
Improving the Efficiency of Formal Verification:
The Case of Clock-Domain Crossings

Guillaume Plassan1,2(B), Hans-Jörg Peter1, Katell Morin-Allory2,
Shaker Sarwary1, and Dominique Borrione2

1 Synopsys Inc., Mountain View, USA
{guillaume.plassan,HansJorg.Peter,shaker.sarwary}@synopsys.com

2 Univ. Grenoble Alpes and CNRS, TIMA Laboratory, 38031 Grenoble, France
{katell.morin-allory,dominique.borrione}@univ-grenoble-alpes.fr

Abstract. We propose a novel semi-automatic methodology to formally
verify clock-domain synchronization protocols in industrial-scale hard-
ware designs. To establish the functional correctness of all clock-domain
crossings (CDCs) in a system-on-chip (SoC), semi-automatic approaches
require non-trivial manual deductive reasoning. In contrast, our approach
produces a small sequence of easy queries to the user. The key idea is
to use counterexample-guided abstraction refinement (CEGAR) as the
algorithmic back-end. The user influences the course of the algorithm
based on information extracted from intermediate abstract counterex-
amples. The workload on the user is small, both in terms of number of
queries and the degree of design insight he is asked to provide. With this
approach, we formally proved the correctness of every CDC in a recent
SoC design from STMicroelectronics comprising over 300,000 registers
and seven million gates.

Keywords: Formal verification · Clock-domain crossing · Synchroniz-
ers · CEGAR · SOC

1 Introduction

Modern large hardware designs typically contain tens of clock domains: differ-
ent modules use different clocks, adapting consumption and performance to the
ongoing tasks, thereby reducing the overall power consumption of the chip.

Moreover, an SoC typically assembles IP blocks coming from various teams,
and each block may be optimized for a specific operating frequency. As a
result, such architectures create many interconnections between the various clock
domains, so-called clock-domain crossings (CDCs). To ensure a correct propa-
gation of data through a CDC, hardware designers have to implement specific
protocols and modules: synchronizers.

With the increasing number of CDCs and synchronization protocols as well
as the huge complexity of modern SoCs, proving the functional correctness of

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 108–129, 2017.
DOI: 10.1007/978-3-319-67104-8 6



Improving the Efficiency of Formal Verification 109

all synchronizers became a major challenge. While incomplete functional veri-
fication methods, such as testing based on simulation, scale for large designs,
they are only able to show the absence of functional errors in a subset of the
full design behavior. For exhaustively and automatically proving the correctness
of functional properties, model checking is the prevalent technique in a modern
VLSI design flow.

But, as model checking a property is not scalable on large hardware designs,
the question arises whether it is really necessary in practice to have a completely
automatic verification procedure. That is, can we somehow take the user into
the loop and abandon the high degree of automation of model checking to make
formal verification scalable?

This paper addresses this question and proposes a new comprehensive
methodology for verifying clock-synchronization properties over industrial-scale
SoC hardware designs.

Unlike other semi-automatic approaches that require non-trivial manual work
in form of deductive reasoning, our approach produces a small sequence of easy
queries that only require local design knowledge from the user. The key idea is
to use the CEGAR principle [8] as the algorithmic back-end, where we let the
user influence the course of the algorithm based on information extracted from
intermediate abstract counterexamples. The workload on the user is deliberately
kept small both in terms of number of queries and the degree of design insight
to be provided.

More precisely, this paper makes the following contributions:

– A general semi-automatic algorithm based on CEGAR-based model checking.
– A heuristic to automatically infer design constraints from abstract counterex-

amples, which are then proposed to the user.
– A comprehensive methodology for verifying CDCs, based on this interaction

between the model checking algorithm and the user.
– The application of this new methodology to conclusively prove the correctness

of all CDCs on a recent industrial SoC design.

The paper continues as follows. Section 2 recalls the CDC challenges and the
various synchronizers. Section 3 presents the state-of-the-art CDC verification
flow and its limitations. We provide a novel automated flow in Sect. 4, and the
results obtained with it in Sect. 5. We finally compare our approach with the
related works before concluding the paper.

2 Clock-Domain Crossing Issues

A CDC typically manifests itself as a digital signal path between two sequen-
tial elements receiving clocks from out-of-phase domains (Fig. 1). Even if those
clocks have the same frequency, any difference between their phases introduces
a latency between their rising edges. This non-predictable behavior is precisely
the challenge of designing CDCs.



110 G. Plassan et al.

DATA_IN DATA_OUT

Fig. 1. A simple CDC

Multiple problems arise from CDCs [25], and designers need to implement
specific structures to avoid any issue [13]. Consequently, the CDC verifica-
tion tool must check that all the potential problems have been addressed and
corrected.

2.1 Metastability and Multi-flops

The definition of clock domains directly implies that when data changes in the
source domain of a CDC, the destination register can capture it at any moment:
compliance with the setup and hold time requirements is not guaranteed. Hence,
because of a small delay between the rising edges of the two clocks, the data is
captured just when it changes, and a metastable value may be propagated (as
shown in Fig. 2).

Fig. 2. Metastability behavior

The metastability phenomenon has been identified a few decades ago [7]: if
a metastable value is propagated through combinational logic, it can lead to a
so-called dead system. And it would be very difficult to find the source of this
issue after fabrication, as post-production testers do not understand non-binary
values.

A first solution would be to introduce a latency in the destination domain,
in order to wait for a stabilization of the value. This timing can be estimated



Improving the Efficiency of Formal Verification 111

by considering the clock frequencies and the production technology, as is com-
monly performed in the Mean Time Between Failure computation [12]. A single
dedicated register could then, if properly sized, output a stable data. However,
such synchronizing registers would result in a significant overhead on the cir-
cuit size. Another technique [16,20] involves embedding a monitor in the design
which detects and corrects metastable values. However, the overhead would also
be significant.

The most common solution is to add latency by implementing cascaded regis-
ters [14] (see Fig. 3). While this multi-flop structure guarantees within a certain
probability that the propagated value is stable, there is no way of telling if it is a
‘0’ or a ‘1’. Indeed, the data being captured during a change, the multi-flop may
output the old or the new value during one cycle; then, at the next destination
cycle, the new value is propagated. The drawback of this structure is thus a
delay in the data propagation.

2.2 Coherency with Gray-Encoding or Enable Control

When synchronizing buses, there can be coherency issues: if some bits of a bus
have separate multi-flop synchronizers (see Fig. 3), it cannot be guaranteed that
all these synchronizers require a strictly identical latency to output a stable
value. When capturing a toggling signal, some multi-flops may settle to the old
value and some to the new one. The resulting bus value may then become tem-
porarily incoherent. If multiple synchronized bits converge on a gate, a transient
inconsistent value may even be generated.

DATA_CDC[0]
D QD QD Q

DATA_OUT[0]

DATA_CDC[1]
D QD QD Q

DATA_OUT[1]

DATA_XOR

Fig. 3. Bus synchronization

For instance, in Fig. 4, two bits of DATA CDC are toggling at the same
cycle. After being synchronized by separate multi-flops, the DATA OUT bus
value is not consistent anymore. If both bits are converging on an exclusive OR
gate, a glitch can be observed. However, we can add some encoding so that
only one bit can change at a time [10] (Gray-encoding in the case of a counter,
or mutual exclusion in some other cases). Even if the multi-flops stabilize this
toggling signal with different latencies, the bus output value will either be correct
regarding the previous or the next cycle. Thus, no false value is propagated. This
can create some data loss, but avoids incoherency.



112 G. Plassan et al.

Fig. 4. Bus incoherency behavior

DATA_IN DATA_OUT

Fig. 5. Enable-based synchronization (Color figure online)

An alternative solution is using a control signal connected to the enable
pin of the destination registers (Fig. 5). This CTRL signal is set to ‘1’ only
after DATA IN stabilizes. Hence, no metastability can be propagated in the
destination domain, and there is no need for further resynchronization [10]. Of
course, this ‘stable’ information comes from the source clock domain, so this
control signal must be resynchronized in the destination domain (here with a
multi-flop). Note that different synchronization schemes are derived from this
structure. The control signal is here connected to the enable pin of the flop (the
selection of a recirculation mux), but it could also be connected to a clock-gate
enable, or even an AND gate on the data path.

2.3 Data Loss and Handshake

The enable-based synchronizer structure only propagates stable data. However,
if the source register keeps sending data, the destination might wait for their
stability and lose some packets. The source should then wait for the data to be
captured before sending a new one. This can be done with a handshake protocol
using request/acknowledge signals, as shown on Fig. 6. (In Figs. 5, 6 and 7, clock



Improving the Efficiency of Formal Verification 113

D QDATA_IN

ACK

REQ
D QD Q

Q D Q D

D Q

Q D

D Q

E E

EN

DATA_OUT

Fig. 6. Handshake synchronization (Color figure online)

domains are shown in blue or red, data is in green and control logic is in yellow
or purple.)

2.4 Performance with FIFO

The delay introduced by handshake protocols may not be acceptable for a high-
rate interface. Putting a FIFO in the CDC allows the source to write and the
destination to read at their own frequencies, and increases the data propagation
efficiency. In a FIFO, all the previous schemes are implemented (see Fig. 7). The
main controls of the CDC are the write and read pointers, which need to be
Gray-encoded before being synchronized by a multi-flop. In order to activate

DATA_IN

RD_PTR

D QD QQ D Q D

D Q

E

D Q

E

WR_PTR

one-hot

WR
FSM

RD
FSM

D Q

E

WRITE READ

DATA_OUT
DATA_CDC

Fig. 7. FIFO synchronization (Color figure online)



114 G. Plassan et al.

the source or destination access, global write and read control signals can be
implemented in a handshake protocol.

Using a FIFO implies some data latency (caused by the handshake and the
resynchronization of pointers), but allows a higher transfer rate. All the previ-
ously mentioned issues are avoided (metastability, coherency, data loss), but its
complexity makes the FIFO the most difficult synchronizer to design and verify.

3 Current Verification Approach

While some hardware bugs can sometimes be resolved by the firmware or soft-
ware layers, incorrect synchronizers typically lead to non-correctable, so-called
chip-killer bugs. To guarantee the absence of CDC issues in a design, a method-
ology is needed to check that all the necessary synchronizers are implemented,
and that their protocol is followed (Fig. 8).

Fig. 8. CDC formal verification methodology

3.1 Structural Checks

After register-transfer-level (RTL) synthesis, on a net-list, it seems easy to struc-
turally detect a CDC between two registers, and even to detect a multi-flop. In
contrast, for complex FIFO protocols, identifying the correct control logic is non-
trivial. If a single synchronizer structure was used, a proper pattern matching
could try to identify it on each CDC. Unfortunately, in industry, many design-
ers create their own synchronizing structures, and the structural library used
for pattern matching would never be exhaustive on complex structures such as
FIFOs.

In order to provide a robust and automated analysis, state-of-the-art CDC
tools provide a more flexible approach which identifies more general patterns
(like the one based on enables), without relying on the rigid FIFO or Hand-
shake structures. This is a first quick step to check multi-flops and sort out
missing synchronizers. However, a structural approach cannot check protocols
and assumptions on the control signal. A functional check must then be run.



Improving the Efficiency of Formal Verification 115

3.2 Functional Checks

From the recognition of a synchronizer structure, the extracted information is
reused to run functional checks. Formal safety properties to be checked are asso-
ciated to the generic structures we are using, among which:

1. Stability
The destination register only propagates DATA CDC when it is stable.

2. Coherency (Gray-encoding check)
At most one bit at a time can change in DATA.

As an aid to the user, these formal properties are embedded in the CDC tools
and linked to the matched patterns. When a pattern is detected, the properties
are automatically synthesized in hardware, mapped to the corresponding RTL
signals and formally checked.

3.3 Limitation

After running the structural and functional checks of Fig. 8, the user expects to
know which data is correctly resynchronized and which is not. However, expe-
rience shows that model checking may not achieve a conclusive result on the
properties: some of them reach a timeout even after several days. When this
occurs, no information is returned on the cause of the timeout, and the designer
is left with no clue on the possible presence of a metastability in the design.

It is well-known that inconclusive results in formal verification are caused by
the so-called state-space explosion problem which is intrinsic to model checking
of hardware designs. In practice, the typical approach to overcome this challenge
is, for each property, to extract the CDC logic. The verification is then focused
on just a small but relevant part of the design. However, this approach comes
with the following issues: First, the verification engineer needs to have a very
good understanding of the underlying design, which is not realistic for large RTL
models; Then, strong time-to-market constraints do not allow a manual labor-
intensive selection of appropriate abstractions for each property; Finally, even
with such a high manual effort, a conclusive result cannot be guaranteed.

The approach presented in this paper is also based on focusing on a subpart
of the design, but tries to overcome the aforementioned issues by following a
CDC-oriented methodology that is based on an interaction between the user
and a refinement algorithm.

3.4 Root Causes of Inconclusive Results

In this subsection, we report on common root causes of inconclusive results we
observed in the verification of CDCs.



116 G. Plassan et al.

Operation Modes. An SoC can operate in many different modes (initialization,
mission mode, test, scan, etc.) controlled by configuration signals, the values of
which cannot be automatically inferred by the verification tool. The user must
then provide functional design constraints such as clock frequencies, static value
of configuration signals, etc. to perform the verification on a realistic mode. This
method is user time consuming and error prone, as the user may fail to provide
some essential signal constraint.

Clock Gating. In complex low-power designs, some modules can be enabled or
disabled via a clock-gate for power saving. If the clock enable signals take incon-
sistent values, the tool produces unrealistic failures by exercising unreachable
states of the design. The user should provide constraints on the value of the
clock enable signals.

Protocols. In addition to design setup, functional assumptions should be given
on the primary inputs of the design, e.g., for handshake protocols.

Considering all the above, in all practical cases we encountered, inconclu-
siveness was primarily caused by missing constraints. But even with all this
information – that is not always trivial to write – a model checker may still not
reach a conclusive result, due to the design complexity. We need a new approach
both to tackle this complexity issue and to identify missing constraints.

4 User-Aided Abstraction Refinement

The objective of our approach is to avoid the state-space explosion problem in
model checking hardware designs. To that end, our key idea is to let the user
aid the model checking process by replying yes/no to a series of questions whose
answers only require local design knowledge.

Technically, our underlying framework is a counter-example-guided abstrac-
tion refinement (CEGAR) [8] algorithm: we maintain a sequence of abstrac-
tions with increasing precision until a definite result can be established. In con-
trast to fully automatic CEGAR approaches, the user here influences the refine-
ment process. We therefore call our approach user-aided abstraction refinement
(UsAAR). Figure 9 gives an overview on the semi-automatic algorithm in the
context of the overall methodology.

4.1 Localization Abstractions

Our abstractions are obtained via localization reduction [18]: we replace some
nets in the original design with primary inputs, called cut points. An abstrac-
tion A is more precise than an abstraction B if the cone-of-influence (with cut-
points) of the property in A is an extension of the one in B.

The rationale for this notion of abstraction is that, in practice, all the relevant
control logic for a given CDC is implemented locally. Thus, properties requiring



Improving the Efficiency of Formal Verification 117

Fig. 9. The UsAAR algorithm of our CDC verification methodology

the correctness of synchronizing protocols should have small abstractions that
suffice to either prove the property or to reveal bugs.

Figure 10 illustrates the abstraction process for a correct, hard to prove,
property. By removing parts of the circuit from the cone-of-influence of the
property (keeping only A1 from COI), and leaving the unconnected nets free, the
set of reachable states is enlarged (i.e., it represents an over-approximation). As a
result, states in which the property fails (the error states), initially unreachable,
may become reachable (A1). In this context, refining the abstraction consists
in iteratively adding back some of the removed circuit, and as a consequence
reducing the reachable state space (from A1 to A2), until a sufficiently precise
abstraction is obtained (Asuff), for which no error state is reachable. The challenge
here is to find that part of the design that can be pruned away without spuriously
making any error state reachable.

4.2 The Core Algorithm

The algorithmic core of our methodology (Algorithm 1, in pseudo code) is a semi-
automatic algorithm which is based on the automatic counterexample-guided
abstraction refinement (CEGAR) [8] principle. A localization abstraction of the
design is incrementally made more precise in a sequence of refinement rounds.
In each round, the safety property is checked on the abstraction: if the property
is satisfied, the algorithm terminates with Result “proof”; if a counterexample
is found, a refinement heuristic decides whether and how the abstraction should
be refined, or it concludes that the counterexample is concretizable, i.e., the



118 G. Plassan et al.

Fig. 10. Various abstractions for a given design and property

counterexample is also valid for the full design, and the algorithm can terminate
with Result “fail”.

Throughout the algorithm, we maintain a set of constraints Cglobal and a
set of nets F . We call F the focus: it induces a localization abstraction D# of
design D (Line 5). The constraints Cglobal are used when property P is checked
on D# (Line 6). Starting with no constraints (Line 2) and F just holding the
nets in the combinational fan-in of P (Line 3), we incrementally add elements
to both sets, thereby making the over-approximation more precise. Based on the
abstract result R# obtained in Line 6, we either immediately terminate (in case
R# = proof), or continue analyzing the abstract counterexample cex# (in case
R# = fail). The next subsection details this analysis.

4.3 Analysis of Abstract Counterexamples

In our variant of CEGAR, the refinement heuristic first determines a set of
cut points that are logically relevant for the abstract counterexample. This is
done by computing (an over-approximation of) the justifiable set of cut points J
(Line 11). The validity of the counterexample is independent of any cut point
that is not part of J . Intuitively, any net that is not contained in a minimal
justifiable set can be set to a random value without invalidating the reachability
of the error state. But since computing a minimal justifiable set is a hard problem
on its own, heuristics are used to compute a small but not necessarily minimal
set. A common technique is to use ternary simulation to identify inputs that do
not impact the overall validity of the counterexample.

Once J is obtained, the heuristic Analyze classifies each element in J into
specific categories (Line 12): clock, reset, data, control, etc., using a backward



Improving the Efficiency of Formal Verification 119

Algorithm 1. UsAAR for a design D and a property P

1: R ← unknown
2: Cglobal ← ∅
3: F ← CombFanin(P )
4: while R = unknown do
5: D# ← Abstract(D,F )
6: (R#, cex#) ← Check(P,D#, Cglobal)
7: if R# = proof then
8: // Terminate and report proof
9: R ← proof

10: else if R# = fail then
11: J ← Justify(cex#, D#) \ F
12: (Cprop, ref ) ← Analyze(J,D)
13: (Cacc, ref

′) ← Review(Cprop) // User interaction
14: ref ← ref ∪ ref ′

15: if Cacc = ref = ∅ then
16: // Terminate and report fail
17: R ← fail
18: else
19: // Refine the abstraction and continue
20: Cglobal ← Cglobal ∪ Cacc

21: F ← F ∪ ref ∪ Nets(Cacc)
22: end if
23: end if
24: end while
25: return R

traversal of the RTL which starts at the synchronizer pattern. Then, realis-
tic constraints corresponding to each category are inferred. For instance, when
encountering a potential setup issue such as a missing clock-gating constraint,
Analyze proposes to assume that the control input of the clock-gate is always set
to an enabling value. Or if a net is found to be logically irrelevant for the user,
Analyze infers a stopper constraint to ensure that the net (and its fan-in) will
not be part of any future abstraction. In the asynchronous FIFO of Fig. 7, this
stopper constraint would be applied on the net DATA IN. Indeed, in this case,
the property is independent of the DATA IN value. Only the following control
logic is relevant.

All constraints Cprop inferred by Analyze are then reported for review
(Line 13). In case the user rejects a constraint, the corresponding net is marked
for automatic refinement. After the manual classification process, the accepted
constraints Cacc are added to the set of global constraints Cglobal (Line 20). For all
nets that are marked for automatic refinement ref , we extend the focus so that
the subsequent abstraction are more precise by additionally comprising those
nets (Line 21).



120 G. Plassan et al.

4.4 Soundness, Completeness, Validity

The algorithm terminates if either the model checker reports a proof or if no new
constraints or nets for automatic refinement can be inferred, in which case a fail
is reported (Line 15). The soundness of reported proofs follows straight forward
from the fact that our localization abstraction represents an over-approximation.
The soundness of reported fails follows from the definition of the justifiable set:
the abstract counterexample cex# only depends on nets within the focus, i.e.,
on nets that were not abstracted out or for which the user provided constraints.
Hence, cex# remains a valid counterexample for any greater set F ′ ⊃ F , and in
particular, on the full design D.

In every non-terminating round, we either monotonically make the abstrac-
tion more precise or constrain the design behavior. Hence, since the underlying
design is finite, the algorithm terminates. Completeness follows from the fact
that the algorithm either terminates with a sufficient abstraction, or it ulti-
mately reaches the full design, i.e., D# = D.

When manually adding constraints one runs the risk of over-constraining
the design’s behavior, which can lead to vacuous proofs. However, our UsAAR
methodology is designed to minimize the risk of over-constraining. The setup
constraints inferred by our heuristics are combinational and structurally close
to the CDC control logic, which makes them easy for the user to review. Then,
they do not over-constrain but ensure that the design does not exhibit spuri-
ous behavior. On the other hand, stopper constraints (i.e., static cut points)
are conservative: they lead to an over-approximation that preserves all safety
properties.

5 Case Study

We applied our new methodology on two hardware designs: a small parametric
FIFO and a complex SoC from STMicroelectronics. The first one reveals the
benefits of the different steps of the flow. The second one proves the validity of
the methodology on an SoC from industry.

5.1 Asynchronous FIFO

Design Presentation. This hardware design includes a FIFO similar to the
one presented in Fig. 7. To mimic a state-space explosion on the DATA IN and
WRITE paths of the source domain, an FSM was implemented with a self-
looping counter on 128 bits, along with some non-deterministic control logic.
Also, the source and destination clocks are enabled by sequential clock-gates,
controlled by two independent primary inputs.

This design is parameterized by the width of the data being propagated,
and by the depth of the FIFO. By varying these two size parameters, we
increase the design complexity and analyze the corresponding performance of
the methodology.



Improving the Efficiency of Formal Verification 121

Results. Using an industrial tool to structurally analyze the design, three formal
properties were extracted.

– A data stability property is created on signal DATA CDC.
– Two coherency properties are extracted on the address buses after synchro-

nization, one on RD PTR and one on WR PTR. Indeed, the write and
read pointers are synchronized with multi-flops, and should then follow Gray-
encoding (see Sect. 2.2).

To verify them, the open source model checker ABC [5] is used with the
engines PDR [11] and BMC3 [4] in parallel. For each property, the runtime limit
for timeout is set to 15 min (denoted T/O in Table 1). We run the experiments
on a workstation with 24 Intel Xeon 2.6 GHz CPUs and 220 GB of memory. Four
different schemes are applied to generate the results in Table 1:

1. Standard: Model-checking each property on the full (non-abstracted) design.
2. CEGAR: A UsAAR variant where we reject all constraints. It can be seen

as a reduction of UsAAR to standard CEGAR.
3. UsAAR: The full semi-automatic algorithm presented in Sect. 4 including

automatic refinement and constraint inference together with manual con-
straint classification.

4. Standard w/ constraints: Repeated run of the standard scheme with all
the accepted constraints from the UsAAR scheme.

A first observation is that the coherency properties are proved in less than
a second in all four schemes and variations of the design. This is not surprising
considering that the Gray-encoding implemented in this design does not depend
on any non-deterministic control logic. Henceforth, we will then focus on the
data stability property.

The standard scheme is not able to prove the property in all 35 variations
of the design (Column “Standard”). Using the simple CEGAR approach, the
property is proved in all variations within 4 to 15 min (Column “CEGAR”).
Interestingly, the proof runtime is stable when the FIFO depth is fixed and the
data width increases. By looking at the last abstraction exercised, we notice that
DATA IN is always abstracted out. Its value does not depend on the source logic.
Hence, heuristics from the proof engine inferred that the proof does not depend
on the data value, which make the analysis as simple for 8 bits as it is for 128
bits. Actually, even if the source logic of the data was greatly more complex, the
CEGAR result would be the same.

Along the UsAAR run, two static constraints are automatically inferred on
the enables of the clock-gates. Because having a non-deterministically enabled
clock is not a realistic design behavior, we decide to accept them. As a result,
the stability property is solved in all 35 variations of the design within 10 s each
(Column “UsAAR”). Same as with simple CEGAR and contrary to the standard
scheme, the complexity of the data source logic is irrelevant for the proof.

Interestingly, even when applying the inferred enabling constraints on the
standard scheme, not all properties can be solved (Column “Standard w/ con-
straints”). Also in this case, by comparing with column “UsAAR”, we notice



122 G. Plassan et al.

Table 1. CDC properties proof CPU runtime (in sec) on the asynchronous FIFO

FIFO depth Data width Standard CEGAR UsAAR Standard
w/ constraints

3 8 T/O 389 7 22

16 T/O 390 7 35

32 T/O 392 7 66

64 T/O 390 7 870

128 T/O 391 7 T/O

4 8 T/O 592 6 15

16 T/O 591 6 28

32 T/O 594 6 57

64 T/O 593 6 145

128 T/O 594 6 243

5 8 T/O 641 7 14

16 T/O 651 7 53

32 T/O 641 7 69

64 T/O 640 7 180

128 T/O 693 7 374

6 8 T/O 558 7 13

16 T/O 558 7 55

32 T/O 563 7 62

64 T/O 563 7 203

128 T/O 562 7 414

7 8 T/O 574 7 10

16 T/O 574 7 49

32 T/O 575 7 68

64 T/O 574 7 150

128 T/O 575 6 841

8 8 T/O 589 7 11

16 T/O 590 7 36

32 T/O 579 7 60

64 T/O 580 7 150

128 T/O 580 7 463

9 8 T/O 868 9 14

16 T/O 863 9 43

32 T/O 868 9 74

64 T/O 864 9 210

128 T/O 865 9 475

TOTAL PROVED 0 35 35 34



Improving the Efficiency of Formal Verification 123

23 24 25 26 27
0

200

400

600

800

1,000

0

100

200

300

400

500

600

700

800

900

1,000
TimeOut

Data width

C
P

U
ru

n
n
in

g
ti

m
e

[s
ec

]

Standard

CEGAR

Standard w/ constraints

UsAAR

Fig. 11. Performance comparison for FIFO depth 8

that the runtime is always higher than when using both the inferred constraints
and CEGAR. This observation along with Fig. 11 points out the importance of
using both CEGAR and constraints in order to reach a conclusive result.

5.2 CPU Subsystem

Design Presentation. The second case study is a complex SoC hardware
design from STMicroelectronics, intended for a gaming system. It is a low-power
architecture, with a state-of-the-art quad-core CPU and many different inter-
faces. In total, it holds over 300,000 registers and 7 million gates. The CDC
setup is mainly done in a clock and reset control module, which selects con-
figurations for the whole system among its 38 clock domains and 17 primary
resets. However, many configuration signals (such as clock-enable signals) are
not controlled by this module. Since the design has a Globally Asynchronous
Locally Synchronous (GALS) intent, CDC signals are always synchronized in
the destination module.

Figure 12 gives an overview of some synchronizations around the CPU. Data
communication with the CPU environment (the rest of the SoC) is synchronized
by a customized FIFO with a 4-phase protocol based on the one described in
Sect. 2.4, with additional low power and performance optimizations. Only one
communication is shown in Fig. 12, among the ten in each direction. The figure
also shows the communications with the clock and reset controller, and the
handshake with the low power management block. Note that the CPU is one
central module which, due to its complexity, is likely to cause a timeout in the
model checking algorithm when considered in its entirety.



124 G. Plassan et al.

Fig. 12. Overview on the synchronizers at the interface of the CPU

Many synchronizers (mostly FIFOs) are split between modules of this subsys-
tem. Hence, we cannot proceed in a module-by-module CDC analysis. Working
at this hierarchy level is particularly relevant for us.

Results. We used an industrial tool to structurally analyze the STMicroelec-
tronics design. Only some straightforward constraints regarding reset and clock
setup were applied; we did not use any other design insight. All clock multi-
plexers were constrained to select the mission-mode clock, and static primary
inputs were constrained to the value given in the design specification (subsystem
configuration). The structural analysis identified several thousand synchronizers,
most of them multi-flops which do not need a functional check. It also extracted
78 stability and 47 coherency properties. We verify each extracted property in
the same four schemes that were presented previously.

Table 2 shows the results for model checking the stability and Gray-encoding
properties. Without any automatic refinement, the standard scheme can only
prove 40 out of 125 properties (Column “Standard”). After increasing the time-
out limit to several hours, the same results are obtained. Using automatic
refinement (the CEGAR scheme), 33 more properties can be proved (Column
“CEGAR”). Also, it should be noted that all proofs from the standard scheme
get confirmed by the CEGAR scheme. CEGAR proves to be particularly efficient
for proving Gray-encoding properties, as the encoding logic is generally local to
the synchronizer.

The most striking observation, however, is that during the first UsAAR run,
40 setup constraints are automatically inferred and are all easily accepted. These
include global interface enables (scan or test enables, internal configuration sig-
nals, ...), and also internal soft resets and clock-gate enables which were missing



Improving the Efficiency of Formal Verification 125

Table 2. Results on the CDC stability and Gray-encoding properties

Standard CEGAR UsAAR
first run

UsAAR
second run

Standard
w/ constraints

Stability # Proof 29 31 45 78 43

# Fail 0 0 33 0 0

# Inconclusive 49 47 0 0 35

CPU time [min] 771 734 583 31 557

Gray-enc. # Proof 11 42 42 47 11

# Fail 0 0 5 0 0

# Inconclusive 36 5 0 0 36

CPU time [min] 540 86 27 15 540

in the design specification. It leads to 87 proved properties and provides coun-
terexamples for the remaining 38. Note that in those abstract counterexamples,
many irrelevant signals are automatically hidden using the justifiable subset,
which makes debugging easier.

By reviewing them, we observe spurious behaviors in the handshakes, which
are fixed by adding 22 missing Boolean assumptions enabling the protocols.
Indeed, in some cases the WRITE or READ of the FIFO represents an informa-
tion coming from the CPU, and would depend on a software execution. When
these signals are abstracted out, they take random values which do not follow
the handshake protocol, hence creating a failure. After consulting STMicroelec-
tronics, we decide to constrain them to a realistic behavior. Here, the worst case
would be to set them to ‘1’ which would mean the CPU always transfers data.
We stress the fact that no deep design knowledge is needed during this process,
and the constraints represent a realistic design behavior.

With these new constraints, the second UsAAR run is able to conclude all
125 properties correctly. Compared to the fully automatic approaches, the final
UsAAR proof runtime is accelerated by more than 20×. In fact, the most difficult
property concludes in only 7 min.

Finally, the last column shows that having the proper constraints is not
sufficient to get proofs; the efficiency of UsAAR indeed relies on the combination
of automatic CEGAR and manual constraint classification.

Regarding the size of the abstractions: on the full design, some properties
have a cone-of-influence of more than 250,000 registers. Interestingly, our vari-
ant of CEGAR is able to find sufficient abstractions containing only up to 200
registers. This ratio confirms our assumption that only the local control logic
has a real influence on the correctness of a CDC property.

Overall, a relevant metric to score the different flows would be the total time
spent by the verification engineer starting with the design setup and ending
with achieving conclusive results for all properties. It would allow us to conclude
on the complexity and usability of different methodologies, as for instance the
manual extraction and constraining explained in Sect. 3.3. However, this time
depends very much on the design complexity, reuse, and user insight. Such an



126 G. Plassan et al.

experiment would assume the availability of two concurrent verification teams
on the same design, an investment that could not be made by our industrial
partners.

6 Related Work

The implementation of CDC synchronizers recalled in Sect. 2 is well known in the
hardware design community. Tools for verifying such synchronizers are provided
by leading EDA vendors (Synopsys SpyGlass CDC [27], Mentor Questa CDC
[23], Real Intent Meridian CDC [24], . . . ). Most of these tools provide a veri-
fication flow including structural checks up to the generation of related formal
properties.

Academia is also active in this research area. Some approaches focus on
functionally verifying CDC synchronizers; e.g., Burns et al. proposed a new ver-
ification flow using xMAS models [6]. However, the user needs to define the
boundaries of the synchronizers, which is not scalable.

Kwok et al. presented a verification flow [19] purely based on a structural
analysis that matches parts of the design with a property library to generate
assertions. These assertions can be model checked for functional verification.
Litterick proposed a similar flow [22], replacing model checking by simulation on
SVA assertions. Kapschitz and Ginosar published an overview [15] on the general
CDC verification flow, showing the need for multiple clock modeling and formal
verification. However, they did not detail how synchronizers can be identified,
nor their flow automation, nor how to deal with a high design complexity.

Li and Kwok described a CDC verification flow [21] similar to ours, includ-
ing the extraction of a formal property from an automatic structural identifica-
tion. They performed abstraction refinement along with synthesis to prove some
properties, but the underlying techniques were not explained in detail. In their
flow, inconclusive properties after the abstraction refinement are promoted to the
top-level and the user needs another methodology to proceed with the formal
verification.

Recently, Kebaili proposed to improve the structural checks in order to detect
the main control signals of the synchronizer [17]. The properties to be verified
would only rely on these control signals (with a handshake-based protocol), hence
avoiding the state-space explosion in the data path.

In other hardware verification domains, some methodologies combine manual
with automatic reasoning. For instance, for verifying the FlexRay physical layer
protocol, Schmaltz presented a semi-automatic correctness proof [26] in which
the proof obligations are discharged using Isabelle/HOL and the NuSMV model
checker. This proof was also applied to larger verified system architectures [1].

Localization abstractions and related refinement techniques were pioneered
by Kurshan in the 1980s and eventually published in the mid 1990s [18]. The
fully automatic variant of the CEGAR principle was introduced by Clarke et al.
in the context of over-approximating abstractions defined through state-space
partitionings [8,9]. The works by Andraus et al. propose a CEGAR approach for



Improving the Efficiency of Formal Verification 127

data-paths in hardware designs [2,3]. Orthogonal to our approach, their abstrac-
tions are obtained by replacing data-path components by uninterpreted functions
which, in turn, also requires a more powerful model checker based on SMT. Our
methodology can be seen as an extension of these works mentioned above, as it
enables the integration of user insight into the refinement process.

7 Conclusion and Outlook

This paper presents a complete formal verification flow for conclusively proving
or disproving CDC synchronizations on industrial-scale SoC hardware designs.
Our core contribution is a semi-automatic model checking algorithm, where the
user aids the (otherwise fully automatic) verification process by classifying a
sequence of automatically inferred constraints.

We demonstrated the efficiency of our approach on an STMicroelectronics
SoC design which was persistently difficult to verify: prior approaches required
to manually extract the cone-of-influence of the synchronizers, which resulted in
a tedious (and costly) work for verification engineers.

In contrast, our new methodology allowed the full verification without requir-
ing any deep design knowledge. This very encouraging practical experience sug-
gests that we identified an interesting sweet-spot between automatic and deduc-
tive verification of hardware designs. On the one hand, it is a rather easy manual
task to classify simple design constraints that refer to single nets where, on the
other hand, this information can be crucial to guide an otherwise automatic
abstraction refinement process.

Another positive side-effect of our methodology is that it gradually results in
a functional design setup. Note that all accepted constraints (except the stop-
per constraints) do not depend on a certain property, but reflect general design
properties and are therefore globally valid. This does not only speed-up the over-
all CDC verification time, when constraints are reused while verifying multiple
properties, it also helps further functional verification steps in the VLSI flow.
For instance, the same design constraints can be reused for functionally verifying
false and multi-cycle paths.

As a next step, we plan to improve the constraint inference in order to gen-
erate sequential SVA assumptions. This feature would guide the user into cre-
ating more complex constraints representing realistic design behaviors without
decreasing the proof coverage. Also, we investigate into other functional proper-
ties. The long-term goal is to extend our methodology to many critical functional
verification steps in the VLSI flow.

Acknowledgement. We wish to thank Mejid Kebäıli and Jean-Christophe Brignone
from STMicroelectronics for reviewing and confirming the validity of our methodology.



128 G. Plassan et al.

References

1. Alkassar, E., Böhm, P., Knapp, S.: Formal correctness of an automotive bus con-
troller implementation at gate-level. In: Kleinjohann, B., Wolf, W., Kleinjohann,
L. (eds.) DIPES 2008. ITIFIP, vol. 271, pp. 57–67. Springer, Boston, MA (2008).
doi:10.1007/978-0-387-09661-2 6

2. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Refinement strategies for verification
methods based on datapath abstraction. In: ASP-DAC, pp. 19–24 (2006)

3. Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of Verilog
models. In: Design Automation Conference (DAC), pp. 218–223 (2004)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

6. Burns, F., Sokolov, D., Yakovlev, A.: GALS synthesis and verification for xMAS
models. In: DATE (2015)

7. Chaney, T., Molnar, C.: Anomalous behavior of synchronizer and arbiter circuits.
IEEE Trans. Comput. C–22(4), 421–422 (1973)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

9. Clarke, E., Grumberg, O., Long, D.E.: Model checking and abstraction. In: ACM
(1991)

10. Cummings, C.E.: Clock domain crossing design & verification techniques using
systemverilog. In: SNUG, Boston (2008)

11. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011)

12. Gabara, T.J., Cyr, G.J., Stroud, C.E.: Metastability of CMOS master/slave flip-
flops. In: IEEE Custom Integrated Circuits Conference. pp. 29.4/1–29.4/6, May
1991

13. Ginosar, R.: Fourteen ways to fool your synchronizer. In: Asynchronous Circuits
and Systems, pp. 89–96 (2003)

14. Ginosar, R.: Metastability and synchronizers: a tutorial. IEEE Des. Test Comput.
28(5), 23–35 (2011)

15. Kapschitz, T., Ginosar, R.: Formal verification of synchronizers. In: Borrione,
D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 359–362. Springer,
Heidelberg (2005). doi:10.1007/11560548 31

16. Karimi, N., Chakrabarty, K.: Detection, diagnosis, and recovery from clock-domain
crossing failures in multiclock SoCs. Comput. Aided Des. Integr. Circuits Syst.
32(9), 1395–1408 (2013)

17. Kebaili, M., Brignone, J.C., Morin-Allory, K.: Clock domain crossing formal veri-
fication: a meta-model. In: IEEE International High Level Design Validation and
Test Workshop (HLDVT), pp. 136–141, October 2016

18. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

19. Kwok, C., Gupta, V., Ly, T.: Using assertion-based verification to verify clock
domain crossing signals. In: Design and Verification Conference, pp. 654–659 (2003)

http://dx.doi.org/10.1007/978-0-387-09661-2_6
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/11560548_31


Improving the Efficiency of Formal Verification 129

20. Leong, C., Machado, P., et al.: Built-in clock domain crossing (CDC) test and
diagnosis in GALS systems. In: Proceedings of the DDECS 2010, pp. 72–77, April
2010

21. Li, B., Kwok, C.K.: Automatic formal verification of clock domain crossing signals.
In: ASP-DAC, pp. 654–659, January 2009

22. Litterick, M.: Pragmatic simulation-based verification of clock domain crossing
signals and jitter using SystemVerilog Assertions. In: DVCON (2006)

23. Mentor Graphics: Questa CDC. https://www.mentor.com/products/fv/questa-
cdc/. Accessed Jan 2017

24. Real Intent: Meridian CDC. http://www.realintent.com/real-intent-products/
meridian-cdc/. Accessed Jan 2017

25. Sarwary, S., Verma, S.: Critical clock-domain-crossing bugs. Electron. Des. Strateg.
News 53, 55–64 (2008)

26. Schmaltz, J.: A formal model of clock domain crossing and automated verification
of time-triggered hardware. In: FMCAD. pp. 223–230, November 2007

27. Synopsys: Spyglass CDC. https://www.synopsys.com/verification/static-and-
formal-verification.html. Accessed Jan 2017

https://www.mentor.com/products/fv/questa-cdc/
https://www.mentor.com/products/fv/questa-cdc/
http://www.realintent.com/real-intent-products/meridian-cdc/
http://www.realintent.com/real-intent-products/meridian-cdc/
https://www.synopsys.com/verification/static-and-formal-verification.html
https://www.synopsys.com/verification/static-and-formal-verification.html

	Improving the Efficiency of Formal Verification: The Case of Clock-Domain Crossings
	1 Introduction
	2 Clock-Domain Crossing Issues
	2.1 Metastability and Multi-flops
	2.2 Coherency with Gray-Encoding or Enable Control
	2.3 Data Loss and Handshake
	2.4 Performance with FIFO

	3 Current Verification Approach
	3.1 Structural Checks
	3.2 Functional Checks
	3.3 Limitation
	3.4 Root Causes of Inconclusive Results

	4 User-Aided Abstraction Refinement
	4.1 Localization Abstractions
	4.2 The Core Algorithm
	4.3 Analysis of Abstract Counterexamples
	4.4 Soundness, Completeness, Validity

	5 Case Study
	5.1 Asynchronous FIFO
	5.2 CPU Subsystem

	6 Related Work
	7 Conclusion and Outlook
	References


