/; (32)

which is in general not solvable, except in some special cases due to the nonlinearity
on the right hand side. We may overcome this difficulty in the quasi steady-state
approximation integrating equation (32) on the cell Œwi;wiC1�

Z wiC1

wi

1

f .�k;w; t/
@wf .�k;w; t/dw D

�
Z wiC1

wi

1

D.w/
.BŒ f �.�k;w; t/CD0.w//dw;

(33)

which gives

f .�k;wiC1; t/
f .�k;wi; t/

D exp


�
Z wiC1

wi

1

D.w/
.BŒ f �.�k ;w; t/CD0.w//dw

�
: (34)

Now, by equating the ratio fiC1.�k; t/=fi.�k; t/ and f .�k;wiC1; t/=f .�k;wi; t/ in (31)–
(34) for the numerical and exact flux respectively, and setting

QC k
iC1=2 D

DiC1=2

w

Z wiC1

wi

BŒ f �.�k ;w; t/C D0.w/
D.w/

dw (35)

we recover

ıkiC1=2 D
1

�kiC1=2
C 1

1 � exp.�kiC1=2/
; (36)

where

�kiC1=2 D
Z wiC1

wi

BŒ f �.�k ;w; t/C D0.w/
D.w/

dw D 
w QC k
iC1=2

DiC1=2
: (37)

We have the following result [76]

Proposition 2 The numerical flux function (29)–(30)with QC k
iC1=2 and ı

k
iC1=2 defined

by (35) and (36)–(37) vanishes when the corresponding flux (27) is equal to zero
over the cell Œwi;wiC1�. Moreover the nonlinear weight functions ıkiC1=2 defined by

(36)–(37) are such that ıkiC1=2 2 .0; 1/.
By discretizing (37) through the midpoint rule

Z wiC1

wi

BŒ f �.�k ;w; t/C D0.w/
D.w/

dw D 
w.BiC1=2.�k; t/C D0
iC1=2/

DiC1=2
C O.
w3/;

(38)
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we obtain the second order method defined by

�
k;mid
iC1=2 D


w.BiC1=2.�k; t/C D0
iC1=2/

DiC1=2
(39)

and

ı
k;mid
iC1=2 D

DiC1=2

w.BiC1=2.�k; t/C D0

iC1=2/
C 1

1 � exp.�k;mid
iC1=2/

: (40)

Higher order accuracy of the steady state solution can be obtained using suitable
higher order quadrature formulas for the integral (35). We will refer to this type of
schemes as structure preserving Chang-Cooper (SP-CC) type schemes.

Some remarks are in order.

Remark 2

• If we consider the limit case DiC1=2 ! 0 in (39)–(40) we obtain the weights

ıkiC1=2 D

0; BiC1=2.�k; t/ > 0;
1; BiC1=2.�k; t/ < 0

and the scheme reduces to a first order upwind scheme for the corresponding
aggregation equation.

• For linear problems of the form BŒ f �.�k ;w; t/ D B.�k;w/ the exact stationary
state f1.w; �k/ can be directly computed from the solution of

D.w/@wf
1.�k;w/ D �.B.�k;w/C D0.w//f1.�k;w/; (41)

together with the boundary conditions. Explicit examples of stationary states will
be reported in the last section. Using the knowledge of the stationary state we
have

f1
iC1.�k/
f1
i .�k/

D exp


�
Z wiC1

wi

1

D.w/
.B.�k;w/C D0.w//dw

�

D exp
�
��1

iC1=2.�k/
�
;

(42)

therefore

�1
iC1=2.�k/ D log

�
f1
i .�k/

f1
iC1.�k/

�
(43)
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and

ı1
iC1=2.�k/ D

1

log. f1
i .�k// � log. f1

iC1.�k//
C f1

iC1.�k/
f1
iC1.�k/ � f1

i .�k/
: (44)

In this case, the numerical scheme preserves the steady state exactly.
• The cases of higher dimension d � 2may be derived similarly using dimensional

splitting (see [75] for details).

3.1.1 Main Properties

In the following we recall some results on the preservation of the structural
properties, like non negativity and entropy dissipation.

Concerning non negativity, first we report a result for an explicit time discretiza-
tion scheme [75]. We introduce a time discretization tn D n
t with 
t > 0 and
n D 0; : : : ;T and consider the simple forward Euler method

f nC1
i .�k/ D f ni .�k/C
t

F n
iC1=2.�k/�F n

i�1=2.�k/

w

; (45)

for all k D 0; : : : ;M.

Proposition 3 Under the time step restriction


t � 
w2

2.U
wC D/
; U D max

i;k
j QC n

iC1=2.�k/j; (46)

the explicit scheme (45) with flux defined by (36)–(37) preserves nonnegativity for
all k D 0; : : : ;M, i.e f nC1

i .�k/ � 0 if f ni .�k/ � 0, i D 0; : : : ;N, k D 0; : : : ;M.
Higher order strong stability preserving (SSP) methods [57] are obtained by
considering a convex combination of forward Euler methods. Therefore, the non
negativity result can be extended to general SSP methods.

In practical applications, it is desirable to avoid the parabolic restriction 
t D
O.
w2/ of explicit schemes. Unfortunately, fully implicit methods originate a
nonlinear system of equations due to the nonlinearity of BŒ f � and the dependence of
the weights ıki˙1=2 from the solution. However, we have the following nonnegativity
result for the semi-implicit case

f nC1
i .�k/ D f ni .�k/C
t

OF nC1
iC1=2.�k/� OF nC1

i�1=2.�k/

w

; (47)
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where

OF nC1
iC1=2.�k/ D QC k;n

iC1=2
h
.1 � ık;niC1=2/f

nC1
iC1 .�k/C ık;niC1=2f

nC1
i .�k/

i

C DiC1=2
f nC1
iC1 .�k/ � f nC1

i .�k/


w
:

(48)

We have

Proposition 4 Under the time step restriction


t <

w

2U
; U D max

i;k
j QC k;n

iC1=2j (49)

the semi-implicit scheme (47) preserves nonnegativity, i.e f nC1
i .�k/ � 0 if f ni .�k/ �

0, i D 0; : : : ;N for all k D 0; : : : ;M.
We refer to [75] for a detailed proof. Higher order semi-implicit approximations can
be constructed following [16].

In order to discuss the entropy property we consider the prototype equation for
all k D 0; : : : ;M

@tf .�k;w; t/ D @w ŒP.�k/.w� u/f .�k;w; t/C @w.D.w/f .�k;w; t//� ; (50)

with w 2 I D Œ�1; 1� equipped with deterministic initial distribution f .w; 0/ D
f0.w/, u D

R
I wf0.w/dw 2 .�1; 1/ and boundary conditions

@w.D.w/f .�k;w; t//C P.�k/.w� u/f .�k;w; t/ D 0; w D ˙1: (51)

It can be shown that the introduced structure preserving scheme dissipates the
numerical entropy [75]

Theorem 2 Let us consider BŒ f �.�k ;w; t/ D P.�k/.w � u/ as in Eq. (50). The
numerical flux (29)–(30) with QC k

iC1=2 and ıkiC1=2 given by (35)–(36) satisfies the
discrete entropy dissipation for all k D 0; : : : ;M

d

dt
H
. f .�k;w; t/; f

1.�k;w// D �I
. f .�k;w; t/; f
1.�k;w//; (52)

where

H
w. f .�k;w; t/; f
1.�k;w// D 
w

NX

iD0
fi log

�
fi.�k; t/

f1
i .w; �k/

�
(53)
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andI
 is the positive discrete dissipation function

I
. f .w; �k; t/; f
1.w; �k// D

NX

iD0

�
log

�
fiC1.�k; t/
f1
iC1.�k; t/

�
� log

�
fi.�k; t/

f1
i .�k/

��

�
�
fiC1.�k; t/
f1
iC1.�k/

� fi.�k; t/

f1
i .�k/

�
Nf1
iC1=2.�k/DiC1=2 � 0:

(54)

For more general equations the above approach does not permit to prove the
entropy dissipation, see [75]. In the following, we introduce a different class of
structure preserving schemes that, in addition to preservation of the steady state of
the problem, ensure the entropy dissipation.

3.2 Entropic Average Schemes

Let us consider the general class of nonlinear Fokker-Planck equation with gradient
flow structure [10, 22, 26]

@t f .�k;w; t/ D rw � Œ f .�k;w; t/rw�.�k;w; t/�; w 2 I  R
dw ; (55)

with f�kgMkD0 the collocation nodes of the random field, and no-flux boundary
conditions, where

rw�.�k;w; t/ DBŒ f �.�k ;w; t/C Drw log f .�k;w; t/;

BŒ f �.�k ;w; t/ D rw.U � f /.�k;w; t/;
(56)

with U.�k; �/ an uncertain interaction potential. A stochastic free energy functional
is defined as follows

E .�k; t/ D 1

2

Z

Rd
.U � f /.�k;w; t/f .�k;w; t/dwC D

Z

Rd
log f .�k;w; t/f .�k;w; t/dw;

which is dissipated along solutions as

d

dt
E .�k; t/ D �

Z

Rd
jrw�j2f .�k;w; t/dw D �I .�k; t/; (57)

where I .�k; �/ is the entropy dissipation function. The corresponding discrete free
energy is given by

E
.�k; t/ D 
w
NX

jD0

h1
2

w

NX

iD0
Uj�i.�k/fi.�k; t/fj.�k; t/

C Dfj.�k; t/ log fj.�k; t/
i

(58)
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In this case it is not possible to prove that the discrete entropy functional (58) is
dissipated by the SP–CC type schemes developed in the previous sections, see [75].
For this reason we introduce the new entropic family of flux function

Qf EiC1=2.�k; t/ D
8
<

:

fiC1.�k; t/ � fi.�k; t/

log fiC1.�k; t/ � log fi.�k; t/
fiC1.�k; t/ ¤ fi.�k; t/;

fiC1.�k; t/ fiC1.�k; t/ D fi.�k; t/;
(59)

for all k D 0; : : : ;M. We will refer to the above approximation of the solution at the
grid point iC 1=2 as entropic average of the grid points i and iC 1. In the general
case of the flux function (27) with non constant diffusion the resulting numerical
flux reads

F E
iC1=2.�k; t/ D DiC1=2

 QCiC1=2.�k; t/
DiC1=2

C log fiC1.�k; t/ � log fi.�k; t/


w

!
Qf EiC1=2.�k; t/:

(60)

Concerning the stationary state, we obtain immediately by imposing the numerical
flux equal to zero

QCiC1=2.�k; t/
DiC1=2

C log fiC1.�k; t/ � log fi.�k; t/


w
D 0;

and therefore we get

fiC1.�k; t/
fi.�k; t/

D exp

 
�
w

QCiC1=2.�k; t/
DiC1=2

!
: (61)

By equating the above ratio with the quasi-stationary approximation (34) we get the
same expression for QCiC1=2.�k; t/ for all k D 0; : : : ;M as in (35)

QCiC1=2.�k; t/ D DiC1=2

w

Z wiC1

wi

BŒ f �.w; �k ; t/C D0.w/
D.w/

dw: (62)

A fundamental result concerning the entropic average (59) is the following

Lemma 1 The entropy average defined in (59) may be written as a convex
combination with nonlinear weights

Qf EiC1=2.�k; t/ D ık;EiC1=2fi.�k; t/C .1 � ık;EiC1=2/fiC1.�k; t/; (63)



UQ for Kinetic Models in Socio–Economic and Life Sciences 167

where

ı
k;E
iC1=2 D

fiC1.�k; t/
fiC1.�k; t/ � fi.�k; t/

C 1

log fi.�k; t/ � log fiC1.�k; t/
2 .0; 1/: (64)

On the contrary to the Chang-Cooper average the restrictions for the non negativity
property of the solution are stronger. Similar to central differences, we have a
restriction on the mesh size which becomes prohibitive for small values of the
diffusion function D.w/.

Concerning the entropy dissipation we can summarize the main results in the
following [75]

Theorem 3 The numerical flux (60)–(59) for a constant diffusion D satisfies the
discrete entropy dissipation

d

dt
E
.�k; t/ D �I
.�k; t/; (65)

where E
.�k; t/ is given by (58) and I
.�k; t/ is the discrete entropy dissipation
function

I
.�k; t/ D 
w
NX

jD0
.�jC1.�k; t/ � �j.�k; t//2 Qf EiC1=2.�k; t/ � 0; (66)

with �jC1.�k; t/ � �j.�k; t/ the discrete version of (56).
Further, we can state the following entropy dissipation results for problem (50) in
the nonlogarithmic Landau form (16).

Theorem 4 Let us consider BŒ f �.w; �k ; t/ D P.�k/.w � u/ as in Eq. (50). The
numerical flux (60)–(59) with QC k

iC1=2 given by (35) satisfies the discrete entropy
dissipation

d

dt
H
. f .�k; t/; f

1.�k; t// D �I E

. f .�k; t/; f

1.�k; t//; (67)

whereH
w. f .�k; t/; f1.�k; t// is given by (53) andI E

.�k; t/ is the positive discrete

dissipation function

I E

. f .�k; t/; f

1.�k; t// D
NX

iD0

�
log

�
fiC1.�k; t/
f1
iC1.�k; t/

�
� log

�
fi.�k; t/

f1
i .�k; t/

��2

� DiC1=2 Qf EiC1=2.�k; t/ � 0:
(68)
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3.3 Numerical Results

We consider a stochastic Fokker–Planck equation with uncertainty in the initial
distribution, i.e.

8
<

:
@tf .�;w; t/ D @w

h
wf .�;w; t/C T.�/@2w f .�;w; t/

i
;

f .�;w; 0/ D f0.�;w/;
(69)

for all w 2 R with

f0.�;w/ D 1

2

(
1p

2��2.�/
e

� .w�c/2

2�2.�/ C 1p
2��2.�/

e
� .wCc/2

2�2.�/

)
; c D 1=10 (70)

and �2.�/ D 1=10 C �� , � � U.Œ�1; 1�/, � D 5 � 10�3. In (69) the diffusion
coefficient is the temperature

T.�/ D
Z

R

w2f0.�;w/dw:

It is well-known that the steady–state solution of this problem is the Maxwellian
distribution (4).

In the previous paragraphs we showed how an essential aspect for the accurate
description of the stochastic steady state relies in the approximation of the family
of integrals ıkiC1=2, �

k
iC1=2, see (36)–(37). In this case, however, since the steady

state is known we can evaluate exactly these weight functions as in (43)–(44). We
postpone to the last section of the present contribution the discussion on numerical
results obtained with more general weight functions for which no exact formulation
are given. In Fig. 1 (right) we report the relative L1 error for the expectation of

-1 -0.5 0 0.5 1
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1.5
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Fig. 1 Left: exact and numerical approximation of the expected steady state distribution. Right:
evolution of the L1 relative error for the expected solution calculated for both SP � CCE and
SP � EAE methods. In both figures we considered a grid on Œ�1; 1� with N D 21 points and
M D 10 nodes in the random field, the final time T D 20 and 
t D 
w2=2. The nodes of the
random field have been chosen with Gauss–Legendre polynomials
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Fig. 2 Dissipation of the numerical expected entropy for SP � CCE and SP � EAE schemes on a
coarse grid with N D 11 points

the solution in time. As expected the schemes are capable to capture the stochastic
steady state exactly. Next in Fig. 2 the evolution of the expectation for the numerical
entropy is given.

4 Variance Reduction Monte Carlo Methods

Among the different type of techniques used in UQ, certainly the Monte Carlo
methods represent one of the most popular and important classes [20, 44, 55, 74].
They show all their potential when the dimension of the uncertainty space becomes
very large. In addition, Monte Carlo methods are effective when the probability dis-
tribution of the random inputs is not known analytically or lacks of regularity since
other approaches based on orthogonal stochastic polynomials may be impossible to
use of may produce poor results.

In this section, we first describe a standard Monte Carlo approach which deals
with random initial data and then we describe a modification of this algorithm which
permits to strongly decrease the computational costs and increase the accuracy close
to the steady state.

4.1 The Standard Monte Carlo Method

We describe the method when applied to the solution of a Vlasov-Fokker-Planck
type equation (1) with deterministic parameters P D P.x; x�;w;w�/ and D D
D.w; t/ and random initial data f .�; x;w; 0/ D f0.�; x;w/. First we assume that the
kinetic equation has been discretized by a deterministic solver in the variables w, x
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and t. In this setting, the simplest Monte Carlo (MC) method for UQ is based on the
following steps.

Algorithm 1 (Standard Monte Carlo (MC) Method)

1. Sampling: Sample M independent identically distributed (i.i.d.) initial data f k0 ,
k D 1; : : : ;M from the random field f0 and approximate these over the grid (for
example by piece-wise constant cell averages).

2. Solving: For each realization f k0 the underlying kinetic equation (1) is solved
numerically by the deterministic solver. We denote the solutions at time tn by
f k;n
w;
x, k D 1; : : : ;M, where
w and
x characterize the discretizations in w and
x.

3. Estimating: Estimate the expected value of the random solution field with the
sample mean of the approximate solution

EMŒ f
n

w� D

1

M

MX

kD1
f k;n
w;
x: (71)

The above algorithm is straightforward to implement in any existing code for the
Vlasov-Fokker-Planck equations. Furthermore, the only (data) interaction between
different samples is in step 3, when ensemble averages are computed. Thus, the MC
algorithms for UQ are non-intrusive and easily parallelizable as well.

The typical error estimate that one obtains using such an approach is of the type

kEŒ f .�; tn/� � EMŒ f
n

w�k � C1M

�1=2 C C2.
w/
q C C3.
x/

p C C4.
t/
r (72)

where k � k is a suitable norm, C1, C2, C3 and C4 are positive constants depending
only on the second moments of the initial data and the interaction term, and q, p
and r characterize the accuracy of the discretizations in the phase-space. Clearly, it
is possible to equilibrate the discretization and the sampling errors in the a-priori
estimate taking M D O.
w�2q/,
x D O.
wq=p/ and
t D O.
wq=r/. This means
that in order to have comparable errors the number of samples should be extremely
large, especially when dealing with high order deterministic discretizations. This
may make the Monte Carlo approach very expensive in practical applications.

4.2 The Micro-Macro Monte Carlo Method

In order to improve the performances of standard MC methods, we introduce a
novel class of variance reduction Monte Carlo methods [44]. The key idea is to take
advantage of the knowledge of the steady state in order to reduce both the variance
and the computational cost of the Monte Carlo estimate. The method is essentially a
control variate strategy based on a suitable microscopic-macroscopic decomposition
of the distribution function.
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We describe the method in the space homogeneous case, an example of such
technique in the non homogeneous case is reported in Sect. 6, while we refer to [44]
for a detailed discussion and extensions of such method to more general kinetic
equations. Following Sect. 2.2 we introduce the Micro–Macro decomposition

f .�;w; t/ D f1.�;w/C g.�;w; t/;

where f1.�;w/ is the steady state solution of the problem considered. Then, the
method consists in using the Monte Carlo estimation procedure only on the non
equilibrium part g.�;w; t/ solution of (23).

The crucial aspect is that the equilibrium state g1.�;w/ is zero and therefore,
independent from � . More precisely, we can decompose the expected value of the
distribution function in an equilibrium and non equilibrium part

EŒ f �.w; t/� D
Z

˝

f .�;w; t/p.�/d�

D
Z

˝

f1.�;w/p.�/d� C
Z

˝

g.�;w; t/p.�/d�;

(73)

and then exploit the fact that f1.�;w/ is known to have an estimate of the error
committed by the Monte Carlo integration of type

eMŒ f � ' �gM�1=2 (74)

instead of

eMŒ f � ' �f M�1=2; (75)

where �g and �f are the variances of respectively the perturbation and the distribu-
tion function and where we have supposed for simplicity that expected value of the
equilibrium part is computed with a negligible error. Now, since it is known that the
perturbation g goes to zero in time exponentially fast, then also its variance goes
to zero, which means that at the steady state the Monte Carlo integration becomes
only dependent on the way in which the expected value of the equilibrium part is
computed.

The simplest version of the algorithm consists of the following steps:

Algorithm 2 (Micro-Macro Monte Carlo (M3C) Method)

1. Small scale sampling: Sample ME independent identically distributed (i.i.d.)
initial data f k0 , k D 1; : : : ;ME from the random field f0. For each sample compute
the corresponding equilibrium state f k;1
w from its moments evaluated through
suitable quadrature rules in w based on the discretization parameter
w.

2. Large scale sampling: Select M 
 ME samples f k0 , k D 1; : : : ;M and compute
gk0 D f k0 � f k;1 and approximate these over the grid (for example by piece-wise
constant cell averages).
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3. Solving: For each realization gk0 the underlying kinetic equation (23) is solved
numerically by the deterministic solver. We denote the solutions at time tn by
gk;n
w, k D 1; : : : ;M.

4. Estimating: We estimate the expected value of the random solution field

f k;n
w D f k;1
w C gk;n
w;

with the sample mean of the approximate solution

EM;ME Œ f
n

w� D

1

ME

MEX

kD1
f k;1
w C

1

M

MX

kD1
gk;n
w: (76)

Using such an approach one obtains an error estimate of the type

kEŒ f .�; tn/��EM;ME Œ f
n

w�k � CEM

�1=2
E CCn

1M
�1=2CC2.
w/

qCC3.
t/
r (77)

where now the constant Cn
1 depends on time and on the second moment of the

solution g.�;w; tn/ which will vanish for large times. In fact, independently of � we
have that g.�;w; tn/! 0 as n!1. Therefore, the method reduces the variance of
the estimator in time and asymptotically, since Cn

1 ! 0 as n!1, depends only on
the fine scale sampling which does not affect the overall computational cost.

The efficiency of the M3C can be further improved in the case of monotonic
convergence to equilibrium of the distribution function f by introducing a strategy
of sampling reduction at each time step. The resulting algorithm is the following

Algorithm 3 (Fast Micro-Macro Monte Carlo (FM3C) Method)

1. Small scale sampling: Sample ME independent identically distributed (i.i.d.)
initial data f k0 , k D 1; : : : ;ME from the random field f0. For each sample compute
the corresponding equilibrium state f k;1
w from its moments evaluated through
suitable quadrature rules in w based on the discretization parameter
w.

2. Large scale sampling: Select M0 
 ME samples f k0 , k D 1; : : : ;M0 and compute
gk0 D f k0 � f k;1 and approximate these over the grid (for example by piece-wise
constant cell averages).

3. Solving: For each realization gk0 the underlying kinetic equation (23) is solved
numerically by the deterministic solver. This is realized at each time step n D
0; 1; 2; : : : as follows.

a. Advance in time: Starting from gk;n
w, k D 1; : : : ;Mn compute the solution
gk;nC1

w with one time step of the deterministic solver.

b. Discard samples: At each time step we compute the variance of gk;nC1

w as

VarMn Œg
nC1

w � D

1

Mn

MnX

kD1
.gk;nC1

w � EMn Œg

k;nC1

w �/2 � VarMn Œg

n

w�:



UQ for Kinetic Models in Socio–Economic and Life Sciences 173

Set MnC1 D ŒŒMn
�
VarMn Œg

nC1

w �=VarMn Œg

n

w�
�
�� where ŒŒ��� denotes the integer

part and discard uniformly Mn �MnC1 samples.

4. Estimating: We estimate the expected value of the random solution field

f k;n
w D f k;1
w C gk;n
w;

with the sample mean of the approximate solution

EMn;ME Œ f
n

w� D

1

ME

MEX

kD1
f k;1
w C

1

Mn

MnX

kD1
gk;n
w: (78)

The algorithm preserves the advantages of the simple M3C method but with a greater
computational efficiency since the number of samples, and therefore the number of
deterministic equations that we have to solve, decreases in time and asymptotically
vanishes.

Remark 3

• In the case the underlying uncertainty probability density function p.�/ is known,
the M3C method can be applied without any small scale sampling since the
estimate of the expected value reduces to

EMn Œ f
n

w� D

Z

˝

f1

w.�;w/p.�/d� C

1

Mn

MnX

kD1
gk;n
w: (79)

In this case M3C methods achieves arbitrary accuracy for large times.
• In contrast with Multi Level Monte Carlo (MLMC) methods [55], which can

produce non monotone estimators, the estimators produced by the M3C method
are monotonic, i.e. mean estimator of positive quantities (such as density) is also
positive, the same holds true for the entropy property.

• The extension of the M3C method to the non homogeneous case is not straight-
forward, and depends on the type of problem considered. Some applications are
reported in Sect. 6. For more general cases we refer to [44] where a detailed
discussion is done.

4.3 Numerical Results

In this section we show some results concerning the Micro-Macro Monte Carlo
methods by comparing them to the standard MC method for UQ. In particular,
we study the behaviors of our approach in solving the stochastic Fokker–Planck
equation with uncertainty in the initial distribution (69)–(70).
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Fig. 3 Monte Carlo method. Left: evolution of the L1 norm of the error for the expected
distribution over an increasing number of stochastic inputs. Different lines represent the error at
different times. Right: evolution of the L1 norm of the error for the expected distribution over time.
Different lines represent a different number of stochastic inputs over which the expected value is
computed. Grid Œ�1; 1� with N D 100 points, final time T D 3 and 
t D 
w2=2. The solution
has been averaged over 100 different realizations

In Fig. 3 we report the L1 norm of the error for the expected solution with a
standard MC method. Left image shows the error for an increasing number of
samples for different times, while right image shows the trend of the error over
time for a different number of random inputs. The final time is set to Tf D 3, the
number of cells in velocity is 100, while the stability condition gives 
t D 
w2=2.
The maximum number of samples which furnishes the set of initial conditions is
M� D 50, while the solution is averaged over 100 realizations. One can clearly see
the M�1=2

� slope for the error in the left picture.
In Fig. 4, the L1 norm of the error is reported in the same setting for the

M3C method. The same number of averages and stochastic initial condition have
been employed. We can see how the error decreases as a function of time in an
exponential fashion on the contrary of the MC case for which the error is almost
independent on time.

Finally, in Fig. 5 we show the behavior of the fast M3C method. The number of
samples for which the time evolution of the perturbation g is considered is reported
on the right and it diminishes exponentially with time. The corresponding L1 norm
of the error is shown on the left. For this case, we increased the initial number of
random samples to 1000 to highlight the behavior of the fast approach.
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Fig. 4 M3C method. Left: evolution of the L1 norm of the error for the expected distribution over
an increasing number of stochastic inputs. Different lines represent the error at different times.
Right: evolution of the L1 norm of the error for the expected distribution over time. Different lines
represent a different number of stochastic inputs over which the expected value is computed. Grid
Œ�1; 1� with N D 100 points, final time T D 3 and 
t D 
w2=2. The solution has been averaged
over 100 different realizations
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Fig. 5 Fast M3C method. Left: evolution of the L1 norm of the error for the expected distribution
over time. Different lines represent a different number of stochastic inputs over which the expected
value is computed. Right: number of random nodes over time. Grid on Œ�1; 1� with N D 100

points, final time T D 3 and 
t D 
w2=2

5 Stochastic Galerkin Methods

Among the various methods for UQ in PDEs, stochastic Galerkin (SG) methods
based on generalized polynomial chaos (gPC) expansions are very attractive
thanks to the spectral convergence property with respect to the random input
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[31, 62, 64, 68, 78, 79, 88, 90]. On the other hand, their intrusive nature forces a
complete reformulation of the problem and standard schemes for the corresponding
deterministic problem cannot be used in a straightforward way.

In particular, it is well known that, this intrusive formulation may lead to the
loss of important structural properties of the original problem, like hyperbolicity,
positivity and preservation of large time behavior [30, 42, 77].

In this section we analyze gPC-SG methods for the numerical approximation
of stochastic Vlasov-Fokker-Planck equations in the form (1). In particular, using
the Micro–Macro approach in the gPC-SG setting we show how it is possible to
construct methods which preserve the asymptotic behavior of the solution [46]. We
mention here related approaches for kinetic equations developed in [61, 92].

We recall first some basic notions on Galerkin approximation techniques for
stochastic computations.

5.1 Preliminaries on gPC-SG Techniques

Let us consider the function f .�; x;w; t/, f 2 L2 in the random variable � 2 ˝  R,
solution of the differential problem

@tf .�; x;w; t/ DJ . f ; f /.�; x;w; t/; (80)

with J given by (13). The present setup of the problem may be naturally extended
to a r-dimensional vector of random variables.

We consider the space PM of polynomials of degree up to M, generated by a
family of orthogonal polynomials with respect to the probability density function
p.�/ of the random variable � , namely f˚h.�/gMhD0. They form an orthogonal basis
of L2.˝/, i.e.

E

h
˚h.�/˚k.�/

i
D
Z

˝

˚h.�/˚k.�/p.�/ d� D E

h
˚2

h .�/
i
ıhk (81)

where ıhk is the Kronecker delta function. Let us assume that p.�/ has finite second
order moment, we can represent the function f .x;w; �; t/ through the complete
polynomial chaos expansion as follows

f .�; x;w; t/ D
X

m2N
Ofm.x;w; t/˚m.�/; (82)

where Ofm.x; t/ is given by

Ofm.x;w; t/ D E

h
f .�; x;w; t/˚m.�/

i
; m 2 N: (83)
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The generalized polynomial chaos expansion approximates the solution f .�; x;w; t/
of (80) with its M-th order truncation f M.�; x;w; t/ and considers the Galerkin
projections of the differential problem for each h D 0; : : : ;M

@tEŒ f
M.�; x;w; t/˚h.�/� D EŒJ . f M; f M/.�; x;w; t/˚h.�/�: (84)

Thanks to the orthogonality of the polynomial basis of the space PM we obtain a
coupled system of M C 1 purely deterministic equations

@t Ofh.x;w; t/ D OJh. Of ; Of /.x;w; t/; h D 0; : : : ;M; (85)

where Of D OfkkD0M .
These subproblems must then be solved through suitable numerical techniques.

The approximation of the statistical quantities of interest are defined in terms of the
introduced projections. From (83) being ˚0 � 1 we have

EŒ f .�; x;w; t/� D Of0.x;w; t/; (86)

and thanks to the orthogonality it is possible to show that

VarŒ f .�; x;w; t/� D E

"� MX

hD0
Ofh˚h.�/ � Of0

�2
#

D
MX

hD0
Of 2h .x;w; t/EŒ˚2

h .�/� � Of 20 .x;w; t/:
(87)

5.1.1 gPC-SGMethods for Vlasov–Fokker–Planck Equations

Let us consider the stochastic Vlasov–Fokker–Planck equation (1) with a nonlocal
drift BŒ�� of the form (2).

The gPC-SG approximation is given by the following system of deterministic
differential equations

@t Ofh.x;w; t/CL Œ Ofh.x;w; t/� D

rw �
"

MX

kD0
bhkŒ Of �.x;w; t/Ofk.x;w; t/CrwD.x;w/Ofh.x;w; t/

#
;

(88)

where

bhkŒ Of �.x;w; t/ D 1

k˚hk2L2
MX

mD0

Z

˝

BŒ Ofm�˚k.�/˚m.�/dp.�/: (89)
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Note that, due to the nonlinearity of Fokker–Planck problems, we obtain a coupled
system of deterministic Vlasov–Fokker–Planck equations describing the evolution
of each projection. In vector notations we have

@tOf.x;w; t/CL ŒOf�.x;w; t/ D rw � ŒBŒOf�.x;w; t/Of.x;w; t/CrwD.x;w/Of.x;w; t/�;
(90)

where Of D . Of0; : : : ; OfM/T and the component of the .M C 1/ � .M C 1/ matrix
BŒOf�.x;w; t/ are given by (89).

In a similar way, we can derive the gPC-SG formulation of stochastic Vlasov–
Fokker–Planck equations with uncertain diffusion terms.

Remark 4 In the case that uncertainty is present only in the initial data, and
therefore BŒ f �.x;w; �; t/ D B.x;w; t/, the matrix B is diagonal and we need to
solve the decoupled system of Vlasov type equations

@t Ofh.x;w; t/CL Œ Ofh�.x;w; t/ D rw � Œbhh Ofh.x;w; t/CrwD.x;w/Ofh.x;w; t/�; (91)

h D 0; : : : ;M. Hence, a structure preserving approach as in Sect. 3.1 may be
introduced in order to preserve the large time behavior of the collision step of each
projection by defining a family of weight functions

�hiC1=2 D
DiC1=2

w

Z wiC1

wi

bhh.x;w; t/C D0.x;w/
D.x;w/

dw;

ıhiC1=2 D
1

�hiC1=2
C 1

1 � exp.�hiC1=2/
:

(92)

In this setting the scheme capture with arbitrary accuracy the steady state and
the expected value of the numerical solution is kept nonnegative. However, for
more general nonlocal type operators BŒ�� this approach cannot be applied for the
construction of a stochastic Galerkin expansion which preserves the steady state
solution and nonnegativity of the mean.

5.2 A Micro–Macro gPC Approach

We discussed in the previous section how the gPC-SG method for stochastic
Fokker–Planck equations generates a coupled system of partial differential equa-
tions. Although gPC-SG guarantees spectral convergence on the random field under
suitable regularity assumptions, its accuracy in describing the long-time solutions
of the problems depends on the particular scheme emploied for solving the coupled
system.

Let us consider suitable regularity assumptions on the initial distribution such
that the stochastic Fokker–Planck problem admits the unique steady state solution
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f1.�;w/. With the aim of preserving the steady states of the problem in the
Galerkin setting we introduce a Micro–Macro gPC-SG scheme. Thanks to the
formalism introduced in Sect. 5.1 and by analogy with (21) the Micro–Macro gPC
decomposition for all M � 0 reads [46]

f M.�;w; t/ D f1;M.�;w/C gM.�;w; t/; w 2 R
dw ; t � 0; (93)

where

f1;M.w; �/ D
MX

hD0
cf1

h.w/˚h.�/; cf1
h.w/ D

Z

˝

f1.�;w/˚h.�/dp.�/:

Since Eq. (93) is equivalent to Of Dcf1C Og, we can reformulate the original problem
in terms of Og. Equation (88) may be reformulated for all h D 0; : : : ;M in terms of
the nonequilibrium part of the Micro–Macro gPC decomposition Ogh as follows

(
@t Ogh.w; t/ D OJh.Og; Og/.w; t/C ONh.cf1; Og/.w; t/;
f M.w; �; t/ D f1;M.w; �/C gM.w; �; t/;

(94)

where the operator OJh is the Galerkin projection of the quadratic operators of the
collisional type defined in (13) and ONh is a linear operator defined as

OJh.Og; Og/.w; t/ D rw �
h MX

kD0
bhkŒOg�Ogk.w; t/CrwD.w/Ogh.w; t/

i
;

ONh.cf1; Og/.w; t/ D rw �
h MX

kD0
bhkŒcf1�Ogk.w; t/C bhkŒOg�cf1

k.w/
i
:

(95)

Now, the equilibrium state of each gPC projection is Ogh � 0 and any consistent
schemes for the numerical approximations of the differential terms in (95) admits
Ogh � 0 as equilibrium state for all h D 0; : : : ;M. For example, we can use a standard
central difference approximation scheme for the differential terms in (95) to achieve
second order accuracy for transient times and exact preservation of the steady state
asymptotically.

5.3 Numerical Results

We consider the evolution of the Fokker–Planck equation (69) with the uncertain
initial condition (70). Following the approach introduced in the previous section,
we obtain the SG system of equations

@t Ofh.w; t/ D @w
h
wOfh.w; t/C @w

MX

kD0
dhk Ofk.w; t/

i
; (96)
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Fig. 6 Left: expected stationary solution of the uncertain Fokker–Planck equation obtained
through standard SG and MM-SG methods with central differences and M D 10. Right: expected
L2 error for standard SG and MM-SG. In both cases we considered a discretization of the interval
Œ�1; 1� with N D 21 gridpoints and 
t D 
w=2

with

dhk D 1

k˚hk22

Z

˝

T.�/˚h.�/˚k.�/dp.�/:

In order to build the Micro–Macro gPC decomposition of the SG system we take
advantage of the analytical solution given by the Maxwellian distribution (4), which
can be approximated by its M-order truncation as in Sect. 5.2. Therefore we aim at
solving the modified problem for all h D 0; : : : ;M

8
<

:
@t Ogh.w; t/ D @w

h
wOgh.w; t/C @wPM

kD0 dhk Ogk.w; t/
i
;

f M.�;w; t/ D gM.�;w; t/C f1;M.�;w/:
(97)

In all our numerical examples we use second order central difference approxima-
tions of the derivatives in w. In Fig. 6 we compare the numerical long time solution
obtained through a standard SG system (96) and the Micro–Macro SG system
(MM). We can observe how the Micro–Macro gPC-SG method gives an accurate
description of the expected steady state of the problem, on the contrary the error
of the standard gPC-SG method saturates at the accuracy obtained with the central
differences.

6 Other Applications

In this section we present several numerical examples of stochastic Fokker–Planck
and Vlasov–Fokker-Planck equations solved with the schemes introduced in the
previous sections. In particular we focus on some recent models in socio–economic
and life sciences as discussed in the Introduction.
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6.1 Example 1: Opinion Model with Uncertain Interactions

Let us consider a distribution function f D f .�;w; t/ describing the density of
agents with opinion w 2 I D Œ�1; 1� whose evolution is given in terms of
a stochastic Fokker-Planck equation characterized by the nonlocal term (5) with
uncertain compromise propensity function P.�;w;� / 2 Œ0; 1�. In the following we
will solve the problem both in the collocation and in the Galerkin setting.

We consider as deterministic initial distribution f .�k;w; 0/ D f0.w/ for all k D
1; : : : ;M, with

f0.w; 0/ D ˇ
	
exp.�c.wC 1=2/2/C exp.�c.w � 1=2/2/
 ; c D 30; (98)

with ˇ > 0 a normalization constant and let u D R 1
�1 wf0.w/dw the mean opinion.

We choose a uniformly distributed random input � � U.Œ�1; 1�/ and a random
interaction function of the form P.�/ D 0:75C �=4.

We discretize the random variable by considering M > 1 Gauss–Legendre
collocation nodes. In Fig. 7 we compute the relative L1 error for mean and variance
with respect to the exact steady state (6) usingN D 80 points for the SP�CC scheme
with various quadrature rules adopted for the evaluation of the weights function in
(37). Singularities at the boundaries in the integration of (37) can be avoided using
open Newton–Cotes methods. In the sequel, we will adopt the notation SP � CCk,
k D 2; 4; 6;G, to denote the structure preserving schemes with Chang–Cooper flux
when (37) is approximated with second, fourth, sixth order open Newton–Cotes or
Gaussian quadrature, respectively.

In Fig. 8 the time evolution of the expected solution and variance are given. We
can observe from the estimation of the variance the regions of higher variability of
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Fig. 7 Example 1. Values of L1 error in the estimation of the expected solution (left) and its
variance (right) for T D 20 and for an increasing number of collocation nodes. The numerical
error has been computed with respect to the expected analytical solution (left) and its variance
(right), see (6). We compare the error for the SP–CC scheme with different quadrature methods
in case of random interaction P.�/ D 0:75 C �=4, � � U.Œ�1; 1�/. Initial distribution (98),
�2=2 D 0:1, N D 80, 
t D 
w2=.2�2/
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Fig. 8 Example 1. Evolution of EM Œ f .w; �; t/� (left) and VarM Œ f .w; �; t/� (right) for the opinion
model obtained with M D 10 collocation points and the SP � CCG scheme over the time interval
Œ0; 10�
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Fig. 9 Example 1. Left: Estimation of EŒk f � f MkL2 � computed at time t D 20 and for an
increasing number of M 	 0, we compare the errors computed through a standard method for
the solution of the system of coupled PDEs of the Fokker–Planck type, with the Micro–Macro
gPC method. We used N D 80 gridpoints, �2=2 D 0:1, 
t2 D 
w2=.2�2/. Right: Large time
behavior for the estimated expected solution of the opinion model.

the expected solution due to uncertain interactions. The evolutions of the statistical
quantities have been computed through a collocation SP � CCG method with 20
quadrature points for the evaluation of (37).

Finally, as in Sect. 5.2 we consider a Micro-Macro gPC Galerkin setting based
on the knowledge of the stationary solution (6).

In Fig. 9 we present the behavior numerical error EŒk f1 � f Mk2� for large time
where the differential terms in w are solved by central differences. We report also the
large time behavior for the expected solution in both schemes, where it is possible to
observe how the Micro–Macro gPC is able to capture with high accuracy the steady
state of the problem.
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6.2 Example 2: Wealth Evolution with Uncertain Diffusion

We consider the Fokker-Planck equation defined by (7) where now f D f .�;w; t/
with w 2 R

C representing the wealth of the agents and the uncertainty acts on the
diffusion parameter. We consider the deterministic initial distribution f .�k;w; 0/ D
f0.w/ for all k D 1; : : : ;M with

f0.w; 0/ D ˇ exp
n
� c.w � Qu/2

o
; c D 20; Qu D 2; (99)

where ˇ > 0 is a normalization constant. To deal with the truncation of the
computational domain in the interval Œ0;L�, following [75], after introducing N
grid points we consider the quasi stationary boundary condition in order to evaluate
fN.�k; t/, i.e.

fN.�k; t/

fN�1.�k; t/
D exp

n
�
Z wN

wN�1

BŒ f �.�k ;w; t/C D0.�k;w/
D.�k;w/

dw
o
; (100)

for all k D 1; : : : ;M. In Fig. 10 we report in a semilog scale the relative L1 error
for mean and variance with respect to the exact steady state introduced in (8) of the
semi-implicit SP–CC scheme for several integration methods with N D 200 points
over with L D 10, and an increasing number of collocation nodes M D 1; : : : ; 15.
The time step is chosen in such a way that the CFL condition for the positivity of
the semi-implicit scheme is satisfied, i.e. 
t D O.
w/ see Sect. 3.1.1. For the tests
we considered �2.�/ D 0:1C 5 � 10�2� , where � � U.Œ�1; 1�/. We can observe
how the error decays exponentially for an increasing number of collocation nodes.
The time evolution of the mean and the variance is plotted in Fig. 11.
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Fig. 10 Example 2. Error for the SP–CC scheme with different quadrature methods in case of
random diffusion constant �2.�/ D 0:1C �=200, � � U.Œ�1; 1�/. We report the L1 relative error
in the estimation of the expected solution (left) and its variance (right) for T D 20 and for an
increasing number of nodes in the random space. The numerical error has been computed with
respect to the expected analytical solution (left) and its variance (right) obtained from (8). The
initial distribution f0.w/ is (99), we consider the domain Œ0; L�, L D 10 with N D 200 points and

t D 
w=L with a semi-implicit approximation
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Fig. 11 Example 2. Evolution of expected solution E
MŒ f .�;w; t/� (left) and its variance

VarMŒ f .�;w; t/� (right) for the wealth evolution model. The evolution is computed through M D 10

collocation points and the SP � CCG scheme over the time interval Œ0; 10�, 
t D 
w=L with
w 2 Œ0; L�, L D 10
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Fig. 12 Example 2. Left: Estimation of EŒk f � f MkL2.˝/� computed at time T D 20 and for
an increasing number of M 	 0, we compare the errors computed through a standard gPC-SG
method and the Micro–Macro gPC-SG method. We used N D 200 gridpoints, �2 D 0:1C �=200.
Right: Statistical dispersion of the expected asymptotic solution of the wealth distribution model
calculated with the Micro–Macro gPC-SG method

Next we consider the SG-gPC formulation of the equation for the wealth
evolution. Since in this case the uncertainty enters in the definition of the diffusion
variable �2 D �2.�/ taking a.�; �/ � 1 the analytical steady state solution of the
problem is given in (8) and we can consider the Micro–Macro gPC scheme as in
Sect. 5.2.

In Fig. 12 we compare the error for a standard gPC approximation and the Micro–
Macro gPC. In both cases central differences have been used for the differential
terms in w. We can see how EŒk f � f Mk2� computed at time T D 20, close to
the stationary solution, decreases in relation to the number of terms of the gPC
approximation whereas the standard gPC show a limited accuracy given by the error
in approximating the large time behavior of the problem.
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6.3 Example 3: Swarming Model with Uncertainties

Finally, the last example is devoted to a Vlasov-Fokker-Planck equation describing
the swarming behavior of large group of agents. It is worth to observe how for this
problem one steady state solution is provided by the global Maxwellian, which is
a locally stable pattern, see [24, 49]. We compare the numerical solution of the
problem making use of MC and M3C scheme analyzed in Sect. 4.

We consider an uncertain self-propelled swarming model described by the
Vlasov-Fokker-Planck equation (1) characterized by (9). This describes the time
evolution of a distribution function f .x;w; �; t/ which represents the density of
individuals in position x 2 R

dx having velocity w 2 R
dw at time t > 0. The initial

data consists in a bivariate normal distribution of the form

f0.x;w/ D C. f A0 .x;w/C f B0 .x;w//; (101)

where

f A0 .x;w/ D
1

2�
p
�2x �

2
w

exp
n
� 1
2

� .x � �x/
2

�2x
C .w � �w;A/

2

�2w

�o
(102)

and

f B0 .x;w/ D
1

2�
p
�2x �

2
w

exp
n
� 1
2

� .x � �x/
2

�2x
C .w � �w;B/

2

�2w

�o
(103)

with �x D 0, �x D 0:25, �w;A D ��w;B D 1:5, �2w D 0:25 and C > 0 is a
normalization constant. The uncertainty is present in the diffusion coefficient, i.e.
D D D.�/ D 0:2C 0:1� , and it is distributed accordingly to � � U.Œ�0:1; 0:1�/.

We compute the solution by using the structure preserving scheme discussed in
Sect. 3.1 for solving the homogeneous Fokker-Planck equation and we combine this
method with a WENO scheme for the linear transport part. A second order time
splitting approach combines the two discretization in space and velocity. More in
details, we compare a Monte Carlo collocation with the Micro-Macro collocation
discussed in Sect. 3. The number of cells in space is fixed to Nx D 100, in velocity
space to Nv D 100 while the number of random inputs is fixed to M D 50. The
solution is averaged over 10 different realization and the final time is fixed to T D
250. The size of the domain is Œ0;L� with L D 10 in space and Œ�Lv;Lv� D Œ�3; 3�
in velocity space. In Fig. 13 the time evolution of the expected distribution with
respect to the uncertain variable is reported for different times computed by the
MC approach together with the time evolution of the expected perturbation g from
the steady state solution computed with the M3C method. In Fig. 14, the variance
of the distribution over time and the variance of the perturbation g over time are
reported, the firsts computed by the MC method, the seconds with the M3C one.
Finally, in Fig. 15, the L1 norm of the error for the MC and the M3C methods are
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Fig. 13 Example 3. Time evolution of the distribution function, expected solution over time for
the MC and the M3C methods. The top images report the expected solution computed with MC for
t D 1, t D 3 and t D 6. The bottom images report the expected perturbation from the steady state
equilibrium computed with the M3C method for t D 1, t D 3 and t D 6

Fig. 14 Example 3. Time evolution of the variance of the asymptotic solution over time for the
MC and the M3C methods. The top images report the variance computed with MC for t D 1,
t D 3 and t D 6. The bottom images report the variance of the perturbation from the steady state
equilibrium computed with the M3C method for t D 1, t D 3 and t D 6
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Fig. 15 Example 3. Left: Estimation of the L1 error of the expected distribution over time
computed for an increasing number of random inputs M for the MC method. Right: Estimation of
the L1 error of the expected distribution over time computed for an increasing number of random
inputs M for the M3C method. The error of the MC method remains constant in time while for
M3C method the error decreases

reported as a function of time for different number of random inputs. The gain in
computational accuracy of the M3C method is clearly evident for large times. The
reference solution has been computed by a collocation method which employs the
Gauss nodes as quadrature nodes with M D 100 random inputs.
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Uncertainty Quantification for Kinetic
Equations

Jingwei Hu and Shi Jin

Abstract Kinetic equations contain uncertainties in their collision kernels or
scattering coefficients, initial or boundary data, forcing terms, geometry, etc.
Quantifying the uncertainties in kinetic models have important engineering and
industrial applications. In this article we survey recent efforts in the study of
kinetic equations with random inputs, including their mathematical properties
such as regularity and long-time behavior in the random space, construction of
efficient stochastic Galerkin methods, and handling of multiple scales by stochastic
asymptotic-preserving schemes. The examples used to illustrate the main ideas
include the random linear and nonlinear Boltzmann equations, linear transport
equation and the Vlasov-Poisson-Fokker-Planck equations.

1 Introduction

Kinetic equations describe the non-equilibrium dynamics of a gas or system
comprised of a large number of particles using a probability density function. In
multiscale modeling hierarchy, they serve as a basic building block that bridges
atomistic and continuum models. On one hand, they are more efficient (requiring
fewer degrees of freedom) than molecular dynamics; on the other hand, they provide
reliable information at the mesoscopic level when the macroscopic fluid mechanics
laws of Navier-Stokes and Fourier become inadequate. The most fundamental (and
the very first) kinetic equation is the Boltzmann equation, an integro-differential
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equation describing particle transport and binary collisions [11, 16]. Proposed by
Ludwig Boltzmann in 1872, the equation is considered as the basis of the modern
kinetic theory. During the past decades, there have been enormous studies on
the Boltzmann and related kinetic models, both theoretically and numerically (cf.
[13, 20, 74]). This trend is ever-growing as the application of the kinetic theory
has already gone beyond traditional fields like rarefied gas dynamics [12], radiative
transfer [15], and branched out to microfabrication technology [48, 61], biological
and even social sciences [63].

In spite of the vast amount of existing research, the study of kinetic equations has
mostly remained deterministic and ignored uncertainty. In reality, however, there
are many sources of uncertainties that can arise in these equations. They may be
due to

• Incomplete knowledge of the interaction mechanism between particles. Kinetic
equations typically contain an integral operator modeling particle interactions.
Inside this integral, there is a term called collision or scattering kernel describing
the transition rate during particle collisions. Ideally, the collision kernel should
be calculated from first principles using scattering theory [11]. This, if not
impossible, is extremely complicated for complex particle systems. Therefore,
empirical collision kernels are often used in practice with the aim to reproduce
correct viscosity and diffusion coefficients [8, 9, 33, 50]. Specifically, these
kernels contain adjustable parameters whose values are determined by matching
with available experimental data for various kinds of particles.

• Imprecise measurement of the boundary data. A commonly used boundary for
kinetic equations is the so-called Maxwell boundary condition [11, 12], which
assumes part of the particles are bounced back specularly and part of them are
absorbed by the wall and re-emitted according to a special Gaussian distribution.
This distribution depends on the (measured) macroscopic properties of the wall
such as temperature and bulk velocity.

The uncertainties are of course not limited to the aforementioned examples: they
may also come from inaccurate measurement of the initial data, our lack of
knowledge of gas-surface interactions, forcing and geometry, etc. Understanding
the impact of these uncertainties is critical to the simulations of the complex kinetic
systems to validate the kinetic models, and will allow scientists and engineers to
obtain more reliable predictions and perform better risk assessment.

Despite tremendous amount of research activities in uncertainty quantification
(UQ) in recent decades in many areas of sciences and engineering, the study of
uncertainty in kinetic models, albeit important and necessary, has remained mostly
untouched territory until very recently. It is the goal of this survey to review
recent development of UQ for kinetic equations. Here the uncertainty is introduced
through random inputs, and we adopt the generalized polynomial chaos based
stochastic Galerkin (gPC-sG) approximation, which has been successfully applied
to many physical and engineering problems, see for instance, the overviews in
[27, 55, 66, 77]. Due to the high-dimensionality and intrinsic physical properties
of kinetic equations, the construction of stochastic methods represents a great
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challenge. We will use some prototype equations including the classical Boltzmann
equation, linear Boltzmann equations, and Vlasov-Poisson-Fokker-Planck system
to illustrate the main strategy.

It is well-known that the gPC-sG approach is intrusive, requiring more coding
efforts compared with non-intrusive methods such as the stochastic collocation
[32, 78]. The reason of our choice is twofold: (1) Due to its Galerkin formulation,
mathematical analysis of these methods can be conducted more conveniently.
Indeed many of the analytical methods well-established in kinetic theory can be con-
veniently adopted or extended to study the stochastic Galerkin system of the random
kinetic equations; (2) Kinetic equations often contain small parameters such as the
mean free path/time which asymptotically lead to hyperbolic/diffusion equations.
We are interested in developing the stochastic analogue of the asymptotic-preserving
(AP) scheme, a scheme designed to capture the asymptotic limit at the discrete
level. The stochastic Galerkin method yields systems of deterministic equations
that resemble the deterministic kinetic equations, although in vector forms. Thus it
allows one to easily use the deterministic AP framework for the random problems,
allowing minimum “intrusivity” to the legacy deterministic codes. The stochastic
Galerkin method can ensure the desired convergence in the weak sense. The
resulting stochastic Asymptotic-Preserving (sAP) [46] sG methods will allow all
numerical parameters, such as mesh size, time-step and the number of gPC modes
chosen independently of the (possibly small) mean free path/time.

On the other hand, the study of regularity, coercivity and hypocoercivity on the
random kinetic equations, which will be reviewed in this article as well, provides
theoretical foundation for not only the stochastic Galerkin methods, but also the
stochastic collocation methods.

The rest of this paper is organized as follows. In the next section, we give a brief
review of some kinetic equations with random inputs and their basic properties. Sec-
tion 3 discusses the theoretical issues such as coercivity, hypocoercivity, regularity,
and long-time behavior for random kinetic equations. We then introduce in Sect. 4
the gPC-sG method. Special emphasis is given to the unique issues arising in kinetic
equations such as property of the collision operator under gPC-sG approximation
and efficient treatment of the nonlinear collision integral. Spectral accuracy of the
gPC-sG method is also established. In Sect. 5, we consider the kinetic equations in
diffusive scalings and construct the stochastic AP scheme following its deterministic
counterpart. We conclude in Sect. 6 and list a few open problems in this field.

2 Preliminaries on Kinetic Equations with Random Inputs

In this section, we review some kinetic equations and their basic properties that
will be used in this article. Due to the large variety of kinetic models, it is
impossible to give a thorough description of all of them. Therefore, we will
concentrate on several prototype models: the linear neutron transport equation, the
semiconductor Boltzmann equation, the Vlasov-Poisson-Fokker-Planck equation,
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and the classical nonlinear Boltzmann equation. Other related kinetic models will
be briefly mentioned at the end of the section.

As mentioned in Sect. 1, for real-world problems, the collision/scattering kernel,
initial/boundary data, source, or other physical parameters in the kinetic equations
may contain uncertainties that propagate into the solution and affect its property sub-
stantially. To characterize these random inputs, we assume certain quantities depend
on a random vector z 2 R

n in a properly defined probability space .˙;A ;P/, whose
event space is ˙ and is equipped with �-algebra A and probability measure P. We
also assume the components of z are mutually independent random variables with
known probability !.z/ W Iz �! R

C, obtained already through some dimension
reduction technique, e.g., Karhunen-Loève (KL) expansion [60], and do not pursue
further the issue of random input parameterization. We treat z as a parameter and
the properties given in this section hold for every given z.

2.1 The Linear Transport Equation with Isotropic Scattering

We first introduce the linear transport equation in one dimensional slab geometry:

"@tf C v@xf D �

"
L f � "�af C "S; t > 0; x 2 Œ0; 1�; v 2 Œ�1; 1�; z 2 Iz;

(1)

L f .t; x; v; z/ D 1

2

Z 1

�1
f .t; x; v0; z/ dv0 � f .t; x; v; z/ ; (2)

with the initial condition

f .0; x; v; z/ D f 0.x; v; z/: (3)

This equation arises in neutron transport, radiative transfer, etc. and describes
particles (for example neutrons) transport in a background media (for example
nuclei). f .t; x; v; z/ is the density distribution of particles at time t, position x, and
v D ˝ � ex D cos � where � is the angle between the moving direction and x-axis.
�.x; z/, �a.x; z/ are total and absorption cross-sections respectively. S.x; z/ is the
source term. For �.x; z/, we assume

�.x; z/ � �min > 0: (4)

" is the dimensionless Knudsen number, the ratio between particle mean free path
and the characteristic length (such as the length of the domain). The equation is
scaled in long time with strong scattering.
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We are interested in problems that contain uncertainties in the collision cross-
section, source, initial or boundary data. Thus in our problem f , � , �a and S all
depend on z.

Denote

Œ�� D 1

2

Z 1

�1
�.v/ dv (5)

as the average of a velocity dependent function �.
Define in the Hilbert space L2

�
Œ�1; 1�I ��1 dv

�
the inner product and norm

hf ; gi� D
Z 1

�1
f .v/g.v/��1 dv; k fk2� D hf ; f i�: (6)

The linear operator L satisfies the following properties [6]:

• ŒL f � D 0, for every f 2 L2.Œ�1; 1�/;
• The null space of f is N .L / D Span f � j � D Œ�� g;
• The range of f is R.L / D N .L /? D f f j Œ f � D 0 gI
• Coercivity: L is non-positive self-adjoint in L2.Œ�1; 1�I��1 dv/, i.e., there is a

positive constant sm such that

hf ;L f i� � �2smk fk2� ; 8 f 2 N .L /?I (7)

• L admits a pseudo-inverse, denoted by L �1, from R.L / to R.L /.

Let � D Œ f �. For each fixed z, the classical diffusion limit theory of linear
transport equation [6, 7, 52] gives that, as " ! 0, � solves the following diffusion
equation:

@t� D @x.�.x; z/@x�/� �a.x; z/�C S.x; z/; (8)

where the diffusion coefficient

�.x; z/ D 1

3
�.x; z/�1 : (9)

When z is random, (8) is a random diffusion equation.

2.2 The Semiconductor Boltzmann Equation

The semiconductor Boltzmann equation describes the electron transport in a
semiconductor device [61]:

"@tf C v � rxf Crx� � rvf D 1

"
Qs. f /; t > 0; x 2 ˝ � R

d; v 2 R
d; z 2 Iz;

(10)
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where f .t; x; v; z/ is again the particle distribution function, �.t; x; z/ is the electric
potential given a priori or produced self-consistently by f through the Poisson
equation:


x� D � � h;

where �.t; x; z/ D R
f dv, and h.x; z/ is the doping profile (some physical

parameters such as the material permittivity are omitted for brevity). The collision
operator Qs. f / is a linear approximation of the electron-phonon interaction:

Qs. f /.v; z/ D
Z

Rd
Œs.v�; v; z/f .v�; z/� s.v; v�; z/f .v; z/� dv�; (11)

where s.v; v�; z/ describes the transition rate from v to v� and may take various
forms depending on the approximation. Here we assume

s.v; v�; z/ D �.v; v�; z/Ms.v�/;

with Ms being the normalized Maxwellian:

Ms.v/ D 1

�d=2
e�jvj2 I

the scattering kernel � being rotationally invariant, symmetric and bounded:

�.v; v�; z/ D �.jvj; jv�j; z/; 0 < �min � �.v; v�; z/ D �.v�; v; z/ � �max:

Define the collision frequency

�.v; z/ D
Z

Rd
�.v; v�; z/Ms.v�/ dv�; (12)

then it is easy to see �0 � �.v; z/ � �1. Therefore, (11) can be written as

Qs. f /.v; z/ D
Z

Rd
�.v; v�; z/ ŒMs.v/f .v�; z/�Ms.v�/f .v; z/� dv�

D Ms.v/
Z

Rd
�.v; v�; z/f .v�; z/ dv� � �.v; z/f .v; z/: (13)

It can be shown that the collision operator (13) satisfies

Z

Rd
Qs. f /.v; z/f .v; z/=Ms.v/ dv

D �1
2

Z

Rd

Z

Rd
�.v; v�; z/Ms.v/Ms.v�/

�
f .v/
Ms.v/

� f .v�/
Ms.v�/

�2
dv�dv � 0:

(14)
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Furthermore, the followings are equivalent

Z

Rd
Qs. f /

f

M
dv D 0” Qs. f / D 0” f D �.t; x; z/Ms.v/: (15)

Then, as "! 0, (10) leads to the following drift-diffusion limit [67]:

@t� D rx � .D .rx�C 2�E// ; (16)

where E D �rx� is the electric field, D is the diffusion coefficient matrix defined
by

D D
Z

Rd

v˝ vMs.v/
�.v; z/

dv:

2.3 The Vlasov-Poisson-Fokker-Planck System

The Vlasov-Poisson-Fokker-Planck (VPFP) system arises in the kinetic modeling of
the Brownian motion of a large system of particles in a surrounding bath [14]. One
application of such system is the electrostatic plasma, in which one considers the
interactions between the electrons and a surrounding bath via the Coulomb force.
In the dimensionless VPFP system with uncertainty, the time evolution of particle
density distribution function f .t; x; v; z/ under the action of an electrical potential
�.t; x; z/ satisfies

(
@tf C 1

ı
v � rxf � 1

"
rx� � rvf D 1

ı"
F f ;

�
x� D � � 1; t > 0; x 2 ˝ � R
d; v 2 R

d; z 2 Iz;
(17)

with initial condition

f .0; x; v; z/ D f 0.x; v; z/: (18)

Here, F is a collision operator describing the Brownian motion of the particles,
which reads,

F f D rv �
�
Mvrv

�
f

Mv

��
; (19)

where Mv is the global equilibrium or global Maxwellian,

Mv D 1

.2�/
d
2

e� jvj
2

2 : (20)
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ı is the reciprocal of the scaled thermal velocity, " represents the scaled thermal
mean free path. There are two different regimes for this system. One is the high
field regime, where ı D 1. As " ! 0, f goes to the local Maxwellian Mv

l D
1

.2�/
d
2

e� jv�rx�j
2

2 , and the VPFP system converges to a hyperbolic limit [2, 31, 65]:

(
@t�Crx � .�rx�/ D 0;
�
x� D � � 1:

(21)

Another regime is the parabolic regime, where ı D ". When " ! 0, f goes to the
global Maxwellian Mv , and the VPFP system converges to a parabolic limit [68]:

(
@t� � rx � .rx� � �rx�/ D 0;
�
x� D � � 1:

(22)

2.4 The Classical Nonlinear Boltzmann Equation

We finally introduce the classical Boltzmann equation that describes the time
evolution of a rarefied gas [11]:

@tf C v � rxf D Qb. f ; f /; t > 0; x 2 ˝ � R
d; v 2 R

d; z 2 Iz; (23)

where Qb. f ; f / is the bilinear collision operator modeling the binary interaction
among particles:

Qb. f ; f /.v; z/ D
Z

Rd

Z

Sd�1

B.v; v�; 	; z/
	
f .v0; z/f .v0�; z/� f .v; z/f .v�; z/



d	 dv�:

(24)

Here .v; v�/ and .v0; v0�/ are the velocity pairs before and after a collision, during
which the momentum and energy are conserved; hence .v0; v0�/ can be represented
in terms of .v; v�/ as

8
<̂

:̂

v0 D vC v�
2
C jv� v�j

2
	;

v0� D
vC v�
2
� jv � v�j

2
	;

with the parameter 	 varying on the unit sphere Sd�1. The collision kernel
B.v; v�; 	; z/ is a non-negative function depending on jv � v�j and cosine of the
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deviation angle � :

B.v; v�; 	; z/ D B.jv� v�j; cos �; z/; cos � D 	 � .v� v�/
jv � v�j :

The specific form of B is determined from the intermolecular potential via the
scattering theory. For numerical purpose, a commonly used model is the variable
hard-sphere (VHS) model introduced by Bird [9]:

B.jv� v�j; cos �; z/ D b�.z/jv� v�j�; �d < � � 1; (25)

where � > 0 corresponds to the hard potentials, and � < 0 to the soft potentials.
The collision operator (24) conserves mass, momentum, and energy:

Z

Rd
Qb. f ; f / dv D

Z

Rd
Qb. f ; f /v dv D

Z

Rd
Qb. f ; f /jvj2 dv D 0: (26)

It satisfies the celebrated Boltzmann’s H-theorem:

�
Z

Rd
Qb. f ; f / ln f dv � 0;

which implies that the entropy is always non-decreasing. Furthermore, the following
statements are equivalent

Z

Rd
Qb. f ; f / ln f dv D 0” Qb. f ; f / D 0” f DM b.v/.�.t;x;z/;u.t;x;z/;T.t;x;z//;

where M b is the local equilibrium/Maxwellian defined by

M b D �

.2�T/d=2
e� .v�u/2

2T ;

with �, u, T being, respectively, the density, bulk velocity, and temperature:

� D
Z

Rd
f dv; u D 1

�

Z

Rd
fv dv; T D 1

d�

Z

Rd
f jv� uj2 dv: (27)

A widely used boundary condition for Boltzmann-like kinetic equations is the
Maxwell boundary condition which is a linear combination of specular reflection
and diffusion (particles are absorbed by the wall and then re-emitted according to a
Maxwellian distribution of the wall). Specifically, for any boundary point x 2 @˝ ,
let n.x/ be the unit normal vector to the boundary, pointed to the domain, then the
in-flow boundary condition is given by

f .t; x; v; z/ D g.t; x; v; z/; .v � uw/ � n > 0;
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with

g.t; x; v; z/ D.1 � ˛/f .t; x; v � 2Œ.v � uw/ � n�n; z/

C ˛

.2�/
d�1
2 T

dC1
2

w

e� jv�uwj
2

2Tw

Z

.v�uw/�n<0
f .t; x; v; z/j.v� uw/ � nj dv;

(28)

where uw D uw.t; x; z/, Tw D Tw.t; x; z/ are the velocity and temperature of the
wall (boundary). The constant ˛ (0 � ˛ � 1), which may depend on z as well, is
the accommodation coefficient with ˛ D 1 corresponding to the purely diffusive
boundary, and ˛ D 0 the purely specular reflective boundary.

2.5 Other Related Kinetic Models: A Glance

In addition to the above introduced equations, we mention a few related kinetic
models. Interested readers may consult the survey papers [11, 20, 74] for details.
First of all, the collision operator does not have to be the aforementioned forms:
when the deviation angle � is small, the Boltzmann collision integral (24) diverges
and one has to consider its grazing collision limit—the Fokker-Planck-Landau
operator [51], which is a diffusive operator relevant in the study of Coulomb
interactions. When the quantum effect is non-negligible (particles behave as Bosons
or Fermions), (11) or (24) needs to be modified to include an extra factor like .1˙f /,
resulting in the so-called quantum or degenerate collision operators [19, 73]. Other
generalizations such as the multi-species model [71] (system consists of more than
one type of particles), inelastic model [75] (during collisions only the mass and
momentum are conserved whereas the energy is dissipative, for example, in granular
materials) are also possible. Secondly, the forcing term on the left hand side is not
necessary as that shown in (10): generally one can couple the kinetic equation with
the Maxwell equation where both electric and magnetic effects are present [72].

3 Coercivity, Hypocoercivity, Regularity and Long Time
Behavior

Coercivity, or more generally hypocoercivity, describing the dissipative nature of
the kinetic collision operators, plays important roles in the study of the solution
of kinetic equations toward the local or global Maxwellian [74, 76]. For uncertain
problems, one can extend such behavior to the random space, thus gives rise to
regularity or long-time estimates in the random space of the solution, allowing one
to quantify the long-time impact of the uncertainties for some statistical quantities
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of interest. In this section, we will review some of recent results in this direction,
in particular, how such analysis can be used to understand the regularity and
propagation of uncertainty for random kinetic equations.

In this section we will restrict our discussion to the one-dimensional random
variable z with finite support Iz (e.g., uniform and beta distributions). Generalization
to multi-dimensional random variables with finite support can be carried out in a
similar fashion.

3.1 The Linear Transport Equation

To study the regularity and long-time behavior in the random space of the linear
transport equation (1)–(3), we first recall the Hilbert space of the random variable

H.IzI ! dz/ D
n
f j Iz ! R

C;
Z

Iz

f 2.z/!.z/ dz < C1
o
; (29)

equipped with the inner product and norm defined as

hf ; gi! D
Z

Iz

fg!.z/ dz; k fk2! D hf ; f i! : (30)

We also define the kth order differential operator with respect to z as

Dkf .t; x; v; z/ WD @kz f .t; x; v; z/; (31)

and the Sobolev norm in H as

k f .t; x; v; �/k2Hk WD
X

˛�k

kD˛f .t; x; v; �/k2! : (32)

Finally, we introduce norms in space and velocity as follows,

k f .t; �; �; �/k2� WD
Z

Q
k f .t; x; v; �/k2! dx dv; t � 0; (33)

k f .t; �; �; �/k2
� k WD

Z

Q
k f .t; x; v; �/k2Hk dx dv; t � 0; (34)

where Q D Œ0; 1�� Œ�1; 1� denotes the domain in the phase space. For simplicity, we
will suppress the dependence of t and just use k fk� , k fk� k in the following proof.

An important property of L is its coercivity, given in (7), based on which the
following results were established in [47].
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Theorem 1 (Uniform Regularity) If for some integer m � 0,

kDk�.z/kL1 � C� ; kDkf0k� � C0; k D 0; : : : ;m; (35)

then the solution f to the linear transport equation (1)–(3), with �a D S D 0 and
periodic boundary condition in x, satisfies,

kDkfk� � C; k D 0; � � � ;m; 8t > 0; (36)

where C� , C0 and C are constants independent of ".
The above theorem shows that, under some smoothness assumption on � , the

regularity of the initial data is preserved in time and the Sobolev norm of the solution
is bounded uniformly in ".

Theorem 2 ("2-Estimate on Œ f � � f ) With all the assumptions in Theorem 1 and
furthermore, � 2 Wk;1 D f� 2 L1.Œ0; 1� � Iz/jDj� 2 L1.Œ0; 1� � Iz/ for all j �
kg. For a given time T > 0, the following regularity result of Œ f � � f holds:

kDk.Œ f � � f /k2� � e��mint=2"2kDk.Œ f0� � f0/k2� C C0"2 (37)

for any t 2 .0;T� and 0 � k � m;, where C0 and C are constants independent of ".
The first term on the right hand side of (37) is the behavior of the initial

layer, which is damped exponentially in t=". After the initial layer, the high order
derivatives in z of the difference between f and its local equilibrium Œ f � is of O."/.

3.2 The Semiconductor Boltzmann Equation

The results in the previous subsection can be extended to the (linear) semiconductor
Boltzmann equation by assuming � D 0 in (10).

Introduce the Hilbert space of the velocity variable L2M WD L2
�
R

dI dv

Ms.v/

�
, with

the corresponding inner product h�; �iL2M and norm jj�jjL2M . First, the collision operator

Qs has the following coercivity property for any f 2 L2M [69],

hQs. f /; f iL2M � ��minjj f � �Msjj2
L2M
; (38)

Introduce the following norms

jj f .t; �; �; �/jj2� WD
Z

˝

Z

Rd

jj f jj2!
M.v/

dv dx;

jj f .t; �; �; �/jj2
� k WD

Z

˝

Z

Rd

jj f jj2
Hk

M.v/
dv dx:
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We assume a periodic boundary condition in space. The following results were
proved in [59].

Theorem 3 (Uniform Regularity) Assume for some integer m � 0,

jjDk� jjL1.v;z/ � C� ; jjDkf0jj� � C0; k D 0; � � � ;m;

then the solution f to (10) satisfies

jjDkf jj� � C; k D 0; � � � ;m; 8t > 0;

where C� , C0 and C are constants independent of ".

Theorem 4 (Estimate on f � �Ms) With all the assumptions in Theorem 3, and in
addition,

Z

Rd

Z

Rd
.Dk�/v2Ms.v/Ms.w/ dwdv � C;

ˇ̌
ˇ̌
Z

Rd
.Dk�/Ms.w/ dw

ˇ̌
ˇ̌ � C; kDk.v � rxf0/k� � C;

for k D 1; � � � ;m, then

jjDk. f � �Ms/jj2� � e��mint=2"2 jjDk. f0 � �0Ms
0/jj2� C C0"2 � C"2; (39)

for any t 2 .0;T� and 0 � k � m, where C0 and C are constants independent of ".
Differing from the isotropic scattering, for the anisotropic collision kernel, to

obtain the decay rate of f � �Ms, an exponential decay estimate on v � rxf is needed
[59].

3.3 General Linear Kinetic Equations

While the previous analysis gave decay estimates on the deviation between f and its
local equilibrium, which can be difficult for more general kinetic equations, the use
of hypocoercivity to estimate the deviation of f from the global equilibrium which
is independent of t and x, helps one to deal with more general and even nonlinear
equations. For general linear transport equation with one conserved quantity:

@tf C 1

"
v � rxf C 1

"
rx� � rvf D 1

ı"
Ql. f /; (40)

where the collision Ql includes

• BGK operator Ql D �.x; z/.˘ f � f /, where ˘ is a projection operator onto the
local equilibrium;
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• Anisotropic scattering operator Ql D R
Œ�.v ! v�; z/f .v�/ � �.v� !

v; z/f .v/� dv�; � > 0.

Two regimes will be considered: the high-field regime (ı D 1) and the parabolic
regime (ı D ").

In [57] the following regularity result was established:

Theorem 5 Let f be the solution to the kinetic equation (40), and assume the initial
data has sufficient regularity with respect to z: k@lzf0k � Hl, then:

(1) k@lzfk � ClŠminfe��ztC.t/l; e.C��z/t2l�1.1CH/lC1g, where C is a constant, C.t/
is an algebraic function of t, and �z > 0 is uniformly bounded below from zero;

(2) f is analytic with uniform convergence radius 1
2.1CH/ ;

(3) Both the exponential convergence in time and convergence radius are uniform
with respect to ".

The proof of the results is based on the hypocoercivity property for deterministic
equation [21], which gives the exponential decay in time, and a careful analysis of
"-independent decay rate.

3.4 The Vlasov-Poisson-Fokker-Planck System

We now discuss the (nonlinear) VPFP system (17)–(18). For simplicity, we only
consider x D x 2 .0; l/ and v D v 2 R in one dimension. Define the L2 space in the
measure of

d� D d�.x; v; z/ D !.z/ dx dv dz: (41)

With this measure, one has the corresponding Hilbert space with the following inner
product and norms:

< f ; g >D
Z

˝

Z

R

Z

Iz

fg d�.x; v; z/; or; < �; j >D
Z

˝

Z

Iz

�j d�.x; z/;

(42)

with norm

k fk2 D< f ; f > :

In order to get the convergence rate of the solution to the global equilibrium,
define,

h D f �Mv

p
Mv

; � D
Z

R

h
p
M dv; u D

Z

R

h v
p
M dv; (43)
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where h is the (microscopic) fluctuation around the equilibrium, � is the (macro-
scopic) density fluctuation, and u is the (macroscopic) velocity fluctuation. Then the
microscopic quantity h satisfies,

"ı@thC ˇv@xh � ı@x�@vhC ı v
2
@x�hC ıv

p
M@x� D L Fh; (44)

@2x� D ��; (45)

while the macroscopic quantities � and u satisfy

ı@t� C @xu D 0; (46)

"ı@tuC "@x� C "
Z
v2
p
M.1 �˘/@xhdv C ı@x�� C uC ı@x� D 0 ; (47)

where L F is the so-called linearized Fokker-Planck operator,

L Fh D 1p
Mv

F
�
Mv CpMvh

�
D 1p

Mv
@v

�
Mv@v

�
hp
Mv

��
: (48)

Introduce projections onto
p
Mv and v

p
Mv ,

˘1h D �
p
Mv; ˘2h D vu

p
Mv; ˘h D ˘1hC˘2h: (49)

Furthermore, we also define the following norms and energies,

• Norms:

– khk2
L2.v/
D R

R
h2 dv;

– k fk2Hm DPm
lD0 k@lzfk2, k fk2

H1.x;z/
D k fk2 C k@xfk2 C k@zfk2,

– khk2v D
R
.0;l/�R�Iz

.@vh/2C .1C jvj2/h2 d�.x; v; z/; khk2Hm
v
DPm

lD0 k@lzhk2v;
• Energy terms:

– Em
h D khk2Hm C k@xhk2Hm�1 ; Em

� D k@x�k2Hm C k@2x�k2Hm�1 ;

• Dissipation terms:

– Dm
h D k.1 �˘/hk2Hm C k.1 �˘/@xhk2Hm�1 , Dm

� v D Em
� v;

– Dm
u D kuk2Hm C k@xuk2Hm�1 ; Dm

� D k�k2Hm C k@x�k2Hm�1 :

To get the regularity of the solution in the Hilbert space, one usually uses energy
estimates. In order to balance the nonlinear term @x�@vf , and get a regularity
independent of the small parameter " (or depending on " in a good way), one
needs the hypocoercivity property from the collision operator. The hypocoercivity
property one uses most commonly is

� hL Fh; hi � Ck.1 �˘1/hk2; (50)
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see [21, 76]. However, this is not enough for the non-linear case. We need the
following stronger hypocoercivity (see [22]):

Proposition 1 ForL F defined in (48),

(a) �hL Fh; hi D �hL.1 �˘/h; .1�˘/hi C kuk2;
(b) �hL F.1�˘/h; .1�˘/hi D k@v.1�˘/hk2C 1

4
kv.1�˘/hk2� 1

2
k.1�˘/hk2;

(c) �hL F.1 �˘/h; .1�˘/hi � k.1 �˘/hk2;
(d) There exists a constant �0 > 0, such that the following hypocoercivity holds,

� hL Fh; hi � ł0k.1 �˘/hk2v C kuk2; (51)

and the largest �0 D 1
7
in one dimension.

The following results were obtained in [43].

Theorem 6 For the high field regime (ı D 1), if

Em
h .0/C

1

"2
Em
� .0/ � C0 ; (52)

then,

Em
h .t/ �

3

�0
e� t

"2

�
Em
h .0/C

1

"2
Em
� .0/

�
; Em

� .t/ �
3

�0
e�t

�
"2Em

h .0/C Em
� .0/

�
I

(53)

For the parabolic regime (ı D "), if

Em
h .0/C

1

"
Em
� .0/ �

C0
"
; (54)

then,

Em
h .t/ �

3

�0
e� t

"

�
Em
h .0/C

1

"
Em
� .0/

�
; Em

� .t/ �
3

�0
e�t

�
"Em

h .0/C Em
� .0/

�
:

(55)

Here C0 D 2�30=.80AC1/
2;B D 48

p
m
�
m
Œm=2�

�
is a constant only depending on m,

Œm=2� is the smallest integer larger or equal to m
2
, and C1 is the Sobolev constant in

one dimension, and m � 1.
These results show that the solution will converge to the global Maxwellian Mv .

Since Mv is independent of z, one sees that the impact of the randomness dies out
exponentially in time, in both asymptotic regimes.
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The above theorem also leads to the following regularity result for the solution
to VPFP system:

Theorem 7 Under the same condition given in Theorem 6, for x 2 Œ0; l�, one has

k f .t/k2Hm
z
� 3
�0

Em.0/C 2l2; (56)

where Em.0/ D Em
h .0/C 1

"2
Em
� .

This Theorem shows that the regularity of the initial data in the random space is
preserved in time. Furthermore, the bound of the Sobolev norm of the solution is
independent of the small parameter ".

3.5 The Classical Nonlinear Boltzmann Equation

In this subsection, we consider the spatially homogeneous classical Boltzmann
equation

@tf D Qb. f ; f / (57)

subject to random initial data and random collision kernel

f .0; v; z/ D f 0.v; z/; B D B.v; v�; 	; z/; z 2 Iz:

We define the norms and operators:

k f .t; �; z/kLpv D
�Z

Rd
j f .t; v; z/jp dv

�1=p
; k f .t; v; �/kL2zD

�Z

Iz

f .t; v; z/2�.z/dz
�1=2

;

kj f .t; �; �/kjk D sup
z2Iz

 
kX

lD0
k@lzf .t; v; z/k2L2v

!1=2
:

Qb.g; h/.v/ D
Z

Rd

Z

Sd�1

B.v; v�; 	; z/
	
g.v0/h.v0�/ � g.v/h.v�/



d	 dv�;

Qb
1.g; h/.v/ D

Z

Rd

Z

Sd�1

@zB.v; v�; 	; z/
	
g.v0/h.v0�/� g.v/h.v�/



d	 dv�:

The regularity, studied in [34], relies on the following estimates of Qb.g; h/
and Qb

1.g; h/, which are standard results in the deterministic case [10, 58] and
straightforward extension to the uncertain case:
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Lemma 1 Assume the collision kernel B depends on z linearly, B and @zB are
locally integrable and bounded in z. If g; h 2 L1v \ L2v, then

kQb.g; h/kL2v ; kQb
1.g; h/kL2v � CBkgkL1vkhkL2v ; (58)

kQb.g; h/kL2v ; kQb
1.g; h/kL2v � CBkgkL2vkhkL2v ; (59)

where the constant CB > 0 depends only on B and @zB.
We state the following theorem proved in [34].

Theorem 8 Assume that B satisfies the assumption in Lemma 1, and supz2Iz k f 0kL1v
� M, kj f 0kjk < 1 for some integer k � 0. Then there exists a constant Ck > 0,
depending only on CB, M, T, and kj f 0kjk such that

kj fkjk � Ck; for any t 2 Œ0;T� : (60)

This result shows that, even for the nonlinear Boltzmann equation, the regularity
of the initial data is preserved in time in the random space.

This result can be easily generalized to the full Boltzmann equation (23) with
periodic or vanishing boundary condition in space, we omit the detail. Linear
dependence of the collision kernel on the random variable can also be relaxed. See
[34] for a general proof.

One should notice that if one considers the Euler regime (by putting an "�1 in
front of Qb, then Ck in (60) will depend on the reciprocal of ", in addition to being a
large k-dependent constant (which is already the case for the deterministic problem
[24]). This estimate breaks down in the Euler limit when "! 0.

4 Generalized Polynomial Chaos Based Stochastic Galerkin
(gPC-sG) Methods for Random Kinetic Equations

In the last two decades, a large variety of numerical methods have been developed
in the field of uncertainty quantification (UQ) [27, 32, 55, 77]. Among these meth-
ods, the most popular ones are Monte-Carlo methods [64], stochastic collocation
methods [4, 5, 78] and stochastic Galerkin methods [3, 5]. The idea of Monte-Carlo
methods is to sample randomly in the random space, which results in halfth order
convergence. Stochastic collocation methods use sample points on a well-designed
grid, and one can evaluate the statistical moments by numerical quadratures.
Stochastic Galerkin methods start from an orthonormal basis in the random space,
and approximate functions by truncated polynomial chaos expansions. By the
Galerkin projection, a deterministic system of the expansion coefficients can be
obtained. While Monte-Carlo methods have advantage in very high dimensional
random space, the other two methods can achieve spectral accuracy if one adopts
the generalized polynomial chaos (gPC) basis [79], which is a great advantage if
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the dimension of the random space is not too high. In this paper we focus on low
dimensional random space, and adopt the stochastic Galerkin (sG) approach.

In the gPC expansion, one approximates the solution of a stochastic problem via
an orthogonal polynomial series [79] by seeking an expansion in the following form:

f .t; x; v; z/ �
MX

jkjD0
fk.t; x; v/˚k.z/ WD fM.t; x; v; z/; (61)

where k D .k1; : : : ; kn/ is a multi-index with jkj D k1 C � � � C kn. f˚k.z/g are from
P
n
M, the set of all n-variate polynomials of degree up to M and satisfy

< ˚k; ˚j >!D
Z

Iz

˚k.z/˚j.z/!.z/ dz D ıkj; 0 � jkj; jjj � M:

Here ıkj is the Kronecker delta function. The orthogonality with respect to !.z/,
the probability density function of z, then defines the orthogonal polynomials. For
example, the Gaussian distribution defines the Hermite polynomials; the uniform
distribution defines the Legendre polynomials, etc. Note that when the random
dimension n > 1, an ordering scheme for multiple index can be used to re-order
the polynomials f˚k.z/; 0 � jkj � Mg into a single index f˚k.z/; 1 � k � NM D
dim.Pn

M/ D
�MCn

M

�g. Typically, the graded lexicographic order is used, see, for
example, Section 5.2 of [77].

Now inserting (61) into a general kinetic equation

8
<

:

@tf C v � rxf Crx� � rvf D Q. f /; t > 0; x 2 ˝; v 2 R
d; z 2 Iz;

f .0; x; v/ D f 0.x; v/; x 2 ˝; v 2 R
d; z 2 Iz;

f .t; x; v/ D g.t; x; v/; t � 0; x 2 @˝; v 2 R
d; z 2 Iz:

(62)

Upon a standard Galerkin projection, one obtains for each 0 � jkj � M,

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@tfk C v � rxfk C
MX

jjjD0
rx�kj � rvfj D Qk. fM/; t > 0; x 2 ˝; v 2 R

d;

fk.0; x; v/ D f 0k .x; v/; x 2 ˝; v 2 R
d;

fk.t; x; v/ D gk.t; x; v/; t � 0; x 2 @˝; v 2 R
d;

(63)

with

Qk. fM/WD
Z

Iz

Q. fM/.t; x; v; z/˚k.z/!.z/ dz; �kjWD
Z

Iz

�.t; x; z/˚k.z/˚j.z/!.z/ dz;

f 0k WD
Z

Iz

f 0.x; v; z/˚k.z/!.z/ dz; gk WD
Z

Iz

g.t; x; v; z/˚k.z/!.z/ dz:
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Here the collision operator Q. fM/ could be either linear or nonlinear depending on
the specific problem. We also assume that the potential �.t; x; z/ is given a priori for
simplicity (the case that it is coupled to a Poisson equation can be treated similarly).

Therefore, one has a system of deterministic equations to solve and the unknowns
are gPC coefficients fk, which are independent of z. Mostly importantly, the resulting
gPC-sG system is just a vector analogue of its deterministic counterpart, thus
allowing straightforward extension of the existing deterministic kinetic solvers (of
course special attention is needed for the collision operator which will be discussed
later). Once the coefficients fk are obtained through some numerical procedure, the
statistical information such as the mean, covariance, standard deviation of the true
solution f can be approximated as

EŒ f � � f0; VarŒ f � �
MX

jkjD1
f 2k ; CovŒ f � �

MX

jij;jjjD1
fifj:

4.1 Property of the Collision Operator Under the gPC-sG
Approximation

Due to the truncated approximation (61), the positivity of f is immediately lost.
Thus some properties such as the H-theorem no longer holds under the gPC-sG
approximation. Yet the conservation of the collision operator, for instance (26), is
still valid (whose proof does not require the positivity of f ). Normally these need to
be analyzed based on the specific collision operator. We give a simple example here
(see [40] for the proof).

Lemma 2 For the semiconductor Boltzmann collision operator (13) with random
scattering kernel � D �.v; v�; z/, if its gPC-sG approximation Qs

k D 0 for every
0 � jkj � M, then it admits a unique solution fk D �kMs.v/, 0 � jkj � M, where
�k WD

R
Rd fk dv.

This lemma is just a vector analogue of the property (15).

4.2 An Efficient Treatment of the Boltzmann Collision
Operator Under the gPC-sG Approximation

As mentioned previously, numerical discretization of the gPC-sG system (63) for
most kinetic equations does not present essential difficulties. In principle, any time
and spatial discretization used for the deterministic, scalar kinetic equations can
be generalized easily to the vectorized form. However, this is not the case for the
collision operator, especially when it is nonlinear. To illustrate the idea, we use the
classical Boltzmann collision operator as an example.
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Under the gPC-sG approximation, the kth-mode of the classical Boltzmann
collision operator (24) is given by

Qb
k.t; x; v/ D

Z

Iz

Qb. fM; fM/.t; x; v; z/˚k.z/!.z/ dz

D
MX

jij;jjjD0
Skij

Z

Rd

Z

Sd�1

jv � v�j�
	
fi.v0/fj.v0�/ � fi.v/fj.v�/



d	dv�;

(64)

with

Skij WD
Z

Iz

b�.z/˚k.z/˚i.z/˚j.z/!.z/ dz; (65)

where we assumed that the collision kernel takes the form (25) with uncertainty in
b�.

Note that the tensor Skij does not depend on the solution fk, so it can be
precomputed and stored for repeated use. But even so, the evaluation of Qb

k still
presents a challenge. A naive, direct computation for each t, x, and k would result in
O.N2MN

d�1
	 N2dv / complexity, where NM D

�MCn
M

�
is the dimension of Pn

M, N	 is the
number of discrete points in each angular direction, and Nv is the number of points
in each velocity dimension. This is, if not impossible, prohibitively expensive.

In [34], we constructed a fast algorithm for evaluating (64). It was shown that
the above direct cost O.N2MN

d�1
	 N2dv / can be reduced to maxfO.RkNd�1

	 Nd
v logNv/;

O.RkNMNd
v /g with Rk � NM by leveraging the singular value decomposition (SVD)

and the fast spectral method for the deterministic collision operator [62]. This is
achieved in two steps.

First, for each fixed k, decompose the symmetric matrix .Skij/NM�NM as (via a
truncated SVD with desired accuracy)

Skij D
RkX

rD1
Uk

irV
k
rj:

Substituting it into (64) and rearranging terms, one gets

Qb
k.v/ D

RkX

rD1

Z

Rd

Z

Sd�1

jv � v�j�
	
gkr .v

0/hkr .v0�/� gkr .v/h
k
r .v�/



d	dv�; (66)

with

gkr .v/ WD
MX

jijD0
Uk

irfi.v/; hkr .v/ WD
MX

jijD0
Vk
rifi.v/:
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Hence one readily reduce the cost from O.N2MN
d�1
	 N2dv / to maxfO.RkNd�1

	 N2dv /;
O.RkNMNd

v /g, where Rk � NM is the numerical rank of matrix .Skij/NM�NM .
Next, note that (66) can be formally written as

Qb
k.v/ D

RkX

rD1
Qb.gkr ; h

k
r /; (67)

andQb is the deterministic collision operator (24) with kernelBDjv�v�j�. In [62], a
fast Fourier-spectral method in velocity variable v was developed for (24) in the case
of 2D Maxwell molecule (� D 0) and 3D hard-sphere molecule (� D 1). Applying
this method to (67) with slight modification, one can further reduce the cost from
maxfO.RkNd�1

	 N2dv /;O.RkNMNd
v /g to maxfO.RkNd�1

	 Nd
v logNv/;O.RkNMNd

v /g, see
appendix of [34] for a detailed description (in practice, typically N	 
 Nv [23, 25]).

The above method has been extended to the Fokker-Planck-Landau collision
operator in [36]. When the random variable is in high dimension, the problem suffers
from the dimension curse. A wavelet based sparse grid method was introduced in
[70], in which the matrix .Skij/NM�NM is very sparse, and the computational cost can
be significantly reduced.

4.3 A Spectral Accuracy Analysis

The regularity results presented previously can be used to establish the spectral
convergence of the gPC-sG method. As in Sect. 3.5, we will restrict to the spatially
homogeneous Boltzmann equation (57).

Using the orthonormal basis f˚k.z/g, the solution f to (57) can be represented as

f .t; v; z/ D
1X

kD0
Ofk.t; v/˚k.z/; where Ofk.t; v/ D

Z

Iz

f .t; v; z/˚k.z/!.z/ dz :

(68)

Let PM be the projection operator defined as

PMf .t; v; z/ D
MX

kD0
Ofk.t; v/˚k.z/:

Define the norms

k f .t; v; �/kHk
z
D
 

kX

lD0
k@lzf .t; v; z/k2L2z

!1=2
;

k f .t; �; �/kL2v;z D
�Z

Iz

Z

Rd
f .t; v; z/2 dv!.z/ dz

�1=2
; (69)

then one has the following projection error.
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Lemma 3 Assume z obeys uniform distribution, i.e., z 2 Iz D Œ�1; 1� and !.z/ D
1=2 (so ˚k.z/ are Legendre polynomials). If kj f 0kjm is bounded, then

k f � PMfkL2v;z �
C

Mm
; (70)

where C is a constant.
Given the gPC approximation of f :

fM.t; v; z/ D
MX

kD0
fk.t; x; v/˚k.z/; (71)

define the error function

eM.t; v; z/ D PMf .t; v; z/ � fM.t; v; z/ WD
MX

kD0
ek.t; v/˚k.z/;

where ek D Ofk � fk. Then we have

Theorem 9 ([34]) Assume the random variable z and initial data f 0 satisfy the
assumption in Lemma 3, and the gPC approximation fM is uniformly bounded in
M, then

k f � fMkL2v;z � C.t/


1

Mm
C keM.0/kL2v;z

�
;

where C is a constant depending on t.

Remark 1 Clearly for spectral accuracy, one needs keM.0/kL2v;z � C=Mm. In

practice, one chooses fk.0; v/ D Ofk.0; v/, for all k D 0; � � � ;M, then eM.0/ D 0.

4.4 Numerical Examples

We now show two typical examples of the kinetic equations subject to random
inputs. The first one is the classical Boltzmann equation with random boundary
condition and the second one is the semiconductor Boltzmann equation with random
force field. For simplicity, we assume the random variable z is one-dimensional and
obeys uniform distribution.

Example 1 Consider the classical Boltzmann equation (23) with the following
boundary condition: the gas is initially in a constant state

f 0.x; v/ D 1

2�T0
e� v2

2T0 ; T0 D 1; x 2 Œ0; 1�:
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At time t D 0, suddenly increase the wall temperature at left boundary by a factor
of 2 with a small random perturbation:

Tw.z/ D 2.T0 C sz/; s D 0:2:

The purely diffusive Maxwell boundary condition is assumed at x D 0. For other
implementation details, see [34].

The deterministic version of this problem has been considered by many authors
[1, 23, 26], where they all observed that with the sudden rise of wall temperature, the
gas close to the wall is heated and accordingly the pressure there rises sharply, which
pushes the gas away from the wall and a shock wave propagates into the domain.
The mean of our solution also exhibits a similar behavior, see Fig. 1. Meanwhile,
the standard deviation of the solution allows us to predict the propagation of
uncertainties quantitatively.

Example 2 Consider the semiconductor Boltzmann equation (10) coupled with a
Poisson equation:

ˇ.z/@xx� D � � h.x; z/; �.0/ D 0; �.1/ D 5; x 2 Œ0; 1�;
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Fig. 1 Example 1. Left column: mean of density, bulk velocity (first component), and temperature.
Right column: standard deviation of density, bulk velocity (first component), and temperature.
Solid line: stochastic collocation with Nz D 20, Nv D 64, N	 D 8, Nx D 200. Other legends are
the 7-th order gPC-sG solutions at different time with Nv D 32, N	 D 4, Nx D 100
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Fig. 2 Example 2. First row: mean and variance of �. Second row: mean of velocity u and potential
�. Time t D 0:05, 
x D 0:01, 
t D 10�5 , " D 0:001. Star: 4-th order gPC-sG solutions. Solid
line: the reference solutions obtained by stochastic collocation

where we assume the scaled Debye length ˇ.z/ and the doping profile h.x; z/ are
subject to uncertainty:

ˇ.z/ D 0:002.1C 0:2z/;

c.x; z/ D
�
1 � .1 � s0/�.0; t D 0/

h
tanh

�x � x1
s

�
� tanh

�x � x2
s

�i�
.1C 0:5z/;

with s D 0:02, s0 D .1 � 0:001/=2, x1 D 0:3, x2 D 0:7. For other implementation
details, see [40].

The 4-th order gPC solutions and the reference solutions obtained by stochastic
collocation are shown in Fig. 2, and they are in good agreement.
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5 Stochastic Asymptotic-Preserving (sAP) Schemes for
Random Kinetic Equations in Diffusive Scalings

Kinetic equations often have scaling parameters (such as the Knudsen number ")
that asymptotically lead kinetic equations to their hydrodynamic or diffusion limit
equations. When " is small, numerically solving the kinetic equations is challenging
since time and spatial discretizations need to resolve ". Asymptotic-preserving (AP)
schemes are those that mimic the asymptotic transitions from kinetic equations
to their hydrodynamic/diffusion limits in the discrete setting [35, 37, 38, 53, 54].
Starting from the mid-1990s, the development of AP schemes for such problems
has generated many interests, see, for example, [29, 30, 39, 44, 45, 49, 56]. The AP
strategy has been proved to be a powerful and robust technique to address multiscale
problems in many kinetic problems. The main advantage of AP schemes is that they
are very efficient even when " is small, since they do not need to resolve the small
scales numerically, and yet can still capture the macroscopic behavior governed
by the limiting macroscopic equations. Indeed, it was proved, in the case of linear
transport with a diffusive scaling, an AP scheme converges uniformly with respect
to the scaling parameter [29]. This is expected to be true for all AP schemes [38],
although specific proofs are needed for specific problems. AP schemes avoid the
difficulty of coupling a microscopic solver with a macroscopic one, as the micro
solver automatically becomes a macro solver as "! 0.

Here we are interested in the scenario when the uncertainty (random inputs)
and small scaling both present in a kinetic equation. Since the sG method makes
the random kinetic equations into deterministic systems which are vector analogue
of the original scalar deterministic kinetic equations, one can naturally utilize the
deterministic AP machinery to solve the sG system to achieve the desired AP goals.
To this aim, the notion of stochastic asymptotic preserving (sAP) was introduced in
[46]. A scheme is sAP if a sG method for the random kinetic equation becomes a sG
approximation for the limiting macroscopic, random (hydrodynamic or diffusion)
equation as " ! 0, with highest gPC degree, mesh size and time step all held
fixed. Such schemes guarantee that even for " ! 0, all numerical parameters,
including the number of gPC modes, can be chosen only for accuracy requirement
and independent of ".

Next we use the linear transport equation (1) as an example to derive a
sAP scheme. It has the merit that rigorous convergence and sAP theory can be
established, see [47].

5.1 A sAP-sG Method for the Linear Transport Equation

We assume the complete orthogonal polynomial basis in the Hilbert space
H.IzI!.z/ dz/ corresponding to the weight !.z/ is f�i.z/; i D 0; 1; � � � ; g, where
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�i.z/ is a polynomial of degree i and satisfies the orthonormal condition:

h�i; �ji! D
Z
�i.z/�j.z/!.z/ dz D ıij:

Here �0.z/ D 1, and ıij is the Kronecker delta function. Since the solution f .t; �; �; �/
is defined in L2

�
Œ0; 1� � Œ�1; 1� � IzI d�/, one has the gPC expansion

f .t; x; v; z/ D
1X

iD0
fi.t; x; v/ �i.z/; Of D � fi

�1
iD0 WD

�Nf ; Of1
�
:

The mean and variance of f can be obtained from the expansion coefficients as

Nf D E. f / D
Z

Iz

f!.z/ dz D f0; var . f / D jOf1j2 :

Denote the sG solution by

fM D
MX

iD0
fi �i; Of M D � fi

�M
iD0 WD

�Nf ; Of M1
�
; (72)

from which one can extract the mean and variance of fM from the expansion
coefficients as

E. fM/ D Nf ; var . fM/ D jOf M1 j2 � var . f / :

Furthermore, we define

�ij D
˝
�i; ��j

˛
!
; ˙ D � �ij

�
MC1;MC1;

�a
ij D

˝
�i; �

a�j
˛
!
; ˙a D � �a

ij

�
MC1;MC1;

for 0 � i; j � M. Let Id be the .M C 1/ � .M C 1/ identity matrix. ˙;˙a are
symmetric positive-definite matrices satisfying [77]

˙ � �min Id :

If one applies the gPC ansatz (72) into the transport equation (1), and conduct
the Galerkin projection, one obtains

"@t Of C v@x Of D �1
"
.I � Œ��/˙ Of � "˙aOf � OS; (73)

where OS is defined similarly as (72).
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We now use the micro-macro decomposition [56]:

Of .t; x; v; z/ D O�.t; x; z/C "Og.t; x; v; z/; (74)

where O� D ŒOf � and ŒOg� D 0, in (73) to get

@t O�C @x Œv Og� D �˙a O�C OS; (75a)

@t OgC 1

"
.I � Œ:�/.v@x Og/ D � 1

"2
˙ Og �˙a Og � 1

"2
v@x O�; (75b)

with initial data

O�.0; x; z/ D O�0.x; z/; Og.0; x; v; z/ D Og0.x; v; z/ :
It is easy to see that system (75) formally has the diffusion limit as "! 0:

@t O� D @x.K@x O�/�˙a O�C OS ; (76)

where

K D 1

3
˙�1 : (77)

This is the sG approximation to the random diffusion equation (8)–(9). Thus the
gPC approximation is sAP in the sense of [46].

One can easily derive the following energy estimate for system (75)

Z 1

0

O�.t; x/2 dxC "2

2

Z 1

0

Z 1

�1
Og.t; x; v/2 dv dx

�
Z 1

0

O�.0; x/2 dxC "2

2

Z 1

0

Z 1

�1
Og.0; x; v/2 dv dx :

Let f be the solution to the linear transport equation (1)–(2). Use the Mth order
projection operator PM , the error arisen from the gPC-sG can be split into two parts
rN and eN ,

f � fM D f � PMf C PMf � fM WD rM C eM; (78)

where rM D f � PMf is the truncation error, and eM D PMf � fM is the projection
error.

Here we summarize the results of [47].

Lemma 4 (Truncation Error) Under all the assumption in Theorems 1 and 2, we
have for t 2 .0;T� and any integer k D 0; : : : ;m,

krMk� � C1
Mk
: (79)
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Moreover,

�� ŒrM� � rM
��
�
� C2

Mk
"; (80)

where C1 and C2 are independent of ".

Lemma 5 (Projection Error) Under all the assumptions in Theorems 1 and 2, we
have for t 2 .0;T� and any integer k D 0; : : : ;m,

keMk� � C.T/

Mk
; (81)

where C.T/ is a constant independent of ".
Combining the above lemmas gives the uniform (in ") convergence theorem:

Theorem 10 If for some integer m � 0,

k�.z/kHk � C� ; kDkf0k� � C0; kDk.@xf0/k� � Cx; k D 0; : : : ;m; (82)

then the error of the sG method is

k f � fMk� � C.T/

Mk
; (83)

where C.T/ is a constant independent of ".
Theorem 10 gives a uniformly in " spectral convergence rate, thus one can choose

M independent of ", a very strong sAP property. Such a result is also obtained
with the anisotropic scattering case, for the linear semiconductor Boltzmann
equation (10) [59].

5.2 A Full Discretization

As pointed out in [46], and also seen in Sect. 4, by using the gPC-sG formulation,
one obtains a vector version of the original deterministic transport equation. This
enables one to use the deterministic AP methodology. In this paper, we adopt the
micro-macro decomposition based AP scheme developed in [56] for the gPC-sG
system (75).

We take a uniform grid xi D ih; i D 0; 1; � � �N, where h D 1=N is the grid size,
and time steps tn D n
t. �ni is the approximation of � at the grid point .xi; tn/ while
gnC1
iC 1

2

is defined at a staggered grid xiC1=2 D .iC 1=2/h, i D 0; � � �N � 1.
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The fully discrete scheme for the gPC system (75) is

O�nC1
i � O�ni

t

C
2

4v
OgnC1
iC 1

2

� OgnC1
i� 1

2


x

3

5 D �˙a
i O�nC1

i C OSi; (84a)

OgnC1
iC 1

2

� Ogn
iC 1

2


t
C 1

"
x
.I � Œ:�/

�
vC.Ogn

iC 1
2

� Ogn
i� 1

2

/C v�.Ogn
iC 3

2

� Ogn
iC 1

2

/
�

(84b)

D � 1
"2
˙i OgnC1

iC 1
2

�˙a OgnC1
iC 1

2

� 1

"2
v
O�niC1 � O�ni

x

:

It has the formal diffusion limit when "! 0 given by

O�nC1
i � O�ni

t

� K
O�niC1 � 2 O�ni C O�ni�1


x2
D �˙a

i O�nC1
i C OSi; (85)

where K D 1
3
˙�1. This is the fully discrete sG scheme for (76). Thus the fully

discrete scheme is sAP.
One important property for an AP scheme is to have a stability condition

independent of ", so one can take 
t	 O."/. The next theorem from [47] answers
this question.

Theorem 11 Assume �a D S D 0. If 
t satisfies the following CFL condition


t � �min

3

x2 C 2"

3

x; (86)

then the sequences O�n and Ogn defined by scheme (84) satisfy the energy estimate


x
N�1X

iD0

�� O�ni
�2 C "2

2

Z 1

�1

�
Ogn
iC 1

2

�2
dv

�
� 
x

N�1X

iD0

�� O�0i
�2 C "2

2

Z 1

�1

�
Og0
iC 1

2

�2
dv

�

for every n, and hence the scheme (84) is stable.
Since the right hand side of (86) has a lower bound when " ! 0 (and the lower

bound being that of a stability condition of the discrete diffusion equation (85)), the
scheme is asymptotically stable and
t remains finite even if "! 0.

A discontinuous Galerkin method based sAP scheme for the same problem was
developed in [17], where uniform stability and rigorous sAP property were also
proven.

5.3 Numerical Examples

We now show one example from [47] to illustrate the sAP properties of the scheme.
For simplicity, we again assume the random variable z is one-dimensional and obeys
uniform distribution.
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Example 3 Consider the linear transport equation (1) with �a D S D 0 and random
coefficient

�.z/ D 2C z;

subject to zero initial condition f .0; x; v; z/ D 0 and boundary condition

f .t; 0; v; z/ D 1; v � 0I f .t; 1; v; z/ D 0; v � 0:

When "! 0, the limiting random diffusion equation is

@t� D 1

3�.z/
@xx� ; (87)

with initial and boundary conditions:

�.0; x; z/ D 0; �.t; 0; z/ D 1; �.t; 1; z/ D 0:

The analytical solution for (87) with the given initial and boundary conditions is

�.t; x; z/ D 1� erf

0

BBBB@
x

s
4

3�.z/
t

1

CCCCA
: (88)

When " is small, we use this as the reference solution, as it is accurate with an error
of O."2/. For other implementation details, see [47].

In Fig. 3, we plot the errors in mean and standard deviation of the gPC numerical
solutions at t D 0:01with different gPC orders M. Three sets of results are included:
solutions with 
x D 0:04 (squares), 
x D 0:02 (circles), 
x D 0:01 (stars). We
always use 
t D 0:0002=3. One observes that the errors become smaller with
finer mesh. One can see that the solutions decay rapidly in M and then saturate
where spatial discretization error dominates. It is then obvious that the errors due
to gPC expansion can be neglected at order M D 4 even for " D 10�8. From this
simple example, we can see that using the properly designed sAP scheme, the time,
spatial, and random domain discretizations can be chosen independently of the small
parameter ".

In Fig. 4, we examine the difference between the solution at t D 0:01 obtained
by the 4th-order gPC method with 
x D 0:01, 
t D 
x2=12 and the limiting
analytical solution (88). As expected, we observe the differences become smaller as
" is smaller in a quadratic fashion, before the numerical errors become dominant.
This, on the other hand, shows the sAP scheme works uniformly for different ".
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Fig. 3 Example 3. Errors of the mean (solid line) and standard deviation (dash line) of � with
respect to the gPC order M at " D 10�8: 
x D 0:04 (squares), 
x D 0:02 (circles), 
x D 0:01

(stars). 
t D 0:0002=3

Fig. 4 Example 3. Differences in the mean (solid line) and standard deviation (dash line) of �
with respect to "2, between the limiting analytical solution (88) and the 4th-order gPC solution
with
x D 0:04 (squares), 
x D 0:02 (circles) and 
x D 0:01 (stars)

6 Conclusion and Open Problems

Using the classical Boltzmann equation, linear Boltzmann equations and Vlasov-
Poisson-Fokker-Planck system as prototype examples, we have surveyed recent
development of uncertainty quantification (UQ) for kinetic equations. The
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uncertainties for such equations typically come from collision/scattering kernels,
boundary data, initial data, forcing terms, among others. We proved the regularity
in the random space and then adopted the generalized polynomial chaos based
stochastic Galerkin (gPC-sG) approach to handle the random inputs which could
yield spectral accuracy, under some regularity assumption on the initial data and
random coefficients. Various theoretical and computational issues with respect to
the collision operator were studied. When the kinetic equation has diffusive scaling
that asymptotically leads to a diffusion equation, we constructed the stochastic
Asymptotic-Preserving (sAP) scheme which allows numerical discretization
including the gPC order to be chosen independently of the small parameter, hence
is highly efficient in diffusive regime.

UQ for kinetic equations is a fairly recent research field, and many interesting
problems remain open. We list a few such problems here:

• Nonlinear kinetic equations. Although sG or sAP schemes have been introduced
for some nonlinear kinetic equations, for example the Boltzmann equation [34],
the Landau equation [36], the radiative heat transfer equations [41], disperse two-
phase kinetic-fluid model [42], rigorous analysis—such as regularity, long-time
and small " behavior, spectral convergence, etc.—has been lacking. In particular,
for the Boltzmann equation, the behavior of the sG scheme in the Euler regime
is not understood.

• High dimensional random space. When the dimension of the random parameter
z is moderate, sparse grids have been introduced [36, 70] using wavelet approx-
imations. Since wavelet basis does not have high order accuracy, it remains to
construct sparse grids with high (or spectral) order of accuracy in the random
space. When the random dimension is much higher, new methods need to be
introduced to reduce the dimension.

• Study of sampling based methods such as collocation and multi-level Monte-
Carlo methods. In practice, sampling based non-intrusive methods are attractive
since they are based on the deterministic, or legacy codes. So far there has
been no analysis done for the stochastic collocation methods for random kinetic
equations. Moreover, multi-level Monte-Carlo method could significantly reduce
the cost of sampling based methods [28]. Its application to kinetic equations with
uncertainty remains to be investigated.

Despite at its infancy, due to the good regularity and asymptotic behavior in the
random space for kinetic equations with uncertain random inputs, the UQ for kinetic
equations is a promising research direction that deserves more development in their
mathematical theory, efficient numerical methods, and applications. Moreover, since
the random parameters in uncertain kinetic equations share some properties of the
velocity variable for a kinetic equation, the ideas from kinetic theory can be very
useful for UQ [18], and vice versa, thus the marriage of the two fields can be very
fruitful.
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Monte-Carlo Finite-Volume Methods
in Uncertainty Quantification
for Hyperbolic Conservation Laws

Siddhartha Mishra and Christoph Schwab

Abstract We consider hyperbolic systems of conservation laws and review devel-
opments in the general area of computational uncertainty quantification (UQ) for
these equations. We focus on non-intrusive sampling methods of the Monte-Carlo
(MC) and Multi-level Monte-Carlo (MLMC) type. The modeling of uncertainty,
within the framework of random fields and random entropy solutions, is discussed.
We also describe (ML)MC finite volume methods and present the underlying
error bounds and complexity estimates. Based on these bounds, and numerical
experiments, we illustrate the gain in efficiency resulting from the use of MLMC
methods in this context. Recent progress in the mathematical UQ frameworks of
measure-valued and statistical solutions is briefly presented, with comprehensive
literature survey.

1 Introduction

Systems of conservation laws are nonlinear partial differential equations of the form

@tUCrx � F.c.x; t/;U/ D 0; (1a)

U.x; 0/ D U0.x/: (1b)

Here, the unknown U D U.x; t/ W Rd � RC ! R
N is the vector of conserved

variables, F D .F1; : : : ;Fd/ W R
N�N ! R

N�d is the flux function and c D
.c1; : : : ; cd/ W R

d � RC ! R
N�d is a spatio-temporal coefficient. We denote

RC WD Œ0;1/. Here, U0 denotes the prescribed initial data.
In bounded domains, the system (1) needs to be supplemented with suitable

boundary conditions.
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The system (1) is termed hyperbolic if the flux Jacobian matrix has real
eigenvalues [11]. Hyperbolic systems of conservation laws arise in a wide variety of
models in physics and engineering and we refer to [11] for a wide range of examples.
Solutions of (1) can develop discontinuities in finite time, even for smooth initial
data (see again [11] and the references there). Therefore, solutions of (1) are weak
solutions in that U 2 .L1loc.R

d � RC//N is required to satisfy the integral identity

Z

RC

Z

Rd

0

@U't C
dX

jD1
Fj.cj;U/'xj

1

A dxdtC
Z

Rd
U0.x/'.x; 0/dx D 0 ; (2)

for all test functions ' 2 C10.RC �Rd/. It is well known that weak solutions are not
necessarily unique [11]. Additional admissibility criteria or entropy conditions are
necessary to obtain uniqueness. In space dimension d > 1, rigorous existence and
uniqueness results for conservation (balance) laws and for generic initial data are
available only for the scalar case, i.e., in the case N D 1.

1.1 Numerical Methods

Numerical methods for the solution of (2) comprise Finite Difference (FD), Finite
Volume (FV) and Discontinuous Galerkin (DG) methods. We refer to the textbooks
[28, 42] and the references there.

Within the popular FV framework [28], the cell averages of the unknown
are updated in time in terms of numerical fluxes across cell interfaces. These
numerical fluxes are often obtained by the (approximate) solutions of Riemann
problems in the direction normal to the cell interface. Higher order spatial accuracy
is obtained by reconstructing cell averages in terms of non-oscillatory piecewise
polynomial functions, within the TVD [42], ENO [33] and WENO [55] procedures
or using Discontinuous Galerkin methods (see, e.g. [7]). Higher order temporal
accuracy is achieved by employing strong stability preserving Runge-Kutta methods
[30]. Space-time DG-discretizations can also be employed for High-order spatio-
temporal accuracy [34].

1.2 Aims and Scope

Any numerical scheme approximating (1) requires the initial data U0, the coeffi-
cients c and the flux function F, as well as suitable boundary conditions, as inputs.
However, in practice, these inputs are obtained by measurements (observations).
Moreover, measurements cannot be precise and always involve some degree
of uncertainty. Input uncertainty for (1) implies, upon uncertainty propagation,
corresponding uncertainty in the solution.
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The modeling, mathematical analysis, numerical approximation and numerical
quantification of solution uncertainty, given experimental data, comprise the disci-
pline of uncertainty quantification (UQ).

One aim in this article is to survey computational methods for the efficient,
computational UQ for nonlinear, hyperbolic conservation laws with random inputs,
and to provide some indications on the numerical analysis of UQ methods for
these equations. Our focus in this article is on non-intrusive computational methods
and their implementation, and on the mathematical analysis of their computational
complexity. In our presentation, we emphasize broad applicability for a large class
of conservation laws, rather than problem-specific, optimal results.

Our motivation for this focus on non-intrusive methods is as follows: first,
non-intrusive methods afford trivial integration of existing, deterministic numerical
solvers of forward problems, and are, therefore, popular in computational UQ in
science and engineering. Second and as mentioned earlier, nonlinear hyperbolic
conservation laws are well known to exhibit solutions of very low regularity in
physical space, due to shock formation even for smooth input data (initial and
boundary data, as well as flux functions). Third, hyperbolicity implies finite speed of
propagationwhich, in the context of UQ for conservation laws with parametric input
uncertainty, implies propagation of singular supports into the domain of parameters
that describe the uncertain inputs of the system. The presence of, in general, moving
singular supports propagating along characteristics in parametric families of weak
solutions precludes high convergence rates of “smooth” computational methods,
such as generalized polynomial chaos, PCA etc. for this class of computational
UQ problems (we mention, however, that even in the absence of viscosity, there
are regularizing effects due to averaging; cases in point are the so-called “transport
collapse” regularizations in averaging lemmas (see, e.g. [43, 44] and the references
there) or due to statistical ensemble averaging of random entropy solutions (see, e.g.
[54])).

We therefore focus in the present survey on sampling methods of Monte-
Carlo (MC for short) and of Multi-Level MC (MLMC for short) type, as well
as on stochastic collocation methods. These methods have in common that their
computational realization is based on existing numerical conservation law solvers,
for example the finite volume (FV) or discontinuous Galerkin (DG) type, without
any modification; this implies, in particular, that existing discretization error bounds
for these methods, e.g. from [8, 15, 39, 42] and the references there, can be used for
an error analysis of non-intrusive computational UQ for hyperbolic conservation
laws.

In contrast, intrusive computational methods will require, as a rule, some form
of reformulation of the conservation law prior to discretization and entail, usually,
significant refactoring resp. redesign of numerical solvers. We refer to, e.g., [24, 59]
and references therein for examples of this type, where the so-called stochastic
Galerkin methodology has been employed and was shown to require significant
modifications of numerical schemes as well as of actual, numerical solver.

Given our focus on non-intrusive UQ methods of the MC and Multi-level MC
type, we structure this survey as follows: in the first part, we will focus on the
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very specific problem of UQ for scalar conservation laws with random initial data.
Here, we describe data and solution uncertainty in terms of random fields and within
the framework of random entropy solutions [46]. This is feasible as the underlying
deterministic solution operator is well-defined and forms a non-expansive (in time)
semi-group on L1.Rd/. We will formulate both the MC and MLMC methods and
combine them with a FV space-time discretization to obtain rigorous convergence
rates for the (ML)MC-FV scheme and demonstrate that the MLMC-FV method is
significantly more efficient (computationally) than the MC-FV method.

Next, we extend the (ML)MC-FV schemes for UQ of systems of conservation
laws with random inputs. Here, the underlying deterministic problem may be
ill-posed within the class of entropy solutions [6]. Consequently, the notion of
random entropy solutions may not be well-defined. Moreover, there is no rigorous
convergence result for the underlying deterministic FV (or any other) discretization
frameworks. Hence, we postulate convergence and obtain the corresponding error
(and complexity) estimates for the (ML)MC-FV methods. Although this combina-
tion is seen to work well in practice, recent results [17, 18, 45] have demonstrated
the limitations of this framework. Instead, novel solution concepts such as those
of entropy measure valued solutions [17, 18] and statistical solutions [19] and
have been proposed and analyzed. We will conclude with a brief review of these
concepts.

2 Preliminaries

2.1 Random Variables in Banach Spaces

Our mathematical formulation of scalar conservation laws with random inputs will
use the concept of random fields i.e., random variables taking values in function
spaces. We recapitulate basic concepts as presented, for example, in [10, Chap1].

Let E be a Banach space, and let .˝;F / be a measurable space, with the set ˝
of elementary events, and with F a corresponding �-algebra. An E-valued random
variable (or random variable taking values in E) is any mapping X W ˝ ! E such
that the set f! 2 ˝: X.!/ 2 Ag D fX 2 Ag 2 F for any A 2 G , i.e. such that X is
a G -measurable mapping from ˝ into E. Here, .E;G / denotes a measurable space
on the Banach space E.

For a Banach space E, we denote the Borel �-field B.E/. Then, .E;B.E// is a
measurable space and random variables taking values in E i.e. maps X W ˝ ! E
are .F ;B.E// measurable. For a separable Banach space E with norm k ı kE and
(topological) dual E�, B.E/ is the smallest �-field of subsets of E containing all
sets

fx 2 E W '.x/ � ˛g; ' 2 E�; ˛ 2 R :
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For a separable Banach space, X W ˝ ! E is an E-valued random variable iff for
every ' 2 E�, ! 7�! '.X.!// 2 R

1 is an R
1-valued random variable: for any

RV X W ˝ ! E on .˝;F / which takes values in E, the mapping ˝ 3 ! 7�!
kX.!/kE 2 R

1 is (strongly) measurable. For more details and proofs, we refer to
[10] or to [60].

The strongly measurable mapping X W ˝ ! E is Bochner integrable if, for any
probability measure P on the measurable space .˝;F /,

Z

˝

kX.!/kE P.d!/ <1 : (3)

A probability measure P on .˝;F / is a �-additive set function from ˝ into Œ0; 1�
such that P.˝/ D 1; the triplet .˝;F ;P/ is called probability space. We shall
always assume, unless explicitly stated, that .˝;F ;P/ is complete.

An E-valued RV is called simple if it can assume only finitely many values.
A simple RV X, taking values in E, has the explicit form (with A denoting the
indicator function of A 2 F )

X D
NX

iD1
xi Ai ; Ai 2 F ; xi 2 E; N <1 : (4)

For simple RVs X taking values in E and for any B 2 F ,

Z

B
X.!/P.d!/ D

Z

B
Xd P WD

NX

iD1
xi P.Ai \ B/ : (5)

For such X.�/ and for all B 2 F ,

���
Z

B
X.!/P.d!/

���
E
�
Z

B
kX.!/kE P.d!/ : (6)

For any random variable X W ˝ ! E which is Bochner integrable, there exists
a sequence fXmgm2N of simple random variables such that, for all ! 2 ˝ , kX.!/ �
Xm.!/kE ! 0 as m ! 1. Therefore, (5) and (6) extend in the usual fashion by
continuity to any E-valued random variable. We denote the Bochner-integral

Z

˝

X.!/P.d!/ D lim
m!1

Z

˝

Xm.!/P.d!/ 2 E (7)

by EŒX� (“expectation” of X).
We introduce for 1 � p � 1 Bochner spaces of p-summable random variables

X taking values in the Banach-space E. The set L1.˝;F ;PIE/ comprises all
(equivalence classes of) integrable, E-valued random variables X. It is a Banach
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space if equipped with the norm

kXkL1.˝IE/ WD E.kXkE/ D
Z

˝

kX.!/kE P.d!/ : (8)

Define Lp.˝;F ;PIE/ for 1 � p < 1 as the set of p-summable random
variables taking values E. With the norm

kXkLp.˝IE/ WD .E.kXkpE//1=p; 1 � p <1 (9)

Lp.˝;F ;PIE/ becomes a Banach space. For p D 1, we denote by
L1.˝;F ;PIE/ the set of all E-valued random variables which are essentially
bounded. This set is a Banach space equipped with the norm

kXkL1.˝IE/ WD ess sup
!2˝
kX.!/kE : (10)

If T <1 and ˝ D Œ0;T�, F D B.Œ0;T�/, we write Lp.Œ0;T�IE/. Note that for
any separable Banach-space E, and for any r � p � 1,

Lr.0;TIE/; C0.Œ0;T�IE/ 2 B.Lp.0;TIE// : (11)

We conclude the section of preliminaries with a criterion for strong measurability.

Lemma 1 ([60, Corollary 1.13]) Let E1 and E2 be Banach spaces, and .˝;F ;P/

a probability space. If f W ˝ ! E1 is strongly Bochner measurable, and if � W
E1 ! E2 is continuous, then the composition � ı f W ˝ ! E2 is strongly Bochner
measurable.

2.2 Monte-Carlo (MC) Sampling in Banach Spaces

Let bYi W ˝ ! F, i D 1; : : : ;M, be independent identically distributed (“iid” for
short) random variables taking values in the Banach space E. We let

EMŒY
.k/� WD 1

M

MX

iD1
bY .k/i ;

be the Monte Carlo estimator for EŒY.k/�. A computable estimate EMŒY.k/� for the
kth moment M k.Y/ of Y will converge in E as M !1 at a rate which depends on
the integrability of Y. Specifically, at the rate of convergence (in terms of M) of

E

h��EŒY.k/� � EMŒY
.k/�
��p
E

i1=p
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to zero as M ! 1 for some 1 � p < 1. If E is a finite dimensional space or
a Hilbert space, and if X 2 L2k.˝IX/, the so-called mean square error (MSE) is
bounded as

E

h��EŒY.k/� � EMŒY
.k/�
��2
E

i
� 1

M
VarŒY.k/� (12)

using the independence of the samplesbYi.
For general Banach spaces E, the convergence rate depends on the type of the

Banach space, which is defined as follows [38, p. 246].

Definition 1 Let 1 � p � 1 and Zj, j 2 N a sequence of Bernoulli-Rademacher
random variables. A Banach space E is said to be of type p if there is a type constant
C > 0 such that for all finite sequences .xj/NjD1 � E, N 2 N,

������

NX

jD1
Zjxj

������
E

� C

0

@
NX

jD1

��xj
��p
E

1

A
1=p

:

By the triangle inequality, every Banach space has type 1. Hilbert spaces have type
2. One can show that the Lp-spaces have type minf p; 2g for 1 � p <1 [38].

One has the following result from [36], [38, Proposition 9.11] and [9, Section 4]
for Banach spaces of type p.

Proposition 1 ([36]) Let E be a Banach space of type p with a type constant Ct.
Then, for every finite sequence .Yj/NjD1 of independent mean zero random variables
in Lp.˝/, one has the bound

E

2

4

������

NX

jD1
Yj

������

p

E

3

5 � .2Ct/
p

NX

jD1
E
	��Yj

��p
E



:

Corollary 1 Let E be a Banach space of type p 2 Œ1; 2� with type constant Ct. Then
for every finite sequence .Yj/NjD1 of iid mean zero random variables with Yj.!/ �
Y.!/ in Lp.˝/,

E

h��EMŒY
.k/�
��p
E

i
D E

2

4

������
1

N

NX

jD1
Y.k/j

������

p

E

3

5 � .2Ct/
pN1�p

E

h��Y.k/
��p
E

i
:

Remark 1 The complexity of MC methods with respect to the type parameter p
of the function space E has been investigated in [12, 13] and the references there.
The relevance of Proposition 1 for MC methods applied to scalar conservation
laws is due to L1.Rd/ being crucial for the error- and well-posedness analysis of
the underlying FV schemes for these problems. The space L1.Rd/ being a Banach
space of type 1, will a priori not allow for convergence rate bounds in MLMC-FV
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discretizations, as was incorrectly stipulated in [46], and also in related work [51]
on combining MLMC discretization with the front-tracking algorithm.

Instead, and as pointed out in [48], lower rates of convergence of FV discretiza-
tions in the stronger norms Lp.Rd/ with p > 1, with the space Lp.Rd/ being of type
minf p; 2g, lead to convergence and error vs. work analysis of (ML)MC-FV methods
for scalar conservation laws, which will be described in detail subsequently.

3 Scalar Conservation Laws with Random Initial Data

We begin with a review of classical results on deterministic scalar conservation laws
(SCLs). We also review random entropy solutions for SCLs with random initial data
from [46], and in particular existence and uniqueness of a random entropy solution
with finite second moments. Let us mention that SCLs with random input data have
received considerable attention in the context of numerical methods for uncertainty
quantification; we only mention [22, 63].

We also mention considerable activity on enlarging the class of admissible
random flux functions, in particular by so-called “rough path” calculus and the
kinetic (re)formulation of the SCL (14)–(15) rather than the Kružkov theory; we
refer to [22, 26, 43, 44] and the references there.

3.1 Deterministic Scalar Hyperbolic Conservation Laws

In-order to present the basic ideas in a simple setting, we consider the Cauchy
problem for scalar conservation laws (SCL) i.e., (1) with N D 1 and with a spatially
homogeneous deterministic flux function f .u/. Then, (1) can be written as

@u

@t
C div . f .u// D 0 for .x; t/ 2 R

d � RC: (13)

with

f .u/ D . f1.u/; : : : ; fd.u// 2 C1.RIRd/ ; div f .u/ D
dX

jD1

@

@xj
fj.u/ ; (14)

We supply the SCL (13) with initial condition

u.x; 0/ D u0.x/; x 2 R
d ; (15)

and an entropy admissibility condition, which we choose as the Kružkov entropy
condition or an equivalent version of it.
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3.2 Entropy Solution

It is well-known that the deterministic Cauchy problem (13), (15) admits, for each
u0 2 L1.Rd/\BV.R/, a unique entropy solution u (see, e.g., [11, 28, 56]). For every
t > 0, u.�; t/ 2 L1.Rd/. We require the (nonlinear) data-to-solution map

S W u0 7�! u.�; t/ D S.t/ u0; t > 0 (16)

in our subsequent development. To state its properties, we introduce some additional
notation: for a Banach-spaceE with norm kıkE, and for 0 < T � C1, we denote by
C.Œ0;T�IE/ the space of bounded and continuous functions from Œ0;T� with values
in E, and by Lp.0;TIE/, 1 � p � C1, the space of strongly Bochner measurable
functions from .0;T/ to E such that for 1 � p < C1

kvkLp.0;TIE/ D
� Z T

0

kv.t/kpE dt
� 1

p
; (17)

respectively, if p D1,

kvkL1.0;TIE/ D ess sup
0�t�T

kv.t/kE (18)

are finite. The following existence result is classical. (see, for example, [35, Thms.
2.13, 2.14, Thm. 4.3] or also [15, 28, 29, 37, 42],

Theorem 1 Assume that in the SCL (14)–(15) holds f 2 C1.RIRd/, and the initial
data u0 satisfies

u0 2 Z WD L1.Rd/ \ L1.Rd/\ BV.Rd/ : (19)

Then there holds:

(1) The SCL (14)–(15) admits a unique entropy solution u 2 L1.Rd � .0;T//.
(2) For every t > 0, the (nonlinear) data-to-solution map S.t/ given by

u.�; t/ D S.t/ u0

satisfies

(i) S.t/ W L1.Rd/! L1.Rd/ is a (non-expansive) Lipschitz map, i.e.,

kS.t/u0 � S.t/v0kL1.Rd/ � ku0 � v0kL1.Rd/ : (20)
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(ii) S.t/ maps .L1 \ BV/.Rd/ into .L1 \ BV/.Rd/ and

TV.S.t/u0/ � TV.u0/ 8u0 2 .L1 \ BV/.Rd/ : (21)

(iii) There hold the L1 and L1 stability bounds

kS.t/u0kL1.Rd/ � ku0kL1.Rd/ I (22)

kS.t/u0kL1.Rd/ � ku0kL1.Rd/ : (23)

(iv) The mapping S.t/ is a uniformly continuous mapping from L1.Rd/ into
C.Œ0;1/IL1.Rd//, and

kS.�/u0kC.Œ0;T�IL1.Rd// D max
0�t�T

kS.t/u0kL1.Rd/ � ku0kL1.Rd/ : (24)

Hyperbolic conservation laws exhibit finite propagation speed of perturbations.
As a consequence, compactly supported initial data gives rise to solutions which
are compactly supported for all time, however, with time-dependent supports. We
present one version of such a “domain of influence” result, for the SCL (14)–(15).

Proposition 2 For the Cauchy problem (14)–(15), assume that f 2 C1.RIRd/ and
that u0 satisfies (19). Assume moreover that the initial data u0 2 Z has compact
support: there exists a finite, positive constant R such that

supp.u0/ � Œ�R;R�d : (25)

Then, for every 0 < t < 1, the unique entropy solution u of the Cauchy
problem (14)–(15) is compactly supported as well, and with NM WD ku0kL1.Rd/ <1,
there holds

supp.u.t// � Œ�.RC tB/;RC tB�d ; (26)

where

B WD k@ufkC0.Œ� NM; NM�IRd/; (27)

denotes a upper bound on the maximal propagation speed.

3.3 Random Entropy Solution

Based on Theorem 1, we will now formulate the SCL (14)–(15) for random initial
data u0.!I �/, with deterministic flux. To this end, we denote .˝;F ;P/ a probability
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space. We assume given a Lipschitz continuous deterministic flux f and random
initial data u0, which satisfies the

Assumption 1 (Assumptions on the Random Input Data)

1. The random initial data u0 is an L1.Rd/-valued random variable on .˝;F ;P/.
It is in particular a strongly Bochner measurable map

u0 W .˝;F / 7�! �
L1.Rd/; B.L1.Rd//

�
: (28)

2. The map u0 is also strongly Bochner measurable from .˝;F ;P/ with values in
the space Z D L1.Rd/ \ L1.Rd/ \ BV.Rd/ (taking values in the separable
Banach space L1.Rd/, the random initial data u0 is in particular separably
valued in Z) introduced in (19), so that

˝ 3 ! 7! u0.!I �/ 2 Z D .L1 \ L1 \ BV/.Rd/ (29)

is strongly Bochner measurable; here, we equip the space Z in (19), (29) with the
norm

kukZ WD kukL1.Rd/ C kukL1.Rd/ C TV.u/ : (30)

3. There holds a uniform bound: for some constant 0 < NM <1,

ku0.!I �/kL1.˝IZ/ � NM <1 ; (31)

4. The random initial data u0 satisfies the bounded support assumption (25) with
probability one, i.e. there exists a constant 0 < R <1 such that

supp.u0.!; �// � Œ�R;R�d with probability 1 : (32)

5. The flux function f is bounded on the set of states: for NM as in (31), item 3, there
holds, with S D Œ� NM; NM�, the bound (27).

Since L1.Rd/ and C1.RdIRd/ are separable, we may impose on the mapping (28)
kth moment conditions

ku0kLk.˝IL1.Rd// <1; k 2 N ; (33)

where the Bochner spaces are defined in Sect. 2. We consider the random scalar
conservation law (RSCL)

(
@tu.!I x; t/C divx. f .!I u.!I x; t/// D 0; t > 0;
u.!I x; 0/ D u0.!I x/;

x 2 R
d : (34)
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Definition 2 ([46]) A random field u W ˝ 3 ! ! u.!I x; t/, i.e., a strongly
measurable mapping from .˝;F / to C.Œ0;T�IL1.Rd//, is a random entropy
solution of the SCL (34) with random initial data u0 satisfying (28)–(33) for some
k � 2 and with a spatially homogeneous flux f .u/ if it satisfies the following
conditions,

(i) Weak solution:
For P-a.e. ! 2 ˝ , u.!I �; �/ satisfies the following integral identity

TZ

0

Z

Rd

�
u.!I x; t/'t.x; t/C

dX

jD1
fj.!I u.!I x; t// @

@xj
'.x; t/

�
dxdt

C
Z

Rd

u0.x; !//'.x; 0/ dx D 0; (35)

for all test functions ' 2 C10.R
d � Œ0;T//.

(ii) Entropy condition: For any pair of (deterministic) entropy 	 and entropy flux
Q.�/ i.e., 	;Qj with j D 1; 2; : : : ; d are functions such that 	 is convex and such
that Q0

j.�/ D 	0f 0
j .�/ for all j, and u satisfies the following inequality

TZ

0

Z

Rd

�
	.u.!I x; t//'t.x; t/C

dX

jD1
Qj.u.!I x; t// @

@xj
'.x; t/

�
dxdt

C
Z

Rd

	.u0.!I x/'.x; 0/ dx � 0; (36)

for all deterministic test functions 0 � ' 2 C10.R
d � Œ0;T//, P-a.s.

We remark that it suffices to assume that (36) holds for all Kružkov entropy
functions 	.u/ D ju � kj, where k is any constant, which we assume throughout
what follows.

Theorem 2 ([28, Chap. 2, Thms. 5.1,5.2]) Consider the SCL (14)–(15) with
spatially homogeneous, bounded flux f 2 C1.RIRd/ with random initial data
u0 W ˝ ! L1.Rd/ satisfying Assumption 1 and the kth moment condition (33)
for some integer k � 2. Then there exists a random entropy solution u W ˝ !
C.Œ0;T�IL1.Rd// which is “pathwise” unique, i.e., for P-a.e. ! 2 ˝ , described in
terms of the deterministic, nonlinear mapping S.t/ from Theorem 1 such that

u.!I �; t/ D S.t/u0.!I �/; t > 0; P-a.e. ! 2 ˝ : (37)
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Moreover, u W ˝ ! C.0;TIL1.Rd// is P-a.s. separably valued and strongly
Bochner measurable.

For every k � 1, for every 0 � t � T <1, and for P-a.e. ! 2 ˝ holds

kukLk.˝IC.0;TIL1.Rd/// � ku0kLk.˝IL1.Rd// ; (38)

kS.t/u0.!I �/k.L1\L1/.Rd/ � ku0.!I �/k.L1\L1/.Rd/ (39)

TV.S.!I t/u0.!I �// � TV.u0.!I �//: (40)

There exists NM <1 such that

ku0kL1.˝IL1.Rd// � NM : (41)

and

sup
0�t�T

ku.!I �; t/kL1.Rd/ � NR P-a:e: ! 2 ˝ : (42)

Theorem 2 ensures the existence of a unique random entropy solution u.!I x; t/ with
finite kth moments for bounded random flux, provided that u0 2 Lk.˝;F ;PIZ/.

The deterministic maximum principle (22) and (41) imply, in addition, that P-
a.e. realization of the random entropy solution u takes values in the state space
S D Œ� NM; NM�, for a:e: x 2 R

d and for all t > 0.

4 Monte Carlo and Multi-Level Monte Carlo Finite Volume
Methods

We present the Multilevel Monte Carlo Finite Volume Method (MLMC-FVM) for
scalar conservation laws. We introduce it in several steps: first, we discuss MC
sampling of random initial data, second, FV discretization of the samples on the
single, fixed triangulation and, finally, its multi-level extension on a hierarchy of
possibly unstructured grids.

4.1 Monte-Carlo Method

The MC method for the SCL with random data u0.!I x/ as in (28)–(31) consists in
sampling in the probability space. We also assume (33), i.e., the existence of kth
moments of u0 for some k 2 N, to be specified. We analyze the error in computable
numerical approximations of kth order statistical moments of u. For k D 1 we
obtain the expected value of the solution random field i.e., M 1.u/ D EŒu�. The
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MC approximation of EŒu� is defined as the usual statistical sample average: given
M independent, identically distributed (“iid” for short) draws of the initial data,bui0,
i D 1; : : : ;M, the MC estimate of EŒu.�I �; t/� at time t > 0 is the sample average

EMŒu.�; t/� WD 1

M

MX

iD1
bui.�; t/ : (43)

Here, bui.�; t/ denotes the M unique entropy solutions of the M Cauchy Prob-
lems (14)–(15) with iid initial databui0. We observe that by

bui.�; t/ DbS.t/bui0 (44)

we have from (21)–(23) for M MC samples and for any 0 < t < 1, for every
1 � p � 1, using the triangle inequality,

kEMŒu.!I �; t/�kLp.Rd/ D
���
1

M

MX

iD1
bS.t/bui0.�I!/

���
Lp.Rd/

� 1

M

MX

iD1

��bui0.!I �/
��
Lp.Rd/

:

(45)

Using the i.i.d. property of the samples fbui0gMiD1 of the random initial data u0 and the
linearity of the expectation EŒ��, we obtain for any 1 � p � 1 from the assumed
strong measurability of u0 in the Banach space Z defined in (29), the bound

E
	kEMŒu.�I �; t/�kLp.Rd/


 � E
	ku0kLp.Rd/


 D ku0kL1.˝ILp.Rd// <1: (46)

As M ! 1, the MC estimates (43) converge in L2.˝IC.Œ0;T�ILp.Rd/// and the
following convergence rate bound holds.

Theorem 3 Assume that in the SCL (14)–(15) the random initial data u0 satisfies
Assumption 1, items 1–5. In particular, u0 is with probability one compactly
supported in space, i.e., there exists a compact domain D � R

d such that
supp.u0.!// � D for almost every ! 2 ˝ .

Assume, moreover, that the random initial data u0 is strongly Bochner measur-
able taking values in the space Z D L1.Rd/ \ L1.Rd/ \ BV.Rd/ (cp. (29), (30)),
and satisfies

u0 2 L2.˝IL1.Rd//\ L2.˝IL1.Rd// : (47)

Assume further that (29), (31) hold.
Then for every 0 < t <1 holds the a priori bound

ku.t/k2L2.˝IL2.Rd//
� ku0kL2.˝IL1.Rd//ku0kL2.˝IL1.Rd// (48)
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The MC estimates EMŒu.�; t/� in (43) converge, as M ! 1, to M 1.u.�; t// D
EŒu.�; t/�. For M 2 N, and for every fixed 0 < t <1, there holds the error bound

kEŒu.�; t/� � EMŒu.�; t/�k2L2.˝IL2.Rd// � M�1 ku0kL2.˝IL1.Rd// ku0kL2.˝IL1.Rd// :

(49)

Under Assumption 1, item 4, we also have for every 0 < t < T

kEŒu.�; t/� � EMŒu.�; t/�k2L2.˝IL1.Rd// � C.T/M�1 ku0kL2.˝IL1.Rd// ku0kL2.˝IL1.Rd// :

(50)

In (50), C.T/ is a time dependent constant that also depends on the bounded domain
Œ�R;R�d on which the random initial data is supported with probability 1.

Proof Under the assumptions of the theorem, by Theorem 2 there exists a unique
random entropy solution u.

For any v 2 L1.Rd/\ L1.Rd/ holds kvk2
L2.Rd/

� kvkL1.Rd/kvkL1.Rd/. For every
fixed 0 < t <1 we have from (22), (23),

R
˝
kS.t/u0k2L2.Rd/

D R
˝
ku.!I t/k2

L2.Rd/
dP.!/

� R
˝
ku0.!/kL1.Rd/ku0.!/kL1.Rd/dP.!/

� ku0kL2.˝IL1.Rd//ku0kL2.˝IL1.Rd// :

Therefore, for every 0 < T <1,

kuk2
L2.˝IC.0;TIL2.Rd///

D R
˝ sup0<t<T ku.!I t/k2L2.Rd/

dP.!/

� sup0<t<T kS.t/u0k2L2.˝IL2.Rd//

� ku0kL2.˝IL1.Rd//ku0kL2.˝IL1.Rd// ;

(51)

which is finite by assumption (47). From this bound follows the MC error bound (49)
by referring to the general MC error bound in Corollary 1, with the observation that
Hilbert spaces have type p D 2, and type constant 2Ct D 1 or directly from (12).

We show the second part: note that the space L1.Rd/ is of type 1. From
Corollary 1 we cannot expect a MC convergence rate bound in L1.Rd/ without extra
assumptions.

Suppose therefore now that Assumption 1, item 4, holds, i.e. all realizations of u0
have compact support in a common set Œ�R;R�d. Then the bound (27) of the flux f
in C1.SIRd/ and the finite propagation property, Proposition 2, imply that for every
0 < t < 1, and P-a.s., that the random entropy solution is likewise compactly
supported: from (26) it follows that there holds, for every t > 0,

supp.u.!I t// � Œ�.RC tB/;RC tB�d with probability 1 : (52)
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Then, for P-a.e. !,

ku.!I t/kL1.Rd/ � C.t;B;R/ku.!I t/kL2.Rd/ :

Squaring both sides and taking expectations, we find

ku.t/k2L2.˝IL1.Rd//
� C.t;B;R/2ku.!I t/k2L2.˝IL2.Rd//

:

Using (48) and reasoning as before, we arrive at (50). ut
Remark 2 The bound (51) can be generalized to k-point correlation functions
M .k/u D E.u.�; t; x1/ : : : u.�; t; xk//, x1; : : : ; xk 2 R

d with k > 1 of the random
entropy solution: from Jensen’s inequality and Fubini’s theorem,

kM .k/u.t/k2
L2.Rkd/

�
Z

˝

Z

x1

: : :

Z

xk

ju.�; x1; t/ : : : u.�; xk; t/j2dxk : : : dx1dP.!/

D
Z

˝

ku.�; t; �/k2kL2.Rd/
dP.!/

D
Z

˝

kS.t/u0.�/k2kL2.Rd/
dP.!/

�
Z

˝

kS.t/u0.�/kkL1.Rd/
kS.t/u0.�/kkL1.Rd/

dP.!/

�
Z

˝

ku0.�/kkL1.Rd/
ku0.�/kkL1.Rd/

dP.!/

� ku0kkL2k.˝IL1.Rd//
ku0kkL2k.˝IL1.Rd//

:

From Theorem 3 we see that L1.Rd/ MC convergence rate bounds can be obtained
despite L1 being a Banach space of type 1; however, as already observed in [13]
and the references there, this is only possible by an intermediate bound of samples
and, for multilevel MC, for error bounds on FV discretizations in Banach spaces of
type 1 < q � 2, as introduced in Definition 1. As observed in [48], Theorem 4.1,
the assumption of compactly supported initial data, satisfying (25), and bounded
flux (27) which imply (26) at positive time t > 0 does afford intermediate L2!L

2
x

bounds which in turn allow MC convergence rate bounds.
The properties (20)–(24) also hold for FV discretizations. Accordingly, we aim

at analogous results for MC FV methods for the random SCL. We next introduce
FV methods; rather than presenting a particular scheme, we state several properties
required in the ensuing error analysis which are satisfied by several popular FV
methods.

4.2 Finite Volume Method (FVM)

So far, the MC method was prescribed under the assumption that “pathwise”
entropy solutionsbui.!I x; t/ D S.!I t/bui0.!I x/ for the Cauchy problem (14)–(15)
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iid initial data samples Oui0 D u0.!iI x/ are available exactly. In practice, numerical
approximations of S.t/Oui0 must be computed and the corresponding discretization
errors taken into account.

To analyze MC-FVM approximations we impose sufficient conditions on the
FVM to afford the Kuznetsov type error bounds for first order FVM for the
deterministic SCL (14)–(15); these will be required for the convergence rate bounds
of the MLMC FVM as considered in [46, 48] and also for parametric collocation
FVM as in [48, Sec.5] in the subsequent chapters. We review the generic first order,
explicit FV schemes considered here, as for example in [15, 37, 42].

Denote the time step by 
t > 0 and a triangulation T of the spatial domain
D � R

d of interest. We assume that T is a set of open, convex polyhedra K � R
d

with plane faces such that standard conditions on shape regularity hold: if K 2 T
denotes a generic volume, we define

�K D �.K/ D maxfdiam.Br/ W Br � Kg (53)

i.e., the maximum inradius in volume K for K 2 T and define, in addition, for a
generic mesh T , the shape regularity constants (where
xK WD diamK)

�.T / WD supf
xK=�.K/ W K 2 T g; T 2M : (54)

The meshwidth of triangulation T is


x.T / D supfdiam.K/ W K 2 T g : (55)

For any volume K 2 T , we define the set N .K/ of neighboring volumes

N .K/ WD fK0 2 T W K0 ¤ K ^ measd�1.K \ K0/ > 0g : (56)

We assume that the triangulation T are regular in the sense that the support size of
the FV “stencil” at any element K 2 T is uniformly bounded i.e.,

�.T / WD sup
K2T

#.N .K// � B <1 (57)

with some bound B which is independent of the particular partition T . The global
CFL constant is defined by

� WD 
t=
x.T / : (58)

for constant time step 
t; we also set tn D n
t. It is determined by a standard
CFL condition (see e.g. [28]) based on the maximum wave speed given by the flux
bound (27), see Proposition 2.



248 S. Mishra and C. Schwab

We discretize (14)–(15) by an explicit, first order FV scheme on T :

vnC1
K D H.fvnK0 W K0 2 N .K/[ Kg/; K 2 T (59)

where H W R.2kC1/d ! R, with k denoting the size of the stencil of the FV scheme, is
continuous and where vnK denotes an approximation to the cell average of u at time
tn D n
t.

In our subsequent developments, we write the FVM in operator form. To this
end, we introduce the operator HT .v/ which maps a sequence v D .vK/K2T into
HT ..vK/K2T /. The time explicit FVM (59) takes the abstract form

vnC1 D HT .v
n/; n D 0; 1; 2; : : : : (60)

For the ensuing convergence analysis, we shall assume and use several properties of
the FV scheme (60); these properties are satisfied by many commonly used FVM of
the form (60), on regular or irregular meshes T in R

d.
To state the assumptions, we introduce further notation: for any initial data

u0.x/ 2 L1.Rd/, we define the FVM approximation at time t D 0, .v0K/K2T by
the cell averages

v0K D
1

jKj
Z

K
u0.x/ dx; where K 2 T : (61)

Interpreting the vector v D .vK/K2T 2 R
#T as cell averages, we associate with v

the piecewise constant function vT .x; t/ defined a.e. in R
d � .0;1/ by

vT .x; t/
ˇ̌
K
WD vnK ; K 2 T ; t 2 Œtn; tnC1/ : (62)

We denote space of all piecewise constant functions on T (i.e., the “simple” or
“step” functions on T ) by S.T /. Given any vT 2 S.T /, we define the (mesh-
dependent) norms:

kvkL1.T / D
X

K2T
jKj jvKj D kvT kL1.Rd/ ; kvkL1.T / D sup

K2T
jvK j D kvT kL1.Rd/ :

As in [46, 48], we consider FVM schemes in the MC-FVM algorithms which satisfy
the following standard assumptions which are analogous to (22)–(24).

Assumption 2 The abstract FV scheme (60) satisfies

1. Stability: 8t � 0

kvT .�; t/kL1.Rd/ � kvT .�; 0/kL1.Rd/ ; (63)

kvT .�; t/kL1.Rd/ � kvT .�; 0/kL1.Rd/ ; (64)

TV.vT .�; t// � TV.vT .�; 0//; (65)
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2. Lipschitz continuity: For any two sequences v D .vK/K2T , w D .wK/K2T we
have

kHT .v/ �HT .w/kL1.T / � kv � wkL1.T / (66)

or, equivalently,

kHT .vT /� HT .wT /kL1.Rd/ � kvT � wT kL1.Rd/ : (67)

3. Convergence: If in the CFL bound (58) the CFL constant � D 
t=
x.T /

is kept constant as 
x.T / ! 0, the approximate solution vT .x; t/ generated
by (59)–(62) converges to the unique entropy solution u of the scalar conserva-
tion laws (14)–(15) at L1.Rd/-rate 0 < s � 1: there exists C > 0 independent of

x such that, as 
x! 0, for every t and for .
t/s � t � T, it holds

ku.�; t/ � vT .�; t/kL1.Rd/ � ku0 � v0T kL1.Rd/ C C t TV.u0/
x
s : (68)

Let us mention that (63)–(65) hold in particular for monotone schemes on Cartesian
meshes, see [28, 37]. The classical error analysis of Kuzsnetsov, see e.g. [15], imply
the convergence rate s D 1=2 in (68). In case of monotone schemes on general FV
meshes, one might lose the bound on the total variation of the approximations, and
the convergence rate, i.e., the rate s in (68) is correspondingly reduced, see [8].

The error bound (68) contains an initial data approximation error ku0�v0T kL1.Rd/.
This error vanishes for step function initial data on T (as, e.g., in the solution of
Riemann problems). More generally, this error can be bounded by 
xs provided
that u0 has appropriate regularity: under Assumption 2, for u0 2 BV.Rd/ and for the
cell-average projection v0T in (61), we obtain

ku0 � v0T kL1.Rd/ � C.�; �/
xTV.u0/ � C.�; �/
xsTV.u0/; (69)

as s � 1 in (68). Here, the constant C.�; �/ depends on the stencil size constant �
and the shape regularity constant � in (57), and (54), respectively.

Explicit FV schemes (59), (60) subject to the CFL stability condition (58) exhibit
a discrete finite domain of dependence result analogous to Proposition 2.

Proposition 3 (Discrete Finite Dependence Domain) Under Assumption 2 and
the assumptions of Proposition 2, in particular under the compact support assump-
tion (25) on the random initial data u0, for the explicit FV scheme (53), (61) there
holds:

1. the projection of the initial data on triangulation T , v0T , defined in (61), (62),
has compact support independently of T : there exists c > 0 such that, for all
0 < h.T / � 1, and with probability 1, holds

supp.v0T / � Œ�.1C c/R; .1C c/R�d : (70)



250 S. Mishra and C. Schwab

2. the discrete solutions satisfy a dependence domain result: with probability 1 and
with the constant c > 1 from (70) for every t > 0 holds

supp.vT .�; t// � Œ�.1C c/.RC tB/; .1C c/.RC tB/�d ; (71)

where B denotes the bound (27) on the flux, and where c > 1 is as in (70).

We refer to [42, Chapter 3.6] for a detailed discussion.
Let us finally mention that the work for the realization of scheme (59)–(62) on

a bounded domain D � R
d scales as (using the CFL stability condition (58), i.e.,


t=
x.T / � � D const:/

WorkT D O
�

t�1 
x�d

� D O
�

x�.dC1/� ; (72)

with the constant implied in O .�/ depending on on the support domain D of the
solution.

4.3 MC-FVM

In the Monte Carlo Finite Volume Methods (MC-FVMs), we combine MC sampling
of the random initial data with the FVM (60). In the convergence analysis of these
schemes, we shall require the application of the FVM (60) to random initial data
u0 2 L1.˝I .L1\L1\BV/.Rd//: given a draw u0.xI!/ of u0, the FVM (60)–(62)
produces a family vT .x; tI!/ of random step functions on T .

Proposition 4 Consider the FVM (60)–(62) for the approximation of the entropy
solution corresponding to a draw u0.!I x/ of the random initial data, satisfying
Assumption 1.

Then, if the FVM satisfies Assumption 2, and provided that u0 2 Lk.˝IZ/, the
random grid functions˝ 3 ! 7! vT .!I x; t/ defined by (58)–(62) satisfy, for every
0 < t <1, 0 < 
x < 1, and every k 2 N [ f1g, the stability bounds

kvT .�I �; t/kLk.˝IL1.Rd// � ku0kLk.˝IL1.Rd// ; (73)

kvT .�I �; t/kLk.˝IL1.Rd// � ku0kLk.˝IL1.Rd// : (74)

We also have error bounds

ku.�I �; t/ � vT .�I �; t/kLk.˝IL1.Rd//

� ��u0.�I �/� v0T .�I �/
��
Lk.˝IL1.Rd//

C Ct
xs kTV.u0.�I �//kLk.˝/ : (75)
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Remark 3

1. In order for kTV.u0.�I �//kLk.˝/ in (75) to be meaningful, a sufficient condition is
that u0 W ˝ ! BV.Rd/ be strongly measurable, which we assumed in (31).

2. The initial data approximation error term
��u0.�I �/� v0T .�I �/

��
Lk.˝IL1.Rd//

in (75)
can be bounded as in (69) provided that the random initial data u0 has sufficient
regularity: if u0 W ˝ ! Z is strongly measurable, and if u0 2 Lk.˝IZ/, then (69)
implies

ku0 � v0T kLk.˝IL1.Rd// � C
x : (76)

This approximation error bound holds without assumption of bounded support on
u0.

4.3.1 Definition of the MC-FVM Scheme

We consider once more the SCL (14)–(15) with random data u0 and with flux
f satisfying (28)–(33). We assume the moment condition u0 2 Lk.˝IZ/ for
sufficiently large k 2 N. The MC-FVM scheme for the MC estimation of the mean
(i.e., the ensemble average) of the random entropy solution is as follows.

Definition 3 (MC-FVM Scheme) Generate a sample of M 2 N i.i.d. realizations
fbui0gMiD1 of initial data, approximated on the triangulation T by cell average
projections (61).

bui.�; t/ D S.t/bui0.�/; i D 1; : : : ;M: (77)

Let HT .�/ be a FVM scheme (59)–(62) satisfying Assumption 2. Then the MC-
FVM approximations of M k.u.�; t// are defined as statistical estimates from the
ensemble

fbviT .�; t/gMiD1 (78)

obtained by (60) from the FV approximationsbviT .�; 0/ of the M i.i.d initial data
samples fbui0.x/gMiD1 by (61): specifically, the first moment of the random solution
u.!I �; t/ at time t > 0, is approximated by the sample average of FV solutions,

M 1.u.�; t// � EMŒvT .�; t/� WD 1

M

MX

iD1
bviT .�; t/: (79)

4.3.2 Convergence Rates for MC-FVM

We next address the convergence of EMŒvT � to the mean E.u/.
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Theorem 4 Assume that all realizations of the random initial data u0 are supported
on one common, bounded domain Œ�R;R�d � R

d for some 0 < R < 1 and
satisfy (28)–(32). Assume further given a FVM (59)–(62) such that (58) holds and
such that Assumption 2 is satisfied; in particular, assume that the deterministic FVM
scheme converges at rate s > 0 in C.Œ0;T�IL1.Rd// for every 0 < T <1, i.e. (68)
holds.

Then, the MC estimate EMŒvT .�; t/� defined in (79) satisfies, for every M, the
error bound

kEŒu.�; t/� � EMŒvT .!I �; t/�kL2.˝IL1.Rd//

� C.D;T/
h
M� 1

2 ku0kL2.˝IL1.Rd//

C ��u0 � v0T
��
L1.˝IL1.Rd//

C t
xs kTV.u0.!I �//kL1.˝/

i
(80)

where C > 0 depends on the final time T and the domain D, in which the initial
data is supported P-a.s. but is independent of M and of 
x as M ! 1 and as
�
x D 
t # 0.
Proof The proof of the above theorem proceeds along the lines of the proof of [46,
Thm. 4.6]. However, we point out that there was an error in the argument of the
proof of [46, Theorem 4.6] due to the incorrect derivation of a direct MC sampling
convergence rate in the type one Banach space L1.Rd/. On the other hand and as
mentioned in the previous section, we may use the local support assumptions on the
initial data, and the finite speed of propagation implied by hyperbolicity, to obtain
FV convergence rate bounds in the type 2 space L2.Rd/ from which follows the
claimed convergence rate.

For fixed t > 0, we have

kEŒu.�; t/� � EMŒvT .�; t/�kL2.˝IL1.Rd// � kEŒu.�; t/� � EMŒu.�; t/�kL2.˝IL1.Rd//

C kEMŒu.�; t/� � EMŒvT .�; t/�kL2.˝IL1.Rd//

DW IC II :

Term I is a MC error which can be bounded by (50).
Term II is essentially a discretization error bound. By the (pathwise) FV error

bounds (68) and by (21)–(24) and Assumption 2 by the triangle inequality that

II D kEMŒu.�; tI!/ � vT .�; t/�kL2.˝IL1.Rd//

� 1

M

MX

jD1
kOuj.�; tI!/ � OvjT .�; tI!/�kL2.˝IL1.Rd//

� ku.�; tI!/ � vT .�; tIw/�kL2.˝IL1.Rd//

� C
˚ku0 � v0T kL2.˝IL1.Rd// C t
xskTV.u0.�;w//kL2.˝/

�
:

ut
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The initial data approximation error ku0� v0T kL2.˝IL1.Rd// can be bounded by
x as
indicated in Remark 3, item 2.

4.3.3 Work Estimates

To calculate the error versus computational work, we estimate the asymptotic
complexity of computing the estimators along the lines of [48]. In doing this, we
assume that the computational domain D � R

d is bounded and suitable boundary
conditions are specified on @D. In this bounded, computational domain D, the work
for one time step (59), (60) is of order O

�

x�d

�
(with O .�/ depending on the size

of the domain and on the size of stencil employed in the FV scheme) we find from
the CFL condition (58) that the total computational work to obtain fvT .�; t/g0<t�T

in D is by (72)

Work.T / D O
�

x�d�1� ; as �
x D 
t # 0: (81)

The work for the computation of the MC estimate EMŒvT .�; t/� is assumed to scale
as

Work.M;T / D O
�
M
x�d�1� ; as 
t D �
x # 0: (82)

The bound (80) allows to infer convergence order estimates in terms of work. To
derive these, we choose M�1=2 � 
xs in (80). Setting the implied constant equal to
one results in M D d
t�2se. Inserting in (82) yields

Work.T / D O
�

t�2s
x�.dC1/� (58)D O

�

x�.dC1/�2s� (83)

so that we obtain from (80)

kEŒu.�; t/� � EMŒvT .�; t/�kL2.˝IL1.Rd// � C
ts � C.Work.T //�s=.dC1C2s/ :
(84)

Regarding the convergence rate in the estimate (84), for the deterministic FV scheme
holds

Work.T / D O
�

t�1 
x�d

� (58)D O
�

x�.dC1/� :

The bound on the FV error, (68), becomes when written in terms of work, equal to

ku.�; t/� vT .�; t/kL1.Rd/

� ��u0 � v0T
��
L1.Rd/

C Ct TV.u0/ .Work.T //�s=.dC1/ : (85)
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Ignoring initial data approximation errors, which are negligible in comparison
to the computational work for the time marching, the exponent �s=.d C 1/ for the
deterministic FVM as compared to �s=.d C 1 C 2s/ for the MC-FVM. For low
order FV schemes (i.e., for small values of the convergence rate s) and in space
dimensions d D 2; 3, we observe a considerably reduced rate of convergence of the
MC-FVM. For high order FV schemes, we recover in (84) the MC rate 1=2 of the
error in terms of work.

4.4 Multilevel MC-FVM

Next, we present and analyze a scheme that allows us to achieve a better accuracy
versus work bound for the random initial data u0, compared to the standard MC-
FVM error bound (84). The Multilevel Monte Carlo Finite Volume (MLMC-FVM)
scheme is based on MC sampling with level dependent sample sizes M` on different
levels ` of resolution of the FVM. Throughout, we assume the explicit FV scheme
satisfies Assumption 2 and the CFL stability condition (58). To define the MLMC-
FVM, we start by reviewing notation as used in [48].

4.4.1 Notation

The MLMC-FVM is defined as a multilevel discretization in x and t with level
dependent numbers M` of samples. To this end, we assume we are given a family
fT`g1̀D0 of nested triangulations of Rd such that the mesh width


x` D 
x.T`/ D supfdiam.K/ W K 2 T`g D O
�
2�`
x0

�
; ` 2 N0; (86)

where K denotes a generic FV cell K 2 T . We also assume the family M D
fT`g1̀D0 of meshes to be shape regular; if K 2 T` denotes a generic cell, we recall,
for a generic mesh T 2 M, the shape regularity constants �.T / defined in (54).
We say that the family M of meshes is �-shape regular, if there exists a constant
�.M/ < 1 such that with �K denoting the diameter of the largest ball inscribed
into K

�.M/ D sup
T 2M

�.T / D sup
T 2M

sup
K2T

diam.K/

�K
: (87)

For a mesh hierarchy M D fT`g1̀D0, we denote


x` WD 
x.T`/; T` 2M; ` D 0; 1; : : : : (88)
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4.4.2 MLMC-FVM

The MLMC FVM consists in estimates of EŒu.�; t/� obtained by replacing u.�; t/
by a FV discretization, on a sequence M of discretizations fT`g`2N0 which we
assume to be nested. We denote in the present section the FV approximation vT
on triangulation T 2 M by v`.�; t/. On T` 2 M, the CFL condition (58) takes the
form


t` � �
x`; ` D 0; 1; 2; : : : ; : (89)

We assume the CFL constant � > 0 to be independent of ` and of the input
realization !; this will allow for deterministic error vs. work bounds; we refer to
[49] for a discussion of error vs. work of MLMC for nonuniform (log-gaussian)
random inputs.

As the FV scheme is CFL stable, we may generate a sequence fv`.�; t/g1̀D0 of
stable FV approximations on triangulation T` for time steps of sizes 
t` which
satisfy the CFL condition (89) with respect to mesh T` 2M. We set in what follows
v�1.�; t/ WD 0. Then, given a target (finest) level L 2 N of spatial resolution, we may
use the linearity of the expectation operator to write, as is customary in MLMC
analysis (see, e.g., [27])

EŒvL.�; t/� D
LX

`D0
E

h
v`.�; t/� v`�1.�; t/

i
: (90)

We next estimate each term in the sum (90) by a Monte-Carlo method with a level-
dependent number of samples, M`, to obtain the MLMC-FVM estimator,

ELŒu.�; t/� D
LX

`D0
EM`

Œv`.�; t/� v`�1.�; t/� : (91)

Here, EMŒvT .�; t/� is the standard MC estimator defined in (79), and v`.�; t/ denotes
the FV solution on T`, computed under the CFL assumption (89), with
t` � �
x`
where 
x` WD 
x.T`/ denotes the meshwidth at mesh level ` (see (55)) and where
the CFL constant � > 0 is independent of `. We emphasize that the form of the
estimator (90) implies that the same draw of the random initial data should be
approximated on two successive meshes in the hierarchy.

4.4.3 Convergence Analysis

The MLMC-FVM mean field error

��EŒu.�; t/� � ELŒu.�; t/���L2.˝IL1.Rd//
(92)
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for 0 < t < 1 and L 2 N was analyzed in [46] for the SCL (13) with random
initial data and deterministic flux. Analogous results for the more general SCL with
random fluxes was shown in [48]. The choice of the sample sizes fM`g1̀D0 is such
that, for every L 2 N, the MLMC error (92) is of order .
xL/s, where s is the order
of convergence in the Kuznetsov type error bound (68). The design of MLMC-FVM
is based on a judicious choice of MC sample numbers fM`g1̀D0 at the discretization
levels `. To derive it, we observe that for each L, the error bound (92) holds with
work bounded by

WorkL D
LX

`D0
M`O

�

x�d�1

`

� D O
� LX

`D0
M`
x

�d�1
`

�
: (93)

The MLMC convergence analysis in [46] used incorrectly a MC convergence
estimate for the space L1.Rd/ which is a Banach space of type 1. This error was
rectified in a recent paper [48], where the following bound on the variance of the
FV details was shown:

k.v` � v`�1/.�; t/k2L2.˝IL1.Rd// � C.D;T/
xs` ku0k2L2.˝IWs;2.Rd// : (94)

Theorem 5 ([48, Thm. 4.7]) Suppose that Assumption 1, items 1–5 hold, and that,
moreover, (28)–(32) and (87)–(89) are valid. Then, for any sequence fM`g1̀D0 of MC
sample numbers at mesh level `, we have for the MLMC-FVM estimate ELŒu.�; t/�
in (91) the error bound

��EŒu.�; t/� � ELŒu.�; t/���
L2.˝IL1.Rd//

� C
�
D;T; ku0kL1.˝IZ/

�
"

xsL C

LX

`D1
M

� 1
2

` 
x
s
2

` CM
� 1
2

0

#
(95)

where C is a constant that depends on the final time T <1, the initial data and on
the bounded domain D which contains, according to (52), the support of u.t/ with
probability one, but is independent of L.

Proof We calculate for any t 2 Œ0;T�
��EŒu.�; t/� � ELŒu.�; t/���

L2.˝IL1.Rd//
� kEŒu.�; t/� � EŒvL.�; t/�kL2.˝IL1.Rd//„ ƒ‚ …

I

C ��EŒvL.�; t/� � ELŒu.�; t/���
L2.˝IL1.Rd//„ ƒ‚ …

II

In complete analogy with the estimation of term II in proof of Theorem 4, the term
I in the above estimate can be readily estimated in terms of the spatio-temporal
discretization error of the FV scheme at the finest mesh resolution with diameter
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xL as follows,

I � C.T; ku0kL1.˝IZ//
xsL:

To estimate term II in the above estimate, we use the discrete finite dependence
domain result, Proposition 3, and the bounded support assumption (32) on the
random initial data and proceed as follows,

II D ��EŒvL.�; t/� � ELŒu.�; t/���
L2.˝IL1.Rd//

D
�����

LX

lD0

	
EŒvl.�; t/� vl�1.�; t/� � EM`

Œv`.�; t/� v`�1.�; t/�


�����
L2.˝IL1.Rd//

�
LX

lD0
kEŒvl.�; t/ � vl�1.�; t/� � EM`

Œv`.�; t/ � v`�1.�; t/�kL2.˝IL1.Rd//

� C.D;T/
LX

lD0
kEŒvl.�; t/ � vl�1.�; t/� � EM`

Œv`.�; t/ � v`�1.�; t/�kL2.˝IL2.Rd//

� C.D;T/

8
<

:
kv0.�; t/kL2.˝IL2.Rd//

M
1
2

0

C
LX

lD1

0

@k.v` � v`�1/.�; t/kL2.˝IL2.Rd//

M
1
2

l

1

A

9
=

;

In the final estimate, we used the compact support assumption (50) and in the final
step, we used the standard Hilbert space MC estimate (12) for the detail v` � v`�1.
Accordingly, we need to bound the variance of the details v` � v`�1 in the (Hilbert)
space L2.Rd/ according to

k.v` � v`�1/.�; t/kL2.˝IL2.Rd// � C.D;T/ ku0kL2.˝IZ/ 
x
s
2

` : (96)

Note that the use of the (Hilbertian) L2.Rd/ norm in the error bound entails the
convergence rate s=2 of the FV detail v` � v`�1, where 0 < s � 1 denotes the
L1.Rd/ convergence rate of the (deterministic) FV approximation. Substituting the
above in the estimate for term I and using the stability of the numerical solution at
the coarsest level of discretization
x0, we arrive at (95). ut

The error bound (95) is then used to select MC sample numbers M` at
discretization level ` to achieve a prescribed tolerance " � 
xsL, with minimal
computational work.

A (standard in MLMC by now) Lagrange multiplier argument (see, e.g., Giles
[27] and references therein) allows to solve the corresponding constrained mini-
mization problems results in sample number choices obtained, for example, in [48]
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for 0 < s < dC 1,

M` � 
x
.sCdC1/

2

`


x2sL

LX

kD0

x

.s�.dC1//
2

k � 
x
.sCdC1/

2

`


x
.3sCdC1/

2

L

(97)

with � denoting equivalence uniform with respect to L and `.
As in [46], we use the sample numbers M` in (97) to obtain the following error

estimate in terms of work

��EŒu.�; t/� � ELŒu.�; t/���
L2.˝IL1.Rd//

� C
�
Work.fM`gL`D0ITL/

��s=.dC1Cs/
: (98)

The complexity estimate (98) shows that the MLMC FVM can be more efficient
than the MC FVM (84), in terms of computational work that needs to be per-
formed for obtaining the same error. However, to achieve a comparable error in
L2.˝IL1.Rd//, the MLMC method is more expensive than a single deterministic
solve.

Remark 4 The above discussion on random entropy solutions and (ML)MC meth-
ods considered the simplest case of a scalar conservation law with random initial
data. These notions and methods were extended to the case where the flux function
in a scalar conservation law is random. In a recent paper [48], where the appropriate
notion of random entropy solutions were defined and shown to exist, provided that
the uncertainty in the flux satisfied certain assumptions, which ensure the random
flux to be Bochner measurable and P-a.s. separably valued in the space of Lipschitz
continuous flux functions. Both the MC-FV and MLMC-FV methods were analyzed
in this context and the MLMC-FV method was shown to satisfy the same error vs
computational work i.e., (98) as in the case of deterministic fluxes and random
data. Consequently, the MLMC method is significantly more efficient than the
corresponding MC-FV method. We refer to [48] for details.

5 Statistical Moments

The error bounds for the MLMC-FVM obtained up to this point addressed the
numerical estimation of the “ensemble average”, or mean-field. Here, we briefly
comment on efficient numerical approximation of 2- and k-point correlation func-
tions of random solutions. When the physical problem is posed in d spatial variables,
spatial k-point correlation functions of random or of statistical solutions can be
represented (under the provision of sufficient regularity) as deterministic functions
of kd variables.

The “natural”, FV approximation of k-point spatial correlations of random
entropy solutions as well as of correlation margins of statistical EMV solutions
introduced in [17, 18], will involve k-fold (algebraic) tensorisation of (finite
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dimensional, by the bounded support assumption (32) on the random initial data,
and by the corresponding bounded support property (71) of FV approximations
implied by the uniform hyperbolicity of the SCL). This can increase computational
complexity due to the low convergence rate 1=2 of MC sampling, and to the so-
called “curse of dimensionality”, which entails complexity O

�

x�kd�1� in k-point

correlation estimation. This can be prohibitive, in particular in space dimension d D
3, even for two-point correlations where k D 2. Two algorithmic strategies are next
presented which allow, to some extent and under appropriate regularity conditions,
to reduce the computational complexity: first, the MC statistical estimation of kth
central statistical moments in the physical dimension D as analyzed recently in [3],
and second, k-fold sparse tensor products of FV solutions in the physical domain
D � R

d as proposed in [46]. They render k-point correlations in Dk � R
kd

numerically accessible in O
�

x�d�1j log
xjk�1� operations.

5.1 Estimation of kth Order Central Statistical Moments

Given a random entropy solution u, a “natural” MC estimator based on M iid
samples for the kth central moment of u.�I x; t/ reads

SkMŒu� WD
1

M

MX

iD1
.ui � EMŒu�/

k ; (99)

assuming availability of exact solution samples ui of the random entropy solution.
The estimator (99) is to be interpreted pointwise w.r. to x 2 D and t 2 Œ0;T�. It is,
however, well-known to be a statistically biased estimator. Unbiased estimators are
known. For example,

QS2MŒu� WD
M

M � 1S
2
MŒu� ; QS3MŒu� WD

M2

.M � 1/.M � 2/S
3
MŒu� (100)

are unbiased estimators of M 2.u/ and M 3.u/. For k � 4, unbiased estimators
QSkMŒu� can be obtained as polynomial expressions of SrMŒu� for r D 1; : : : ;K which
are, however, not unique. We refer to [3, Lemma 3] for details.

A MLMC estimator of M k.u/.x; : : : ; xI t/ is introduced and analyzed in [3,
Theorem 1].

As the corresponding algorithms only access the FV solver through iid samples
of the random initial data and random flux, respectively, they are nonintrusive
and embarrasingly parallel. Operating only in the physical domain D  R

d,
they do not require additional data structures for tensorization of FV solutions.
Central statistical moments M k.u/.x; : : : ; xI t/ can, however, also be numerically
approximated as “diagonals” of statistical k-point correlations M k.u/. We discuss
this next.
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5.2 Estimation of k-Point Spatial Correlations

The work to form a single tensor product over a bounded computational domain
D � R

d (such as, e.g., the support domain of the solution at time t in (26)) grows,
ignoring timestepping, as O.
x�kd/ which may entail a computational effort that
is, for moment orders k � 2, prohibitive. To reduce the complexity of k-point
correlation function estimation, a so-called “sparse grid” or “sparse tensor product”
approach was proposed in [2, 46, 62]. We refer to [31, 53, 58] and the references
there for general presentations of sparse tensor product spaces.

5.2.1 k-Point Correlation Estimation by Sparse Tensorization of FV
Solutions

As is standard in multi-resolution analysis, the cell-average projections P` W
L1.Rd/ ! S`, defined in (88), (104), allow us to introduce spaces of increments
or details in the FV mesh hierarchy M D fT`g1̀D0:

W` WD .P` � P`�1/S`; ` � 0 (101)

where P�1 WD 0 so that W0 D S0. Then, for any L 2 N0, we have the multilevel
decomposition

SL D W0 ˚ : : :˚WL D
LM

`D0
W` : (102)

The k-point correlations .vL.�; t//.k/ of FV solutions at time t > 0 belong to the
(algebraic) tensor product space

.SL/
.k/ WD SL ˝ : : :˝ SL„ ƒ‚ …

k times

D
X

j`j1�L

S`1 ˝ : : :˝ S`k D
M

j`j1�L

kO

jD1
W`j : (103)

In the numerical realization of 2- and k point correlation functions and correlation
margins of measure valued solutions, the computational realization of approxima-
tions in the tensor product space .SL/.k/ is necessary. To formulate it, we introduce
the k-fold algebraic tensor products of the FV cell-average projections by

P.k/L v WD PL ˝ : : :˝ PL„ ƒ‚ …
k times

W L1.Rkd/! .SL/
.k/ : (104)

In the case that NL WD dimSL < 1 (as e.g. when the spaces S` are only defined
on a bounded domain D � R

d such as the “support box” (26) in Proposition 2)
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then dim..SL/.k// D Nk
L which is prohibitive. Sparse Tensor approximations of k-

point correlation functions, .v.�; t//.k/ are “compressed” FV approximations which
involve FV spaces of piecewise constant functions on coarser meshes. They are
defined in terms of the increment space W` in (101) by

b.SL/
.k/ WD

M

j`j1�L

kO

jD1
W`j (105)

where j`j1 WD `1 C : : : C `k and where algebraic tensor products are implied.
Note that a realization of the sparse tensor product space b.SL/.k/ according to
its definition (105) requires construction of explicit bases for W` in (101); on
unstructured, simplicial triangulations T as in our Assumption 2 such bases can
be numerically constructed by agglomeration, see, e.g. [1]. A one-scale FV solution
on the finest mesh TL can be converted to a ML representation in O.NL/ operations
by the so-called pyramid scheme (see, e.g., [5, pp. 225–294]). If the mesh family M
used in the pathwise FV approximation (see Assumption 2) is generated by recursive
dyadic refinements of the initial triangulation T0, when NL D dimSL <1 (as is the
case e.g. on bounded domains D � R

d) it holds (see, e.g. [53, 58])

dimb.SL/.k/ D O.NL.log2 NL/
k�1/ : (106)

Having at hand the sparse tensor product space b.SL/.k/ in (105), we also define the
sparse tensor projection

b.PL/
.k/ WD

M

j`j1�L

kO

jD1
.P`j � P`j�1/ W L1.Rkd/! b.SL/.k/ : (107)

We refer to [31, 58] and the references there, from where we briefly recapitulate
approximation properties of sparse tensor product projections: for any function
U.x1; : : : ; xk/ which belongs to .Ws;1.Rd//.k/ being the space of functions of k
variables x1; : : : ; xd 2 R

d which are, with respect to each variable, in Ws;1.Rd/,
it holds

kU � b.PL/
.k/UkL1.Rkd/ � C.
xL/

sj log
xLjk�1kUk.Ws;1.Rd//.k/ (108)

where C > 0 is independent of
xL (it depends only on k, d and the shape regularity
of the family M of triangulations, but is independent of 
xL).

5.2.2 Sparse MLMC-FVM Estimator

The MLMC sparse FV estimator is based on a sparse tensor product FV approxima-
tion for each MC sample. To define it, we recall that EMŒ�� denotes the MC estimate
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based on M samples): for a given sequence fM`gL`D0 of MC sample numbers at level
` D 0; : : : ;L, the sparse tensor MLMC estimate of M kŒu.�; t/� is, for 0 < t < 1,
defined by

1EL;.k/Œu.�; t/� WD
LX

`D0
EM`

ŒbP`.k/.v`.�; t//.k/ � bP`�1.k/.v`�1.�; t//.k/� : (109)

We observe that (109) is identical to (103) except for the sparse formation of the
k-point correlation functions of the FV solutions corresponding to the initial data
samples Oui0. In bounded domains, this reduces the work for the formation of the k-
point correlation function from Nk

L to O.NL.log2 NL/
k�1/ per sample at mesh level

L. As is well known (see, e.g. [31, 58]) use of sparse rather than full tensor products
essentially preserves (i.e., up to logarithmic w.r. to 
x terms) the order s of FV
convergence of sparse tensor product k point correlation function approximations.

5.2.3 Combination Formula

Sparse tensor products are particularly easy to realize when the FV scheme already
produces FV solutions to SCLs in MRA format. Such schemes are nonstandard,
but available even on unstructured meshes as we admit in Assumption 2, in
a development [25, 50] originating in the seminal work of A. Harten [1, 4].
Often, however, only single-level (one-scale) numerical FV approximations on
triangulations T`, ` D 0; : : : ;L are available. In order to realize the MLMC-FV
estimator (109), for each realization the approximations must be converted to a
MR representation. This can be achieved also on unstructured meshes in linear
complexity by the so-called pyramid scheme (see, e.g., [52] for a definition and
an algorithm).

An alternative approach which obviates MR based numerical methods is the so-
called combination formula, as proposed for this purpose (in a different context)
in [32, Lemma 12, Thm. 13]. For the projector b.PL/

.k/ in (107), the combination
identity

b.PL/
.k/ D

k�1X

iD0
.�1/i

�
k � 1
i

� X

j`j1Dk�i

P.k/` ; where P.k/` WD
kO

jD1
P`j (110)

holds. The combination identity (110) implies that sparse tensor MC-FV approxi-
mations of k-point correlation functions can be numerically built from (pointwise)
products of standard, one-scale FV approximations of the SCL (13)–(15) with iid
samples of the random initial data u0 on mesh levels ` WD .`1; : : : ; `k/. When
inserted into (109), the combination identity (110) provides an explicit realization
of the MLMC-FVM estimator of k-point correlations of random entropy solutions,
based exclusively on (parallel) standard FV solves on all mesh levels.
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5.2.4 Error Bounds and Complexity Analysis

We can now generalize Theorems 4 and 5 to sparse tensor MLMC-FV estimates
for the kth moments of random entropy solutions; it also applies to estimates of
correlation measures of entropy statistical solutions as introduced in [19].

Theorem 6 Assume that the random initial data u0 satisfies Assumption 1, items
1–4 and that the FV scheme satisfies Assumption 2, items 1–3. In particular, assume
that the deterministic FV scheme converges at rate s > 0 according to (68) and that
for u0, the bounded support Assumption 2, item 4, (32) holds.

Assume further that the FV scheme satisfies the CFL condition (58) and that
the random initial data u0 is Bochner-integrable of order 2k in the spaces Z D
.L1 \ L1 \ BV/.Rd/ and in Ws;1.Rd/, i.e.

u0 2 L2k.˝IZ/ \ L2k.˝IWs;1.Rd// : (111)

Then, MLMC-FVM estimator 1EL;.k/Œu.�; t/� defined in (109) satisfies, for every
sequence fM`gL`D0 of MC samples, the error bound

kM ku.�; t/�1EL;.k/Œu.�; tI!/�k2L2.˝IL1.Rkd//

. .1 _ t/
x2sL j log
xLj2.k�1/
n
kTV.u0.�; !//k2kLk.˝IdP/ C ku0.� I!/k2kL1.˝IWs;1.Rd//

o

C
(

LX

`D0


xs`j log
x`jk�1
M`

) n
ku0.� I!/k2kL2k.˝IWs;1.Rd//

C t2kTV.u0.� I!//k2kL2k.˝IdP/

o
:

Here, the constant implied in . depends on the order k of the moment to be
estimated, on the physical space dimension d, and on the support size constant
R > 0 in the bounded support assumption (32).

Then, the total work to compute the MLMC estimates1EL;.k/Œu.� I t/� is bounded by
(with O.�/ depending on the size of D)

1WorkMLMC
L D O

 
LX

`D0
M`
x

�.dC1/
` j log
xjk�1

!
: (112)

Based on Theorem 6, we infer that the choice (97) of numbers M` of MC samples at
level ` should also be used in the MLMC estimation of k-point correlation functions
for k > 1, provided the order s of the underlying deterministic FVM scheme (59)–
(61) satisfies

0 � s < dC 1 : (113)
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In particular, in a bounded domain D � R
d containing the bounded support in (52),

kM ku.�; t/�1EL;.k/Œu.�; tI!/�kL2.˝IL1.Dk// � C.1WorkMLMC
L /�s0=.dC1Cs/ (114)

for any 0 < s0 < s (with constant growing as 0 < s0 ! s � 1). The computational
domain D can, in particular, contain the bounded support domains of the exact and
discrete solutions at time t > 0, as indicated in (71), (52).

6 Monte Carlo and Multi-Level Monte Carlo Methods
for Systems of Conservation Laws

6.1 General Considerations

We consider the general system of conservation laws (1), with random initial
data in (115b) as well as possibly random coefficients and random flux functions
in (115a). A notion of random entropy solutions can be defined for this general
case, analogous to Definition 2 for scalar conservation laws. We refer to [47] for
details. However, there are no well-posedness results for random entropy solutions
for systems as even the underlying deterministic problem may not be well-posed,
particularly in several space dimensions [6]. One approach to developing numerical
approximations in this case is to assume existence of random entropy solutions and
to design efficient methods for numerical approximations of their solutions:

It is fairly straightforward to extend the MCFV scheme, given in Sect. 4.3.1, to
general, nonlinear hyperbolic systems of conservation laws with random inputs.
A convergence rate estimate, analogous to (80) can be proved, provided that one
postulates a convergence rate, analogous to (68), for the underlying spatio-temporal
FV discretization, see [47]. Similarly, the MLMC method, as described in Sect. 4.4
can also be readily extended to this general case and a convergence rate estimate,
similar to (95), once the underlying spatio-temporal discretization converges like
in (68) or at least a estimate of the type (96) holds. Consequently, a complexity
estimate as (98) can be shown under these assumptions, demonstrating that the
MLMC-FV method is more efficient than the MC-FV method.

6.2 Numerical Experiments

We present a few numerical experiments involving systems of conservation laws to
illustrate the robustness of the MLMC method and its comparison with the Monte
Carlo method.
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6.2.1 Uncertain Orszag-Tang Vortex

This test is taken from [47], section 6.2. The system of conservation laws under
consideration are the ideal magnetohydrodynamics (MHD) equations of plasma
physics. We consider the ideal MHD equations on the two-dimensional domain
Œ0; 1�2 with periodic boundary conditions. The random initial data is an uncertain
version of the well-known Orszag-Tang benchmark test problem. We consider a
random initial data with 8 sources of uncertainty, namely in the amplitudes of the
initial density and pressure, phases of the initial sinusoidal velocity fields and the
phases and amplitude of the initial solenoidal magnetic fields. The mean and the
variance of the density, computed at time T D 1:0 with an MLMC-FV method,
with eight levels of resolution, a finest mesh of 40962 and with four samples at
the finest level, with the underlying FV method using a HLLC Riemann solver, a
second-order WENO reconstruction and upwind treatment of the Godunov-Powell
source term [23], are shown in Fig. 1. In this case, one computes a reference solution
with the above configuration and calculates the L2.˝;L1.D// error for both the
mean and variance, with MC and MLMC methods (of both first and second order
spatio-temporal discretizations). The errors for the mean and variance are plotted in
Figs. 2 and 3, respectively. They show that in this example, the MLMC FV method
is at least 50–60 times faster than the single-level MC FV method for the mean
and 10–20 times faster for the variance, to achieve a prescribed error tolerance
in the engineering range of accuracy. Thus, this justifies the complexity estimates,
described here, at least for this example.

Fig. 1 Uncertain Orszag-Tang vortex solution at t D 1:0 using MLMC-FVM (8 sources of
uncertainty). Left: Convergence of the sample mean of random density. Right: Convergence of
the sample variance of the random density. Reproduced from [57]
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Fig. 2 Convergence of sample mean in the uncertain Orszag-Tang vortex simulation (8 sources of
uncertainty). Left: Error vs. Mesh resolution. Right: Error vs. Runtime. Reproduced from [57]

Fig. 3 Convergence of sample variance in the uncertain Orszag-Tang vortex simulation (8 sources
of uncertainty). Left: Error vs. Mesh resolution. Right: Error vs. Runtime. Reproduced from [57]

6.2.2 A Random Kelvin-Helmholtz Problem

This numerical example is taken from a recent paper [18] and the MLMC compu-
tations are presented in [45]. We consider the compressible Euler equations in the
two-dimensional domain Œ0; 1�2 with periodic boundary conditions. The uncertainty
arises due to the initial data being a (very small) random perturbation of the classic
Kelvin-Helmholtz problem, see [18], with 20 sources of uncertainty in the initial
data. The mean and variance of the density, computed with a Monte Carlo method,
on a Cartesian 10242 grid and with 400MC samples are shown in Fig. 4 (Top Row).
The underlying FV scheme is the third-order entropy stable TeCNO scheme of [16].
Surprisingly for this test case, the variance of the solution is at least three orders of
magnitude higher than the variance of the initial data. This amplification of variance
is due to the generation of structures at smaller and smaller scales, when the shear
flow interacts with the contact discontinuity. In this particular case, the MLMC
method provides no gain in computational efficiency over the standard Monte Carlo
method. This is depicted in Fig. 4 (Bottom row, Left), where the L1 difference in
the mean of the density, computed with the MLMC and MC methods, at the same
grid resolution for the finest grid and the same number of samples at the finest grid
resolution of MLMC, with respect to an MC reference solution computed with 1024
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Fig. 4 UQ for the random Kelvin-Helmholtz problem. Top Row: Density at time T D 2 computed
with MC method and TeCNO3 scheme with the algorithm proposed in [18] Left: Convergence of
the sample mean, Right: Convergence of the sample variance. Bottom Row Left: Comparison
between MC and MLMC method with respect to error in mean of the density with respect to a
reference solution (Reproduced from [45]). Bottom Right: Lack of convergence for a single sample
for the density (reproduced from [45])

samples, is compared. The results show that error due to MLMC is comparable to
the error due to the MC calculation, provided that the number of samples at the finest
grid level of the MLMC calculation is the same as the number of MC samples. Thus,
in this case, the coarse levels of the MLMC method do not increase the accuracy of
the computation and are redundant. Given this observation, it is clear that an error
estimate of the form (95) cannot hold for this particular example. In fact, even an
error estimate of the form (68) for the underlying spatio-temporal discretization,
does not hold for this example. We see this from Fig. 4 (Bottom row, Right) where
the difference in L1 between two successive mesh resolutions for a single sample is
shown. This figure show that the error remains constant with respect to resolution
and the underlying FV scheme does not converge for this particular test case. It was
also shown in [45] that even weaker convergence bounds, such as the variance of
the difference between successive resolutions (96), does not hold for this particular
problem, as structures at even smaller scales are generated upon mesh refinement.
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7 Measure-Valued and Statistical Solutions

It is interesting to note that the Monte Carlo and Multi-level Monte Carlo methods
converge for the previous numerical experiment, as shown in Fig. 4 (bottom left),
even though the underlying spatio-temporal discretization may not converge in L1,
as shown in Fig. 4 (bottom right). What exactly do the (ML)MC-FV computations
converge to in this case?

7.1 Measure-Valued Solutions

This question was partially answered in recent papers [17, 18] and references
therein. There, the authors proved that a Monte Carlo based algorithm, together
with an entropy stable scheme such as the TeCNO scheme of [16], converges to an
entropy measure valued solution of the underlying system of conservation laws (1).
Measure valued solutions were first proposed by DiPerna [14] and are in fact Young
measures i.e., space-time parametrized probability measures on the phase space RN

of the system (1). Let D � R
d be the domain and Dt WD D � RC, we define

Young measure from Dt to R
N as a map which associates to each point .x; t/ 2 Dt a

probability measure on R
N . More precisely, a Young measure is a weak* measurable

map � W Dt !P.RN/, meaning that the mapping

.x; t/ 7! ˝
�x;t; g

˛ D
Z

RN

g.�/d�x;t.�/ is Borel measurable for every g 2 C0.R
N/:

The set of all Young measures from Dt into R
N is denoted by Y.Dt;R

N/. Given
this notation for Young measures, one can rewrite the following system of N-
conservation laws,

@tuCrx � f .u/ D 0; .x; t/ 2 Dt; (115a)

u.x; 0/ D Nu.x/; x 2 D: (115b)

in terms of the following measure-valued Cauchy problem,

@th�x;t; �i C rx � h�x;t; f .�/i D 0; .x; t/ 2 Dt;

h�x;0; �i D h�x; �i; x 2 D;
(116)

with possibly Young measure-valued initial data �x. The above system (116) has to
hold in the sense of distributions. Entropy (admissibility) conditions can be imposed
by interpreting an associated entropy inequality in the Young measure sense [14]
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Global existence of measure-valued solutions was shown recently in [17, 18]
and references therein, by proving convergence of the following Monte Carlo based
ensemble averaging algorithm.

Algorithm 1.
Let the initial data for an underlying time-dependent PDE (116) be given as a Young
measure � 2 Y.D;RN/ i.e., a Young measure D 7!P.RN/.

• Step 1: Let u0 W ˝ 7! Lp.Rd/ be a random field on a probability space .˝;˙;P/
with law � , i.e., �.E/ D P.u0.!/ 2 E/.

• Step 2: Evolve the initial random field by applying a suitable numerical scheme,
with solution map S 


t , to the initial data u0.!/ for every ! 2 ˝ , obtaining an
approximate random field u
.!I �; t/ WD S 


t u0.!I �/.
• Step 3: Define the approximate measure-valued solution �
 as the law of u


with respect to P, i.e. for all Borel sets E � R
N ,

�
x;t.E/ D P
�
u.!I x; t/ 2 E

�
:

It was shown in [18, Appendix A.3.1] that �
 are indeed Young measures. The
existence of a random field u0 with a given law � , as required in Step 1, is guaranteed
by proposition A.3 of [18].

The numerical method in Step 2 of Algorithm 1, can be appropriate structure
preserving Finite Volume Methods, such as the arbitrary high-order entropy stable
TeCNO schemes of [16]. The last ingredient in our numerical approximation of
measure-valued solutions is to find, and approximate, the random field u0.!I x/
which appears in Algorithm 1, resulting in the following algorithm.

Algorithm 2.
Let 
 D .
x1; : : : ; 
xd/ denote the grid size parameter and let M 2 N. Let further
�
 2 Y.Rd;RN/ denote the initial Young measure.

• Step 1: For some probability space .˝;˙;P/, draw M i.i.d. random fields
u
;10 ; : : : ; u
;M0 W ˝ � R

d ! R
N , with [the same] law �
.

• Step 2: For each k and for a fixed ! 2 ˝ , use a suitable numerical scheme to
numerically approximate the conservation law (115a) with initial data u
;k0 .!/.
Denote u
;k.!I �; t/ D S 


t u
;k0 .!I �/ as the computed solutions.
• Step 3: Define the approximate measure-valued solution

�
;Mx;t WD
1

M

MX

kD1
ıu
;k.!Ix;t/: (117)

Note that, as in any Monte Carlo method, the approximation �
;M depends on
the choice of ! 2 ˝ , i.e. on the choice of seed in the random number generator.
However, one can prove that the convergence rate of approximation is independent
of this choice, P-almost surely.

The approximate solutions �
;M were proved to converge to an entropy measure-
valued solution of (116) as .
;M/ ! .0;1/ in [18]. This convergence is in
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the weak-� topology on Young measures that amounts to convergence of one-
point statistical quantities of interest such as the mean, variance, point statistics
and probability density functions etc. Thus, the results of Fig. 4 are justified,
mathematically. Furthermore, the computations of [18] also demonstrated that the
measure-valued solution may not be atomic even if the initial data is an atomic
young measure concentrated on a L1 function. Thus, there seems to be no fully
deterministic version of multi-dimensional systems of conservation laws and the
initial value problem for (115), hitherto considered deterministically, should in fact
be considered as a problem in uncertainty quantification (UQ).

Measure-valued solutions for (116) exist for all times ([17] and references
therein) and are able to capture limits of numerical approximation of systems of con-
servation laws (115). They also serve as an UQ framework within which the random
initial data is represented as a Young measure (or point probability distribution).
However, measure-valued solutions are not necessarily unique, particularly when
the initial data is non-atomic. This holds true even for scalar conservation laws, see
for instance example 9.1 in [17], even for the one-dimensional Burgers’ equation.
Thus, measure-valued solutions need to be augmented with additional constraints
in order to recover uniqueness. This is consistent with the observations, reported
in [17, 18], that the computed measure valued solution when realized as a limit
of the MC-FV algorithm, is stable with respect to the choice of numerical method
and with respect to perturbations of the underlying random initial data. We refer to
[40] for numerical approximation of EMV solutions and convergence analysis for a
combined MC FV method for the velocity formulation of the incompressible Euler
equations.

7.2 Statistical Solutions

An attempt to constrain measure-valued solutions in order to recover uniqueness
has been made recently in [19]. In this paper, the authors propose a concept of
statistical solutions of systems of conservation laws as a suitable solution paradigm
as well as computational UQ framework. Statistical solutions of the Navier-Stokes
equations in the sense of Foias and Prodi [20] are time-parametrized families of
probability measures on a Lp function space. We refer to the surveys [21, 41] for
their mathematical theory for the incompressible Navier-Stokes equations.

In these references, statistical solutions are time-dependent probability measures
on divergence free L2 functions that evolve based on either Cylindrical moments
(Liouville equation) or Characteristic functionals (Hopf equation) resulting in a
functional differential equation on an infinite-dimensional space.

Although a viable concept for viscous flows such as the incompressible Navier-
Stokes equations, it is unclear how the statistical solutions in the sense of [21]
can be extended to inviscid problems such as systems of conservation laws (115).
Moreover, probability measures on Lp spaces are non-local and local statistical
quantities such as one-point statistics or multi-point correlations are hard to interpret
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in this setting. Hence, the linkage between statistical solutions (in the sense of [21]
or of the closely related notion of statistical solutions introduced by Vishik and
Fursikov in [61]) and measure-valued solutions is unclear.

These difficult issues were tackled in a recent paper [19] in which the authors
were able to localize probability measures on infinite-dimensional function spaces
by relating them to Young measures as described below.

7.2.1 Correlation Measures

Let U D R
N and Dk WD D � � � � � D denote the k-fold cartesian product of D. In

[19], the authors defined correlation measures as a collection � D .�1; �2; : : : / of
maps �k W Dk !P.Uk/ satisfying the following properties:

(i) Weak-� measurability: Each map �k W Dk !P.Uk/ is weak-�measurable, in
the sense that the map x 7! ˝

�kx ; f
˛

from x 2 Dk into R is Borel measurable for
all f 2 C0.Uk/ and k 2 N. In other words, �k is a Young measure from Dk to
Uk.

(ii) Lp-boundedness: � is Lp-bounded, in the sense that

Z

D

˝
�1x ; j�jp

˛
dx < C1:

(iii) Symmetry: If � is a permutation of f1; : : : ; kg and f 2 C0.Rk/ then˝
�k�.x/; f .�.�//

˛ D ˝
�kx ; f .�/

˛
for a.e. x 2 Dk. Here, we denote �.x/ D

�.x1; x2; : : : ; xk/ D .x�1 ; x�2 ; : : : ; x�k/.
(iv) Consistency: If f 2 C0.Uk/ is of the form f .�1; : : : ; �k/ D g.�1; : : : ; �k�1/

for some g 2 C0.Uk�1/, then
˝
�kx1;:::;xk ; f

˛ D ˝
�k�1x1;:::;xk�1 ; g

˛
for almost every

.x1; : : : ; xk/ 2 Dk.
(v) Diagonal continuity (DC): If Br.x/ WD

˚
y 2 D W jx � yj < r

�
then

lim
r!0

Z

D

1

jBr.0/j
Z

Br.x/

˝
�2x;y; j�1 � �2jp

˛
dy dx D 0: (118)

Each element �k is called a correlation marginal. The consistency property implies
that the kth correlation marginal �k determines all � l; l � k. Thus, the family of
correlation marginals is a hierarchy of young measures. The equivalence between
correlation measures and probability measures on Lp is described by the following
result, which is [19, Thm. 2.7]:

For every correlation measure � defined as above, there exists a unique probabil-
ity measure � 2P.Lp.D// satisfying

Z

Lp
kukpLp d�.u/ <1 (119)
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such that, for all k 2 N and for every g 2 L1.Dk W C0.Uk//: there holds

Z

Dk

Z

Uk
g.x; �/ d�kx.�/dx D

Z

Lp

Z

Dk
g.x; u.x// dxd�.u/ (120)

(where u.x/ denotes the vector .u.x1/; : : : ; u.xk//). Conversely, for every probability
measure � 2 P.Lp.D// with finite Lp bound, there exists a unique correlation
measure � satisfying (120). The relation (120) is also valid for any measurable g W
D � U! R such that jg.x; �/j � Cj�jp for a.e. x 2 D.

Moreover, it was also shown in [19] (Theorem 2.20) that the probability measure
� (equivalently the associated correlation measure �) was uniquely determined in
terms of moments or correlation functions of the correlation measure � given by

mk W Dk ! Uk; mk.x/ WD
Z

Uk
�1 ˝ � � � ˝ �k d�kx.�/; k 2 N: (121)

Here, U˝k refers to the tensor product space U˝ � � � ˝U' R
kN (repeated k times),

and �1˝� � �˝�k is a functional defined by its action on the dual space
�
U˝k

�� D U˝k

through

�
�1 ˝ � � � ˝ �k

� W ��1 ˝ � � � ˝ �k
� D .�1 � �1/ � � � .�k � �k/:

7.2.2 Definition of Statistical Solutions

Once it is established that probability measures on Lp are completely characterized
by moments (correlation functions) of the associated correlation measure, one
can evolve an initial probability measure on Lp.D/ in time by writing evolution
equations for these correlation functions. Following [19], we define statistical
solution of (115a) with an initial data N� 2 P

�
L1
�
R

d;RN
��

as a weak*-measurable
mapping t 7! �t 2 P

�
L1
�
R

d;RN
��

such that the corresponding correlation
measures .�kt /k2N satisfy the following equations in the sense of distributions,

@t
˝
�kt;x; �1 ˝ � � � ˝ �k

˛C
kX

iD1
rxi �

˝
�kt;x; �1 ˝ � � � ˝ f .�i/˝ � � � ˝ �k

˛ D 0; 8k 2 N:

(122)

Note that the first equation in the hierarchy for k D 1 precisely agrees with
the definition of measure-valued solutions (116). Thus, a statistical solution is
a measure-valued solution that includes information about the evolution of all
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possible multi-point correlations in the underlying functions. Hence, statistical solu-
tions are considerably more constrained than measure-valued solutions providing
some hope for uniqueness. Moreover, statistical solutions reduce to standard weak
solutions as long as the initial data and the resulting statistical solution are atomic
i.e., N� D ıNu; �t D ıu.t/ with Nu; u.t/ 2 Lp.D/. On the other hand, a non-atomic initial
probability measure N� can be used to model input uncertainty. Hence, statistical
solutions provide a UQ framework [19].

Currently, well-posedness results for statistical solutions are only available
for scalar conservation laws. In [19], a concept of entropy statistical solutions
was proposed for scalar conservation laws, Definition 4.3 therein. This concept
generalizes Kružkhov entropies to probability measures on L1. Well-posedness of
entropy statistical solutions for scalar conservation laws was shown in [19, Thm.
4.7]. These entropy statistical solutions were also shown to satisfy a non-expansive
property with respect to the 1-Wasserstein metric on probability measures on L1.
The mathematical analysis of the convergence of the MC-FV algorithms 1; 2, in
the sense of [18], for scalar conservation laws is currently in progress. Some
(preliminary) findings are as follows: the same Monte Carlo ensemble averaging
algorithm 2, proposed in [18], also converges, under additional assumptions, to
a statistical solution of the underlying nonlinear, hyperbolic system as will be
shown in a forthcoming paper. Thus, statistical solutions may provide a suitable
mathematical and numerical solution framework for multi-dimensional systems of
conservation laws as well as of computational uncertainty quantification for them.

The algorithms proposed in [17, 18] are Monte Carlo based. A MLMC version
of this algorithm was designed and shown to converge to an entropy measure valued
solution in a recent paper [45]. Moreover, it was shown in [45] that if the variance
of the details, similar to (96), converge at an algebraic rate i.e. if s > 0 in (96), then
the MLMC algorithm for approximating entropy measure-valued solutions will be
more efficient than the Monte Carlo version. However, such an estimate may not
hold as shown in Fig. 4 and the MC and MLMC versions will be comparable (see
Fig. 4 bottom left).

Currently, computation of k-point correlation functions within the framework of
statistical solutions uses a full tensor format. This can be prohibitively expensive for
even moderate k.

The adaptation of the sparse-tensor algorithms from [46] as described in Sect. 4.4
to this framework in order to accelerate the computations of multi-point statistical
quantities of interest is currently under development.
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