
123

Thomas Hollstein
Jaan Raik

Sergei Kostin
Anton Tšertov
Ian O’Connor

Ricardo Reis
(Eds.)

24th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2016
Tallinn, Estonia, September 26–28, 2016
Revised Selected Papers

VLSI-SoC: System-on-Chip
in the Nanoscale Era – Design,
Verification and Reliability

IFIP AICT 508

IFIP Advances in Information
and Communication Technology 508

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

TC 1 – Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

TC 10 – Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction
Marco Winckler, University Paul Sabatier, Toulouse, France

TC 14 – Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Thomas Hollstein • Jaan Raik
Sergei Kostin • Anton Tšertov
Ian O’Connor • Ricardo Reis (Eds.)

VLSI-SoC: System-on-Chip
in the Nanoscale Era – Design,
Verification and Reliability
24th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2016
Tallinn, Estonia, September 26–28, 2016
Revised Selected Papers

123

Editors
Thomas Hollstein
Tallin University of Technology
Tallinn
Estonia

Jaan Raik
Tallinn University of Technology
Tallinn
Estonia

Sergei Kostin
Tallinn University of Technology
Tallinn
Estonia

Anton Tšertov
Tallinn University of Technology
Tallinn
Estonia

Ian O’Connor
Ecole Centrale de Lyon
Ecully
France

Ricardo Reis
Federal University of Rio Grande do Sul
Porto Alegre
Brazil

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-67103-1 ISBN 978-3-319-67104-8 (eBook)
DOI 10.1007/978-3-319-67104-8

Library of Congress Control Number: 2017952848

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book contains extended and revised versions of the highest quality papers selected
from those presented during the 24th IFIP/IEEE WG10.5 International Conference on
Very Large Scale Integration (VLSI-SoC), a global System-on-Chip design and CAD
conference. The 24th conference was held at the Park Inn in the Radisson Meriton
Conference and Spa Hotel in Tallinn, Estonia, September 26–28, 2016. Previous
conferences took place in Edinburgh, Scotland (1981); Trondheim, Norway (1983);
Tokyo, Japan (1985); Vancouver, Canada (1987); Munich, Germany (1989);
Edinburgh, Scotland (1991); Grenoble, France (1993); Chiba, Japan (1995); Gramado,
Brazil (1997); Lisbon, Portugal (1997); Montpellier, France (2001); Darmstadt,
Germany (2003); Perth, Australia (2005); Nice, France (2006); Atlanta, USA (2007);
Rhodes, Greece (2008); Florianopolis, Brazil (2009); Madrid, Spain (2010); Kowloon,
Hong Kong, China (2011); Santa Cruz, USA (2012); Istanbul, Turkey (2013); Playa
del Carmen, Mexico (2014); and Daejeon, South Korea (2015).

The purpose of this conference, which was sponsored by IFIP TC 10 Working
Group 10.5, the IEEE Council on Electronic Design Automation (CEDA), and by IEEE
Circuits and Systems Society, with the cooperation of ACM SIGDA, is to provide a
forum for the presentation and discussion of the latest scientific and industrial results
and developments as well as future trends in the field of System-on-Chip (SoC) design,
considering the challenges of modern nano-scaled state-of-the-art and future manu-
facturing technologies. The down-scaling of the feature sizes of modern semiconductor
technologies imposes numerous new challenges on physical and system-level design of
SoCs. Increasing reliability challenges demand new concepts in fault-tolerance and
testing. While classically, based on the bathtub fault rate model, testing has been
applied after manufacturing only, in the nano-era, built-in testing concepts have to
monitor the system’s health status during its lifetime. Sophisticated design and archi-
tectural measures are required to cope with wear-out, and system lifetime health
management and active fault-resilience are also required. VLSI-SoC addresses these
future challenges and provides an internationally acknowledged platform for scientific
contribution and industrial progress within this field.

For VLSI-SoC 2016, 36 papers out of 93 submissions were selected for presentation
at the conference.

Out of these 36 full papers presented at the conference, 11 papers were chosen by a
Selection Committee to have an extended and revised version included in this book.
The selection process of these papers considered the evaluation scores during the
review process as well as the review forms provided by members of the Technical
Program Committee and session chairs as a result of the presentations.

The papers in this proceedings volume have authors from Belgium, China, France,
Germany, Hong Kong, Iran, Israel, Italy, Singapore, and the USA. The Technical
Program Committee for the regular tracks comprised 95 members from 25 countries.

VLSI-SoC 2016 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee
chairs. We thank them all for their contribution.

This book is intended for the VLSI community, mainly those persons who did not
have the chance to attend the conference. We hope you enjoy reading this book and that
you find it useful in your professional life and for the development of the VLSI
community as a whole.

August 2017 Thomas Hollstein
Jaan Raik

Sergei Kostin
Anton Tšertov
Ian O’Connor
Ricardo Reis

VI Preface

Organization

General Chairs

Jaan Raik Tallinn UT, Estonia
Ian O’Connor ECL Lyon, France

Technical Program Chairs

Thomas Hollstein Frankfurt UAS, Germany
Krishnendu Chakrabarty Duke University, USA

Special Sessions Chair

Matteo Sonza Reorda Politecnico di Torino, Italy

PhD Forum Chair

Mario Schölzel Potsdam University, Germany

Finance/Local Arrangements Chair

Maksim Jenihhin Tallinn UT, Estonia

Publicity Chairs

Ricardo Reis UFRGS, Brazil
Masahiro Fujita Tokyo University, Japan
Said Hamdioui Delft University, Netherlands

VLSI-SoC Steering Committee

Manfred Glesner TU Darmstadt, Germany
Salvador Mir TIMA, France
Michel Robert University of Montpellier, France
Chi-Ying Tsui HKUST, Hong Kong, China
Matthew Guthaus UC Santa Cruz, USA
Ricardo Reis UFRGS, Brazil
Luis Miguel Silveira INESC ID, Portugal
Fatih Ugurdag Ozyegin University, Turkey

Publication Chairs

Anton Tsertov Tallinn UT, Estonia
Sergei Kostin Tallinn UT, Estonia

Registration Chair

Siavoosh Payandeh
Azad

Tallinn UT, Estonia

Web Chair

Tarmo Robal Tallinn UT, Estonia

Local Organizing Committee

Lembit Jürimägi Tallinn UT, Estonia
Siavoosh Payandeh

Azad
Tallinn UT, Estonia

Technical Program Committee

Analog and Mixed-Signal IC Design

Jerzy Dabrowski
(Co-chair)

Linköping University

Makoto Nagata
(Co-chair)

Kobe University

Kenichi Okada Tokyo Institute of Technology
Tsung-Hsien Lin National Taiwan University
Jacob Wikner Linköping University
Rashad Ramzan National University of Computer and Emerging

Sciences-FAST-NU
Pawel Sniatala Poznan University of Technology
Robert Szczygiel AGH - University of Science and Technology

System Architectures, NoC, 3D, Multi-core and Reconfigurable

Michael Hübner
(Co-chair)

Ruhr-Universität Bochum

Dirk Stroobandt
(Co-chair)

Ghent University

Jiang Xu Hong Kong Universtiy of Science and Technology
Wim Vanderbauwhede University of Glasgow
Ulya Karpuzcu University of Minnesota
Joao Cardoso FEUP/Universidade do Porto
Jishen Zhao University of California
Leandro Indrusiak University of York
Radu Teodorescu Ohio State University

VIII Organization

CAD, Synthesis, and Analysis

Peeter Ellervee
(Co-chair)

Tallinn University of Technology

Ricardo Reis (Co-chair) UFRGS
Masahiro Fujita University of Tokyo
Takashi Kambe Kinki University
Bei Yu Chinese University of Hong Kong
Tiziano Villa University of Verona
Srinivas Katkoori University of South Florida
Jari Nurmi Tampere University of Technology
Johnny Öberg Royal Institute of Technology
Juha Plosila Turku University

Prototyping, Verification, Modeling, and Simulation

Graziano Pravadelli
(Co-chair)

University of Verona

Ian Harris (Co-chair) University of California Irvine
Eli Arbel IBM Haifa Lab
Anupam Chattopadhyay Nanyang Technological University
Matthieu Moy Verimag
Rob Aitken ARM Ltd.
Goerschwin Fey University of Bremen and German Aerospace

Center - DLR
Laurence Pierre Université de Grenoble
Sandip Ray Intel Corporation
Francis Wolff Case Western Reserve University

Circuits and Systems for Signal Processing and Communications

Fatih Ugurdag
(Co-chair)

Ozyegin University

Tobias Noll (Co-chair) RWTH Aachen
Dajiang Zhou Waseda University
Luc Claesen University of Hasselt
Hm Bae KAIST
Per Larsson-Edefors Chalmers University of Technology
Jongsun Park Korea University
Oscar Gustafsson Linköping University

Embedded System Architectures, Design, and Software

Zebo Peng (Co-chair) Linköping University
Vijaykrishnan

Narayanan (Co-chair)
Pennsylvania State University

Lars Bauer Karlsruhe Institute of Technology - KIT
Ing-Chao Lin National Cheng Kung University

Organization IX

Zili Shao Hong Kong Polytechnic University
Hai Li University of Pittsburgh
Yu Wang Tsinghua University
Paul Pop Technical University of Denmark
Jason Xue City University of Hong Kong
Ingo Sander Royal Institute of Technology – KTH

Low-Power and Thermal-Aware Design

Aida Todri-Sanial
(Co-chair)

LIRMM Montpellier

José L. Ayala (Co-chair) Complutense University of Madrid
Nadine Azemard LIRMM/CNRS
Masaaki Kondo University of Tokyo
Mirko Loghi Università di Udine
Jose Luis Abellan Catholic University of Murcia
Marina Zapater Universidad Politécnica de Madrid
Andrea Bartolini University of Bologna

Memory Technologies, Circuits, and Systems

Lionel Torres (Co-chair) LIRMM Montpellier
Yiran Chen (Co-chair) University of Pittsburg
Jingtong Hu Oklahoma State University
Wujie Wen Florida International University
Elena Ioana Vatajelu Politecnico di Torino
Weisheng Zhao Spintronics Interdisciplinary Center, Beihang University
Danghui Wang NorthWestern Polytechnical University
Jean-Michel Portal Ecole Polytech’ Marseille
Olivier Thomas CEA-Leti
Nitin Chandrachoodan IIT Madras
Jean-Michel Portal IM2NP

Design for Variability, Reliability, and Testing

Bernd Becker (Co-chair) University of Freiburg
Erik Larsson (Co-chair) Lund University
Tony Kim Nanyang Technological University
Sandeep Kumar Goel TSMC
Saqib Khursheed University of Liverpool
Stephan Eggersglüß University of Bremen
Stefano Dicarlo Politecnico di Torino
Emil Gizdarski SYNOPSYS
Satoshi Ohtake Oita University

X Organization

Security

Lilian Bossuet
(Co-chair)

University St. Etienne

Mihalis Maniatakos
(Co-chair)

NYU Abu Dhabi

Paolo Maistri TIMA Laboratory
Julien Francq Airbus Defence & Space - CyberSecurity
Debdeep

Mukhopadhyay
IIT Kharagpur

Jeyavijayan Rajendran University of Texas at Dallas
Joseph Zambreno Iowa State University
Xueyang Wang Intel Corporation
Yier Jin University of Central Florida

Organization XI

Contents

Enabling Internet-of-Things with Opportunities Brought by Emerging
Devices, Circuits and Architectures . 1

Xueqing Li, Kaisheng Ma, Sumitha George, John Sampson,
and Vijaykrishnan Narayanan

Logic with Unipolar Memristors – Circuits and Design Methodology 24
Nimrod Wald, Elad Amrani, Avishay Drori, and Shahar Kvatinsky

Robust Hybrid TFET-MOSFET Circuits in Presence of Process Variations
and Soft Errors . 41

Maedeh Hemmat, Mehdi Kamal, Ali Afzali-Kusha,
and Massoud Pedram

Logic Synthesis for Silicon and Beyond-Silicon Multi-gate
Pass-Logic Circuits . 60

Valerio Tenace, Andrea Calimera, Enrico Macii,
and Massimo Poncino

Digital Hardware Design Based on Metamodels
and Model Transformations . 83

Johannes Schreiner and Wolfgang Ecker

Improving the Efficiency of Formal Verification: The Case
of Clock-Domain Crossings . 108

Guillaume Plassan, Hans-Jörg Peter, Katell Morin-Allory,
Shaker Sarwary, and Dominique Borrione

Improving Stress Quality for SoC Using Faster-than-At-Speed Execution
of Functional Programs . 130

Paolo Bernardi, Alberto Bosio, Giorgio Di Natale, Andrea Guerriero,
Ernesto Sanchez, and Federico Venini

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 152
Valentino Peluso, Roberto G. Rizzo, Andrea Calimera, Enrico Macii,
and Massimo Alioto

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 173
Alexander W. Rath, Sebastian Simon, Volkan Esen,
and Wolfgang Ecker

http://dx.doi.org/10.1007/978-3-319-67104-8_1
http://dx.doi.org/10.1007/978-3-319-67104-8_1
http://dx.doi.org/10.1007/978-3-319-67104-8_2
http://dx.doi.org/10.1007/978-3-319-67104-8_3
http://dx.doi.org/10.1007/978-3-319-67104-8_3
http://dx.doi.org/10.1007/978-3-319-67104-8_4
http://dx.doi.org/10.1007/978-3-319-67104-8_4
http://dx.doi.org/10.1007/978-3-319-67104-8_5
http://dx.doi.org/10.1007/978-3-319-67104-8_5
http://dx.doi.org/10.1007/978-3-319-67104-8_6
http://dx.doi.org/10.1007/978-3-319-67104-8_6
http://dx.doi.org/10.1007/978-3-319-67104-8_7
http://dx.doi.org/10.1007/978-3-319-67104-8_7
http://dx.doi.org/10.1007/978-3-319-67104-8_8
http://dx.doi.org/10.1007/978-3-319-67104-8_9

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 192
Syed Mohsin Abbas and Chi-Ying Tsui

A Novel Hardware-Oriented Stereo Matching Algorithm
and Its Architecture Design in FPGA. 213

Yanzhe Li, Kai Huang, and Luc Claesen

Author Index . 233

XIV Contents

http://dx.doi.org/10.1007/978-3-319-67104-8_10
http://dx.doi.org/10.1007/978-3-319-67104-8_11
http://dx.doi.org/10.1007/978-3-319-67104-8_11

Enabling Internet-of-Things
with Opportunities Brought by Emerging

Devices, Circuits and Architectures

Xueqing Li(&), Kaisheng Ma, Sumitha George, John Sampson,
and Vijaykrishnan Narayanan(&)

Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802, USA
{lixueq,kxm505,sug241,sampson,vijay}@cse.psu.edu

Abstract. In recent years, the concept of Internet-of-Things (IoT) has attracted
significant interests. Required by the applications, the IoT power optimization
has become the key concern, which relies on innovations from all levels of
device, circuits, and architectures. Meanwhile, the energy efficiency of existing
IoT implementations based on the CMOS technology is fundamentally limited
by the device physics and also the circuits and systems built on it. This chapter
focuses on a different dimension, exploring how emerging beyond-CMOS
devices, such as tunnel field effect transistor (TFET) and negative capacitance
FET (NCFET), and the circuits and architectures built upon them, could extend
the low-power design space to enable IoT applications with beyond-CMOS
features.

Keywords: Internet-of-things � Emerging devices � Tunnel FET � Negative
capacitance FET � Energy harvesting � Nonvolatile memory � Nonvolatile
computing

1 Introduction

Improved sensing, signal processing, and communication has significantly changed the
connection between humans and the world with the rise of intelligent devices being
developed for the Internet-of-things (IoT) [1]. As designers seek to make these IoT
systems smarter and more ubiquitous, high energy-efficiency has been the key to
enhance both connectivity and IoT signal processing functionality. Cross-layer efforts
in improving solid-state devices, and the circuits and systems built upon them, are the
key to achieve the high energy efficiency demanded by an expanding future of IoT
tasks.

Concurrently, the needs for portability and mobility, common in IoT applications,
have driven devices toward battery and/or ambient energy harvesting power solutions
[2]. In the past few decades, the power consumption of integrated circuits has been
lowered significantly through the scaling of the CMOS technology together with signal
processing techniques. Such achievement has made more and more IoT applications
feasible while being powered with a modest battery capacity or ambient energy

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 1–23, 2017.
DOI: 10.1007/978-3-319-67104-8_1

harvester (e.g. a solar cell). However, further power reduction has become more and
more challenging for conventional CMOS technology (including FinFET innovations)
and the computation and communication methodologies built upon it. The conven-
tional means of power reduction alongside CMOS scaling of using a lower supply
voltage to reduce the dynamic power consumption while simultaneously reducing
threshold voltages to provide sufficient computing speed causes exponentially
increasing leakage power, which can now approach magnitudes similar to dynamic
power. This fundamentally limits the expansion of functionality via CMOS scaling
alone, especially when IoT devices are powered by batteries or harvested energy.

Battery-less IoT systems face further challenges in obtaining sufficient energy from
the low and intermittent power source in the ambient environment [3]. Existing
energy-harvesting circuits may encounter a low-input voltage that leads to a low
power-conversion efficiency. Low harvested power not only limits the average amount
of tasks being performed, but also increases the response latency, which is a key factor
of quality-of-service (QoS). Meanwhile, distinct from conventional computing systems
with a stable supply, the intermittency of harvested power also requires additional
backup and restore operations, which consumes extra energy and time and carries the
risk of losing computation progress if a backup operation is not carried out in time.

While these fundamental challenges have become a barrier when using CMOS
technology, the advent of emerging technologies have brought new opportunities.
These emerging technologies include emerging transistor devices, circuits, and archi-
tectures. The new opportunities can be seen, broadly, as advances in two key direc-
tions. Firstly, the Boolean switching behavior of some emerging transistors can replace
the existing CMOS transistors in conventional computing approaches with substan-
tially improved prospects for power scaling and low-voltage operation [4]. Secondly,
certain emerging devices inherently support nonvolatile data storage and computing,
enabling low-energy memory access and backup/restore operations.

There have been quite a few promising beyond-CMOS emerging devices, such as
single-electron devices [5], spin-transfer-torque devices [6], the tunnel field effect
transistor (TFET) [7], negative capacitance FET (NCFET, aka ferroelectric FET or
FeFET) [8]. This chapter introduces two types of them, including TFET and NCFET.
As promising beyond-CMOS candidates, these devices could work at a lower supply
voltage to enable further power reduction in Boolean computation (without higher
static leakage than CMOS). Meanwhile, the substantially novel features that they
exhibit could also be captured to enable new computing architectures supporting
nonvolatile data storage and computing.

The remainder of this chapter proceeds as follows. Section 2 investigates the
challenges in designing energy-efficient IoT systems. Section 3 introduces the three
types of emerging technologies, with more emphasis on their electrical characteristics.
Section 4 describes how to make use of these emerging devices to design more
energy-efficient IoT systems beyond those in CMOS. Section 5 discusses future
research directions and Section 6 discusses key conclusions.

2 X. Li et al.

2 IoT Systems and Efficiency Bottlenecks

This section presents a model of a general IoT system, describes the functionality of
each block, and analyzes the bottlenecks in each block considering existing opti-
mization efforts.

2.1 A General IoT System

While there has been a relatively long history of using solar cells to power devices,
recently published battery-less IoT system designs have been demonstrated with an
increasingly wide range of power sources. Devices powered by harvested
radio-frequency (RF) energy have been shown to be successful for applications
including a glucose level sensor on a contact lens, a highway RFID pass, bio-signal
sensors on animals or insects, etc. [2]. Their system functionality varies from a simpler
signal recorder to a more complex in situ signal processor, such as one with EEG signal
processing, and wireless transmission. The system feature size, operating range, per-
formed tasks, circuit design and architecture implementation, should be optimized
based on the amount of obtainable energy and other quality-of-service (QoS) require-
ments in the applications.

The system structure varies with the specific application requirements. A general
battery-less IoT systemcould be built as shown inFig. 1 using ambient-energy-harvesting
techniques [2, 9].While some blocks, such as sensors and interface, memory storage, and
a digital signal processor and accelerators, can be similar to conventional designs with a
stable power supply, there are extra and significantly different blocks when the system is
battery-less and powered by ambient energy-harvesting techniques.

Ambient Energy

Solar

RF

Piezo

Thermal

Energy Harvesting and Management

AC-DC Rectifier
DC-DC Converter

Digital Signal
Processor

Energy
Storage

Assisting
Accelerator

Sense Amplifier

Signal Processing and Data Transceiving

Power
Policy On/Off Control

Status Detection
Wake-up
Detector

Transceiver (LNA, Mixer, etc.) AD/DA

ADCSensors
Memory

Fig. 1. A general battery-less IoT system powered by ambient-energy harvesting [9]

Enabling Internet-of-Things with Opportunities 3

In addition to the external power sources, the energy-harvesting IoT system con-
sists of two major blocks: the block of energy harvesting and management, and the
block of signal processing and data transceiving. The energy harvester differs with the
ambient energy source, and a wake-up receiver may be used in scenarios when an
external triggering signal is used to switch the system between different power or
operation modes. A temporary energy storage medium in the form of a capacitor is
usually used to smooth the supply glitch and cover a temporary power income loss. As
will be further discussed later, the power supply and management module, and the
digital signal processing architecture for an energy-harvesting IoT system can be sig-
nificantly different from conventional designs with a stable power supply. In fact, the
overall system performance greatly relies on how these different blocks are built. The
next sub-section (Sect. 2.2) will discuss more details of each block.

2.2 Bottlenecks and Existing Efforts

Energy sources and energy harvesting techniques. Solar, RF, piezoelectric and
thermal gradients have been widely used ambient energy sources [23]. When the
energy source does not directly provide the required DC voltage output, voltage
converters and regulators are needed. For example, a rectifier is required to convert AC
signals from an RF signal antenna and piezoelectric films. DC-DC converters can be
used to convert the DC supply voltage to be higher or lower. Despite of the differences
between these ambient power sources, there are three major challenges in energy
harvesting and storage. The first challenge is the relatively low and varying energy
density, intermittency, dependency of the efficiency on the load condition, and the
unpredictability of these factors. Therefore, circuit optimizations such as tracking and
adaptive operations [10] are usually required to mitigate these effects which signifi-
cantly increases the design complexity. The second challenge is the low
power-conversion efficiency (PCE) because of the weak power from the ambient
environment. Such a weak power results in low-voltage operation and thus a high
resistive energy loss with conventional CMOS technology [11, 12]. The third challenge
is the leakage of the energy storage capacitors, which makes the approach of
“short-time-computing, long-time-harvesting” less applicable in ultra-low input power
scenarios.

Sensing, interface, and communication. While this can be similar to IoT systems
with a stable supply, the increasing amount of data being transferred by the IoT
devices, the relatively much lower energy budget, and the unpredictable power outages
make the interface challenging. There is not yet a mature protocol to deal with frequent
supply failures in IoT. Some techniques, such as passive communications (e.g.
backscatter in [16]), are useful to reduce the power, but limited in the operation range,
speed, and overall energy-efficiency when considering the power transmitter.

Digital signal processing. There are two main challenges in the design of digital signal
processors. The first challenge, as introduced in Sect. 1, is that the slowing down of
voltage scaling has become challenging because of increased leakage power. The
question of how to build reliable and energy-efficient digital processing circuits under a

4 X. Li et al.

lower voltage has become a hot topic in device, circuit, and architecture research. The
second challenge, which is a result caused by intermittent supply failure, is that the
frequent backup-restore operations consume significant amounts of energy, limiting the
overall forward computing progress. There has been some initial research on the opti-
mization of nonvolatile processors (NVPs) recently, as will be discussed later, showing
great potential to mitigate the impact of power intermittency [13–15]. Nevertheless, the
study of signal processing algorithms, computing architectures for IoT systems is still
insufficient for digital signal processing under an intermittent power supply.

Data storage. For IoT systems, especially in sensing applications, memory elements
are needed to store data before they are processed and transferred. Future IoT data
storage will be using more memory as the task complexity increases. While the
required data storage volume varies with the application, the major challenge in data
storage for energy-harvesting IoT systems is the energy efficiency in read and write
access due to a low energy budget. This challenge is particularly critical for on-chip
nonvolatile memory (NVM) designs, as recent research has revealed the advantage of
integrated on-chip NVM to reduce access energy and delay [13–15, 17, 18]. It is likely
that the co-design of data storage and signal processing architecture will be critical for
overall energy efficiency, especially for some applications where memory access is the
bottleneck due to frequent backup and restore operations [19].

Other issues. Other challenges, such as security and privacy [20], reliability, yield,
etc., which are not covered by this chapter, will also be critical in future IoT systems.

3 Emerging Beyond-CMOS Devices

In this section, TFET and NCFET, as emerging beyond-CMOS devices, will be
introduced and compared with conventional CMOS. At the device level, there are a few
widely-used performance metrics to evaluate a device:

ON-state current (ION): drain current when the transistor is in the ON state. ION is
usually measured with both the gate-source voltage (VGS) and the drain-source voltage
(VDS) set to be equal to the supply voltage. A higher ION is equivalent to smaller
on-state resistance, and is thus preferred for higher speed.

OFF-state current (IOFF): drain current when the transistor is in the OFF state. IOFF is
usually measured with VGS equal to zero and VDS equal to the supply voltage. A lower
IOFF indicates larger off-state resistance, and is preferred for lower leakage current.

Subthreshold swing (SS): the required voltage change at the transistor gate to change
the drain-source current by a decade in the subthreshold region. In conventional CMOS
FETs, SS is limited by the thermionic emission of carriers, and is higher than
60 mV/decade at the room temperature. A transistor with a smaller SS, could be
operating at a lower supply voltage, while providing the same ION and IOFF. This
capability reduces overall power consumption by reducing the dynamic power (as the
voltage is lower). A smaller SS in analog and RF circuits is also preferred, because it
also leads to higher gmID for higher gain and current efficiency:

Enabling Internet-of-Things with Opportunities 5

gm
ID

¼ @ID
@VGS

1
ID

¼ @lnlD
@VGS

¼ ln10
ss

ð1Þ

Steep-slope devices: in this chapter, it is used to represent devices with SS lower than
60 mV/decade of conventional CMOS FETs at the room temperature.

3.1 TFET

TFET is essentially a gated p-i-n diode with reverse biasing and asymmetric doping [7].
There have been many types of reported TFET devices [7]. The double gate GaSb-InAs
heterojunction TFET (HTFET) device has shown good balance between a steep slope
and high ION, as shown in Fig. 2(a) [11]. When the gate bias voltage is low, the drain
source current is small. This is because the wide energy barrier suppresses the prob-
ability of band-to-band tunneling (BTBT), as shown in Fig. 2(b). When the gate
voltage is increased, the tunneling barrier is narrowed. As a result, the
quantum-mechanical BTBT phenomenon creates an abrupt transition between the ON
and OFF states as shown in Fig. 2(c), achieving a low SS at the room temperature as
shown in Fig. 2(d).

In addition to the steep-slope switching characteristic, HTFET also exhibits some
unique features shown in Fig. 2(e–f) [2, 11, 12, 21]. The first feature is the uni-directional
tunneling that makes TFET conducting current almost drain-to-source only in a moderate
voltage range. This originates from the asymmetric structure in HTFET. The second
feature is the negative differential resistance (NDR), which appears in the negative VDS

range. The third feature is about the device capacitance. HTFET has less capacitance than

GaSb-InAs
HTFET

Vgs=0.50 V

Vgs=0.40 V

Vgs=0.30 V

Vgs=0.20 V

Vgs=0.10 V

VDS [V]

I D
S [

μA
/μ

m
]

Unidirectional Region

103

102

101

100

10-1

10-2

10-3
0.0 0.2 0.4 0.6

VGS [V]

I D
S [

μA
/μ

m
]

x7

HTFET
Si FinFET

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

C
ap

ac
ita

nc
e

[fF
/μ

m
]

VGS [V]

Solid: VDS=0.3V
Dashed: VDS=0.5V

GaSb-InAs N-HTFET

CGD

CGS

CGG

-1 0 1-200

0

200

400

(e)(d) (f)

Channel:
InAs

Drain:
InAs N+

Source:
GaSb P++

Oxide

Oxide

Gate

Gate

EC

EVEn
er

gy

Location
VDS>0, VGS=0V

OFF State EC

EVEn
er

gy

Location

VDS>0, VGS=VDD

ON State

(a) (b) (c)

Fig. 2. HTFET: (a) Structure of an N-type HTFET; (b–c) Energy diagrams; (d, e) IDS-VGS

comparison; (f) Capacitance [2, 11, 12, 21]

6 X. Li et al.

Si FinFET in the low voltage region, and more capacitance in the high voltage region.
Table I summarizes some recent TFET experimental results. Device models for TFET are
available for circuit SPICE simulations [11, 12, 22–25].

3.2 NCFET

A negative differential capacitor was predicted in 2008 to be stacked at the gate
insulator in a MOSFET. By doing this, a small voltage change at the gate could create a
larger change in the insulator surface potential, leading to a steeper switching behavior
in the IDS versus VGS curves of the transistor [26]. Figure 3(a–b) shows the conceptual
device structure and the equivalent gate capacitance network. Recently, there have been
advances in both fundamental and experimental results [27–33]. Table 1 shows some
recent NCFET results. Due to the challenge of integrating the ferroelectric layer, some
early devices were shown with an external ferroelectric capacitor. Recent reported
devices are capable of integrating the ferroelectric capacitor around a fin-structure gate.

Substrate
DS

Oxide

Fe rroelectric l ayer

Gate

Metal

CFE

COX

CMOSFET

VG

VMOS

Channel

(a) (b)

Fig. 3. NCFET: (a) Device structure; (b) Capacitance model [18]

VGS (V)
0 0.35 0.70

10-1

101

103

VDS=0.70V

0 - 30nmI D
S (

µA
/µ

m
)

VGS(V)

Id
s(

m
A

)

2.25nm

1.90nm

0.3

0.2

0.1

0

-0.1
-0.5 0 0.5

(a) (b)

Fig. 4. NCFET simulated switching behavior versus ferroelectric layer thickness [18, 34, 36]

Enabling Internet-of-Things with Opportunities 7

Many ferroelectric materials, including PbTiO, BaTiO, Pb(ZrTi)O, HfZrO, etc.,
could exhibit negative capacitance [30]. The matching of the ferroelectric negative
capacitance and the internal MOSFET gate capacitance is the key towards the per-
formance of an NCFET. Thus, a proper capacitance tuning through ferroelectric
material layer thickness and area is critical to the success of an NCFET process [30].
Figure 4 shows how the ferroelectric layer thickness affects the switching slope and
hysteresis [18, 36]. As the ferroelectric layer thickness increases, SS reduces, and a
hysteresis window gradually appears and then finally covers both positive and negative
VGS range. These characteristics of hysteresis, a steep slope, and their dependence on
the ferroelectric material, have been explored in digital logic and memory circuit design
[18, 34, 35].

4 New Opportunities Enabled by Emerging Devices, Circuits,
and Architectures

This section shows how the IoT system bottlenecks could be mitigated by the
opportunities enabled by these emerging devices.

4.1 Energy Harvesters and Sensors with Higher Efficiency

It is intuitive that, by increasing harvested energy from the same ambient environment,
the number of performed tasks and functionalities could be increased in an
energy-harvesting IoT system. Existing research results have shown that, by making
use of the steep switching characteristics, energy harvesters based on these emerging
devices could operate better than CMOS transistors in the low-voltage scenarios.
Figure 5(a) is a conventional cross-coupled RF rectifier. Figure 5(b) is a conventional
DC-DC charge pump. Figure 5(c) is an enhanced TFET DC-DC charge pump topology
[11, 12]. The power conversion efficiency (PCE) comparisons in Fig. 6 shows how
III-V heterojunction TFET (HTFET) based designs outperform those based on the Si
FinFET technology.

Table 1. Recent advances in TFET, NCFET, and PTD-based PhaseFET

NCFET TFET

Source [32] IEDM’15 [29] EDL’16 [30] EDL’16 [45] IEDM’14 [44] EDL’15 [43] VLSI’15

Structure HfZrOFinFET P(VDF-TrFE) BiFeO3,
FinFET

Si FinFET III-V
vertical

III-V vertical

ION (A/m) - 100 1e-4–1e-6 - 8.4 275 N; 30 P
IOFF - *5pA/m 1e-12–1e-14 ION/3e4 N;

ION/2e6 P;
0.1nA/m 0.8nA/m N;

0.3nA/lm P
SSmin

(mV/dec)
55–87 45–52 (2-4 w/

hysteresis)
8.5–11 P;
16–50 N

56 N;58 P; 64 N 55 N; 115 P;

Hysteresis Depends no yes no no no

8 X. Li et al.

There are a few factors that lead to the improvement of power conversion efficiency
when using HTFETs. The first factor is lower resistive power loss. When the input
voltage is low, the resistive power loss limits the overall power conversion efficiency,
and the designs in HTFET have less resistive power loss, leading to significant benefits.
The second factor is lower capacitive power loss during charge redistribution when the
input voltage is low. A combination of these two factors leads to a better transistor
sizing strategy for the trade-off between the resistive power loss and switching
capacitive loss. The third factor is the uni-directional tunneling conduction which leads
to lower reverse power loss in a form of leakage current from the output to the input.

The uni-directional tunneling feature of HTFETs also enables a new circuit
topology towards even higher efficiency. For example, in the enhanced HTFET DC-DC
converter in Fig. 5, the gate control of the output p-type transistor is now controlled
directly by the input clock signal, which enables doubled gate driving voltage and less
resistive power loss.

By providing higher power conversion efficiency, HTFET significantly extends the
IoT operating applications to lower energy-income scenarios. It is also noted that, from
another aspect, an energy harvester itself could be treated as a sensor that senses the
input power level. A higher PCE provided by HTFET also improves the sensing
sensitivity, such as motion or vibration sensors and radiation sensors. Similar rectifier
and DC-DC charge pump designs based on NCFET and PhaseFET, although there is
no result reported, a higher PCE will not be a surprise.

4.2 Analog Processing and Communication

For analog processing and transceiver designs, the lowest achievable power con-
sumption is determined by the trade-off between various specifications, including gain,
speed and bandwidth, linearity and spectral performance (such as spurious-free
dynamic range or SFDR, signal-to-noise + distortion ratio or SNDR, input-referred
noise), etc. Figure 7 shows the evaluation results of TFET based designs, including
A/D converter, sense amplifier and D/A converter.

Figure 7(a) evaluates a 6-bit 10-MS/s successive-approximate-register (SAR) A/D
converter, and Fig. 7(b) shows how HTFET is capable of lowering the energy beyond
the limit of CMOS [24]. Such a gain stems from higher current efficiency for both
digital logic (lower dynamic power) and the comparator (higher gm/ID). Figure 7(c–d)

VRF_IN+

VDC

VRF_IN-

(a)

Clock+

VDC_OUT

(b)

Clock-

VDC_IN

Clock+

VDC_OUT

(c)

Clock-

VDC_IN Clock-
Clock+

Fig. 5. Rectifier and DC-DC charge pumps: (a) Rectifier; (b) Conventional DC-DC charge
pump; (c) Enhanced DC-DC charge pump in III-V HTFET [11, 12]

Enabling Internet-of-Things with Opportunities 9

shows the performance evaluation of a low-noise bio-signal sense amplifier
(LNA) [22]. Here HTFET based design also has a higher gain because of higher gm/ID.
A higher gain also leads to the input referred noise reduction as by definition, the input
referred noise is the output noise divided by the gain of the amplifier. Figure 7(d–e)
shows the performance evaluation of a current-steering D/A converter [25]. HTFET
shows a higher SFDR because of less transistor capacitance at the low voltage region,
which leads to less coupled switching glitches and higher output impedance.

TFET based typical RF circuit designs were reviewed in [37], including RF LNA,
mixer, frequency doubler, oscillators, etc. Substantial benefits are observed using

Input Power (dBm)
(a)

PC
E

(%
)

20

40

60

80

100

0
-50 -40 -30 -20 -10

HTFET Rec fier

Si FinFET
Rec fier

PC
E

(%
)

20

40

60

80

100

0

HTFET DC-DC
Charge Pump

Si FinFET DC-DC
charge pump

VIN= 0.40 V

101 102 103 104

Load Resistance [Ω]
(a)

Fig. 6. PCE of rectifier in (a) and DC-DC charge pump in (b) [11, 12]

Analog
Input

Reference

Digital
Output

Planar CMOS limit

(a)

(b)

(c)

(d)

HTFET D/A
Converter

Si FinFET D/A
Converter

Frequency [MHz]

SF
D

R
 [d

B]

60

70

80

0 100 200 300 400 500

(e)

(f)

RL RL
Vo

VDD

D
ec

od
e

d
Dr

iv
er

Digits

bi
as

SAR Logic

SHA

DAC

G
ai

n
[d

B]

Ph
as

e
[d

eg
.]

Frequency [Hz]

En
er

gy
 [k

T]

SNDR [dB] Frequency [Hz]In
pu

t R
el

at
ed

 N
oi

se
 [V

/≈
H

z]

0

20

40

60

Gain
Phase

Solid: HTFET OTA
Dashed: Si FinFET OTA

100 102 104 106-180

-120

-60

0

108

107

106

105

104

0.3V
0.3V

0.4V
0.4V

0.5V
0.5V

HTFET ADC
Si FinFET ADC

EClass-A
Emin

30 34 38

10-3

10-5

10-7

10-1 101 103

Si FinFET Neural
Amplifier:

HTFET Neural
Amplifier: Ibias=10nA

Ibias=10nA
Ibias=40nA
Ibias=160nA

Fig. 7. Comparisons between HTFET and Si FinFET circuits: (a–b) a 6-bit SAR A/D converter
and performance; (c–d) bio-signal sensing OTA gain and input referred noise versus frequency;
(e–f) Current-steering D/A converter and its SFDR [22, 24, 25]

10 X. Li et al.

HTFET in low-voltage high-frequency circuits, with higher preferred nonlinearity for
mixers, and higher transconductance and gain at low power and low current levels.

Considering that the above designs are widely used as a front-end and back-end
block in IoT systems, as shown in Fig. 1, significant power saving could be achieved
by adopting HTFET.

4.3 Energy-Efficient Volatile Digital Logic

There have been evaluations between TFET and conventional CMOS technologies on
digital circuits, including combinational gates and adders, sequential gates like D
flip-flops, and SRAM. TFET based designs are shown to outperform conventional
CMOS in energy-delay especially with a low supply voltage, as shown in Fig. 8 [38,
39]. It is also noted that, when using TFET for pass-transistor logic, the device feature
of uni-directional tunneling conduction affects the functionality and is handled with by
either adding another parallel pass transistor for the other opposite direction conduc-
tion, or re-designing the circuit topology.

As the technology scales down to smaller dimensions, the parasitics and contact
non-idealities play a more important role. Recently, an evaluation work considering
parasitics indicates that, similar performance advantage by HTFET is still observed
even with higher contact resistance due to a vertical structure [40]. Another work on
processor design and evaluation shows that, with less energy per instruction (EPI),
TFET based designs extends the design space when considering the thermal limit and
the degree of parallelism, leading to higher performance [41].

Similarly, for NCFET, lower energy-delay has been observed for digital logic in
low-voltage scenarios when operating with a moderate-to-high capacitive wire load, as
shown in Fig. 9(a) [35]. The hysteresis in the positive VGS region as shown in Fig. 5(c)
could significantly improve the input noise margin by an amount of the hysteresis
window width [34]. The theory of this could be understood as follows. Considering an
NCFET inverter with n-type NCFET transistor and p-type conventional transistor, the
n-type NCFET transistor will not turn on until the input voltage increases beyond the

20nm Si FinFET
15nm Si FinFET
20nm HTFET

1V

0.4V
0.2V

1V

0.2V

0.6V

0.2V

0.15V

32
-b

 A
dd

er
 E

ne
rg

y
[fJ

]

10

1

1.0 1 10 100
Delay [nS]

100% activity

0.1
100 300 500 700

0.1

1

10

100

1000

10000

De
la

y
[n

S]

VDD [mV]

1

10

100

1000

10000

100 300 500
VDD [mV]

CMOS 6T
CMOS 10T

TFET 8T
TFET 10T-2

TFET 10T-1

TFET 10T-3

CMOS
10T

CMOS 6T

TFET 8T

TFET 10T-1

SRAM SRAM

En
er

gy
 [f

J]

Adder

(a) (b) (c)

Fig. 8. TFET design examples: (a) a 32-b adder; (b–c) SRAM [38, 39]

Enabling Internet-of-Things with Opportunities 11

rising hysteresis edge, nor will it turn off until the input signal reduces beyond the
falling hysteresis edge. This is illustrated in Fig. 9(c). The improved input noise margin
of NCFET logic could also be used to build SRAM cells with enhanced noise margin,
as shown in Fig. 9(d) [34].

4.4 Energy-Efficient Nonvolatile Logic and Memory Circuits

For IoT energy-harvesting applications where the power supply is intermittent, it is
critical to sustain inter-process data during power outages. Therefore, on-chip non-
volatile memory (NVM) becomes intriguing because of its non-volatility to avoid
refreshing and its immunity to power failures. The possibility of on-chip memory
access instead of out-of-chip access also reduces the energy consumption. Meanwhile,
power-gating is very useful to further reduce the static leakage power of idle digital
circuits, and NVM could be used to store the state of these idle circuits while turning
off their power supply.

Furthermore, with on-chip NVM and associated sensing and control, a nonvolatile
processor (NVP) could be built to back up the processor states and data, including
memory, D flip-flops (DFF), registers, etc., into this NVM during power failures [14,
42, 48–54]. Such on-chip data backup and restore operations reduce the risk of losing
computation progress. When compared with out-of-chip nonvolatile backup options,

En
er

gy
 [f

J]

50

40

30

20

10

Delay [nS]
(a)

FinFET
NCFET, 3nm

Ferroelectric layer

NCFET, 6nm Ferroelectric layer

0 2 4 6 8 0 0.2 0.4
0

0.2

0.4

Vin [V]
(b)

Vo
ut

 [V
]

Vin [V]
(c)

Vo
ut

 [V
]

0 0.2 0.4
0

0.2

0.4

FinFET

NCFET

NCFET FinFET NCFET

Extended noise margin

(d)

BL BLN

WL

Fig. 9. NCFET evaluation [34, 35]: (a) Energy-delay for a Koggy-Stone adder; (b) Inverter
input-output transfer function (NCFET has 16 nm ferroelectric layer thickness); (c) Inverter
input-output transfer function (NCFET has 27 nm ferroelectric layer thickness) showing
improved input noise margin with NCFET hysteresis; (d) NCFET SRAM with enhanced noise
margin with NCFET hysteresis.

12 X. Li et al.

this on-chip backup solution has lower power, energy and interface overhead. Such an
advantage enables more computational progress in power-supply-intermittent scenarios
[13], as illustrated in Fig. 11.

With the tunable hysteresis in NCFETs, energy-efficient nonvolatile memory could
be built. Figure 10(a) shows an NCFET NVM design based on an NCFET hysteresis
tuned around VGS = 0 V (see Fig. 3(d)) [18]. It is reported that this NCFET NVM
exhibits improved access energy-delay. Different from existing nonvolatile memory
devices such as ReRAM and STT-RAM, the NCFET itself is also a transistor. This
provides opportunities of logic-in-memory process.

Attaching an NCFET nonvolatile bit storage to a conventional volatile DFF, a
nonvolatile DFF with external backup and reset controls could also be built, as illus-
trated in Fig. 10(c) [34]. With a local nonvolatile memory cell, the backup and restore

Bit line 0 Bit line 1 Bit line 2

Sense line 0 Sense line 1 Sense line 2

Read
Select 0

Write
Select 0

Read
Select 0

Write
Select 0

DFF
Q

Q

Data

Clock

Backup
control

NCFET
Memory Cell

(a) (b)

Fig. 10. NCFET circuits [18, 34]. (a) Two-transistor (2T) nonvolatile memory array;
(b) Nonvolatile NCFET D flip-flop.

NVP with on-chip
NVM backup

Volatile Processor with off-chip NVM

Time

Time

C
om

pu
ta

tio
n

Pr
og

re
ss

H
ar

ve
st

ed

Po
w

er

Restore

Backup

Fig. 11. Comparisons of computation progress between volatile processor with off-chip NVM
and nonvolatile processor with on-chip NVM.

Enabling Internet-of-Things with Opportunities 13

energy becomes lower than that of the clustered nonvolatile memory backup solution in
which long-distance data transmission is time and energy consuming.

More aggressively, by exploring the embedded logic and non-volatility in NCFET,
an external-control-free intrinsically nonvolatile DFF is possible. Such an intrinsically
NV-DFF could be built by replacing the slave latch of a conventional volatile CMOS
master-slave DFF with one NCFET nonvolatile latch shown in Fig. 12. Making the
NV-DFF intrinsically nonvolatile enables the removal of external controls, and makes
fine-grained backup/restore operations in NVP and power-gating applications possible
with more energy savings.

D

CN

CN

C C

C

C

CN
C

C CN CN

Q

VDD VDD

C CN

D

CN
C

C CN CN

Q

VDD

CN

C

Weak
pull-up

CN

C CN

(a)

(b)

Fig. 12. NCFET nonvolatile latches (NCFET transistors are drawn with thick gates).

14 X. Li et al.

With the synergy of the low-voltage NCFET logic [35], NCFET nonvolatile
memory array [18], and the NCFET NV-DFF, an energy-efficient NVP is designed, as
shown in Fig. 13(b), in comparison with a conventional NVP in Fig. 13(a). As both
logic and memory are intrinsically nonvolatile, there is no need for backup and restore
controls for the NCFET storage. The baseline design uses conventional CMOS tran-
sistors for logic, a clustered FeRAM array as data and instruction memory, and
NV-DFF using ferroelectric capacitor for state backup under external control [56].

PC

(v
ol

at
ile

)

In
st

ru
ct

io
n

M
em

or
y,

 3
2 k

B
(n

ov
ol

at
ile

)

R
eg

is
te

r F
ile

s
(v

ol
at

ile
)

AL
U

D
at

a
m

em
or

y,

32
kB

(n
ov

ol
at

ile
)

W
rit

e
Ba

ck

Backup Controller
(nonvolatile)

NVM Backup
Block

32-bit*33

PC

(n
on

vo
la

til
e)

In
st

ru
ct

io
n

M
em

or
y,

 3
2k

B
(n

ov
ol

at
ile

)

R
eg

is
te

r F
ile

s
(n

on
vo

la
til

e)

AL
U

D
at

a
m

em
or

y ,

32
kB

(n
ov

ol
at

ile
)

W
rit

e
Ba

ck

(a) Conventional
NVP

(b) NCFET NVP

Fig. 13. NVP design using NCFET logic and memory

0

10

20

30

40

1 101 201 301

Po
w

er
 (m

ic
ro

 w
at

t)

Time (0.2s)

Fig. 14. Input power profile in the test

Enabling Internet-of-Things with Opportunities 15

FF
T

ba
si

cm
at

h

 b
itc

ou
nt

su
sa

n_
sm

oo
th

in
g

su
sa

n_
ed

ge
s

Su
sa

n_
co

rn
or

s

st
rin

gs
ea

rc
h

di
jk

st
ra

3

2

1

0

Co
m

pu
ta

tio
n

Pr
og

re
ss

G

ai
n

(1
00

%
)

Fig. 15. Computation progress gain for various test benches

0

50000

100000

150000

200000

1
18

77
37

53
56

29
75

05
93

81
11

25
7

13
13

3
15

00
9

16
88

5
18

76
1

20
63

7
22

51
3

24
38

9
26

26
5

28
14

1Co
m

pu
ta

tio
n

Pr
og

re
ss

(#

 o
f I

ns
tr

uc
ti

on
s)

Time (2mS)

baseline NCFET Logic + Mem

Fig. 16. Comparison between NCFET NVP and the baseline NVP of computation progress
versus time (Tesebench: basic math).

10M

8M

6M

4M

2M

0M

Fo
rw

ar
d

Pr
og

re
ss GSM

SHA
AES Sobel

Midian
Integral

JPEG

ZigbeeCMOS LP
TFET

Fig. 17. TFET NVP with more forward progress for various tasks (source: [57]).

16 X. Li et al.

Giving the harvested RF power from TV stations, as shown in the power profile
sampled per 0.2S in Fig. 14, the average input power is 8.7 µW, with the peak up
to *45 µW and frequent power failures with power lower than nW. The simulations
are carried out in various test cases in MiBench [55]. Figure 15 shows the simulation
results for these testbenches. Figure 16 shows the comparison of computation progress
versus time. The computation progress gain ranges between 1.5� to 2.8�, which
confirms the benefit of using NCFET for NVP design.

When only TFET is used to replace CMOS in NVP design, improvement of
computation progress is also observed, as shown in Fig. 17 [57]. The improvement
comes from the energy savings by low-power digital logic and less number of
backup/restore operations.

4.5 Nonvolatile Computing Architectures

In this new NVP design regime, most existing guidance of low-power design tech-
niques are still useful, but there has also been significant difference in the design and
optimization methodology.

The first different rule is that “design for low power does not guarantee more
computing progress” [13]. This is because, in a battery-less energy-harvesting IoT
system, there is no ideal temporary energy storage, and the harvested energy will be
wasted in the form of overflowing or leaking if it is not used efficiently in time. In other
words, the computing forward progress (CFP) indicated by the number of executed
instructions (NI) could be expressed as a function of computation energy (CE) and
energy-per-instruction (EPI):

CFP ¼ CE=EPI; ð2Þ

where CE is a fraction of the total harvested energy, considering the energy loss from
backup/restore operations, leakage and overflow in the energy storage capacitor, and
leakage in the circuits.

And the fact is that the lowest EPI does not guarantee the highest CE because of the
abovementioned energy harvesting and storage non-idealities. For example, an
out-of-order processor may contribute to more forward progress than a non-pipelined
processor in scenarios when the harvested power is higher. As a result, the power of the
processor should adapt to the harvester and energy storage status to find the best
trade-off between the lowest EPI and the most CE.

There are various approaches to configuring the processor so as to fit the input
power trace. One approach is to dynamically switch between different processing cores
which are all embedded on the same chip based on level of harvested power and the
store energy [49]. The second approach is to dynamically scale the operating frequency
and voltage (DVFS) accordingly [53, 54]. The third approach is to dynamically
re-allocate computing and storage resources for the processor which turns out to be a
different degree of parallelism [54].

In addition to the trade-off between CE and EPI, there are other optimizations that
have significant impact on the overall forward progress.

Enabling Internet-of-Things with Opportunities 17

The first consideration is “what” and “when” to back up the computing states.
There are various reasons that make this consideration important. First of all, less
amount of backup states needs less backup energy but needs more energy to recover
and re-compute; Secondly, a backup operation which is carried out too early may be a
complete waste of energy and time as it may not be necessary at all, while a too-late
backup may lead to backup failure and progress rolling-backup. Also, there can be a
risk to take, on how much energy that could be harvested in the future – which could
also be counted into a certain amount of usable energy.

The second consideration is how to understand the feature of the harvested energy,
and how to predict its trend. An accurate prediction of the input power will certainly
help system configuration for more forward progress. For some energy sources such as
ambient RF energy, the harvested power varies radically and is challenging to predict.
Meanwhile, for some other energy sources, such as motion and solar energy sources,
the harvested power has a certain pattern and could be predicted. Machine learning
techniques have been proposed to predict the future energy to assist dynamic system
configuration for more forward progress [49, 54].

The third consideration is on-chip NVM optimization. There are a few key factors
that must be considered. One factor is what types of on-chip memory to use for backup
operations. Different NVM devices, such as ReRAM, FeRAM, STT-RAM, and the
emerging NCFET NVM, etc., have different energy-delay performance for read and
write operations. Another factor is to use centered (aka clustered) or distributed
memory. Distributed memory uses a local nearby NVM bit storage close to each DFF
with a copy of access interface circuit. Clustered memory is implemented with arrays of
memory and could be dense in area due to shared elements such as sense amplifiers but
may consume more energy and delay in access due to longer interconnection lines and
limited degree of access parallelism.

5 Future Work for IoT Using Emerging Devices

While emerging devices have shown great potential for future energy-efficient IoT
applications, there is still a large gap between what has been experimentally demon-
strated and a complete system implementation and application mapping. Significant
efforts from all the levels of device, circuits, system and applications are required to
speed up the progress [58].

Device understanding, characterization, and integrated fabrication: Continuous
optimization of material and process is required for large-scale integration. It is a key to
build accurate models of emerging devices that support more aspects of devices fea-
tures, such as matching, noise, endurance, parasitics, etc., for circuit and higher level
simulations;

Circuit and architecture optimizations: It is unlikely for emerging device features to
be used as a drop-in replacement for all conventional CMOS techniques. Innovative
circuit topology re-design and optimization are sometimes a must to obtain the desired
circuit functionality and performance, which also brings additional trade-offs to carry
out. Circuit and architecture optimizations to make the most use of pros and mitigate

18 X. Li et al.

cons of emerging devices are necessary [13–15, 46]. Meanwhile, device features
deviating from conventional CMOS behavior may actually be very useful in some
applications, highlighting the necessity of device-circuit-application co-design.

Higher-level considerations: Quality-of-service (QoS) and task scheduling opti-
mization, with support from software design are also an area of key interest [47, 51,
52]. Security, privacy, and communication protocols are core concerns in any IoT
deployment. The study of the interaction of quality and security metrics with design
and power efficiency optimizations requires further investigations from device to
architecture to software ecosystem.

The exploration of emerging devices, circuits, and architectures should be a joint
effort. It is impossible to dig into all emerging devices for all different types of
applications. Efforts spent for emerging device modeling and benchmarking may not be
meaningful if the device finally turns out to be far from satisfactory. Moreover, research
on modeling and higher-level design needs strong support from device developing
groups and continuous interactions with them are crucial to ensure that each is aware of
the newest findings and phenomena understandings in the other’s domain.

6 Conclusion

This chapter has discussed new opportunities in Internet-of-Things enabled by
emerging devices, circuits and architectures through enhanced and new features to the
implementations. The future work for IoT based on emerging technologies is also
discussed.

Acknowledgements. This work was supported in part by the Center for Low Energy Systems
Technology (LEAST), one of the six SRC STARnet centers, sponsored by MARCO and
DARPA, by NSF awards 1160483 (ASSIST), and NSF Expeditions in Computing
Award-1317560.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Networks 54,
2787–2805 (2010)

2. Li, X., Heo, U.D., Ma, K., Narayanan, V., Liu, H., Datta, S.: Rf-powered systems using
steep-slope devices. In: 2014 IEEE 12th International New Circuits and Systems Conference
(NEWCAS) (2014)

3. Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., Tentzeris, M.M.:
Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor
platforms. Proc. IEEE 102, 1649–1666 (2014)

4. Nikonov, D.E., Young, I.A.: Overview of beyond-CMOS devices and a uniform
methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)

5. Lu, L., Li, X., Narayanan, V., Datta, S.: A reconfigurable low-power BDD logic architecture
using ferroelectric single-electron transistors. IEEE Trans. Electron Devices 62(3), 1052–
1057 (2015). doi:10.1109/ted.2015.2395252

Enabling Internet-of-Things with Opportunities 19

http://dx.doi.org/10.1109/ted.2015.2395252

6. Roy, K., Sharad, M., Fan, D., Yogendra, K.: Computing with spin-transfer-torque devices:
prospects and perspectives. In: 2014 IEEE Computer Society Annual Symposium on VLSI
(2014)

7. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc.
IEEE 98, 2095–2110 (2010)

8. Khan, A.I., Yeung, C.W., Hu, C., Salahuddin, S.: Ferroelectric negative capacitance
MOSFET: capacitance tuning & antiferroelectric operation. In: 2011 International Electron
Devices Meeting (2011)

9. Swaminathan, K., Liu, H., Li, X., Kim, M.S., Sampson, J., Narayanan, V.: Steep slope
devices: enabling new architectural paradigms. In: Proceedings of the 51st Annual Design
Automation Conference on Design Automation Conference - DAC 2014 (2014)

10. Brito, M.A.G.D., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A.: Evaluation of
the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60,
1156–1167 (2013)

11. Liu, H., Li, X., Vaddi, R., Ma, K., Datta, S., Narayanan, V.: Tunnel FET RF rectifier design
for energy harvesting applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 400–411
(2014)

12. Heo, U., Li, X., Liu, H., Gupta, S., Datta, S., Narayanan, V.: A high-efficiency
switched-capacitance HTFET charge pump for low-input-voltage applications. In: 2015
28th International Conference on VLSI Design (2015)

13. Ma, K., Zheng, Y., Li, S., Swaminathan, K., Li, X., Liu, Y., Sampson, J., Xie, Y.,
Narayanan, V.: Architecture exploration for ambient energy harvesting nonvolatile
processors. In: 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA) (2015)

14. Ma, K., Li, X., Li, S., Liu, Y., Sampson, J.J., Xie, Y., Narayanan, V.: Nonvolatile processor
architecture exploration for energy-harvesting applications. IEEE Micro. 35, 32–40 (2015)

15. Ma, K., Li, X., Swaminathan, K., Zheng, Y., Li, S., Liu, Y., Xie, Y., Sampson, J.J.,
Narayanan, V.: Nonvolatile processor architectures: efficient, reliable progress with unstable
power. IEEE Micro. 36, 72–83 (2016)

16. Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter.
In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM - SIGCOMM
2013 (2013)

17. Ueki, M., Takeuchi, K., Yamamoto, T., Tanabe, A., Ikarashi, N., Saitoh, M., Nagumo, T.,
Sunamura, H., Narihiro, M., Uejima, K., Masuzaki, K., Furutake, N., Saito, S., Yabe, Y.,
Mitsuiki, A., Takeda, K., Hase, T., Hayashi, Y.: Low-power embedded ReRAM technology
for IoT applications. In: 2015 Symposium on VLSI Technology (VLSI Technology) (2015)

18. George, S., Gupta, S., Narayanan, V., Ma, K., Aziz, A., Li, X., Khan, A., Salahuddin, S.,
Chang, M.-F., Datta, S., Sampson, J.: Nonvolatile memory design based on ferroelectric
FETs. In: Proceedings of the 53rd Annual Design Automation Conference on - DAC 2016
(2016)

19. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: PRIME: a novel
processing-in-memory architecture for neural network computation in ReRAM-based main
memory. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA) (2016)

20. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44, 51–58 (2011)
21. Kim, M.S., Liu, H., Swaminathan, K., Li, X., Datta, S., Narayanan, V.: Enabling

power-efficient designs with III-V tunnel FETs. In: 2014 IEEE Compound Semiconductor
Integrated Circuit Symposium (CSICS) (2014)

20 X. Li et al.

22. Liu, H., Shoaran, M., Li, X., Datta, S., Schmid, A., Narayanan, V.: Tunnel FET-based
ultra-low power, low-noise amplifier design for bio-signal acquisition. In: Proceedings of the
2014 International Symposium on Low Power Electronics and Design - ISLPED 2014
(2014)

23. Tsai, W.-Y., Liu, H., Li, X., Narayanan, V.: Low-power high-speed current mode logic using
Tunnel-FETs. In: 2014 22nd International Conference on Very Large Scale Integration
(VLSI-SoC) (2014)

24. Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR
analog-to-digital converter. IEEE Trans. Electron Devices 61, 3661–3667 (2014)

25. Kim, M.S., Li, X., Liu, H., Sampson, J., Datta, S., Narayanan, V.: Exploration of low-power
High-SFDR current-steering D/A converter design using steep-slope heterojunction tunnel
FETs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(6), 2299–2309 (2016)

26. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for
low power nanoscale devices. Nano Lett. 8, 405–410 (2008)

27. Hu, C., Salahuddin, S., Lin, C.-I., Khan, A.: 0.2 V adiabatic NC-FinFET with 0.6 mA/µm
ION and 0.1nA/µm IOFF. In: 2015 73rd Annual Device Research Conference (DRC) (2015)

28. Lee, M.H., Wei, Y.-T., Chu, K.-Y., Huang, J.-J., Chen, C.-W., Cheng, C.-C., Chen, M.-J.,
Lee, H.-Y., Chen, Y.-S., Lee, L.-H., Tsai, M.-J.: Steep slope and near non-hysteresis of FETs
With antiferroelectric-like HfZrO for low-power electronics. IEEE Electron Device Lett. 36,
294–296 (2015)

29. Jo, J., Choi, W.Y., Park, J.-D., Shim, J.W., Yu, H.-Y., Shin, C.: Negative capacitance in
organic/ferroelectric capacitor to implement steep switching MOS devices. Nano Lett. 15,
4553–4556 (2015)

30. Khan, A.I., Chatterjee, K., Duarte, J.P., Lu, Z., Sachid, A., Khandelwal, S., Ramesh, R., Hu,
C., Salahuddin, S.: Negative capacitance in short-channel FinFETs externally connected to
an epitaxial ferroelectric capacitor. IEEE Electron Device Lett. 37, 111–114 (2016)

31. Jo, J., Shin, C.: Negative capacitance field effect transistor with hysteresis-free
Sub-60-mV/Decade switching. IEEE Electron Device Lett. 37, 245–248 (2016)

32. Li, K.-S., Chen, P.-G., Lai, T.-Y., Lin, C.-H., Cheng, C.-C., Chen, C.-C., Wei, Y.-J., Hou,
Y.-F., Liao, M.-H., Lee, M.-H., Chen, M.-C., Sheih, J.-M., Yeh, W.-K., Yang, F.-L.,
Salahuddin, S., Hu, C.: Sub-60 mV-swing negative-capacitance FinFET without hysteresis.
In: 2015 IEEE International Electron Devices Meeting (IEDM) (2015)

33. Lee, M.H., Chen, P.-G., Liu, C., Chu, K.-Y., Cheng, C.-C., Xie, M.-J., Liu, S.-N., Lee, J.-
W., Huang, S.-J., Liao, M.-H., Tang, M., Li, K.-S., Chen, M.-C.: Prospects for ferroelectric
HfZrOx FETs with experimentally CET = 0.98 nm, SSfor = 42 mV/dec, SSrev = 28
mV/dec, switch-off 0.2 V, and hysteresis-free strategies. In: 2015 IEEE International
Electron Devices Meeting (IEDM) (2015)

34. George, S., Aziz, A., Li, X., Datta, S., Sampson, J., Gupta, S., Narayanan, V.: NCFET based
logic for energy harvesting systems. In: SRC TECHCON 2015 (2015)

35. George, S., Aziz, A., Li, X., Kim, M.S., Datta, S., Sampson, J., Gupta, S., Narayanan, V.:
Device circuit co design of FEFET based logic for low voltage processors. In: 2016 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI) (2016)

36. Aziz, A., Ghosh, S., Datta, S., Gupta, S.: Physics-based circuit-compatible SPICE model for
ferroelectric transistors. IEEE Electron Device Lett. 37, 1 (2016)

37. Asbeck, P.M., Lee, K., Min, J.: Projected performance of heterostructure tunneling FETs in
low power microwave and mm-wave applications. IEEE J. Electron Devices Soc. 3, 122–
134 (2015)

38. Datta, S., Bijesh, R., Liu, H., Mohata, D., Narayanan, V.: Tunnel transistors for energy
efficient computing. In: 2013 IEEE International Reliability Physics Symposium (IRPS)
(2013)

Enabling Internet-of-Things with Opportunities 21

39. Saripalli, V., Datta, S., Narayanan, V., Kulkarni, J.P.: Variation-tolerant ultra low-power
heterojunction tunnel FET SRAM design. In: 2011 IEEE/ACM International Symposium on
Nanoscale Architectures (2011)

40. Kim, M.S., Cane-Wissing, W., Li, X., Sampson, J., Datta, S., Gupta, S.K., Narayanan, V.:
Comparative area and parasitics analysis in FinFET and heterojunction vertical TFET
standard cells. ACM J. Emerg. Technol. Comput. Syst. 12, 1–23 (2016)

41. Swaminathan, K., Liu, H., Sampson, J., Narayanan, V.: An examination of the architecture
and system-level tradeoffs of employing steep slope devices in 3D CMPs. ACM SIGARCH
Comput. Archit. News. 42, 241–252 (2014)

42. Wang, Y., Liu, Y., Li, S., Zhang, D., Zhao, B., Chiang, M.-F., Yan, Y., Sai, B., Yang, H.: A
3us wake-up time nonvolatile processor based on ferroelectric flip-flops. In: 2012
Proceedings of the ESSCIRC (ESSCIRC) (2012)

43. Pandey, R., Madan, H., Liu, H., Chobpattana, V., Barth, M., Rajamohanan, B., Hollander,
M.J., Clark, T., Wang, K., Kim, J.- H., Gundlach, D., Cheung, K.P., Suehle, J.,
Engel-Herbert, R., Stemmer, S., Datta, S.: Demonstration of p-type In0.7Ga0.3As/-
GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary Heterojunction
Vertical Tunnel FETs for ultra-low power logic. In: 2015 Symposium on VLSI Technology
(VLSI Technology) (2015)

44. Rajamohanan, B., Pandey, R., Chobpattana, V., Vaz, C., Gundlach, D., Cheung, K.P.,
Suehle, J., Stemmer, S., Datta, S.: 0.5 V supply voltage operation of
In0.65Ga0.35As/GaAs0.4Sb0.6Tunnel FET. IEEE Electron Device Lett. 36, 20–22 (2015)

45. Morita, Y., Mori, T., Fukuda, K., Mizubayashi, W., Migita, S., Matsukawa, T., Endo, K.,
O’uchi, S., Liu, Y., Masahara, M., Ota, H.: Experimental realization of complementary p-
and n- tunnel FinFETs with subthreshold slopes of less than 60 mV/decade and very low
(pA/lm) off-current on a Si CMOS platform. In: 2014 IEEE International Electron Devices
Meeting (2014)

46. Liu, Y., Yang, H., Wang, Y., Wang, C., Sheng, X., Li, S., Zhang, D., Sun, Y.: Power system
design and task scheduling for photovoltaic energy harvesting based nonvolatile sensor
nodes. In: Lin, Y.-L., et al. (eds.) Smart Sensors and Systems, pp. 243–277. Springer, Cham
(2015)

47. Zhang, D., Liu, Y., Li, J., Xue, C.J., Li, X., Wang, Y., Yang, H.: Solar power prediction
assisted intra-task scheduling for nonvolatile sensor nodes. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 35, 724–737 (2016)

48. Liu, Y., Wang, Z., Lee, A., Su, F., Lo, C.-P., Yuan, Z., Lin, C.-C., Wei, Q., Wang, Y., King,
Y.-C., Lin, C.-J., Khalili, P., Wang, K.-L., Chang, M.-F., Yang, H.: 4.7 A 65 nm
ReRAM-enabled nonvolatile processor with 6 � reduction in restore time and 4 � higher
clock frequency using adaptive data retention and self-write-termination nonvolatile logic.
In: 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016)

49. Ma, K., Li, X., Liu, Y., Sampson, J., Xie, Y., Narayanan, V.: Dynamic machine learning
based matching of nonvolatile processor microarchitecture to harvested energy profile. In:
2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2015)

50. Li, Q., Zhao, M., Hu, J., Liu, Y., He, Y., Xue, C.J.: Compiler directed automatic stack
trimming for efficient non-volatile processors. In: Proceedings of the 52nd Annual Design
Automation Conference on - DAC 2015 (2015)

51. Xie, M., Pan, C., Hu, J., Yang, C., Chen, Y.: Checkpoint-aware instruction scheduling for
nonvolatile processor with multiple functional units. In: The 20th Asia and South Pacific
Design Automation Conference (2015)

22 X. Li et al.

52. Wang, Y., Liu, Y., Wang, C., Li, Z., Sheng, X., Lee, H.G., Chang, N., Yang, H.:
Storage-Less and Converter-Less Photovoltaic Energy Harvesting with Maximum Power
Point Tracking for Internet of Things. IEEE Trans. Comput. Aided Design Integr. Circuits
Syst. 35, 173–186 (2016)

53. Ma, K., Li, X., et al.: Dynamic power and energy management for energy harvesting
nonvolatile processor systems. ACM Trans. Embed. Comput. Syst. (TECS) 16(4), 107:1–
107:23 (2017)

54. Ma, K., Li, X., et al.: Spendthrift: machine learning based resource and frequency scaling for
ambient energy harvesting nonvolatile processors. In: ASP-DAC (2017)

55. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:
MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings
of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4
(Cat. No.01EX538), pp. 3–14 (2001)

56. Kimura, H., Fuchikami, T., Marumoto, K., Fujimori, Y., Izumi, S., Kawaguchi, H.,
Yoshimoto, M.: A 2.4 pJ ferroelectric-based non-volatile flip-flop with 10-year data retention
capability. In: 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung,
pp. 21–24 (2014)

57. Ma, K., Li, X., Sampson, J., Xie, Y., Liu, Y., Narayanan, V.: Nonvolatile processor
optimization for ambient energy harvesting scenarios. In: The 15th Non-volatile Memory
Technology Symposium (NVMTS), pp. 1–3 (2015)

58. Li, X., Ma, K., George, S., Sampson, J., Narayanan, V.: Enabling Internet-of-Things:
Opportunities brought by emerging devices, circuits, and architectures. In: 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), Tallinn, pp. 1–6
(2016)

Enabling Internet-of-Things with Opportunities 23

Logic with Unipolar Memristors – Circuits
and Design Methodology

Nimrod Wald(&), Elad Amrani, Avishay Drori,
and Shahar Kvatinsky(&)

Faculty of Electrical Engineering, Technion – Israel Institute of Technology,
3200003 Haifa, Israel

nimrodw@tx.technion.ac.il, shahar@ee.technion.ac.il

Abstract. Memristors are a general name for a set of emerging resistive
switching technologies. These two terminal devices are characterized by a
varying resistance, which is controlled by the voltage or current applied to them.
The resistance state of a memristor is nonvolatile, and as such makes memristors
attractive candidates for use as novel memory elements. Apart from their use for
memory applications, the use of memristors in logic circuits is widely resear-
ched. A class of logic circuits named ‘stateful logic’, where the logic state of the
inputs and outputs is stored in the form of resistance, is a promising approach for
carrying out logic computations within memory. This chapter discusses the use
of non-polar memristors, a type of memristors whose resistance depends only on
the magnitude of the voltage across its terminals, for performing stateful logic
operations. A design methodology is presented to allow structured development
of stateful logic gates, and backed by a demonstration of the design process of
OR and XOR gates using non-polar memristors.

Keywords: Memristor � Unipolar memristors � Resistive switch � Logic
design � Design methodology � Stateful logic � In-memory computing � mMPU

1 Introduction

Memristor is a general term for a family of emerging technologies [1, 2], including
metal oxide thin film resistive switches (RRAM or ReRAM) [3], spin torque transfer
magneto-resistive RAM (STT-MRAM) [4] and phase change memory (PCM) [5]. The
electrical properties of memristors were formulated in 1971 by Leon Chua [6] in an
effort to achieve a symmetric relation between the known electric quantities of voltage,
current, electric charge and magnetic flux. The research of memristors has been dor-
mant from that time, until in 2008 researchers at Hewlett Packard (HP) laboratories
have linked the known phenomenon of resistive switching to memristors [7]. Since
then, research of memristors is being performed in the fields of memory, neuromorphic
circuits [8], hardware security [9, 10] and logic [11]. Memristors are characterized by
an intrinsic state variable, which determines the device resistance (sometimes called
memristance), varying from a low resistance state (LRS, RON) to a high resistance state
(HRS, ROFF). The state variable represents the physical switching mechanism

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 24–40, 2017.
DOI: 10.1007/978-3-319-67104-8_2

(e.g. filament forming state in RRAM devices), and changes its value according to the
current or voltage applied to the device.

Increasing power dissipation due to leakage in transistors as they are being shrunk
is motivation for use of novel non-volatile devices for performing logic operations.
Furthermore, the fact that processor performance increase greatly outpaces that of
memories, causes a bottleneck named ‘the memory wall’, meaning that most energy
and latency of computations is spent on moving data between the CPU and memory
[12]. Using memristors, natural candidates for replacing conventional memory tech-
nologies, as logic elements could solve this problem by performing the logic operations
within the memory, eliminating much of the need for fetching data. The combination of
data storage and processing in a single element enables the design of memristive
memory processing unit (mMPU) [13, 14]. Many methods for performing logic
operations using memristors have been previously proposed, including memristor
ratioed logic (MRL) [15], Akers logic arrays [16], complementary resistive switching
(CRS) [17], implication logic (IMPLY) [18], and memristor-aided logic (MAGIC)
[19]. The latter two utilize the state of memristors as the logic value of both inputs and
output. This method is known as ‘stateful logic’ and is especially suited for performing
logic within memory arrays [20, 21].

This chapter discusses the implementation of logic circuits using a more uncommon
type of memristors, namely unipolar (or non-polar) memristors. The characteristics of
these memristors are covered in Sect. 2, and an example for the use of such devices for
logic design is presented in Sect. 3. A design methodology for developing stateful
memristive logic gates with any type of memristors is described in Sect. 4, followed by
another example of a unipolar memristive logic gate design in Sect. 5, pursuing the
proposed methodology. All simulations are conducted using an internally developed
VerilogA model for unipolar memristors, based on [22]. The chapter is concluded in
Sect. 6.

2 Unipolar Memristors

The majority of research in the field of memristive logic concentrates on the use of
bipolar memristors. These devices have a state variable that changes its value according
to both the magnitude and polarity of the voltage. Thus, applying a positive voltage
higher than a certain threshold VRESET increases the resistance of the device up to HRS,
and applying a negative voltage exceeding a negative threshold voltage VSET lowers the
resistance down to LRS. This work deals with the use of a different memristor, the
unipolar memristor, which differs from bipolar memristors in the fact that only the
magnitude of the voltage across the device determines the change in the resistance.
Thus, applying a voltage higher than |VRST| across the device in any direction increases
the resistance. Applying a voltage higher than a different threshold (e.g., |VSET| >
|VRESET|) causes the resistance to drop. Once a device is switched to LRS, a compliance
current limitation is usually necessary to avoid excess current that damages the device.
Resistive switching technologies that result in unipolar switching behavior include
PCM and some of RRAM technologies with thermochemical mechanism [23–27].
Examples for I-V curves of both bipolar and unipolar memristors are shown in Fig. 1.

Logic with Unipolar Memristors – Circuits and Design Methodology 25

We define the logic values stored in a memristor in the following manner, HRS is
denoted as logical ‘0’ and LRS as logical ‘1’. The use of unipolar memristors for logic
gates opens the possibility of performing computation within memristive arrays of
types previously not considered for use as logic. Furthermore, the use of unipolar
memristors allows designing simpler controllers and voltage sources due to the fact that
only a single voltage polarity is required for switching back and forth.

3 A Unipolar Memristive Logic Gate Example

In this section, a concept to design logic gates with unipolar memristors is presented
[28]. The operation mechanism is first presented, followed by examples of OR and
NOT gates.

3.1 Operation Principle

The basic mechanism of the proposed logic technique is a voltage divider between two
resistive elements: a memristor and a resistor for a NOT gate or two memristors for an
OR gate. The proposed circuits are based on connecting two resistive elements in series
and applying a voltage bias. The ratio of voltages on the two elements complies with
the ratio of their resistance, i.e., the states are distinguished using a bias voltage. The
first step of operation is translating resistance to resistive states. The applied voltage for
distinction is called the preset voltage.

After state distinction has been achieved, a higher voltage is applied to the circuit,
adding higher applied voltage across both elements, regardless of their states. The
voltage in this step is predetermined to a value that promotes switching if necessary for
proper execution, thus this voltage is called the evaluation voltage. The operation is
therefore comprised of two execution steps: preset and switching.

One obstacle to operate properly arises from the fact that every change in resistance
immediately changes the voltages, hence, possibly changing the distinction between
states. This phenomenon may lead to an incorrect result. Therefore, maintaining the
initial voltage distinction for a sufficient time is required to reach the desired resistance

V

I

Vreset Vset

-Vreset-Vset

Reset
Set

Reset
Set

(a)

V

I

Vset

-Vreset
Set

Reset

(b)

Fig. 1. I-V curves for unipolar (a) and bipolar (b) memristors. The regions in which the device is
in LRS are in green, the ones in HRS are in orange, and the dotted lines are transitions between
the two. (Color figure online)

26 N. Wald et al.

(HRS or LRS). One possible solution is to incorporate capacitors in the circuit in
parallel with each resistive device. The capacitors add delay to the system due to the
need to charge/discharge them during operation. Thus, we call them suspension
capacitors. In addition to prolonging the validity of voltage values in the switching
stage, suspension capacitors also delay the preset stage and in the case of the NOT gate,
are actually mandatory for proper operation. Furthermore, the transition from preset to
switching stages cannot be instantaneous. Hence, the intermediate evaluation stage is
abstractly depicted as a transitive state and three stages are used to execute the oper-
ation as illustrated in Fig. 2.

(a) Preset Stage
In the preset stage, a voltage VPRESET is applied to the circuit to charge the

capacitors and initialize the voltage division between the resistive devices. The applied
voltage is sufficiently high to distinguish between resistive states, but lower than the
threshold voltage, thus does not change the state of the memristors. After sufficient
time, approximately no current passes through the capacitors and their voltages are
consistent with the voltage divider.

(b) Evaluation Stage
The evaluation stage starts immediately after the preset stage. A voltage pulse

VEVALUATION is applied to the circuit. The purpose of this stage is to increase the voltage
on both resistive elements abruptly. The final voltage in this stage depends on the final
voltage of the preset stage, hence correlates with the resistance of the circuit elements.
However, the voltage increase VEVALUATION � VPRESET is fixed for all scenarios. The
exact increase in voltage after the voltage jump is determined by the capacitance ratio
(charge sharing).

(c) Switching Stage
In the switching stage, VEVALUATION is still applied for sufficient time to allow

switching of the memristors. The key is to choose proper pulse length and voltage
magnitude to switch the memristors according to the desired logical functionality.

Fig. 2. The sequence of the applied voltage for the three stages of a general logic operation. The
preset voltage distinguishes between logical states and charges the suspension capacitors. The
evaluation stage converts the preceding voltages to the required voltages for switching.

Logic with Unipolar Memristors – Circuits and Design Methodology 27

3.2 OR Gate

A two-input OR gate consists of two unipolar memristors U1 and U2 connected in
series. A suspension capacitor is connected in parallel to each memristor, as shown in
Fig. 3. The initial logical state of the memristors is the input of the gate and after
execution both memristors have the same logical state, which serves as the output of
the gate.

Assume VSET [VRESET ; for proper behavior of the gate certain conditions need to
be fulfilled. First, when both inputs are identical (i.e., both are logical ‘1’ or ‘0’) there is
no memristor switching. Second, when the inputs are different, the HRS memristor (in
logical ‘0’) has to switch to LRS since the desired output is logical ‘1’. Assuming that
the voltage on the HRS memristor equals VPRESET in the preset stage and
VPRESET þ 1

2 VEVALUATION � VPRESETð Þ in the evaluation stage; the constraints on the
voltages are therefore

VPRESET \ 2VRESET ; ð1aÞ

2VSET � VPRESET \VEVALUATION \ 2VRESET : ð1bÞ

Figure 4 shows simulation results of an OR gate for the case where the inputs are
different and U2 switches for proper result. Note that when U1 is logical ‘0’ and U2 is
logical ‘1’, the operation is destructive, i.e., the value of the inputs is overwritten.

3.3 NOT Gate

The NOT gate consists of a single unipolar memristor connected in series with a
reference resistor. The memristor acts as both input and output of the NOT gate. For
proper operation both the memristor and the resistor have a suspension capacitor
connected to them in parallel as shown in Fig. 5. Without the suspension capacitors,
VEVALUATION must be absurdly high to allow switching the memristor in the case of
RESET operations. The resistance of the reference resistor is between LRS and HRS.
This value ensures that the voltage at the end of the preset stage across a HRS
(LRS) memristor is high (low), as illustrated in Fig. 6. A reasonable choice is
RREF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ROFFRON
p

. For proper operation, the conditions on the applied voltage are

Fig. 3. Schematic of an OR gate. The input memristors U1;U2 are overwritten with the output.

28 N. Wald et al.

VPRESET \min

ffiffiffiffiffiffiffiffiffiffi
ROFF

RON

r
VRESET ;VSET

� �
; ð2aÞ

1
c
max VSET ;VRESET þVPRESETf g\VEVALUATION ; ð2bÞ

Fig. 4. OR gate simulation results. U1 and U2 are initialized to, respectively, LRS (logical ‘1’)
and HRS (logical ‘0’). (a) Voltages across the memristors during the operation, and (b) their
resistance. In the first 4 ls the system is in the preset stage, and the capacitors are
charged/discharged to distinctive voltages. In the switching stage, U2 voltage is higher than Vset

for sufficient time and its logical value is switched to logical ‘1’ as desired.

Fig. 5. Schematic of a NOT gate. A resistor is used as a reference to determine the state of the
memristor

Logic with Unipolar Memristors – Circuits and Design Methodology 29

VEVALUATION \
1
c

VSET þVPRESETð Þ; ð2cÞ

where c ¼D CREF
CREF þCS1

:

3.4 Timing Considerations

One of the critical points for proper behavior of the proposed logic technique is to
apply the right voltage for a sufficient time during the switching stage. In this section,
the timing constraints in the switching stage are explored. Assume sSET sRESETð Þ is a
minimal transition time from HRS (LRS) to LRS (HRS) [29]. For successful switching,
the duration of the switching stage must be greater than the minimal required switching
time. The minimum condition on the length of the stage is therefore

Tpulse [max sset; sresetf g ¼ Tpulse;min: ð3Þ

At the beginning of the switching stage, each memristor is biased with a voltage
which promotes switching (if necessary). The validity of the specified voltage level is
maintained for a short period of time, due to the use of suspension capacitors, but will
eventually become invalid. If the switching stage is not terminated in time, a memristor
might reach a voltage range which promotes the opposite transition, i.e., reverse
switching. The maximal length of the switching stage is determined according to the

Fig. 6. NOT gate simulation results. (a) Voltages and (b) resistance during two consecutive
memristor switching. In the first 3 ls, U1 switches from LRS ! HRS. In the second NOT
operation U1 switches back to LRS.

30 N. Wald et al.

transient analysis of voltages in the circuit, and might be different for SET and RESET
operations. For this purpose it is possible to define TSET TRESETð Þ as the approximate
period of time in which the conditions for a SET (RESET) operation are met. It is
important to understand that while sset and sreset are properties of the memristor, TSET
and TRESET are determined by the selection of the different circuit parameters, namely
VPRESET ;VEVALUATION ;RREF ;CREF ;CS; and TPRESET . Hence, the maximum condition on
the length of the switching step is

Tpulse \min TSET ; TRESETf g ¼ Tpulse;max: ð4Þ

To comply with both minimum and maximum conditions, both (3) and (4) must
apply, as illustrated in Fig. 7. The parameters VPRESET ;VEVALUATION ;Rref ; and the
switching capacitors can be chosen to support (3) and (4). Different circuit parameters,
however, may lead to a reduction in performance. For example, larger capacitors ease
the maximum condition, but slow the preset stage and increase power consumption.

3.5 Evaluation and Comparison

We evaluate the proposed circuits in terms of speed, power, and area, and compare
them to previously proposed memristive logic families that are suitable for bipolar
memristors. Evaluation is conducted using the model mentioned in Sect. 1 based on
[22]. All simulations are conducted in Cadence Virtuoso environment, and using
device parameter values of RON = 10 kX, ROFF = 1 MX, VSET = 2.5 V and VRESET =
1.5 V. In terms of speed, the need for a long preset stage is a disadvantage of the
proposed mechanism. To accelerate the preset stage, higher voltages can be used in the
cost of higher power consumption. Our simulations show that for a memristor with
switching time s, the delay time of the presented basic logic gates (OR\NOT) is
approximately 10 � s.

The basic cell that would be incorporated into a crossbar array consists of a
memristor and a capacitor. Suspension capacitors increase the area of the memory cell;
the exact area of the capacitor depends on the switching time of the memristor. For
example, memristors with switching time of 1 ns require suspension capacitors with

Fig. 7. Applied voltage duration in the switching stage. Tpulse satisfies (3) to reach the desired
resistance and also meets (4) to avoid reverse switching.

Logic with Unipolar Memristors – Circuits and Design Methodology 31

capacitance of approximately 0.8 pF. The usage of suspension capacitors clearly
impacts power consumption. Furthermore, the use of several computing phases
(preset-switching) requires a clock that contributes to the power consumption and
needs to be considered as well.

Some bipolar logic techniques for computation within memory are IMPLY [18] and
MAGIC [19]. IMPLY and MAGIC are stateful logic techniques, similar in nature to the
proposed technique. In both techniques, logical state is represented by resistance and
the computation consists of multi-stage voltage application. Similarly to our proposed
unipolar technique, in IMPLY the input data is overwritten with the output result. For
devices with switching time of s, the switching times of IMPLY and MAGIC are 3:15 s
and 1:3 s respectively. To compare the fundamentals of the performance and area of the
different techniques, we have evaluated a test case of an N-bit adder. Recent unipolar
and bipolar memristor technology exhibit switching times in the order of 1 ns–10 ns
and device area of 4F2 [30], making IMPLY and LOGIC comparable to each other and
to the proposed logic.

Assume the operation is incorporated in a crossbar that is optimized for area, e.g.,
only a single operation can be performed at a clock cycle and backup devices can be
discarded after usage. The latency and number of backup memristors needed for dif-
ferent logical operations are listed in Table 1. A single bit addition can be performed in
13 cycles. An N bit addition can be performed in 34 N−21 cycles. A comparison of this
result with existing bipolar logic families is presented in Table 2. Note that due to the
requirement of a long preset stage, logic execution for the proposed logic is slower.
Given the capacitance and memristor resistance used in simulations, the preset stage is
in the order of 100 ns. Thus, the operating frequency of the proposed method is
probably lower than the bipolar methods, possibly reducing performance.

Table 1. Latency and area of different functions using OR, NOT and COPY

32 N. Wald et al.

4 Methodology for Stateful Memristive Logic Design

One of the most important things when designing novel stateful memristive logic gates
is proper selection of the circuit parameters, i.e. voltages, currents, resistances, etc. The
space of possibilities for choosing these is usually too large to explore, forcing the
designer to rely on heuristics. Recently, we have proposed a set of steps to form a
structured methodology for the design of stateful memristor-based logic gates [31].
This methodology improves efficiency when inventing new stateful memristive logic
gates, and allows a systematic choice of circuit parameters. The design process consists
of seven steps, as detailed next. The methodology treats voltage across a memristor as
the value that determines its dynamic behavior (switching). While this methodology
assume voltage-controlled memristors [32], the same methodology can be adapted
with small adjustments for current-controlled memristors. The steps of the design
methodology are:

1. Definition of gate topology – Decide what are the elements being used (memristors,
resistors, capacitors, etc.), and how are they connected to each other and to the ports
of the logic gate (e.g., connecting the gate to external voltage/current sources).

2. Definition of gate inputs/outputs – Decide which memristor values are used as input
variables and which as output. All the inputs must have their updated values prior to
execution. The output values should be written to the output memristor before
execution finishes. An output may run over an input value if needed, as in the OR
gate in the previous section and in [18]. When several options exist, this step may
be postponed until after step 6 to make a decision relying on a better understanding
of the circuit dynamics.

3. Naming of relevant circuit parameters that may change their value during execution
(e.g., voltage, current, memristance).

4. Developing an expression for the momentary voltage/current on each of the
memristors in the circuit.

5. Constructing a truth table of initial voltages - For each combination of input values,
determine what are the voltages across each circuit element at time t = 0 (i.e., before
any change is observed).

6. Exploring constraints for choosing the operating voltage/current and the initial-
ization of output memristors (if they exist). For example, when using bipolar

Table 2. Latency and area of N-bit adder with different memristor-based logic methods,
optimized for minimum area

Logic with Unipolar Memristors – Circuits and Design Methodology 33

memristors, the initial state of the output memristor and the applied voltage must be
carefully chosen to allow a change of the state.

7. Examining the unconstrained values and understanding the circuit dynamics - To
allow the proper ranges for each unconstrained value that may produce different
behaviors. Once the behavior of the memristors for all parameter ranges is known,
select the options that yield the desired logic functionality.

Clauses 1 through 4 are basic groundwork for the gate analysis. Clauses 5 and 6 put
restrictions on the chosen parameters so they do not infringe on constraints set by the
circuit topology and device properties. Clause 7 requires the most in-depth analysis and
should result in parameter selection leading to a new logic gate with useful properties.
We demonstrate this design methodology in the next section for unipolar memristors.

5 Design Procedure for a Novel Unipolar Memristor Based
Logic Gate

The methodology presented in the previous section is demonstrated for developing
another logic gate using unipolar memristors. The steps followed in the development of
the gate are presented next.

1. The gate comprises of two unipolar memristors connected in series. The structure,
shown in Fig. 8, is compatible for use within a crossbar array.

2. The inputs of the gate are represented by the resistances of the two memristors
before the logic function is executed. The output is not selected at this point and will
be dealt after step 6. Note that either memristor can be selected as an output after
execution since the circuit is symmetrical, and that the lack of a dedicated output
memristor makes the gate undoubtedly destructive to at least one of the inputs.

3. The memristors are named M1 and M2, and their resistance, voltage drops and
applied voltages to connected terminals are respectively denoted R1, VM1, V1 and
R2, VM2, V2. These notations are shown in Fig. 8.

4. The expressions of the momentary voltages as functions of the applied voltages to
the gate terminals are given by

VM1 VM2

M1 M2

V2V1

Fig. 8. Gate topology of the analyzed two unipolar logic gate.

34 N. Wald et al.

VM1 ¼ V1� V2ð Þ � R1

R1 þR2
; ð5aÞ

VM2 ¼ V2� V1ð Þ � R2

R1 þR2
: ð5bÞ

To simplify (5a) and (5b), V1 is set as ground and V2 is named VOP. Thus, the
simplified expressions are

VM1 ¼ �VOP � R1

R1 þR2
; ð6aÞ

VM2 ¼ VOP � R2

R1 þR2
: ð6bÞ

5. A truth table for the applied voltage on each device prior to logic execution is
presented in Table 3.

6. The chosen topology involves only a single parameter (VOP), whose value will be
set in the next clause. Due to the fact that the memristors are unipolar and connected
in a symmetric manner, there are no constraints on the polarity of the voltage.

7. Examining the I-V curve shown in Fig. 1, we see that 0 < |Vreset| < |Vset|. The
initial truth table demonstrates that any single memristor within the gate has either
0, VOP/2, or VOP applied across it. Considering all of the above, three meaningful
options for selecting the value of VOP are present:

(a) 0V ! No change, 2VOP=2 ! Reset,VOP ! Set:
(b) 0V ! No change, VOP=2 ! No change, VOP ! Reset:
(c) 0V ! No change, VOP=2 ! No change, VOP ! Set:

Option (b) does not lead to switching of any of the memristors. As is apparent in
Table 4, both remaining options lead to an identical state in both memristors at the end
of the computation. Hence, we are free to choose the output of the gate to be either of
the memristors, affirming the conclusion of step 2.

Table 3. Truth table for memristor voltages before any change in device state

Logic with Unipolar Memristors – Circuits and Design Methodology 35

Option (a) results in an XOR gate. However, this gate is unstable since the output
values for an XOR function are, theoretically, initial values for another round of
computation, resulting in a constant output equal to ROFF. Using the model discussed in
Sect. 1, our results show convergence of the output at a resistance of approximately
RON. The exact value depends on ROFF/RON and Vset/Vreset, as shown in Fig. 9. Thus,
executing an XOR operation is possible if we allow partial switching, although the
noise margin of the gate is relatively low (asymptotically reaching a full switching with
a proper selection of parameters, improving the noise margin).

Table 4. Analysis of gate operation for the two relevant operating voltage selections

Fig. 9. (a) Applied voltage and (b) memristance for an XOR gate. The memristor is
characterized by RON = 100 X and ROFF = 100 kX. The circuit parameters are VRESET = 1.5 V,
VSET = 2.5 V, VOP = 3.2 V.

36 N. Wald et al.

Option (c) results in an OR gate. This gate is stable and, with a wide range of
parameter values, correctly converges to the desired output with no noise margin
issues. Simulation results of this gate are shown in Fig. 10. For proper operation of this
OR gate the threshold voltages of the memristors are required to uphold

1\
VSET

VRST

����
����\ 2: ð7Þ

Some physical unipolar devices exhibit (7) [33, 34], while other devices exhibit a
higher ratio (2VRESET < VSET) [35–37], enabling only XOR operations, or do not fulfill
any of these conditions (i.e., uphold VSET < VRESET) [34] and therefore are not suitable
for use with the proposed topology.

Contrary to the gate described in Sect. 3, these gates do not contain any capacitors,
nor do they rely on retaining previous voltage divider values. For these reasons, there
are no timing constraints on gate operation, apart from the obvious necessity to apply
VOP for a time sufficient for achieving full swing in the device states (s). This time
depends on properties of the used device and may vary substantially between different
types of devices.

The gate described in this section outperforms the gates from Sect. 3 in several
aspects. First, the topology does not include the use of capacitors or resistors, which is
area efficient, allows implementing gates within a pure memristive crossbar, and
eliminates the need to use two different input voltages to perform the logic function.
Second, the topology allows, with a proper selection of devices and parameters, to use
the same gate for two different logic functions by changing only the operating voltage.

Fig. 10. (a) Applied voltage and (b) memristance of an OR gate. Memristor and circuit
parameters are identical to an XOR gate, except VOP = 2.95 V

Logic with Unipolar Memristors – Circuits and Design Methodology 37

6 Conclusions

Combining data storage and processing is appealing since it can solve some of the
critical issues in modern computing, such as limited memory bandwidth and power
consumption. Both unipolar and bipolar memristors enable the execution of logic
operations within memory using different methods. Since it is still unclear whether
unipolar or bipolar mechanisms will become dominant for data storage, both phe-
nomena are of interest. In this chapter, we focus on unipolar mechanism and propose
logic techniques for these devices using NOT, XOR and two types of OR gates. The
proposed techniques can be naturally integrated within memristive crossbar memory.
The proposed technique can fit different unipolar technologies such as Phase Change
Memory, 3D-Xpoint, RRAM, and Thermochemical Resistive Memory.

We present how a design methodology helps in the invention of new logic gates
that can be executed within memristive memories to form memristive memory pro-
cessing units (mMPU). The methodology is demonstrated by designing XOR and OR
gates. This procedure is formed from a series of simple steps, and meant to facilitate a
successful choice of circuit parameters and an overall efficient design process.

References

1. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)
2. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783

(2011)
3. Wong, H.S.P., et al.: Metal–oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)
4. Diao, Z., et al.: Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer

torque random access memory. J. Phys. Condens. Matter 19(16), 165209 (2007)
5. Wong, H.S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)
6. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519

(1971)
7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.

Nature 453(7191), 80–83 (2008)
8. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor

device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)
9. Rose, G.S., McDonald, N., Yan, L.-K., Wysocki, B.: A write-time based memristive PUF for

hardware security applications. In: Proceedings of the International Conference on
Computer-Aided Design, pp. 830–833 (2013)

10. Rajendran, J., Rose, G.S., Karri, R., Potkonjak, M.: Nano-PPUF: a memristor-based security
primitive. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI,
pp. 84–87 (2012)

11. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.:
‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464
(7290), 873–876 (2010)

12. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the First Conference on
Computing Frontiers on Computing frontiers, p. 162 (2004)

13. Ben Hur, R., Kvatinsky, S.: Memory processing unit for in-memory processing. In:
Proceedings of the International Symposium on Nanoscale Architectures, p. 208 (2016)

38 N. Wald et al.

14. Ben Hur, R., Kvatinsky, S.: Memristive memory processing unit (MPU) controller for
in-memory processing. In: Proceedings of the IEEE International Conference on the Science
of Electrical Engineering (ICSEE) (2016)

15. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: MRL —
memristor ratioed logic. In: Proceedings of the International Workshop on Cellular
Nanoscale Networks and Their Applications, pp. 1–6 (2012)

16. Levy, Y., et al.: Logic operations in memory using a memristive Akers array. Microelectron.
J. 45, 1429–1437 (2014)

17. Rosezin, R., Linn, E., Kugeler, C., Bruchhaus, R., Waser, R.: Crossbar logic using bipolar
and complementary resistive switches. IEEE Electron Device Lett. 32(6), 710–712 (2011)

18. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.:
Memristor-based material implication (IMPLY) logic: design principles and methodologies.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(10), 2054–2066 (2014)

19. Kvatinsky, S., et al.: MAGIC - memristor-aided logic. IEEE Trans. Circuits Syst. II Express
Briefs 61(11), 895–899 (2014)

20. Ben Hur, R., Talati, N., Kvatinsky, S.: Algorithmic considerations in memristive memory
processing units (MPU). In: Proceedings of the International Workshop on Cellular
Nanoscale Networks and their Applications (2016)

21. Talati, N., Gupta, S., Mane, P., Kvatinsky, S.: Logic design within memristive memories
using memristor-aided logic (MAGIC). IEEE Trans. Nanotechnol. 15(4), 635–650 (2016)

22. Su Kim, Y., Min, K.-S.: Behavioral Current-voltage model with intermediate states for
unipolar resistive memories. J. Semiconductor Technol. Sci. 13(6), 539–545 (2013)

23. Ielmini, D., Bruchhaus, R., Waser, R.: Thermochemical resistive switching: materials,
mechanisms, and Scaling projections. Phase Transit. 84(7), 570–602 (2011)

24. Long, S., Cagli, C., Ielmini, D., Liu, M., Sune, J.: Cell-based models for the switching
statistics of RRAM. In: Proceedings of the Annual Non-Volatile Memory Technology
Symposium, pp. 1–5 (2011)

25. Tran, X.A., et al.: High performance unipolar AlO y/HfO x/Ni based RRAM compatible
with Si diodes for 3D application. In: Symposium on VLSI Technology - Digest of
Technical Papers, pp. 44–45 (2011)

26. Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in
phase-change memories. IEEE Trans. Electron. Devices 51(3), 452–459 (2004)

27. Redaelli, A., Pirovano, A., Pellizzer, F., Lacaita, A.L., Ielmini, D., Bez, R.: Electronic
switching effect and phase-change transition in chalcogenide materials. IEEE Electron
Device Lett. 25(10), 684–686 (2004)

28. Amrani, E., Drori, A., Kvatinsky, S.: Logic design with unipolar memristors. In: Proceedings
of the International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–5 (2016)

29. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories -
nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663
(2009)

30. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat.
Nanotechnol. 8(1), 13–24 (2012)

31. Wald, N., Kvatinsky, S.: Design methodology for stateful memristive logic gates. In:
Proceedings of the ICSEE International Conference on the Science of Electrical Engineering
(ICSEE) (2016)

32. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for
voltage-controlled memristors. IEEE Trans. Circ. Syst. II Express Briefs 62(8), 786–790
(2015)

33. Guan, W., Liu, M., Long, S., Liu, Q., Wang, W.: On the resistive switching mechanisms of
Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93(22), 223506 (2008)

Logic with Unipolar Memristors – Circuits and Design Methodology 39

34. Huang, Y., Luo, Y., Shen, Z., Yuan, G., Zeng, H.: Unipolar resistive switching of
ZnO-single-wire memristors. Nanoscale Res. Lett. 9(1), 381 (2014)

35. Park, W.I., et al.: Self-assembly-induced formation of high-density silicon oxide memristor
nanostructures on graphene and metal electrodes. Nano Lett. 12(3), 1235–1240 (2012)

36. Huang, H.H., Shih, W.C., Lai, C.H.: Nonpolar resistive switching in the Pt/MgO/Pt
nonvolatile memory device. Appl. Phys. Lett. 96(19), 193505 (2010)

37. Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in
Cu doped ZrO2. IEEE Electron Device Lett. 29(5), 434–437 (2008)

40 N. Wald et al.

Robust Hybrid TFET-MOSFET Circuits
in Presence of Process Variations

and Soft Errors

Maedeh Hemmat1, Mehdi Kamal1(&), Ali Afzali-Kusha1,
and Massoud Pedram2

1 School of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

{m.hemmat,mehdikamal,afzali}@ut.ac.ir
2 Department of Electrical Engineering,

University of Southern California, Los Angeles, USA
pedram@usc.edu

Abstract. In this work, to improve the timing yield of Tunnel Field Effect
Transistor (TFET) circuits in the presence of process variations as well as their
soft-error resiliency, we propose replacing some of TFET-based gates by
MOSFET-based ones. The effectiveness of the proposed TFET-MOSFET
hybrid implementation of the circuits are investigated by first studying the
impacts of the process variation on the performances (I-V characteristics) of both
homojunction InAs TFETs and MOSFETs. Next, to analyze the soft error rate of
the circuits, the particle hit-induced transient current profiles of these devices are
extracted. Based on these studies, a hybrid TFET-MOSFET circuit design
approach which improves the reliability and soft-error resiliency compared to
those of pure TFET-based circuits is suggested. Finally, the efficacy of the
design approach is investigated by applying it to some circuits of ISCAS’89
benchmark package.

Keywords: Tunnel FET � Reliability issues � Process variation � Low power
design � Hybrid TFET-MOSFET designs � Soft error

1 Introduction

Todays, almost all of the digital circuits are based on the MOSFET transistors. However,
owing to the increase in the usage of portable devices, reducing the power consumption
of digital circuits has become a critical target for designers. A fundamental method for
reducing the power consumption is voltage scaling which leads to a quadratic reduction
in dynamic power. On the other hand, to maintain the performance of design, the
threshold voltage of transistors is decreased leading to increase in the leakage current of
the circuits. Also, short channel effects cause considerable increases in the leakage
current of the nano-scaled MOSFET transistor. One may reduce the leakage power by
reducing the subthreshold swing which may not be decreased below 60 mV/decade for
conventional MOSFET device structures [1]. Hence, for low-leakage power application
one may replace conventional MOSFET structures with devices having smaller swings.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 41–59, 2017.
DOI: 10.1007/978-3-319-67104-8_3

One of these alternative devices is Tunnel Field Effect Transistor (TFET) which is
known for its steep sub-thermal subthreshold swing [1]. TFETs are P-i-N gated diodes,
operating under reverse bias condition, with a gate over the intrinsic region. They are
good candidates to operate at low supply voltages (Vdd < 0.3 V) while having ultra-low
leakage power. The current generation mechanism in TFETs is band to band tunneling
of carriers across a reversed biased PN junction [1]. Nowadays, III-V TFETs with small
and direct band gap have acceptable ON-current compared to those of MOSFETs [2].
Therefore, unlike MOSFETs, reducing the (leakage) power consumption is possible for
TFETs without any degradation in the performance. In [3], a mixed TFET-MOSFET
8T SRAM was proposed providing a significant improvement in the performance as
well as the minimum operating voltage.

While enjoying TFET advantages in terms of leakage and power consumption, their
reliability issues should also be considered and investigated. The reliability of these
circuits may significantly be affected by the process variation which causes uncertainties
in the (design) parameters of fabricated devices. Several studies have compared the
impacts of the process variation on the performances of TFET and MOSFET devices
[4–6]. For instance, in [4], by comparing the changes of the ON-current for a Hetero-
junction TFET and Silicon MOSFET, it was concluded that TFETs were more sensitive
to the process variation. In [7], the influence of the process variation on the electrical
parameters of III-V TFET were studied and their statistical distributions were extracted
and compared to those of MOSFET devices. To increase the reliability of TFET-based
circuits, in [8], a heuristic algorithm for generating hybrid TFET-MOSFET based cir-
cuits was introduced. In this algorithm, some of the TFET-based gates whose variation
degraded the performance (speed) of the circuit were replaced by their MOSFET-based
gates.

Radiation hardness is another important issue in designing reliable circuits.
Radiation-induced single-event upset (SEU) leads to the generation of soft errors and
radiation unreliability issues [9]. Furthermore, increasing the number of processing ele-
ments (as is the case for data centers) on one side and the technology scaling on the other
side, make satisfying soft error immunity requirements increasingly challenging. In every
generation, technology scaling roughly leads to a 30% decrease in node capacitance, 30%
decrease in the supply voltage, and doubling clock frequencies. As a byproduct of these
changes, the soft error rate (SER) per logic state bit increases by 8% [10]. Also, from a
totally different perspective, compared to silicon, low band gap materials such as InAs,
generally have low ionization energy making them more susceptible to neutron radiation
which generates soft errors [11].

The investigation of the soft error phenomenon in TFETs in [11] showed that
TFETs had a different soft error generation behavior than that of MOSFETs. In [12],
we investigated and compared the behavior of TFETs and MOSFETs in terms of
generation and propagation of the soft error. The results indicated that TFETs pos-
sessed better performance in terms of the generation of soft errors while MOSFETs
were able to mask the generated current better. Inspired by this difference in behaviors,
then we proposed a hybridization algorithm to generate soft error resilient
MOSFET-TFET based circuits.

In this work, we propose a design approach to increase the reliability of TFET-based
circuits considering the process variation and soft error phenomena. In the first step, the

42 M. Hemmat et al.

characteristics of III-V TFET and MOSFET devices in the presence of the process
variation and particle hits are compared. In the second step, for ultra-low (static and
dynamic) power applications, we suggest a hybrid TFET-MOSFET circuit design
approach which minimizes the impacts of the process variation and improves the
soft-error resiliency compared to the cases where only of these device types are used. To
optimize the efficacy of the approach for each application, the designer may set one of
these phenomena as the one with the higher priority in the design process. Finally, the
efficacy of the proposed approach is investigated by applying the method to some
circuits from the ISCAS’89 benchmark package. It should be noted that the overall
fabrication processes for TFETs are compatible with CMOS process [3, 13], and hence,
it is possible to have hybrid circuits as stated in [3, 13, 14]. Of course, the fabrication of
TFET circuits costs more and is more complicated [14]. Finally, it should be mentioned
that the proposed hybridization approach is efficient for the range of supply voltages
where the performances of both TFET and MOSFET devices are similar.

The rest of paper is organized as follows. Section 2 compares the characteristics of
the InAs TFET device and with those of the InAs MOSFET device. The hybridization
approach realized by a proposed heuristic algorithm is discussed in Sect. 3. The effi-
cacy of the proposed algorithm in increasing the reliability in the presence of soft error
and process variation is evaluated in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 TFET Device and Its Characteristics

2.1 TFET Device Model

In this work, for obtaining an ultra-thin 22 nm double-gate InAs homojunction TFET,
the TCAD simulation was used. The nominal parameters of the device model which
were adapted from [8, 12, 15] are summarized in Table 1. Also, the structure and band
diagram of the device are shown in Fig. 1. All the device level simulations have been
performed using Silvaco ATLAS version 5.18.3.R. The activated physical models
included non-local band to band tunneling, band gap narrowing, Shockley-Read-Hall
model, and mobility model. The output characteristic of the Homojunction TFET (Id –
Vds) is shown in Fig. 2. It should be noted that, unlike MOSFETs, TFETs are
uni-directional devices because of their structural asymmetry between the source and
drain [1]. The ON-current of 123lA at Vds = Vgs = 0.5 V, leakage current of 32 pA,
and Ion/Ioff = 3.8 � 106 were obtained for this TFET device.

For the circuit-level simulations, Verilog-A look-up tables, which used the small
signal model of Fig. 3(a), was used. Furthermore, the validity of the model was verified
by the transient output characteristics of InAs TFET inverter (see Fig. 3(b)). The
considered structure of InAs MOSFET was also an ultra-thin 22 nm double gate. To
have a meaningful comparison (and better hybridization during the design), the
nominal parameters of the MOSFET were selected similar to those of TFETs except for
the high drain doping level (the same as that of the source) which was necessary for this
structure.

Robust Hybrid TFET-MOSFET Circuits 43

Table 1. Nominal parameters of TFET device considered in this work.

Parameter Nominal value

Relative Gate Dielectric Permittivity 21
Body Thickness 5 nm
Gate Oxide Thickness 2.5 nm
Source Doping 4 � 1019/cm3

Drain Doping 4 � 1017/cm3

Gate Work Function 4.8 eV
Channel length 22 nm
Channel width 22 nm

 niarD
+N Intrinsic

channel

++P
Source

 edixO2HfO

 edixO2HfO

(a)

(b)

Fig. 1. TFET (a) device structure and (b) energy band diagram.

Fig. 2. Output characteristics of InAs TFET.

44 M. Hemmat et al.

2.2 Comparison of TFET and MOSFET Operation

In this subsection, a comparative study on the leakage current, drive current, dynamic
power consumption, sensitivity to process variation and soft error generation and
propagation of both III-V MOSFET and TFET devices based on our prior works of [8,
12] are performed.

Current and capacitance comparison
The ON-current of the III-V TFET and MOSFET device under two operating voltage
levels are compared in Fig. 4 which indicate that the TFETs has lower leakage current
and higher ON-current at low voltages. On the other hand, as is demonstrated in Fig. 4
(b), in spite of the low leakage current of the TFET at high supply voltages, the
MOSFET device has a higher ON-current which would lead to a higher performance at
high supply voltages for the circuits realized by this device. Also, Fig. 5 compares
TFET and MOSFET total capacitances. The comparison indicates that the gate
capacitance (Cg) of the TFET is smaller than that of the MOSFET where the difference
enlarges as the gate voltage is increased. The lower capacitance, which is due to the
lighter drain doping of the TFETs [16], leads to a smaller gate capacitance (Cgg) (and
hence, lower dynamic power consumption) for the TFET device.

In MOSFETs, the dominant capacitance is the gate-source capacitance (Cgs) while
in TFETs, the gate-drain capacitance (Cgd) is the dominant one [16]. This would imply
a larger ON-state Miller capacitance for TFETs [3], and consequently, larger induced
voltage spike during the switching giving rise to increased total dynamic power con-
sumption. Considering the capacitance and ON-current characteristics of both the

Vi
n

&
 V

ou
t

Time (ns)
(a) (b)

Fig. 3. (a) Verilog-A small signal model and (b) transient response of a TFET inverter based on
the model.

Fig. 4. Comparison of leakage current and ON-current at (a) Vdd = 0.3 V and (b) Vdd = 0.7 V.

Robust Hybrid TFET-MOSFET Circuits 45

TFET and the MOSFET, the supply voltage range in which the overall performance of
TFET and MOSFET is close to each other, is about 0.45 V < Vdd < 0.55 V.

Process variation
As discussed earlier, compared to MOSFETs, TFETs are more prone to the process
variation. In [7], we investigated the impact of the process variation on the physical
parameters of InAs TFET in the presence of the process variation. The investigation
was performed by utilizing the Monte-Carlo simulations where the distributions of
threshold voltage and ON-current were extracted for 1000 samples. The results pre-
sented in the work showed a threshold voltage variation of about 75 mV (45 mV) for
the 22 nm InAs TFET (MOSFET) device. This implies more sensitivity to the process
variation for the TFET device. It is attributed to the fact that the ON-current and
subsequently the threshold voltage of the TFET device have exponential dependences
on the electric field making them more susceptible to the sources of variations.

Table 2 summarizes the statistical parameters considered for the distributions of
variation sources while Table 3 reports the means and standard deviations for the
electrical parameters of the InAs TFET [7].

Soft error generation and propagation
Radiation induced single-event upset (the soft error) is a key challenge due to large
number of computation nodes in circuits. Using low bandgap materials, scaling the
supply voltage, and the reduction of capacitance of the internal nodes have made
designing soft-error resilient circuits more challenging. The energetic particles, such as
cosmic ray neutrons and alpha particles, are the sources of soft errors [11]. The
energetic particles strike the sensitive nodes and travel through the bulk of the tran-
sistor. The creation of the minority carriers during the travel of the particles and the
collection of them by the source/drain diffusion, can change the voltage value of the
victim node. In other words, soft error occurs when the collected charge at a specific
node is greater than the critical charge (QcritÞ of the node [17].

The particle hit and the change in the value of the node can be modeled by a
transient current pulse [18]. In [12], we have investigated the transient current

Fig. 5. Comparison of capacitance Cg � V of the TFETs and MOSFET devices at different
supply voltages.

46 M. Hemmat et al.

generation and soft error propagation in III-V TFETs and III-V MOSFETs, using
TCAD device models and HSPICE simulations. As discussed in detail in [12], to
analyze the behavior of the transistor after the ion strike, the radiation-induced transient
current evaluation was performed. The generated charges, due to the particle hit, result
in a transient current when the device is in the off state. (Vgd = Vdd, Vgs = 0). The
transient current generation and charge collection in fully depleted channel devices
such as MOSFETs, FinFETs, and TFETs are significantly influenced by the bipolar
gain effect [11]. Figure 6 compares the generated transient current profile for the
InAs TFET and the MOSFET. As the figure demonstrates, the duration and amplitude
of the transient current of the TFET are about 80% and 70% smaller than those of the
MOSFET. It suggests that TFET devices are more immune to the soft error generation.
Here, as an example, Fig. 7 shows the output voltage spike of a MOSFET- and
TFET-based FO4 inverter when a particle with a charge density of 50 fC/lm strikes the
input of the inverter. The output voltage spike of the MOSFET-based inverter is up to
310 mV while the voltage change for the TFET-based inverter is about 140 mV.
Therefore, the generated voltage spikes in the case of the TFET-based gates are smaller
compared to those of the MOSFET-based gates.

The generated transient current due to the particle strike induces a voltage pulse,
known as a glitch, which may propagate through logic paths in the circuit. The voltage
pulse may be electrically masked due to the delay of logic gates. If it is not masked, an
error would happen when the generated voltage pulse either is latched by a flip flop or
reaches to a primary output node of the circuit. Therefore, to conduct a complete
investigation of the soft error rates in TFET- and MOSFET-based circuits, the prop-
agation of glitches (due to the particle hits) in each type of the circuits was also
considered and studied in [12]. In this work, it was concluded that TFETs propagate
glitches more easily compared to MOSFETs indicating lower electrical masking for
TFETs. The observed behavior is attributed to the fact that the smaller overall
capacitance of TFETs compared to that of MOSFETs (see Subsect. 2.1). In addition, as

Table 2. Statistical parameters considered for the distributions of variation sources in the
homojunction TFET.

Physical parameter Mean Standard deviation

Gate oxide thickness 2.5 nm 0.5 nm
Body thickness 5 nm 1 nm
Gate alignment 0 3 nm
Gate work function 4.8 eV 0.08 eV
Source doping 4e19 0.8e19
Drain doping 4e17 0.8e17
Channel length 22 nm 2 nm

Table 3. Means and standard deviations of the electrical parameters for the TFET.

Parameter Nominal Mean Standard deviation

Threshold voltage 123 mV 137 mV 75 mV
ON-current 123 lA 121 lA 26.9 lA

Robust Hybrid TFET-MOSFET Circuits 47

mentioned before, at low supply voltage levels (Vdd < 0.3 V), the TFET has higher
ON-current compared to that of the MOSFET. This yields a higher probability for the
error propagations (less masking) by the TFET device (the TFET-based gate). Figure 8
shows the voltage spikes at the output nodes of two inverter chains when a particle with
a charge density of 50 fC/lm hits the input of the chain. As the figures demonstrate, the
amplitude of the voltage spike at the output of the chain in the case of MOSFET-based
implementation is smaller than that of the TFET-based implementation showing a
better masking for the MOSFET one.

As the conclusion of this part, we showed that the TFET device exhibited a better
characteristic in terms of the generation of the transient current due to the particle hit
while the MOSFET device revealed a better characteristic for the electrical masking of
the transient current due to the particle hit [12].

3 Hybrid TFET-MOSFET Circuits

3.1 Why Hybridization?

As mentioned previously, while the TFET leakage power and (dynamic) energy con-
sumption are smaller than those of the MOSFET, the relation between the speeds (and

Fig. 6. Profiles of the generated transient current for the InAs TFET and MOSFET.

Fig. 7. Output voltage of MOSFET and TFET-based FO4 inverters after particle hit.

48 M. Hemmat et al.

delays) of the TFET and MOSFET circuits depend on the operating voltage. Also, the
process variation impacts the electrical parameters of the TFET more compared to the
MOSFET. Hence, the probability of timing violation in TFET-based circuits is higher.
Furthermore, the generated transient current is weaker in TFETs despite the fact that
MOSFETs have better performance in masking these errors.

As mentioned before, to take advantage of both TFETs and MOSFETs superior
features, robust ultra-low power circuits were proposed in [8, 12]. To increase the
reliability of TFET-based circuits in the presence of the process variation, a heuristic
algorithm was proposed in [8] which replaced the TFET-based gates in the potential
critical paths with their corresponding MOSFET-based gates. In the proposed
approach, the hybridization process (gate replacement) started from the initial stages of
the circuit. The results showed about 50% increase, on average, in the reliability of
hybrid TFET-MOSFET based gates compared to the pure TFET-based gates when
applied to ISCAS’85 and ISCAS’89 benchmarks.

Another hybridization algorithm, which was proposed in [12], focused on
decreasing the soft error rate of TFET-based circuits, again, by replacing some of the
TFET gates by their corresponding MOSFET ones. The TFET-based gates are superior
to MOSFET-based ones in terms of the error generation, while the latter mask the error
more efficiently. Thus, to have a soft-error resilient design, one should have the
TFET-based gates in the generation path of the transient (error) current and the
MOSFET-based ones in the propagation path of the transient (error) voltage. Based on
these features, in the proposed algorithm of [12], first, the sensitive internal nodes were
chosen. The sensitive nodes considered to be the nodes with small capacitance and high
probability of generating the voltage spike. Then, for each chosen sensitive node, the
first gate of each path starting from the sensitive node, was considered to be imple-
mented by TFETs. This resulted in generating smaller voltage pulses due to particle
hits. However, the gates in the second and third levels were considered to be imple-
mented by MOSFETs to electrically mask the generated voltage pulses. Furthermore, a
hybrid soft-error resilient flip-flop was proposed in [12]. Applying the proposed
algorithms to the circuits from the ISCAS’89 benchmark package as well as utilizing
the hybrid flip-flop in these circuits led to, on average, 80% decrease in the soft-error
rate compared to those of the pure TFET-based designs.

Fig. 8. Output voltage of the chains of three (a) TFET-based and (b) MOSFET-based inverters
after the particle hit the input of chain.

Robust Hybrid TFET-MOSFET Circuits 49

These prior works showed that the hybridization resulted in improvements in the
timing yield as well as the soft error immunity. While each of these hybridization
approaches improved the performance of the circuit against the impact of one of these
undesired phenomena, in this work, we focus on enhancing the circuit operation in the
simultaneous presences of the process variation and soft error. In the next subsection,
the proposed hybridization algorithm is described in detail.

3.2 Proposed Heuristic Hybridization Algorithm

The flow of the proposed algorithm may be divided into three major parts. In the first
part of the algorithm, which is shown in Fig. 9, the operating supply voltage level,
potential critical paths, and sensitive nodes to the soft error are determined. In the first
step of this part (❶), in order to avoid the degradation of the speed of the circuits after
the hybridization, the supply voltage level which leads to almost the same delays for
both the TFET- and MOSFET-based implementations of the input design is deter-
mined. The delays of both pure TFET and MOSFET circuits should be smaller than a
predefined delay (i.e., Dconst). This is an iterative process which is performed by using
HSPICE simulations under different supply voltage levels. It starts by the parameter
Vstart as the initial operating voltage level and continues by increasing the voltage by
Vstep at the end of each iteration. In each iteration, the delays of both TFET- and
MOSFET-based circuits are compared. If the delays have an acceptable delay differ-
ence with both delays smaller than Dconst, this process is terminated. Otherwise, the
process is repeated by increasing the supply voltage level. In this work, we considered
the delay difference of smaller or equal than 10% of the delay of MOSFET-based
circuit as the acceptable delay difference. The reason for considering the 10% delay
difference as the acceptable value was to lower the effort for finding the supply voltage
for the similar performances for all the implementations.

Based on the ON-current values which were given in Sect. 2, in this work, we
consider 0.4 V as Vstart. Also, our study showed that the selected supply voltage levels
for different circuits did not exceed 0.55 V. It is worth mentioning that if Dconst is too
small, the process would not converge to a supply voltage level, and hence, Dconst

should be increased in these cases. Obviously, the lower supply voltage is translated to
lower power consumption and, hence, the search process starts from the lowest supply
voltage.

After determining the supply voltage level, the set of potential critical paths (i.e.,
SPCP) of the TFET-based circuit is determined by using static timing analysis
(STA) (❷). In this work, the paths which have delays larger than 80% of the longest
path, are considered as the potential critical paths. For performing the hybridization, we
propose to start from TFET-based implementation of the design while all the flip-flops
are implemented by the proposed hybrid approach of [12]. Hence, after determining the
supply voltage level and critical paths, the capacitances of the internal nodes are
extracted and a collection of sensitive internal nodes are chosen (i.e., SSIN) (❸). As
mentioned previously, the sensitive nodes are the nodes with small capacitances where
the probability of generating the voltage spike due to the particles hit on these nodes is
high. Here, a node whose capacitance is less than or equal to 1.2 times of the smallest
internal node capacitance of the circuit is specified as the sensitive node. In the

50 M. Hemmat et al.

proposed flow, the objective is both to increase the timing yield and decrease the soft
error rate. The designer, in this step, based on the priority specified by the designer, one
the two hybridization paths is selected (❹). If the priority is given to the soft
error-resiliency (process variation mitigation), the next steps of the algorithm put more
emphasis on reducing the impact of the soft error (process variation) while attempting
to decrease the impact of the process variation (soft error) with a lower priority effort.
Next, the details of the algorithm in the cases of process variation mitigation and soft
error resiliency priorities are explained.

Priority on process variation mitigation
Figure 10 shows the rest of the proposed algorithm for the case where the process
variation mitigation is selected as the main priority of the hybridization. For this case,
similar to [8], the hybridization process for each path starts from the first gate of the
path owing to the fact that the delay variation at the beginning stages of TFET-based
designs is larger. By starting the replacement process from the beginning gates, one
mitigate the delay variation of the path more by replacing smaller numbers of gates [8].

In the first step of the proposed flow (❶), for each potential critical path, the delay
distribution of the MOSFET-based implementation is extracted (i.e., (r/l)MOSFET). The
delay distribution of the MOSFET-based implementation is used as a reference point
for the next phase of the algorithm. The process of extracting the delay distribution may
be performed by exploiting either statistical static timing analysis (SSTA) or
Monte-Carlo simulation. The former approach is fast and inaccurate while the latter one
is accurate and slow. In this work, we have used Monte-Carlo simulations to extract the
delay distributions of the potential critical paths.

For each potential critical path, after determining the delay distribution of the
MOSFET-based implementation, the hybridization process for this path in the
TFET-based implantation circuit is performed (❷). This process is an iterative process,

Determine the set of
poten al cri cal paths

(SPCP)

Vstart=Vstart + Vstep

DMOSFET < Dconst

&
 DTFET < Dconst

No

TFET- and MOSFET-based of the
input Circuit

1 2

Determine the set of
sensi ve internal

nodes of the circuit
(SSIN)

Priority Selec on

Is process varia on
prior to so error ?

4

Yes

N
o

3

Fig. 9. First part of the proposed algorithm which is common between the two hybridization
paths.

Robust Hybrid TFET-MOSFET Circuits 51

which starts from the first gate of the path and continues to the last gate of the path. In
each iteration, first, the delay variation of the path is extracted, and if the delay variation
of the path ((r/l)hybrid) becomes smaller than the a � (r/l)MOSFET, the process for this
path will be terminated. Otherwise, the TFET-based gate is replaced by the
MOSFET-based gate, and the process is repeated for the next gate. The parameter a,
which is a predefined coefficient specified by the designer, determines the expected
delay variation of the hybrid TFET-MOSFET-based design compared to that of the
MOSFET-based design. It should be noted that, for each new path, the hybridization
process does not reconsider the gates which have been replaced by MOSFET-based
ones in the previous iterations. This case may occur when some potential critical paths
have a shared gate.

After applying the proposed method for increasing the timing yield of the circuit,
we take an approach to decrease the soft error impact on the reliability of circuits (❸).
In this step, the sensitive internal nodes are chosen one by one where for each chosen

For i=1 to i<= |SPCP|

Find the distribution delays of
MOSFET-based and TFET-based
implementation of the ith path

For j=1 to i<= Depth of ith path

Replace the jth TFET-based gate
with MOSFET-based gate of ith

path

Find the delay variation of ith

path in hybrid implementation
of circuit

(σ/μ)hybrid > α*(σ/μ)MOSFET

j+
+

Yes

i+
+

For k=1 to k<= | SSIN |

Is the Kth sensitive node located
in set of critical paths?

Stimulate the Kth sensitive node
with appropriate pulse error

Stimulate the selected gates
with a set of appropriate pulses
different in rise/fall/arrival time

and duration

Measure soft error Rate for
Hybrid circuit, TFET-based and

MOSFET-based circuit

Replace two gates after the
output gate of the Kth node with

MOSFET-based gates

No

k+
+

Yes

Pr
io

ri
ty

to
Pr

oc
es

s
V

ar
ia

ti
on

1

2

3

Fig. 10. Second part (priority on process variation mitigation) of the proposed algorithm.

52 M. Hemmat et al.

sensitive node, all the paths which start from this node are extracted. Due to the better
behavior of TFETs in generating transient currents, this type of gates are preferred. If,
however, these gates are located in the critical paths, they are not replaced by TFETs if
they are MOSFET-based gates as dictated by the previous hybridization part. If the
gates are not in the critical paths, the third step of hybridization starts. For each
extracted path, the first gate of the path is considered to be implemented by TFETs.
This leads to generating a smaller voltage pulse due to the particle hit. The gates in the
second and third levels are considered to be implemented by MOSFETs to electrically
mask the generated voltage pulse. Our results show that one MOSFET-based gate is not
able to fully mask the generated voltage pulse, while with a high probability, two
consecutive MOSFET-based gates mask more effectively the generated pulse [12].

Next, we compare the soft error rates of the path under three different implemen-
tations of TFET-based, MOSFET-based, and hybrid TFET-MOSFET-based. If the
error rate of the hybrid TFET-MOSFET implementation is smaller than the other two
implementations, the hybridization for this path is terminated while, if the error rate of
the hybrid TFET-MOSFET path is larger than that of the other implementations, the
first gate after the last MOSFET-based gate (which is initially TFET-based) is con-
sidered to be implemented by a MOSFET one. This process is carried out till either the
soft error rate of hybrid path reaches to a value smaller than the soft error rates of the
two other implementations or there are no more gates in the path for the replacement.
When the process of the hybridization for all the extracted paths of a sensitive node is
terminated, the algorithm chooses another sensitive node and applies the above
replacement procedure to the gates of its paths.

Note that replacing a TFET-gate by a MOSFET-gate may result in a capacitance
increase of the internal nodes of the circuit connected to the inputs of this gate. Hence,
after finalizing the hybridization of all the paths of a sensitive node, all the capacitances of
the internal nodes of these paths are extracted. Now, if the capacitance of a node which
belongs to the sensitive list increases to a value higher than the considered threshold value
for the sensitive nodes, this node is removed from the sensitive nodes list.

Priority on decreasing the soft error rate
Third part of the algorithm deals with the case that the priority is on decreasing the soft
error rate. The flow of the this part of the algorithm is depicted in Fig. 11. The overall
flow for the hybridization technique in this part is almost similar to the one described in
the previous subsection. For this case, first, the sensitive nodes are extracted where for
any of the sensitive nodes, all the paths starting from the sensitive nodes are chosen. To
have a soft-error resilient design, the first stage of each path is implemented in TFETs
while two latter stages are implemented in MOSFETs due to the better error masking of
MOSFETs (❶). Next, for each of the potential critical paths, the delay distribution of
MOSFET-based and TFET-based designs are determine (❷). Finally, the hybridization
technique is performed to increase the reliability of design (❸). The overall approach is
as the one presented in the second step of the algorithm. In this case, however, if the
gates that are located in the critical paths are the gates which are set to be implemented
in TFETs due to transient current generation, they will remain unchanged and the
hybridization is performed for the next step of the design.

Robust Hybrid TFET-MOSFET Circuits 53

Now, in the following section, the efficiency of the proposed hybridization algo-
rithm on increasing the reliability is evaluated for the two cases of priority with process
variation mitigation and priority with soft error rate reduction. Also, the power con-
sumptions for these circuit implementations is discussed.

4 Results and Discussion

4.1 Simulation Framework

In this study, the results of applying the proposed design approach to some sequential
circuits from ISCAS’89 benchmark package are discussed. All the simulations were
performed by utilizing the HSPICE tool. As mentioned before, we have used Verilog-A

For k=1 to k<= | SSIN |

S mulate the Kth sensi ve node
with appropriate pulse error

Replace two stages of gates
a er the output gate of the Kth

node with MOSFET-based gates

S mulatethe selected gates
with a set of appropriate pulses
different in rise/fall/arrival me

and dura on

Measure so error Rate for
Hybrid circuit, TFET-based and

MOSFET-based circuit

Set the gate which its input is
the Kth sensi ve node to be

implemented in TFETs
k+

+

For i=1 to i<= |SPCP|

Find the distribu on delays of
MOSFET-based and TFET-based
implementa on of the ith path

For j=1 to i<= Depth of ith path

Is the input of the jth gate of the ith

cri cal path is a sensi ve node to
so error?

j+
+

Ye
s

i++

(σ/μ)hybrid > α*(σ/μ)MOSFET

Replace the jth TFET-based gate
with MOSFET-based gate of ith

path

Find the delay varia on of ith

path in hybrid implementa on
of circuit

Yes

1

2 3

Fig. 11. Third part (priority on decreasing the soft error) of the proposed algorithm.

54 M. Hemmat et al.

models of the 22 nm double gate InAs TFET and 22 nm InAs MOSFETs during the
HSPICE simulations. To perform the simulations, first, all of the considered circuits
were synthesized to a gate-level netlists using Synopsys Design Compiler. In this work,
without loss of generality, only Inverter, and 2-input NAND, NOR, AND, OR, XOR
and XNOR gates were considered as the cells of the technology library. After
extracting the gate-level netlist, the HSPICE netlist of the circuits were generated by
using an in-house tool. In addition, the potential critical paths of the benchmarks were
obtained using an in-house STA tool. It should be stated that the master-slave flip-flops
of the selected benchmarks were replaced by the proposed hybrid TFET-MOSFET
flip-flop of [12], to provide a more soft-error resilient design. Furthermore, the pro-
posed heuristic hybridization algorithm was implemented using Python language.
Finally, each of the studied circuits was implemented in three forms of MOSFET-based
circuit, TFET-based circuit, and Hybrid TFET-MOSFET-based circuit. As mentioned
before, to keep the overall performance of the circuit almost constant after the
hybridization, the operation voltage was determined by the algorithm such that both
TFET-based gates and MOSFET-based gates had about the same delays.

The particle hit in each critical node was modeled by injecting voltage pulses. The
injected voltage pulses, which were totally 60, were different in rise time, fall time,
arrival time compared to the edge of the clock, duration, and amplitude. The ranges of
these parameters utilized in this work are given in Table 4. In the table, Verror refers to
the nominal amplitude of the generated error for TFET and MOSFET transistors.
During the simulations, error pulses with larger amplitudes were applied to MOSFET.

4.2 Comparison of Different Implementation Efficiencies

In this section, the efficacy of the proposed hybridization algorithm is evaluated. The
normalized leakage power, energy consumption, delay variation, and soft error rate of
the hybrid benchmarks are measured and compared to MOSFET-based and
TFET-based designs. The normalized values of these parameters for each implemen-
tation of each benchmark circuit are shown in Fig. 12. In this figure, the values of the
leakage power and energy consumption are normalized to the leakage power and
energy consumption of the MOSFET-based design while the values of the delay
variation and soft error rate are normalized to those of the TFET-based design.

As was mentioned in the previous section, the algorithm allows the designers to
specify either the soft error or process variation mitigation as the higher priority.
Here, we present the results for the application of the algorithm to each benchmark,
considering both cases. As the results indicate, for both cases, the delay variation

Table 4. The ranges of the values used for generating error injection voltage pulses

Parameter Range of values

Rise time 10 ps to 100 ps
Fall time 10 ps to 100 ps
Arrival time compared to edge of the clock −100 ps to +100 ps
Duration 10 ps to 300 ps
Amplitude Verror � 0:1V

Robust Hybrid TFET-MOSFET Circuits 55

mitigation and soft error rate reduction of the hybrid design are improved compared to
those of the pure TFET-based design. Also, the delay variation (soft error rate) of
circuits decrease more in the case that the process variation mitigation (soft error rate
reduction) has the higher priority. In addition, the proposed design approach decreases
the leakage power and energy consumption compared to those of the MOSFET-based
design for both cases. It should be emphasized that the pure TFET-based design offers
lower leakage power and energy consumption while pure MOSFET-based design
provides smaller delay variation. The hybrid design has lower delay variation compared
to that of the pure TFET design and smaller leakage power and energy consumption
compared to those of the MOSFET design.

Now, we discuss these results in more detail. In the case of S838 (S713) circuit, the
leakage power (energy consumption) decreases about 75% (67%) compared to the
MOSFET-based design while, compared to the TFET-based circuits, the leakage power
(energy consumption) only increases about 14% (15%). For the delay variation, the
highest reduction belongs to the S838 benchmark with the delay variation of about 66%
when process variation mitigation has the higher priority. When the priority is given to
soft error resiliency of the design, the maximum reduction in the delay variation is
about 58% belonging to S344 circuit. Considering the results for the soft error rates, the
maximum reduction of 87% is for the S344 circuit in the case of the soft error reduction
priority and the maximum reduction of 73% for the S344 circuit in the case where the
priority is for the process variation mitigation. The study shows that, the proposed
hybrid approach leads to, on average, 64% (48%) leakage power (energy consumption)
reduction compared to the case of the MOSFET-based design when the process vari-
ation has the higher priority. Also, compared to the TFET-based design, it provides, on
average, 52% delay variation reduction and 71% soft error rate reduction. On the other
hand, when the priority is given to the soft error issue, the approach results in, on
average, 67% (50%) leakage power (energy consumption) reduction compared to that
of the MOSFET-based design as well as 42% (80%) decrease in the delay variation
(soft error rate) decrease compared to that of the TFET-based circuit.

The results for the delay variation and soft error rate of the S27 and S344 circuits
are the same in both priority cases of the proposed algorithm. It originates from the fact
that, in these circuits, none of the sensitive nodes is located in the critical path.
Therefore, the critical paths may be completely implemented using MOSFET-based
gates wherever necessary. Similarly, we can keep TFET-based gates whenever shorter
and smaller transient current are preferred. Hence, a complete hybridization is per-
formed to reduce both delay variation and soft error rate.

Finally, to illustrate the significance of each of the defined priority cases in the
algorithm, we define a parameter which is the ratio of the number of sensitive nodes
located in the set of potential critical paths of the circuit to the total number of sensitive
nodes. The ratio is called Sensitive Nodes in Critical Paths (SNCP). The larger the
SNCP is, the more sensitive nodes are located in the critical paths. Hence, when the
priority is given to the soft error rate reduction, the delay variation of the circuit
becomes larger. On the other hand, if the priority is given to the process variation
mitigation, the circuit with larger SNCP, will have greater soft error rate. Figure 13
depicts the SNCPs for different benchmarks. Interestingly, the S27 and S344 circuits
have SNCP values of zero, making leading to the same results for both priority cases.

56 M. Hemmat et al.

Fig. 12. Normalized (a) delay variation, (b) soft error rate, (c) leakage, and (d) energy, for some
circuits from ISCAS’89 benchmark package.

Robust Hybrid TFET-MOSFET Circuits 57

5 Conclusion

In this paper, a hybrid TFET-MOSFET design was proposed to decrease the probability
of timing violation and soft error rate in TFET-based designs. The hybridization
method was inspired by the features of TFET and MOSFET devices. First, compared to
MOSFET, the process variation impact was more on the TFET characteristics. Second,
while the transient current, generated by a particle hit, was shorter and smaller for
TFETs, MOSFETs had better electrical masking of these pulses. In this work, first, a
III-V TFET model was selected and the impact of the process variation on its output
electrical characteristic as well as soft error generation and propagation were investi-
gated. Next, considering the operation and characteristics of both TFET and MOSFET
devices, a heuristic algorithm was proposed for the TFET-MOSFET hybridization
design. Finally, the proposed algorithm was applied to some sequential circuits of the
ISCAS’89 benchmark package. The results showed that the delay variation of the
TFET-MOSFET-based circuits, on average, would decrease about 52%, compared to
that of the TFET-based circuits, if the priority were given to the process variation
mitigation. The decrease in the variation was about 42%, on average, for the case with
the soft error rate reduction priority. On the other hand, the soft error rate of the
TFET-MOSFET-based circuits decreased about 80%, on average, when the priority
was given to the soft error issue. The reduction of soft error rate was about 72%, on
average, if the priority was given to the process variation mitigation. These results
suggested that one TFET-MOSFET hybridization technique may be employed effective
to improve the yield and soft error immunity characteristics of ultra-lower power
circuits based on pure TFET-based design circuits.

References

1. Mukundrajan, R., Cotter, M., Saripalli, V., Irwin, M., Datta, S., Narayanan, V.: Ultra low
power circuit design using Tunnel FETs. In: IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pp. 153–158. IEEE Press, MA (2012)

2. Kim, M.S., Liu, H., Swaminathan, K., Li, X., Datta, S., Narayanan, V.: Enabling
power-efficient designs with III-V tunnel FETs. In: IEEE Compound Semiconductor
Integrated Circuit Symposium (CSICs), pp. 1–4. IEEE Press, California (2014)

Fig. 13. Parameter SNCPs (Sensitive Nodes in Critical Paths) for different benchmarks.

58 M. Hemmat et al.

3. Chen, Y.-N., Fan, M.-L., Hu, V.-H., Su, P., Chuang, C.-T.: Evaluation of stability,
performance of ultra-low voltage MOSFET, TFET, and mixed TFET-MOSFET SRAM cell
with write-assist circuits. J. Emerg. Sel. Top. Circuits Syst. 4, 389–399 (2014)

4. Migita, S., Matsukawa, T., Mori, T., Fukuda, K., Morita, Y., Mizubayashi, W.: Variation
behavior of tunnel-FETs originated from dopant concentration at source region and channel
edge configuration. In: 44th European Solid State Device Research Conference (ESSDERC),
pp. 278–281. IEEE Press, Venice (2014)

5. Zhang, L., Chan, M., He, F.: The impact of device parameter variation on double gate
tunneling FET and double gate MOSFET. In: IEEE International Conference of Electron
Devices and Solid-State Circuits (EDSSC), pp. 1–4. IEEE Press, Hong Kong (2010)

6. Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.-J.K.: Study of random dopant
fluctuation effects in germanium-source tunnel FETs. J. Electron Devices. 58, 3541–3548
(2011)

7. Hemmat, M., Kamal, M., Afzali-Kusha, A., Pedram, M.: Study on the impact of device
parameter variations on performance of III-V homojunction and heterojunction tunnel FETs.
J. Solid State Electron. 124, 46–53 (2016)

8. Hemmat, M., Kamal, M., Afzali-Kusha, A., Pedram, M.: Hybrid TFET-MOSFET circuits:
an approach to design reliable ultra-low power circuits in the presence of process variation.
In: IEEE International conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6.
IEEE Press, Tallinn (2016)

9. Dhillon, Y.S., Diril, A.U., Chatterjee, A.: Soft-error tolerance analysis and optimization of
nanometer circuits. In: IEEE International conference on Design, Automation, and Test in
Europe, pp. 389–400. Springer, GA (2008)

10. Liu, H., Cotter, M., Datta, S., Narayanan, V. : Technology assessment of Si and III-V
FinFETs and III-V tunnel FETs from soft error rate perspective. In: IEEE International
Electron Devices Meeting (IEDM), pp. 25.5.1–25.5.4. IEEE Press, California (2012)

11. Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective.
J. Microelectron. Reliab. 54, 861–874 (2014)

12. Hemmat, M., Kamal, M., Afzali-Kusha, A., Pedram, M.: Hybrid TFET-MOSFET circuit: a
solution to design soft-error resilient ultra-low power digital circuit. J. Integr. VLSI J. 57,
11–19 (2017)

13. Tura, A.: Novel Vertical Tunnel Transistors for Continued Voltage Scaling. Ph.D.
dissertation, Univ. of California, Los Angeles (2010)

14. Mishra, A., Jha, K.K., Pattanaik, M.: Parameter variation aware hybrid TFET-CMOS based
power gating technique with a temperature variation tolerant sleep mode. J. Microelectron.
45, 1515–1521 (2014)

15. Liu, H., Datta, S.: III-V Tunnel FET model manual. The Pennsylvania state university (2015)
16. Cotter, M., Liu, H., Datta, S., Narayanan, V.: Evaluation of tunnel FET-based flip-flop

designs for low power, high performance applications. In: 14th International Symposium on
Quality Electronic Design (ISQED), pp. 430–437. IEEE Press, California (2013)

17. Miskov-Zivanov, N., Marculescu, D.: Modeling and optimization for soft-error reliability of
sequential circuits. J. Comput. Aided Design Integr. Circuits Syst. 27, 803–816 (2008)

18. Lin, S., Kim, Y.-B., Lombardi, F.: Soft-error hardening designs of nanoscale CMOS latches.
In: 27th IEEE Symposium on VLSI Test, pp. 41–46. IEEE Press, Washington (2009)

Robust Hybrid TFET-MOSFET Circuits 59

Logic Synthesis for Silicon and Beyond-Silicon
Multi-gate Pass-Logic Circuits

Valerio Tenace, Andrea Calimera(B), Enrico Macii, and Massimo Poncino

Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca Degli Abruzzi 24, Torino, Italy

{valerio.tenace,andrea.calimera,enrico.macii,massimo.poncino}@polito.it

Abstract. In the last decade several new technologies have been pro-
posed as possible replacement for MOSFETs; Silicon Nanowires, Mag-
netic Tunnel Junctions, Graphene p-n Junctions are just some of the
most representative examples. Although their intrinsic differences, they
all share a common key characteristic, i.e., enable the implementation of
logic gates with an expressive power much higher than that of state-of-
art silicon CMOS gates. This may translate into more complex and faster
switching functions that count less devices. The view of new materials
that can serve as technological vehicles for energy efficient circuits and
systems attracted the interested of the whole electronics research com-
munity. Apart from the many technological aspects, the path towards
large-scale integration of emerging devices crosses the need of (i) new
integration strategies that better fit the characteristics of the new tech-
nologies and (ii) new computer-aided design (CAD) methodologies able
to cope with the complexity of today’s design specs. The availability of
this two elements may open the way for fast design space exploration
and better assessment of new technologies against standard CMOS.

This work focuses on logic synthesis and optimization tools for
ultra-low power pass-gate circuits mapped into emerging technologies,
Graphene and silicon nano-wires. More specifically, we describe a novel
multi-function decomposition engine that (i) efficiently performs abstract
circuit modeling through a highly-compact data structure called Multi-
Function Pass Diagram (MFPD), (ii) provides an effective multi-gate
synthesis & optimization flow, (iii) allows accurate power/delay estima-
tions. The contents reported in the following sections represent one of
the first examples of how dedicated algorithms and data-structures can
substantially improve the quality-of-design when moving from CMOS to
emerging technologies.

Simulation run conducted on different benchmarks demonstrate that
pass-gate circuits synthesized with the proposed tool are smaller and
shallower, hence less power hungry and faster than circuits obtained
through conventional synthesis methodologies based on standard design
flows. As an additional contribution, the results prove that our solution
is not only applicable to beyond-silicon technologies but also to standard
MOSFETs.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 60–82, 2017.
DOI: 10.1007/978-3-319-67104-8 4

Logic Synthesis for Silicon and Beyond-Silicon Circuits 61

Keywords: Emerging technologies · Graphene · Silicon nano-wires ·
Pass-gate logic · CAD · Logic synthesis · Low-power · Adiabatic
computing

1 Introduction

1.1 CMOS at the End of the Line

The introduction of Metal-Oxide-Semiconductor Field-Effect-Transistors (MOS-
FETs), officially set in 1947 at Bells Labs as a replacement to vacuum tubes,
represents a milestone in the industry of semiconductors. Since then, and after
60-year long research efforts, Complementary MOS (CMOS) electronic circuits
have become the dominant technology for the entire ICT segment.

The continuous demand for smaller, faster and more power-efficient Inte-
grated Circuits (ICs) have pushed CMOS technology close to its boundary. At
the time being, technology trends are clearly highlighting that a radical shift in
thinking digital hardware design might come soon. Among the many aspects, we
highlight three well known issues that sustain this claim.

– Non-ideality of the Silicon scaling process: below the 45 nm node the
technology scaling process faced several limitations due to (i) the increased
difficulty in discretizing transistors on a physical die, a problem related to
the gate-oxide thickness that is slowly approaching a few-atom width [1];
(ii) the miniaturized gate length of MOS transistors and the upsurge of short-
channel effects (SCEs), leakage current in particular, which represent a serious
reliability issue [2]; (iii) as transistors size decreases, power dissipation and
process-variation induced reliability issues become critical [3]. These issues
impact the fabrication yield of reliable ICs.

– Nanometric CMOS styles are no longer the most energy-efficient
integration strategy: static CMOS has been taken as a reference style for
mainstream VLSI circuits due to high noise immunity, resilience to supply-
voltage scaling and low leakage currents. However, as the technology scaling
process went below the 90 nm mark, some of these characteristics faded out
due to SCEs. This suggests that other logic families that were discarded in
the past, e.g., Dynamic-Logic, Pass-Transistor-Logic [4], may represent a new
way out for low-power ICs.

– Hitting the power-wall and the dark-silicon problem: achieving ultra-
low power consumptions is becoming a vital feature for consumer electronics,
especially in the context of the Internet-of-Things (IoT) [5] where always-on,
always-connected devices running sensoring applications and data-intensive
computing represent the new mainstream paradigm. Even if many low-power
techniques for CMOS circuits and systems are available today [6], e.g.,
Dynamic-Voltage-Frequency Scaling, Power-Gating, Multi-Threshold-Voltage
and Reverse-Body-Biasing, the power consumed by CMOS based Systems-
on-Chips (SoCs) architectures may exceed the power budget. This implies
that an ever larger portion of the silicon die must be kept off (Dark-Silicon).

62 V. Tenace et al.

To address this issue, standard SoC architectures will make space to less
power hungry solutions that implies the use of dedicated accelerators with
embedded memory resources and more energy efficient circuitry.

For such reasons, soon or late, Silicon, CMOS and standard Von-Neumann
architectures will drop the scepter in favor of emerging technologies, alternative
integration strategies and new architectures. From a technological point of view,
recent works proposed several options such as Ambipolar Silicon-NanoWires [7],
Graphene p-n Junctions [8], Graphene Nanoribbons [9], Magnetic Tunnel Junc-
tions [10] and Domain-Wall Nanowires [11]. Apart from their improved electrical
characteristics, those technologies could enhance switching primitives with new
fascinating properties able to accommodate the specifications of alternative com-
puting paradigms.

1.2 Candidates to Replace the CMOS Technology

The above qualitative analysis suggests that the Silicon/CMOS pair could be
soon replaced by some new material and a more energy efficient integration
strategy. Among the many options we believe ambipolar technologies, such as
Graphene or Silicon-Nanowires, integrated à la pass-gate logic style, a.k.a. pass-
transistor logic (PTL), represent an interesting option. In particular, as it will
be shown later in the text, Graphene-based devices are particularly suited for
pass-gate logic.

The choice of PTL is justified by its high intrinsic efficiency, already proven
for silicon technologies. PTL circuits can implement logic functions with a lower
transistor count, smaller parasitic capacitance and hence better performance [12].
Even today’s CMOS libraries make use of PTL for some logic gates, e.g., flip-
flops and multiplexers, because of their efficient implementation. Moreover, PTL
circuits offer an opportunity to work “adiabatically”, namely, mimicking the
adiabatic (i.e., without energy exchange) charging process [13]. Adiabatic PTL
may find space with the implementation of dedicated hardware accelerators in
charge of processing “slow” physical-data (e.g., biometric signals) with a very
limited energy budget [5].

The use of PTL and, more precisely, adiabatic PTL, has been already proven
for emerging technologies, such as nanoelectromechanical switches (NEMs), car-
bon nanotubes (CNTs), and graphene p-n junctions. For such devices the PTL
style enables the design of logic circuits with improved energy efficiency if com-
pared to CMOS [14–16].

1.3 Lack of Logic Synthesis Tools for PTL

It is clear that new hardware schemes, such as PTL, will inevitably ask for
new CAD tools for the logic synthesis of digital blocks. Algorithms and data
structures for the logic synthesis evolved following the growth of semi-custom
CMOS libraries, while synthesis for PTL has been improved only marginally.
This is why, even today, PTL remains underutilized [12]. It’s not a coincidence

Logic Synthesis for Silicon and Beyond-Silicon Circuits 63

that most of the previous works do focus on circuits for very specific arithmetic
functions [17,18] or handcrafted basic Boolean logic gates [4,19]. Indeed, when
the target design turns into random logic, standard multi-level synthesis engines
can’t exploit the structural properties of PTL. That brings to sub-optimal imple-
mentations that typically require ad-hoc actions at the post-synthesis stage.

This problem is not new to the research community and several solutions have
been introduced in the last years. Most of them, if not all, are closely related
to the concept of Binary Decision Diagrams (BDDs) or some of its variants [12,
20,21]. There are two main reasons behind the use of BDDs. First, there exists
a one-to-one matching between the BDD representation of the logic function
and the final PTL circuit implementation; this enables the concept of one-pass
logic synthesis [22] where logic optimization and technology mapping are carried
out concurrently on the same data structure thereby saving CPU and memory
usage. Second, BDDs [23] are a very mature data-structure with lots of available
optimization algorithms for redundancy removal and circuit optimization.

Despite the efficiency of BDDs as data-structure is unquestionable, BDD-
based synthesis tools show many limitations. First, the tree-like structure of
BDDs reflects into a deep circuit topology with large depth, and hence large
propagation delays. Second, state-of-the-art decomposition methods for BDDs
construction all operate using a pre-fixed variable-order (VO), namely, the order
used for variable expansion is fixed during the entire decomposition procedure,
no matter what the logic function is. Since V O affects the vertex-set cardi-
nality of BDDs, a wrong V O might result into dramatic area increase of the
resulting circuit. Third, decomposition methods are constrained to a “single-
function” decomposition. Such a function, here referred as g(X), differs depend-
ing on the type of BDD variant in use, e.g., MUX for standard BDDs [23], XOR
for Biconditional-BDDs [21]. Logic circuits dominated by g(X), e.g., XOR-rich
arithmetic circuits, take advantage of this characteristic, others, like random
logic circuits, may suffer from sub-optimal minimization. While the first two
issues have been addressed in [24] with the introduction of the Pass Diagram
(PD) data-structure and the non-fixed V O decomposition, this work elaborates
on the third issue, i.e., how to overcome “single-function” decomposition.

1.4 Contribution of This Work

As an extension of the contents proposed in [25], this work gives a comprehensive
description of efficient abstract models and data-structures that are particularly
suited for the synthesis of Multi-Gate Pass Logic (MGPL) circuits mapped with
emerging technologies, Graphene and Silicon-NanoWires in particular, or, alter-
natively, with standard silicon MOSFETs.

An MGPL circuit consists of series connections of two-input pass-gates that
can be turned-ON (OFF) and thus open (close) an electrical path between a
clocked-power (the source) and the main output (the leaf); multiple paths are
connected in parallel making the final logic circuit. Hence, similar to PTL, the
information is not carried in the form of charges stored in parasitic capacitance,
but rather through the root-to-leaf propagation of the clock-power signal. It is

64 V. Tenace et al.

worth noticing that, differently from any other existing PTL solutions, MGPL
makes use of pass-gates that embed multiple Boolean operators, like AND, OR,
NAND, and not just MUX or XOR as in the previous works; the choice of which
operators depends on the technology in use.

We introduce a novel abstraction model, namely, the binary Multi-Function
Pass-Diagram (MFPD), a graph-based representation for k-ary Boolean func-
tions. An MFPD is a polarized, acyclic directed graph made up of N root-to-leaf
logical paths. Each path is composed of an arbitrary number of two-input nodes
connected in series, where each node represents a binary connective between two,
out of k, primary input variables and can assume either a TRUE logical value,
e.g., closed switch, or a FALSE logical value, namely an open switch. Under
a specific input pattern, logical paths can be activated (all nodes are closed
switches) in mutual exclusion (1 path out of N) and thus create a gateway from
the root to the leaf. In such case, the equivalent logic function represented by the
MFPD is evaluated as TRUE; on the contrary, when no active paths do exist,
the logic function is said to be evaluated as FALSE. This structure matches the
topology of a Multi-Gate Pass-Logic circuit.

The construction of a binary MFPD encompasses two major steps: multi-
function decomposition using a set of basic Boolean operators, e.g., AND, OR,
XOR and their complement; and redundancy removal through iterative reduc-
tion rules. Those phases have been integrated into an automatic synthesis and
optimization tool named Kanon. Moving from single- to multi-function decompo-
sition can be conceptually seen as the shift from two-level to multi-level synthesis
carried out for CMOS circuits.

We apply our tool Kanon to a sub-set of generic benchmarks mapped onto
three different technologies, i.e., Silicon MOS transistors, Ambipolar Silicon
Nanowires and Graphene p-n junctions. The use of generic benchmarks avoids
biased results due to the presence of circuits dominated by a specific function,
the use of different technologies demonstrates that the proposed solution well
fits both silicon and beyond-silicon technologies. The obtained MGPL circuits
are then compared against standard PTL circuits synthesized using state-of-art
BDD-based tools. The collected results validate the functionality of the proposed
MFPD model and the related multi-function decomposition, whilst simulations
using SPICE models quantify the energy efficiency of MGPL circuits.

2 Multi-Gate Pass Logic

A first example of pass-logic circuit for emerging devices has been recently pro-
posed in [26] in the form of Pass-XNOR Logic (PXL) network using graphene
p-n junctions. A PXL circuit consists of a network of Pass-XNOR Gates (PXGs);
PXGs connected in series form a logic path, while logic paths connected in par-
allel connect the root of the circuit (fed by a clock-power signal) to the leaf (the
main output). The clock-power signal works as an evaluation signal that eventu-
ally reaches the output when at least one parallel logic path is ON; in this case
the logic function is evaluated as TRUE, i.e., 1-logic. When none of the parallel

Logic Synthesis for Silicon and Beyond-Silicon Circuits 65

Fig. 1. MGLP circuit example, where f = (x1¬∨x2) ∧ [(x3¬∨1) ∨ ((x3¬∨x4) ∧
(x4¬∨1))] ∨ (x3¬∨x5)

logic paths is ON, the propagation of the clocked-power signal is inhibited and
the logic function is evaluated as 0-logic.

A logic path is ON iff all its series connected PXGs are ON simultaneously.
The PXGs can be seen as logic primitives whom electrical behavior resembles a
CMOS transmission gate with an embedded XNOR Boolean functionality. More
specifically, each PXG is electrostatically controlled through primary input logic
signals that tune the equivalent resistance of the PXG itself; a PXG fed by logic
signals having same polarity shows a low-resistance, the ON state, whereas logic
signals with opposite polarity lead the PXG to high-impedance, the OFF state.

As a further step to achieve a higher level generalization of the Pass-XNOR
Logic (PXL) style, [25] introduces the concept of Multi-Gate Pass Logic (MGPL).
The physical primitives of an MGPL network are generic pass-gates (PGs), that,
from a functional point of view, can be seen as function-controlled switches. Sim-
ilar to PXGs, they consist of two logic-terminals fed by the input logic signals (x
and y in Fig. 1-(b)), and two transmission terminals, one playing as the source
of an evaluation signal and the other as the collector (S and D in Fig. 1-(b)).
The control function is a two-input Boolean operator g(x, y) between the x and
y logic inputs; when g(x, y) = 1 the PG is ON (low-resistance), Fig. 1-(b), when
g(x, y) = 0 the PG is turned OFF (high-impedance), Fig. 1-(c). PGs with dif-
ferent control functions can be designed depending on the technology in use;
the example in Fig. 1 is for a NAND-PG, i.e., g(x, y) = x¬∨y. Notice that an
MGPL circuit can contain PGs with different embedded functions. Similar to
PXL, an MGPL (Fig. 1-(d)) consists of logic paths connected in parallel between
a clocked-power supply (the root) and the main output (the leaf). Each path
consists of a cascade of independent PGs driven by primary inputs. When acti-
vated (all PGs turned-ON), a logic path creates a low-resistive gateway through
which the clocked-power signal can flow from the root to the leaf. Under this
condition the circuit’s output is evaluated as 1-logic. Logic paths are in mutual

66 V. Tenace et al.

exclusion by construction, that is, for a given input pattern one and only one
path can be eventually activated. When there are no activated paths the circuit’s
output is evaluated as 0-logic. An MGPL circuit can be modeled using a new
dedicated abstract model, the Multi-Function Pass-Diagram (MFPD), Fig. 1-(a),
described in the next section.

As for other dynamic logic families, the logical computation of MGPL circuits
consists of two distinct phases: the configuration phase and the evaluation phase.
During the former, primary logic inputs, i.e., the literals composing the logic
function, are fed to the logic inputs of the pass-gates. At the end of this phase
the doping profile of each and every device is fixed and the resistive paths of
the network are set up. In the evaluation phase the clocked power signal is pre-
charged and propagated through the network. A pulse detected on an output leaf
evaluates the implemented function as TRUE; in this regard, a Sense Amplifier
can be used for each output cone in order to quickly identify the 1-logic and
reshape the clock-supply signal [27].

It is worth emphasizing that although the MGPL resembles the PTL struc-
ture, the difference is substantial. In PTL circuits, transistors are used as
switches that deviate the current flow to different paths; on the contrary PGs
are used as switches to open/close a logic path. This is reflected by the model
used to represent the circuit. Indeed, BDDs are not the most intuitive repre-
sentation as PG gates do not implement any deviation of the signal. Second,
while in PTL an output is always connected to a static power supply terminal,
Vdd if ‘1’ or Gnd if ‘0’, output evaluation in MGPL logic is dynamic: current
is flowing if ‘1’, not flowing if ‘0’. Alternatively, one can see MGPL circuits as
a half way between CMOS and PTL. As in CMOS series/parallel connections
between gates are available, as in PTL, information is carried out by means of
root-to-leaf current flow.

2.1 Pass-Gate Devices

New logic primitives introduced by emerging technologies represent a perfect fit
to the structure of PGs. Figure 2 pictorially describes some of them. In particu-
lar, Fig. 2-(a) shows four PG embodiments using Ambipolar Silicon-NanoWires
(SiNW) [7]. The first two (left) are composed of a single SiNW transistor and
implement the AND and NOR logic gates. The remaining two (center and right)
consist of a pair Si-NW transistors and implement the XNOR or XOR logic
gates.

Figure 2-(b) shows two possible pass-gates using standard MOSFET
transmission-gates. The first one (left) implements the AND, whereas the sec-
ond one (right) implements the NOR. Since both configurations require four
MOSFETs, silicon devices have less expressive power when compared to SiNWs.

Finally, Fig. 2-(c) shows pass-gates mapped on graphene p-n junctions [28]. A
graphene p-n junction consists of two metal back-gates (blue and green triangles)
driven by logic signals (x and y). Logic signals with same polarity turn the
junction ON. The first PG (top left) implements the NOR gate; the outer input
connections x and y are both compared to a logical-0 reference. It works as

Logic Synthesis for Silicon and Beyond-Silicon Circuits 67

Fig. 2. Possible PGs for different logic primitives. (Color figure online)

follows: when both x and y are set to 0-logic, the input evaluation signal (red
ramp) is allowed to propagate; in all the remaining cases at least one p-n junction
is OFF and the evaluation signal is stopped. Similarly, the second pass-gate
(bottom left) implements the AND; the evaluation signal propagates iff both
x and y are fed wit 1-logic. Notice that for NOR and NAND SiNWs need less
devices (1 vs. 2). The last two pass-gates (top and bottom right) implement
the XNOR and XOR gates. In this case graphene shows higher expressive power
than SiNW. It is therefore clear how different technologies can be better exploited
using different logic primitives.

2.2 Delay and Power Modeling of MGPL Circuits

The total delay Dp of an MGLP logic circuit can be estimated as the sum of
delays due to the configuration phase Dconf and the evaluation phase Deval, as

68 V. Tenace et al.

described in (1), where Dconf is the time primary logic inputs take to charge

Dp = Dconf + Deval (1)

the parasitic capacitances at the back-gates, whereas Deval is the propagation
delay of the input pulse through the front resistive paths of the network.

The amount of power consumed during the configuration phase Pc is due
to charging/discharging of the input gate capacitance of the PGs. For a circuit
made up N gates, an approximate, yet accurate model borrowed from CMOS
is reported in (2), with PPGi

as the power consumed from the i-th PG, Vdd as
the supply voltage, f the operating frequency, Ci the input capacitance of the
i-th PG, and ESWi,j

representing the probability that the input signal makes a
transition.

Pc =
N∑

i

PPGi
=

N∑

i

2∑

j=1

0.5V 2
dd · f · Cin · Eswi,j

(2)

During the evaluation phase, once primary inputs have settled and PGs have
been turned-ON or OFF, the circuit simply reduces to an equivalent resistor Req,
i.e., the sum of the ON resistances RON of the PGs belonging to the ON-path, in
series with the output load capacitance Cl. The average power consumed Pe can
be therefore obtained as described in (3), where trf is rise/fall output transition
time, and iCl

(t) is the current charging Cl. Notice that Pe is consumed iff the
output is TRUE, while it is almost zero otherwise.

Pe =
1

trf

∫ trf

0

Reqi
2
Cl

(t)dt =
ReqC

2
l

t2rf
V 2
dd (3)

Moreover, for values of Trf large enough, the evaluation phase completes at
zero-power, namely, adiabatically.

3 Building MFPDS

3.1 Multi-function Decomposition

The decomposition of a logic function through the primitives made available
by the technology in use represent a fundamental step of any logic synthesis
algorithm. Since most techniques leverage multi-level logic representations, in
this section we illustrate an ad-hoc decomposition that is fine-tuned for pass-
gates logic. Such decomposition, named multi-function decomposition, relies on
the basic assumption that any Boolean equation given in the form of sum-of-
products (SOPs), or product-of-sums (POSs), can be decomposed by means of a
user-defined set of logic connectives G = {g : B2 → B}. Let us assume a function
f(S) with support-set S = {x1, x2, x3} described with the following SOP:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) (4)

Logic Synthesis for Silicon and Beyond-Silicon Circuits 69

By resorting to the distributive property and the identity rule, it is possible
to expand the function f(S) as a sequence of cubes, having cardinality of two
literals:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2)
∧ (x3 ∧ 1) ∨ (x1 ∧ x2) ∧ (x3 ∧ 1)

(5)

Each product can then be rewritten using the Boolean connectives g ∈ G by
means of duality. For instance, let us assume the availability of two connectives
G = {{x ¬ ∨ y}, {x ¬⊕ y}}, where the first one, the NOR (¬∨ symbol), has
higher priority, i.e., is processed first. This means that the function f(S) could
be NOR-decomposed as shown in (6).

f(S) = (¬x1¬∨x4) ∨ (x1¬∨x2) ∧ (¬x3¬∨¬x3)
∨ (¬x1¬∨¬x2) ∧ (¬x3¬∨¬x3)

(6)

Such reformulation reveals that (¬x3¬∨¬x3) is a common term, that can be
factorized as reported in (7).

f(S) = (¬x1¬∨¬x4)
∨ (¬x3¬∨¬x3) ∧ [(x1¬∨x2) ∨ (¬x1¬∨¬x2)]

(7)

At this point, the second operator in G, the XNOR (¬⊕ symbol), could be applied
on (7) in order to further reduce the number of literals in (5). Indeed, the term
(x1¬∨x2) ∨ (¬x1¬∨¬x2) can be represented as the XNOR between x1 and x2.
We refer to this operation as Boolean substitution. Eventually, the final result
of the multi-function decomposition, the original function (4) is decomposed as
described in (8).

f(S) = (¬x1¬∨x4) ∨ (x1¬⊕x2) ∧ (¬x3¬∨¬x3) (8)

Similarly, it is possible to assume a library of logic connectives described as
G = {{x¬ ∧ y}, {x¬⊕y}}, where the symbol ¬∧ denotes the NAND operator.
In this case, the same Boolean function described in (4) is NAND-decomposed
as described in (9), and thus optimized by means of the XNOR connective, as
reported in (10).

f(S) = (¬x1¬∧¬x4) ∨ ¬(¬x1¬∧¬x2)
∧ (¬x3¬∧x3) ∨ (¬x1¬∧x2) ∧ (¬x3¬∧x3)

(9)

f(S) = (¬x1¬∧¬x4) ∨ (x1¬⊕x2) ∧ (¬x3¬∧x3) (10)

It is easy to check the Boolean equivalence between (8), (10) and the original
function (4); in terms of savings, both (8) and (10) show 25% literal savings.

As far as the efficiency is concerned, the proposed multi-function decompo-
sition is closely related to (i) the set of Boolean operators and (ii) their priority
ordering in G. Although several options do exist, we resort to a technology-
instructed strategy, namely, available operators in G are sorted, from highest
to lowest, in terms of their expressive power (EP), which describes the ratio

70 V. Tenace et al.

between the complexity of the logic operator and the number of devices needed
to implement the corresponding logic gate. This guarantees the high flexibility
and orthogonality of our tool onto different technologies.

As will be shown later in the text, different primitives are used during differ-
ent stages of the multi-function decomposition. For the sake of clarity we define
the first operator in G, the one with the highest EP, as the primary primitive,
the remaining ones as the secondary primitives.

3.2 Multi-Function Pass Diagrams (MFPDs)

The synthesis of MGPL circuits needs an abstract model for reasoning and opti-
mization. We introduce the MFPD, a simple, yet efficient abstract model for
one-pass synthesis of MGPL circuits.

Fig. 3. MFPD of function of Eq. (6) before optimization (a), after merging of common
sub-graphs (b), and after Boolean substitution (c).

Given a generic multi-input/single-output Boolean function f with support-
set S = {x1, ..., xN}, its MFPD (Fig. 3) representation is a polarized, directed
acyclic graph defined as G = (Φ ∪ V ∪ Θ ∪ A). The set of internal nodes v ∈ V
are labeled as g(x, y), with g ∈ G a two-input primitive Boolean connective and
x, y ∈ S. Each internal node v has one outgoing edge a ∈ A representing the
logical conjunction (AND) with the successor node. The terminal node with
indegree 0 represents the root of the MFPD, where the function starts to be
evaluated; the terminal node with outdegree 0 is the leaf of the MFPD, the
output of the function f . Multiple output functions are represented by many
MFPDs as the number of outputs. As an example, Fig. 3-(a) shows the MFPD
structure for the function (6) with g0 = (xi¬ ∨ xj) and g1 = (xi¬⊕xj).

Logic Synthesis for Silicon and Beyond-Silicon Circuits 71

Fig. 4. Multi-Function Pass Diagram node mapping with different technologies.

The main strengths of an MFPD are three. First, they guarantee the capa-
bility of supporting multi-function decomposition. This degree of freedom comes
at the cost of canonicity, that is, MFPDs do not have an unique representa-
tion of Boolean formulae. However, relaxing the canonicity constraint is a well-
accepted concept in the EDA community; indeed, And-Inverter Graphs (AIGs)
integrated into commercial multi-level logic synthesis tools are non-canonical
representations, but nonetheless they are likely used because more compact and
manageable. Second, a MFPD has a 1-to-1 mapping to the final circuit imple-
mentation, that is, each internal node is implemented by a single logic primitive
in the resulting network (please refer to Fig. 1-(a)). This makes the MFPD a uni-
versal model for both the optimization stage and the technology mapping, a key
aspect for one-pass logic synthesis [22]. Third, but not for importance, MFPDs
may serve as model for MGPL circuits mapped using different emerging devices.
As an example, Fig. 4 depicts a generic MFPD internal node, with f = x¬⊕y,
and its implementation using Graphene p-n junctions, Silicon-NanoWires, Mag-
netic Tunnel Junctions and Memristors. Thus, the proposed MFPD model and
its synthesis methodology can be seen as orthogonal tools for the assessment of
a wide range of emerging technologies.

4 Algorithms

4.1 Building MFPD

Algorithm 1 describes the pseudo-code of the Build routine we implemented for
multi-function decomposition and MFPD construction.

The main input parameters are (i) a tabular description T of the Boolean
function and (ii) the primary connective (the first operator in the list of primi-
tives G). Table T can be a non-minimized implicant table (i.e., not prime) and
can be obtained through any Verilog compiler, e.g., ABC [29]. We refer to T
as the PLA table. As an example, Table 1 shows the PLA table for the Boolean
function (5), where the character ‘-’ identifies a dont’care.

72 V. Tenace et al.

Table 1. PLA table of function (5)

x1 x2 x3 x4 f

1 - - 0 1
0 0 1 - 1
1 1 1 - 1

Algorithm 1. MFPD build
Input: PLA Table T , Primary connective g0 ∈ G
Output: Multi-Function PD MFPD

1 MFPD = ∅
2 foreach row R ∈ T do
3 CUBESR = ∅
4 DontCareSet = DetermineDCS(R)
5 foreach primary input PI ∈ R do
6 if PI /∈ DontCareSet then
7 CUBESR.append(PI)
8 end
9 end

10 foreach vi,k ∈ CUBESR do
11 NewNode ← SetPolarity(vi,k, g)
12 PTR.append(NewNode)
13 end
14 MFPD.append(PTR)
15 end

The MFPD is generated branch-wise, that is, for each row of the PLA table,
i.e., for each product term of the function, nodes are appended in series by
iterating the following sequence of operations:

Cube sequence generation (line 3–9) – variables not belonging to the don’t-
care set are included in the cube list CUBESR in order of appearance; those
belonging to the dont-care set are dropped. For odd sequences, the last variable
is paired with ‘1’ logic so as to maintain Boolean equivalence. For instance,
considering Table 1, for the first row CUBES1 = {(x1,¬x4)}, for the sec-
ond row CUBES2 = {(¬x1,¬x2), (x3, 1)}, for the third row CUBES3 =
{(x1, x2), (x3, 1)}.

Node generation (line 10–14) – for each pair of cubes stored in CUBESR, the
polarity of the variables are fixed according to the primary Boolean connective
g and the resulting nodes are appended on the current branch. Let us consider
CUBES2 which contains two cubes, (¬x1,¬x2) and (x3, 1); with g the NOR
operator (like the example in Sect. 3.1), variables are complemented (by De-
Morgan) as (x1, x2) and (¬x3,¬x3) respectively.

Logic Synthesis for Silicon and Beyond-Silicon Circuits 73

Algorithm 2. MFPD optimization algorithm
Input: MFPD, Secondary connectives G = (g1, . . . gm) ∈ G
Output: Optimized Multi-Function PD OMFPD

1 OMFPD = ∅
2 foreach path P ∈ MFPD do
3 CM ← ∅
4 CE ← ∅
5 foreach path Q ∈ MFPD, with Q
= P do
6 if SameSupport(P , Q) then
7 if CheckBoolSub(P , Q, G) then
8 CE .append(Q, gk ∈ G)
9 end

10 else
11 if SharedNodes(P , Q) then
12 CM .append(Q)
13 end
14 end
15 end
16 if |CE | > 0 then
17 M ← ApplyBoolSub(P , CE , G)
18 else if |CM | > 0 then
19 M ← MergeIsomorphic(P,CM)
20 OMFPD.append(M)
21 end

Given a table T with N implicants and M literals, the proposed build routine
has a complexity of O(N · M).

4.2 Optimization

Algorithm 2 describes the pseudo-code of the optimization stage for redundancy
removal. It implements two different optimization techniques: (i) node elimina-
tion by Boolean substitution; (ii) merging of isomorphic sub-graphs. While the
latter is reminiscent of standard reduction rules from BDDs [23], the former
one is an ad-hoc strategy for MFPDs. Its purpose is to find suitable equiva-
lent logic connectives, among the list of secondary connectives in G, that can
be eventually substituted in order to enable node elimination and reduce the
MFPD cardinality; as illustrated in the examples of Sect. 3.1. Please note that
secondary connectives are selected with a greedy approach, that is, the first one
that satisfies the Boolean equivalence is instantiated in the network.

Input parameters of Algorithm 2 are the MFPD obtained through the MFPD
Build routine, and the list of secondary connectives G ∈ G.

Candidate selection (line 3–15) – Each root-to-leaf path P of the MFPD is
compared with any other path Q (P
= Q). If (line 6) P and Q share the same

74 V. Tenace et al.

support set (i.e., nodes in P and Q are driven by the same literals) the algorithm
checks (line 7) whether it is possible to perform a Boolean substitution, namely,
it checks whether some of the operators associated with the nodes in Q can be
substituted with some other operator gk ∈ G s.t. Boolean equivalence is satisfied.
If so, P and Q share a common node expressed by means of gk, that allows to
merge P and Q in a single path. Therefore, Q is stored in the candidates list
CE together with the connective gk that enables its elimination. If P and Q do
not have common support set (line 10), the algorithm checks whether a path
Q shares at least one node with P ; if so, Q is a potential candidate for node
merging and it is temporarily stored in the list of candidates CM .

Merge and Eliminate (line 16–20) – once candidates have been selected, the
algorithm first evaluates whether there exists at least one candidate for node
elimination by Boolean substitution (|CE | > 0). If so, the common node between
P and CE is replaced with the new connective gk, and redundant paths in
CE are removed (ApplyBoolSub function). If not and the list CM is not empty,
then common nodes between CM and P are evaluated for merging through the
MergeIsomorphic function.

Figure 3-(b) and -(c) show the results of the optimization procedures
described above applied on the MFPD obtained through the build function
(Fig. 3-(a)).

Since Boolean elimination guarantees higher benefits in terms of node count
and circuit complexity, e.g., it reduces the number of common branches due to
merge operations, this characteristic is exploited first during the last phase of the
optimization process with the MergeAndRemap function. Otherwise, common
nodes between the CANDIDATESM list and P are merged by means of the
MergeMaxSharing function. The final result is then appended in the optimized
MFPD structure OMFPD. Applying this procedure to the MFPD depicted in
Fig. 3-a allows us to achieve a more compact representation of the same function
by means of only three logical nodes/operations, as depicted in Fig. 3-b.

Concerning complexity, since each path P is compared with any other path
Q, the total number of loops is N ·(N−1)

2 , with N the number of paths in the
starting MFPD. The complexity of the optimization routine is O(N2). Notice
that all other sub-routines have a O(1) complexity (operations are completed
in constant time) except for functions SameSupport and SharedNodes which
show a complexity of O(M), with M the number of nodes in the path Q.

5 Simulation Results

Experimental results reported in this section provide a fair comparison of MFPDs
and the resulting MGPL circuits mapped onto different technologies against
state-of-the-art data-structures and PTL circuits. The goal is to demonstrate
that:

1. MFPDs optimized with the eduction rules described in Sect. 3 give substantial
savings.

Logic Synthesis for Silicon and Beyond-Silicon Circuits 75

2. MFPDs represent the most compact solution for the representation of switch-
ing functions implemented through the MGPL style; metrics adopted are
expressive power, namely the number of nodes and depth, i.e., nodes count
along the longest path.

3. MFPDs are a true technology-independent abstract model, namely, the way
they model a Boolean function can be orthogonally applied to any kind of
technology and, most importantly, whatever the logic primitives are.

4. MGPL circuits obtained through MFPDs might become the vehicle for ultra-
low power computing using emerging technologies, graphene in particular; in
this regard, we show that the MGPL style allows large gains w.r.t. PTL and,
most importantly, it is well suited for ultra-low power digital circuits.

We set up five different synthesis flows, the first four are for pass-gate logic
circuits, the target of this work, the fifth one is for standard cells-based circuits.

– MFPDs (the solution proposed in this work): circuits described using the
PLA format [29] are processed with our tool Kanon for multi-function decom-
position using the connective set G = {{x¬∨y}, {x¬⊕y}, {x⊕y}}. It is worth
to notice that even though more Boolean operators can be used, here we
force our tool working in worst-case conditions where only three primitives
are allowed. Resulting MFPDs are then mapped onto MGPL circuits using
different technologies.

– PDs (introduced in [24]): circuits described using the PLA format [29] are
processed leveraging Gemini, a single-function XNOR decomposition tool;
resulting PDs are mapped onto PXL circuits using different technologies.

– Biconditional-BDDs (described in [21]): circuits are first synthesized using
a standard multi-level synthesis tool and then translated into BBDDs using
single-function XOR decomposition scheme; the resulting BBDDs are mapped
onto a tree-based PTL-like structure using different technologies.

– BDDs: circuits are processed with a C program that leverage the CUDD
package [23]; BDD structures, obtained with a single-function MUX-based
decomposition, are mapped on PTL-like circuit using different technologies.

– AIGs: obtained with the ABC synthesis tool [29], the AIGs are mapped on a
CMOS library containing only AND and INV gates; it is worth emphasizing
that AIGs cannot be directly used for pass-gates logic circuit, however, they
serve as a reference point to better evaluate MFPDs.

The experiments were run on a set of open-source benchmarks from the
LGSynth91 suite [30], and accurate SPICE simulations were used for the char-
acterization of the obtained netlists. Please note that the size of such benchmarks
is comparable to that of those used in other synthesis-related works, e.g., [21].
Without loss of generality, only combinational logic cones have been considered
for synthesis, i.e., in-to-out and register-to-register logic cones.

5.1 Efficiency of Reduction Rules During MFPD Optimization

Table 2 gives a brief description of the adopted benchmarks and an overview of
the efficiency of the algorithms proposed in this work. Columns PI, PO and I

76 V. Tenace et al.

Table 2. MFPD reduction rule efficiency.

PI PO I Number of nodes
w/o opt w/ opt Savings %

sao2 10 4 58 229 152 33.62
o64 130 1 65 65 65 -
5xp1 7 10 75 161 111 31.06
c8 28 18 79 156 108 30.77
duke2 22 29 87 401 287 28.43
apex1 45 45 206 921 677 26.49
misex1 8 7 32 67 31 53.73
misex2 25 18 29 101 75 25.74
b12 15 9 431 1007 579 42.50
k2 45 45 936 3791 2103 44.53
bigkey 486 421 6151 19054 10771 43.47
s13207.1 700 790 10987 53868 33005 38.73
Total 79821 47964 Avg. 39.91

represent the total number of primary inputs, primary outputs and implicants of
each benchmark. Under the label Number of nodes, column w/o opt refers
to MFPDs after the build process, whereas column w/ opt refers to MFPDs
after optimization; column Savings reports optimization gain;

As the table suggests, the proposed reduction rules allow about 40% of sav-
ings on average. Noticeably, large savings have been recorded for all the bench-
marks, except for o64. For this case we observed the PLA table is a diagonal
matrix of ‘1s’ which prevents MFPD optimization.

5.2 Compactness of the MFPD Model and Execution Time

Figure 5 depicts the obtained synthesis results averaged over all the benchmarks
described in Table 2. The plot suggests that MFPDs outperform BBDDs, which
are 35.39x larger, BDDs (15.51x larger) and PDs (2.1x larger); only AIGs are
more compact (0.63x). Indeed, AIGs leverage two key options available in multi-
level optimization, namely the possibility of reusing cascades of common sub-
expressions and local don’t-care conditions, a technique that is not applicable to
pass-gates logic styles.

However, an important aspect concerns the depth of the data-structures. In
this case MFPDs are the most efficient solution since BBDDs (21.12x deeper),
BDDs (20.33x deeper) and PDs (1.83x deeper) show an higher number of devices
on the longest path. AIGs do the same as they return circuit topologies 3.83x

Logic Synthesis for Silicon and Beyond-Silicon Circuits 77

3997
8695.75

141474.42
61995.67

2521.5

100

101

102

103

104

105

AIG BBDD BDD MFPD PD

Av
g.

 #
 o

f n
od

es

5.25

10.17

126.75 121.33

22.83

1

10

100

AIG BBDD BDD MFPD PD

Av
g.

 d
ep

th
 (#

 o
f g

at
es

)

3997
8695.75

141474.42
61995.67

2521.5

100

101

102

103

104

105

AIG BBDD BDD MFPD PD

Av
g.

 #
 o

f n
od

es

5.25

10.17

126.75 121.33

22.83

1

10

100

AIG BBDD BDD MFPD PD

Av
g.

 d
ep

th
 (#

 o
f g

at
es

)

Fig. 5. Binary MFPDs efficiency w.r.t. PDs, BDDs, BBDDs and AIGs. Average num-
ber of nodes (left), average depth (right).

0.67

25.73

0

10

20

BBDD MFPD

Ag
v.

 e
xe

cu
tio

n
tim

e
(s

)

Fig. 6. Average device count after synthesis and mapping. Graphene (left), Ambipolar
Si-NWs (center), MOSFET PTL (right).

deeper. Therefore, MFPDs are well suited for pass-gates logic circuits, where
smaller depth translates into shorter delays and smaller voltage noise.

Such huge savings achieved are the consequence of the efficient multi-function
decomposition, in particular: (i) the availability of more Boolean operators w.r.t.
BDDs, BBDDs and PDs, (ii) the fact that inputs variables belonging to the
dont-care set are dropped during decomposition (please refer to Algorithm 1),
(iii) the regularity of the implication table that allows large minimization (see
Algorithm 2).

From a complexity viewpoint, the barchart in Fig. 6 reports the average
CPU execution time of the Kanon tool compared to the BBDD package. It
turns out that MFPD synthesis is, on the average, 38x faster w.r.t. the proce-
dures used for BBDDs. As a representative example, for the largest benchmark
(s13207.1) the MFPD is built and optimized in 7.08 s, whereas the equivalent

78 V. Tenace et al.

BBDD takes 241.9 s. This is due to the lower computational workloads of MFPD
algorithms which do not require the reconstruction of the network graph during
optimization.

5.3 Many Technologies, One Synthesis Methodology

To demonstrate the “orthogonality” of both the MFPD model and the MGPL
style over different technologies, we mapped the benchmarks under analysis using
three different devices: graphene p-n junctions (Graphene), Ambipolar Silicon
NanoWires (Si-NWs) Pass-Transistors (Si-NW PT), and traditional MOSFET-
based Pass-Transistors (Si-MOS PT). As described in Sect. 2.1, each of these
technologies has different “optimal” primitives, namely the ones with the highest
expressive power. Hence, tools that can seamlessly use different logic primitives
may represent a genuine solution for the evaluation and comparison of different
emerging technologies.

95471

3395386

100

102

104

106

BBDD MFPD

of

 p
−n

 ju
nc

tio
ns

 (a
vg

.)

48421

6790772

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

197340

27163088

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)
95471

3395386

100

102

104

106

BBDD MFPD

of

 p
−n

 ju
nc

tio
ns

 (a
vg

.)

48421

6790772

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

197340

27163088

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

Fig. 7. Average device count after synthesis and mapping. Graphene (left), Ambipolar
Si-NWs (center), MOSFET PTL (right).

Figure 7 summarizes the post-synthesis results obtained using our tool. Since
MFPDs are a superclass of Pass Diagrams, we only provide comparison against
BBDD-based synthesis. BBDDs represent the most recent solution proposed for
emerging technologies [21] and their superiority w.r.t. other solutions have been
already demonstrated. Notice that MFPDs nodes can be mapped with NOR,
XOR and XNOR, while BBDDs only allow XOR mapping. Each of this pass-
gates count different devices according to the adopted technology (Fig. 7). As
a result of the multi-function decomposition, circuits synthesized using MFPDs
are several orders of magnitude smaller in size; this translates into more area
and more power efficient MGPL circuits.

5.4 Power and Performance Efficiency of MGPL Circuits

The extremely compact structure of MGPL circuits allows very high
power/energy reduction. While this is an intuitive conclusion, here we underline

Logic Synthesis for Silicon and Beyond-Silicon Circuits 79

Fig. 8. Normalized PDP vs transition time.

Fig. 9. Normalized dynamic power vs. transition time.

the energy efficiency of the MGPL style for emerging technologies, Graphene
in particular. Figure 8 provides a technological comparison between Graphene-
based MGPL circuits and Silicon-MOS PTL circuits. The plot shows the power-
delay product (PDP) averaged over all the benchmarks as function of the tran-
sition time Tr of the input signals. The plot highlights the “adiabatic” nature of
both implementations, i.e., PDP reduces as Tr increases. For a Tr that ranges
from 1 to 1000 ps (3 orders of magnitude), the PDP of graphene reduces by more
than 5 orders of magnitude, whereas that of silicon reduces only by 3 orders of

80 V. Tenace et al.

magnitude. However, and this is the most important aspect, graphene circuits
are more energy efficient, not just in terms of absolute numbers, a result due to
the intrinsic characteristics of the material [24], but also in terms of “scalabil-
ity”. This concept is further explained in Fig. 9 that correlates dynamic power
consumption over transition time. As the plot suggests, for Tr

∼= 1ps, namely
outside the adiabatic region, PTL circuits are more power efficient, but as Tr

increases, the adiabatic nature of the MGPL circuits shows reaching a power con-
sumption that is about 2 order of magnitude lower that the PTL counterpart
(best case at Tr

∼= 1ns).

6 Conclusions

In this work we introduced a novel abstract representation for Boolean switching
functions: the MFPD. Such a new data-structure, obtained with a multi-function
logic decomposition, allows the implementation of compact MGPL circuits that
well fit the characteristics of new emerging devices.

Results obtained with our tool Kanon demonstrate that MGPL circuits show
superior characteristics w.r.t. state-of-art solutions, in particular (i) larger area
efficiency (almost 15.51x better than PTL circuits obtained with BDDs) and
(ii) shallower logic paths (77% w.r.t. CMOS circuits obtained with AIG-based
multi-level synthesis).

These achievements demonstrate that there is a huge margin of improvement
when moving to new technologies and that solutions universally recognized as
a de facto standard for CMOS may fail when considering devices with different
characteristics.

References

1. Schulz, M.: The end of the road for silicon? Nature 399(6738), 729–730 (1999)
2. Thompson, S.E., Parthasarathy, S.: Moore’s law: the future of SI microelectronics.

Mater. Today 9(6), 20–25 (2006)
3. Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R.,

Nowak, E.J., Pearson, D.J., Rohrer, N.J.: High-performance CMOS variability in
the 65-nm regime and beyond. IBM J. Res. Dev. 50(45), 433–449 (2006)

4. Zimmermann, R., Fichtner, W.: Low-power logic styles: CMOS versus pass-
transistor logic. IEEE J. Solid-State Circ. 32(7), 1079–1090 (1997)

5. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1),
414–454 (2014)

6. Rabaey, J.M., Pedram, M.: Low Power Design Methodologies, vol. 336. Springer
Science & Business Media, Boston (2012). doi:10.1007/978-1-4615-2307-9

7. De Marchi, M., Sacchetto, D., Frache, S., Zhang, J., Gaillardon, P., Leblebici, Y.,
De Micheli, G.: Polarity control in double-gate, gate-all-around vertically stacked
silicon nanowire fets. In: IEDM 2012: International Electron Devices Meeting, pp.
8.4.1–8.4.4, December 2012

http://dx.doi.org/10.1007/978-1-4615-2307-9

Logic Synthesis for Silicon and Beyond-Silicon Circuits 81

8. Chiu, H.-Y., Perebeinos, V., Lin, Y.-M., Avouris, P.: Controllable PN junction
formation in monolayer graphene using electrostatic substrate engineering. Nano
Lett. 10(11), 4634–4639 (2010)

9. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of
graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)

10. Ikeda, S., Hayakawa, J., Lee, Y.M., Matsukura, F., Ohno, Y., Hanyu, T., Ohno,
H.: Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans.
Electron Devices 54(5), 991–1002 (2007)

11. Parkin, S.S., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory.
Science 320(5873), 190–194 (2008)

12. Shelar, R.S., Sapatnekar, S.S.: Bdd decomposition for delay oriented pass transistor
logic synthesis. IEEE Trans. VLSI Syst. 13(8), 957–970 (2005)

13. Oklobdzija, V.G., et al.: Pass-transistor adiabatic logic using single power-clock
supply. IEEE Trans. Circuits Syst. II 44(10), 842–846 (1997)

14. Houri, S., Billiot, G., Belleville, M., Valentian, A., Fanet, H.: Limits of CMOS
technology and interest of nems relays for adiabatic logic applications. IEEE Trans.
Circuits Syst. I 62(6), 1546–1554 (2015)

15. Ding, L., Zhang, Z., Liang, S., Pei, T., Wang, S., Li, Y., Zhou, W., Liu, J., Peng,
L.-M.: CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat.
Commun. 3, 677 (2012)

16. Miryala, S., Calimera, A., Macii, E., Poncino, M.: Ultra low-power computation
via graphene-based adiabatic logic gates. In: DSD 2014: Digital System Design
Conference, pp. 365–371 (2014)

17. Suzuki, M., Ohkubo, N., Shinbo, T., Yamanaka, T., Shimizu, A., Sasaki, K.,
Nakagome, Y.: A 1.5-ns 32-b CMOS alu in double pass-transistor logic. IEEE
J. Solid-State Circuits 28(11), 1145–1151 (1993)

18. Lee, J.D., Yoon, Y.J., Lee, K.H., Park, B.-G.: Application of dynamic pass-
transistor logic to an 8-bit multiplier. J. Korean Phys. Soc. 38(3), 220–223 (2001)

19. Wu, T.-Y., Lu, L.-Y., Liang, C.-H.: Low-leakage and low-power implementation of
high-speed 65nm logic gates. In: Electron Devices and Solid-State Circuits Confer-
ence. EDSSC 2008, pp. 1–4. IEEE (2008)

20. Bertacco, V., Minato, S., Verplaetse, P., Benini, L., De Micheli, G.: Decision dia-
grams and pass transistor logic synthesis. In: International Workshop on Logic
Synthesis, vol. 168 (1997)

21. Amaru, L., et al.: Biconditional binary decision diagrams: a novel canonical logic
representation form. IEEE J. Emerg. Sel. Top.Circuits Syst. 4(4), 487–500 (2014)

22. Drechsler, R., Günther, W.: Towards One-Pass Synthesis. Springer Science & Busi-
ness Media, Heidelberg (2013)

23. Somenzi, F.: Cudd: Cu Decision Diagram Package Release 2.3.0. University of
Colorado at Boulder, Boulder (1998)

24. Tenace, V., Calimera, A., Macii, E., Poncino, M.: One-pass logic synthesis for
graphene-based Pass-XNOR logic circuits. In: Design Automation Conference.
DAC 2015, pp. 1–6. ACM (2015)

25. Tenace, V., Calimera, A., Macii, E., Poncino, M.: Multi-function logic synthesis
of silicon and beyond-silicon ultra-low power pass-gates circuits. In: International
Conference on Very Large Scale Integration, VLSI-SoC 2016, pp. 1–6. September
2016

26. Tenace, V., Calimera, A., Macii, E., Poncino, M.: Pass-XNOR logic: a new logic
style for PN junction based graphene circuits. In: Design, Automation and Test in
Europe. DATE 2014, pp. 1–4. IEEE (2014)

82 V. Tenace et al.

27. Tenace, V., Calimera, A., Macii, E., Poncino, M.: Quasi-adiabatic logic arrays for
silicon and beyond-silicon energy-efficient ICS. IEEE Trans. Circuits Syst. II Expr.
Briefs 63(12), 1111–1115 (2016)

28. Miryala, S., Tenace, V., Calimera, A., Macii, E., Poncino, M.: Ultra-low power
circuits using graphene p-n junctions and adiabatic computing. Microprocess.
Microsyst. 39(8), 962–972 (2015)

29. Synthesis, B.L., Group, V.: Abc: a system for sequential synthesis and verification
(2014). http://www.eecs.berkeley.edu/alanmi/abc/

30. Collection of digital design benchmarks (2015). http://goo.gl/6fOVfN

http://www.eecs.berkeley.edu/alanmi/abc/
http://goo.gl/6fOVfN

Digital Hardware Design Based on Metamodels
and Model Transformations

Johannes Schreiner1(B) and Wolfgang Ecker2

1 Infineon Technologies AG, Neubiberg, Germany
johannes.schreiner@infineon.com

2 Technische Universität München, Munich, Germany
wolfgang.ecker@tum.de

Abstract. This contribution presents a Model-driven Architecture
(MDA) inspired strategy for the automation of digital hardware design
starting at specification level and targeting RT-level. This strategy
defines a structured approach with is superior to code generation using
scripts, print statements or template engines directly targeting ASCII
files.

As part of this strategy, we implemented intermediate models named
Models-of-Things (MoTs) for formalizing specification data which have
a dependency on the design objects specified. We further implemented
a Model-of-Design (MoD) for hardware design related modeling, and a
Model-of-View (MoV) for target view generation. For the transforma-
tions between our intermediate models, we use a template based app-
roach. These templates are executed and generate more concrete models
utilizing information from more abstract models. The term model here
describes instances of Metamodels in the terminology of MDA and must
not be mixed up with simulation and synthesis models such as VHDL
RTL models.

The template which guides MoD generation is called Template-
of-Design. On one hand, the Template-of-Design (ToD) captures the
(micro-)architecture and on the other hand, it retrieves MoT data
to automate creation of the design that meets the specification. The
Template-of-Design is Python code – as all our framework is implemented
in Python – and uses generated APIs to simplify (micro-)architecture
construction. In contrast templates for classical template engines, the
Template-of-Design generates a model and not an ASCII File.

To generate the final view, a so-called Template-of-View (ToV) is
used. It is also encoded as Python code, traverses the Model-of-Design
and creates the MoV. This Model-of-View is in many aspects similar
to Abstract Syntax Trees utilized in language parsing. It is defined by
a Metamodel, which is generated from our so-called View Language
Description (VLD). This language is also used to generate an un-parse
method, which automates the view generation task from MoV instances.
This means that provided our VLD and a Model-of-View instance, we can
generate an ASCII-File containing e.g. RTL VHDL code in a completely
automated way. Our VLD format also includes formatting pragmas to
guide view generation tasks such as indentation and alignment.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 83–107, 2017.
DOI: 10.1007/978-3-319-67104-8 5

84 J. Schreiner and W. Ecker

Our strategy is supported by type and expression Metamodels that
are used across different Models on different modeling layers (i.e. in MoTs
or MoDs as well as in the Template-of-Design). This further simplifies
implementation of the models as well as of the templates.

First analysis of our approach shows that we can simplify building
one generator up to a factor of 10×. This factor increases further when
different target languages or target language styles are generated from
one MoD.

Keywords: Model-Driven Architecture · Hardware generation · Meta-
modeling

1 Introduction

In the 2013 McKinsey study on semiconductors [4], Collet et al. analyze how the
design gap widened by a factor of about 5× in one decade. In this period, the
number of transistors that can be manufactured increased by a factor of 100×,
yet the productivity of design increased only by a factor of 20×. McKinsey
concluded that closing the design gap is essential particularly for semiconductor
companies fully or partially following the fabless approach.

The last disruptive productivity increases have been achieved by semi-custom
design, RTL synthesis, and so-called “IP-reuse”. Besides automating the con-
struction of the lower level implementation, these approaches heavily rely on
reusing pre-implemented pieces1. Although each of these approaches brought a
big leap in productivity, the general benefit of reuse is often overestimated –
an insight acquired in [4] as well. One reason for why TLM has not brought
productivity increases may be that it does not define one agreed abstraction as
RTL (synchronous design, time discretization) and Gate-Level (digital design,
value discretization) do.

A measure proposed to further increase design productivity is the generation
of code from more abstract descriptions. Ecker et al. reported a 20× productivity
increase in special design tasks and up to 3× higher productivity in design imple-
mentation from specification freeze to tape-out through the use of Metamodeling
and code generation [6]. The replacement of ad-hoc script based approaches by
a more structured approach and the link to formalized specification data have
been mentioned as key to this improvement.

Generation as part of a completely new approach of designing chips has been
postulated by Nicolic [17] and Shacham et al. [20]. Generators should not only
be used to make simpler and more efficient designs but also to generate different
alternatives, thus to enable exhaustive architecture analysis. The use of genera-
tors instead of models has been claimed by Bachrach et al. [3] as well. Bachrach
is developing Chisel, a so-called hardware generation language (HGL). He has
1 Please note that beyond functional mapping and time abstraction to clock cycles, a

big contribution in RTL’s productivity results from mapping operators such as “+”
to predefined structures such as adders.

Digital Hardware Design Based on Metamodels and Model Transformations 85

demonstrated a code reduction by a factor of 3× in several application exam-
ples, when comparing Chisel models and Verilog code. While Chisel provides a
very compact and generation centric RTL notation, micro-architecture pattern
[13] go a step further and generate via an intermediate called DHDL complex
pipelined micro-architecture patterns.

Interestingly, IP-XACT [10], the standard for IP integration, was prepared
from the beginning to include generators and generator chains in the integra-
tion process. Unfortunately, no measure was described to formulate and build
generators efficiently.

Besides controlling and configuring generation, building generators is the
most time-consuming effort to enable automation. With Model-driven Architec-
ture (MDA) [18,22], the OMG offers a vision for target code generation from
specification via a set of models and a set of transformations, each deriving a
model from the adjacent model. For further reading, it is important to note that
we refer to model in terms of SW engineering and Metamodeling. A model is
an instance of a Metamodel and a Metamodel is a class diagram-like notation2

of the model’s structure. In other words, a model specifies a set of entities – or
things – their relations and their attributes.

Another challenge in making generators – or as part hereof translators – is
the consideration of different Models-of-Computation (for a definition, see e.g.
[7]). The generator developer does not only have to think in terms of generated
design target but also in terms of simulation artifacts of the target languages
that are eventually synthesized to hardware. Examples for simulation artifacts
are blocking and non-blocking statements in Verilog, delta races caused by clock
gates in VHDL, and proper ′X′ handling. Further examples are the type incon-
sistency between std logic vector and std ulogic vector in VHDL and additional
code artifacts that are necessary as it is prohibited to read output ports.

In this contribution, we present an approach that follows the MDA vision
postulated by the Object Management Group (OMG). MDA describes code gen-
eration via a chain of models in order to simplify and improve the construction
of generators. In the next chapter, we describe the MDA idea in more detail and
explain how we adopt it to digital hardware design. After that, we describe the
components of our framework and the individual models and metamodels. Here,
we provide simple examples for transformations and application sketches. First,
we describe the Model-of-Things a specification related and design indepen-
dent layer. Next, we introduce MetaRTL, a (digital hardware) Model-of-Design
(MoD), acting as key model of our proposal. This MoD not only simplifies and
accelerates generator construction by providing a more abstract target. It also
helps to avoid thinking in terms of simulation semantics and artifacts. Here,
we also show how MoDs can be efficiently built using a Templates-of-Design
(ToD). To make transformation to RTL code complete in order to be able to
utilize state-of-the-art design flows, we introduce as a third model the Model-
of-View (MoV) an abstract syntax tree like structure. The application of the

2 There are other notations as e.g. XML schema definitions or entity relationship
diagrams. For an overview see e.g. [5].

86 J. Schreiner and W. Ecker

proposed methodology for generating different flavours and styles of code for
different processors and the benefits of the approach are discussed next. After
introducing the general framework and our overall approach, we describe real-
world application examples and use them to compare our hardware generator
construction method to related generation and modeling approaches. Eventually,
we describe related work in the field of hardware generation and construction
approaches and evaluate how our approach competes.

2 Model-Driven Architecture

2.1 The OMG Model-Driven Architecture Vision

Model-driven Architecture (MDA, [16,18,22]) is an OMG vision of the future of
software design that popped up a bit more than 15 years ago. MDA approaches
a growing productivity gap that also burdens software engineering by fostering
code generation. Instead of using simple model-to-code generation, MDA involves
some intermediate steps before the final code is generated.

The first version of MDA introduces three kind of models, namely a
Computation Independent Model (CIM), a Platform Independent Model (PIM)
and a Platform Specific Model (PSM), where:

CIM is the most abstract one and closest to specification. It considers neither
detailed algorithm implementation nor architecture.

PIM already defines the architecture – and therefore also the implementation
but avoids details of the platform.

PSM is platform dependent and closest to the target code, also referred to as
view. From this model, the view is generated.

VIEW

Fig. 1. MDA pictured as Y-Chart from [14]

Figure 1 shows this dependency in a Y-Chart for which MDA is well known.
In addition to the aforementioned models, this figure also shows a Platform
Model (PM), which contains the details of the target platform.

Digital Hardware Design Based on Metamodels and Model Transformations 87

A remaining question is “what is a platform?”. In the software world, a
platform is a computing infrastructure on which generated target code can run.
A platform for example defines libraries, APIs and the OS the generated view
code compiles and executes on.

Before we describe our adaptation of MDA to digital hardware, we will first
analyze some limitations of the initial MDA definition. First, the definitions
of CIM and PIM are a bit vague, especially when it comes to the definition
of functionality. Second, the agreement on 3 intermediate models is often at
issue and it is questionable why there aren’t 1, 2 or 4 layers of models instead,
depending on the application domain and the difficulty of transformations. The
third and last issue relates to the position of the Platform Model in the Y-Chart.
This model is a description of the platform a PIM is mapped onto. The level
of abstraction of this description is thus comparable to that of the PSM and it
is depicted too “high” in the Y-Chart, since it is closer to the PSM’s level of
abstraction.

The problem with the modeling layers is relaxed in the second version of
MDA released mid 2014 [18]. Here, a characteristic of a transformation is that
it translates a PIM to a PSM. A sequence of any number of transformations
is chained together to finally generate the view. At each connection point, the
PSM becomes the PIM of the next transformation. A platform is therefore no
longer simply related to a computation platform. Instead, for each platform an
automated construction path – potentially via several intermediate steps – to the
target code is provided. The target code is then compiled together with packages
and libraries, etc. to a product, suitable to run on a computing platform3.

2.2 Model-Driven Architecture for Hardware Development

Figure 2 shows our approach to adopt MDA for digital hardware generation.
It conceptually follows the 3-level model of the first MDA proposal but has
important enhancements to support hardware design. For instance, it introduces
terms for the various hardware related models that are involved, each being more
closely related to the purpose of the model they describe:

MoT. The Model-of-Things corresponds to the CIM since its intention is to
formally capture data from requirements and specifications. By doing so,
the MoT defines things, their attributes and the relations to the intended
functionality. In this context, functionality describes what the product has
to provide, without including how the product is implemented, e.g. which
algorithms and architecture/structure are used. An example for a MoT is the
instruction set of a CPU as discussed in Sect. 7.1.

3 Please note that the term “platform” is used in different ways in the hardware design
area: Keutzer et al. defined a hardware platform as a family of microarchitectures
that allow sustainable reuse of SW in [12]. In other contexts, the term platform
is used for a product family which addresses one field of application in various
configurations.

88 J. Schreiner and W. Ecker

MoT
Layer

MoD
Layer

MoV
Layer

View
(defines

MoC)

MoT Metamodel

MetaRTL Metamodel

B

Model C

Model of Design

Model A

SysC Metamodel

Verilog Metamodel

VHDL Metamodel SysC Model

VHDL Model

Transforma on

Template of Design

Transforma onTransforma on

SysC Temp

VHDL Temp

Transforma onTransforma on

MoT Metamodel

Fig. 2. MDA for hardware generation

MoD. The Model-of-Design corresponds to the PIM since its goal is to define
the architecture using designer’s terms. The MoD and its Metamodel are the
core components of our methodology. Broadly speaking, a Model-of-Design
describes the design on RT-level. It differs from modeling languages based
on event-driven semantics as it does not cover any simulation or synthesis
artifacts of the views we target with our approach. We detail the MoD and
its Metamodel in Sect. 3.

Digital Hardware Design Based on Metamodels and Model Transformations 89

MoV. The Model-of-View corresponds to the PSM since it is the least abstract
model with a straightforward mapping to the target view. It is more or less an
abstract syntax tree defined by an abstraction of the target code’s grammar.
In future, we might extend this model with some target architecture related
information as mapping pragmas or target platform specific code snippets.
The Model-of-View layer is detailed in Sect. 6.

For each of the MDA-layers, we define Metamodels. These metamodels con-
strain the valid models of the modeling layers. There are several Metamodels
on the MoT layer and on the MoV layer respectively. For the MoD layer, there
is exactly one metamodel which is related to the RTL and synchronous design
abstraction. For targeting other implementations such as analog hardware or
firmware, additional Models-of-Design are needed. Every specification formal-
ized in a Model-of-Things instance is transformed onto a set of RTL components
part of a Model-of-Design. On the Model-of-Things layer, several different meta-
models are necessary depending on the design task. When generating several
CPU cores with different RISC ISAs, the formalized description of these ISAs
will use models of the same Metamodel. When a full CPU subsystem is gener-
ated, various peripherals such as timer, interrupt controller or signal processing
peripherals will require different Metamodels. On the Model-of-View layer, a dif-
ferent Metamodel is necessary for every view language, while two different views
of the same language use the same Metamodel.

In addition, Fig. 2 introduces the Templates-of-Design (ToDs, see Sect. 5.2)
and Templates-of-View (ToVs, Sect. 6). They relate to the Platform Model (PM)
in MDA’s Y-Chart representation from Fig. 1. They are pictured right of the
MoD and MoV respectively, illustrating that they are on the same level of
abstraction. These templates are designed for a certain Metamodel on the respec-
tive layer of abstraction and therefore work on the API provided for that Meta-
model. The Template-of-Design (ToD) describes the targeted architecture and
directly instantiates Model-of-Design (MoD) items. For this instantiation, it can
utilize data from several Model-of-Things (MoT) instances. It is thus possible to
intuitively integrate configurable and non-configurable components. The result
of the Template-of-Design execution is one static Model-of-Design instance. This
instance can be transformed on the Model-of-Design layer and can further be
transformed into a Model-of-View instance using the Template-of-View (ToV).
Similar to the ToD, the ToV relates to the structure of the target code. It instan-
tiates elements of the MoV, which are more-or-less nodes of the abstract syntax
tree of the target view.

Similar to MDA 2.0, our adoption of MDA to hardware does not insist on
exactly three modeling layers. Instead, the MoV can be omitted and the view
can be directly generated with a template engine from the MoD. Further, several
MoTs can be used to build the MoD and there may be transformations between
MoTs before the MoD is constructed.

Our adoption of MDA realizes the two key aspects for productivity improve-
ment already mentioned in the introduction: automation and reuse. Automation
is established by transformations and reuse is enabled by re-using models, their

90 J. Schreiner and W. Ecker

Metamodel-based definitions, and through reuse of existing transformations and
view generators.

3 Framework

This section introduces the framework we utilize for our Model-driven Architec-
ture approach. For this purpose, we first introduce Infineon’s proprietary meta-
modeling framework. We then show auxiliary elements which are utilized across
different Metamodels.

3.1 The Overall Framework

Our metamodeling framework uses a subset of an UML class diagrams, extended
with some features from XML Schema to specify Metamodels. Substantially,
objects, their attributes and various kinds of relations between them can be
specified. The Metamodel in turn is defined by a Meta-metamodel, which is
also used to relate and combine Metamodels as well as to generate Metamodels
from other descriptions like an XML Schema or EBNF grammars. The Meta-
metamodel uses the same notation as the Metamodel, i.e. is self-defined.

The Metamodel can be captured in a textural and a graphical way. The
framework generates an infrastructure for handling the Metamodel and its mod-
els. This infrastructure supports the generation of extendable APIs, code gener-
ation for persistent storage of the models and tool frame generation. The gen-
erated tool frame supports joint handling of various models, creation of models,
transformations between the models, and generation of views. The framework is
written in Python, uses Python for manually coded and generated transforma-
tions and takes advantage of numerous Python libraries and tools including the
Mako template engine for a direct Model to View generation.

Python is not only used because of the already mentioned libraries and
rich features such as object-oriented programming, aspect-oriented program-
ming utilizing introspection and functional programming. Equally important
is its low adoption barrier. We observed that Metamodeling frameworks such
as the “Eclipse Modeling Framework” (see [21]) are more powerful but very
complex and thus very hard to learn and adopt for hardware engineers. With a
Python-based approach, we managed to lower this barrier significantly.

The framework makes the development of MDA flows easy by generating
the already mentioned tools. Both Template-of-Design (ToD) and Template-of-
View (ToV) are developed as Python code utilizing the generated API to fill
their target model and to access the more abstract source models. The models
reside as data structures in the generated framework tools. These data structures
can be read from and written to XML files.

The uniform structure of the modeling flow also makes it easy to understand
and use the Metamodels. Thus, the different levels of detail resulting from differ-
ent levels of abstraction from MoT to MoV can be easily handled. Descriptions

Digital Hardware Design Based on Metamodels and Model Transformations 91

can be made in a uniform way, transformations are less painful and there are
fewer inconsistencies.

Although the Metamodel enables the described tool building framework,
Metamodeling is still mainly a modeling activity since it structures and defines
the objects, attributes and relations as abstractions of the design space.

3.2 Auxiliary Metamodels

The above-mentioned Meta-metamodel-based features of the framework make it
easy to structure Metamodels and to reuse predefined Metamodels. We currently
support two auxiliary Metamodels which are used on different layers of our MDA
approach: the Type Metamodel and the Expression Metamodel.

These two Metamodels are used on the Model-of-Things and the Model-of-
Design layer. They are intended for use wherever Metamodels contain elements
describing objects and behavior. It is for example necessary to describe object
sizes (e.g. the sizes of registers) on both the Model-of-Things layer and the
Model-of-Design layer. The utilization of the same auxiliary descriptions across
different metamodels has two key advantages. First, it reduces the development
effort for new metamodels and improves overall code quality and usability. Sec-
ond, it simplifies the extraction of information necessary for the transformation
between different modeling layers. In many cases, objects and expressions can
be simply compared and copied between different MoD and MoT instances.

The Type Metamodel follows the idea describing data types and interpre-
tation using the underlying semantics of hardware wires. Therefore, it supports
the specification of any kind of bundles of wires together with some optional
hardware properties such as signed interpretation and Endianness. Types can
be named to ease readability of the generated targets and to simplify referenc-
ing types in specifications. Type compatibility is however not dependent on type
names or other hardware properties. Instead, type consistency is only dependent
on the size (i.e. the number of bits or hardware wires) of any two types. Figure 3a
shows a UML representation of our type Metamodel.

The Expression Metamodel defines a tree of operators, with both classical
operators from programming and specific hardware operators such as add-with-
overflow or select. Figure 3b contains a UML representation of a subset of our
Expression Metamodel. The expression hierarchy is defined by the location in
the tree. There is no defined operator priority or counterpart to brackets for
prioritizing operators. For each operator, the size of the output depends on the
size of the inputs. Further, relations between the inputs are specified. There is
however no size limit as a such. Leaf nodes can be binary or numeric literals
in any combination or references to objects with properties defined by the type
model. The Expression Model is a special case of a Dataflow Model. The Dataflow
Model is a directed graph with the same operators as the Expression Model. It
is different from the Expression Model as any operator output can act as input
to multiple dataflow operators.

These two Metamodels are used on the Model-of-Things and Model-of-Design
layer. They are intended to be used whenever Metamodels contain elements

92 J. Schreiner and W. Ecker

(a) Type Metamodel (b) Expression Metamodel

Fig. 3. Auxiliary metamodels

describing objects and behavior. It is for example necessary to describe object
sizes (e.g. the sizes of registers) on both the Model-of-Things layer and the
Model-of-Design layer. The utilization of the same auxiliary descriptions across
different Metamodels has three key advantages. First, it reduces the development
effort for new Metamodels and improves overall code quality and usability. Sec-
ond, it simplifies the extraction of information necessary for the transformation
between different modeling layers. In many cases, objects and expressions can be
simply compared and copied between different MoD and MoT instances. Third,
the mapping of types and expressions to the target view must be implemented
only once and can be reused for all implementations. Latter holds for both pos-
sibilities for view generation, the direct code generation from MoD using a tem-
plate or having a MoV in between. The first alternative produces quite rapidly
results but becomes complex if some flexibility or formatting is needed in code
generation. The second alternative requires thinking in terms of grammar blocks
but keeps the burden of formatting to a one time effort and makes it simpler to
make code generation more flexible.

4 The Model-of-Things Layer

To ease understanding of the Model-of-Things concept, this section provides
a simple sample Model-of-Things along with its Metamodel. We utilize this
example to illustrate how the Template-of-Design generates a Model-of-Design
instance in Sect. 5.2. A more complex example is sketched in Sect. 7 of this con-
tribution.

The Metamodel in Fig. 4a constrains all digital filters. Our Model-of-Things
instances can thus capture digital filters which adhere to a recurrence rela-
tion y[n] =

∑N
i=0 bi · x[n − i]. Figure 4b shows a sample model that adheres

to this Metamodel. The attributes ImpulseResponseImg does not show up
in the model since it is not needed. This complies with the Metamodel since
ImpulseResponseImg has multiplicity optional, i.e. 0..1.

This model describes one 2nd order instance a filter that has the recurrence
relation y[n] = 4 · x[n] + 2 · x[n− 1] + 1 · x[n− 2].

Digital Hardware Design Based on Metamodels and Model Transformations 93

FIRFilter
Name : string [1]

Addend
Instant : int [1]
ImpulseResponseReal : int [1]
ImpulseResponseImag : int [0..1]

1..*

(a) Metamodel

1:Addend

ImpulseResponseReal = 2
Instant = 1

:Addend

ImpulseResponseReal = 4
Instant = 0

:Addend

ImpulseResponseReal = 1
Instant = 2

:FIRFilter

Name = realvalued_filter

(b) Model

Fig. 4. Model-of-Things metamodel and sample model of simple FIR filter

Despite the simple structure of this example, a key characteristic of our app-
roach is visible here: The Model-of-Things contains only the specification. It
is easy to imagine a set of microarchitectures to implement such a filter. For
example, a simple one sample per cycle pipeline might be used (see Fig. 7). In
this case, the multipliers might be replaced by wires treating the coefficients as
constants for the cost of loosing flexibility. Generally, the added chain can be
replaced by an adder tree. Another microarchitecture would consist of an FSM
and a multiply-accumulate unit. While these microarchitectures have different
characteristics, they both equally valid microarchitectures considering a specifi-
cation that only describes the transfer function of the digital filter and does not
contain any performance constraints such as throughput.

As this example illustrates, there is not necessarily a one-on-one correspon-
dence between elements in the Model-of-Things and elements in the Model-of-
Design. As we utilize a flexible Python-based transformation approach to gener-
ate the Model-of-Design, it is feasible to first derive the coefficients bi for a digital
filter. It is for example possible to use a Model-of-Things that specifies intended
frequency-domain characteristics and maximum deviation from these character-
istics. The large set of scientific computing libraries available allow to perform
the necessary computations as part of the transformation between Model-of-
Things and Model-of-Design, without requiring external tools or manual work.
To be more concrete, Python’s scipy provides a package signal which supports
the computation of filter coefficients using the functions firwin and firwin2.

5 The Model-of-Design Layer

5.1 The MetaRTL Metamodel

Figure 5 shows MetaRTL, the Metamodel of the Model-of-Design (MoD). It
defines, how the design structure is described in the MoD. MetaRTL consists

94 J. Schreiner and W. Ecker

MetaRTL
Name : string [0..1]

rootNode

Component

Name : string [1]

Description : string [0..1]
ObjectProperties

Name : string [0..1]

Size : int [1]

Position : int [0..1]

Connection

PositionInParent : int [0..1]

Name : string [1]

Description : string [0..1]

ObjectProperties : ObjectProperties [1]

Dataflow

PortSelect

IndexLeft : int [0..1]

IndexRight : int [0..1]

Port
Name : string [1]

Direction : PortDirection [1]

ComposedObjProps

Primitive

Function : string [1]

Instance

Name : string [0..1]

Structure

DataflowBlock

MM Dataflow

Description

Port

1..*

0..1

1

1

SubConn

SubElementDescrSubElements

*

*

*

1

Type

0..*

1..*

*

BasicObjProps

NumOfElements : int [0..1]

Interpretation : string [0..1]

Fig. 5. MetaRTL: MoD’s metamodel (simplified)

of a root node and components with realization alternatives: Structure, Prim-
itive, Dataflow as well as – in preparation not shown in Fig. 5 – Controlflow,
StateMachine, and Lookup-Table.

The last four of these are configured with other Metamodels describing their
implementation. For example, the Dataflow realization of a component is config-
ured by an instance of the Dataflow Metamodel that is linked in the Dataflow-
Block. The four models can be clocked, un-clocked, with or without internal
delay. If they are clocked or have an internal delay, a clock and reset is associ-
ated automatically.

The Primitive and Structure realization alternatives are more flexible. They
support the working mode of concept engineers and architects who often avoid
the specification of port names or sizes, if they can be derived from elsewhere,
e.g. from a sketch, or are common sense (as e.g. ports of a register are named q
and d whereas q and d must have the same size).

There are special kind of ports like clock or reset. These ports are automati-
cally connected to the port closest in the hierarchy, and labeled the same special

Digital Hardware Design Based on Metamodels and Model Transformations 95

kind of ports. Of course, all connections and ports can be made explicitly and
with accurately specified sizes. Then the connectivity resolution only checks the
type – i.e. size – consistency of the connections.

Further, the connectivity specification supported by the Metamodel can not
only connect a port with another port but can also connect a port with a com-
ponent and can connect a component with a component. The connection can be
associated with a set of properties that help the resolution mechanism to resolve
the intended port or the size of port and connection.

Also setting of component parameters can be resolved from the connectivity.
Thus, setting a connection to a reset port can determine whether a register has
a reset behavior or not. Of course, all parameters can be also set explicitly in
the instantiation. The resolution strategy is described in more detail in Sect. 5.4.
Primitives such as registers, adders, multiplexers, decodes, etc. have methods
that determine the final parameter setting and port layout.

To give some examples, in the register primitive, the size of q and d can
be propagated forward and backward, i.e. the size of the data output q can be
derived from data input d and vice versa. Connections to q and d can be made
explicitly or distinguished by read/write or in/out property of the connection.
Also a name, let’s say a, can be specified. Then the register has slightly different
ports, namely q a and d a in this case. Using this mechanism, a register may be
configured to have more than one data input and output pair.

Propagation of sizes is limited when instantiating e.g. an adder. Here, the
size of the output is the maximum of the size of the two inputs plus one. Thus,
only a forward propagation of the sizes is possible.

Any number of connections can be applied to the output of the decoder. Then,
a port is created for each of the connections. Further, each connection can have
a property specifying at which select value it is enabled. This property, which
can be also computed automatically, is used further on to define the behavior of
the decoder and the size of the select signal.

5.2 Templates-of-Design

The Template-of-Design (ToD) acts as a blueprint or generator for instances of
the Model-of-Design. It contains the instructions to build different instances of
this model and thus different digital designs. It is called template since it pulls
information from the more abstract MoT and since it looks almost like an HDL
netlist description when a fixed architecture is described. In our implementation,
the ToD is pure Python code and is not to be confused with the templates
processed by template engines such as Python’s Mako for target code generation.

The HDL netlist-like style (see Fig. 6) is enabled by object constructors and
attribute setters and getters generated for the MetaRTL Metamodel. It is impor-
tant to note that the Python code is not the hardware model. Instead, it con-
structs the hardware model. When Lines 2, 3 and 4 are executed, new com-
ponents are instantiated in the Model. The loop in lines 7–9 creates a new
connection every time it is run.

96 J. Schreiner and W. Ecker

Fig. 6. Code snippet from a ToD using named method parameters

The power of the Python approach can be illustrated in following exam-
ple. If a specific coding style for connections must be met, the parameter
setting ConnName=unit.name can be modified with a small overhead e.g. to
ConnName=unit.name+" s".

The code snippet is taken from a small ALU component which contains
several functional units which process two input arguments (connected to
alu input 1 and alu input 2). For each functional unit (stored in alu.units),
the code connects the output port to the alu mux component (Line 9). More-
over, the input ports of the functional unit are wired to the connection objects
alu input 1 and alu input 2 in Lines 7 and 8.

As the ToD is pure Python code, it provides the full flexibility of the Python
environment for importing and versioning. If parts of different MoDs are similar,
their ToDs can share the same code. This means that reuse is done on ToD-
level and MetaRTL must not support the concept of a library of (reusable)
components. This significantly reduces the complexity of MetaRTL and any
transformations from its MoD-level to different MoVs.

5.3 Model-of-Things Instances for Template-of-Design Construction

In addition to describing circuits in the static HDL netlist way, the complete
feature set of Python can be utilized. This provides more flexibility to define
the architecture. Section 4 already named the utilization of Python-based scien-
tific computing libraries to derive parameters for certain microarchitectures. In
extreme cases, the Template-of-Design can even run instances of our complete
MDA toolchain to find or evaluate solutions. Here, code is generated and ana-
lyzed in order to find out the right – or also the best – way to generate design
items. We describe a scenario where we could successfully utilize this in Sect. 7.2.

To illustrate the concept without the complexity of real-world applications,
this section shows a Template-of-Design which derives a digital filter from the
Model-of-Things sketched in Sect. 4. The Template-of-Design is built for the
Metamodel in Fig. 4b and will construct MoD instances for all models of this
Metamodel. Figure 7 contains a block diagram of the circuit it creates for the
sample model in Fig. 4a.

Digital Hardware Design Based on Metamodels and Model Transformations 97

Fig. 7. Block diagram of MoD generated from the MoT in Fig. 4a by ToD in Fig. 8

Fig. 8. Template-of-Design example for generation of n-th order FIR filter from Model-
of-Things

98 J. Schreiner and W. Ecker

The Template-of-Design source code is pictured in Fig. 8. When executed,
line 33 of this instance adds a FIRFilter instance to the Model-of-Design. The
construction of this FIRFilter takes place in the constructor in Lines 3–31. First,
the Ports of the filter are defined. We only define the ports data in and result
here and omit the clock and reset lines necessary for the microarchitecture. These
are later inserted by a transformation on the Model-of-Design or by applying
automatic connectivity resolution. In Line 9, every execution of the ToD instan-
tiates a connection in the Model-of-Design. This connection is attached to the
data in port of the filter. Lines 10–29 contain the part of the filter that depends
on the Model-of-Things. Here, the ToD iterates over all Addend instances of the
Model-of-Things, sorted by their Instant attribute in an ascending order. Lines
12–17 contain a while loop including loop body which is executed to insert delay
registers. In our sample MoT, we use values of consecutive instant n, n−1, n−2
for every output sample y[n], the loop is thus executed once per iteration of
the enclosing for loop. A multiplier is then inserted in line 19 and the connec-
tion referenced by current conn is attached to the multiplier in line 20. In the
first iteration of the for loop (line 10–29), sum conn is then set to reference the
connection object which is attached to the output of this multiplier. In every
further iteration, an adder is inserted which sums up the connection previously
referenced by sum conn and the output of the multiplier. After this, sum conn is
redirected to point to a connection attached to the output of the adder. After all
loop iterations are completed, line 31 attaches the result port of the FIRFilter
component to the connection referenced by sum conn.

It is important that the Template-of-Design is only one possible micro-
architectural template. For the same Model-of-Things it would be feasible to
develop a ToD that generates an adder-tree based microarchitecture or a multi-
cycle filter using a multiply-accumulate unit.

5.4 Connectivity Resolution

The ToD can be kept simple, since our framework has a powerful resolution
mechanism to do the final connection. Here, ports are created, connections of
default ports, and size computation is done.

The mechanism is kept simple, since the instantiated components either uti-
lize generic methods to compute component port information from other ports
or provide special ones. The resolution algorithm calls these methods if new
information about a connection has been computed and takes the new result of
the method to refine information about connections. This is repeated as long as
new information either about component’s ports or connections can be found.
At the end, either all components are fully configured – including availability of
all ports – and all sizes are known, or an error message is filed summarizing the
non determined items. More information must then be placed in the description
of the ToD.

So far, resolution depends on component local implications at ports and
connections. Potentially, the use of a formal SMT solver might resolve some
more items. First analysis however showed that it is not worth the effort, since

Digital Hardware Design Based on Metamodels and Model Transformations 99

the number of additional resolutions is small, complexity issues pop up soon and
the reports aren’t that easy to interpret.

6 The Model-of-View Layer

The Model-of-View layer is used to map the microarchitecture described in a
Model-of-Design onto a target platform. Reasonable target platforms are HDL
code for synthesis or simulation purposes. The Metamodel of the Model-of-View
is tailored to the language of the target view. Two views both targeting Verilog
code utilize the same Metamodel while a SystemC view would require a different
Metamodel. When the same view language is used to generate code for different
target platforms, the transformations are changed. A Verilog model for ASIC
synthesis and a Verilog model targeting an FPGA is built from the Model-of-
Design with two different transformations4, while both MoV models utilize the
same Metamodel. As those target view languages have their inherent Model-of-
Computation (MoC), any Model-of-View also inherently defines the MoC.

The Metamodel of the Model-of-View layer specifies a target view simi-
lar to how Extended Backus-Naur Form (EBNF) notations describe the for-
mal grammar of a language. The metamodel constrains the possible Model-of-
View instances so that all legal instances will translate to grammatically correct
views. Although there is a straightforward correspondence between the Model-
of-View and the generated target views, the MoV-layer of our MDA inspired
approach provides an important abstraction: it allows the developer to think
about the view he wants to generate, without worrying about necessary format-
ting or indentation, as these are not part of any Model-of-View. Formatting and
indentation are specified independent of the MoV and utilized to generate the
necessary tools to generate the views from the Model-of-View. Consequently, it
is also possible to alter these properties without touching the transformation
process between any Model-of-Design and the Model-of-View or any transfor-
mations performed on an instance of the Model-of-View.

6.1 Automated View Generation from Model-of-View Instances

When developing the framework for our Model-of-View layer, we put special
emphasis on automation. Figure 9 sketches this generation. We use a single
EBNF-like description that contains information about the grammar of the
target view as well as formatting and indentation of the generated code. This
description is called View Language Description (VLD). It is utilized to gener-
ate the majority of the necessary MoV-layer components. First, the Metamodel

4 Of course, the different transformations share several sub-transformations. However,
we are analyzing, if two transformations or one transformation to the model of view
is best, and if the one transformation uses parameter dependent code or if the one
transformation is finished, and a further transformation is performed on the Model-
of-View.

100 J. Schreiner and W. Ecker

Fig. 9. View Language Description based metamodel-of-view generation

of the Model-of-View is built and based on this Metamodel, the metamodel-
ing framework provides the API which used to read and write Model-of-View
instances.

Furthermore, the code generation step, building the target views from any
Model-of-View instance is completely automated. The general algorithm is based
on tree-traversal, where leaf nodes produce view code that is encapsulated by
view code produced by their parent nodes. Eventually, the view code generated
for the root node, containing all code of its child nodes is printed to a view.

6.2 View Language Descriptions

Figure 10 contains a simplified example of a View Language Description (VLD).
The similarity between this description and an Extended Backus-Naur Form
(EBNF) description is apparent. Similar to EBNF, our description consists of a
list of production rules where each of those rules in turn consists of a set of termi-
nal or non-terminal symbols. The main goal of EBNF is to describe formal lan-
guage grammars and thus to provide the rules for distinguishing grammatically
correct code of a certain formal language from wrong code. As outlined in the
previous section, our VLD has slightly extended goals: we utilize it to generate
the Metamodel of the Model-of-View. This introduces three new requirements
for our format.

1. While EBNF is mainly intended to describe the formal rules of a certain lan-
guage, the VLD was designed to allow the automated generation of a concise
Metamodel and thus an intuitive API. Here, it is not sufficient that all legal
instances of this Metamodel form legal view instances. Instead, the Meta-
model should be shaped so that it is easy to use for the developer. Artifacts

Digital Hardware Design Based on Metamodels and Model Transformations 101

Fig. 10. Simplified snippet from view language description of our VHDL MoV [19]

entity_declaration ::=
ENTITY identifier IS

entity_header
entity_declarative_part

[BEGIN
entity_statement_part]

END [ENTITY] [entity_simple_name] ;

Fig. 11. VHDL entity declaration from VHDL’93 (see tams.informatik.

uni-hamburg.devhdltoolsgrammarvhdl93-bnf.html)

that are only grammatically relevant, however semantically irrelevant should
not be part of the Metamodel. An example for such an artifact is the fact
that in comma-separated lists, the last element is usually not followed by a
comma. The Metamodel shall provide a list in this case and the generator
shall treat the last element independent from the others.

2. While EBNF is structured to easily and efficiently build parsers, VLD shall
provide a Meta-Model to construct code. So, an entity rule directly contains
ports (see Fig. 10 in line 2) and generics as well as library clause and
use clause (not shown in the simplified VLD example in Fig. 10). The VHDL
grammar of the entity declaration shown in Fig. 11 is structured quite differ-
ently. So, library clause and use clause are defined in context clause,
which is used in design unit. This makes it easy to reuse code in the parser,
would require however that additional nodes have to be generated in the
MoV, which reduces convenience of the approach.

3. It has to describe the indented formatting of the target view. The VLD thus
describes exactly one correct target view belonging to each Model-of-View
instance. In contrast EBNF grammars, do not specify things like whitespaces
and indentation. From parser point of view, any number of identical views
with different formatting will map onto the same Abstract Syntax Tree. From
generation point of view, one formatting options shall be choosen when gen-
erating the code.

To meet those requirements, we introduce several formalisms into the VLD.
When the Metamodel for a VLD format is generated, we add a Metamodel class
for every production rule of the VLD descriptions. For every non-terminal symbol
a rule consists of, we add associations to this class. An EBNF rule for a list of

102 J. Schreiner and W. Ecker

at least one name would be similar to names ::= firstName, {′, ′, otherNames}.
This clearly describes that there may be either one name or a list of comma-
separated names. What it does not convey is that those items, firstName and
otherNames belong together semantically. When generating a metamodel for
that names rule, a names class would be inserted which would then contain
two separate attributes one with the multiplicity 1 and the other one with a
multiplicity of 0..*. A developer working on the transformation from MoD to
MoV would then have to take into account whether the firstName attribute is
already set whenever he tries to add further names to the nameList. To avoid
the accompanying overhead, we introduce a +...+ symbol into our VLD. The
use of this symbol will create one attribute of multiplicity 1..*. As typical views
still frequently require different generated view code for corner cases such as the
first or last element in a list, we introduce a further artifact into our VLD. This
artifact is used in the Ports rule of the VLD in Fig. 10. Here, the %% notation
indicates that the last port (identified by [−1]) has to be treated differently from
the others (identified by [0 : −2])) during view generation.

A further extension in our format is the distinction between non-terminal
symbols that create attributes in the Metamodel (encapsulated by <...>) and
symbols that create compositions (not encapsulated <...>). We further use the
: operator to describe both attribute name and attribute type. When a rule
contains e.g. <Size : int>, an attribute named Size of type integer will be
added to the class generated for the rule.

A näıve approach to formatting target code in a nice way is inserting terminal
strings containing whitespaces into the VLD. The problem of this approach is
that it cannot handle indentation correctly as many production rules can occur at
different levels of indentation: a concurrent signal assignment can e.g. take place
at architecture level, inside a process or inside any number of nested conditionals,
each requiring a different level of indentation. Our solution to this problem is
the introduction of formatting directives. These directives are directly introduced
into the view language description. They are implemented as Python code and
work by post-processing code that has been generated. We provide a set of
predefined directives for correct indentation of code, line breaks at certain line
widths and correct alignment of neighboring lines.

To give an example: $indent(′\t′) in Fig. 10 in line 4 ensures an addi-
tional indent of keyword PORT and the following parts by a tabulator. Similarly,
$indent(′\t′) in line 5 ensures, that each port item is indented one tabulator
further.

7 Application and Results

To demonstrate the general feasibility and the advantages of our MDA approach
to digital hardware design, we are implementing a CPU subsystem generator.
The input models for our flow are Model-of-Things instances which are utilized
to generate different aspects of the target views. Our generation system relies
among other things on a model capturing the instruction set of the CPU core

Digital Hardware Design Based on Metamodels and Model Transformations 103

part of the subsystem. The Metamodel of this model is called MetaRISC and
suited to describe different RISC ISAs. We describe this Metamodel and how
it is used by the CPU core generator in the following section. Our approach
further relies on models that describe aspects other than the instruction set of
the CPU. These models and their Metamodels cover peripherals such as the
timer and interrupt controller and custom processing peripherals similar to the
filter example in Sect. 4.

7.1 Model-of-Things of the CPU Core Defined by the MetaRISC
Metamodel

MetaRISC is the Metamodel used to describe the ISA of CPUs our core gener-
ator can handle. The key requirement for identifying Metamodels for the MoT-
layer is to formalize the possible MoT instances as much as necessary, yet to
permit reuse and automation over a wide range of specifications of the same
category of hardware component. In our case, this formalization constrains our
ISA descriptions to RISC instruction sets. We can e.g. use it to describe the
MIPS-II, RISC-V and ARM Cortex ISAs, is however not limited to these kind
of instruction sets.

Conceptually, MetaRISC describes the programmer’s view on the CPU core.
The metamodel therefore contains elements for architectural state, instruc-
tion behavior and for instruction encoding. The architectural state of the core
describes every state element visible to the compiler. Examples for these ele-
ments are the program counter, state flags and the memory and register file of
the core. The description of the instruction behavior covers how the execution of
any instruction modifies the architectural state of the CPU core. The instruction
encoding covers both the detection of the correct instruction and the decoding
of immediate parameters and register addresses encoded in the instruction.

For both the description of the architectural state and the description of
the behavior, we rely on the auxiliary Metamodels described in Sect. 3.2. This
is a key aspect that helps us transferring the Model-of-Things specification to
Model-of-Design microarchitectures implementing them.

Before discussing the ToD, it is important to note that the behavior described
in the MoT is not used to synthesize the implementation directly. Instead, it
defines a reference behavior, the MoD being constructed by the ToD (without
using the behavior) has to comply to. Therefore, the behavior can be used -
amongst others as documentation generation - to generate a testbench or prop-
erties that validate the generated view.

7.2 Assembly of a Template-of-Design for Micro-Architecture
Generation

The most substantial and elaborate part of the MDA flow is the assembly of a
Template-of-Design that constructs Model-of-Design instances which describe an
implementation of the formalized specification captured in the Model-of-Things.

104 J. Schreiner and W. Ecker

From a birds-eyes view, a generic ToD pieces together parts of the Model-of-
Design so that the functionality described by the Model-of-Things is provided.
This is a relatively straightforward process for components such as the FIR filter
described in Sect. 5.3.

For the CPU core generator that is implemented here, the ToD provides a
pipelined architecture that implements the CPU’s Instruction Set. Again, the
bulk of this construction is a rather straightforward instantiation of MetaRTL
structures and instances that are part of these structures as e.g. introduced in [8].
These for example define the overall pipeline structure and the functional units
in the ALU of a CPU. The Template-of-Design provides automation for these
tasks as sub-components may be instantiated or not depending on the MoT.
For example, functional units of the ALU may be instantiated only if there are
instructions that rely on them.

For some sub-components of the CPU core however, a large dependency
between their inner structure and the Model-of-Things exists. Decoding of
instruction arguments and implementation of Control Unit have high depen-
dency on the encoding specified by the ISA Model-of-Things. From the Model-
of-Design’s perspective, a control unit is a decoder which can decode up to
n-of-n out wires for a certain input combination. To provide this description, the
Template-of-Design has to fulfill the behavior described in the MoT.

Here, Python as the framework’s underlying language is very useful: it allows
to use a scripting approach for fast and creative solutions. As both source and
result data are embedded into the formalized MDA stack, re-usability is not
sacrificed.

The construction routines which were built as part of the ToD for example
allow to create a testbench which uses both the models of instruction behavior
and a skeleton of the generated CPU to find working control signal vectors
for each of the instructions part of the ISA. For our simplistic architecture, it
was sufficient to brute-force all possible combinations of control signals for an
instruction to find the combinations that yield a behavior consistent with the ISA
description. More sophisticated methods such as functional equivalence checking
with formal verification tools might be an option we follow in the future. Both
approaches can be carried out from within the MoT-to-MoD transformation
thanks to the flexibility of Python.

7.3 Results and Discussion

The presented hardware MDA approach was applied to a MIPS2 integer instruc-
tion set and the RISC-V [1] integer instruction set with the compressed instruc-
tion set extension being mapped to 2-, 3-, 4- and 5-stage pipelined microarchi-
tectures. To evaluate the benefits of our multi-level transformation approach,
we compared our hardware MDA approach to a direct MoT-to-code approach
(utilizing a Python-based template engine called Mako). Our comparison showed
that the MDA approach requires about a factor of 10x less code compared to
generating VHDL with Mako templates. They key part of this reduction comes
from the high re-usability of ToD code compared to template code and partly

Digital Hardware Design Based on Metamodels and Model Transformations 105

also originates from a higher expressiveness of Python and the automation in
the transformations.

The Metamodel based specification of MoT and MoD provides an intuitive
interface to models and gives a low entry barrier. The APIs and object ori-
ented approach also supports generic template components. For example, we
implemented a pipeline template which automatically generates the registers
and connections between different pipeline stages. This pipeline template was
developed in a one-time effort, can however be reused for other designs. Every-
thing else just works, shielding designers from thinking in simulation semantics
allowing them to focus on the challenging aspects of the design task.

8 Related Approaches

There are many academic and commercial approaches generating RTL code from
UML or other graphical notations. Although these approaches use Metamodels,
none of them links to specification and has a hardware design aware model.

The idea of focusing on design – i.e. in our approach on the Model-of-Design
(MoD) – and not on simulation semantics is not new. For example, UDL/I [2,9],
the unified design language for integrated circuits definition, first targets the
design intent and only as a second step the execution of its models. UDL/I was
developed and standardized in the early 90ties by Japan Electronic Industry
Development Association JEIDA, almost in parallel with Verilog and VHDL. It
did however not make it to a wide distribution. Design aspects instead of simula-
tion aspects are also the focus of UPF [11], since it permits the insertion of things
like level-shifters or isolation cells without explicitly providing a specification of
their simulation characteristics. Digital design related descriptions are also sup-
ported by EDA tools, either through the use of generic components in graphical
editors or as intermediate step in the RTL synthesis process. In comparison to
our approach, these description styles lack an explicity underlying Metamodel,
support for hardware generation, an explicit, automated link to specification and
powerful measures to describe connectivity and architecture alternatives.

The FIRRTL (Flexible Intermediate Representation for RTL, [15]) format is
a textual intermediate that is used when Chisel hardware generators [3] are com-
piled to Verilog. Similar to our Model-of-Design model, FIRRTL models describe
design items, can use powerful features to specify instances and connectivity in
a simple way, provide hooks for further optimization and can be translated to
an RTL view (Verilog).

FIRRTL offers the possibility to hook optimization routines and transfor-
mations. Chisel with FIRRTL thus shares the ideas of generation, intermediate
transformations and design thinking with our approach.

It differs from our approach as it only defines an intermediate language and
not an intermediate model, i.e. it has no explicit Metamodel. Also, FIRRTL
does not share a common type and expression system with its high-level counter
part Chisel. FIRRTL further does not provide a link to MoTs or specifications
and a ToD approach allowing to merge (micro-)architecture specification with

106 J. Schreiner and W. Ecker

methods deriving and processing data from MoTs. In other words, our approach
utilizes one common infrastructure to automate design from specification to
implementation while Chisel with FIRRTL start with the (micro-)architecture
and relies on a language based description.

9 Summary and Outlook

We presented an MDA inspired approach to automate hardware design starting
at the specification level. This approach introduces three models namely The
Model-of-Thing, the Model-of-Design, and the Model-of-View structuring spec-
ification, design, and views. As MDA proposes, we translate these views from
the more abstract one to the next concrete one. We used for the translation
Python code that is described in a way that it reflects the design and the view.
Therefore, we call this Python style Template-of-Design and Template-of-View.
This style is enabled by APIs generated from the Metamodel definitions of the
models mentioned before.

We have proven the usefulness of the approach by generating RTL code from
specifications. By doing so, we have seen the potential for productivity increase
when following our proposed approach.

Next steps will introduce further transformations, especially for translating
one model in an other on the same abstraction level. In addition, we want to
further elaborate the best way of transformation steps being needed to translate a
specification into a design. Finally, we will continuously develop new components
to harden the claim and to get experience with the transformations.

References

1. Asanović, K., Patterson, D.A.: Instruction sets should be free: the case for
risc-v. Technical report UCB/EECS-2014-146, EECS Department, University of
California, Berkeley, August 2014

2. Japan Electronic Industry Development Association. UDL-I : Unified Design Lan-
guage for Integrated Circuits definition. UDL/I Language Reference Manual, Ver-
sion 2.0.3, Translation from the Japanese Language Reference Manual. JEIDA
(1993)

3. Bachrach, J., Vo, H., Richards, B.C., Lee, Y., Waterman, A., Avizienis, R.,
Wawrzynek, J., Asanović, K.: Chisel: constructing hardware in a scala embed-
ded language. In: The 49th Annual Design Automation Conference 2012 (DAC
2012), San Francisco, CA, USA, 3–7 June 2012, pp. 1216–1225 (2012)

4. Collet, R., Pyle, D.: McKinsey on semiconductors: what happens when chip-
design complexity outpaces development productivity, Autumn 2013. http://www.
mckinsey.com/industries/semiconductors/our-insights

5. Ecker, W., Schreiner, J.: Metamodeling and code generation in the Springer
Science+Business Media Dordrecht. In: Ha, S., Teich, J. (eds.) Handbook of
Hardware/Software Codesign, pp. 1–41. Springer, Dordrecht (2016). doi:10.1007/
978-94-017-7358-4 32-1

http://www.mckinsey.com/industries/semiconductors/our-insights
http://www.mckinsey.com/industries/semiconductors/our-insights
http://dx.doi.org/10.1007/978-94-017-7358-4_32-1
http://dx.doi.org/10.1007/978-94-017-7358-4_32-1

Digital Hardware Design Based on Metamodels and Model Transformations 107

6. Ecker, W., Velten, M., Zafari, L., Goyal, A: The metamodeling approach to system
level synthesis. In: Fettweis, G., Nebel, W. (eds.) DATE, pp. 1–2. European Design
and Automation Association (2014)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proc. IEEE
91(1), 127–144 (2003)

8. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fifth Edition: A Quanti-
tative Approach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

9. Hoshino, T.: UDL/I version two: a new horizon of HDL standards. In: Proceed-
ings of the 11th IFIP WG10.2 International Conference on Computer Hardware
Description Languages and their Applications (CHDL 1993), Sponsored by IFIP
WG10.2 and in cooperation with IEEE COMPSOC, Ottawa, Ontario, Canada,
26–28 April 1993, pp. 437–452 (1993)

10. IEEE. IEEE 1685TM: IP-XACT, Standard Structure for Packaging, Integrating,
and Reusing IP Within Tool Flows. IEEE

11. IEEE. IEEE 1801TM: Standard for Design and Verification of Low Power Integrated
Circuits. IEEE

12. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-
level design: orthogonalization of concerns and platform-based design. Trans.
Comp. Aided Des. Integ. Circ. Sys. 19(12), 1523–1543 (2006)

13. Koeplinger, D., Delimitrou, C., Prabhakar, R., Kozyrakis, C., Zhang, Y.,
Olukotun, K.: Automatic generation of efficient accelerators for reconfigurable
hardware. In: Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA 2016), Piscataway, NJ, USA, pp. 115–127. IEEE Press (2016)

14. Liangora Research Lab. What is MDA? Why considering BNPM
15. Li, P.S., Izraelevitz, A.M., Bachrach, J.: Specification for the FIRRTL language.

Technical report UCB/EECS-2016-9, EECS Department, University of California,
Berkeley, February 2016

16. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: Model-driven architecture. In: Bruel,
J.-M., Bellahsene, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 290–297. Springer,
Heidelberg (2002). doi:10.1007/3-540-46105-1 33

17. Nikolic, B.: Simpler, more efficient design. In: ESSCIRC Conference 2015–2041st
European Solid-State Circuits Conference, Graz, Austria, 14–18 September 2015,
pp. 20–25 (2015)

18. OMG. MDA - The Architecture of Choice for a Changing World (2016)
19. Schreiner, J., Willgerodt, F., Ecker, W.: A new approach for generating view gen-

erators. In: Proceedings of DVCON US 2017 (DVCON 2017). IEEE Press (2017,
unpublished)

20. Shacham, O., Azizi, O., Wachs, M., Richardson, S., Horowitz, M.: Rethinking dig-
ital design: why design must change. IEEE Micro 30(6), 9–24 (2010)

21. Steinberg, D., Budinski, F., Paternostorno, M., Merks, E. (eds.): EMF Modeling
Framework. Addison Wesley, Reading (2008)

22. Truyen, F.: The Fast Guide to Model Driven Architecture (2006)

http://dx.doi.org/10.1007/3-540-46105-1_33

Improving the Efficiency of Formal Verification:
The Case of Clock-Domain Crossings

Guillaume Plassan1,2(B), Hans-Jörg Peter1, Katell Morin-Allory2,
Shaker Sarwary1, and Dominique Borrione2

1 Synopsys Inc., Mountain View, USA
{guillaume.plassan,HansJorg.Peter,shaker.sarwary}@synopsys.com

2 Univ. Grenoble Alpes and CNRS, TIMA Laboratory, 38031 Grenoble, France
{katell.morin-allory,dominique.borrione}@univ-grenoble-alpes.fr

Abstract. We propose a novel semi-automatic methodology to formally
verify clock-domain synchronization protocols in industrial-scale hard-
ware designs. To establish the functional correctness of all clock-domain
crossings (CDCs) in a system-on-chip (SoC), semi-automatic approaches
require non-trivial manual deductive reasoning. In contrast, our approach
produces a small sequence of easy queries to the user. The key idea is
to use counterexample-guided abstraction refinement (CEGAR) as the
algorithmic back-end. The user influences the course of the algorithm
based on information extracted from intermediate abstract counterex-
amples. The workload on the user is small, both in terms of number of
queries and the degree of design insight he is asked to provide. With this
approach, we formally proved the correctness of every CDC in a recent
SoC design from STMicroelectronics comprising over 300,000 registers
and seven million gates.

Keywords: Formal verification · Clock-domain crossing · Synchroniz-
ers · CEGAR · SOC

1 Introduction

Modern large hardware designs typically contain tens of clock domains: differ-
ent modules use different clocks, adapting consumption and performance to the
ongoing tasks, thereby reducing the overall power consumption of the chip.

Moreover, an SoC typically assembles IP blocks coming from various teams,
and each block may be optimized for a specific operating frequency. As a
result, such architectures create many interconnections between the various clock
domains, so-called clock-domain crossings (CDCs). To ensure a correct propa-
gation of data through a CDC, hardware designers have to implement specific
protocols and modules: synchronizers.

With the increasing number of CDCs and synchronization protocols as well
as the huge complexity of modern SoCs, proving the functional correctness of

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 108–129, 2017.
DOI: 10.1007/978-3-319-67104-8 6

Improving the Efficiency of Formal Verification 109

all synchronizers became a major challenge. While incomplete functional veri-
fication methods, such as testing based on simulation, scale for large designs,
they are only able to show the absence of functional errors in a subset of the
full design behavior. For exhaustively and automatically proving the correctness
of functional properties, model checking is the prevalent technique in a modern
VLSI design flow.

But, as model checking a property is not scalable on large hardware designs,
the question arises whether it is really necessary in practice to have a completely
automatic verification procedure. That is, can we somehow take the user into
the loop and abandon the high degree of automation of model checking to make
formal verification scalable?

This paper addresses this question and proposes a new comprehensive
methodology for verifying clock-synchronization properties over industrial-scale
SoC hardware designs.

Unlike other semi-automatic approaches that require non-trivial manual work
in form of deductive reasoning, our approach produces a small sequence of easy
queries that only require local design knowledge from the user. The key idea is
to use the CEGAR principle [8] as the algorithmic back-end, where we let the
user influence the course of the algorithm based on information extracted from
intermediate abstract counterexamples. The workload on the user is deliberately
kept small both in terms of number of queries and the degree of design insight
to be provided.

More precisely, this paper makes the following contributions:

– A general semi-automatic algorithm based on CEGAR-based model checking.
– A heuristic to automatically infer design constraints from abstract counterex-

amples, which are then proposed to the user.
– A comprehensive methodology for verifying CDCs, based on this interaction

between the model checking algorithm and the user.
– The application of this new methodology to conclusively prove the correctness

of all CDCs on a recent industrial SoC design.

The paper continues as follows. Section 2 recalls the CDC challenges and the
various synchronizers. Section 3 presents the state-of-the-art CDC verification
flow and its limitations. We provide a novel automated flow in Sect. 4, and the
results obtained with it in Sect. 5. We finally compare our approach with the
related works before concluding the paper.

2 Clock-Domain Crossing Issues

A CDC typically manifests itself as a digital signal path between two sequen-
tial elements receiving clocks from out-of-phase domains (Fig. 1). Even if those
clocks have the same frequency, any difference between their phases introduces
a latency between their rising edges. This non-predictable behavior is precisely
the challenge of designing CDCs.

110 G. Plassan et al.

DATA_IN DATA_OUT

Fig. 1. A simple CDC

Multiple problems arise from CDCs [25], and designers need to implement
specific structures to avoid any issue [13]. Consequently, the CDC verifica-
tion tool must check that all the potential problems have been addressed and
corrected.

2.1 Metastability and Multi-flops

The definition of clock domains directly implies that when data changes in the
source domain of a CDC, the destination register can capture it at any moment:
compliance with the setup and hold time requirements is not guaranteed. Hence,
because of a small delay between the rising edges of the two clocks, the data is
captured just when it changes, and a metastable value may be propagated (as
shown in Fig. 2).

Fig. 2. Metastability behavior

The metastability phenomenon has been identified a few decades ago [7]: if
a metastable value is propagated through combinational logic, it can lead to a
so-called dead system. And it would be very difficult to find the source of this
issue after fabrication, as post-production testers do not understand non-binary
values.

A first solution would be to introduce a latency in the destination domain,
in order to wait for a stabilization of the value. This timing can be estimated

Improving the Efficiency of Formal Verification 111

by considering the clock frequencies and the production technology, as is com-
monly performed in the Mean Time Between Failure computation [12]. A single
dedicated register could then, if properly sized, output a stable data. However,
such synchronizing registers would result in a significant overhead on the cir-
cuit size. Another technique [16,20] involves embedding a monitor in the design
which detects and corrects metastable values. However, the overhead would also
be significant.

The most common solution is to add latency by implementing cascaded regis-
ters [14] (see Fig. 3). While this multi-flop structure guarantees within a certain
probability that the propagated value is stable, there is no way of telling if it is a
‘0’ or a ‘1’. Indeed, the data being captured during a change, the multi-flop may
output the old or the new value during one cycle; then, at the next destination
cycle, the new value is propagated. The drawback of this structure is thus a
delay in the data propagation.

2.2 Coherency with Gray-Encoding or Enable Control

When synchronizing buses, there can be coherency issues: if some bits of a bus
have separate multi-flop synchronizers (see Fig. 3), it cannot be guaranteed that
all these synchronizers require a strictly identical latency to output a stable
value. When capturing a toggling signal, some multi-flops may settle to the old
value and some to the new one. The resulting bus value may then become tem-
porarily incoherent. If multiple synchronized bits converge on a gate, a transient
inconsistent value may even be generated.

DATA_CDC[0]
D QD QD Q

DATA_OUT[0]

DATA_CDC[1]
D QD QD Q

DATA_OUT[1]

DATA_XOR

Fig. 3. Bus synchronization

For instance, in Fig. 4, two bits of DATA CDC are toggling at the same
cycle. After being synchronized by separate multi-flops, the DATA OUT bus
value is not consistent anymore. If both bits are converging on an exclusive OR
gate, a glitch can be observed. However, we can add some encoding so that
only one bit can change at a time [10] (Gray-encoding in the case of a counter,
or mutual exclusion in some other cases). Even if the multi-flops stabilize this
toggling signal with different latencies, the bus output value will either be correct
regarding the previous or the next cycle. Thus, no false value is propagated. This
can create some data loss, but avoids incoherency.

112 G. Plassan et al.

Fig. 4. Bus incoherency behavior

DATA_IN DATA_OUT

Fig. 5. Enable-based synchronization (Color figure online)

An alternative solution is using a control signal connected to the enable
pin of the destination registers (Fig. 5). This CTRL signal is set to ‘1’ only
after DATA IN stabilizes. Hence, no metastability can be propagated in the
destination domain, and there is no need for further resynchronization [10]. Of
course, this ‘stable’ information comes from the source clock domain, so this
control signal must be resynchronized in the destination domain (here with a
multi-flop). Note that different synchronization schemes are derived from this
structure. The control signal is here connected to the enable pin of the flop (the
selection of a recirculation mux), but it could also be connected to a clock-gate
enable, or even an AND gate on the data path.

2.3 Data Loss and Handshake

The enable-based synchronizer structure only propagates stable data. However,
if the source register keeps sending data, the destination might wait for their
stability and lose some packets. The source should then wait for the data to be
captured before sending a new one. This can be done with a handshake protocol
using request/acknowledge signals, as shown on Fig. 6. (In Figs. 5, 6 and 7, clock

Improving the Efficiency of Formal Verification 113

D QDATA_IN

ACK

REQ
D QD Q

Q D Q D

D Q

Q D

D Q

E E

EN

DATA_OUT

Fig. 6. Handshake synchronization (Color figure online)

domains are shown in blue or red, data is in green and control logic is in yellow
or purple.)

2.4 Performance with FIFO

The delay introduced by handshake protocols may not be acceptable for a high-
rate interface. Putting a FIFO in the CDC allows the source to write and the
destination to read at their own frequencies, and increases the data propagation
efficiency. In a FIFO, all the previous schemes are implemented (see Fig. 7). The
main controls of the CDC are the write and read pointers, which need to be
Gray-encoded before being synchronized by a multi-flop. In order to activate

DATA_IN

RD_PTR

D QD QQ D Q D

D Q

E

D Q

E

WR_PTR

one-hot

WR
FSM

RD
FSM

D Q

E

WRITE READ

DATA_OUT
DATA_CDC

Fig. 7. FIFO synchronization (Color figure online)

114 G. Plassan et al.

the source or destination access, global write and read control signals can be
implemented in a handshake protocol.

Using a FIFO implies some data latency (caused by the handshake and the
resynchronization of pointers), but allows a higher transfer rate. All the previ-
ously mentioned issues are avoided (metastability, coherency, data loss), but its
complexity makes the FIFO the most difficult synchronizer to design and verify.

3 Current Verification Approach

While some hardware bugs can sometimes be resolved by the firmware or soft-
ware layers, incorrect synchronizers typically lead to non-correctable, so-called
chip-killer bugs. To guarantee the absence of CDC issues in a design, a method-
ology is needed to check that all the necessary synchronizers are implemented,
and that their protocol is followed (Fig. 8).

Fig. 8. CDC formal verification methodology

3.1 Structural Checks

After register-transfer-level (RTL) synthesis, on a net-list, it seems easy to struc-
turally detect a CDC between two registers, and even to detect a multi-flop. In
contrast, for complex FIFO protocols, identifying the correct control logic is non-
trivial. If a single synchronizer structure was used, a proper pattern matching
could try to identify it on each CDC. Unfortunately, in industry, many design-
ers create their own synchronizing structures, and the structural library used
for pattern matching would never be exhaustive on complex structures such as
FIFOs.

In order to provide a robust and automated analysis, state-of-the-art CDC
tools provide a more flexible approach which identifies more general patterns
(like the one based on enables), without relying on the rigid FIFO or Hand-
shake structures. This is a first quick step to check multi-flops and sort out
missing synchronizers. However, a structural approach cannot check protocols
and assumptions on the control signal. A functional check must then be run.

Improving the Efficiency of Formal Verification 115

3.2 Functional Checks

From the recognition of a synchronizer structure, the extracted information is
reused to run functional checks. Formal safety properties to be checked are asso-
ciated to the generic structures we are using, among which:

1. Stability
The destination register only propagates DATA CDC when it is stable.

2. Coherency (Gray-encoding check)
At most one bit at a time can change in DATA.

As an aid to the user, these formal properties are embedded in the CDC tools
and linked to the matched patterns. When a pattern is detected, the properties
are automatically synthesized in hardware, mapped to the corresponding RTL
signals and formally checked.

3.3 Limitation

After running the structural and functional checks of Fig. 8, the user expects to
know which data is correctly resynchronized and which is not. However, expe-
rience shows that model checking may not achieve a conclusive result on the
properties: some of them reach a timeout even after several days. When this
occurs, no information is returned on the cause of the timeout, and the designer
is left with no clue on the possible presence of a metastability in the design.

It is well-known that inconclusive results in formal verification are caused by
the so-called state-space explosion problem which is intrinsic to model checking
of hardware designs. In practice, the typical approach to overcome this challenge
is, for each property, to extract the CDC logic. The verification is then focused
on just a small but relevant part of the design. However, this approach comes
with the following issues: First, the verification engineer needs to have a very
good understanding of the underlying design, which is not realistic for large RTL
models; Then, strong time-to-market constraints do not allow a manual labor-
intensive selection of appropriate abstractions for each property; Finally, even
with such a high manual effort, a conclusive result cannot be guaranteed.

The approach presented in this paper is also based on focusing on a subpart
of the design, but tries to overcome the aforementioned issues by following a
CDC-oriented methodology that is based on an interaction between the user
and a refinement algorithm.

3.4 Root Causes of Inconclusive Results

In this subsection, we report on common root causes of inconclusive results we
observed in the verification of CDCs.

116 G. Plassan et al.

Operation Modes. An SoC can operate in many different modes (initialization,
mission mode, test, scan, etc.) controlled by configuration signals, the values of
which cannot be automatically inferred by the verification tool. The user must
then provide functional design constraints such as clock frequencies, static value
of configuration signals, etc. to perform the verification on a realistic mode. This
method is user time consuming and error prone, as the user may fail to provide
some essential signal constraint.

Clock Gating. In complex low-power designs, some modules can be enabled or
disabled via a clock-gate for power saving. If the clock enable signals take incon-
sistent values, the tool produces unrealistic failures by exercising unreachable
states of the design. The user should provide constraints on the value of the
clock enable signals.

Protocols. In addition to design setup, functional assumptions should be given
on the primary inputs of the design, e.g., for handshake protocols.

Considering all the above, in all practical cases we encountered, inconclu-
siveness was primarily caused by missing constraints. But even with all this
information – that is not always trivial to write – a model checker may still not
reach a conclusive result, due to the design complexity. We need a new approach
both to tackle this complexity issue and to identify missing constraints.

4 User-Aided Abstraction Refinement

The objective of our approach is to avoid the state-space explosion problem in
model checking hardware designs. To that end, our key idea is to let the user
aid the model checking process by replying yes/no to a series of questions whose
answers only require local design knowledge.

Technically, our underlying framework is a counter-example-guided abstrac-
tion refinement (CEGAR) [8] algorithm: we maintain a sequence of abstrac-
tions with increasing precision until a definite result can be established. In con-
trast to fully automatic CEGAR approaches, the user here influences the refine-
ment process. We therefore call our approach user-aided abstraction refinement
(UsAAR). Figure 9 gives an overview on the semi-automatic algorithm in the
context of the overall methodology.

4.1 Localization Abstractions

Our abstractions are obtained via localization reduction [18]: we replace some
nets in the original design with primary inputs, called cut points. An abstrac-
tion A is more precise than an abstraction B if the cone-of-influence (with cut-
points) of the property in A is an extension of the one in B.

The rationale for this notion of abstraction is that, in practice, all the relevant
control logic for a given CDC is implemented locally. Thus, properties requiring

Improving the Efficiency of Formal Verification 117

Fig. 9. The UsAAR algorithm of our CDC verification methodology

the correctness of synchronizing protocols should have small abstractions that
suffice to either prove the property or to reveal bugs.

Figure 10 illustrates the abstraction process for a correct, hard to prove,
property. By removing parts of the circuit from the cone-of-influence of the
property (keeping only A1 from COI), and leaving the unconnected nets free, the
set of reachable states is enlarged (i.e., it represents an over-approximation). As a
result, states in which the property fails (the error states), initially unreachable,
may become reachable (A1). In this context, refining the abstraction consists
in iteratively adding back some of the removed circuit, and as a consequence
reducing the reachable state space (from A1 to A2), until a sufficiently precise
abstraction is obtained (Asuff), for which no error state is reachable. The challenge
here is to find that part of the design that can be pruned away without spuriously
making any error state reachable.

4.2 The Core Algorithm

The algorithmic core of our methodology (Algorithm 1, in pseudo code) is a semi-
automatic algorithm which is based on the automatic counterexample-guided
abstraction refinement (CEGAR) [8] principle. A localization abstraction of the
design is incrementally made more precise in a sequence of refinement rounds.
In each round, the safety property is checked on the abstraction: if the property
is satisfied, the algorithm terminates with Result “proof”; if a counterexample
is found, a refinement heuristic decides whether and how the abstraction should
be refined, or it concludes that the counterexample is concretizable, i.e., the

118 G. Plassan et al.

Fig. 10. Various abstractions for a given design and property

counterexample is also valid for the full design, and the algorithm can terminate
with Result “fail”.

Throughout the algorithm, we maintain a set of constraints Cglobal and a
set of nets F . We call F the focus: it induces a localization abstraction D# of
design D (Line 5). The constraints Cglobal are used when property P is checked
on D# (Line 6). Starting with no constraints (Line 2) and F just holding the
nets in the combinational fan-in of P (Line 3), we incrementally add elements
to both sets, thereby making the over-approximation more precise. Based on the
abstract result R# obtained in Line 6, we either immediately terminate (in case
R# = proof), or continue analyzing the abstract counterexample cex# (in case
R# = fail). The next subsection details this analysis.

4.3 Analysis of Abstract Counterexamples

In our variant of CEGAR, the refinement heuristic first determines a set of
cut points that are logically relevant for the abstract counterexample. This is
done by computing (an over-approximation of) the justifiable set of cut points J
(Line 11). The validity of the counterexample is independent of any cut point
that is not part of J . Intuitively, any net that is not contained in a minimal
justifiable set can be set to a random value without invalidating the reachability
of the error state. But since computing a minimal justifiable set is a hard problem
on its own, heuristics are used to compute a small but not necessarily minimal
set. A common technique is to use ternary simulation to identify inputs that do
not impact the overall validity of the counterexample.

Once J is obtained, the heuristic Analyze classifies each element in J into
specific categories (Line 12): clock, reset, data, control, etc., using a backward

Improving the Efficiency of Formal Verification 119

Algorithm 1. UsAAR for a design D and a property P

1: R ← unknown
2: Cglobal ← ∅
3: F ← CombFanin(P)
4: while R = unknown do
5: D# ← Abstract(D,F)
6: (R#, cex#) ← Check(P,D#, Cglobal)
7: if R# = proof then
8: // Terminate and report proof
9: R ← proof

10: else if R# = fail then
11: J ← Justify(cex#, D#) \ F
12: (Cprop, ref) ← Analyze(J,D)
13: (Cacc, ref

′) ← Review(Cprop) // User interaction
14: ref ← ref ∪ ref ′

15: if Cacc = ref = ∅ then
16: // Terminate and report fail
17: R ← fail
18: else
19: // Refine the abstraction and continue
20: Cglobal ← Cglobal ∪ Cacc

21: F ← F ∪ ref ∪ Nets(Cacc)
22: end if
23: end if
24: end while
25: return R

traversal of the RTL which starts at the synchronizer pattern. Then, realis-
tic constraints corresponding to each category are inferred. For instance, when
encountering a potential setup issue such as a missing clock-gating constraint,
Analyze proposes to assume that the control input of the clock-gate is always set
to an enabling value. Or if a net is found to be logically irrelevant for the user,
Analyze infers a stopper constraint to ensure that the net (and its fan-in) will
not be part of any future abstraction. In the asynchronous FIFO of Fig. 7, this
stopper constraint would be applied on the net DATA IN. Indeed, in this case,
the property is independent of the DATA IN value. Only the following control
logic is relevant.

All constraints Cprop inferred by Analyze are then reported for review
(Line 13). In case the user rejects a constraint, the corresponding net is marked
for automatic refinement. After the manual classification process, the accepted
constraints Cacc are added to the set of global constraints Cglobal (Line 20). For all
nets that are marked for automatic refinement ref , we extend the focus so that
the subsequent abstraction are more precise by additionally comprising those
nets (Line 21).

120 G. Plassan et al.

4.4 Soundness, Completeness, Validity

The algorithm terminates if either the model checker reports a proof or if no new
constraints or nets for automatic refinement can be inferred, in which case a fail
is reported (Line 15). The soundness of reported proofs follows straight forward
from the fact that our localization abstraction represents an over-approximation.
The soundness of reported fails follows from the definition of the justifiable set:
the abstract counterexample cex# only depends on nets within the focus, i.e.,
on nets that were not abstracted out or for which the user provided constraints.
Hence, cex# remains a valid counterexample for any greater set F ′ ⊃ F , and in
particular, on the full design D.

In every non-terminating round, we either monotonically make the abstrac-
tion more precise or constrain the design behavior. Hence, since the underlying
design is finite, the algorithm terminates. Completeness follows from the fact
that the algorithm either terminates with a sufficient abstraction, or it ulti-
mately reaches the full design, i.e., D# = D.

When manually adding constraints one runs the risk of over-constraining
the design’s behavior, which can lead to vacuous proofs. However, our UsAAR
methodology is designed to minimize the risk of over-constraining. The setup
constraints inferred by our heuristics are combinational and structurally close
to the CDC control logic, which makes them easy for the user to review. Then,
they do not over-constrain but ensure that the design does not exhibit spuri-
ous behavior. On the other hand, stopper constraints (i.e., static cut points)
are conservative: they lead to an over-approximation that preserves all safety
properties.

5 Case Study

We applied our new methodology on two hardware designs: a small parametric
FIFO and a complex SoC from STMicroelectronics. The first one reveals the
benefits of the different steps of the flow. The second one proves the validity of
the methodology on an SoC from industry.

5.1 Asynchronous FIFO

Design Presentation. This hardware design includes a FIFO similar to the
one presented in Fig. 7. To mimic a state-space explosion on the DATA IN and
WRITE paths of the source domain, an FSM was implemented with a self-
looping counter on 128 bits, along with some non-deterministic control logic.
Also, the source and destination clocks are enabled by sequential clock-gates,
controlled by two independent primary inputs.

This design is parameterized by the width of the data being propagated,
and by the depth of the FIFO. By varying these two size parameters, we
increase the design complexity and analyze the corresponding performance of
the methodology.

Improving the Efficiency of Formal Verification 121

Results. Using an industrial tool to structurally analyze the design, three formal
properties were extracted.

– A data stability property is created on signal DATA CDC.
– Two coherency properties are extracted on the address buses after synchro-

nization, one on RD PTR and one on WR PTR. Indeed, the write and
read pointers are synchronized with multi-flops, and should then follow Gray-
encoding (see Sect. 2.2).

To verify them, the open source model checker ABC [5] is used with the
engines PDR [11] and BMC3 [4] in parallel. For each property, the runtime limit
for timeout is set to 15 min (denoted T/O in Table 1). We run the experiments
on a workstation with 24 Intel Xeon 2.6 GHz CPUs and 220 GB of memory. Four
different schemes are applied to generate the results in Table 1:

1. Standard: Model-checking each property on the full (non-abstracted) design.
2. CEGAR: A UsAAR variant where we reject all constraints. It can be seen

as a reduction of UsAAR to standard CEGAR.
3. UsAAR: The full semi-automatic algorithm presented in Sect. 4 including

automatic refinement and constraint inference together with manual con-
straint classification.

4. Standard w/ constraints: Repeated run of the standard scheme with all
the accepted constraints from the UsAAR scheme.

A first observation is that the coherency properties are proved in less than
a second in all four schemes and variations of the design. This is not surprising
considering that the Gray-encoding implemented in this design does not depend
on any non-deterministic control logic. Henceforth, we will then focus on the
data stability property.

The standard scheme is not able to prove the property in all 35 variations
of the design (Column “Standard”). Using the simple CEGAR approach, the
property is proved in all variations within 4 to 15 min (Column “CEGAR”).
Interestingly, the proof runtime is stable when the FIFO depth is fixed and the
data width increases. By looking at the last abstraction exercised, we notice that
DATA IN is always abstracted out. Its value does not depend on the source logic.
Hence, heuristics from the proof engine inferred that the proof does not depend
on the data value, which make the analysis as simple for 8 bits as it is for 128
bits. Actually, even if the source logic of the data was greatly more complex, the
CEGAR result would be the same.

Along the UsAAR run, two static constraints are automatically inferred on
the enables of the clock-gates. Because having a non-deterministically enabled
clock is not a realistic design behavior, we decide to accept them. As a result,
the stability property is solved in all 35 variations of the design within 10 s each
(Column “UsAAR”). Same as with simple CEGAR and contrary to the standard
scheme, the complexity of the data source logic is irrelevant for the proof.

Interestingly, even when applying the inferred enabling constraints on the
standard scheme, not all properties can be solved (Column “Standard w/ con-
straints”). Also in this case, by comparing with column “UsAAR”, we notice

122 G. Plassan et al.

Table 1. CDC properties proof CPU runtime (in sec) on the asynchronous FIFO

FIFO depth Data width Standard CEGAR UsAAR Standard
w/ constraints

3 8 T/O 389 7 22

16 T/O 390 7 35

32 T/O 392 7 66

64 T/O 390 7 870

128 T/O 391 7 T/O

4 8 T/O 592 6 15

16 T/O 591 6 28

32 T/O 594 6 57

64 T/O 593 6 145

128 T/O 594 6 243

5 8 T/O 641 7 14

16 T/O 651 7 53

32 T/O 641 7 69

64 T/O 640 7 180

128 T/O 693 7 374

6 8 T/O 558 7 13

16 T/O 558 7 55

32 T/O 563 7 62

64 T/O 563 7 203

128 T/O 562 7 414

7 8 T/O 574 7 10

16 T/O 574 7 49

32 T/O 575 7 68

64 T/O 574 7 150

128 T/O 575 6 841

8 8 T/O 589 7 11

16 T/O 590 7 36

32 T/O 579 7 60

64 T/O 580 7 150

128 T/O 580 7 463

9 8 T/O 868 9 14

16 T/O 863 9 43

32 T/O 868 9 74

64 T/O 864 9 210

128 T/O 865 9 475

TOTAL PROVED 0 35 35 34

Improving the Efficiency of Formal Verification 123

23 24 25 26 27
0

200

400

600

800

1,000

0

100

200

300

400

500

600

700

800

900

1,000
TimeOut

Data width

C
P

U
ru

n
n
in

g
ti

m
e

[s
ec

]

Standard

CEGAR

Standard w/ constraints

UsAAR

Fig. 11. Performance comparison for FIFO depth 8

that the runtime is always higher than when using both the inferred constraints
and CEGAR. This observation along with Fig. 11 points out the importance of
using both CEGAR and constraints in order to reach a conclusive result.

5.2 CPU Subsystem

Design Presentation. The second case study is a complex SoC hardware
design from STMicroelectronics, intended for a gaming system. It is a low-power
architecture, with a state-of-the-art quad-core CPU and many different inter-
faces. In total, it holds over 300,000 registers and 7 million gates. The CDC
setup is mainly done in a clock and reset control module, which selects con-
figurations for the whole system among its 38 clock domains and 17 primary
resets. However, many configuration signals (such as clock-enable signals) are
not controlled by this module. Since the design has a Globally Asynchronous
Locally Synchronous (GALS) intent, CDC signals are always synchronized in
the destination module.

Figure 12 gives an overview of some synchronizations around the CPU. Data
communication with the CPU environment (the rest of the SoC) is synchronized
by a customized FIFO with a 4-phase protocol based on the one described in
Sect. 2.4, with additional low power and performance optimizations. Only one
communication is shown in Fig. 12, among the ten in each direction. The figure
also shows the communications with the clock and reset controller, and the
handshake with the low power management block. Note that the CPU is one
central module which, due to its complexity, is likely to cause a timeout in the
model checking algorithm when considered in its entirety.

124 G. Plassan et al.

Fig. 12. Overview on the synchronizers at the interface of the CPU

Many synchronizers (mostly FIFOs) are split between modules of this subsys-
tem. Hence, we cannot proceed in a module-by-module CDC analysis. Working
at this hierarchy level is particularly relevant for us.

Results. We used an industrial tool to structurally analyze the STMicroelec-
tronics design. Only some straightforward constraints regarding reset and clock
setup were applied; we did not use any other design insight. All clock multi-
plexers were constrained to select the mission-mode clock, and static primary
inputs were constrained to the value given in the design specification (subsystem
configuration). The structural analysis identified several thousand synchronizers,
most of them multi-flops which do not need a functional check. It also extracted
78 stability and 47 coherency properties. We verify each extracted property in
the same four schemes that were presented previously.

Table 2 shows the results for model checking the stability and Gray-encoding
properties. Without any automatic refinement, the standard scheme can only
prove 40 out of 125 properties (Column “Standard”). After increasing the time-
out limit to several hours, the same results are obtained. Using automatic
refinement (the CEGAR scheme), 33 more properties can be proved (Column
“CEGAR”). Also, it should be noted that all proofs from the standard scheme
get confirmed by the CEGAR scheme. CEGAR proves to be particularly efficient
for proving Gray-encoding properties, as the encoding logic is generally local to
the synchronizer.

The most striking observation, however, is that during the first UsAAR run,
40 setup constraints are automatically inferred and are all easily accepted. These
include global interface enables (scan or test enables, internal configuration sig-
nals, ...), and also internal soft resets and clock-gate enables which were missing

Improving the Efficiency of Formal Verification 125

Table 2. Results on the CDC stability and Gray-encoding properties

Standard CEGAR UsAAR
first run

UsAAR
second run

Standard
w/ constraints

Stability # Proof 29 31 45 78 43

Fail 0 0 33 0 0

Inconclusive 49 47 0 0 35

CPU time [min] 771 734 583 31 557

Gray-enc. # Proof 11 42 42 47 11

Fail 0 0 5 0 0

Inconclusive 36 5 0 0 36

CPU time [min] 540 86 27 15 540

in the design specification. It leads to 87 proved properties and provides coun-
terexamples for the remaining 38. Note that in those abstract counterexamples,
many irrelevant signals are automatically hidden using the justifiable subset,
which makes debugging easier.

By reviewing them, we observe spurious behaviors in the handshakes, which
are fixed by adding 22 missing Boolean assumptions enabling the protocols.
Indeed, in some cases the WRITE or READ of the FIFO represents an informa-
tion coming from the CPU, and would depend on a software execution. When
these signals are abstracted out, they take random values which do not follow
the handshake protocol, hence creating a failure. After consulting STMicroelec-
tronics, we decide to constrain them to a realistic behavior. Here, the worst case
would be to set them to ‘1’ which would mean the CPU always transfers data.
We stress the fact that no deep design knowledge is needed during this process,
and the constraints represent a realistic design behavior.

With these new constraints, the second UsAAR run is able to conclude all
125 properties correctly. Compared to the fully automatic approaches, the final
UsAAR proof runtime is accelerated by more than 20×. In fact, the most difficult
property concludes in only 7 min.

Finally, the last column shows that having the proper constraints is not
sufficient to get proofs; the efficiency of UsAAR indeed relies on the combination
of automatic CEGAR and manual constraint classification.

Regarding the size of the abstractions: on the full design, some properties
have a cone-of-influence of more than 250,000 registers. Interestingly, our vari-
ant of CEGAR is able to find sufficient abstractions containing only up to 200
registers. This ratio confirms our assumption that only the local control logic
has a real influence on the correctness of a CDC property.

Overall, a relevant metric to score the different flows would be the total time
spent by the verification engineer starting with the design setup and ending
with achieving conclusive results for all properties. It would allow us to conclude
on the complexity and usability of different methodologies, as for instance the
manual extraction and constraining explained in Sect. 3.3. However, this time
depends very much on the design complexity, reuse, and user insight. Such an

126 G. Plassan et al.

experiment would assume the availability of two concurrent verification teams
on the same design, an investment that could not be made by our industrial
partners.

6 Related Work

The implementation of CDC synchronizers recalled in Sect. 2 is well known in the
hardware design community. Tools for verifying such synchronizers are provided
by leading EDA vendors (Synopsys SpyGlass CDC [27], Mentor Questa CDC
[23], Real Intent Meridian CDC [24], . . .). Most of these tools provide a veri-
fication flow including structural checks up to the generation of related formal
properties.

Academia is also active in this research area. Some approaches focus on
functionally verifying CDC synchronizers; e.g., Burns et al. proposed a new ver-
ification flow using xMAS models [6]. However, the user needs to define the
boundaries of the synchronizers, which is not scalable.

Kwok et al. presented a verification flow [19] purely based on a structural
analysis that matches parts of the design with a property library to generate
assertions. These assertions can be model checked for functional verification.
Litterick proposed a similar flow [22], replacing model checking by simulation on
SVA assertions. Kapschitz and Ginosar published an overview [15] on the general
CDC verification flow, showing the need for multiple clock modeling and formal
verification. However, they did not detail how synchronizers can be identified,
nor their flow automation, nor how to deal with a high design complexity.

Li and Kwok described a CDC verification flow [21] similar to ours, includ-
ing the extraction of a formal property from an automatic structural identifica-
tion. They performed abstraction refinement along with synthesis to prove some
properties, but the underlying techniques were not explained in detail. In their
flow, inconclusive properties after the abstraction refinement are promoted to the
top-level and the user needs another methodology to proceed with the formal
verification.

Recently, Kebaili proposed to improve the structural checks in order to detect
the main control signals of the synchronizer [17]. The properties to be verified
would only rely on these control signals (with a handshake-based protocol), hence
avoiding the state-space explosion in the data path.

In other hardware verification domains, some methodologies combine manual
with automatic reasoning. For instance, for verifying the FlexRay physical layer
protocol, Schmaltz presented a semi-automatic correctness proof [26] in which
the proof obligations are discharged using Isabelle/HOL and the NuSMV model
checker. This proof was also applied to larger verified system architectures [1].

Localization abstractions and related refinement techniques were pioneered
by Kurshan in the 1980s and eventually published in the mid 1990s [18]. The
fully automatic variant of the CEGAR principle was introduced by Clarke et al.
in the context of over-approximating abstractions defined through state-space
partitionings [8,9]. The works by Andraus et al. propose a CEGAR approach for

Improving the Efficiency of Formal Verification 127

data-paths in hardware designs [2,3]. Orthogonal to our approach, their abstrac-
tions are obtained by replacing data-path components by uninterpreted functions
which, in turn, also requires a more powerful model checker based on SMT. Our
methodology can be seen as an extension of these works mentioned above, as it
enables the integration of user insight into the refinement process.

7 Conclusion and Outlook

This paper presents a complete formal verification flow for conclusively proving
or disproving CDC synchronizations on industrial-scale SoC hardware designs.
Our core contribution is a semi-automatic model checking algorithm, where the
user aids the (otherwise fully automatic) verification process by classifying a
sequence of automatically inferred constraints.

We demonstrated the efficiency of our approach on an STMicroelectronics
SoC design which was persistently difficult to verify: prior approaches required
to manually extract the cone-of-influence of the synchronizers, which resulted in
a tedious (and costly) work for verification engineers.

In contrast, our new methodology allowed the full verification without requir-
ing any deep design knowledge. This very encouraging practical experience sug-
gests that we identified an interesting sweet-spot between automatic and deduc-
tive verification of hardware designs. On the one hand, it is a rather easy manual
task to classify simple design constraints that refer to single nets where, on the
other hand, this information can be crucial to guide an otherwise automatic
abstraction refinement process.

Another positive side-effect of our methodology is that it gradually results in
a functional design setup. Note that all accepted constraints (except the stop-
per constraints) do not depend on a certain property, but reflect general design
properties and are therefore globally valid. This does not only speed-up the over-
all CDC verification time, when constraints are reused while verifying multiple
properties, it also helps further functional verification steps in the VLSI flow.
For instance, the same design constraints can be reused for functionally verifying
false and multi-cycle paths.

As a next step, we plan to improve the constraint inference in order to gen-
erate sequential SVA assumptions. This feature would guide the user into cre-
ating more complex constraints representing realistic design behaviors without
decreasing the proof coverage. Also, we investigate into other functional proper-
ties. The long-term goal is to extend our methodology to many critical functional
verification steps in the VLSI flow.

Acknowledgement. We wish to thank Mejid Kebäıli and Jean-Christophe Brignone
from STMicroelectronics for reviewing and confirming the validity of our methodology.

128 G. Plassan et al.

References

1. Alkassar, E., Böhm, P., Knapp, S.: Formal correctness of an automotive bus con-
troller implementation at gate-level. In: Kleinjohann, B., Wolf, W., Kleinjohann,
L. (eds.) DIPES 2008. ITIFIP, vol. 271, pp. 57–67. Springer, Boston, MA (2008).
doi:10.1007/978-0-387-09661-2 6

2. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Refinement strategies for verification
methods based on datapath abstraction. In: ASP-DAC, pp. 19–24 (2006)

3. Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of Verilog
models. In: Design Automation Conference (DAC), pp. 218–223 (2004)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

6. Burns, F., Sokolov, D., Yakovlev, A.: GALS synthesis and verification for xMAS
models. In: DATE (2015)

7. Chaney, T., Molnar, C.: Anomalous behavior of synchronizer and arbiter circuits.
IEEE Trans. Comput. C–22(4), 421–422 (1973)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

9. Clarke, E., Grumberg, O., Long, D.E.: Model checking and abstraction. In: ACM
(1991)

10. Cummings, C.E.: Clock domain crossing design & verification techniques using
systemverilog. In: SNUG, Boston (2008)

11. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011)

12. Gabara, T.J., Cyr, G.J., Stroud, C.E.: Metastability of CMOS master/slave flip-
flops. In: IEEE Custom Integrated Circuits Conference. pp. 29.4/1–29.4/6, May
1991

13. Ginosar, R.: Fourteen ways to fool your synchronizer. In: Asynchronous Circuits
and Systems, pp. 89–96 (2003)

14. Ginosar, R.: Metastability and synchronizers: a tutorial. IEEE Des. Test Comput.
28(5), 23–35 (2011)

15. Kapschitz, T., Ginosar, R.: Formal verification of synchronizers. In: Borrione,
D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 359–362. Springer,
Heidelberg (2005). doi:10.1007/11560548 31

16. Karimi, N., Chakrabarty, K.: Detection, diagnosis, and recovery from clock-domain
crossing failures in multiclock SoCs. Comput. Aided Des. Integr. Circuits Syst.
32(9), 1395–1408 (2013)

17. Kebaili, M., Brignone, J.C., Morin-Allory, K.: Clock domain crossing formal veri-
fication: a meta-model. In: IEEE International High Level Design Validation and
Test Workshop (HLDVT), pp. 136–141, October 2016

18. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

19. Kwok, C., Gupta, V., Ly, T.: Using assertion-based verification to verify clock
domain crossing signals. In: Design and Verification Conference, pp. 654–659 (2003)

http://dx.doi.org/10.1007/978-0-387-09661-2_6
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/11560548_31

Improving the Efficiency of Formal Verification 129

20. Leong, C., Machado, P., et al.: Built-in clock domain crossing (CDC) test and
diagnosis in GALS systems. In: Proceedings of the DDECS 2010, pp. 72–77, April
2010

21. Li, B., Kwok, C.K.: Automatic formal verification of clock domain crossing signals.
In: ASP-DAC, pp. 654–659, January 2009

22. Litterick, M.: Pragmatic simulation-based verification of clock domain crossing
signals and jitter using SystemVerilog Assertions. In: DVCON (2006)

23. Mentor Graphics: Questa CDC. https://www.mentor.com/products/fv/questa-
cdc/. Accessed Jan 2017

24. Real Intent: Meridian CDC. http://www.realintent.com/real-intent-products/
meridian-cdc/. Accessed Jan 2017

25. Sarwary, S., Verma, S.: Critical clock-domain-crossing bugs. Electron. Des. Strateg.
News 53, 55–64 (2008)

26. Schmaltz, J.: A formal model of clock domain crossing and automated verification
of time-triggered hardware. In: FMCAD. pp. 223–230, November 2007

27. Synopsys: Spyglass CDC. https://www.synopsys.com/verification/static-and-
formal-verification.html. Accessed Jan 2017

https://www.mentor.com/products/fv/questa-cdc/
https://www.mentor.com/products/fv/questa-cdc/
http://www.realintent.com/real-intent-products/meridian-cdc/
http://www.realintent.com/real-intent-products/meridian-cdc/
https://www.synopsys.com/verification/static-and-formal-verification.html
https://www.synopsys.com/verification/static-and-formal-verification.html

Improving Stress Quality for SoC
Using Faster-than-At-Speed Execution

of Functional Programs

Paolo Bernardi1, Alberto Bosio2(&), Giorgio Di Natale2,
Andrea Guerriero1, Ernesto Sanchez1, and Federico Venini1

1 Politecnico di Torino, Corso Duca degli Abbruzzi 24, Turin 10129, Italy
{paolo.bernardi,andrea_guerriero,ernesto.sanchez,

federico.venini}@polito.it
2 LIRMM, Rue Ada 161, Montpellier 34095, France

{bosio,dinatale}@lirmm.fr

Abstract. At the end of the manufacturing cycle of digital circuits, a stress
phase is mandatory in order to remove from the final device population the weak
devices that may result in early life failures. Devices used in safety critical
environments must undergo this phase that is usually accomplished by
exploiting the Burn-In (BI) process. Unfortunately, BI has elevated costs for
companies and current state of the art techniques are trying to reduce its cost.
In recent days, Faster-than-at-Speed-Test (FAST) has become a useful tech-

nique to discover small delay defects. At the same time, overclocking methods
to enhance system performances have been studied, which focus on temperature
management to preserve system functionalities. In this contribution, a FAST
technique is proposed with the aim of intentionally provoking a thermal over-
heating in the microprocessor by mean of the execution of FAST functional test
programs; in other words, functional procedures are executed at higher than
nominal frequencies. The goal is to introduce an internal stress stronger than
current procedures used during BI in order to speed up early detection of latent
faults.
Being the functional stress procedures executed at faster than nominal speed,

the original behaviour may not be preserved and therefore non-functional states
may be reached. In this contribution, it is illustrated how to avoid blocking
configurations due to timing constraints violation and how to obtain a significant
increase of the switching activity by carefully increasing the clock frequency.
Furthermore, a novel strategy is proposed to generate a suitable set of
Faster-than-At-Speed stress programs capable to thoroughly stress processor
cores.
Experimental results carried out on a MIPS-like architecture show major

achievements of the methodology: the processor may work at frequencies up to
about 20 times higher than the nominal one without falling into an unpredictable
state and the switching activity is increasing up to 300% per ns.

Keywords: Faster-than-At-Speed-Test � Functional test � Stress test �
Switching activity � Evolutionary algorithm

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 130–151, 2017.
DOI: 10.1007/978-3-319-67104-8_7

1 Introduction

The reduced scale, predicted years ago by the Moore’s law, and the low costs of
Integrated Circuits (IC) have been the principal factors of spreading high performance
microprocessor devices in mass products and safety critical applications. At the same
time, the increasing density of transistors on System-on-Chip (SoC), as a subsequence
of their smaller size, and the high frequencies they work, have leaded these products to
vulnerability to faults and defects, not only during manufacturing processes but also
along with the device lifetime.

To guarantee circuit robustness, these products are subjected to several stress
phases aiming at bringing the circuit to stressful conditions oriented to detect and
discard weak devices. In particular, the so-called Burn-In (BI) test process aims at
producing a degradation similar to that introduced by the normal operation during a
long period of time (i.e., aging). It applies an external thermal overheating to the
device, that in some cases also includes the application of supply voltages higher than
the nominal ones. Thermal-based accelerated aging is produced in order to exacerbate
time-related degradation defects such as electro-migration affecting the circuit metal
lines, leakage current increasing, and variation of threshold voltage in the gates
belonging to the design [1]. BI process is necessary for those devices that have to carry
out safety critical applications, and for non-repairable systems. By applying a Burn-In
phase at the end of manufacturing, it is expected that fewer defective components are
delivered and the consequent reduction in failure rates lowers production costs [2].
However, BI is usually associated with long test time and costs, aspects that make it a
bottleneck of the entire IC manufacturing process.

In the last years, some approaches tried to apply stress patterns resorting to func-
tional approaches. Functional test programs verify the system integrity for functional
and performance-related specifications. It may test all or most of the system func-
tionalities along with the availability of subsystems. In [1, 3], for example, the authors
demonstrated that it is possible to apply electrical stress on a given device resorting to
functional-based stress programs.

It is clear that a relationship exists between the circuit switching activity (SA) and
the temperature developed on the surface of the die [1]. As a matter of fact, it is
reasonable to assume the possibility to induce a thermal-aware stress by modulating the
switching activity of the target device.

In this contribution, we investigate the possibility of running functional programs at
a frequency higher than at-speed with the intention of increasing the switching activity
of the system. Once the research claims that processor can continue working even at
higher frequencies than nominal thanks to system architecture features, a generic
methodology to create functional stress programs targeting pipelined processor cores is
investigated. The introduced approach presents the rules to estimate a set of frequency
ranges in which the processor is not falling into a blocking state and, by means of these
rules, it is possible to generate meaningful functional stress programs. Initially pro-
grams are generated targeting every relevant module. Then, some positive side effects
on the rest of the modules are measured and a new generation campaign is performed
on the missing modules. This process iterates until satisfactory results are reached.

Improving Stress Quality for SoC 131

In order to guide the generation process, the method computes a set of elements that
helps to assess the quality of each stress functional program in terms of spatiality (i.e.,
how well the switching activity is spread across the die surface), and intensity (i.e., how
high the switching activity is among a given number of gates). Interestingly, the
proposed approach is also able to automatically setup the processor frequency in order
to find the most appropriate faster-than-at-speed stress programs. This generation
feature allows the creation of functional stress programs operating at frequency ranges
higher than the nominal ones, avoiding to incur in a blocking state of the processor.
The chapter finally presents valid ranges of faster-than-at-speed frequencies in terms of
switching activity increase for a functional program, and then it provides a comparison
between at-speed and faster-than-at-speed functional stress programs automatically
generated.

The rest of the chapter is organized as follows: Sect. 2 provides the framework
background, Sect. 3 describes the proposed approach both for discriminate the pro-
cessor reaction to FAST, both for describe the automatic stress program generation
process, while Sect. 4 introduce the case of study and show the experimental results
carried out on a MIPS-like processor core synthetized with an industrial library.
Finally, Sect. 5 concludes the chapter drawing some future works.

2 Background

Regarding new stress techniques, recent studies are beginning to consider the execution
of patterns with a clock frequency higher than the nominal at-speed. This technique,
known as faster-than-at-speed test (FAST), finds satisfying results when applied for
detecting small delay defects (SDD) which are not easy to screen out with at-speed test
[4, 5].

Several application methods targeting FAST technique have been proposed so far
in the literature: external applications [5, 6], which are not trivial due to skews and
other physical effects that could affect the measurements, therefore, this method
requires a more expensive automatic test equipment (ATE). On the other hand, built-in
FAST using programmable on-chip clock generation is comfortable with these issues
[6, 7], as frequency increase is functionally obtained (e.g., executing assembly
instructions). Current works concentrate their efforts on classifying faults according to
the optimal frequency they can be tested, or on finding an optimized selection of clock
frequencies [4, 8]; usually the maximum clock rate value may be up to 3 times higher
than the nominal clock rate [4, 9, 10].

Considering the generation of functional stress patterns for processor cores, an
interesting solution can be based on the so-called Software-Based Self-Test (SBST)
techniques. The main idea on SBST is to create a functional program intended to detect
the processor faults [11]. Roughly speaking, the processor core executes a program
allocated in an available memory zone. The computed results are evaluated in order to
determine whether the processor is faulty or not. Interestingly, the processor operates in
normal mode, thus, there are no requirements for any hardware modification. Never-
theless, SBST methodologies have a limited application in industry due to the difficulty

132 P. Bernardi et al.

to write efficient and effective test programs and to devise suitable methodologies for
test application.

To the best of our knowledge, this study is the first approach to
Faster-Than-at-Speed Test technique while functional programs are running in a SoC.
In this contribution, the objective does not concern the coverage of SDD, in contrast
with the works listed before, but rather the switching activity increase, which is useful
for stress purposes.

3 Proposed Approach

The main objective of this work is to provide detailed understanding about CPU
frequency overclocking of a SoC targeting switching activity increase. As already
stated in the introduction, increasing the switching activity is beneficial in terms of
stress capability and thermal objectives in test. The basic idea of our approach is to
analyse the circuit transitions when a functional test program is running, spanning
several clock frequencies starting from the nominal one, until reaching very high
values. For this reason, in an overclocked situation, it is crucial to understand if:

• The microprocessor can produce stable results and keep some functionalities,
although some design timing constraints are violated. In this case, we expect a
dramatic increase of the internal temperature, thus a further acceleration of aging.
Later, this situation is named functional state.

• The microprocessor is stuck to some unpredictable state, similarly to a “forced
functional idle”, that leads in a situation in which there will be no gain in terms of
temperature exacerbation. Later, this situation is called unstable state.

Functional state is highly desirable, while unstable state need to be avoided, in case
the induction of a strong stress is the objective [12].

In the following paragraphs, an analysis flow is proposed aiming at determining
microprocessor behaviour, functional or unstable, at frequencies higher than the
nominal one. Thanks to this methodology, it is possible to identify the causes of the
unstable state, which will be discussed in details; specific cases and processor con-
figurations need to be avoided in order to maintain a functional state even at very high
frequencies.

Once this analysis is complete, purpose becomes to provide an automatic technique
able to generate a suitable set of stress programs for processor cores. In fact, the
approach creates faster-than-at-speed functional test programs maximizing the
switching activity (SA) for the whole processor core. One of the most relevant
drawbacks of SBST-based strategies is related to the high amount of resources required
to generate test programs. As detailed in [11], most of the generation processes are time
consuming and/or require expert engineers able to write the test programs. Thus, the
proposed strategy exploits the possibility to generate stress programs for different
processor modules in parallel, taking advantages of the positive side-effects that may
appear on different processor modules when targeting a particular one. The proposed
methodology will be discussed in the following subsections.

Improving Stress Quality for SoC 133

3.1 Analysis Flow for Understanding SoC Behaviour

The first objective of our work is to understand when the processor under analysis is
falling in an unstable state or not at a certain frequency. To achieve this important
understanding, a tool chain setup was devised, enabling the classification of several
behaviours.

When overclocking and setting up a clock period tighter than the nominal, unknown
(X) values can appear in the simulation. These values are caused by the violation of
timing constraints of Flip-Flops (FFs) with respect to critical path timing. Figure 1
illustrates an explanatory scenario where the SoC is entering into an unstable state.

In some cases, the unknown values are bounded in a set of FFs, possibly not
compromising the execution of the program. On the contrary, if the unknown values
affect a huge number of FFs, CPU reaches an unpredictable state.

The consequences are showed in Fig. 1: when timing constraints of FFs are vio-
lated, registers will contain unknown values which can quickly propagate through
others (the propagation will depend on the hardware connection between modules). In
the showed example, Program Counter (PC) has been affected. Therefore, CPU will
never move to execute the next instruction, and it will be stuck into an idle-like state.
The affection of instruction-to-decode register (instr), or others, has similar effects.

Figure 2 visualizes the practical cause of the X values generation. If a
faster-than-at-speed clock is used, the propagation along path may not complete even
without a delay fault affecting the circuit. In this case, FFs will not sample a stable
value, resulting in an unknown output.

Figure 3 depicts the analysis flow to detect unstable behaviour, which was devised
and implemented as a tool chain including both commercial EDA tools and ad-hoc
tools. The main idea is to look at the simulation and figure out whether the simulation
converges on an unstable state. Furthermore, a loop is implemented where the fre-
quency is increased every time the current analysis is concluded. The logic simulator is
fed with critical paths that are extracted by a Static Timing Analysis (STA) tool. The
simulator is required to dump the state of the critical paths along the simulation time.

This selective simulation dump is finally provided to an ad-hoc tool able to return
the following information from the simulation dump:

Fig. 1. Some of the CPU registers at the beginning of unstable state.

134 P. Bernardi et al.

• The program execution time, by simply counting the number of clock cycles
resulted in the simulation;

• The switching activity computed as the number of transitions resulted in the gates
normalized per ns.

Execution time is enough to identify an unstable state of the processor. In the
simulation setup, a timeout time is set and several traps are implemented in order to
stop the simulation and classify it as functional; these termination conditions are

Fig. 2. Violation of setup time of FF (in the lower graph), compared to a good sampling.

Fig. 3. Proposed analysis workflow for detecting unstable states.

Improving Stress Quality for SoC 135

showing specific “footprints” left by the processor when correctly running a program.
As far as we saw, when the gates of the processor start to show unknown behaviours it
is highly improbable that it can reach one of the termination conditions. In this case,
test program will be forced to terminate by the timeout time set by the simulator.

In case the simulation does not fall in an unstable state, the process is repeated at a
higher frequency. The implemented toolchain permits to decide which step to use along
the loop, and automatically adjust sampling time according to the new frequency. In
case the simulation falls in the unstable state, a simple formula, detailed in next sub-
section, permits to decide if continue in the frequency increase or stop the iterations.

3.2 Processor Level Analysis and Classification of Functional States

The common perception is that if a circuit is supplied with a frequency higher than
nominal, it will not work. This is an incomplete analysis of the problem as falling in the
unstable state may be prevented by some processor architectural features. The first one
is the mechanism of pipeline stalls and memory wait-states. They are needed as the
memory cores in SoC are usually accessed asynchronously. As a matter of fact, as
system stalls because the memory is slow and asks for more time, signals travelling
even through the longest paths can reach stable values. Hence, even if another clock
period is started, stalled units will not ask for values until the reactivation of pipeline.
Figure 4 illustrates the situation: the pipeline is stalled by stop_all signal in case the
ram_ready from the memory goes low too late and it is not sampled. The ram_ready
signal falling time depends on the latency of the memory. In this example, ram_ready
is correctly sampled after few clock cycles of pipeline stall as the latency of the
memory was set to 5 ns; as well this is feasible because the latency is larger than the
propagation time through the most critical path, 4.5 ns in the shown example. The
result of the previous ALU operation, such as stored in EX_data register, will be read
only after the reactivation of CPU pipeline, certainly showing correct values.

As experimental results proven, this is a lucky configuration that happens only
within some ranges of clock frequency. A general very strong rule that can be deduced
by the proposed analysis is the following: If the clock period is approximately equal or
less than latency, and the latency is larger than the propagation time of functional
critical paths, the unstable state depends only on propagation times of asynchronous

Fig. 4. Typical pipeline stalls during memory latency.

136 P. Bernardi et al.

data-paths. Usually, these data-paths belong to processor boundary (such paths inter-
facing RAM signals to CPU, such as ram_ready, again) or internal CPU units (such as
Prediction Unit), which are not synchronized with the pipeline. In most of architectures,
propagation times of asynchronous data-paths are usually less than for processor logic
synchronously controlled by the clock. As a consequence, asynchronous data-paths
may sustain a certain increase of the clock frequency without incurring into unpleasable
events. But, as we are pulling up the frequency much higher than nominal, asyn-
chronous data-paths take a significant role in the study. Figure 5 graphically visualizes
the concept of asynchronous data-path; two situations can be identified, with incoming
and out-coming paths.

Let us consider the ram_ready and ram_req signals as a reference to clarify the
concept. Figure 6 details the acknowledge protocol and relevant times. Once the RAM
is rising the ram_ready signal, the ram_req is falling and again rising after a fixed time
TREQ elapsed from the current clock rising edge. Thus, ram_ready is falling after a
fixed time TREADY , corresponding to the beginning of the next latency time. The time
from the falling transition of ram_ready to the first clock rising after sampling is called
TFIRST_RISE. As well, the time passing from the last rising of the clock before the
ram_ready is rising is called TLAST_RISE. Most importantly, the time passing from
ram_ready rising and clock rising edges, namely TRES, is key to understand whether
the processor will fall into an unstable state or not. This time should be large enough
both to permit propagation along the asynchronous incoming data paths, namely
TASYNCRONOUS_PROPAGATION, and to afford a signal stability time long enough to
respect the setup time TSETUP, as preliminarily described in this section. This scenario
is depicted in Fig. 7, where TDES is the minimum amount of time that guarantee a
correct behavior; in opposition, TRES is the real measurement of time elapsed from the
ram_ready rising to the following rising edge of the clock signal. TDES can be esti-
mated by simply analyzing the circuital configuration in order to identify propagation
cones of asynchronous data paths:

Fig. 5. Example of connections between CPU and companion modules such as memory cores.

Improving Stress Quality for SoC 137

TDES ¼ TASYNCHRONOUS PROPAGATION þ TSETUP ð1Þ

where TASYNCHRONOUS PROPAGATION [[TSETUP.
TRES can be calculated by adding information related the selected frequency; period

in formulas refers to the clock period. To obtain TRES, TFIRST_RISE and TLAST_RISE are
needed.

TFIRST RISE ¼ period � TREQ þ TREADY
� � ð2Þ

TLAST RISE ¼ latency� TFIRST RISEð Þ%period ð3Þ

TRES ¼ period � TLAST RISE ð4Þ

At this point, with TRES calculated, it is possible to compare it with TDES for an
estimation of the system behavior under higher than at speed frequencies:

Fig. 6. BUS timing diagram with ram_ready and ram_req.

Fig. 7. Timing diagram showing stability requirements for ram_ready correct sampling.

138 P. Bernardi et al.

if TRES [TDES ! FUNCTIONAL STATE

if TRES\TDES
ð5Þ

TRES [TASYNCHRONOUS PROPAGATION ! UNSTABLE STATE

if TRES\TDES
ð6Þ

TRES\TASYNCHRONOUS PROPAGATION ! FUNCTIONAL STATE ð7Þ

Let us observe some examples. In the first case, Fig. 8A, the ram_ready transition
arrives with a sufficient time to permit propagation and setup, and program counter is
not affected Program Counter (PC) register. Frequency there is quite high, 156 MHz.

On the contrary, according to (6) Fig. 8B shows a wrong sampling scenario, caused
by higher frequency, 704 MHz. The rising edge of clock is arriving enough early to
have propagation of the asynchronous signals up to FFs, but not enough for setup. The
wrong sampling will affect PC register since the next clock cycle.

Figure 8C permits a simple understanding of the reason why the processor stops
working for a range of addresses and resume for higher frequencies. The clock is quite
high in this example, 190 MHz. Even if the clock period is comparable with TDES,
Eq. (5) can be satisfied if the ram_ready signal is in a favorable phase with clock,
resulting in enough TRES.

Last of the cases, Fig. 8D shows that the period can be even smaller than TDES. In
this case, the frequency is 198 MHz and the specific case (7) is satisfied because from
ram_ready to clock rising there is not enough time even to complete the propagation of

Fig. 8. Dependency on asynchronous path.

Improving Stress Quality for SoC 139

asynchronous paths to the FFs. The old value is captured and the true value is latched at
the next clock rising edge. This is essentially similar to have a latency overhead of 1
clock cycle, but not compromising the system functionalities.

In the analysis script-chain, the limit of clock frequency value is reached when:

Period\TASYNCHRONOUS PROPAGATION þ TSETUP ð8Þ

3.3 Proposed Methodology for Generating Stress Programs

Figure 9 sketches the main steps for automatically generate functional stress programs
targeting processor cores. The first step of generation consists on the Processor divi-
sion. The idea here is to apply a divide et impera strategy that allows the next gen-
eration steps to be executed in parallel. Such a division is performed following the
internal processor hierarchy. Then, the processor is divided into its more important
sub-modules that would be tackled in the following steps in a separate way.

It is important to consider that, since the main goal during the generation process is
to obtain stress programs maximizing the SA on every processor module, the processor
division step must produce not only a hierarchical modules division, but also should be
able to distribute all the processor gates on every one of the modules belonging to the
processor core. Finally, the most relevant instructions belonging to the processor
Instruction Set Architecture (ISA) must be correlated with the derived processor
sub-modules.

Fig. 9. Stress program generation flow diagram.

140 P. Bernardi et al.

The second step is called Module Identification and setup. This is the first step
composing the methodology iterative loop. Here the processor sub-modules to be
targeted during each iteration are selected. The idea is to identify and select at the very
beginning the functional units of the processor, then, in a successive step, the control
parts. As mentioned before, the previous step provides not only the structural division
of the processor core but also the set of possible instructions that are able to excite
every one of the processor sub-modules. The idea behind this consideration is that the
processor functional units are usually independent on each other. It means that each of
them performs a task that does not require the intervention of other functional modules.
For example, we can consider the processor arithmetic module and the multiplier.
Then, a stress program may try to thoroughly stress one specific module without
targeting a different one at the same time. On the contrary, most of the processor
modules related to the control are highly correlated to the rest of the processor. Thus,
these modules should be tackled in a successive step in order to take advantages of the
positive effects produced by the stress programs of the already targeted modules. The
Module Identification and setup step is also in charge to check the list of gates
belonging to the considered module in order to discard from the list the gates that at this
point are satisfactory stressed. Clearly, during the first iteration no one gate is
discarded.

Once the different modules to be tackled for the current iteration have been iden-
tified, the generation process can be parallelized. This step is called Stress program
generation and can use different strategies, for example deterministic, manual,
formal-based, and evolutionary-based strategies [11]. A suitable stress program is
characterized by the high switching activity on the targeted module involved gates.
Even though the SA is one of the most relevant, some other parameters require to be
considered. In the proposed case, we define a parameter related to the stress quality for
every gate GSQð Þ, that is given by:

GSQ ¼ SA � 1
d
� Th � gCH ð9Þ

where SA is the actual gate switching activity, d represents the physical distance of the
gate to the centre of the module, considering the actual placement of the gate in the
final device, Th is the thermal factor related to the chip structure, and gch is a parameter
related only to the gate electrical characteristics (fan out, fan in). Please note that all the
parameters except the SA are constants, and are related to the gate type and position in
the considered module. Thus, during our experiments the target is to increase the SA on
every gate.

During the generation process, it is important to provide the selected tool with all
the module information required to carry out the generation process. In particular, the
tool receives the module gates, as well as the instructions exciting the module itself. In
our proposal, we used an evolutionary optimizer called lGP (MicroGP). The tool is
developed by Politecnico di Torino since 2000, and is freely available under the GNU
Public License [13]. lGP is able to generate syntactically correct assembly programs
by acquiring information about the ISA of the processor, and in particular about every
one of the modules under consideration from a user-defined file called Constraint

Improving Stress Quality for SoC 141

Library. It is important to highlight that the evolutionary optimizer defines not only the
different instructions composing every program but also the operation frequency. This
provides the generation process to create programs that run faster than the nominal
frequencies. The faster-than-at-speed execution of these functional test programs per-
mits to reach a grade of stress quality of the circuit in a shorter time interval with
respect to the at-speed execution of same test programs. However, as shown in [11],
due to frequencies higher than the nominal ones, the processor core may fall in an
unstable state. Then, during the test program evaluation, it is important to assure that
regardless the operating frequency, the processor behavior is still stable.

When the generation process starts, the evolutionary tool generates an initial set of
random assembly programs (called population), or individuals, exploiting the infor-
mation provided by the library of constraint. Every individual also provides the
operation frequency as a parameter defined by the evolutionary core. Then, these stress
programs are cultivated in order to be improved following the Darwinian concepts of
natural evolution. Every individual is evaluated resorting to external tools that simulate
the processor by running the stress program at the given frequency and information
about the SA in the consider module is gathered. Additionally, processor stability is
also considered. In the performed experiments, we compute the average of the
switching activity on all the gates composing the module under evaluation. This value
is provided to the evolutionary tool as an indicator of the stress program goodness, this
is usually called fitness value. Once all the individuals are evaluated, resorting to the
fitness values, the individuals are ordered and the best ones are maintained in the
population, while the others are discharged from the population. Then, a new evolu-
tionary step starts again trying to improve the remaining individuals in the population.

The last step belonging to the iteration process consists on the synchronization of
the stress programs obtained until this point. As mentioned before, there are inde-
pendent generation processes for every processor module, however, until now there are
no information regarding the impact of the generated programs in the rest of the
processor core. Then, it is important to perform a new simulation that involves the full
processor core during the execution of all the programs obtained in the current iteration.
At the end of this step, a complete figure about the stress capacity of the temporary set
of programs in all the processor modules is obtained. Then, the obtained values are
compared to the global satisfactory stress ones, and if the results are not in the satis-
factory range, the iteration starts again. Otherwise, the process terminates providing the
user with the final set of stress programs.

4 Experimental Results

To demonstrate the feasibility and effectiveness of the proposed methodology, two
different experiments have been carried out on a MIPS-like core [9] synthesized with
ST-corelibrary for 65 nm CPU. After the synthesis, the netlist is composed by 50,000
gates circa, which 3,000 are FFs. The MIPS-like processor is based on MIPS archi-
tecture [10] and contains a 5-stages pipeline which includes hazard detection and
pipeline interlock, branch prediction unit and system co-processor. The processor ISA

142 P. Bernardi et al.

is composed of 52 instructions, including arithmetic, logic, load and store, and branch
related ones. The nominal frequency for normal mode operation is 100 MHz.

This section provides two sets of experimental results: the first one is related to the
analysis of the execution of generic FAST functional programs, the second one is
related to the automatic generation of FAST functional stress programs.

4.1 Execution of Functional Programs

By mean of scripts, it has been possible to iterate the execution of a functional program
increasing CPU clock frequency by 0, 5 MHz for each iteration. ModelSim [13] and
Primetime [14] have been the commercial software used for logic simulation and
extraction of critical paths respectively. The delays of single gates are listed in the
Standard Delay Format (SDF) file. RAM has been written in System-C language. The
software proposed collects data into CSV files for each clock frequency tested.

Several types of functional test programs have been experimented with this
framework. Here, we report two cases of programs that are significant in our view:

• Oriented to arithmetic units;
• Stressing branch conditions.

In Fig. 10a and b, execution time is shown at growing frequencies. Blue points
correspond to functional states, red to unstable states. It can be noticed that execution
time regrows in some cases, passing from unstable to functional state, as the effect of

Fig. 10. Execution time of (A) arithmetic units and (B) branches; switching activity of
(C) arithmetic units and (D) branches. (Color figure online)

Improving Stress Quality for SoC 143

the additional waiting clock cycles inserted as described in Sect. 3.1, Formula (7).
Functional states are identified by means of simulation, as in the loop proposed in
Sect. 3.1; the processor is expected to store, in a specific RAM address, the signature
computed along program execution. The simulation environment is stopped as soon as
both these conditions (e.g., correct address and correct signature) are matched, inde-
pendently on the arrival time that can vary because of the pipeline stalls induced. If the
execution time reached a timeout, it will be considered unstable.

Figure 10c and d shows results in terms of switching activity. In this case, solid
transitions are completely considered and counted, transitions from X value to 0 or 1, or
from 1 or 0 to X are only considered for the 50% of their weight. In fact, it is quite usual
in unstable states that the X values are overwritten with solid ones and vice versa.
Switching activity value is normalized to 1 ns, meaning that the reported values cor-
respond to the overall switching activity of the program over its length. For example, at

nominal speed (STA reported about 100 MHz) the switching activity is 1.75 per ns,
which is average for all observed gates.

Table 1 shows the best increase in terms of switching activity per time unit. The
maximum working frequency is about 1 GHz, which is around 10x of the nominal
frequency. In this case the increase in the switching activity value is significant. It is
also interesting to note that even at lower frequencies (i.e., within 400 and 500 MHz)
the increase in the switching activity is already relevant as up to 6 toggle/ns.

A careful analysis of the switching activity result highlights some frequencies
driving to unstable states, but with a large count of transitions per nanoseconds. In this
case, the circuit is showing a kind of intermediate behaviour due to some specific
timing violations. There are several asynchronous paths that are involved in the
management of the memory operations; the longest in our case is relative to data bus
management, and shows a propagation time of 0.92 ns, while the longest path involved
to manage the code bus is slightly shorter, 0.78 ns. At some frequency, the data bus
path timing requirements are violated, but not those related to code bus as it is less
critical. In this case, the processor is only partially showing an unstable state, as
X values are propagated only in a part of the synchronous circuits; switching activity
value is mainly conditioned by a larger count of transitions form X to solid value and
vice versa.

Table 1. Analysis of functional programs results.

Max switching activity
[toggle/ns]

Increase from nominal
[%]

Frequency
[GHz]

Arithmetic 6.31 361 1.11 GHz
Branch 8.82 383 1.00 GHz

144 P. Bernardi et al.

4.2 Automatic Generation of Functional Stress Programs

Table 2 summarizes the processor division as required in the first step of the proposed
methodology. This division was made by splitting the processor hierarchically. In
addition, the table also reports the number of instructions used to stress every processor
module.

It is interesting to note that functional modules such as the arithmetic adder, as well
as the multipliers, involve a small set of independent instructions; on the contrary,
control related parts (e.g., the forwarding unit) require a higher number of instructions
that are shared with other modules. The set of instructions derived for every module
will be used in the following generation steps in the form of constraint libraries.

The generation flow environment was developed using 4 Python scripts that sup-
port the implementation of the iteration loop proposed in Fig. 9. The environment
allows to set the modules order taken to progressively generate stress programs, the
satisfactory stress threshold value, as well as the different parameters required by the
generation tool (in this case lGP). Taking into account the experimental results
obtained in [12], and considering the stress quality equation provided before, we
empirically determine for these experiments a Satisfactory Stress Threshold (SST) able
to evaluate the module stress goodness given by the following factor:

SST ¼ 1
3
� FFAST

Fn
ð10Þ

where FFAST is the overclocked frequency at which the program is executed, and Fn is
the nominal frequency of operation.

Table 2. Processor modules description and correlated instructions counting.

Processor module # of Gates # of Instructions

1 Adder 263 2
2 Decoder 2,700 52
3 Bus Control 1,172 30
4 Memory control unit 879 30
5 Forwarding unit 1,355 23
6 Prefetch 691 30
7 Fetch 647 30
8 Sys-coprocessor 1,785 4
9 Register Bank 13,858 32
10 Mult_signed 7,704 2
11 Mult_unsigned 7,652 2
12 Execution stage 7,623 33

Improving Stress Quality for SoC 145

Thus, for every targeted module, the ratio SARATIO between the average SA mea-
sured at the FAST execution frequency (SAFAST) and the nominal one (SAn) should
comply with the following condition:

SARATIO ¼ SAFAST

SAn
� 1

3
FFAST

Fn
: ð11Þ

This value is used during the stress program generation process performed for every
module, defining in this way a stop condition to be provided to the evolutionary
optimizer.

In addition, in order to determine which gates in the module under consideration are
successfully stressed, we define a value (called GSS) related to the gate SA and the
average SA in the module, in the following way:

GSS ¼ 0:5 SApk þ SAavg
� � ð12Þ

where SApk is the SA peak obtained in the considered module, whereas SAavg is the SA
average compute on the gates belonging to the module.

The evolution of stress programs was divided in three different steps to be per-
formed in a row. In the first one the modules labeled in Table 2 from 1–8 were tackled,
and then in the second run, the rest of them. At the end of the process, a third
independent run was performed tackling the processor gates still considered as too low
according to the gate successfully stress parameter. In order to automatically generate
the stress programs, 10 different constraint libraries were devised to feed lGP with the
appropriate information regarding the module under evaluation. Interestingly, only the

Table 3. Stress programs evolution (Level 1).

L1 SYNC. 1
Processor module SAavg freq [MHz] SST SAratio SApeak GSS ssg Dssg

Adder 18.65 652.74 2.15 2.07 24.70 21.675 0 233
Decoder 88.17 612.37 2.02 3.16 92.40 90.285 1001 322
Bus Ctrl 128.28 684.46 2.26 4.75 136.2 132.25 695 416
Mem 110.12 676.59 2.23 4.53 119.1 114.64 756 64
Forward 53.34 651.04 2.14 2.29 74.22 63.780 650 386
Prefetch 34.08 512.30 1.69 6.31 49.83 41.955 410 82
Fetch 79.55 595.59 1.96 4.48 83.84 81.695 421 108
Sys-cop 24.46 623.44 2.05 1.75 32.51 28.485 0 570
Reg. Bank – – – – – – – –

Mult_sign. – – – – – – – –

Mult_unsig. – – – – – – – –

Execution stage – – – – – – – –

146 P. Bernardi et al.

ones dedicated to the functional modules were independent, while the others were
shared and composed of the most instructions in the processor ISA.

The evolution of the generation process is detailed in Tables 3, 4 and 5. The
generation process is developed in 3 different levels. The table shows for every gen-
eration level, the average SAavg for the modules under consideration, the FAST fre-

Table 4. Stress programs evolution (Level 2).

L2 SYNC. 2
Processor module SAavg freq [MHz] SST SAratio SApeak GSS ssg Dssg

Adder – – – – – – – –

Decoder – – – – – – – –

Bus Ctrl – – – – – – – –

Mem – – – – – – – –

Forward – – – – – – – –

Prefetch – – – – – – – –

Fetch – – – – – – – –

Sys-cop – – – – – – – –

Reg. Bank 25.46 669.79 2.23 2.20 36.11 30.785 0 2,103
Mult_sign. 83.41 674.31 2.25 2.60 90.81 87.110 2,314 320
Mult_unsig. 85.08 677.97 2.26 2.60 91.03 88.055 2,433 287
Execution stage 99.55 677.97 2.26 2.51 107.05 103.300 1,987 1,208

Table 5. Stress programs evolution (Level 3 and total amount).

SYNC. 3 L3 TOT
Processor module Dssg Dssg ssg

Adder 0 12 245
Decoder 785 250 2,358
Bus Ctrl 20 3 1,134
Mem 3 0 823
Forward 12 53 1,101
Prefetch 0 9 501
Fetch 4 21 554
Sys-cop 0 2 572
Reg. Bank 5,601 1,007 8,711
Mult_sign. 302 208 3,144
Mult_unsig. 298 306 3,324
Execution stage 2,110 809 6,114

Improving Stress Quality for SoC 147

quency of the stress program generated, the SST value, SARATIO and SApeak measured
during the generation process, the GSS value for the gates in the module, and in
addition, the number of gates successfully stressed (ssg) according to the previous
parameters.

Furthermore, the table shows for each synchronization step (1 to 3), the additional
gates (Dssg) successfully stressed by exploiting the positive effects of different pro-
grams in the targeted module. Finally, the last column of each Table (3, 4 and 5) shows
the final number of gates successfully stressed for every module considering all the
previous contributions.

During the first generation level, the initial set of modules (the first 8 in the Table 2)
is targeted. Then, the second set of modules. After every generation level, a syn-
chronization step is performed. Then, the third synchronization step evaluates the
different programs on all the other modules. The level 3 generation intends to stress the
weak gates still present in the processor, and shows again the Dssg obtained in this
phase. The reader may notice that there is a positive effect obtaining during the syn-
chronization phases on the different modules. This positive effect reduces the gener-
ation time, allowing the test engineer to discard some gates for free.

It is interesting to note that in some cases, for example during the adder stress
process, the SARATIO is lower than the SST parameter, then, since the condition is not
satisfied no gates can be considered as thoroughly stressed. Then, in these cases, it is
necessary to consider not only the stress programs developed targeting the module, but
all the others. This is the reason why the gates successfully stressed in the adder appear
only during the first synchronization step.

For the purpose of comparison, typical scan values may be considered. From our
experience, we state that this structural solution for stress is strongly limited by the
tester environment (such as along Burn-In testing). Additionally, scan procedures for
stress need an accurate evaluation in terms of power consumption, as they are not
functional. Thus, it is quite usual that a low power procedure is finally adopted, which
are showing very low switching activity values.

The experiments described before were run in a workstation based on 2 Intel Xeon
E5450 CPUs running at 3.00 GHz, equipped with 64 GB of RAM. Every stress
generation process requires about 12 h. However, the process is highly parallelizable
and it globally requires about 3 working days.

Checking some graphs gathered from the evolution of the stress programs, in
particular, Fig. 11a depicts the evolution of the best stress programs for the decoder
unit. The figure shows the evolution of the best individuals considering the maximum
average SA (transition/ns) and the FAST execution frequency. It is interesting to see
how at the very beginning of the evolution process there are some programs that run at

148 P. Bernardi et al.

high frequencies (about 1.475 ns = 677.9 MHz) and very low SA average
(70 transitions/ns), but later, the evolution improves the SA even reducing the FAST
frequency.

On the contrary, Fig. 11b shows a different shape evolution where the frequency
starts at a very low value (about 2.25 ns = 444.4 MHz), and later the frequency as well
as the SA is increased.

A)

B)

1.4

1.45

1.5

1.55

1.6

1.65

0

20

40

60

80

100
1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

32
5

34
3

36
1

37
9

Cl
oc

k
Pe

rio
d

(n
s)

Sw
itc

hi
ng

 A
c

vi
ty

 (n
s)

Number of genera on

Decoder genera on evolu on

Best Genera on Decoder genera on evolu on

0

0.5

1

1.5

2

2.5

0
5

10
15
20
25
30

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

Cl
oc

k
Pe

rio
d

(n
s)

Sw
itc

hi
ng

 A
c

vi
ty

 (t
/n

s)

Number of genera on

Register Bank genera on evolu on

Best Genera on Frequencies

Fig. 11. Stress programs evolution for decoder unit (A) and register banks (B).

Improving Stress Quality for SoC 149

5 Conclusions

In this contribution, we proposed a functional approach that can allow the target
processor to work at faster-than-at-speed frequencies along with a method to identify
which are the frequency ranges in which this technique is applicable. Furthermore, we
proposed a novel technique able to automatically generate stress programs for pipelined
processors at faster-than-at-speed frequencies exploiting the previous analysis.

Pushing the clock frequency to values higher the nominal is feasible thanks to
processor architectural features such as pipeline stalls and memory wait states. The
cause of blocking states is mainly attributable to the propagation of signals that violates
the design timing constraints resulting in unknown values sampled by FFs. The
enhanced switching activity achievable with this technique can be exploited to develop
a much more reliable and effective electrical activity on a given device reaching high
thermal stress.

For this reason, the analysis is followed by a possible exploitation of a program that
can be executed at frequencies higher than the nominal one guaranteeing a high stress
capacity. In fact, an automatic generation process for FAST functional programs is
developed and provided, in order to reach a high grade of stress for pipelined processor
cores. The proposed method splits the processor hierarchically and generates stress
programs for every one of the processor modules. Then, the positive side effects of
these programs are considered on the rest of the processor, reducing in this way the
generation times. The method suitability was experimentally evaluated in a MIPS-like
processor core obtaining a set of stress programs containing 13 programs running at
frequencies about 6.4 higher than the nominal ones. In addition, from the performed
experiments, it is possible to see that more than the 60% of the processor gates were
labelled as successfully stressed gates.

The proposed method is a preliminary study carried out on aMIPS-like processor as
reference architecture in order to verify its feasibility. The next step is to migrate this
approach on an industrial device, identifying non-blocking regions in which it is
possible to manage the activity of the processor and create a frequency-targeted stress.
Moreover, the intrinsic dependency of internal delays to the real die temperature will be
further and better investigated on silicon.

References

1. Rosinger, S., Metzdorf, M., Helms, D., Nebel, W.: Behavioral-level thermal - and
aging-estimation flow. In: 2011 12th Latin American Test Workshop (LATW), Porto de
Galinhas, pp. 1–6 (2011)

2. Kuo, W., Kuo, Y.: Facing the headaches of early failures: a state-of-the-art review of burn-in
decisions. Proc. IEEE 71(11), 1257–1266 (1983)

3. Appello, D., Bernardi, P., Cagliesi, R., Giancarlini, M., Grosso, M., Sanchez, E., Sonza
Reorda, M.: Automatic functional stress pattern generation for SoC reliability characteri-
zation. In: 14th IEEE European Test Symposium (ETS), Sevilla, pp. 93–98 (2009)

150 P. Bernardi et al.

4. Hellebrand, S., Indlekofer, T., Kampmann, M., Kochte, M.A., Liu, C., Wunderlich, H.J.:
FAST-BIST: faster-than-at-Speed BIST targeting hidden delay defects. In: 2014 Interna-
tional Test Conference (ITC), Seattle, WA, pp. 1–8 (2014)

5. Yan, H., Singh, A.D.: Experiments in detecting delay faults using multiple higher frequency
clocks and results from neighboring die. In: 2003 International Test Conference (ITC),
pp. 105–111 (2003)

6. Tayade, R., Abraham, J.A.: On-chip programmable capture for accurate path delay test and
characterization. In: 2008 IEEE International Test Conference (ITC), Santa Clara, CA,
pp. 1–10 (2008)

7. Pei, S., Li, H., Li, X.: An on-chip clock generation scheme for faster-than-at-speed delay
testing. In: 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), Dresden, pp. 1353–1356 (2010)

8. Kampmann,M., Kochte,M.A., Schneider, E., Indlekofer, T., Hellebrand, S.,Wunderlich, H.J.:
Optimized selection of frequencies for faster-than-at-speed test. In: 2015 24th IEEEAsian Test
Symposium, pp. 109–114 (2015)

9. Ahmed, N., Tehranipoor, M., Jayaram, V.: A novel framework for faster-than-at-speed delay
test considering IR-drop effects. In: 2006 IEEE/ACM International Conference on Computer
Aided Design, San Jose, CA, pp. 198–203 (2006)

10. Amodeo, M., Cory, B.: Defining faster-than-at-speed delay tests. Cadence Nanometer
Test Q. 2(2), 1–3 (2005)

11. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda, M.: Microprocessor
software-based self-testing. IEEE Des. Test Comput. 27(3), 4–19 (2010)

12. Bernardi, P., Bosio, A., Di Natale, G., Guerriero, A., Venini, F.: Faster-than-at-speed
execution of functional programs: an experimental analysis. In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Tallinn (2016)

13. miniMIPS. Opencores.org (2016). http://opencores.org/project,minimips
14. Primetime. synopsys.com (2016). https://www.synopsys.com/implementation-and-signoff/

signoff/primetime.html

Improving Stress Quality for SoC 151

http://opencores.org/project,minimips
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html

Beyond Ideal DVFS Through Ultra-Fine Grain
Vdd-Hopping

Valentino Peluso1, Roberto G. Rizzo1, Andrea Calimera1(B), Enrico Macii1,
and Massimo Alioto2

1 Department of Control and Computer Engineering, Politecnico di Torino,
10129 Torino, Italy

{valentino.peluso,andrea.calimera}@polito.it
2 Department of Electrical and Computer Engineering,

National University of Singapore, Singapore 117583, Singapore

Abstract. DVFS is the de-facto standard for low energy Multi-
Processor SoCs. It is based on the simple, yet efficient principle of low-
ering the supply voltage (Vdd) to the minimum threshold that satis-
fies the frequency constraint (fclk) required by the actual workload. An
ideal-DVFS deals with the availability of on-chip high resolution voltage
regulators that can deliver the supply voltage with a fine step resolution,
a design option that is too costly.

While previous research focused on alternative solutions that can
achieve, or at least get close to, the efficiency of ideal-DVFS while using
a discrete set of supply voltages, this work introduces Ultra-Fine Grain
Vdd-Hopping (FINE-VH), a practical methodology that brings DVFS
beyond its theoretical limit.

FINE-VH leverages the working principle of Vdd-Hopping applied
within-the-core by means of a layout-assisted, level-shifter free, dynamic
dual-Vdd control strategy in which leakage currents are minimized
through an optimal timing-driven poly-bias assignment procedure. We
propose a dedicated back-end flow that guarantees design convergence
with minimum area/delay overhead for a cutting-edge industrial Fully-
Depleted SOI (FDSOI) CMOS technology at 28 nm.

Experimental results demonstrate FINE-VH allows substantial power
savings w.r.t. coarse-grain (i) ideal-DVFS, (ii) Vdd-Hopping, (iii) Vdd-
Dithering, when applied on the design of a RISC-V architecture. A quan-
titative analysis provides an accurate assessment of both savings and
overheads while exploring different design options and different voltage
settings.

1 Introduction

It is well known that power consumption is the most stringent constraint for the
growth of digital System-on-Chips (SoCs) [1]. As an answer to this issue, the

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 152–172, 2017.
DOI: 10.1007/978-3-319-67104-8 8

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 153

multi-core/many-core design paradigm was introduced as the only possible way
out. Indeed, when high performance need to meet a low energy budget, the avail-
ability of multiple processing units that can be turned-ON/OFF, or just slowed
down depending on the actual workload, represents an efficient solution. Within
this context, Dynamic Voltage Frequency Scaling (DVFS) has been proven to
be the most effective technique to get close to minimum energy consumption.
DVFS is based on a straightforward working principle, that is, reduce the sup-
ply voltage (Vdd) down to the minimum threshold that satisfies the frequency
constraint (fclk) imposed by the workload.

Originally applied to “monolithic” SoCs [2], the degree of freedom made
available by multi-processor SoCs (MP-SoCs) architectures enabled a more effi-
cient core-based, i.e., fine-grained, DVFS implementation [3]. With a fine-grain
DVFS, each core can be set working at a different operating point in the [fclk,
Vdd] space; this allows to run multiple tasks asynchronously and bring down
the minimum-energy point of the whole SoC. An example of fine-grain DVFS
on massively parallel platforms is given in [4], where 167 processors are orches-
trated over a wide frequency range achieving minimum power consumptions,
from 1.07 GHz–47.5 mW at 1.2 V to 66 MHz–608µW at 0.675 V. As an add-on
feature, fine-grain DVFS is a perfect knob to compensate and/or mitigate vari-
ations due to Process, Voltage and Temperature (PVT) fluctuations that affect
different cores after fabrication and during the lifetime of the circuit [5].

A practical use of DVFS on MP-SoCs deals with the availability of program-
mable on-chip Vdd regulators that can deliver the supply voltage with fine reso-
lution step and fast swing (Fig. 1-a). Unfortunately, the use of integrated DC/DC
converters is made impractical due to high implementation costs. Indeed, on-chip

Dual-Vdd strategies

(b)

Low Area
Low Power
Fast VddL<->VddH switching
Slow swing latency of VddL
and VddH

VddL
VddH

Ideal-DVFS

(a)

Fast Vdd switching
Large area or low energy
efficiency

PS
Vdd

Core

PS
Vdd

Core

PS
Vdd

Core

PS
Vdd

Core

VddL
VddH

VddH
VddL

DC/DC

Vdd

Core

DC/DC

Vdd

Core

DC/DC

Vdd

Core

DC/DC

Vdd

Core

VddH
VddL

External DC/DC VddL
VddH

Fig. 1. Comparison between ideal-DVFS and dual-Vdd strategies

154 V. Peluso et al.

DC/DC converters fabricated with today’s technologies may occupy a huge sil-
icon area due to the low integration density of the components they contain,
e.g., capacitors and inductors [4]. The picture gets even more complicated if one
considers that each single core should be equipped with a dedicated converter.

The challenge faced by previous works is to achieve, or at least get close to,
the efficiency of high-resolution DVFS, ideal-DVFS hereafter, with a discrete set
of supply voltages. In their more general embodiment, discrete DVFS strategies
use two Vdd levels (VddL and VddH) generated off-chip through external voltage
regulators and evenly distributed across the die (Fig. 1-b). The absolute values
of VddL and VddH are shifted up/down depending on the workload, while each
core is fed with the proper Vdd by means of dedicated power switches (PS).
Even though this design option offers a practical solution with low impact on
area and power, it comes with a speed penalty due to high voltage swing latency
of the external voltage regulators [6]. Nevertheless, this is an acceptable cost as
the voltage scaling process typically applies at low rate.

The two most representative cases of discrete DVFS are the Vdd-Hopping [7]
and the Vdd-Dithering [8]. The Vdd-Hopping is a basic scheme in which the
supply voltage range is split into a discrete set of values, two ore more depending
on the external voltage regulator; the proper Vdd is selected among the available
values such that the frequency constraint is met. The Vdd-Dithering scheme
is a more elaborated, yet precise scheme that implements a Vdd time-sharing
strategy. Differently from Vdd-Hopping, the Vdd is made switching from low
(VddL) to high (VddH), leading the core to an average frequency equals to the
frequency constraint. As it will be shown later in the text, the power-frequency
tradeoff obtained through Vdd-Dithering can be seen as a linear approximation
of ideal-DVFS.

While the aforementioned techniques aim at pushing power consumption
close to ideal-DVFS, this work proposes a solution that goes beyond that theo-
retical limit. Recalling the practical implementation described in [9], in this work
we give a comprehensive parametric analysis of the main advantages brought by
a Vdd-Hopping scheme applied at a ultra-fine granularity, i.e., within-the-core.
Such a solution, called FINE-VH, represents a viable solution to achieve power
consumption below ideal-DVFS by using a dual-Vdd scheme.

The implementation of a FINE-VH solution is not trivial nor even straightfor-
ward, especially when the goal is to devise a computer-aided design methodology
and not a handcrafted design. Working with multiple voltages within the same
functional block raises several concerns during the place & route stages, e.g.,
area overhead and timing closure due to layout fragmentation and standard cell
displacement. Moreover, static power consumption increases due to leakage cur-
rents of logic gates driven by portions of the circuit powered at different Vdd.
Considering a simple chain of two inverters, when the driven inverter is supplied
at nominal Vdd, its static power increases up to 5.2x if the driver is powered at
90%Vdd, 22.1x at 80%Vdd. Notice that the use of voltage-level shifters is strictly
forbidden at this level of granularity, as it would imply huge design overheads.

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 155

As an answer to these needs, we introduce a fully-integrated design flow that
guarantees timing/power convergence through incremental re-synthesis stages.
In particular, an optimal poly-bias assignment strategy is used to reduce intra-
domain leakage power at zero area/delay penalties.

The core used as benchmark is the RI5CY, a RISC-V instruction set architec-
ture embedded in the ultra-low power multi-processor platform PULP [10]. The
RI5CY core has been mapped onto a cutting-edge Fully-Depleted SOI (FDSOI)
technology at 28 nm. We give an accurate design space exploration which quanti-
fies different figures of merit, like power, area and delay, at different granularity,
i.e., using a layout partitioned into 9, 25 and 49 tiles, and different voltage set,
i.e., multiple values of ΔVdd = VddH − VddL. As will be shown later in the
experimental section, FINE-VH gives substantial power savings w.r.t. state-of-
the-art DVFS solutions: ideal-DVFS, Vdd-Hopping and Vdd-Dithering.

2 Previous Works

2.1 Approaching Ideal-DVFS

The need to get close to an ideal-DVFS implementation may suggest the use of
programmable on-chip DC/DC converters that guarantee a fine Vdd regulation.
Unfortunately this design option would imply large overheads, both in terms of
area and power. As alternative solutions, Vdd-Hopping [7] and Vdd-Dithering [8]
are a preferred option as they enable a good approximation of ideal-DVFS at
reasonable implementation costs.

– Vdd-Hopping: differently from ideal-DVFS (dashed line in Fig. 2) where the
supply voltage can be adjusted with a very high resolution, this method
employs a discrete set of supply voltages to control the local Vdd of a func-
tional core. Figure 2-a gives a pictorial description of this principle. The whole
supply voltage range is split into a specific set of intervals, three in the plots
of Fig. 2; at a run-time, the proper supply voltage is selected in order to meet
the target frequency (fclk) imposed at the application level. Once fclk is iden-
tified, the core is supplied by the Vdd at the right edge of the interval in which
fclk falls (Vdd2 in Fig. 2-a). Within each interval, the Vdd is kept constant
and the power consumptions decrease linearly with fclk. When fclk crosses
a new interval, power scales accordingly with the new Vdd. Obviously, the
power consumption obtained with Vdd-Hopping drifts from ideal-DVFS as
fclk approaches the left side of each interval.

– Vdd-Dithering: this scheme, graphically described in Fig. 2-b, implements a
Vdd time-sharing scheme. Differently from Vdd-Hopping, the Vdd switches
from low to high, i.e., from the left edge to the right edge of the reference
interval (Vdd1 and Vdd2 in the example of Fig. 2-b). Given Thigh as the time
spent at high Vdd, hence high frequency fhigh, and Tlow as the time spent at
low Vdd, hence low frequency flow, the core operates at an average frequency
(favg) which is proportional to the “switching ratio”:

favg ∝ (flow · Tlow) + (fhigh · Thigh)
Tlow + Thigh

. (1)

156 V. Peluso et al.

Fig. 2. Frequency-power tradeoff of existing DVFS strategies

Fixing the proper ratio between Thigh and Tlow allows the core to operate
at an average frequency centered on the target frequency fclk. Apart from
some overhead introduced by the non-ideality of power switches, experimental
results in [8] have shown physical implementations of Vdd-Dithering well fit
the trend line depicted in Fig. 2-b.

2.2 Within the Core Power Management

The target of this work is to bring the Vdd-Hopping concept at a lower level
of granularity, i.e., within the core. The basic concept behind this idea is not
new as it follows the natural scaling other power-management strategies expe-
rienced in the last years, e.g., Multi-Vdd, Body-Biasing, Power-Gating [11–13].
The taxonomy tree shown in Fig. 3 gives a compact classification of the many
granularity options.

The low-power techniques were originally applied at the architectural level
where the grain was a single functional block (Fig. 3-a). Examples of this
functional-based strategy are given in [14,15], where the power domains are
defined as the boundaries of the micro-architectural units of a microproces-
sor. In [14] authors introduce a voltage interpolation scheme inspired by Vdd-
Dithering where the pipeline stages are dynamically fed by VddH and VddL in
a time-shared manner; combined with a variable latency mechanism, this tech-
nique offers a viable solution to compensate process-variations while achieving
minimum energy consumption. As an extension, the authors of [15] improve the
voltage interpolation mechanism by means of a dynamic local error detection &
correction scheme for protection against timing violations.

While playing with functional blocks is an intuitive solution, the amount of
power savings is limited by the coarse granularity at which the low-power knobs
operate. It is well known that all the low-power techniques exploit a natural
characteristic of digital circuits, that is, idleness; when a functional block is
not used, or it can operate at a lower speed, its power can be reduced without

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 157

Fig. 3. Taxonomy of low-power knobs granularity. From coarse-grained architectural
level (a), up to finer granularity as row-based (b) and tile-based (c) layout organization

affecting performance. This implies the identification of idle functional blocks
and active ones. However, also within each single block large portion of the die
are taken by non-critical components (e.g., standard cells belonging to fast logic
paths) over which low-power knobs could effectively operate without inducing
any performance penalty. Following this path, low-power techniques underwent
a development process that brought them to work at a finer granularity, i.e.,
within-the-block.

Unfortunately, working at a finer granularity is not a free lunch as strict rules
imposed by semi-custom row-based layouts might prevent the physical imple-
mentation. This imposes a higher level of awareness of the layout constraints
and it forces hard constraints on the geometrical size of the minimum grain. The
most common layout-driven solutions are row-based and tile-based.

As shown in Fig. 3-b, in row-based strategies the atomic element is a sin-
gle layout row. In [16], authors describe a row-based dual-Vdd technique for PV
compensation. The core of this technique is a timing-driven clustering procedure
where timing critical rows are assigned to high Vdd and the remaining rows to
low Vdd. A customized placement algorithm groups critical cells on adjacent
rows such that leakage currents at the row interfaces are minimized. The main
limitation of this work is that Vdd assignment is done at design time, i.e., stati-
cally. Within the same category, [17] introduces a row-based scheme for ultra-fine

158 V. Peluso et al.

grain body-biasing. Differently from [16], the layout is partitioned into equally
sized bunches of rows. Such a structure is more flexible as it enables dynamic
body-biasing scheduling for post-silicon process variation compensation.

In tile-based strategies, the atomic element consists of a regular section of the
layout; Fig. 3-c reports a scheme where the layout of a logic circuit is arranged in
5×5 square mesh. Within this category, the most representative example is given
in [18] where a PV-aware adaptive dual-Vdd strategy is applied on a DES core
partitioned into 42 square tiles. The measurements obtained on a silicon test-
chip demonstrate power savings are limited to 12% (w.r.t. monolithic DVFS)
due to static power overheads induced by intra-tile leakage currents. The same
tile-based architecture is adopted in [19], yet with a different goal; it assigns
a high Vdd to those tiles containing standard cells whose electrical behavior
requires a minimum operating voltage (Vddmin) larger than the majority of the
other cells. This allows fault-free, low power operation even if the overall circuit
is powered at Vdd < Vddmin.

3 Implementing FINE-VH

3.1 Design and Optimization

As highlighted in the introduction, the main contribution of this work is the
implementation of a novel design strategy, FINE-VH, that reshapes the Vdd-
Hopping principle at a ultra-fine granularity. For this purpose, we devised a
computer-aided design methodology that implements FINE-VH strategy by
means of ultra-fine dual-Vdd. Working with multiple voltages within the same
functional unit raises several concerns during the place & route stages, e.g., area
overhead and timing closure, due to layout fragmentation and standard cell dis-
placement. Moreover, static power consumption increases due to leakage currents
of logic gates driven by parts of the circuit powered at different Vdd.

This section firstly introduces the layout organization and the physical design
stages that implement the FINE-VH; secondly it describes an optimal poly-bias
assignment technique that compensates the intra-tile leakage at no delay penalty;
finally it proposes a Simulation/Emulation procedure for optimal Vdd selection.

Physical Design. The proposed FINE-VH strategy resorts to a tile-based
structured layout, abstract view given in Fig. 4. The core is regularly partitioned
into N × N square tiles (N = 3 in Fig. 4), each of them provided with dual-
Vdd, i.e., low-Vdd (VddL) and high-Vdd (VddH), taken from around-the-core
power-rings. The two power supply voltages are provided by external DC/DC
converters and their value is fixed at the application level depending on the tar-
get frequency (referring to the example of Fig. 2, VddL = Vdd1 and VddH =
Vdd2). Upper-metal horizontal/vertical stripes run over the core area forming
five power-grids: VddH, VddL, Gnd, Vbn (n-bias), Vbp (p-bias). Notice that this
scheme is compatible with adaptive back-biasing strategies (out of the scope of
this work).

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 159

Fig. 4. Layout partitioning and tile organization

The layout rows are tied to the power-grids through p-type header
power switches enclosed into dedicated cells, the Vdd-MUX cells. The power-
management unit is in charge of driving those Vdd-MUXes by loading the
Vdd configuration bit-stream into a dedicated flip-flop chain. The Vdd-MUXes
are uniformly distributed within each tile following a row-based insertion
scheme [20,21]. The power-grids are aligned with the Vdd-MUX columns, hence,
VddL and VddH area easily brought to the Vdd-MUX cells using vertical vias.

Tiles are isolated each other by a void-space wrapper that creates discontinu-
ity in the lower-metal power rails. That’s mandatory as adjacent tiles might have
a different Vdd. The wrapper width is defined by the minimum metal-to-metal
distance for the technology in use.

It is worth noticing that the layout partitioning follows a “no-look” style, that
is, once the grain size is defined through the parameter N , the tile partitioning
is done at the floorplanning stage without considering how and where the sub-
functional blocks of the core will be placed. On the one hand, this might seem
an overhead as functional blocks are split across multiple tiles. However, that’s
what allows commercial place & route tools digesting the ultra-fine granularity
so as to achieve (i) a regular power planning and (ii) faster timing closure.

From a practical viewpoint, the FINE-VH flow encompasses six different
stages fully integrated into a commercial design platform by Synopsys R© by
mean of dedicated TCL procedures:

1. Synthesis: logic synthesis using technology libraries characterized at the
maximum Vdd, e.g., 1.0 V for our 28 nm technology.

2. Floorplanning: estimation of the core area and creation of an empty layout;
the latter is then automatically partitioned into N × N regular tiles using
placement blockages.

160 V. Peluso et al.

3. PG-Synthesis: power-grids are synthesized following a regular mesh over
the partitioned layout.

4. Placement: the Vdd-MUXes are placed at the boundaries of the tiles while
standard cells are placed within the tiles so that timing constraints are
satisfied.

5. Post-Placement leakage optimization: a re-synthesis stage performing
optimal poly-bias assignment for those cells at the interface of the tiles (addi-
tional details in the next subsection).

6. Routing: a standard timing-driven routing for logic signals.

Poly-Bias Optimization. In a FINE-VH design, static power consumption
may increase due to larger leakage currents in the “interface-cells”, i.e., cells
driven by signals coming from other tiles. When an interface-cell is fed with an
input signal having a voltage lower than its Vdd, its internal pull-up network is
partially turned-ON and leakage currents increase. This scenario is depicted in
Fig. 5-a.

Fig. 5. Intra-tile leakage (a) and its reduction via poly-biasing (b)

This over-consumption effect can be mitigated increasing the p-MOS thresh-
old voltage (Vth) of the interface-cells; the latter is typically done either through
gate length modulation [22] or using high-Vth transistors [23]. The FDSOI CMOS
process, target of this work, is provided with multi-Vth libraries obtained through
the former technique, i.e., gate length modulation, also called poly-biasing (PB)
and represented in Fig. 5-b. For each logic gate, four different versions are avail-
able: PB0 (the standard Vth), PB4, PB10 and PB16 (the highest Vth).

Since the Vdd assignment process is done at run-time, foreseeing those cells
affected by intra-tile leakage is not feasible. At the same time, a conservative app-
roach where all the interface-cells are swapped to high-Vth would imply excessive

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 161

Fig. 6. PB assignment through local re-synthesis

delay overhead. As a compromise we introduce a timing-driven post-placement
optimal poly-bias assignment which works as illustrated in Fig. 6. Starting from
a placed netlist of standard Vth cells, i.e., PB0, the interface-cells are first iden-
tified (a) and then virtually isolated in a separated netlist with back-annotated
delay information (b). Using the optimization engine embedded into the physical
synthesizer, a timing-driven multi-PB assignment is run (c). The netlist returned
by the multi-PB assignment step has the minimum leakage configuration, i.e.,
the largest set of high-Vth cells, that satisfies the delay constraints. Finally, the
resulting PB assignment is annotated into the main netlist (d).

Step (c) is where the actual leakage optimization takes places. Since the goal
is zero-delay penalty, only those interface cells crossed by timing paths with
a timing slack greater than a certain threshold are taken into consideration.
Moreover, in order to maximize the usage of cells with the highest Vth (PB16),
we resorted to splitting the procedure into three incremental PB-assignment
substages; at each substage, only a given class of PB cells is considered: at
the first stage PB16, at the second stage PB10, at the third stage PB4. This
procedure allows to eat the available slack first by PB16 cells (which guarantee
the highest protection from intra-tile leakage), then by the PB10 cells, and finally
by the PB4 cells (for which intra-tile leakage compensation is minimal).

The slack threshold used for the selection of the interface cells (i.e., those
considered during PB assignment) may change depending on the actual substage,
namely, depending on the class of PB cells. For instance, at the first substage
(PB16 assignment), a larger slack threshold is needed as a replacement to PB16

162 V. Peluso et al.

Fig. 7. Normalized average delay overhead for the different poly-bias options

would introduce a large delay penalty; at the third substage (PB4 assignment),
the slack threshold can be relaxed. To this aim, a simple rule is followed. We
first define a slow-down factor αsd for each class of PB cells; this parameter is
empirically extracted from the plot of Fig. 7 which reports the delay overhead
introduced by poly-biasing: 2.82x for PB4, 8.72x for PB10, 19.88x for PB16.
Then, depending on the current substage, the slack-threshold Sth is defined
by (2):

Sth(PB) = davg · αsd, PB = [4, 10, 16]. (2)

where davg represents the average delay of a cell belonging to the critical path,
and αsd the slow-down factor reported in Fig. 7. This enables a slack threshold
that is proportional to the type of PB used at each substage.

As final remark, it is important to note that the implemented multi-stage re-
synthesis is suited not only for the 28 nm FDSOI technology as it can be easily
extended to all those technologies that offer multi-Vth libraries.

3.2 Simulation and Emulation

Commercial CAD tools lack static-analysis engines that can process level-shifter
free multi-Vdd designs. Moreover, since FINE-VH does apply at run-time, the
Vdd-selection policy implemented by the power-management unit needs to be
emulated at design-time. For what concerns the first point, we opted for a static
approach that uses off-line characterizations, while regarding the second issue,
we implemented a simple, yet effective timing-driven Vdd-assignment.

Intra-tile Leakage Power Estimation. The key issue of static-analysis of
multi-Vdd designs is to estimate the intra-tile leakage power avoiding heavy
SPICE simulations of the whole core. We used a static methodology that adopts
off-line characterizations. For each logic gate we compiled a look-up table con-
taining the leakage power derating factors for all possible input patterns and all
possible VddL/VddH voltage configurations. As for standard timing libraries,

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 163

Algorithm 1: Voltage Assignment Procedure
Input: V ddL, V ddH, fclk
Output: Vdd assignment

1 set VddL([All tiles]);
2 while Worst Slack < 0 do
3 zero(Tile Score[All tiles]);
4 Cell List ← Cells ∈ Critical Path
5 foreach Cell ∈ Cell List do
6 Cell Delay ← propagation delay of Cell;
7 Tile ID ← tile hosting Cell;
8 Tile Score[Tile ID] += Cell Delay;

9 end
10 Tile Score ← Tile Score[Tiles@VddL];
11 Tiles Score ← sort(Tile Score, decreasing);
12 Critical Tile ← Tile Score[0];
13 set VddH(Critical Tile);

14 end

the LUTs are obtained under different operating conditions. Having those LUTs,
the static power of a single cell is estimated using the same model implemented
into commercial tools:

Pleak =
2n∑

i=1

Pi · Li · ki (3)

where n is the number of input pins (the number of pins, for sequential cells),
Pi is the input pattern probability, Li is the nominal static power extracted
from standard timing libraries, and ki is a derating factor picked from the LUT.
Notice that ki = 1 if the driver cell is placed in a tile having the same Vdd of
the logic cell under analysis.

Vdd Assignment. In order to emulate at design-time the Vdd-selection strat-
egy we implemented a timing-driven Vdd-assignment whose pseudo-code is given
in Algorithm 1. The algorithm applies a cell-based procedure during which tiles
are sorted in terms of their timing criticality, that is, the tile containing the
largest number of timing critical cells are assigned to VddH first. The procedure
returns when all the cells show a positive slack.

The procedure starts by assigning all the tiles to VddL (line 1). For each tile
a criticality score is initialized to zero (line 3). Once the most critical path is
extracted, all the cells belonging to that path are stored in a dedicated list called
Cell List (line 4). For each cell in Cell List, the propagation delay is extracted
and added to the criticality score of the tile hosting the current cell (lines 5 to 8).
Once all the cells in Cell List have been processed, those tiles that are still at
VddL are sorted according to their score (line 10, 11). The tile with the highest
score (line 12) is assigned to VddH (line 13). The procedure is run until the core
presents a positive path slack, that is, when the required fclk is met (line 2).

164 V. Peluso et al.

4 Simulation Results

4.1 The RI5CY Benchmark

With no lack of generality, we validated the proposed FINE-VH flow on the
RI5CY core, an open-source RISC-V instruction set architecture [24] used in
the low-power parallel-processing platform PULP [10]. The core consists of the
following units: prefetch buffer, instruction decoder, a 31 × 32 bit register file,
integer ALU, single-cycle 32 × 32 integer multiplier, a control status register,
hardware loop unit, debug unit, load and store unit. Figure 8 shows a layout of
the die after tile partitioning.

Fig. 8. A 49 tile RI5CY layout after standard-cell placement

4.2 Experimental Set-Up

Static Timing and Power analysis are performed with the STA tool by Synopsys
(PrimeTime). We used technology libraries provided by the silicon vendor char-
acterized for Vdd ranging from 0.60 V to 1.00 V (step of 50 mV) and worst-case
corner (SS and 125 ◦C).

The four DVFS schemes used for the comparison have been set as follows.

– Ideal-DVFS: for each Vdd, the maximum frequency is extracted and set
as the working frequency. The Vdd ranges from 0.60 V up to 1.00 V with a
step of 25 mV, resulting in eight (f , Vdd) operating points; for those Vdd not
available in the library set, we used a cross-library scaling feature embedded
into the STA tool.

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 165

– Vdd-Hopping: the Vdd range [0.60 V–1.00 V] is split into a finite set of
intervals having a fixed width: ΔVdd = 200 mV and ΔVdd = 100 mV; the
resulting Vdd values are 0.60 V, 0.80 V, 1.00 V and 0.60 V, 0.70 V, 0.80 V,
0.90 V, 1.00 V respectively. The Vdd is chosen depending on the target fre-
quency (please refer to Fig. 2).

– Vdd-Dithering: same Vdd ranges/intervals of the Vdd-Hopping scheme,
but power consumption is a liner interpolation of points obtained through
ideal-DVFS (please refer to Fig. 2).

– FINE-VH: the technique proposed in this work. As for the previous schemes,
the Vdd ranges is [0.60 V–1.00 V]; two ΔVdd options are explored, i.e.,
200 mV (Vdd range split into two intervals) and 100 mV (Vdd range split
into four intervals).

For all the above design strategies the average power is extracted consid-
ering realistic switching activities of the primary inputs, i.e., annotating static
probabilities and toggle rates extracted from functional simulations.

4.3 Results

Table 1 collects some key figures of the RI5CY core after FINE-VH is applied at
different levels of granularity (#Tiles = 1 implies no FINE-VH). Both the core
area and the number of layout rows increase with granularity due to wrapper
insertion around the tiles. Such a void space is used for de-cap cells insertion and
intensive routing. The area overhead ranges from 2.42% for 9 tiles to 5.95% for
49 tiles. The most interesting note is that the active cell area and the nominal
delay@1.00V (i.e., delay on the longest path when all the tiles are supplied at
1.00 V) keep almost constant; this proves the convergence of the design flow,
even at 49 tiles. As one can observe, the percentage of interface cells increases
with the number of tiles, and so do the intra-tile interconnections. However, as
will be shown later in the text, the intra-tile leakage overhead is controlled using
the proposed poly-biasing optimization.

Table 1. Physical characteristics of the RI5CY with FINE-VH

Tiles 1 9 25 49

Core area µm2 36229 37105 37626 38386

Rows 158 160 161 163

Cell area µm2 25550 25397 25302 25698

Delay@1.00V ns 3.00 2.95 2.99 3.00

Interface cells 0.0% 38.44% 56.89% 62.65%

Concerning the Vth distribution, Fig. 9 shows that the PB assignment strat-
egy makes extensive use of cells at the highest Vth (PB16), above 57% in all the

166 V. Peluso et al.

Fig. 9. Poly-bias distribution across the interface-cells

three configurations. This highlights how the leakage optimization engine embed-
ded into commercial tools well fits FINE-VH purposes when properly instructed.

Figure 10 shows the power vs. frequency tradeoff curves for a 49-tile FINE-VH
configuration and the three state-of-the-art DVFS schemes. Numbers are normal-
ized w.r.t. an ideal-DVFS implementation (dashed line in the plot) supplied at
minimum Vdd. As expected, Vdd-Hopping and Vdd-Dithering do approximate
the behavior of ideal-DVFS, even though in a different way. Within each Vdd
interval the Vdd-Hopping gets worse at lower frequencies, while Vdd-Dithering
always runs close to ideal-DVFS. FINE-VH outperforms the competitors for all
the operating points, both for ΔVdd = 200 mV and ΔVdd = 100 mV. When
ΔVdd = 200 mV, average power reductions of 43.5% and 27.5% are obtained
with respect to Vdd-Hopping and Vdd-Dithering respectively. Moreover, FINE-
VH goes quite below ideal-DVFS achieving a 23.4% of power savings. The ben-
efits of the proposed technique are even more empathized at ΔVdd = 100 mV,
where the average power consumption is reduced to 35.3% w.r.t Vdd-Dithering
and to 34.6% w.r.t. ideal-DVFS.

The power savings for each operating point are detailed through Fig. 11 (the
plot does not show savings w.r.t. Vdd-Dithering as they are close to ideal-DVFS).
For ΔVdd = 200 mV savings range from 8.5% to 30.6% w.r.t. ideal-DVFS and
from 30.0% to 61.0% w.r.t. Vdd-Hopping. For ΔVdd = 100 mV power savings
range from 32.0% to 38.2% w.r.t. ideal-DVFS and from 33.6% to 49.7% w.r.t.
Vdd-Hopping. When considering a direct comparison to Vdd-Hopping, larger
savings are achieved at lower operating frequencies (left side of each Vdd inter-
val), where a finer granularity allows to supply more portions of the layout at
the low voltage. Vdd-Hopping, instead, forces the core running at a Vdd that is
quite far from the optimal one.

Working with ΔVdd = 100 mV brings larger average savings (w.r.t. ideal-
DVFS) for two main reasons: (i) a finer voltage granularity allows a better

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 167

Fig. 10. Comparison of four DVFS techniques: (i) ideal-DVFS, (ii) Vdd-Hopping,
(iii) Vdd-Dithering, (iv) FINE-VH (49 tiles); ΔVdd = 200 mV (left), ΔVdd = 100 mV
(right)

Fig. 11. Power savings of the proposed FINE-VH (49 tiles) w.r.t. ideal-DVFS and
Vdd-Hopping; ΔVdd = 200mV (left), ΔVdd = 100mV (right)

selection of tiles that can be set at VddL, hence, it helps to get closer the global
optimal; (ii) a smaller ΔVdd guarantees better noise margins while mitigating
the effects of intra-tile leakage. This would suggest that a smaller ΔVdd is a
better design option. That’s true as long as power/delay overheads of external
voltage regulators are neglected. Indeed, when the target frequency imposed at
the application level is shifted outside the reference interval, VddL and VddH
need to be set to different values (please refer to Fig. 2); this implies some extra
power overheads and additional latencies due to off-chip DC/DC converters.
Intuitively, a lower number of intervals, i.e., a larger ΔVdd, may allow to cover
a larger set of target frequencies with the same pair of values for VddL and
VddH. In other words, a larger ΔVdd reduces the probability of an external

168 V. Peluso et al.

Fig. 12. Percentage of standard cell area @VddL for different number of tiles

voltage shift. The choice of an optimal ΔVdd is a tradeoff imposed by design
specifications.

Figure 12 shows the percentage of the cell area supplied at low Vdd when
FINE-VH is applied at different granularity, i.e., 9, 25 and 49 tiles. The plot
clearly shows that 49 tiles give the best savings. For both the two ΔVdd options,
working at higher frequencies decreases the amount of silicon area powered at
low Vdd. For instance, at the maximum frequency, fclk = 2.59, with 9 tiles, the
percentage of area at low Vdd drastically reduces to zero for ΔVdd = 200 mV,
and to 2.4% for ΔVdd = 100 mV. A lower granularity implies larger tiles that,
most probably, will contain at least one timing critical logic path that forces the
selection of a high Vdd. This issue is progressively mitigated as the granularity
gets finer. As one can observe, at the maximum frequency fclk = 2.59, with
ΔVdd = 200 mV, the percentage of area powered at low Vdd increases to 11.3%
at 25 tiles and 25.4% at 49 tiles. Savings are even larger when ΔVdd = 100 mV,
36.2% at 25 tiles and 58.7% for 49 tiles. The advantage of a finer granularity can
be better appreciated considering the average over the whole frequency spectrum:
for ΔVdd = 200 mV, the average percentage increases to 38.5% (9 tiles), 52.0%

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 169

(25 tiles), 58.9% (49 tiles); for ΔVdd = 100 mV, the average percentage increases
to 54.0% (9 tile), 60.7% (25 tiles), 69.2% (49 tiles). This confirms once again the
rule of thumb: “the finer, the better”.

Figure 13 shows the power savings (w.r.t. ideal-DVFS) achieved with the pro-
posed PB optimization. For ΔVdd = 200 mV, do not using poly-biasing nullifies
all the savings brought by FINE-VH, i.e., negative savings. On the contrary, the
PB assignment helps recovering the overheads due to a level-shifter free strategy
as multi-Vth cells substantially reduce the intra-tile leakage and are intrinsically
less leaky. Our PB strategy achieves average savings of 23.4%. For ΔVdd =
100 mV, though the overhead imposed by intra-tile leakage currents is smaller,
our PB optimization allows larger savings, 34.6% (PB) against 10.8% (no PB),
without any performance penalty.

Fig. 13. Power savings with respect to ideal-DVFS before and after PB optimization
for ΔVdd = 100 mV and ΔVdd = 200mV (49 tiles)

As additional piece of information, Fig. 14 reports the Vdd configuration
obtained by running Algorithm 1 for the case ΔVdd = 100 mV. The plot shows
the Vdd assignment for each tile and each operating frequency; for the sake of
space we only show the 25 tiles configuration. When the frequency increases, the
number of tiles supplied at low Vdd decreases. However, some tiles, like the #4
and the #5, are more critical than others as they are constantly fed by VddH;
other tiles are less critical, like tile #3, #6, #16, and, even at higher frequencies,
they still keep running at low Vdd. The most critical functional blocks are the
arithmetic units, for which at least one tile is always supplied at high Vdd. The
proof that the Vdd-assignment algorithm detects the most timing-critical tiles
can be inferred by observing the regularity of the Vdd distribution within each
individual voltage interval: once a critical tile is assigned to VddH it never swaps
to VddL. This holds for tile #7, #8, #9, #10, #12.

170 V. Peluso et al.

Fig. 14. Voltage assignment (25 tiles)

5 Conclusions and Final Remarks

Ultra-Fine Grain Vdd-Hopping (FINE-VH) improves the efficiency of DVFS
schemes in MP-SoCs. We implemented a fully automated layout-assisted, level-
shifter free flow which enables tile-based Vdd-Hopping at ultra-fine granu-
larity with minimum design overheads. The proposed technique includes a
timing-driven incremental re-synthesis stage for optimal poly-biasing assignment
addressing intra-tile leakage waste. The FINE-VH strategy was experimented
on a RISC-V core for MP-SoC applications mapped onto a commercial 28 nm
FDSOI technology. In order to measure the benefits of the proposed technique,
we devised an experimental framework capable of emulating the Vdd assignment
at target clock frequency and estimating the intra-tile leakage power.

Experimental results shows that FINE-VH outperforms state-of-the-art dual-
Vdd schemes and, most importantly, it goes beyond the theoretical limit imposed
by ideal-DVFS. Indeed, when FINE-VH is compared with ideal-DVFS, average
power savings range from 23.4% for ΔVdd = 200 mV up to 34.6% for ΔVdd =
100 mV.

An accurate parametric analysis clearly stated finer layout granularity
enhances FINE-VH power efficiency; average layout area at low Vdd increases
from 38.5% for 9 tiles, up to 58.9% for 49 tiles (when ΔVdd = 200 mV). Once
again the rule of thumb “the finer, the better” is confirmed. Our quantitative
analysis suggests FINE-VH can work for a wide range of ΔVdd values, from
100 mV (10%Vdd) up to 200 mV (20%Vdd). This represents an important degree

Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping 171

of freedom as a proper selection of ΔVdd may depend on the characteristics of
the off-chip voltage regulators and the actual design specifications.

References

1. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor sys-
tems. ACM Comput. Surv. 37(3), 195–237 (2005)

2. Nowka, K.J., Carpenter, G.D., MacDonald, E.W., Ngo, H.C., Brock, B.C., Ishii,
K.I., Nguyen, T.Y., Burns, J.L.: A 32-bit powerpc system-on-a-chip with support
for dynamic voltage scaling and dynamic frequency scaling. IEEE J. Solid State
Circuits 37(11), 1441–1447 (2002)

3. Kolpe, T., Zhai, A., Sapatnekar, S.S.: Enabling improved power management in
multicore processors through clustered DVFS. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE 2011), pp. 1–6. IEEE, March 2011

4. Truong, D.N., Cheng, W.H., Mohsenin, T., Yu, Z., Jacobson, A.T., Landge, G.,
Meeuwsen, M.J., Watnik, C., Tran, A.T., Xiao, Z., Work, E.W., Webb, J.W., Mejia,
P.V., Baas, B.M.: A 167-processor computational platform in 65 nm CMOS. IEEE
J. Solid State Circuits 44(4), 1130–1144 (2009)

5. Dighe, S., Vangal, S.R., Aseron, P.A., Kumar, S., Jacob, T., Bowman, K.A.,
Tschanz, J., Borkar, N., De, V., Howard, J., Erraguntla, V., Borkar, S.: Within-
die variation-aware dynamic-voltage-frequency-scaling with optimal core allocation
and thread hopping for the 80-core teraflops processor. IEEE J. Solid State Circuits
46(1), 184–193 (2010)

6. Park, J., Shin, D., Chang, N., Pedram, M.: Accurate modeling and calcula-
tion of delay and energy overheads of dynamic voltage scaling in modern high-
performance microprocessors. In: International Symposium on Low-Power Elec-
tronics and Design (ISLPED 2010), pp. 419–424, August 2010

7. Miermont, S., Vivet, P., Renaudin, M.: A power supply selector for energy- and
area-efficient local dynamic voltage scaling. In: Azémard, N., Svensson, L. (eds.)
PATMOS 2007. LNCS, vol. 4644, pp. 556–565. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74442-9 54

8. Beigné, E., Clermidy, F., Lhermet, H., Miermont, S., Thonnart, Y., Tran, X.-T.,
Valentian, A., Varreau, D., Vivet, P., Popon, X., Lebreton, H.: An asynchronous
power aware and adaptive noc based circuit. IEEE J. Solid State Circuits 44(4),
1167–1177 (2009)

9. Peluso, V., Calimera, A., Macii, E., Alioto, M.: Ultra-fine grain vdd-hopping for
energy-efficient multi-processor SoCs. In: International Conference on Very Large
Scale Integration (VLSI-SoC 2016), pp. 1–6. IEEE, September 2016

10. Rossi, D., Pullini, A., Loi, I., Gautschi, M., Gürkaynak, F.K., Bartolini, A.,
Flatresse, P., Benini, L.: A 60 GOPS/W, 1.8 v to 0.9 v body bias ULP cluster
in 28 nm UTBB FD-SOI technology. Solid State Electron. 117, 170–184 (2016)

11. Bolzani, L., Calimera, A., Macii, A., Macii, E., Poncino, M.: Enabling concurrent
clock and power gating in an industrial design flow. In: Design, Automation & Test
in Europe Conference Exhibition (DATE 2009), pp. 334–339, April 2009

12. Calimera, A., Macii, A., Macii, E., Poncino, M.: Power-gating for leakage control
and beyond. In: Reis, R., Cao, Y., Wirth, G. (eds.) Circuit Design for Reliability,
pp. 175–205. Springer, New York (2015). doi:10.1007/978-1-4614-4078-9 9

13. Tenace, V., Miryala, S., Calimera, A., Macii, A., Macii, E., Poncino, M.: Row-based
body-bias assignment for dynamic thermal clock-skew compensation. Microelec-
tron. J. 45(5), 530–538 (2014)

http://dx.doi.org/10.1007/978-3-540-74442-9_54
http://dx.doi.org/10.1007/978-3-540-74442-9_54
http://dx.doi.org/10.1007/978-1-4614-4078-9_9

172 V. Peluso et al.

14. Liang, X., Wei, G.Y., Brooks, D.: Revival: a variation-tolerant architecture using
voltage interpolation and variable latency. IEEE Micro 29(1), 127–138 (2009)

15. Gupta, M.S., Rivers, J.A., Bose, P., Wei, G.Y., Brooks, D.: Tribeca: design for
PVT variations with local recovery and fine-grained adaptation. In: International
Symposium on Microarchitecture (MICRO 2009), pp. 435–446, December 2009

16. Kakoee, M.R., Benini, L.: Fine-grained power and body-bias control for near-
threshold deep sub-micron CMOS circuits. IEEE J. Emerg. Sel. Topics Circuits
Syst. 1(2), 131–140 (2011)

17. Nakamura, Y., Levacq, D., Xiao, L., Minakawa, T., Niiyama, T., Takamiya, M.,
Sakurai, T.: 1/5 power reduction by global optimization based on fine-grained
body biasing. In: Custom Integrated Circuits Conference (CICC 2008), pp. 547–
550. IEEE, September 2008

18. Muramatsu, A., Yasufuku, T., Nomura, M., Takamiya, M., Shinohara, H.,
Sakurai, T.: 12% power reduction by within-functional-block fine-grained adaptive
dual supply voltage control in logic circuits with 42 voltage domains. In: European
Solid-State Circuits Conference (ESSCIRC 2011), pp. 191–194. IEEE, September
2011

19. Yasufuku, T., Hirairi, K., Pu, Y., Zheng, Y.F., Takahashi, R., Sasaki, M.,
Muramatsu, A., Nomura, M., Shinohara, H., Takamiya, M., Sakurai, T., Fuketa,
H.: 24% power reduction by post-fabrication dual supply voltage control of 64
voltage domains in VDDmin limited ultra low voltage logic circuits. In: Interna-
tional Symposium on Quality Electronic Design (ISQED 2012), pp. 586–591. IEEE,
March 2012

20. Babighian, P., Benini, L., Macii, A., Macii, E.: Post-layout leakage power minimiza-
tion based on distributed sleep transistor insertion. In: International Symposium
on Low Power Electronics and Design (ISLPED 2004), pp. 138–143. IEEE, August
2004

21. Calimera, A., Pullini, A., Sathanur, A.V., Benini, L., Macii, A., Macii, E., Poncino,
M.: Design of a family of sleep transistor cells for a clustered power-gating flow
in 65nm technology. In: Great Lakes symposium on VLSI (GLSVLSI 2007), pp.
501–504. ACM (2007)

22. Saha, D., Chatterjee, A., Chatterjee, S., Sarkar, C.K.: Row-based dual Vdd assign-
ment, for a level converter free CSA design and its near-threshold operation. In:
Advances in Electrical Engineering, pp. 1–6 (2014)

23. Diril, A.U., Dhillon, Y.S., Chatterjee, A., Singh, A.D.: Level-shifter free design of
low power dual supply voltage CMOS circuits using dual threshold voltages. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 13(9), 1103–1107 (2005)

24. Pulp: An open parallel ultra-low-power processing-platform. http://www.
pulp-platform.org/

http://www.pulp-platform.org/
http://www.pulp-platform.org/

Earth Mover’s Distance as a Comparison Metric
for Analog Behavior

Alexander W. Rath(B), Sebastian Simon, Volkan Esen, and Wolfgang Ecker

Infineon Technologies AG, Neubiberg, Germany
{alexander.w.rath,sebastian.simon,

volkan.esen,wolfgang.ecker}@infineon.com

Abstract. Evaluating the outcome of analog simulations is a common,
mostly manually carried out task in the pre-silicon verification process
of mixed-signal ICs. Its non-automated nature makes it an error-prone
and time-consuming procedure. For this very reason, we introduce a novel
approach for performing this evaluation automatically resulting in signif-
icantly reduced turnaround times as well as a considerably increased reli-
ability of verification results. The presented concept is motivated by an
algorithm that is used in optical pattern recognition and is called Earth
Mover’s Distance. Furthermore, we compare our approach with already
existing algorithms, namely Fréchet Distance and Pearson Coefficient, in
order to analyze its capability. Finally, we present a case study in which
we prove the algorithm by applying it to the results of a mixed-signal
simulation at chip-level demonstrating the efficiency of our approach.

Keywords: Mixed-signal verification · Analog behavior · Earth mover’s
distance · Pearson correlation coefficient · Fréchet distance

1 Introduction

Due to better technology scaling of digital blocks compared to analog blocks more
and more parts of the analog implementation of modern IC designs are shifted
to the digital domain. However, certain analog components are still indispens-
able, leading to mixed-signal designs. Hence, the demand for comprehensively
verifying such designs is continuously growing and compared to the highly auto-
mated verification methodologies in the digital domain, pre-silicon verification
in the analog domain usually implies a substantial amount of manual work and
computational effort.

On analog module level, pre-silicon verification primarily targets the analysis
of electrical characteristics as for instance gain, distortion or input resistance.
Although determining electrical characteristics is also targeted on chip top and
system level, confirming the functional correctness and the application fitness of
the design by means of simulation is the main goal in this regard. The authors
of [1], e.g., point out that it is still a common practice to manually inspect

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 173–191, 2017.
DOI: 10.1007/978-3-319-67104-8 9

174 A.W. Rath et al.

waveforms when performing the latter. This effectively obstructs the usage of
automated checking and regression-based simulations inevitably leading to an
increased error-proneness as well as vast expenditures of time. Therefore, they
advise to leverage automated solutions to overcome these problems. We were
also able to identify these difficulties and we still see room for improvement in
this field. For that reason we set ourselves the goal to offer an approach which
enables an automated way of comparing analog behavior and allows mixed-signal
system level functionality to be verified in a regression-based way.

The contribution is structured as follows. First, we give an overview of related
work that covers approaches for comparing analog behavior. Their results form
the basis for the motivation of our work. Following this, we explain the theoret-
ical principles of our developed approach. In Sect. 4 we select two competitive
algorithms and define a number of comparison criteria in order to show the
strengths of our approach. Finally, a case study is outlined in which we point
out the achieved benefits.

2 Related Work

If analog behavior of a design shall be checked, one of the most common
approaches is to make use of analog assertions. There are different works [2,3]
which successfully apply this technique for mixed-signal verification. However,
assertions generally lack in abstraction since they have to be defined at signal
level. Apart from that, they can usually be applied to check only one particular
property of the behavior and are therefore highly application-specific.

Further works, which deal with this topic, are presented in [1,4,5]. They pro-
pose approaches which are based on application-specific checkers. These checkers
continuously monitor and evaluate circuit characteristics like, for instance, open-
loop gain or output noise. However, their solutions require a recurring effort for
the development of checkers since they have to be elaborated and implemented
for each design characteristic.

Due to the aforementioned deficiencies it is necessary to look for more generic
approaches. For this reason we investigated several metrics that are capable of
determining the similarity between discrete signals. One frequently used met-
ric is, for instance, the Pearson correlation coefficient (PC). The authors of [6]
demonstrate how to employ this measure for the purpose of mixed-signal ver-
ification. An overview of other potential metrics like quadratic mean error or
Fréchet distance (FD) can be moreover found in [7]. Their results marked the
starting point of our work, in which we strove for finding a better suited simi-
larity measure. This newly developed approach is presented and assessed in the
subsequent sections.

3 Earth Mover’s Distance

The algorithm we propose is based on the so-called earth mover’s distance
(EMD). This measure is widely used in the field of content-based image retrieval

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 175

and is capable to determine the degree of similarity between two distributions.
An essential part of this algorithm is the repetitive application of a ground dis-
tance. Therefore, we first show how to construct an appropriate ground distance
before dwelling on the overall concept of our EMD approach.

3.1 Ground Distance

In order to quantify the similarity of analog signals it is necessary to operate on
discrete-time signals. A discrete-time signal x[i] ∈ R is a series of data with the
discrete time i ∈ N0 and i < n, where n ∈ N is the number of sample points, i. e.
the length of the signal.

In this publication, however, we rely on an alternative definition that regards
the signal x[i] as a vector x ∈ R

n:

x = (x0, . . . , xi, . . . , xn−1)
= (x[0], . . . , x[i], . . . , x[n − 1])

For our ground distance δG(xi, yj), we claim the following fundamental
requirement:

The ground distance should be bounded to the interval [0, 1], as it can be
shown that a bounded ground distance is a prerequisite for the EMD to
be bounded as well.

Several publications [8–10] utilize the Euclidean distance |xi − yj | as ground
distance. This measure is obviously not compatible with the requirement of
boundedness. However, there are methods to subsequently bound such distances,
e.g. one could use a division by a parameter that incorporates information about
maximum and minimum signal values. Alternatively, one could apply an appro-
priate function like hyperbolic tangent to it. All these methods have the crucial
drawback that the resulting distance functions still treat pairs (xi, yj) of big
values differently than pairs of small values, although the ratios of the pairs are
the same. For example consider

x0 = 1000
y0 = 900

=
x1 = 10
y1 = 9

, but

tanh |x0 − y0| ≈ 1 �= tanh |x1 − y1| ≈ 0.1

This phenomenon effectively cancels out all sections of the involved signals where
the signal’s values have a relatively small magnitude. Thus, we claim another
requirement:

The magnitude of the ground distance’s arguments should not affect the
result, i. e. the ground distance has to be scale-invariant, such that the
following property holds:

δG(xi, yj) = δG(axi, ayj), a ∈ R
∗ (1)

176 A.W. Rath et al.

In order to fulfill this requirement, we drop the Euclidean distance and use
a scaled version of the Tanimoto distance [11,12] instead:

δT(xi, yj) =

{ −0.75·xi·yj

x2
i+y2

j −xi·yj
+ 0.75 if (xi, yj) �= (0, 0)

0 else
(2)

A 3D-Plot of the function is shown in Fig. 1.

−4
−2

0
2

4

−5

0

5
0

0.5

1

xi

yj

δ T
(x

i,
y j

)

0

0.2

0.4

0.6

0.8

1

Fig. 1. Tanimoto distance

There are a number of important properties to be mentioned about the scaled
Tanimoto distance: It is limited to the interval [0, 1] and becomes 0, whenever
xi = yj . Also, it becomes 1 if the arguments are equivalent in magnitude, but
differ in sign (for xi �= 0): δT(xi,−xi) = 1.

Furthermore, it is continuous for (xi, yj) �= (0, 0) and it is scale-invariant,
i. e. the distance does not depend on the order of magnitude of the arguments.
Therefore it satisfies Eq. 1.

Since the scaled Tanimoto distance does not take the position of the elements
xi and yj into account, we need to extend it. This extension is done by calculating
the difference between the positions normalized to the biggest possible difference
n− 1. The extension and the scaled Tanimoto distance are then combined using
the hypot function. Thus, the ground distance is defined as follows:

δG(xi, yj) =
1√
2

·
√

δT(xi, yj)2 +
(i − j)2

(n − 1)2
(3)

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 177

The division by
√

2 is required to retain the limitedness to the interval [0, 1].
Note that this expression can only be applied for n > 1. For the very unusual
case that n = 1 we set δG(xi, yj) = δT(xi, yj).

3.2 Algorithmic Concept

The earth mover’s distance is an approach for measuring the distance between
two multi-dimensional distributions. Informally, if one must successively trans-
port soil from one pile to another in order to equalize them, the earth mover’s
distance calculates the minimum cost for the total transport. The distributions
are also called signatures and represent weighted feature vectors of both signals
x and y. In the following the concept of this approach, which is based on [9],
shall be explained.

Given are two signatures X and Y where xi, yj denote elements from the
respective feature vectors x and y. Each signature consists of n clusters.

X = {(x0, wx0), . . . , (xn−1, wxn−1)}
Y = {(y0, wy0), . . . , (yn−1, wyn−1)}

For each element xi, yj a particular weight wxi
, wyj

can be assigned. In our case
a constant weight W is sufficient since no element shall be prioritized:

W = wxi
= wyj

=
1
n

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1 (4)

Moreover the possibility for transports between both signatures is defined as
flow F = [fij], with fij the flow between xi and yj .

Now the idea is to find a flow F that minimizes the costs C for the overall
work:

C(x,y,F) =
n−1∑
i=0

n−1∑
j=0

δG(xi, yj) · fij (5)

For our ground distance we chose the combined distance from Eq. 3 since this
distance can be used for scalars and is bounded above and below.

The optimization problem in Eq. 5 must furthermore satisfy the following
constraints where constraint 7–9 can be simplified according to our assumption
in Eq. 4:

fij ≥ 0 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1 (6)
n−1∑
j=0

fij ≤ wxi
=

1
n

0 ≤ i ≤ n − 1 (7)

n−1∑
i=0

fij ≤ wyj
=

1
n

0 ≤ j ≤ n − 1 (8)

n−1∑
i=0

n−1∑
j=0

fij = min

⎡
⎣n−1∑

i=0

wxi
,

n−1∑
j=0

wyj

⎤
⎦ = 1 (9)

178 A.W. Rath et al.

Constraint 6 allows only unidirectional flows from X to Y. Constraint 7 ensures
that the weight in Y matched to xi does not exceed n−1, while constraint 8
ensures that also the weight in X matched to yj does not exceed n−1. Finally,
constraint 9 forces the total amount of weight matched to be equal to the overall
weight of each signature.

In summary this particular metric consists in solving the following trans-
portation problem for a pair of distributions on condition that the above-stated
constraints are satisfied:

dEM(x,y) = min
F=[fij]

C(x,y,F) (10)

This expression represents a linear optimization problem. Hence, we can solve
it by an appropriate algorithm like the simplex method. However, this method
shows an exponential worst-case but polynomial average complexity [13], which
in turn has a determining influence on the overall performance of this measure.
The results for dEM eventually yield values within the interval [0, 1] where 1
symbolizes complete dissimilarity and 0 a full match.

4 Assessment

In order to assess the efficiency of EMD, we compare its behavior with two
other algorithms mentioned in Sect. 2; the Pearson correlation coefficient and
the Fréchet distance.

In this section we describe how we carried out the assessment and discuss its
results. The assessment setup consists of a set of deviation algorithms that are
used to generate distorted variants of a given source signal as well as implemen-
tations of the EMD, the PC and the FD that compare the source signal with
its distorted variants. In this way, we can analyze the behavior of the different
algorithms with respect to various types of signal deviations.

4.1 Deviations

A deviation D(xi, p) is defined as a function that maps the elements of a signal
x to the elements of a signal y of the same length:

yi = D(xi, p), (11)

where p ∈ R is the severity of the deviation.
In addition, we introduce the following symbols for the sake of readability:

The amplitude x̂ of a signal x

x̂ = max
i

|xi|, (12)

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 179

and the swing Δx of a signal x1

Δx = max
i

xi − min
i

xi (13)

Offset. The first deviation to be defined here is the offset. An offset is a constant,
global shift of the source signal along the signal axis. Parameter poffset specifies
the severity of the offset:

Doffset(xi, poffset) = xi + poffset · Δx (14)

In this definition, the actual offset is poffset ·Δx. This causes poffset to be relative
to the swing of the signal. The advantage of this definition is that an offset with,
say, poffset = 1 is always significant. This allows for comparing different values
of poffset independent of the actual signal.

Figure 2 depicts the signal change in case of an offset deviation.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

2

i

D
(x

i,
p

)

p = 0
p = 0.5

Fig. 2. Sine signal with deviations in offset.

Edge Steepness. This deviation describes a change in the edge steepness of
the signal while retaining the signal’s original characteristics:

Dedge(xi, pedge) =

⎧⎪⎪⎨
⎪⎪⎩

x̂·tanh
pedge·xi

x̂

tanh pedge
if pedge > 0

x̂·artanh
pedge·xi

x̂

artanh pedge
if −1 < pedge < 0

xi if pedge = 0

(15)

1 Please note that we assume that x is not a constant signal, i. e. Δx �= 0 and hence
x̂ �= 0. We make this limitation as constant signals would unnecessarily complicate
some of the deviation definitions that we give in the following subsections without
providing any further insight. For example, consider Eq. 14, where Δx = 0 would
cancel out the effect of poffset.

180 A.W. Rath et al.

The applied changes to the signal can be regarded as a three-step process: The
values of x are scaled to the interval [−1, 1]. Then, the signal is compressed using
tanh or artanh, respectively, and finally, it is rescaled to the original scale.

The first branch using tanh causes the signal’s edges to become more con-
vex, while the second branch using artanh causes the edges to become more
concave. Neither of both branches is defined for pedge = 0, but it can be shown
that limpedge→0 Dedge = xi for both branches. Hence, it makes sense to define a
third branch Dedge = xi for pedge = 0, leaving the signal as it is. Examples are
illustrated in Fig. 3.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

D
(x

i,
p

)

p = 0
p = 3
p = −0.9

Fig. 3. Sine signal with deviations in edge steepness.

Delay. The delay is a constant, global shift of the signal along the time axis.
When shifting a signal along the time axis, it is necessary to fill the emerging
gap. Here we have chosen to fill the gap with the value x0 leading to an acyclic
delay. Thus, we define the delay for 0 ≤ pdelay ≤ 1 as follows:

Ddelay(xi, pdelay) =

{
xi−n·pdelay if i ≥ n · pdelay

x0 else
(16)

The severity pdelay is relative to the signal’s length n.
An example for delay deviation can be found in Fig. 4.

Scaling. Scaling means that the signal is vertically stretched or compressed
through multiplying its function by a constant factor pscale:

Dscale(xi, pscale) = xi · pscale (17)

Figure 5 shows the effect of adding scale to a signal.

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 181

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
(x

i,
p

)

i

p = 0
p = 0.4

Fig. 4. Sine signal with deviations in delay.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
(x

i,
p

)

i

p = 0
p = 0.5
p = −1.0

Fig. 5. Sine signal with deviations in scale.

Peak. In contrast to any other deviations presented here, a peak is only a local
phenomenon. For n being odd, we define the peak as single spike in the middle
of the signal:

Dpeak(xi, ppeak) =

{
xi + ppeak · Δx if i = �n

2 	
xi else

(18)

For n being even, we vary the two adjacent points in the middle of the signal:

Dpeak(xi, ppeak) =

{
xi + ppeak · Δx if i ∈ {

n
2 − 1, n

2

}
xi else

(19)

Examples for peak deviations are illustrated in Fig. 6

182 A.W. Rath et al.

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

D
(x

i,
p

)

i

p = 0
p = −0.5
p = 1.0

Fig. 6. Sine signal with deviations in peak.

Noise. In principal, adding noise to a signal is like adding offset, except that
the offset is now random over time rather than constant:

Dnoise(xi, pnoise) = xi + ui, (20)

where ui is a uniformly distributed random number with

|ui| ≤ pnoise · Δx

2
. (21)

An example for noise deviation is provided in Fig. 7.

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

D
(x

i,
p

)

i

p = 0
p = −0.5

Fig. 7. Sine signal with noise deviation.

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 183

4.2 Comparable Algorithms

In this section, we present two additional algorithms that we use to evaluate our
EMD approach.

Pearson Correlation Coefficient. The Pearson correlation coefficient is
defined as

spea(x,y) =
∑n−1

i=0 (xi − x̄) · (yi − ȳ)√∑n−1
i=0 (xi − x̄)2 · ∑n−1

i=0 (yi − ȳ)2
, (22)

where x̄ and ȳ represent the arithmetic mean:

x̄ =
1
n

n−1∑
i=0

xi and ȳ =
1
n

n−1∑
j=0

yj

The result of spea is a value in the interval [−1, 1], where 1 indicates a full match,
0 a total mismatch and −1 a full match except the sign.

It can be moreover shown that there is a direct relation between Pearson
correlation coefficient and normalized cross-correlation. The latter is given in
[14] and defined as

(x � y)norm(j) =
∑n−j−1

i=0 (xi − x̄) · (yi+j − ȳ)√∑n−1
i=0 (xi − x̄)2 · ∑n−j−1

i=0 (yi+j − ȳ)2
(23)

With the help of this equation it can be seen that Pearson correlation coef-
ficient is equivalent to normalized cross-correlation at position j = 0:

spea(x,y) = (x � y)norm(0)

In other words, an evaluation of the Pearson correlation coefficient addition-
ally embraces an analysis of normalized cross-correlation, which in turn is a
widely used measure of similarity in the field of signal processing.

Fréchet Distance. For discrete time signals, the Fréchet distance can be
defined as

dF(x,y) = min
α,β

max
k

δG(xα(k), yβ(k)), (24)

where α(k) and β(k) are non-decreasing surjections k ∈ N0
→ [0, n − 1]. Values
for dF are in the same interval as for δG. Since we use the ground distance δG as
given in Eq. 3, the interval is [0, 1] where 0 indicates a full match and 1 a total
mismatch.

The definition in Eq. 24 is not very intuitive, which is why a more intelligible
explanation featuring a dog and its owner has become popular [10]: The Fréchet
distance is the shortest length of a leash required for a dog and its owner to walk

184 A.W. Rath et al.

on two routes—represented by our signals—from one endpoint to the other. Both
are allowed to change their speed, but they are not allowed to walk back.

Furthermore, the definition does not indicate how to implement the Fréchet
distance. Luckily, [15] provides a pseudo implementation for discrete-time
signals.

4.3 Results

The results of the assessment are shown in Fig. 8. In order to make the metrics
comparable, we mapped the results of the FD and the EMD to the interval
of the PC by subtracting their results from 1. Thus, 1 indicates a full match,
0 a total mismatch and −1 full match except the sign. Please note that the
interval [−1, 0) is only applicable to the PC. The source signal x that was used
to generate the results is a sine signal with an amplitude of 1 going over two full
periods. Furthermore, n is set to 200.

From the results it can be seen that the comparison algorithms judge the
delay deviation very differently. FD and PC react very pessimistic and, thus,
suggest that source and deviated signal are hardly related to each other. In
contrast, EMD detects the deviation but does not drop very low, indicating that
there is still a relation between the two signals. The edge deviation is treated
similarly by all algorithms, with FD being somewhat more pessimistic than the
others. Noise is detected by all algorithms; again, FD being very pessimistic.
In addition, FD is not able to differentiate between the noise severities. The
offset deviation is detected well by EMD and FD. However, FD shows a peculiar
behavior in the sense that it returns bigger values for severity 1 and 10. PC
is not sensitive regarding offset. The peak is very well analyzed by PC, while
not being detected at all by EMD. The FD detects the peak, however, it can’t
differentiate between different severities. Scaling is being detected well by EMD
and FD, whilst PC is not sensitive, except on the sign.

In order to summarize the assessment, we compressed the results from Fig. 8
into Table 1. That table indicates, whether a metric is able to detect (D)

Table 1. Qualitative analysis of the assessment. The table shows whether an algorithm
is able to detect (D) the deviation and whether it still correctly reports a similarity (S)
between source and deviated signal.

FD PC EMD

D S D S D S

Delay + − + − + +

Edge + + + + + +

Noise + − + + + +

Offset + − − + + +

Peak + − + − − +

Scale + − − + + +

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 185

−1

−0.5

0

0.5

1
0.1
0.2
0.3
0.4

−1

−0.5

0

0.5

1 −0.9
2
3
4

−1

−0.5

0

0.5

1
0.1
0.2
0.3
0.4

−1

−0.5

0

0.5

1 −1
0.1
1
10

−1

−0.5

0

0.5

1
1
2.5
50
10

−1

−0.5

0

0.5

1 −1
0.5
2
10

Fig. 8. Results of the assessment. Each diagram stands for a type of deviation. The
horizontal axis shows the applied algorithms. The vertical axis shows the result of the
comparison between the source signal and the deviated signal with the severity p of the
deviation indicated by color. A value of 1 on the vertical axis stands for a full match,
i. e. the metric states that the signals being compared are identical; 0 stand for a full
mismatch, i. e. the metric states that the signals are completely dissimilar; −1 stands
for a full match except the sign (note that only PC can produce such a result). For an
interpretation of the results, see Table 1. (Color figure online)

a distortion and whether it can still see a similarity (S) between the original
signal and its distorted version. We count a distortion as detected if the average
of the absolute value of resulting metric M is significantly smaller than 1:

D =

{
+ if |M̄ | < 0.99
− else

(25)

For example, PC can’t detect a scale distortion, as all four result in Fig. 8 are
±1 leading to an average of the absolute of 1 ≥ 0.99.

186 A.W. Rath et al.

As a criterion for similarity being counted as detected, we define the average
of the absolutes to be greater than 0.66:

S =

{
+ if |M̄ | > 0.66
− else

(26)

It can be seen that the EMD can detect all kind of signal distortions, except
peak. Referencing the explanation of EMD, where soil is transported from one
pile to another, the peak is not detected because the amount of work that is
needed to transport the peak is low. This is due to the peak being used in
our assessment is very narrow, i. e. it does not contain much soil. However, the
biggest advantage of EMD is that it is always able to correctly detect similarity
between source and deviated signal.

5 Case Study

In order to test the reliability of the presented approach, we applied the EMD
to a chip level verification of a real-world design. This case study is outlined in
the following paragraphs.

5.1 Application

The design we applied the EMD to is micro-controller-based and features a LIN
interface and power switches (see Fig. 9). Its application is focused on driving
small electric motors—e.g. for window lifts or cooling fans—in cars. Being an

Fig. 9. Block diagram of the SoC used for our analyses.

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 187

automotive application, power consumption is of great concern for the design.
In order to fulfill the requirements regarding power consumption, the design
features a sleep mode as well as wake-up mechanisms. The verification of sleep
and wake-up on chip level is crucial, since it affects three design domains—
digital and analog hardware as well as software. The chip level verification was
performed as a mixed-signal simulation in which the hand-shaking between the
domains and the voltage curves of the power rails were checked for correctness.
The checking was done in such a way that the results of the initial simulation were
inspected manually and stored in the file system. The results of all subsequent
simulations were then automatically compared against the results of the initial
run using EMD.

In Fig. 10, we show the voltage curve of a rail in the power management unit
gained during different simulations. The first curve is the one recorded during
the initial simulation and serves as a reference for all subsequent simulations.
The colored phases have been defined after the initial simulation, such that the
automatic comparison of subsequent results with the ones gained during later
simulations could be done phase-wise. Curves A to D represent simulation results
after several modifications to the design.

5.2 Results

Tables 2, 3 and 4 show the results of the comparison between signal curves A to
D and the reference using EMD, PC and FD, respectively. In order to detect a
low similarity, we empirically assume a threshold value of 0.97 for each analy-
sis. “Empirically” means that the threshold value, which serves as a pass/fail
criterion, is application dependent and is therefore to be defined by verification
engineers on a per-circuit basis. Results which fall below this threshold indicate
an insufficient degree of similarity (i. e. fail) and are marked red in the tables.

First, it can be clearly seen that due to a bug the design does not wake up
in curve A, resulting in an EMD value of approximately 0.5. This unintended
functional behavior is also detected by the other two metrics.

A less obvious signal deviation can be found in curve B. The obtained results
reveal a change of certain capacitors in the design leading to a slightly different
discharging behavior in phase 3 (EMD ≈ 0.96 and FD ≈ 0.93). For this case
PC already shows the first deficiencies since the metric is not able to detect
the deviation (PC ≈ 0.99). The aforementioned change of particular external
capacitances was actually not a bug, but a specification-compliant adjustment.
Therefore, the reference curve had to be replaced by curve B.

In the third case (signal C), wake-up is triggered at a later point in time
from the test bench. In this application, this has no impact on the functional
behavior of the design. Therefore, the second active phase, which is consequently
being altered by a delay, shall not be flagged as too dissimilar to the reference.
However, Tables 2, 3 and 4 show that the results for PC and FD fall below
the predefined threshold while EMD is able to compensate this deviation. This
observation goes in line with the previously stated claim that the threshold has
to be adjusted per application, i. e. per circuit.

188 A.W. Rath et al.

0 500 1000 1500 2000
0

5

10

0 500 1000 1500 2000
0

5

10

0 500 1000 1500 2000
0

5

10

0 500 1000 1500 2000
0

5

10

0 500 1000 1500 2000
0

5

10

Fig. 10. Voltage curves of a power rail in an automotive design during different design
states gained by chip level simulation. The red phase shows the power-up of the design,
green stands for the active state and yellow for sleep mode. (Color figure online)

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 189

Table 2. Comparison of the curves from Fig. 10 using EMD.

Signals Phase 1 Phase 2 Phase 3 Phase 4

Ref vs Ref 1.0000 1.0000 1.0000 1.0000

Ref vs A 1.0000 1.0000 0.9999 0.5118

Ref vs B 1.0000 0.9999 0.9577 0.9998

Ref vs C 1.0000 1.0000 1.0000 0.9741

Ref vs D 1.0000 1.0000 1.0000 0.9980

Table 3. Comparison of the curves from Fig. 10 using Pearson Correlation Coefficient.

Signals Phase 1 Phase 2 Phase 3 Phase 4

Ref vs Ref 1.0000 1.0000 1.0000 1.0000

Ref vs A 1.0000 0.9920 1.0000 −0.4070

Ref vs B 1.0000 0.9369 0.9883 0.9998

Ref vs C 1.0000 1.0000 1.0000 0.5380

Ref vs D 1.0000 1.0000 1.0000 0.8599

Table 4. Comparison of the curves from Fig. 10 using Fréchet Distance.

Signals Phase 1 Phase 2 Phase 3 Phase 4

Ref vs Ref 1.0000 1.0000 1.0000 1.0000

Ref vs A 0.9998 0.9998 0.9993 0.5009

Ref vs B 0.9998 0.9989 0.9250 0.9965

Ref vs C 1.0000 1.0000 1.0000 0.9413

Ref vs D 1.0000 1.0000 1.0000 0.8718

Switching on an external high load during wake-up leads to the signal shape
illustrated by curve D. It is characterized by a peak in the fourth phase at
2000μs, which can be traced back to a short-time voltage sag. Except for the
peak, there is no significant difference between curve D and the reference signal.
However, PC and FD are again not able to compensate this deviation and would
flag a mismatch (PC ≈ 0.86 and FD ≈ 0.87) whereas EMD correctly detects the
functionally unchanged wake-up behavior (EMD ≈ 1.0).

While the critical “sleep mode”-bug in the above-stated mixed-signal design
was detected by all three metrics, EMD reveals its strengths in particular when
deviations like delay or peak are distorting the signals. In these cases PC and
FD are not able to identify correct functional behavior, which in turn confirms
our analyses from Sect. 4. A concluding summary of our results can be found in
Table 5. We furthermore observed the aforementioned deficiencies when analyzing

190 A.W. Rath et al.

Table 5. Overview of results: EMD is the only metric that correctly detects, i. e.
compensates all four deviation scenarios.

Signal Deviation
in phase

Reason for deviation Supposed
to be
detected?

Detected by

A 4 Bug in the design yes EMD, FD, PC

B 3 Modified external
capacitance

yes EMD, FD

C 4 Delayed wake-up no FD, PC

D 4 Voltage sag due to temporary
high load

no FD, PC

several other metrics like Euclidean distance, cosine similarity and Hausdorff dis-
tance, inspiring us with confidence that our approach represents the most reliable
one.

6 Conclusion and Outlook

In this contribution we introduced and described a novel technique for the auto-
mated comparison of analog behavior. The technique tackles the necessity of
being able to automatically check the functional correctness of analog and mixed-
signal ICs during design and verification. It moreover opens the possibility of
reducing verification efforts by avoiding manual and error-prone investigations
of waveforms since it can be easily leveraged for regression tests. Beyond that,
applying the presented concept consequently leads to significantly reduced costs
and speeds time to market.

Furthermore, we assessed the approach by comparing it with related tech-
niques and presented a case study, in which we applied the approach to a real-
word project confirming its usefulness and high reliability compared to other
metrics.

Aside from the outlined benefits in the field of mixed-signal verification, the
developed approach has also high impact on several other topics. It can, for
instance, be leveraged to optimize objective functions, which in turn is helpful
when performing model calibration. In this case an automated regression could
be set up to successively fit model parameters of interest. Another field of appli-
cation is the regression testing of SPICE-style simulators, which can be used to
identify diverging simulation behavior caused by differing simulator versions.

Our future work will focus on the extension of the presented methodology
regarding usability and flexibility. The long-term goal is to provide a building box
that covers the need of verification engineers to simulate and verify mixed-signal
designs. This building box shall include methods and techniques for driving,
monitoring and checking analog signals, as well as for coverage collection and
reference modeling.

Earth Mover’s Distance as a Comparison Metric for Analog Behavior 191

References

1. Khan, N., Kashai, Y.: From spec to verification closure: a case study of applying
UVM-MS for first pass success to a complex mixed-signal soc design. In: Design
and Verification Conference, March 2012

2. Yang, X., Niu, X., Fan, J., Choi, C.: Mixed-signal system-on-a-chip (soc) verifica-
tion based on systemverilog model. In: 45th Southeastern Symposium on System
Theory (SSST), pp. 17–21 (2013)

3. Neumann, F., Sathyamurthy, M., Kotynia, L., Hennig, E., Sommer, R.: UVM-based
verification of smart-sensor systems. In: International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), pp. 21–24 (2012)

4. Sharma, V., Lakshmanan, G., Tare, S., Dhamankar, S.: Predicting the correlation
between analog behavioral models and spice circuits for robust soc verification. In:
Proceedings of the 2008 IEEE International Behavioral Modeling and Simulation
Workshop, pp. 130–135 (2008)

5. Khan, N., Kashai, Y., Fang, H.: Metric driven verification of mixed-signal designs.
In: Design and Verification Conference, March 2011

6. Rath, A.W., Esen, V., Ecker, W.: A transaction-oriented UVM-based library for
verification of analog behavior. In: 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 806–811, January 2014

7. Ohlendorf, O., Steinhorst, S., Hartong, W., Hedrich, L.: Comparing two analog
waveforms - a trivial task?. In: Zuverlässigkeit und Entwurf (ZuD 2008), Ingolstadt,
pp. 153–154, September 2008

8. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

9. Cohen, S.: Finding Color and Shape Patterns in Images. Ph.D. thesis, Stanford
University, May 1999

10. Yoon, S., Yoo, H.M., Yang, S.H., Park, D.S.: Computation of discrete Fréchet
distance using CNN. In: 2010 12th International Workshop on Cellular Nanoscale
Networks and Their Applications (CNNA), pp. 1–6, February 2010

11. Theodoridis, S., Koutrumbas, K.: Pattern Recognition, 4th edn. Academic Press,
Amsterdam (2008)

12. Xiang, H.: Similarity based virtual screening using frequency-based weighting-
schemes: effect of the choice of similarity coefficient. In: Poster presentation at
the Ninth International Conference on Chemical Structures, June 2011

13. Klee, V., Minty, G.J.: How good is the simplex algorithm?. In: Inequalities-III:
Proceedings of the Third Symposium on Inequalities Held at the University of
California, Los Angeles, September 1–9, 1969, pp. 159–175. Academic Press (1972)

14. Yang, Z.: Fast template matching based on normalized cross correlation with cen-
troid bounding. In: 2010 International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), vol. 2, pp. 224–227, March 2010

15. Eiter, T., Mannila, H.: Computing Discrete Fréchet Distance. Technical report,
Technische Universität Wien, April 1994

Approximate Matrix Inversion
for Linear Pre-coders in Massive MIMO

Syed Mohsin Abbas(B) and Chi-Ying Tsui

VLSI Research Laboratory, Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology (HKUST), Hong Kong, China

smabbas@connect.ust.hk

Abstract. This work presents a high-throughput and low-latency
matrix inversion design for linear pre-coders for massive multiple-input
multiple-output (MIMO) systems. Because of the large number of base
station (BS) antennas, as well as the multiple user terminals (UTs),
served in a massive MIMO system, the channel matrix dimensions
become large. Inversions of such large matrices using direct inversion
methods, such as those used in linear pre-coders, would entail prohibitive
complexity. To avoid such complexity, Neumann-series-based approxi-
mate inversion has been suggested for linear pre-coders in massive MIMO
systems. However the performance, complexity and convergence speed of
the Neumann series approach highly depends on the initial approxima-
tion of the inverse used as a starting point. In this work, we present a
novel initial approximation for the Neumann series, which facilitates the
parallel computation of the inverse and hence results in lower latency
for inversion as well as better accuracy when compared to the previous
approaches. A VLSI architecture of the proposed method is implemented
for the inversion of a 16 × 16 matrix in TSMC 65-nm technology. A
throughput of 0.54 M to 15 M matrix inversion per second is achieved
at a clock frequency of 460 MHz with a 117 K gate count.

Keywords: Zero forcing (ZF) pre-coder · Regularized zero forcing
(RZF) pre-coder · Neumann series · Massive MIMO · Matrix inversion

1 Introduction

Multiple-input and multiple-output (MIMO) systems have been adopted in mod-
ern wireless communication standards such as IEEE 802.11n, 4G, 3GPP Long
Term Evolution and WiMAX. Due to the ever-growing demand for higher data
rates without further increasing the communication bandwidth, novel transmis-
sion technologies are still an urgent need [1,3]. A potential technology for meet-
ing this demand is large-scale multi-user MIMO, or ‘massive MIMO’, a form
of multi-user multiple-antenna wireless technology which promises substantial
improvements in spectral efficiency and energy efficiency [1,3,4,10].

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 192–212, 2017.
DOI: 10.1007/978-3-319-67104-8_10

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 193

In massive MIMO systems, a base station (BS) is equipped with a large
number of antennas (M), as compared to conventional MIMO systems, while
serving a relatively low number (K) of user terminals (UTs). This disparity in
number of service antennas to active user terminals helps in focusing energy into
ever smaller regions of space to bring huge improvements in throughput and
radiated energy efficiency. Other benefits of massive MIMO include extensive
use of inexpensive low-power components, reduced latency, simplification of the
MAC layer, and robustness against intentional jamming [2].

However, to enjoy the benefits of massive MIMO, an efficient linear pre-
coding scheme at the transmitter side is of paramount importance. Pre-coding is
a pre-processing technique that exploits channel state information (CSI) at the
transmitter to match the transmission to the instantaneous channel conditions
[13–17]. In particular, linear pre-coding is a simple and efficient method that can
reduce the complexity of a MIMO receiver.

Linear pre-coding includes zero-forcing (ZF), matched filter (MF) and regu-
larized zero forcing (RZF). It has been shown that when M >> K, the simplest
linear pre-coders are optimal and thermal noise, interference and channel estima-
tion errors vanish [3]. For such cases, simple linear pre-coders like ZF perform
exceptionally well, and sum rates of up to 98% of the (optimal) dirty paper
coding (DPC) are reported to have been achieved [4].

However, linear pre-coders like ZF and RZF involve channel inversion using
the pseudo-inverse of the channel, which involves inverting a K×K gram matrix
Z (Z = GGH for ZF and Z = (GHG+αI) for RZF), where K is the number
of UTs and G is the propagation matrix. Exact matrix inversion methods, such
as LU decomposition, Cholesky decomposition and QR decomposition, require
cubic order complexity О (K3) [7]. Hence exact inversion methods cannot be
applied due to larger matrix dimensions in massive MIMO systems.

To reduce the matrix inversion complexity, the Neumann-series-based
approximate inverse [8,9] has been proposed for large matrices in massive MIMO
systems. As the ratio of the number of antennas at the BS to the number of UTs,
β = M/K, increases, Z becomes diagonally dominant [1]. Wu et al. [8] exploited
this diagonal dominance property and suggested using the diagonal elements of
matrix Z as an initial approximation (seed) for Neumann series expansion. This
method is termed the diagonal Neumann series (DNS) in the rest of this chapter
for easy reference.

However, for highly correlated channels or low β values, matrix Z may not
be very strongly diagonally dominant or perhaps not dominant at all. For such
cases, using only the diagonal elements as a seed will result in slow convergence of
the Neumann series. Since inversion accuracy is an important parameter, which
defines the suppression of the multi-user interference (MUI) in the downlink [9],
the DNS will require a greater number of Neumann series terms to achieve a
certain accuracy.

For scenarios with low β values or highly correlated channels, Prabhu et al.
[9] proposed to include some off-diagonal elements in addition to the diagonal
elements to form the initial approximation for the Neumann series. In particular,

194 S.M. Abbas and C.-Y. Tsui

they used a tri-diagonal matrix as the seed. We call this method the tri-diagonal
Neumann series (TNS) for easy reference. Using the tri-diagonal matrix as a seed
in the Neumann series results in better convergence and superior performance
as compared to the DNS [8].

For the approximate inverse calculation of either the DNS or TNS, the inverse
of the seed matrix has to be calculated, and hence it should be easily invertible.
However using the TNS as seed matrix results in an increase in complexity for
calculating the inverse for the tri-diagonal matrix as compared to the DNS.
Prabhu et al. [9] proposed to use a modified Gauss-elimination-based algorithm
to obtain the inverse of the tri-diagonal matrix. However due to the sequential
nature of the algorithm, the latency is proportional to K and cannot be reduced
with parallel hardware. Thus it may not be desirable for a system that has a
very low latency requirement.

In this work, we present a low-latency and high-throughput matrix inversion
method, also based on the Neumann series. In particular we propose to use a
new seed matrix [18], for which the inverse can be easily calculated in a par-
allel fashion with lower complexity, hence leading to lower latency and higher
throughput.

2 System Model

For this work, we consider single-cell large-scale multi-user MIMO (MU-MIMO)
with one BS and K UTs. The BS is equipped with M antennas and the UTs
have a single antenna, such that M antennas at the BS communicate with K
single-antenna UTs (M > K > 1). The system model considered in this work is
in line with the corresponding system model described in [1].

The reverse link propagation matrix, G with a dimension of M × K is the
product of the M ×K matrix H, which accounts for the small-scale fading, and a
K×K diagonal matrix D

1/2
β , which accounts for the large-scale fading [1]. Hence

G = HD
1/2
β , where the Kth column vector of H describes the small-scale fading

between the Kth UT and the M antennas, while the Kth diagonal element of
D

1/2
β is the large-scale fading coefficient. For the forward link, the BS transmits

an M × 1 vector, x, through its M antennas and the K UTs collectively receive
a K × 1 vector:

y =
√

ρGHx + w, (1)

where w is the K ×1 vector of the receiver noise whose components are indepen-
dent and distributed as CN (0, 1). The total transmitted power is normalized to
satisfy E[xHx] = 1. Hence, ρT > 0 denotes the total downlink power.

2.1 Linear Pre-coding at the Transmitter

The M ×1 transmitted signal vector x is given as x = Ws, where W is an M ×K
pre-coding matrix and s is a K × 1 vector containing data symbols intended for

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 195

K users. For MU-MIMO with large arrays of antennas at the BS, the columns of
the propagation matrix are asymptotically orthogonal under favorable conditions
[1], and

(
GHG

M
)M�K≈Dβ . (2)

Due to this property, simple linear pre-coders, like MF, ZF and RZF, can
be deployed on the transmitter side for close to optimal performance. The MF
pre-coder, despite being simple, requires more BS antennas to achieve close to
optimal performance [1]. Hence we focus on a ZF and RZF pre-coding scheme
in our system model.

Zero Forcing (ZF) Pre-coding: The ZF pre-coding schemes [13] have been
extensively studied on multiuser systems as ZF decouples the multiuser channel
into independent single-user channels and has been shown to achieve a large
proportion of dirty paper coding capacity [12].

The ZF [11] expression is given by

WZF = G(GHG)−1. (3)

Regularized Zero Forcing (RZF) Pre-coding: The regularized ZF pre-
coder, as the name implies, introduces a regularization parameter in the channel
inversion. One way to regularize an inverse is to add a multiple of the identity
matrix before inversion, such as

WRZF = G(GHG + αI)−1. (4)

The amount of interference depends on α > 0. If α = 0, then it essentially
becomes a ZF pre-coder(Eq. 3). The amount of interference increases with α ,
and the optimum value of α is given as [11]

α =
K

ρ
where K is number of users and ρ is SNR. (5)

Both ZF and RZF pre-coding schemes involve inversion of a K × K gram
matrix Z (Z = GGH for ZF and Z = (GHG + αI) for RZF), which is an
expensive and critical operation. In the next section, we will present a low-latency
approximate matrix inversion suitable for massive MIMO.

3 Approximate Matrix Inversion

An exact matrix inversion operation for a K × K gram matrix Z requires cubic
order complexity О (K3) [7]. Due to the increasing channel matrix size in mas-
sive MIMO systems, such direct inversion methods may not be a very efficient
solution. To reduce the computational complexity, the Neumann series has been
proposed as an alternative to exact inversion methods [8,9].

196 S.M. Abbas and C.-Y. Tsui

If Z is very “close to” an invertible matrix X in the sense that

limn→∞(I − X−1Z)n = 0,

then Z is nonsingular and its inverse is given by [8]

Z−1 =
∞∑

n=0

(I − X−1Z)nX−1. (6)

And if the L − 1 terms of the Neumann series are used for approximation,
then Eq. 6 can be modified as

Z−1 =
L∑

n=0

(I − X−1Z)nX−1. (7)

If the first two terms of the Neumann series are used (L = 1), and Eq. 7
becomes

Z−1 = X−1 + (I − X−1Z)X−1. (8)

Similarly, if the first four terms of the Neumann series are used (L = 3), Eq. 7
becomes

Z−1 = X−1 + (I − X−1Z)X−1 + (I − X−1Z)2X−1 + (I − X−1Z)3X−1. (9)

The matrix X, termed as the ‘seed’, is an initial approximation of Z−1, which
should be easily invertible for lower latency and higher throughput.

Diagonal Neumann Series. As mentioned, Wu et al. [8] suggested using the
diagonal elements of matrix Z as an initial approximation (seed) for Neumann
series expansion, which we refer to as the DNS.

Inversion of a diagonal ‘seed’ matrix is very simple, and it requires only K
inversion operations. Thus for L = 2, the complexity of the inversion operation
for a K × K gram matrix Z using Eq. 8 is O (K2) [8] as opposed to cubic order
complexity O (K3) of the exact inversion methods [7].

Tri-Diagonal Neumann Series. For highly correlated channels or low β val-
ues, using only the diagonal elements as a seed will result in slow convergence
of the Neumann series. Hence more Neumann series terms will be required
to achieve a certain accuracy, which will result in higher complexity as each
additional term for a Neuman series involves computing power of the matrix
(I − X−1Z)n , as shown in Eq. 9.

As mentioned, Prabhu et al. [9] proposed that by including some off-diagonal
elements with the diagonal elements as a seed, the convergence of the Neumann
series could be improved. Hence they proposed using a tri-diagonal matrix as a
seed, which we refer to as the TNS. This method results in better convergence

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 197

and superior performance as compared to the DNS [8]. However the complexity
of obtaining the inverse of the tri-diagonal seed matrix also increases as compared
to the DNS.

4 Proposed Method

Here we propose a new seed matrix, which has similar performance to the TNS,
but is much easier to invert, hence resulting in lower overall latency and resulting
in higher throughput. In addition to the diagonal elements of Z, we also keep
the first column to form the seed matrix for the Neumann series. The following
shows an example of the seed matrix (X) of a 4 × 4 gram matrix Z:

X =

⎡

⎢⎢⎣

Z00 0 0 0
Z10 Z11 0 0
Z20 0 Z22 0
Z30 0 0 Z33

⎤

⎥⎥⎦ . (10)

The reason for using X as a seed matrix is that it is much easier to invert
when compared to using a tri-diagonal matrix as a seed. The inverse of X can
be obtained using the following procedure. X can be decomposed as X = DA
as follows:

X =

⎡

⎢⎢⎣

Z00 0 0 0
0 Z11 0 0
0 0 Z22 0
0 0 0 Z33

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 0 0 0
Z10Z

−1
11 1 0 0

Z20Z
−1
22 0 1 0

Z30Z
−1
33 0 0 1

⎤

⎥⎥⎦ . (11)

Matrix D is a diagonal matrix of which the inverse is easy to obtain by simply
calculating the reciprocal of the diagonal elements. Similarly, matrix A is called
an atomic triangular matrix [7], of which the inverse can be obtained easily by
the following:

⎡

⎢⎢⎣

1 0 0 0
a 1 0 0
b 0 1 0
c 0 0 1

⎤

⎥⎥⎦

−1

=

⎡

⎢⎢⎣

1 0 0 0
−a 1 0 0
−b 0 1 0
−c 0 0 1

⎤

⎥⎥⎦ . (12)

Hence the inverse of the proposed seed matrix is calculated as X−1 =
A−1D−1, and

⎡
⎢⎢⎣

1 0 0 0
−Z10Z

−1
11 1 0 0

−Z20Z
−1
22 0 1 0

−Z30Z
−1
33 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Z−1
00 0 0 0
0 Z−1

11 0 0
0 0 Z−1

22 0
0 0 0 Z−1

33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Z−1
00 0 0 0

−Z10Z
−1
00 Z−1

11 Z−1
11 0 0

−Z20Z
−1
00 Z−1

22 0 Z−1
22 0

−Z30Z
−1
00 Z−1

33 0 0 Z−1
33

⎤
⎥⎥⎦ . (13)

From the above equation, it can be seen that X−1 can be calculated in
constant time as long as we have enough parallel hardware to calculate the
reciprocal and the multiplication.

198 S.M. Abbas and C.-Y. Tsui

For the inversion of the tri-diagonal matrix, a modified Gaussian elimination
method was proposed in [9]. The dependency of the Gaussian elimination algo-
rithm makes it difficult to parallelize the computation, and hence the latency
for computing the inverse of the tri-diagonal matrix is in the order of O (K) [9],
even when a large number of hardware resources are available.

5 Performance Analysis

We simulate an un-coded large-scale MU-MIMO downlink system, employing
4-QAM modulation and linear pre-coding at the transmitter side and MF detec-
tion at the receiver. For computing the inverse of the gram matrix Z, the Neu-
mann series is employed with different seed matrices. Figures 1, 2, 3, 4, 5 and
6 compare the bit error rate (BER) performance of the Neumann-series-based
inverse, using different seed matrices, with that using exact matrix inversion
under the conditions of β = 5 and with different numbers of UTs (K = 8).

Figure 1 shows that for K = 8, when only the first two terms of the Neumann
series are included (i.e., L = 1), the performance of the proposed seed matrix and
TNS is much better than that of the DNS. Figure 1 (a) depicts the experimental
results for ZF pre-coding and Fig. 1 (b) shows the result for RZF pre-coding at
the transmitter.

Figure 2 shows that when we increase the number of Neumann series terms
(i.e., when L = 3), the BER performance of the proposed seed matrix and TNS
becomes closer to that of the exact inversion, which shows that the proposed
seed matrix and TNS require fewer Neumann series terms as compared to the
DNS. The same BER performance trend can be observed for different numbers
of UTs (K), as shown in Figs. 1, 2, 3, 4, 5 and 6.

For the experimental results presented in Figs. 1, 2, 3, 4, 5 and 6, a fixed
value of β = 5 is used. For evaluating the performance of the proposed scheme
under different values of β, the proposed scheme is compared with the DNS
[8] and TNS [9] methods by evaluating the SNR-loss compared to the exact
inversion to achieve a BER of 10−3. The results are summarized in Figs. 7, 8
and 9, which show the performance comparisons for different numbers of UTs
(K = 8, 12 and 16), different pre-coding methods (ZF and RZF) and different
numbers of Neumann series terms (for L = 1 and L = 3), respectively.

Experimental results (Figs. 7, 8 and 9) show that for low values of β (β <
10), the TNS and the proposed method give better performance than the DNS,
whereas with higher values of β (>10), the performance loss is almost zero. This
means that using only the first two terms is sufficient for inverse calculation
(L = 1). However for low β values, a larger number of Neumann series terms is
required to achieve a certain accuracy (L = 3).

In general, it can be deduced from the experimental results that using the
proposed seed matrix gives a better performance than using the DNS, and is
almost the same as using the TNS. However the complexity and latency of the
proposed seed matrix is less than that of the TNS method.

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 199

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (RZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

Fig. 1. Performance comparison β = 5, number of UTs (K = 8), L = 1

200 S.M. Abbas and C.-Y. Tsui

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (ZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 2. Performance comparison β = 5, number of UTs (K = 8), L = 3

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 201

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (ZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

Fig. 3. Performance comparison β = 5, number of UTs (K = 12), L = 1

202 S.M. Abbas and C.-Y. Tsui

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (ZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 4. Performance comparison β = 5, number of UTs (K = 12), L = 3

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 203

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (ZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)

Fig. 5. Performance comparison β = 5, number of UTs (K = 16), L = 1

204 S.M. Abbas and C.-Y. Tsui

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Zero-forcing (ZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

SNR[dB]
0 5 10 15 20

B
E

R

10-3

10-2

10-1

Exact Regularized zero-forcing (RZF)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 6. Performance comparision β = 5, number of UTs (K = 16), L = 3

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 205

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 7. Number of UTs (K = 8)

206 S.M. Abbas and C.-Y. Tsui

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 8. Number of UTs (K = 12)

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 207

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Ratio of # of antennas at BS to users (M/K)
5 10 15 20

S
N

R
-lo

ss
 (

in
 d

B
)

-5

0

5

10

15
DNS Method (L = 1)
TNS Method (L = 1)
Proposed Method (L = 1)
DNS Method (L = 3)
TNS Method (L = 3)
Proposed Method (L = 3)

Fig. 9. Number of UTs (K = 16)

208 S.M. Abbas and C.-Y. Tsui

Seed
Inversion

Unit

Seed Multiplication
Unit (X -1Z)

General Multiplication
Unit ((IK – X -1Z)n)

Memory Bank

X -1Z

X -1Z

(xi1)-1

z1j

(xii)-1

zij
(x-1z)ij-1

 Z00 Z11 Z22 Z33 -Z00Z22 Z20 -Z00 Z30 -Z00Z33 Z30

 -Z00Z10 -Z00Z11 Z10 -Z00Z20

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1

Time

E
x
e
c
u
t
i
o
n

(a)

(b)

(c)

Fig. 10. proposed VLSI architecture (a) Block diagram of proposed inversion method
(b) Seed multiplication unit (X−1Z) (c) Scheduling diagram for seed inversion
(X−1)unit

6 Proposed Architecture

In this section, a VLSI architecture which performs the proposed matrix inver-
sion with low latency and high throughput is presented. Figure 10(a) shows the
top level block diagram of the architecture. After extracting the seed matrix
(X) from the gram matrix Z, the seed is inverted in a seed inversion block. The
inverted seed matrix (X−1) is then multiplied with the gram matrix Z, to obtain
the product (X−1Z), and a generic multiplication unit computes the powers of
the product (IK − X−1Z)n. For the best case scenarios with higher β values,
only the first two terms of the Neumann series are used for approximation, i.e.,
Z−1 = X−1+(IK −X−1Z)X−1. For this case, the generic matrix multiplication
unit is not required and can be bypassed, resulting in much lower latency and
higher throughput.

6.1 Seed Inversion Unit (X−1)

Fig. 10(b) shows the scheduling diagram of the seed inversion (X−1) for a 4 × 4
matrix, example presented in Sect. 4, using a single reciprocal unit and a multi-
plier. The overall latency for this inversion is 2(K–1), which is one third of the
latency for inverting a tri-diagonal matrix (6K) using a modified Gaussian elim-
ination algorithm [9]. For the reciprocal calculation (Z−1

ii), a standard unrolled
single Newton Raphson iteration, similar to that used in [8,9], is employed. As
discussed in the previous section, the latency of the proposed seed inversion can
be further reduced by deploying a greater number of multipliers and reciprocal
units, since there is no dependency, whereas the modified Gaussian elimina-
tion algorithm [9], due to the dependencies, may not be suitable for parallel
implementation.

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 209

6.2 Seed Multiplication Unit (X−1Z)

Figure 10 (c) shows a simple circuit that consists of two multipliers and one adder
for the multiplication of X−1and Z. zij is multiplied by xii and then added to
the product of z1j and x1i to obtain the value of yij (Y = X−1Z), where zij ,
xij , and yij are the values of the elements at the ith row and the jth column of
the matrices Z, X−1, and Y , respectively. This multiplication unit has a latency
of two cycles.

6.3 Generic Multiplication Unit (IK − X−1Z)n

For lower values of β, more terms of the Neumann series are required for better
accuracy of inversion. Hence we need to compute higher powers of the product
(IK − X−1A)n. Generic MAC (multiply and accumulate) banks are used to
compute the higher powers of (IK − X−1A)n. The matrix multiplication is of
cubic order complexity, O(K3), where K is the size of the matrix. As discussed
in [9], parallel hardware can be used to speed up this calculation. Let α be a
parallelization factor,. Then the total latency of the multiplication unit is reduced
to (L−1)K3

α .

Table 1. Latency Comparision

TNS [9] Proposed method

Seed Inversion (X−1) 6K 2(K-1)

Generic Multiplication (I − X−1Z)L−2(α = 10) (L−1)K3

α
(L−1)K3

α

Latency with Higher β (L = 1) 6K 2(K-1)

Latency with Lower β (L = 3) 6K + (L−1)K3

α
2(K − 1) + (L−1)K3

α

7 Timing Analysis

Table 1 summarizes the latency comparison with the TNS [9] for high and low β
values under the same hardware complexity and α value (parallelization factor).
For higher values of β (e.g. β > 10), using only the first two terms of the Neumann
series is sufficient (L = 1), and hence the generic multiplication module can be
bypassed and no matrix multiplications (IK −X−1A)L−1 are required. Therefore
the total latency for both the TNS and the proposed method is comprised of
seed inversion latencies. It can be seen that the latency of the proposed seed
matrix is three times smaller than that of the TNS. In fact, if more hardware is
available, the latency reduction is even higher.

For lower values of β, more Neumann series terms are required, and (L−1)K3

α
cycles are added to the final latency. If α (parallelization factor) is small, the
latency is dominated by that of the generic multiplication unit, and hence total
latency for both the TNS and proposed method will be similar.

210 S.M. Abbas and C.-Y. Tsui

Table 2. ASIC implementation of matrix inversion

Direct inverse Approximate inverse

DMI [5] BMI [6] TNS [9] Proposed method

Higher β (L=1) Lower β (L=3) Higher β (L=1) Lower β (L=3)

Order 4 X 4 8 X 8 16 X 16 16 X 16

Technology 0.25 μm 90 nm 65 nm

Gate Count 73K 90K 104K 117K

Max. Freq.
(MHz)

170 500 420 448

Throughput 1.72M 0.65M 4.37M 0.51M 15M 0.54M

Normalized
Throughputa

0.016 0.016 1.04 0.12 3.35 0.12

Normalized
Hardware
Efficiencyb

0.22 0.18 10 1.15 28.6 1.02

a Normalized Throughput for K = 16 at 100MHz = Throughput×Order3×100
Frequency×K3

b Normalized Hardware Efficiency = Normalized Throughput
Gate Count

8 Implementation Results

The VLSI architecture for inverting a 16 × 16 matrix using the proposed seed
matrix was designed and synthesized in TSMC 65-nm technology. 16-bit internal
precision is used for the datapath of the architecture. The implementation is com-
pared with the architecture using direct matrix inversion [5,6] and the TNS [9].
The comparison results are summarized in Table 2. It can be seen that the pro-
posed architecture can sustain a maximum clock frequency of 448 MHz, with an
area cost of 117K gates.

For a MIMO system with K = 16, β = 5, α = 10 and L = 3 the latencies for
the proposed method and TNS are 850 cycles and 916 cycles, respectively. For
such cases with lower values of β, as mentioned in Sect. 7, the latency is domi-
nated by that of the generic multiplication unit. Due to overlapped scheduling,
the latency for the seed inversion unit can be absorbed into the generic multi-
plication unit, and hence the generic multiplication unit is the main source of
latency for both the TNS and proposed method at lower values of β. Therefore a
throughput of 0.54M inversions per second is achieved for the proposed method
operating at 448MHz, while the TNS method operating at 420MHz will have a
throughput of 0.51M inversions per second.

Although it seems that for lower values of β, the TNS and proposed scheme
have similar throughput and hardware efficiency. However we would like to men-
tion that this is mainly due to lower values of the parellization factor α used in
the generic multiplication unit, due to which the overall latency is dominated by
that of the generic multiplication unit.

However if a higher paralleziation factor of α > 100 is used, the latency will be
dominated by the seed multiplication unit instead of the generic multiplication
unit. Since the proposed seed inversion has lower latency than the TNS, even
for lower values of β, the proposed scheme will result in higher throughput than
the TNS and better inversion accuracy than the DNS.

Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO 211

For MIMO systems with higher β values, the generic multiplication unit can
be bypassed, and the latency for the proposed method and TNS are reduced
to 30 cycles and 96 cycles, respectively, resulting in a throughput of 15M and
4.37M inversions per second, respectively.

9 Conclusion

In this work, we have developed a low-latency and high-throughput matrix inver-
sion method for the linear pre-coder in massive MIMO. The inversion method is
based on Neumann series expansion, and a new seed matrix is used as an initial
approximation for the Neumann series, which gives better performance, a lower
complexity matrix inverse, and lower latency. Detailed latency and throughput
analysis is presented for high and low values of β. A high-throughput VLSI
architecture for inverting a 16 × 16 matrix using the proposed method is also
presented.

References

1. Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O.,
Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large
arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

2. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next
generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

3. Hoydis, J., ten Brink, S., Debbah, M.: Massive MIMO in the UL/DL of cellular
networks: how many antennas do we need? IEEE J. Sel. Areas Commun. 31(2),
160–171 (2013)

4. Gao, X., Edfors, O., Rusek, F., Tufvesson, F.: Linear pre-coding performance in
measured very-large MIMO channels. In: Proceedings of IEEE Vehicular Technol-
ogy Conference (VTC Fall), Sept 2011

5. Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., Fichtner, W.: Algorithm
and VLSI architecture for linear MMSE detection in MIMO-OFDM systems. In:
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS
2006), May 2006

6. Wu, D., Eilert, J., Liu, D., Wang, D., Al-Dhahir, N., Minn, H.: Fast complex
valued matrix inversion for multi-user STBC-MIMO decoding. In: Proceedings of
IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2007), Porto Alegre
(2007)

7. Stewart, G.: Matrix Algorithms, Basic decompositions (1998)
8. Wu, M., Yin, B., Vosoughi, A., Studer, C., Cavallaro, J.R., Dick, C.: Approxi-

mate matrix inversion for high-throughput data detection in the large-scale MIMO
uplink. In: Proceedings of IEEE International Symposium Circuits and Systems
(ISCAS 2013), May 2013

9. Prabhu, H., Edfors, O., Rodrigues, J., Liu, L., Rusek, F.: Hardware efficient approx-
imative matrix inversion for linear pre-coding in massive MIMO. In: Proceedings
of IEEE International Symposium on Circuits and Systems (ISCAS 2014), June
2014

10. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base
station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010)

212 S.M. Abbas and C.-Y. Tsui

11. Peel, C.B., Hochwald, B.M., Swindlehurst, A.L.: A vector-perturbation technique
for near-capacity multiantenna multiuser communication-part I: channel inversion
and regularization. IEEE Trans. Commun. 53(1), 195–202 (2005)

12. Yoo, T., Goldsmith, A.: On the optimality of multiantenna broadcast schedul-
ing using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 24(3), 528–541
(2006)

13. Mehana, A.H., Nosratinia, A.: Diversity of MIMO linear precoding. IEEE Trans.
Inf. Theory 60(2), 1019–1038 (2014)

14. Biglieri, E., Proakis, J., Shamai, S.: Fading channels: Information-theoretic and
communications aspects. IEEE Trans. Inf. Theory 44(6), 2619–2692 (1998)

15. Scaglione, A., Stoica, P., Barbarossa, S., Giannakis, G., Sampath, H.: Optimal
designs for space-time linear precoders and decoders. IEEE Trans. Signal Process.
50(5), 1051–1064 (2002)

16. Jayaweera, S., Poor, H.: Capacity of multiple-antenna systems with both receiver
and transmitter channel state information. IEEE Trans. Inf. Theory 49(10), 2697–
2709 (2003)

17. Joham, M., Utschick, W., Nossek, J.: Linear transmit processing in MIMO com-
munications systems. IEEE Trans. Signal Process. 53(8), 2700–2712 (2005)

18. Abbas., S.M., Tsui., C.Y.: Low-latency approximate matrix inversion for high-
throughput linear pre-coders in massive MIMO. In: 2016 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Tallinn, pp. 1–5 (2016)

A Novel Hardware-Oriented Stereo Matching
Algorithm and Its Architecture Design in FPGA

Yanzhe Li1(B), Kai Huang1, and Luc Claesen2

1 Institute of VLSI Design, Zhejiang University, Hangzhou, China
{liyz,huangk}@vlsi.zju.edu.cn

2 Engineering Technology - Electronics-ICT Department,
Hasselt University, 3590 Diepenbeek, Belgium

luc.claesen@uhasselt.be

Abstract. Stereo matching is a crucial step to extract depth informa-
tion from stereo images. However, it is still challenging to achieve good
performance in both speed and accuracy for various stereo vision applica-
tions. In this contribution, a hardware-compatible stereo matching algo-
rithm is proposed and its associated hardware implementation is also
presented. The proposed algorithm can produce high-quality disparity
maps with the combined use of the mini-census transform, segmentation-
based adaptive support weight and effective refinement. Moreover, the
proposed architecture is optimized as a fully pipelined and scalable hard-
ware system. Implemented on an Altera Stratix-IV FPGA board, it can
achieve 65 frames per second (fps) for 1024 × 768 stereo images and a 64
pixel disparity range. The proposed system is evaluated on the Middle-
bury benchmark and the average error rate is 6.56%. The experimental
results indicate that the accuracy is competitive with some state-of-the-
art software implementations.

Keywords: Stereo matching · Hardware implementation · Real-time ·
High-quality

1 Introduction

Stereo vision is one of the most active research topics in computer vision and
it is widely used in many applications. Just recently, three dimensional televi-
sion (3DTV) and virtual reality gaming have become popular. They provide the
audience with a greater sense of presence in a computer-generated environment.
However, the requirement to wear additional eyeglasses is usually perceived
uncomfortable. In order to overcome the problem, autostereoscopic displays are
utilized to support glasses-free 3D depth perception. In this way, multiple views
are shown simultaneously so that the audience always sees a stereo pair from
predefined viewpoints regardless of his position. These multiple views need to be
generated by using depth-image based rendering (DIBR) from the original views
and their corresponding depth maps. Each depth map gives information about

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
T. Hollstein et al. (Eds.): VLSI-SoC 2016, IFIP AICT 508, pp. 213–232, 2017.
DOI: 10.1007/978-3-319-67104-8 11

214 Y. Li et al.

the distance between the camera and the objects in the 3D scene. Here the depth
maps can be extracted in stereo vision systems. Real-time depth image genera-
tion is also important in future advanced driver assistance systems (ADAS) as
well as self driving cars. Two or more cameras can assist in the distance calcula-
tion of other traffic, vehicles and objects while driving. In comparison to “Time
of Flight” cameras, stereo cameras can be used over much larger distances, and
can be used under various intensities of the environment (e.g. sun light).

Stereo matching, which is treated as the key operation in a stereo vision
system, takes a pair of rectified images, estimates the movement of each pixel
between two images and displays the associated movement in a disparity map.
The depth of a pixel is inversely proportional to the disparity of this pixel. As
a result, stereo matching is a complicated and time-consuming procedure. Con-
sidering that many applications often require high performance and real-time
processing speed, it is difficult for software implementations of stereo match-
ing algorithms on a CPU to meet these constraints. In this condition, hardware
acceleration of stereo matching algorithms is inevitable and it has been done
extensively using DSPs, GPUs and dedicated hardware. However, DSPs are lim-
ited by the computational ability and fail to support real-time processing; while
GPUs always result in excessive power consumption for embedded applications.
In contrary, the dedicated hardware approaches using FPGAs and ASICs can
provide a balance between computational power and energy efficiency.

In the presented research work, the mini-census and segmentation-based
ADSW algorithms are combined to achieve a high matching accuracy in depth
discontinuity regions. Different from many other hardware designs that lack
refinement, a disparity refinement with segmentation information is presented.
This refinement step can significantly improve the quality of initial disparity
maps in textureless and occluded regions. Moreover, a fully pipelined and scal-
able architecture is implemented based on the proposed algorithm. In order to
make a tradeoff between accuracy and speed, some techniques such as a sim-
plified weight function and an adaptive window size are applied. A prototype
of the proposed hardware system is built on an Altera FPGA board, which
achieves 65 fps for 1024 × 768 stereo images and a 64 pixel disparity range. The
system is evaluated on the Middlebury benchmark and the visual satisfactory
results are derived. The experimental results indicate that the proposed system
has the top-performing processing ability and its accuracy is competitive with
state-of-the-art software implementations.

In the rest of this contribution, Sect. 2 reviews the background of stereo
matching algorithms and some related work. Section 3 presents the proposed
algorithm. In Sect. 4, the hardware implementation based on the proposed algo-
rithm is described. Section 5 presents experimental results and compares them
with previous methods. Finally, Sect. 6 concludes the contribution.

A Novel Hardware-Oriented Stereo Matching Algorithm 215

2 Background and Related Work

2.1 Stereo Matching Background

Stereo matching algorithms aim to establish correspondence between a pair of
images. This requires a pixel-by-pixel search through the whole image, consuming
a large amount of computation power. To solve the problem, camera calibration
and image rectification are used as preprocessing steps for most stereo matching
algorithms. The preprocessing steps project each image to a common image plane
and align each epipolar line to a common axis. In this way, stereo matching is
reduced to a 1D search problem along the same horizontal scanline of the image
pair.

Given two calibrated and rectified images, stereo matching can be addressed
by searching for the corresponding pixel in the right image for each pixel in the
left. To make the results more reliable, a support region is built for each pixel
and the matching process is carried out over these regions instead of pixel by
pixel. For a pixel P (x, y) in the left image, its corresponding pixel P ′(x + d, y)
is searched on the same horizontal line in the right image, where 0 ≤ d <
Dmax, Dmax is the largest search distance and d is called the disparity. The
matching costs are calculated for each pixel pair in the support regions and then
aggregated. The smaller the aggregated matching cost is, the more similar the
support regions are. Thus, the corresponding pixel is defined as the anchor pixel
in the support region with the minimal aggregated matching cost.

2.2 Related Work

Nowadays, stereo matching algorithms can be divided into two groups: local
approaches and global approaches [1]. Since local approaches only utilize local
information, the accuracy is usually not sufficient in textureless and occluded
regions. On the other hand, while global approaches can show better results, they
are not yet suitable for real-time implementations due to their high computation
complexity [2].

Global approaches usually compute disparities based on a global cost opti-
mization. Dynamic programming (DP) [3] is a technique that optimizes dispar-
ity maps on a scanline in an efficient manner. Belief propagation (BP) [4] is a
global approach that has attracted much attention. It gathers information from
neighboring pixels and incorporates the information to update a smoothness term,
then iteratively optimizes the smoothness term to achieve global energy minimiza-
tion. Another popular technique explored by global approaches is graph cut [5]. Its
energy function presents three terms: the data term that represents the difference
between two corresponding pixels, the smoothness term that makes neighboring
pixels tend to have similar disparities and the occlusion term, which imposes a
penalty for making a pixel occluded. Although global approaches provide impres-
sive accuracy results, the real-time implementations for high resolution images are
challenging due to their computational complexity.

216 Y. Li et al.

Another type of stereo matching algorithms is the class of local approaches,
which compute disparities at a given point within a finite window. Early works
on local approaches evaluate the impact of different similarity measures [2]. Com-
mon window-based matching costs include the sum of absolute or squared differ-
ences (SAD/SSD), normalized cross correlation (NCC), census transforms and
mutual information [6]. Another important research topic that has been studied
is that of the support regions. The early conventional approach is to use fixed-size
square windows, which is easy to implement but suffers from severe artifacts. To
remedy this, variable window size [7] is developed and it can improve the dispar-
ity quality in textureless regions. A recent development with promising results is
to adapt the support weights in fixed-size windows. An adaptive support weight
(ADSW) algorithm [8] is proposed, which assigns different weights to the pixels
in a support window based on the proximity and color distances to the center
pixel. A segment support algorithm [9] assigns fixed weights to the pixels in the
same segment as the center pixel is in, and assigns weights to the pixels outside
the center pixels segment according to the color similarity between the outside
pixel and the center pixel. The disparity quality of [8,9] is comparable to some
of the complex global algorithms.

Compared to global approaches, local approaches are more suitable for dedi-
cated hardware implementation such as FPGAs and ASICs because of their low
computation complexity and storage requirement. A segmentation-based design
with adaptive support weight (ADSW) has been implemented on FPGAs [10].
Their proposed design can achieve 30 fps for 640 × 480 images using a disparity
range of 64 pixels. This design is inspired by the algorithm in [9], which used
to be the best local method on the Middlebury benchmark [11]. However, the
performance of the design is restricted by the small fixed window size. In [12],
a hardware solution provides high-quality disparity results in ASICs based on
the mini-census adaptive support weight (MCADSW) method. But this solution
only targets low resolution images. Its performance drops to 6 fps for 1024 ×
768 images and a 64 pixel disparity range. In [13], an algorithm is proposed
to achieve high accuracy based on mini-census and variable-cross methods and
a fully pipelined architecture is presented for real-time processing. The design
can process 1024 × 768 images with a disparity range of 64 pixels in 60 fps.
A. Akin proposes a hardware-oriented adaptive window size disparity estimation
(AWDE) algorithm and its real-time hardware implementation [14]. It can han-
dle 60 fps at a 1024 × 768 resolution for a 128 pixel disparity range. Although
the results in [13,14] are outstanding among hardware implementations, the
accuracy is not comparable to state-of-the-art software implementations.

3 Stereo Matching Algorithm

3.1 Algorithm Overview

In local stereo matching algorithms, cost calculation, cost aggregation, disparity
selection and disparity refinement are four well-defined steps [1]. Since the pro-
posed stereo matching algorithm belongs to local approaches, the mini-census

A Novel Hardware-Oriented Stereo Matching Algorithm 217

transform is used in the cost calculation step; the segmentation-based ADSW
algorithm is used in the cost aggregation step; and a tree-structure winner-takes-
all (WTA) method is used in the disparity selection step. The last step, dispar-
ity refinement, consists of three stages: consistency check, disparity voting and
invalid disparity inpainting. The flow of the proposed algorithm is illustrated
in Fig. 1. Two images are operated and the corresponding disparity maps are
generated simultaneously.

Window size
Determination

Window size
Determination

Mini-census
Transform

Mini-census
Transform

Weight
Generation

Weight
Generation

Hamming
Distance

Cost Aggregation Cost Aggregation

WTA(min cost) WTA(min cost)

Consistency Check Consistency Check

Disparity Voting Disparity Voting

Invalid disparity inpaint Invalid disparity inpaint

Image L Image R

Final Disparity L Final Disparity R

SegmentationSegmentation

Hamming
Distance

Fig. 1. Overview of the proposed algorithm.

In the cost calculation step, the mini-census transform is a hardware-friendly
census transform, which makes the matching cost robust to brightness bias and
exposure gain. It extracts a 6-pixel neighborhood information of the center pixel
within a support window and encodes the information into a vector. If a pixels
luminance is larger than the center pixels, a label 0 will be assigned to the
pixel. Otherwise, a label 1 will be assigned [12]. In this way, each pixel can be
represented by only 6 bits, which results in a reduction of the memory utilization
due to fewer storage bits. Then the matching cost is defined as the Hamming
distance between output vectors.

218 Y. Li et al.

In the cost aggregation step, the segmentation-based ADSW algorithm
employs the segmentation information within the weight cost function to increase
the robustness of the matching process. Rather than only relying on colour and
proximity, the use of segmentation takes the relationship between pixels and
the shape of the segments into account. It assumes that each pixel on the same
segment of the center pixel has a similar disparity value, and its weight is equal
to the maximum value of the range [9]. The weight coefficients wr and wl are
defined as

wr,l =

{
1.0 pi ∈ Sc

exp(−dc(Ir,l(pi),Ir,l(pc))
γc

) otherwise
(1)

where Sc is the segment of the central point, dc is the Euclidean distance between
two triplets in the CIELAB color space, and γc is a fixed parameter in the
algorithm. The final aggregated cost is calculated by summing up all the weighted
matching costs in the support windows Wr and Wl, and then normalized with
the sum of weight coefficients

C(pc, qc) =

∑
pi∈Wr,qi∈Wl

wr(pi, pc)wl(qi, qc)MC(pi, qi)∑
pi∈Wr,qi∈Wl

wr(pi, pc)wl(qi, qc)
(2)

where pc and qc are the central points of Wr and Wl, respectively. The cost
aggregation step is executed for all disparity levels and a number of aggregated
costs are produced.

In the disparity selection step, a tree-structure WTA method is used to pick
the disparity with the minimum aggregated cost, as depicted in Fig. 2. The aggre-
gated costs for the whole disparity range are arranged into groups. Here, the
disparity range and the size of a group are defined as 64 and 4, respectively. For
each group, the smallest value and the corresponding position are selected and
stored. Then after several times iteration, the minimum value among groups is
finally detected; its position is selected as the disparity result.

The advantage of using a tree-structure method is not only to reduce the
complexity of the search operation. It also fits the dataflow within FPGAs very
well. Thus, it can be highly pipelined and the throughput increased up to one
disparity range per clock cycle.

In the disparity refinement step, the initial disparity maps are operated. The
consistency check is used to check whether disparity maps are valid or not.
With the help of segmentation information, a left-to-right consistency check is
expressed as

Vp = (dp(x, y) == d′
p(x − dp(x, y), y)) & (Sp == S′

p). (3)

In the process of left-to-right consistency check, for each pixel p in the left image,
the corresponding pixel p′ in the right image is determined by the disparity dp.
Then the right image’s disparity d′

p and segmentation S′
p will be compared to dp

and Sp of the left image, respectively. If the expression is calculated as false, the

A Novel Hardware-Oriented Stereo Matching Algorithm 219

...

...

Position Value

... ...
Select the
Smallest

Disparity

Select the
Smallest

Position PositionValue Value

Select the
Smallest

Select the
Smallest

C(p,q1) C(p,q2) C(p,q3) C(p,q4) C(p,q5) C(p,q6) C(p,q7) C(p,q8)

Position Value

Select the
Smallest

C(p,q61) C(p,q62) C(p,q63) C(p,q64)

Position Value

Select the
Smallest...

Iteration 1

Iteration 2

Iteration n

Fig. 2. Tree-structure WTA method.

left-to-right consistency check will fail and the disparity will be marked as invalid.
It is noted that this process can also be utilized for a right-to-left consistency
check.

After the consistency check, the disparity voting will update the center dis-
parity based on the most frequent valid disparity in its local support window.
This is because adjacent pixels that belong to the same object in an image should
share the same disparity. Although the disparity voting helps to remove many
invalid disparities, it will fail if the window does not contain any valid dispari-
ties. In order to address this problem, the disparity inpainting will replace the
invalid disparity with the closest valid disparity on its scanline so as to get the
final disparity maps. It is worthy to note that the median filtering is not used
in the design because of its complicated hardware implementation but limited
quality improvement.

3.2 Hardware-Oriented Optimization

To reduce the computation complexity and improve the hardware compatibility
of the algorithm, some optimizations are proposed in this subsection and will be
applied to the shaded blocks in Fig. 1. These hardware-oriented optimizations
affect the accuracy of the final disparity maps slightly.

In the window size determination block, a method called AWDE [14] is intro-
duced to make a tradeoff between accuracy and speed. It uses three different
window sizes for different textures on the image; the window size is determined
by the mean absolute deviation (MAD) of the pixel in the center of a 7 × 7
block, which is expressed as

220 Y. Li et al.

MAD(c) =

∑
q∈Nc

|It(q) − It(c)|

48
. (4)

A high MAD value indicates a high texture content, while a low MAD value is
a sign of a low texture content. As expressed in (5), a 7 × 7 window is used if
the MAD of the center pixel is high, and a 25 × 25 window is used if the MAD
is very low.

window size =

⎧⎪⎨
⎪⎩

7 × 7 MAD(c) > th7

13 × 13 th13 < MAD(c) ≤ th7

25 × 25 MAD(c) ≤ th13

(5)

As a general rule, increasing the window size increases the hardware complexity.
In order to provide constant hardware complexity over the three different window
sizes, a total of 49 pixels are constantly sampled with different intervals for
different window sizes. In this way, a low computation cost is required for large
support window sizes.

In the segmentation block, the segmentation-based ADSW algorithm [9] uses
mean shift segmentation. However, the computational complexity and memory
requirements make it unsuitable for real-time applications. In our algorithm, the
image is divided into segments using thresholding [10]; this method is simple
and can be implemented in hardware efficiently.

In the weight generation block, in order to replace signed floating-point num-
bers with unsigned integers, the YUV color representation is adopted instead of
the CIELAB color representation. In addition, only the luminance channel (Y) is
used in the design to reduce the potential bandwidth and storage requirements.
Rather than Euclidean distance, Manhattan distance is used to avoid square and
square root computations. Furthermore, for the pixel whose luminance is similar
to the center pixel in the support window, it should be allowed to have more
influence on the final matching cost. Therefore, a scale-and-truncate approxi-
mation of the weight function is proposed, and the curve is shown in Fig. 3. As
a result, the multiplication of the weight coefficients is reduced to a left shift
operation.

In the disparity voting block, a local support window is applied to achieve
a reliable result. A vertical-horizontal approach is used to efficiently determine
the most frequent valid disparity in the window, as shown in Fig. 4. Here the
numbered shaded squares indicate valid disparities, which are used to update
the center disparity. First, the approach searches for the majority disparity ver-
tically in each column. Then it searches for the majority disparity horizontally
and finally selects it as the center disparity. To further reduce the computation
complexity, the approach also reduces the internal bandwidth.

A Novel Hardware-Oriented Stereo Matching Algorithm 221

0

10

20

30

40

50

60

70

0 50 100 150 200
Sc

al
ed

 W
ei

gh
t

Luminance Distance

Fig. 3. Weight function.

88777
77777577

8777775
88877777667

877776777566
777777776
87776666

777787766
88777776777

7777777
887767777

777767755
87767

8877777777667 7

Fig. 4. The vertical-horizontal approach for disparity voting.

4 Hardware Implementation

4.1 Architecture Overview

In this section, a hardware architecture is designed based on the proposed algo-
rithm. The whole system consists of three stages: pre-processing, stereo-matching
and post-processing. First, in the pre-processing stage, pixel-based operations
are performed on each pixel and the temporary results are stored into the line
buffers. Then these temporary results are operated in the stereo-matching stage
in order to calculate initial disparity maps. When the initial disparity maps are
available, they will be refined in the post-processing stage. The top-level block
diagram of the proposed hardware architecture is shown in Fig. 5; the implemen-
tation details of the three stages will be discussed in the following subsections.

One key feature of the proposed system is high processing ability. To achieve
this goal, the architecture is designed to be fully pipelined without external mem-
ory limitation. All of the three stages are fully pipelined, i.e. source image pixels
are fetched and operated in scanline order; initial disparity maps are generated
in pipeline using a parallelism scheme; finally the disparity maps are refined in
scanline order after a certain pipeline latency. External memory bandwidth is
also an important limitation to the processing ability. In order to solve the prob-
lem in our design, each pixel is read only once from the external memory during

222 Y. Li et al.

Memory Controller

DDR2

24 bits Image L

Rgb2yuv

Segmentation

8 bits

Mini-
census

24 bits Image R

4 bits
6 bits

Synchronous Logic
12 bits 12 bits

Line buffer RLine buffer L

Pre-
processing

By pas sF IFO
(8

bit s)

d=0
d=1
d=2

d=Pdis-1

ControlU
nit L

4 bits

4 bits

12 bits
10 bits

10 bits12 bits

.

.

.

Prow

Cost Aggregator

WTA(min)

L-R Disparity
Output Logic

8 bits 8 bits

Pdis*Prow*8
bits

12 bits 12 bits

Stereo-
matching

L-R Consistency Check

9 bits 9 bits

Disparity voting

9 bits 9 bits

Disparity inpainting

Disparity R 8 bitsDisparity L 8 bits

Post-
processing

Window size
determination

2 bits

Rgb2yuv

Segmentation

8 bits

Mini-
census

4 bits
6 bits

Window size
determination

2 bits

Weight Generator L

L

.

.

.

Prow

Cost Aggregator
R

Cont rolU
n itR

Weight Generator R
Weight Generator L

Weight Generator R

Fig. 5. Block diagram of the proposed architecture. (Color figure online)

the whole processing flow. In this case, dual-port BRAMs are used as buffers to
store original pixel data and temporary intermediate results.

Another key feature of the proposed system is scalability. The design can be
scaled with image resolution, disparity range and parallelism degree to achieve
maximum flexibility. The image resolution is related to the user demand, while
the disparity range is configured depending on the expected distance to the
objects. Configuring the hardware for low image resolution and disparity range
increases the processing speed. In contrast, high image resolution and disparity
range lead to a high accuracy. The parallelism degree is used to indicate how
many disparities are calculated in parallel, which can make a tradeoff between
resource utilization and processing speed.

4.2 Pre-processing Stage

In the preprocessing stage, 24-bit source pixels of RGB will be fetched from
the DDR2 memory once the system is started. The RGB pixels are treated as
the input to the color space converters (rgb2yuv). Hereafter 8-bit Y values are
generated from the converters and will be utilized to produce 12-bit temporary
results in the three submodules.

As displayed in the green dotted box in Fig. 5, 4 bits of the 12-bit temporary
result are generated in the segmentation module. In this module, the number of

A Novel Hardware-Oriented Stereo Matching Algorithm 223

segments k is given as input. A segmentation label is calculated using a simple
method that multiplies the Y value by the value of k/256. Note that k is always
defined as 16 in our system. In this way, the shift operation can be exploited
instead of multiplication, and the label can be expressed within 4 bits. Another 6
bits come from the mini-census transform module. Here the center pixel is com-
pared with its surrounding 6 pixels, and a 6-bit mini-census vector is obtained as
the comparison result. The last 2 bits are produced in the window size determi-
nation module. The MAD of the center pixel in a 7 × 7 block is calculated, and
then the 2-bit window size is assigned based on the MAD value. Since all the
operations in the submodules are window-based, a register matrix is employed
to provide pipelined processing, as shown in Fig. 6. The whole register matrix of
7 × 7 is used for window size determination; the 6 green registers are used for
the mini-census transform; the red one in the center is used for segmentation.
The Y values will be shifted from the left to the right in the register matrix per
clock cycle. Meanwhile, a total of 12 bits will be written into the line buffer as
the temporary result for each pixel.

rgb2yuv

24-bit RGB 8-bit Y Reg Matrix

12 bits

Line
Buffer

DDR2

Fig. 6. Pipeline architecture in the pre-processing stage. (Color figure online)

4.3 Stereo-Matching Stage

In the stereo-matching stage, it is challenging to develop an efficient parallelism
scheme for cost aggregation due to the requirement for real-time processing
speed. Many hardware systems calculate all the disparities in parallel and process
pixel by pixel. It is simple to implement but inefficient. In our system, a hybrid
parallelism scheme [15] is adopted. It combines the row-level parallelism Prow

with the disparity-level parallelism Pdis. The row-level parallelism means that
Prow pixels in neighboring rows are processed in parallel, and the disparity-level
parallelism means that Pdis disparities are processed for each pixel. Thus, the
parallelism degree is Prow × Pdis in the proposed system. As shown in the red
dotted box in Fig. 5, a total of Pdis × 2 aggregation modules are generated to
deal with different disparities for both images, while Prow pixels are processed
in each aggregation module. Here the generate statement in Verilog is used for
these two parameters to make the hardware architecture scalable.

To satisfy the row-level parallelism, Prow pixels along the column direction
are processed in parallel. Therefore the line buffer is composed of (Prow +6) dual
port BRAMs to build a wide throughout, and the size of the register matrix in
the pre-processing stage is extended to (Prow+6)×7. Source data and temporary

224 Y. Li et al.

results in each column of the matrix can be reused to reduce the computational
requirements, because a column is usually a part of multiple horizontally over-
lapping windows.

In each aggregation module, the weight generators are utilized to generate
weight coefficients using the 4-bit segmentation labels in the temporary results.
The circuit of the weight generator is shown in Fig. 7; the look-up table (LUT)
is a straightforward solution that consumes a low amount of hardware resources.
Meanwhile in the cost aggregator, 49 Hamming distances are generated as match-
ing costs between corresponding pixels in the support windows Wr and Wl. These
matching costs are shifted by the corresponding weight coefficients wr and wl.
The final aggregated cost is calculated by summing the weighted costs using a
tree adder, then dividing it by the sum of weight coefficients. The architecture
of the cost aggregator is illustrated in Fig. 8. Then, the disparity with the min-
imum aggregated cost is selected in the WTA module. In addition, the Bypass
FIFO is used to store the segmentation label of each pixel for the next stage.
The output of the stereo-matching stage is a data stream that consists of the
initial disparity maps and their corresponding segmentation labels.

|x-y| Weight LUT
Seg(q)

Seg(c)
W(i,j)

4
3

4

Fig. 7. Circuit of the weight generator.

Fig. 8. Architecture of the cost aggregator.

A Novel Hardware-Oriented Stereo Matching Algorithm 225

4.4 Post-precessing Stage

In the post-precessing stage, three submodules work in pipeline to generate the
final disparity maps, as shown in the yellow dotted box in Fig. 5. First, the initial
disparity maps of both images are used to check the consistency of every pixel
with the help of the segmentation information in the consistency check module.
The module generates one more bit to label whether each disparity is valid or
not.

Then in the disparity voting module, the disparities are updated in a 25 × 25
support window using the vertical-horizontal method. To enable a fully pipelined
implementation, a bitwise fast voting technique [16] is applied to handle the most
frequent valid disparity value. For each column, it drives each bit of the most
frequent disparity independently from the other bits. In this way, the hardware
cost depends on the number of the disparity bits in binary. It is noted that when
counting bit votes, the valid information of each disparity must be taken into
account. The architecture of bitwise fast voting for one column is shown in Fig. 9.
Since the support window size is 25 × 25, the 25 most frequent disparities for
the 25 columns are derived. The same technique is applied to the 25 derived
disparities and finally the most frequent valid disparity in the support window
is picked as the center disparity.

c_1 c_2 c_3 ... c_24 c_25

srl

. . .

>

con_sum 5

con_sum

AdderTree

c_1

c_2

...

&

&

D1_bit0

D2_bit0

c_3 &D3_bit0

c_24 &D24_bit0

c_25 &D25_bit0

Bit0
Bit1
Bit2

...Bitn-2
Bitn-1

...
n

disparity

Adder Tree

Fig. 9. Architecture of bitwise fast voting.

After the disparity voting, most invalid disparities will be updated to valid
ones only by their valid neighbours. In the disparity inpainting module, the
remaining invalid disparities are replaced with the closest valid ones. At the
end, the refined disparity maps are written out in scanline order.

226 Y. Li et al.

5 Experimental Results

A prototype of the proposed system has been implemented on an Altera EP4SGX-
230 FPGA board. It is evaluated using rectified synthetic stereo images, initially
stored in the DDR2 memory. In addition, the system is designed to be scaled
with image resolution, disparity range and parallelism degree. Unless stated oth-
erwise, the image resolution is defined as 1024 × 768, the disparity range as 64,
the row-level parallelism Prow as 4, and the disparity-level parallelism Pdis as 8 in
our design. The evaluation results of three important aspects — resource utiliza-
tion, processing speed and quality evaluation — are elaborated in the following
subsections.

5.1 Resource Utilization

Table 1 lists the detailed resource utilization of the FPGA prototype. The pro-
posed system occupies 80% of the ALUTs, 58% of the registers, and 16% of the
memory bits on the FPGA board, and can operate at 120 MHz. As shown in
Table 1, the majority of the ALUTs and registers are consumed in the stereo-
matching stage, which is mainly composed of the weight generators and the cost
aggregators. So the resource utilization is mainly determined by the parallelism
degree in the proposed system. The two parameters, the disparity-level paral-
lelism Pdis and the row-level parallelism Prow, can be scaled to make the system
more flexible. To make a tradeoff between resource utilization and processing
speed, Pdis is 8 and Prow is 4 in the current system. On the other hand, the
memory bits are mostly used as line buffers to store original pixel data and
temporary results.

Table 1. Resource utilization report

Altera EP4SGX230 ALUTs total:
228000

Registers
total: 228000

Memory
bits total:
17133000

Pre-processing 4170 2286 1015808

Stereo-matching 158496 120292 1638400

Post-processing 18852 9684 28672

Whole system 181518 132262 2682880

5.2 Processing Speed

The processing speed of stereo matching is given by million disparity estima-
tions per second (MDE/s), which is calculated by (image resolution × disparity
range × frame rate). Table 2 presents a comparison between some exiting imple-
mentations and the proposed system. It is shown that CPU and GPU based
implementations can hardly achieve real-time speed with high resolution images.

A Novel Hardware-Oriented Stereo Matching Algorithm 227

Table 2. Processing speed comparison

Design Platform Image size Disparity range FPS MDE/s

Shan et al. [15] FPGA 1280 × 1024 256 46 15437

MCADSR [17] FPGA 1024 × 768 128 129 13076

AWDE-IR [14] FPGA 1024 × 768 128 60 6040

Zhang et al. [13] FPGA 1024 × 768 64 60 3019

Wang et al. [18] FPGA 1024 × 768 96 31.8 2400

Ttofis et al. [10] FPGA 640 × 480 64 30 589

MCADSW [12] ASIC 352 × 288 64 42 272

AD-Census [19] GPU 450 × 375 60 10.6 107

Yang et al. [20] GPU 640 × 360 20 10 46

VariableCross [21] CPU 450 × 375 60 0.63 13

SemiGlobal [22] CPU 450 × 375 64 0.55 6

Proposed FPGA 1024 × 768 64 65 6543

For FPGA based implementations, the achievable processing speed is usually
limited by the available hardware resources, such as on-chip memories. The pro-
posed system is able to achieve 65 fps for 1024 × 768 images with a disparity
range of 64 pixels. Although the design in [15] has the highest processing speed,
it is based on a simple SAD matching method that leads to low accuracy. Like-
wise, the system in [17] improves the accuracy with variable support regions,
but its disparity quality is still worse than that of the proposed system.

5.3 Quality Evaluation

To discuss the quality of the proposed system, the disparity maps are evalu-
ated based on the Middlebury benchmark using the percentage of bad pixels
on different regions, a commonly accepted metric [1]. Table 3 lists the accuracy
comparison with some state-of-the-art implementations. The average error rate
of the final disparity maps in the proposed system is 6.56%. The first row shows
the results of the AD-Census algorithm implemented on GPUs. However, it is
challenging to realize it into an FPGA because of its multi disparity enhance-
ment functions. The design in [18] utilizes cross-based regions and semi-global
optimization on an FPGA, but its high accuracy is achieved at the expense of
the decreased processing speed. The SegSupport algorithm outperforms the pro-
posed design slightly but fails to reach real-time performance. The algorithms in
[21,22], which are also software implementations, have a higher error rate than
the proposed algorithm. To summarize, the comparison shows that the accuracy
of the disparity maps is not only among the best in hardware accelerated stereo
systems, but also competitive with state-of-the-art software implementations.

228 Y. Li et al.

Table 3. Accuracy comparison on the middlebury benchmark

Data set Tsukuba Venus Teddy Cones Average

error rate

Evaluation nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AD-Census [19] 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95 3.97

Wang et al. [18] 1.93 2.95 7.90 0.61 1.43 2.87 6.44 13.8 16.0 2.37 11.1 6.70 6.17

SegSupport [9] 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77 6.44

MCADSW [12] – 2.80 – – 0.64 – – 13.7 – – 10.1 – all = 6.81

SemiGlobal [22] 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90 7.50

VariableCross [21] 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

MCADSR [17] 3.62 4.15 14.0 0.48 0.87 2.79 7.54 14.7 19.4 3.51 11.1 9.64 7.65

Zhang et al. [13] 3.84 4.34 14.2 1.20 1.68 5.62 7.17 12.6 17.4 5.41 11.0 13.9 8.20

Ttofis et al. [10] 4.48 6.04 12.7 6.01 7.47 18.2 21.5 28.1 28.8 17.1 25.9 25.8 16.8

Result11 9.86 11.3 19.3 5.44 7.64 17.9 10.3 19.3 22.4 4.88 15.3 12.3 13.0

Result22 3.50 3.98 11.7 0.44 0.71 5.66 4.60 9.25 16.1 3.34 8.64 10.8 6.56

1The error rate of the initial disparity maps before the disparity refinement step.
2The error rate of the final disparity maps in the proposed system.

Input image

Ground truth

Tsukuba Venus Teddy Cones

Proposed
result without
refinement

Final result

Fig. 10. True disparity maps and experimental results.

The disparity maps of the four data sets Tsukuba, Venus, Teddy and Cones
are displayed in Fig. 10, and the final disparity maps are compared with the initial
disparity maps to demonstrate the effect of the disparity refinement. Some of
them are generated from the left images, and the others are generated from the

A Novel Hardware-Oriented Stereo Matching Algorithm 229

Input image Ground truth
Proposed result

without refinement Final result

Art

Cloth2

Fig. 11. Evaluation results on high-definition images.

Left

Right

Real-world images
Proposed result

without refinement Final result

Fig. 12. Evaluation results on real-world images.

right images. In this way, the proposed system is comprehensively evaluated. It is
observed that the refinement step contributes significantly to the final disparity
maps and many visual improvements are obvious, including the elimination of
speckle noise, fewer errors at the image borders and sharply delineated edges.
The quantitative results in Table 3 also verify it.

The resolutions of the data sets Tsukuba, Venus, Teddy and Cones are all
smaller than that of VGA. To further evaluate the proposed design, some high-
definition images in the benchmark are used with a disparity range of 128 pixels.
The results of the data sets Art and Cloth2 captured at different viewpoints are

230 Y. Li et al.

shown in Fig. 11. The overall error rates are 12.85% and 4.67%, respectively.
The proposed system provides quite clear and smooth disparity maps and the
accuracy is comparable to the low-definition results.

The reference images in the benchmark are all well captured and rectified so
that the results are quite accurate. But the quality of the disparity maps for real-
world images may decrease due to some undesirable factors, such as luminance
differences and rectification errors. The proposed system is further evaluated
by real-world images to prove its robustness. The images are captured by two
adjacent cameras in a office, and then rectified by the toolbox in Matlab 2016b.
Here the image resolution is 460 × 460, and the disparity range for the real-world
images is defined as 45. It is noted that our system still provides high-quality
disparity maps for the real-world images, as shown in Fig. 12.

6 Conclusion

This contribution has proposed a stereo matching algorithm based on the mini-
census transform and the segmentation-based ADSW. The disparity refinement
step with segmentation information has been presented and the quality of dispar-
ity maps has been improved significantly. Furthermore, a fully pipelined and scal-
able hardware architecture is designed with hardware-oriented optimizations. A
prototype of the hardware system has been built on an Altera Stratix-IV FPGA
board. The design is evaluated on the Middlebury benchmark and the average
error rate is 6.56%. The experimental results have shown that our hardware sys-
tem has the top-performing processing ability and its accuracy is competitive
with state-of-the-art software implementations. In the future, we will introduce a
part of global matching algorithms to achieve higher accuracy of disparity maps.

Acknowledgment. The research in this contribution was sponsored in part by the
Belgian FWO (Flemish Research Council) and the Chinese MOST (Ministry of Science
and Technology) bilateral cooperation project number G.0524.13.

References

1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

2. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE
Press, Minneapolis (2007)

3. Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 384–390. IEEE
Press, San Diego (2005)

4. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief
propagation and a self-adapting dissimilarity measure. In: 18th International Con-
ference on Pattern Recognition (ICPR 2006), pp. 15–18. IEEE Press, Hang Kong
(2006)

A Novel Hardware-Oriented Stereo Matching Algorithm 231

5. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 103–110.
IEEE Press, Kauai (2001)

6. Hirschmuller, H.: Accurate and efficient stereo processing by semiglobal matching
and mutual information. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 807–814, San Diego (2005)

7. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive win-
dow: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16, 920–932
(1994)

8. Yoon, K.-J., Kweon, I.-S.: Adaptive support-weight approach for correspondence
search. IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006)

9. Tombari, F., Mattoccia, S., Stefano, L.: Segmentation-based adaptive support
for accurate stereo correspondence. In: Mery, D., Rueda, L. (eds.) PSIVT
2007. LNCS, vol. 4872, pp. 427–438. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77129-6 38

10. Ttofis, C., Theocharides, T.: Towards accurate hardware stereo correspondence: a
real-time FPGA implementation of a segmentation-based adaptive support weight
algorithm. In: Proceedings of the Conference on Design, Automation & Test in
Europe, Conference and Exhibition (DATE), pp. 703–708. IEEE Press, Germany
(2012)

11. Middlebury benchmark. http://vision.middlebury.edu/stereo/
12. Chang, N.Y.-C., Tsai, T.-H., Hsu, B.-H., Chen, Y.-C., Chang, T.-S.: Algorithm

and architecture of disparity estimation with mini-census adaptive support weight.
IEEE Trans. Circ. Syst. Video Technol. 20, 792–805 (2010)

13. Zhang, L., Zhang, K., Chang, T.S., Lafruit, G., Kuzmanov, G.K., Verkest, D.:
Real-time high-definition stereo matching on FPGA. In: 19th ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, pp. 55–64. ACM Press,
Monterey (2011)

14. Akin, A., Baz, I., Schmid, A., Leblebici, Y.: Dynamically adaptive real-time dis-
parity estimation hardware using iterative refinement. Integr. VLSI J. 47, 365–376
(2014)

15. Shan, Y., Wang, Z., Hao, Y., Wang, Y., Tsoi, K., Luk, W., Yang, H.: FPGA
based memory efficient high resolution stereo vision system for video tolling. In:
International Conference on Field-Programmable Technology (FPT), pp. 29–32.
IEEE Press, Seoul (2012)

16. Zhang, K., Lu, J., Lafruit, G., Lauwereins, R., Gool, L.V.: Real-time accurate
stereo with bitwise fast voting on CUDA. In: 12th International Conference on
Computer Vision Workshops (ICCV Workshops), pp. 794–800. IEEE Press, Kyoto
(2009)

17. Shan, Y., Hao, Y., Wang, W., Wang, Y., Chen, X., Yang, H., Luk, W.: Hard-
ware acceleration for an accurate stereo vision system using mini-census adaptive
support region. ACM Trans. Embed. Comput. Syst. 13, 1–24 (2014)

18. Wang, W., Yan, J., Xu, N., Wang, Y., Hsu, F.H.: Real-time high-quality stereo
vision system in FPGA. In: International Conference on Field-Programmable Tech-
nology (FPT), pp. 358–361. IEEE Press, Kyoto (2013)

19. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate
stereo matching system on graphics hardware. In: 14th International Conference
on Computer Vision Workshops (ICCV Workshops), pp. 467–474. IEEE Press,
Barcelona (2011)

http://dx.doi.org/10.1007/978-3-540-77129-6_38
http://dx.doi.org/10.1007/978-3-540-77129-6_38
http://vision.middlebury.edu/stereo/

232 Y. Li et al.

20. Yang, Q., Li, D., Wang, L., Zhang, M.: Fast local stereo matching using two-
level adaptive cost filtering. In: International Conference on Acoustics, Speech and
Signal Processing, pp. 1986–1990. IEEE Press, Vancouver (2013)

21. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal
integral images. IEEE Trans. Circ. Syst. Video Technol. 19, 1073–1079 (2009)

22. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)

Author Index

Abbas, Syed Mohsin 192
Afzali-Kusha, Ali 41
Alioto, Massimo 152
Amrani, Elad 24

Bernardi, Paolo 130
Borrione, Dominique 108
Bosio, Alberto 130

Calimera, Andrea 60, 152
Claesen, Luc 213

Di Natale, Giorgio 130
Drori, Avishay 24

Ecker, Wolfgang 83, 173
Esen, Volkan 173

George, Sumitha 1
Guerriero, Andrea 130

Hemmat, Maedeh 41
Huang, Kai 213

Kamal, Mehdi 41
Kvatinsky, Shahar 24

Li, Xueqing 1
Li, Yanzhe 213

Ma, Kaisheng 1
Macii, Enrico 60, 152
Morin-Allory, Katell 108

Narayanan, Vijaykrishnan 1

Pedram, Massoud 41
Peluso, Valentino 152
Peter, Hans-Jörg 108
Plassan, Guillaume 108
Poncino, Massimo 60

Rath, Alexander W. 173
Rizzo, Roberto G. 152

Sampson, John 1
Sanchez, Ernesto 130
Sarwary, Shaker 108
Schreiner, Johannes 83
Simon, Sebastian 173

Tenace, Valerio 60
Tsui, Chi-Ying 192

Venini, Federico 130

Wald, Nimrod 24

	Preface
	Organization
	Contents
	Enabling Internet-of-Things with Opportunities Brought by Emerging Devices, Circuits and Architectures
	Abstract
	1 Introduction
	2 IoT Systems and Efficiency Bottlenecks
	2.1 A General IoT System
	2.2 Bottlenecks and Existing Efforts

	3 Emerging Beyond-CMOS Devices
	3.1 TFET
	3.2 NCFET

	4 New Opportunities Enabled by Emerging Devices, Circuits, and Architectures
	4.1 Energy Harvesters and Sensors with Higher Efficiency
	4.2 Analog Processing and Communication
	4.3 Energy-Efficient Volatile Digital Logic
	4.4 Energy-Efficient Nonvolatile Logic and Memory Circuits
	4.5 Nonvolatile Computing Architectures

	5 Future Work for IoT Using Emerging Devices
	6 Conclusion
	Acknowledgements
	References

	Logic with Unipolar Memristors – Circuits and Design Methodology
	Abstract
	1 Introduction
	2 Unipolar Memristors
	3 A Unipolar Memristive Logic Gate Example
	3.1 Operation Principle
	3.2 OR Gate
	3.3 NOT Gate
	3.4 Timing Considerations
	3.5 Evaluation and Comparison

	4 Methodology for Stateful Memristive Logic Design
	5 Design Procedure for a Novel Unipolar Memristor Based Logic Gate
	6 Conclusions
	References

	Robust Hybrid TFET-MOSFET Circuits in Presence of Process Variations and Soft Errors
	Abstract
	1 Introduction
	2 TFET Device and Its Characteristics
	2.1 TFET Device Model
	2.2 Comparison of TFET and MOSFET Operation

	3 Hybrid TFET-MOSFET Circuits
	3.1 Why Hybridization?
	3.2 Proposed Heuristic Hybridization Algorithm

	4 Results and Discussion
	4.1 Simulation Framework
	4.2 Comparison of Different Implementation Efficiencies

	5 Conclusion
	References

	Logic Synthesis for Silicon and Beyond-Silicon Multi-gate Pass-Logic Circuits
	1 Introduction
	1.1 CMOS at the End of the Line
	1.2 Candidates to Replace the CMOS Technology
	1.3 Lack of Logic Synthesis Tools for PTL
	1.4 Contribution of This Work

	2 Multi-Gate Pass Logic
	2.1 Pass-Gate Devices
	2.2 Delay and Power Modeling of MGPL Circuits

	3 Building MFPDS
	3.1 Multi-function Decomposition
	3.2 Multi-Function Pass Diagrams (MFPDs)

	4 Algorithms
	4.1 Building MFPD
	4.2 Optimization

	5 Simulation Results
	5.1 Efficiency of Reduction Rules During MFPD Optimization
	5.2 Compactness of the MFPD Model and Execution Time
	5.3 Many Technologies, One Synthesis Methodology
	5.4 Power and Performance Efficiency of MGPL Circuits

	6 Conclusions
	References

	Digital Hardware Design Based on Metamodels and Model Transformations
	1 Introduction
	2 Model-Driven Architecture
	2.1 The OMG Model-Driven Architecture Vision
	2.2 Model-Driven Architecture for Hardware Development

	3 Framework
	3.1 The Overall Framework
	3.2 Auxiliary Metamodels

	4 The Model-of-Things Layer
	5 The Model-of-Design Layer
	5.1 The MetaRTL Metamodel
	5.2 Templates-of-Design
	5.3 Model-of-Things Instances for Template-of-Design Construction
	5.4 Connectivity Resolution

	6 The Model-of-View Layer
	6.1 Automated View Generation from Model-of-View Instances
	6.2 View Language Descriptions

	7 Application and Results
	7.1 Model-of-Things of the CPU Core Defined by the MetaRISC Metamodel
	7.2 Assembly of a Template-of-Design for Micro-Architecture Generation
	7.3 Results and Discussion

	8 Related Approaches
	9 Summary and Outlook
	References

	Improving the Efficiency of Formal Verification: The Case of Clock-Domain Crossings
	1 Introduction
	2 Clock-Domain Crossing Issues
	2.1 Metastability and Multi-flops
	2.2 Coherency with Gray-Encoding or Enable Control
	2.3 Data Loss and Handshake
	2.4 Performance with FIFO

	3 Current Verification Approach
	3.1 Structural Checks
	3.2 Functional Checks
	3.3 Limitation
	3.4 Root Causes of Inconclusive Results

	4 User-Aided Abstraction Refinement
	4.1 Localization Abstractions
	4.2 The Core Algorithm
	4.3 Analysis of Abstract Counterexamples
	4.4 Soundness, Completeness, Validity

	5 Case Study
	5.1 Asynchronous FIFO
	5.2 CPU Subsystem

	6 Related Work
	7 Conclusion and Outlook
	References

	Improving Stress Quality for SoC Using Faster-than-At-Speed Execution of Functional Programs
	Abstract
	1 Introduction
	2 Background
	3 Proposed Approach
	3.1 Analysis Flow for Understanding SoC Behaviour
	3.2 Processor Level Analysis and Classification of Functional States
	3.3 Proposed Methodology for Generating Stress Programs

	4 Experimental Results
	4.1 Execution of Functional Programs
	4.2 Automatic Generation of Functional Stress Programs

	5 Conclusions
	References

	Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping
	1 Introduction
	2 Previous Works
	2.1 Approaching Ideal-DVFS
	2.2 Within the Core Power Management

	3 Implementing FINE-VH
	3.1 Design and Optimization
	3.2 Simulation and Emulation

	4 Simulation Results
	4.1 The RI5CY Benchmark
	4.2 Experimental Set-Up
	4.3 Results

	5 Conclusions and Final Remarks
	References

	Earth Mover's Distance as a Comparison Metric for Analog Behavior
	1 Introduction
	2 Related Work
	3 Earth Mover's Distance
	3.1 Ground Distance
	3.2 Algorithmic Concept

	4 Assessment
	4.1 Deviations
	4.2 Comparable Algorithms
	4.3 Results

	5 Case Study
	5.1 Application
	5.2 Results

	6 Conclusion and Outlook
	References

	Approximate Matrix Inversion for Linear Pre-coders in Massive MIMO
	1 Introduction
	2 System Model
	2.1 Linear Pre-coding at the Transmitter

	3 Approximate Matrix Inversion
	4 Proposed Method
	5 Performance Analysis
	6 Proposed Architecture
	6.1 Seed Inversion Unit (X-1)
	6.2 Seed Multiplication Unit (X-1Z)
	6.3 Generic Multiplication Unit (IK-X-1Z)n

	7 Timing Analysis
	8 Implementation Results
	9 Conclusion
	References

	A Novel Hardware-Oriented Stereo Matching Algorithm and Its Architecture Design in FPGA
	1 Introduction
	2 Background and Related Work
	2.1 Stereo Matching Background
	2.2 Related Work

	3 Stereo Matching Algorithm
	3.1 Algorithm Overview
	3.2 Hardware-Oriented Optimization

	4 Hardware Implementation
	4.1 Architecture Overview
	4.2 Pre-processing Stage
	4.3 Stereo-Matching Stage
	4.4 Post-precessing Stage

	5 Experimental Results
	5.1 Resource Utilization
	5.2 Processing Speed
	5.3 Quality Evaluation

	6 Conclusion
	References

	Author Index

