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Pulmonary Hypertension 
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Abstract

Chronic neonatal lung disease is a common complication of preterm birth 
for which no effective preventive or rescue therapies currently exist. This 
condition has been and remains associated with serious pulmonary and 
neurological sequelae that have major lifelong health implications. 
Pulmonary hypertension is a common and important associated phenom-
enon, contributing to high mortality. Considerable gaps in knowledge 
exist, particularly with respect to pathogenesis, natural history, mecha-
nisms contributing to right ventricular failure and the role, if any, of pul-
monary vasodilators. Addressing these gaps will require careful prospective 
study of at-risk infants and improved understanding of pathophysiological 
mechanisms employing relevant animal models.
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 Bronchopulmonary Dysplasia

Positive pressure ventilation for the treatment of 
respiratory distress syndrome in prematurely- 
born infants was introduced into clinical practice 
in the mid-1960s [1]. Shortly thereafter, a chronic 
neonatal lung disease (CNLD), termed broncho-
pulmonary dysplasia (BPD), was first described 
by Northway and colleagues [2]. The affected 
infants were generally born preterm (the average 
postmenstrual age in Northway’s cohort was 
32 weeks) and all had severe respiratory failure, 
were ventilated with high O2 concentrations and 

R.P. Jankov, MBBS, PhD, FRACP (*)
Neonatologist, Children’s Hospital of 
Eastern Ontario (CHEO), The Ottawa Hospital, 
Ottawa, ON K1H 8L6, Canada

Associate Professor, Department of Pediatrics,  
University of Ottawa, Ottawa, ON K1H 8L6, Canada

Senior Scientist, CHEO Research Institute, Ottawa, 
ON K1H 8L6, Canada
e-mail: robert.jankov@sickkids.ca

A.K. Tanswell 
Neonatology, Translational Medicine,  
The Hospital for Sick Children,  
555 University Ave, Toronto, ON M1G 1X8  
Canada 
e-mail: keithtanswell@aol.com

11

https://doi.org/10.1007/978-3-319-67096-6_11
mailto:robert.jankov@sickkids.ca
mailto:keithtanswell@aol.com


130

required high inflation pressures. The develop-
ment of respiratory failure was accompanied by a 
classical sequence of radiological changes evolv-
ing from an initial “white-out”, which cleared to 
reveal multiple cystic lesions. If infants survived 
this stage, a streaky pattern consistent with pul-
monary fibrosis and/or distended lymphatics pre-
dominated. The mortality was very high at 
approximately 60% [2]. At autopsy there was evi-
dence of both atelectasis and emphysematous 
changes, pulmonary fibrosis, marked proximal 
airway injury and vascular remodeling indicative 
of severe pulmonary hypertension (PHT) [2]. 
While the term BPD has been preserved over the 
intervening 50 years, the clinical, radiological and 
pathological features of CNLD have dramatically 
changed. The affected population is now much 
more immature at birth, the illness during the neo-
natal period is generally less severe, the classic 
sequence of radiological changes is no longer 
apparent, and proximal airway injury and fibrosis 
are no longer common pathological features.

 CNLD in the Present Era

Advances in neonatal care over the past 25 years 
have had a major impact on the survival of infants 
born ≤1000 g (known as extremely low birth 
weight (ELBW) infants, coinciding with 
≤28 weeks’ postmenstrual age at birth). CNLD 
now arises predominantly in ELBW infants with 
an overall incidence of around 50% [3, 4], lead-
ing to more than 10,000 new cases per year in the 
United States alone [5]. This incidence has not 
changed over the last 15 years, and in Canada has 
possibly even increased [4], despite advances in 
many aspects of neonatal care. CNLD has been 
and remains associated with serious pulmonary 
[6, 7] and neurological [8] sequelae that have 
major lifelong health implications.

Since the increasing use of antenatal corticoste-
roids and the advent of exogenous surfactant ther-
apy in the early 1990s, the early respiratory course 
of ELBW infants has been generally characterized 
by minimal respiratory distress and little or no ini-
tial requirement for O2 supplementation or ventila-
tory support. A subgroup will subsequently go on 

to have a progressive deterioration in respiratory 
function, requiring an increase in inspired O2 and 
occasionally invasive or prolonged non-invasive 
respiratory support. The radiographic picture in 
these infants generally evolves from initial homo-
geneous hazy pulmonary opacities to a general-
ized coarse interstitial pattern [3]. The most widely 
used clinical definition of CNLD has been an O2-
dependency at 36 weeks’ postmenstrual age. The 
use of this definition has limitations, in that it does 
not differentiate between mildly and severely 
affected infants. This has led to the development of 
a  classification scheme which differentiates 
between three levels of severity (mild, moderate, 
severe) based on degree of supplemental O2 
requirement and need for respiratory support at 
36 weeks’ postmenstrual age [9]. A minority of 
ELBW infants will develop severe CNLD with 
significant and prolonged need for invasive venti-
lation and O2 supplementation. Severe CNLD may 
be heralded during the first 2 weeks of life by a 
limited initial response to surfactant and/or deteri-
orations associated with development of air leaks, 
a hemodynamically significant patent ductus arte-
riosus and/or sepsis.

Although ELBW is the most common factor 
associated with development of CNLD, there is 
significant variability in the severity of lung dis-
ease amongst infants born at the same weight and 
gestational age, to which genetic factors are 
likely major contributors. Indeed, polymor-
phisms in tumor necrosis factor-α, toll-like recep-
tor −10 and vascular endothelial growth factor 
are all suggested to play a role [10], as are single 
nucleotide polymorphisms in the fibroblast 
growth factor receptor-4 [11]. The barely under-
stood complexity of a genetic contribution to 
CNLD is evident from a recent whole genome 
study in which there were alterations in expres-
sion of almost 10% of the genome [12].

 Pathological Features of CNLD

Five distinct stages of lung development have 
been defined: embryonic, pseudoglandular, cana-
licular, saccular and alveolar [13–16]. These 
stages are conserved among mammalian species 
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but with differing timing in relation to gestation, 
which has important implications for the rele-
vance of experimental models recapitulating 
CNLD [17]. Preterm infants most as risk of 
developing CNLD are born during the transition 
between the late canalicular and early saccular 
phases, which are characterized by formation of 
primitive large distal airspaces, differentiation of 
Type I and Type II pneumocytes and expansion 
and thinning of the airway-capillary interface to 
an extent that is sufficient to support life. In 
humans, the alveolar stage, characterized by in- 
growth of secondary crests into larger precursor 
saccules, commences in late gestation and con-
tinues well into childhood [18, 19]. The major 
pathological features of severe CNLD in the cur-
rent era are an inhibition, or arrest, of alveolar 
formation, thickening of the interstitium and pul-
monary inflammation [5, 20]. Hypoplastic, dys-
morphic pulmonary microvasculature is also 
evident [21], resulting in reduced vascular sur-
face area. Failure of alveolarization appears to 
last into adult life [22].

 Pulmonary Hypertension and CNLD

PHT is a common finding in patients with CNLD 
[23]. Available studies estimate the incidence of 
echocardiographic signs of PHT at between 17 
and 43% of CNLD cases overall [24–27]. The 
incidence and severity generally increases in par-
allel with lung disease, being present in as many 
as 60% of severe CNLD [24]. Given the retro-
spective nature of the majority of published data, 
lack of long-term follow-up data, and the pre-
dominant reliance on echocardiography for diag-
nosis, the true incidence, severity and prevalence 
of PHT in formerly-premature infants is likely 
much greater than is currently appreciated. Other 
than the degree of prematurity, additional risk 
factors for PHT that are evident at birth include 
maternal pre-eclampsia, prolonged oligohydram-
nios and being born small for gestational age 
[28]. While genetic factors almost certainly con-
tribute to the development of CNLD, no specific 
loci have yet been consistently associated with 
increased risk for PHT in this population.

As described above, the presence of evolving 
CNLD is usually evident within the first several 
weeks of life with respiratory deterioration (or 
lack of improvement) and persistent radiological 
abnormalities. Echocardiographic signs of PHT 
are frequently evident at this early stage and chro-
nicity of PHT is generally established by 
34–36 weeks’ postmenstrual age [27]. Pathological 
contributors to PHT include sustained pulmonary 
vasoconstriction, exaggerated vasoreactivity 
(often precipitated by hypoxemic episodes), vas-
cular hypoplasia and arterial wall remodeling due 
to smooth muscle hyperplasia and distal extension 
of smooth muscle into normally non-muscular 
arteries [29]. The extent to which the latter two 
structural features contribute to a “fixed” (i.e., 
non-reversible) form of chronic PHT is unknown. 
Since PHT is usually clinically silent, screening is 
recommended for all high-risk infants. It remains 
unclear whether the severity of PHT is simply a 
marker of CNLD severity or contributes to adverse 
outcomes in its own right. However, the diagnosis 
of PHT imposes a far greater burden of illness, 
resulting in lengthened hospital stay, prolongation 
of need for O2 therapy, and a four-fold increase in 
mortality during the NICU stay [26]. 
Co-morbidities that worsen or inhibit recovery of 
lung function will also exacerbate PHT, including 
the persistence of left-to- right shunts that increase 
pulmonary blood flow (patent ductus arteriosus or 
large systemic- pulmonary collateral vessels) [30], 
airway abnormalities (subglottic stenosis, tracheo-
malacia, distal airway obstruction), gastro-esopha-
geal reflux and factors contributing to poor growth, 
such as suboptimal nutrition and prolonged or 
repeated courses of corticosteroid therapy. The 
presence of pulmonary vein stenosis is an occa-
sional finding in ex-preterm infants that heralds an 
extremely poor prognosis, especially in late- onset 
cases [31].

 Long-Term Outcome of PHT in CNLD

Retrospective data suggest that the majority of 
infants with CNLD-associated PHT will demon-
strate gradual improvement in hemodynamic 
parameters during the first year of life, as lung 
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growth and function improves [30]. However, 
prospective long-term cohort data on these 
patients is lacking, and there is no knowledge 
regarding the (presumably high) potential for 
reappearance of PHT later in life [32]. For those 
patients with severe CNLD, progression of PHT 
is common, ultimately leading to right ventricu-
lar (RV) failure and early death, in most cases 
within 1 year of diagnosis [24]. Pulmonary 
hypertensive crises and cardiac arrest are also 
common [26], frequently precipitated by worsen-
ing hypercapnia and/or systemic hypotension in 
the settings of improperly-applied mechanical 
ventilation, anesthesia, sedation or intercurrent 
infection.

Long-term survival in progressive PHT is 
dependent upon an ability of the right ventricle to 
maintain adequate output in the face of increased 
pressure load, yet this aspect of disease has only 
recently been considered as a distinct therapeutic 
target [33, 34]. RV adaptation to increased pres-
sure load evolves from a compensated (hypertro-
phied) state to a decompensated (dilated) state, in 
which a progressive decline in contractile func-
tion heralds imminent death [35]. The available 
evidence suggests that this evolution proceeds 
more rapidly in infants than in older children and 
adults [36]. Earlier dogma held that RV failure 
simply represented a mechanical response to 
increased pressure, which could be corrected by 
pulmonary vasodilators. Recent evidence has 
challenged this belief [33, 34, 37], indicating that 
discrete right ventricle-specific and/or pressure 
load-independent mechanisms may be responsi-
ble for RV contractile dysfunction. At this time, 
there is no specific knowledge on the pathogene-
sis of right heart failure in formerly premature 
infants.

 Current Therapies for Established 
CNLD and Associated PHT

The current mainstays of therapy for established 
CNLD with or without associated PHT include 
adequate nutrition, diuretics, prevention of infec-
tion, supplemental O2 and correction of co- 
morbidities (as described above) that may further 

contribute to lung injury. Optimizing nutrition in 
ELBW infants may impact the risk of CNLD 
[38], as under nutrition has been demonstrated in 
animal models to impair lung growth and to 
enhance lung injury [39]. Loop and thiazide 
diuretics are commonly used as therapy for 
CNLD [40]. Their use frequently leads to short- 
term improvements in oxygenation and require-
ment for respiratory support; however, there is no 
consensus on the dose, type or duration of diuretic 
therapy that is optimal or safe and no data sug-
gesting any sustained or long-term benefits to 
their use [41].

Supplemental O2, while necessary to avoid 
hypoxemia, can be directly cytotoxic to the lung 
due to increased reactive oxygen species (ROS) 
produced by mitochondria in direct proportion to 
the PO2 to which the lung is exposed. Maturation 
of enzymatic antioxidants is gestation dependent 
[42, 43], and it has long been assumed that the 
ELBW infant is particularly at risk from ROS- 
mediated injury due to reduced antioxidant 
defenses [44]. That pulmonary toxicity due to 
supplemental O2 occurs in ELBW infants has been 
demonstrated in trials comparing different target 
O2 saturations in which the high target group 
(SaO2 ≥ 96%) had more adverse pulmonary out-
comes [45, 46], while low O2 saturation targets 
(SaO2 < 90%) may lead to increased mortality 
[47]. These observations limit and render uncer-
tain the O2 saturation range that is available for 
safe clinical use. What is clear is that hyperoxia 
(PaO2 > 80 mmHg) provides no further reduction 
to pulmonary vascular resistance (PVR) in excess 
of normoxia (PaO2 60–80 mmHg) [48] and may in 
fact further increase vasoreactivity [49].

PHT in CNLD is a dynamic phenomenon and 
its severity at any given time is strongly influ-
enced by factors such as pH, PaO2 and state of 
lung distension. The importance of these factors 
is generally underappreciated by clinicians. 
While pulmonary vasodilation with inhaled nitric 
oxide (iNO) has been used as rescue therapy for 
refractory hypoxemia in severe CNLD, often pro-
ducing short-term improvements in oxygenation 
[50, 51], there is no data on long-term effects. 
Other therapies leading to improved outcomes in 
older children and adults with pulmonary arterial 
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hypertension [52] are unsupported by good qual-
ity clinical data in patients with CNLD and are 
suggested to be of doubtful value in this context 
[53]. Such therapies include Sildenafil (phospho-
diesterase 5 inhibitor), Bosentan (endothelin 
receptor antagonist) or Epoprostenol (prostacy-
clin analogue), given either alone or in combina-
tion [54–58]. Sildenafil may have additional 
benefits on systolic function of the hypertrophied 
right ventricle [59, 60], aside from its vasodilator 
effects. Concerns regarding these agents relate to 
the potential for systemic hypotension, hepato-
toxicity (Bosentan) and hypoxemia due to wors-
ened ventilation-perfusion mismatch. Ideally, 
any consideration of long-term treatment with 
these agents should be accompanied by compre-
hensive evaluation of cardiopulmonary hemody-
namics by cardiac catheterization, which allows 
for accurate determination of PHT severity, eval-
uation of acute vasodilator responsiveness and 
definitive exclusion of major collateral vessels, 
pulmonary vein stenosis and left heart disease as 
contributing factors [61].

 Prevention of CNLD and Associated 
PHT

The most effective way of preventing the devel-
opment of CNLD would be to avoid prematurity. 
Given the current absence of any effective inter-
ventions targeting premature delivery, preventive 
therapy for CNLD and associated PHT must be 
directed at the contributing factors that lead to 
lung and cardiac injury, and their underlying 
mechanisms of action. Despite numerous trials of 
pharmacological treatments [62, 63], only three 
preventive agents have been convincingly dem-
onstrated to reduce the incidence of CNLD: caf-
feine [64], Vitamin A [65] and early postnatal 
Dexamethasone [66]. The mechanism by which 
caffeine exerts its effects is unclear. Despite 
residual concerns surrounding the potential for 
increased mortality [67] or gut complications 
[necrotizing enterocolitis [68]] with caffeine, its 
prophylactic use is now common practice in 
North America, Europe and Australasia [69]. 
Vitamin A prophylaxis, which is modestly effec-

tive and shown to be safe [65, 70], has not been 
widely adopted. This likely relates to whether the 
small reduction in incidence of CNLD is seen to 
justify a prolonged course of intramuscular injec-
tions. Greater acceptance will likely depend on 
the results of ongoing trials assessing intravenous 
delivery. While certainly effective, early (within 
the first 7 days of life) postnatal Dexamethasone 
is not recommended due to high potential for 
adverse neurodevelopmental effects [66, 71]. 
Dexamethasone also reversed established PHT in 
adult rats [72], yet prolonged treatment of neona-
tal rats caused permanent lung hypoplasia, and 
augmented the severity of hypoxia-induced PHT 
when pups reached maturity [73]. Benefits of 
alternative strategies, such as systemic use of a 
less potent steroid, hydrocortisone, or inhaled 
steroids to reduce systemic side-effects remain 
unproven [63].

 Experimental Therapies

 Nitric Oxide (NO)

NO is a readily diffusible and highly-reactive free 
radical gas, first identified as the “endothelium- 
derived relaxing factor” in 1987. NO mediates 
smooth muscle relaxation via activation of solu-
ble guanylate cyclase (sGC), leading to cyclic 
guanosine monophosphate (cGMP)-dependent 
calcium desensitization. NO-mediated signaling 
is critical to the rapid decrease in PVR following 
birth [74]. Properties of NO on the lung that are 
protective of experimental injury also include 
anti-inflammatory [75], antioxidant [76], anti-
(smooth muscle) proliferative [77] and cytopro-
tective [78] effects. Abundant experimental 
evidence implicates deficient NO signaling as 
critical to the pathogenesis of CNLD and associ-
ated PHT [79–82]. Augmentation of NO signal-
ing has also been shown to reverse sustained 
vasoconstriction, inhibit smooth muscle prolifer-
ation, and stimulate angiogenesis and alveolar-
ization in experimental animals [83–88]. In 
neonates, iNO is employed as a short-acting pul-
monary vasodilator, limiting hypoxemia by 
matching perfusion to ventilation and decreasing 
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right-to-left shunting. Unfortunately, despite 
promising preclinical studies [83, 85], iNO has 
proven ineffective as a preventive therapy for 
human CNLD [89–91]. Other than providing 
short-term improvement in oxygenation, iNO 
also does not appear to improve or slow the pro-
gression of CNLD-associated PHT [51, 92].

Assuming that the biological rationale for 
NO-based therapy in the prevention of neonatal 
lung and pulmonary vascular injury is sound, 
there are several possible explanations for the dis-
appointing results of human studies despite strong 
supportive preclinical data. Firstly, that the benefi-
cial effects of exogenous NO are counterbalanced 
by adverse ones and secondly, that inhalation of 
NO gas is a suboptimal means of providing NO to 
tissues in which endogenous production is defi-
cient. Circulating and tissue- bound S-nitrosothiols 
(SNOs) contribute importantly to NO-cGMP sig-
nalling [93] and cause reversible post-transla-
tional regulation of protein function in a manner 
akin to phosphorylation. iNO has been shown 
inferior as a means of improving tissue NO func-
tion in experimental animals, when compared to 
SNO-based (ethyl nitrite) therapy [94]. In pilot 
human studies, inhaled ethyl nitrite improved 
oxygenation and hemodynamics in term infants 
with hypoxemic respiratory failure due to PHT 
[95]. No studies have been carried out to date in 
preterm infants. Another potential means to boost 
the potential benefits of exogenous NO may be as 
combination therapy with other agents known to 
improve lung growth and decrease lung injury, 
such as Vitamin A [96]. Treatment with Sildenafil, 
a PDE 5 inhibitor which, like NO, enhances 
cGMP signaling, attenuates both the PHT and the 
impairment of alveologenesis in experimental 
CNLD [84, 87]. Unfortunately, a recent pilot 
study of sildenafil for prevention of CNLD also 
proved disappointing [97].

 Strategies to Limit Adverse 
NO-Mediated Reactions

A biochemical barrier to effective NO-based 
therapy, that has yet to be overcome, relates to 
the high reactivity of NO (which is a free radi-

cal)—the dominant reaction depending upon the 
milieu in which NO is provided or generated 
(see Fig. 11.1). Physiological signaling of NO is 
regulated by reaction with heme proteins and 
reversible nitrosylation [98] of cysteine thiols, 
producing SNOs [93] either directly or follow-
ing oxidation to nitrite anion. Under pathologi-
cal conditions (e.g. oxidative stress, 
inflammation), NO will preferentially react with 
supra- physiological levels of O2 or superoxide to 
produce reactive nitrogen species (RNS), nitro-
gen dioxide and peroxynitrite, respectively. 
Nitrogen dioxide is an important source of RNS 
in inflammatory states, where neutrophil-derived 
peroxidases and hydrogen peroxide are present 
in abundance [99]. These molecules cause nitra-
tion of tyrosine residues [100] that irreversibly 
inhibits protein function by forming 3-nitrotyro-
sine [101–104]. Nitration is linked to numerous 
disease states by triggering cellular responses 
ranging from pathological alterations in cell sig-
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Fig. 11.1 Reactions of nitric oxide (NO). Physiological 
effects of NO are mediated by direct or indirect (via oxi-
dation to nitrite (NO2

−)) nitrosylation reactions with diva-
lent metal-based heme proteins, including soluble 
guanylate cyclase and hemoglobin, leading to alterations 
in cell signaling pathways and vascular function. 
Pathological reactions of NO are mediated by reaction 
with supraphysiological levels of molecular oxygen (O2) 
to produce nitrogen dioxide (NO2) or with superoxide 
(O2

•−) to produce peroxynitrite (ONO2
−). Peroxynitrite is a 

potent oxidant and causes protein (tyrosine) nitration. 
This reaction may be direct, or via decomposition of 
ONO2

− to NO2, which can mediate nitration reactions 
under inflammatory conditions in which hydrogen perox-
ide (H2O2) and heme peroxidases (such as myeloperoxi-
dase) are present in abundance
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naling to abnormal proliferation or cell death 
[105]. In human infants with CNLD, 3-nitrotyro-
sine levels from circulating and lung-derived 
proteins are a direct marker of disease severity 
[106, 107].

The reaction of NO with superoxide to form 
peroxynitrite occurs at the fastest rate constant 
known in biology (1.9 × 1010 M−1 s−1), such that 
the two molecules will always react when in prox-
imity [108]. Peroxynitrite is both a nitrating agent 
[103, 109] and a potent oxidant [108, 110], leading 
to both tyrosine nitration [101–104] and cysteine 
oxidation [111]. Peroxynitrite also plays specific 
roles in the pathogenesis of experimental neonatal 
PHT, causing pulmonary vasoconstriction [112], 
vascular remodeling [113, 114] and RV dysfunc-
tion [115]. Inflammatory cell-derived RNS are 
also critical to hyperoxia-induced experimental 
CNLD [114]. Peroxynitrite decomposition cata-
lysts that cause peroxynitrite to decompose to 
nitrate, rather than the toxic hydroxyl radical gen-
erated by spontaneous decomposition [108], have 
been employed with success by our group as pre-
ventive agents in experimental models of CNLD 
and PHT [113–115]. Unfortunately, currently 
available peroxynitrite decomposition catalysts 
are metalloporphyrin (iron or manganese-based) 
compounds which are potentially toxic, especially 
to the immature liver. This makes translation of the 
current generation of such compounds in ELBW 
infants highly unlikely.

 Antioxidant Therapies

Other than the direct cytotoxic effects of ROS on 
the lung discussed earlier, oxidative stress limits 
NO bioavailability (by steering NO toward pro-
duction of RNS), limits the sensitivity of sGC to 
NO [116] and increases hydrolysis of cGMP via 
increased expression and activity of PDE 5 [117, 
118]. Pharmacological therapy with broad spec-
trum antioxidants (e.g., Lazaroids or Tempol) is 
effective at limiting experimental chronic neona-
tal PHT [119]. However, our group has reported 
that a major adverse effect of effective antioxidant 
therapy in neonatal rats was inhibited lung cellu-
lar proliferation and decreased somatic growth 

[119], in keeping with a known critical role for 
low endogenous levels of ROS in normal growth 
and development [120]. A potentially safer alter-
native strategy is to supplement deficient antioxi-
dant enzymes [such as superoxide dismutase 
(SOD)] or their co-factors. Unfortunately, clinical 
trials examining preventive effects of recombi-
nant human SOD or  selenium (co-factor for gluta-
thione peroxidase) have not shown any impact on 
the incidence of CNLD [121, 122]. Similarly, pre-
ventive treatment with N-acetylcysteine, a gluta-
thione precursor, was of no benefit [123]. The 
above highlights the challenges inherent in devel-
oping antioxidant therapies for the newborn that 
are both safe and effective [120]. The possibility 
must also be considered that, despite ample evi-
dence of increased oxidative markers in the lungs 
of infants with evolving and established CNLD, 
increased ROS may not play a uniformly patho-
logical role.

 Strategies to Improve Endogenous 
NO Function

Endogenous endothelial NO production by endo-
thelial nitric oxide synthase (eNOS) requires an 
adequate supply of substrate, L-arginine, and 
arginine precursors, including L-citrulline. In the 
absence of sufficient substrate, “uncoupling” of 
eNOS results in a shift from NO to superoxide 
production. Up-regulation of arginases are an 
important cause of substrate deficiency directly 
contributing to inflammation and lung injury, 
which is preventable by hypercapnic acidosis in 
hypoxia-exposed neonatal rats [124] or by 
arginase- specific inhibitors in LPS-exposed 
Guinea pigs [125]. Supplementation of l- 
citrulline has also been shown to inhibit arginase 
and to prevent hyperoxia-induced lung injury in 
neonatal rats [88]. Tetrahydrobiopterin (BH4) is 
an important cofactor for eNOS to remain in a 
coupled state. Newborn mice haploinsufficient 
for GTP cyclohydrolase I, a rate-limiting enzyme 
in BH4 synthesis, spontaneously develop PHT 
[126]. eNOS function may be restored by treat-
ment with l-sepiapterin, which serves as a sub-
strate for BH4 synthesis [86].
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 Alternative NO-Based Therapies

Nitrite was until recently considered a physiologi-
cally inert by-product of NO oxidation. It is now 
apparent that circulating nitrite is recycled in tis-
sues to form NO, thereby acting as a stable endo-
crine pool for “NO-like” bioactivity that is 
complementary to endogenous NOS [127]. 
Systemic or inhaled inorganic nitrite possesses 
many theoretical advantages over other forms of 
NO-based therapy in that tachyphylaxis does not 
occur with chronic dosing, effects are of relatively 
rapid onset and last many hours and (sodium) 
nitrite is inexpensive and stable. Protective effects 
of sodium nitrite on adult experimental models of 
PHT have been reported [127–131] but no studies 
have been reported to date in neonatal animals.

 Rho-Kinase (ROCK) Inhibitors

Activation of the small GTPase, RhoA, by 
G-protein-coupled receptor ligands, and its down-
stream effector, ROCK [132–135], is a key path-
way leading to sustained vasoconstriction and 
vascular remodeling in experimental chronic neo-
natal PHT [118, 136–140]. In neonatal rats with 
bleomycin-induced lung injury, ROCK is critical 
to inhibited pulmonary angiogenesis, possibly via 
up-regulation of anti-angiogenic thrombospondin 
(TSP)-1 [140]. ROCK mediates smooth muscle 
contraction by causing calcium sensitization [141, 
142]. NO-mediated reversal of vasoconstriction is 
in part mediated through attenuating effects on 
RhoA expression [143] and activation [144–146], 
or through direct inhibitory effects on ROCK 
activity [147–149]. Hence, therapies which 
enhance cGMP signaling also suppress RhoA/
ROCK activation [150, 151, 152].

The above insights have developed largely from 
experimental use of two kinase inhibitors, Y-27632 
[153] and Fasudil (HA-1077) [154], which possess 
high specificity toward ROCK. Numerous animal 
studies [155] [136] and pilot reports using single 
doses or brief infusions of Fasudil in human adults 
[156, 157] and children [158] have confirmed an 
efficacy that is equal or superior to existing vasodila-
tors. In addition to modulating vascular smooth 
muscle tone, evidence also indicates that ROCK 

regulates the expression of key mediators which 
modify smooth muscle phenotype, including actin 
polymerisation through LIM domain kinase-induced 
inhibition of cofilin [159] and changes in expression 
of mediators leading to increased proliferation and 
inhibited apoptosis of vascular smooth muscle, 
including platelet-derived growth factors [138, 160] 
and endothelin-1 [86, 113, 115, 137, 138, 161–166]. 
ROCK inhibitors are also effective when given by 
inhalation [157]. In addition, ROCK appears to play 
a role in cardiac failure with benefits of ROCK inhi-
bition on the failing left ventricle being well-
described [167–169]. Recent work in adult animals 
has also identified a direct role for ROCK in experi-
mental RV hypertrophy and dysfunction [170]. 
Neonatal rat pups chronically exposed to hypoxia 
develop significant RV systolic dysfunction, second-
ary to afterload- independent mechanisms that 
involve up-regulated RV ROCK activity [171]. No 
studies employing ROCK inhibitors have been con-
ducted to date in human neonates.

 Cell-Based Therapy

Endogenous endothelial and mesenchymal pro-
genitor cells appear to play a role in normal lung 
development and in repair from lung injury 
[172–180]. Treatment with mesenchymal [181, 
182] or endothelial [177] progenitor cells pre-
vents experimental CNLD. These effects appear 
to be mediated by secreted factors [176, 181, 
183], which as yet remain unidentified. A phase 
1 study examining safety of intra-tracheal deliv-
ery of allogeneic umbilical cord blood-derived 
mesenchymal stem cells in preterm infants has 
been recently reported [184].

 Therapies Targeting Specific Growth 
Factors or Cytokines

Antagonizing growth factors or cytokines which 
are up-regulated during injury is another promis-
ing therapeutic approach. A candidate for which 
there is abundant supportive evidence is trans-
forming growth factor (TGF)β1. Increased TGFβ 
is observed in lung tissue at autopsy of infants with 
CNLD [185] and bronchoalveolar lavage (BAL) 
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fluid of human preterm infants destined to develop 
CNLD [186]. Blockade of TGFβ1 signalling pre-
vents vascular remodeling [187, 188] and inhib-
ited alveolarization [189] in experimental animals. 
Interestingly, protective effects of attenuated 
ROCK signalling [190, 191] and peroxisome pro-
liferator-activated receptor agonism [192–194] on 
the lung and heart may at least partially result from 
inhibition of TGFβ1 signalling. Another rational 
target is interleukin (IL)-1. Increased BAL and 
serum IL-1β is evident in infants developing 
CNLD [195, 196]. Transgenic mice over-express-
ing IL-1β develop a lung injury similar to CNLD, 
with lack of alveolar septation, and impaired vas-
cular development of the lung, which may be 
mediated through effects on the retinoic acid path-
way [197]. They also have inflammation mediated 
by the increased expression of neutrophil and mac-
rophage chemokines [197]. Antagonism of IL-1β 
receptor signalling protects against hyperoxia-
induced lung injury [198] and iNO-induced RV 
systolic dysfunction in neonatal rats [199].

 Conclusions

CNLD remains an important and unresolved 
health issue in infants born extremely preterm. 
If major therapeutic inroads are to be made in 
the future, it will need to be through novel 
pharmacologic interventions based on mecha-
nistic insights derived from relevant animal 
models. Such studies ideally should: (1) 
examine for toxicity and dose-response in 
multiple models, (2) incorporate reversal of 
established disease as well as prevention as 
therapeutic strategies and (3) include evalua-
tion of sex differences, functional effects 
(exercise capacity, airway and vascular reac-
tivity) and longevity of effects into adult life.

With respect to understanding the determi-
nants of PHT in CNLD, there are a number of 
barriers to improving upon our currently poor 
understanding of pathogenesis and natural his-
tory in human infants. Diagnosis of PHT and 
right heart dysfunction is problematic. Clinical 
signs are unreliable and catheterization is often 
not feasible until well after term corrected age, 
leading to a sole reliance on echocardiography. 
Performance of echocardiography can be chal-
lenging, especially for evaluation of the right 

heart due to the thin chest walls of premature 
infants and frequent presence of lung hyperin-
flation. Echocardiography-derived parameters 
indicating raised pulmonary arterial pressure, 
such as triscuspid regurgitant jet velocity, are 
not measurable in all patients, and when pres-
ent have been shown to correlate poorly with 
pulmonary arterial pressure measured by cath-
eter [61]. In addition, there are no agreed upon 
echocardiography-based definitions for diag-
nosis of PHT in neonates, and certainly none 
for evaluation of right heart function. Systematic 
study of echocardiographic parameters of RV 
function that are useful in newborns is required, 
incorporating new methodologies, including 
tissue Doppler and strain imaging, that have 
shown potential in older children and adults 
[200, 201]. Finally, lung or heart-lung trans-
plantation, the only “curative” option for end-
stage disease, is rarely feasible in 
CNLD-associated PHT, which contributes to a 
paucity of high quality human tissue available 
for study and a consequently much greater reli-
ance on mechanistic and therapeutic insights 
from preclinical models [17].

While improved understanding of patho-
physiological mechanisms will certainly facil-
itate the development of new therapies, 
challenges to clinical translation remain sig-
nificant and include the inherent variability in 
phenotype and risk for CNLD and the devel-
opment of associated PHT, the relatively low 
numbers of patients available for study and the 
uniquely high potential of this vulnerable pop-
ulation for off-target drug effects. Such con-
siderations also have important implications 
for adoption of existing therapies employed in 
older children and adults.
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