
Topological Characterisation of Multi-buffer
Simulation

Milka Hutagalung(B)

University of Kassel, Kassel, Germany
milka.hutagalung@uni-kassel.de

Abstract. Multi-buffer simulation is an extension of simulation pre-
order that can be used to approximate inclusion of languages recog-
nised by Büchi automata up to their trace closures. It has been shown
that multi-buffer simulation with unbounded buffers can be characterised
with the existence of a continuous function f that witnesses trace clo-
sure inclusion. In this paper, we show that such a characterisation can
be refined to the case where we only consider bounded buffers by requir-
ing the function f to be Lipschitz continuous. This characterisation only
holds for some restricted classes of automata. One of the automata should
only produce words where each letter does not commute unboundedly
to the left or right. We will show that such an automaton can be char-
acterised with a cyclic-path-connected automaton, which is a refinement
of a syntactic characterisation of an automaton that has a regular trace
closure.

1 Introduction

Simulation is a pre-order relation that relates two automata A, B in the sense
that one automaton simulates the other. It is used to minimise and approximate
language inclusion between automata on words and trees [1,3,4,6].

Multi-buffer simulation is introduced in [9] as an extension of simulation for
non-deterministic Büchi automata [7]. It extends the framework of the standard
simulation with n FIFO buffers of capacities k1, . . . , kn ∈ N∪{ω}. The buffers are
associated with the alphabets Σ1, . . . , Σn ⊆ Σ, respectively. Spoiler plays as
in the standard simulation. He moves his pebble by reading a letter one by one.
However, Duplicator can skip her turn, and push the letter that is chosen
by Spoiler to the associated buffers. Duplicator can move and pop some
letters from the buffers in some round later. In [9], it is shown that multi-buffer
simulation is undecidable in general but decidable if all buffers have bounded
capacities, i.e. when k1, . . . , kn ∈ N. Multi-buffer simulation can be used to
approximate inclusion of Mazurkiewicz trace closure. If we have multi-buffer
simulation A �k,...,k B for some k ∈ N∪ {ω}, then we have L(A) ⊆ [L(B)]I that
is equivalent to the inclusion of Mazurkiewicz trace closure [L(A)]I ⊆ [L(B)]I ,
which is known to be undecidable [11] and even highly undecidable [5].

The winning strategy for Duplicator in multi-buffer simulation game can
be characterised with a continuous function [9]. We have multi-buffer simulation
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 101–117, 2017.
DOI: 10.1007/978-3-319-67089-8 8

102 M. Hutagalung

A �ω,...,ω B iff there exists a continuous function f that maps the accepting runs
of A to the ones of B over trace equivalent words. Intuitively, this characterisation
could also be lifted to the case of bounded buffer: A �k,...,k B, for some k ∈ N iff
there exists such a Lipschitz continuous function f . Unfortunately this is not the
case. There are A, B in which such a Lipschitz continuous function f exists but
buffered simulation with bounded buffers does not hold, i.e. A ��k,...,k B for any
k ∈ N. Hence one may ask whether we can add some restriction on the structure
of A, B such that the characterisation holds. This would give a good theoretical
justification for multi-buffer simulation with bounded buffers.

We answer this question in this work. We first show that the characterisa-
tion with Lipschitz continuity fails in two cases. The first one is the case where
Spoiler can form a non-accepting run that cannot be mimicked by Duplica-
tor, which is irrelevant to the use of multi-buffer simulation. We can avoid this
by restricting Duplicator’s automaton to be complete. The second one is the
case where Spoiler can produce a word, in which one of its letters, suppose a,
can commute unboundedly to the left or right. Spoiler might read a word where
a occurs at a very late position, but in a trace equivalent word that should be
produced by Duplicator, a occurs at a very early position. In this case, Dupli-
cator needs to store unboundedly many irrelevant letters before she can read a,
and eventually violates the capacity constraint. We will show that we can avoid
this by restricting Spoiler’s automaton to only produce words where each of
its letters cannot commute unboundedly, i.e. there exists a bound k ∈ N, such
that each letter commutes at most k steps to the left or right.

Note that the first restriction is a syntactic restriction, but the second one
is not. We cannot check syntactically whether Spoiler’s automaton A admits
such a bound k by looking at the structure of A. Hence, it is reasonable to ask
whether we can have an equivalent syntactic restriction. For this purpose, we will
show that we can lift the syntactic characterisation of loop-connected automaton,
a syntactic characterisation of an automaton that has a regular trace closure [2].

2 Preliminaries

For any alphabet Σ, we denote the set of finite words over Σ with Σ∗, the set
of infinite words over Σ with Σω, and Σ∞ = Σ∗ ∪Σω. For any word w ∈ Σ∞ of
length n ∈ N∪{∞}, we denote with |w| = n the length of w, |w|a the number of
a in w, Pos(w) ⊆ N the set of positions in w, w(i) the letter of w at position i,
and Σw = {w(i) | i ∈ Pos(w)} the alphabet of w.

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, qI , E, F),
where Q is a finite set of states, Σ is an alphabet, qI ∈ Q is the initial state,
E ⊆ Q × Σ × Q is the transition relation, and F ⊆ Q is the set of final states.
We denote with |A| the number of states of A. We sometimes write p

a−→ p′ if

(p, a, p′) ∈ E. A run of A on a0a1 . . . ∈ Σ∞ is an alternating sequence of states
and letters ρ = q0a0q1a1 . . . with q0 being the initial state of A and (qi, ai, qi+1)
∈ E for all i ≥ 0. The run ρ is accepting if qi ∈ F for infinitely many i ∈ N.
The set of runs and accepting runs are respectively denoted with Run(A) and

Topological Characterisation of Multi-buffer Simulation 103

AccRun(A). For any run ρ = q0a0q1a1 . . . , the word of ρ is word(ρ) = a0a1 . . . ∈
Σ∞, and the language of A is L(A) = {word(ρ) | ρ ∈ AccRun(A)}. Moreover,
for any finite run r = q0a0q1a1 . . . qn, the length of r is |r| = n.

2.1 Mazurkiewicz Traces

An independence alphabet is a pair (Σ, I), where Σ is a finite alphabet and
I ⊆ Σ ×Σ is an irreflexive and symmetric relation, called independence relation.
The relation D = Σ × Σ \ I is called the dependence relation, and the graph
G = (Σ,E), where E = {(a, b) | (a, b) ∈ D and a �= b} is called the dependency
graph of (Σ, I). The tuple Σ̂ = (Σ1, . . . , Σn) where the set {Σ1, . . . , Σn} is the
set of maximal cliques in G is called the distributed alphabet of (Σ, I).

Given an independence alphabet (Σ, I), let Σ̂ = (Σ1, . . . , Σn) be the cor-
responding distributed alphabet, and let πi : Σ∞ → Σ∞

i be a projection
from the word over Σ to the word over Σi for all i ∈ {1, . . . , n}. The pro-
jection πi(w) is obtained by deleting from w all letters that do not belong
to Σi. For any w,w′ ∈ Σ∞ over (Σ, I), we say w is trace equivalent with
w′, i.e. w ∼I w′, iff πi(w) = πi(w′) for all i ∈ {1, . . . , n}. For example
if Σ = {a, b, c}, I = {(b, c), (c, b)} then Σ̂ = ({a, b}, {a, c}), and we have
a(bc)ω ∼I a(cb)ω. For any NBA A over (Σ, I), the trace closure of A is the
language [L(A)]I = {w ∈ Σω | ∃w′ ∈ L(A) : w ∼I w′}.

Given an NBA A over (Σ, I), there is an important result regarding the
regularity of [L(A)]I . This result uses the notion of connected word. A word
w ∈ Σ∞ over (Σ, I) is called connected if the subgraph of the dependency graph
induced by Σw is connected [10]. We denote such a subgraph with Gw, and call it
the dependency graph of w. For example, the word w = a(bc)ω over Σ = {a, b, c}
and I = {(b, c), (c, b)}, is connected, but its infinite suffix (bc)ω is not. The
automaton A is called loop-connected if every cycle in A produces a connected
word. For any NBA A over (Σ, I), [L(A)]I is regular iff A is loop-connected [2].

2.2 Multi-buffer Simulation

Given two NBA A, B over (Σ, I), let Σ̂ = (Σ1, . . . , Σn) be the distributed
alphabet of (Σ, I), and κ = (k1, . . . , kn) a vector over N ∪ {ω}, the multi-buffer
simulation game Gκ,Σ̂(A,B), or simply Gκ(A,B) is played between Spoiler and
Duplicator in the automata A, B with n buffers of capacity k1, . . . , kn, and
the buffers are associated with the alphabets Σ1, . . . , Σn, respectively. Initially,
two pebbles are placed each on the initial states of A and B. Spoiler moves the
pebble in A by reading a letter a ∈ Σ, and pushes a copy of the a-symbol to each
buffer i, in which a ∈ Σi. Duplicator either skips her turn or moves the pebble
in B by reading a word b1 . . . bm. While doing so, for every i ∈ {1, . . . , m}, starting
from i = 1, she pops bi from each buffer that is associated with bi. More formally,
a configuration is a tuple (p, β1, . . . , βn, q) ∈ QA × Σ∗

1 × . . . × Σ∗
n × QB, where

|βi| ≤ ki for all i ∈ {1, . . . , n}. The initial configuration is (p0, ε, . . . , ε, q0), where
p0, q0 are the initial states of A, B, and in every configuration (p, β1, . . . , βn, q),

104 M. Hutagalung

– Spoiler chooses a letter a ∈ Σ, a state p′ ∈ QA, such that p
a−→ p′,

– Duplicator chooses a finite path q
b1−−→ q1

b2−−→ q2 . . .
bm−−→ qm from q in B,

such that πi(aβi) = πi(β′
ib1 . . . bm) for all i ∈ {1, . . . , n}. The next configura-

tion is (p′, β′
1, . . . , β

′
k, q′).

If one of the players gets stuck, then the opponent wins, otherwise Spoiler
and Duplicator respectively form infinite runs ρ in A and ρ′ in B. In this
case, Duplicator wins iff ρ is not accepting or ρ′ is accepting and every letter
that is pushed by Spoiler into a buffer is eventually popped by Duplicator.
We write A �κ B if Duplicator wins Gκ(A,B), and in this case it implies
L(A) ⊆ [L(B)]I .

Example 1. Consider the following two NBA A, B over the independence alpha-
bet (Σ, I), in which Σ̂ = ({a}, {b}), i.e. Σ = {a, b}, I = {(a, b), (b, a)}.

p0 p1

b
a

b

q0 q1 q2
a

b

b

a
a, b

We have A �0,ω B, since Duplicator has the following winning strategy
in G0,ω(A,B): she skips her moves, except when Spoiler reads a. In this case,
Duplicator goes to q1: she pops all the bs from the second buffer, and a from
the first buffer. From this state, if Spoiler reads b then Duplicator also reads
b by looping in q1 and pops b from the buffer. Duplicator wins since either
Spoiler forms a non-accepting run, or Duplicator forms an accepting run
and every letter that is pushed by Spoiler into a buffer is eventually popped by
Duplicator. Duplicator however loses the game G0,k(A,B) for any k ∈ N,
since Spoiler can loop in p0 indefinitely and push unboundedly many b before
he goes to p1. In this case, Duplicator eventually violates the buffer constraint.

3 Topological Characterisation

Given two NBA A, B, and a function f : R1 → R2, R1 ⊆ Run(A), R2 ⊆ Run(B),
let us call f trace preserving if for all ρ ∈ Dom(f), word(ρ) ∼I word(f(ρ)). Trace
closure inclusion L(A) ⊆ [L(B)]I can be characterised with a trace preserving
f : AccRun(A) → AccRun(B). This is because such a function f exists iff for
every ρ ∈ AccRun(A), there exists ρ′ ∈ AccRun(B) over trace equivalent words.

Proposition 1. L(A) ⊆ [L(B)]I iff there exists a trace preserving function f :
AccRun(A) → AccRun(B).

For such a function f : R1 → R2, we can define its continuity by con-
sidering the standard metric for infinite words. This is because every run
ρ ∈ Run(A) can be seen as an infinite word over Σ′ = QA · Σ. We con-
sider the metric d : AccRun(A)2 → [0, 1], where d(ρ, ρ′) = 0 if ρ = ρ′, and

Topological Characterisation of Multi-buffer Simulation 105

d(ρ, ρ′) = 2−min{i | piai �=qibi} if ρ = p0a0 p1a1 . . ., ρ′ = q0b0 q1b1 . . . are different.
Intuitively, the distance between two runs is small if they share a long common
prefix.

In [9], it is shown that we can refine the characterisation in Proposition 1 for
multi-buffer simulation A�ω,...,ω B by requiring the function f to be continuous.
Recall that f is continuous if for any two distinct runs ρ, ρ′ ∈ Dom(f) that are
very close, they are mapped into two runs f(ρ), f(ρ′) that are also very close.

Proposition 2 [9]. A �ω,...,ω B iff there exists a continuous trace preserving
function f : AccRun(A) → AccRun(B).

Consider again the NBA A, B from Example 1. We have a continuous trace
preserving function f : AccRun(A) → AccRun(B) that maps every accepting run
of A, i.e. over b∗abω, to the one of B over abω. This function is trace preserving
since for every n ≥ 0, bnabω ∼I abω. It is also continuous since there is only one
accepting run in B, therefore the distance between two outputs of f is always 0,
i.e. trivially very small.

Such a characterisation of winning strategies with continuous functions is
far from new. For example, in the delay game [8], it is shown that the winning
strategy for Duplicator can be characterised with a continuous function, and in
the case of finite delay, the characterisation can be lifted to the one that consider
a Lipschitz continuous function. Recall that a function is Lipschitz continuous if
there exists a constant C ∈ R, such that for any two inputs of distance d, their
outputs’ distance is at most C · d.

We would like to have such a topological characterisation for multi-buffer
simulation. The characterisation with a continuous function holds for multi-
buffer simulation as we can see in Proposition 2. However, the characterisation
with a Lipschitz continuous function fails.

Example 2. Consider the following two automata A,B over the independence
alphabet (Σ, I) with Σ̂ = ({a, b}), i.e. Σ = {a, b} and I = ∅,

q0 q1q2
a

a
b

b p0 p1
a

a

In this case, we have a Lipschitz continuous and trace preserving function
f : AccRun(A) → AccRun(B) that maps the only accepting run of A to the one of
B. This function is trace preserving and also Lipschitz continuous with constant
0. However, Spoiler wins the game Gk(A,B) for any k ∈ N. He wins by playing
the word bω. For every k ∈ N, Duplicator eventually fills the buffer more than
its capacity in round k + 1, and loses the game Gk(A,B).

Example 3. Consider again the NBA A, B from Example 1. We have a trace pre-
serving and continuous function f : AccRun(A) → AccRun(B) as shown before.
It is also Lipschitz continuous with Lipschitz constant 0. However, Spoiler wins
the game Gk,k(A,B) for all k ∈ N. He wins by first reading bbb . . . indefinitely.
Duplicator either skips her move forever, or eventually moves by reading b. If
Duplicator eventually moves by reading b, she would never form an accepting

106 M. Hutagalung

run, and Spoiler can continue read abω and form an accepting run. However if
Duplicator never moves, then she violates the buffer constraint in round k+1.
Hence in both cases Duplicator loses.

We will show that there are some restricted classes of A, B where we can lift
the characterisation in Proposition 2 to the case of bounded buffers by consider-
ing a Lipschitz continuous function.

4 Characterisation of �k,...,k, k ∈ N

First note that if multi-buffer simulation A �k,...,k B holds with some bounded
capacity k ∈ N, then we can construct a Lipschitz continuous trace preserving
function f : AccRun(A) → AccRun(B). For every ρ ∈ AccRun(A), we define
f(ρ) as the run that is formed by Duplicator in Gk,...,k(A,B), assuming that
Spoiler plays ρ and Duplicator plays according to the winning strategy.
Such a function is trace preserving since it is derived from a winning strategy
of Duplicator, and it is Lipschitz continuous with Lipschitz constant C =
k + . . . + k since for any output run f(ρ) the i-th letter of f(ρ) is determined by
the first C + i letters of ρ.

Lemma 1. If A �k,...,k B for some k ∈ N, then there exists a Lipschitz contin-
uous trace preserving function f : AccRun(A) → AccRun(B).

Proof. For every ρ ∈ AccRun(A), we define f(ρ) as the run that is formed by
Duplicator in Gk,...,k(A,B), assuming that Spoiler plays ρ and Duplicator
plays according to the winning strategy. The function f is trace preserving since
it is derived from a winning strategy of Duplicator.

Let n ∈ N be some number and C = k + . . . + k. If Spoiler plays
ρ ∈ AccRun(A), then since Duplicator wins Gk,...,k(A,B), in round n + C,
Duplicator forms a finite run of length at least n. If there is ρ′ ∈ AccRun(A)
with d(ρ, ρ′) ≤ 2−(n+C+1), then in the first n + C rounds, Duplicator does
not see any difference whether Spoiler actually plays ρ or ρ′. Duplicator
makes the same moves in response to ρ or ρ′. The output runs f(ρ) and f(ρ′)
share the same prefix of length n, i.e. d(f(ρ), f(ρ′)) ≤ 2−(n+1). This implies
d(f(ρ), f(ρ′)) ≤ 2C · d(ρ, ρ′). The function f is Lipschitz continuous with Lip-
schitz constant 2C .

As we can see in the previous section, the reverse direction of this lemma does
not hold. In Example 2, the reason why Duplicator loses is because Spoiler
can play a non-accepting run that cannot be mimicked by Duplicator. We can
easily avoid this by assuming that Duplicator’s automaton is complete: for
every q ∈ QB and a ∈ Σ, there is q′ ∈ QB such that (q, a, q′) ∈ EB.

In Example 3, the reason why Duplicator loses is different. The automaton
of Duplicator is complete. But in this case, Spoiler can produce b∗abω, in
which the letter a can commute unboundedly to the left or right. The letter a
can be read by Spoiler in a very late round, but has to be read by Duplicator

Topological Characterisation of Multi-buffer Simulation 107

in an early round. In order to read its trace equivalent word: abω, Duplicator
first needs to store indefinitely many bs that are read by Spoiler. To avoid this,
we need to restrict words that are produced by Spoiler. He should only produce
words, in which each letter cannot commute unboundedly to the left or right.
To formalise this restriction we introduce the notion of corresponding relation.

For any two words w, v ∈ Σ∞, the corresponding relation Corrw,v relates the
position of w and v that are over the same letter and have the same order with
respect to the letter.

Definition 1. For any w, v ∈ Σ∞, the corresponding relation Corrw,v ⊆
Pos(w) × Pos(v) is defined as Corrw,v = {(i, j) | ∃a ∈ Σ, w(i) = v(j) =
a, |w(1) . . . w(i)|a = |v(1) . . . v(j)|a}.
Consider (Σ, I) where Σ = {a, b, c}, I = {(b, c), (c, b)}. w = a(bc)ω and v =
a(cb)ω. We have Corrw,v = {(1, 1)} ∪ {(i, i + 1)| i > 1 is even} ∪ {(i, i − 1)| i > 1
is odd}.

If w, v are two words over (Σ, I) and w ∼I v, then Corrw,v is a bijection. This
is because for every a ∈ Σ, the number of a in w and v are the same. We will
use the relation Corrw,v, in which w ∼I v, to determine how long a letter in w
or v can commute.

Definition 2. Given a word w ∈ Σ∞ over an independence alphabet (Σ, I),
and i ∈ Pos(w), let Sw(i) = {j − i | (i, j) ∈ Corrw,v, w ∼I v}. We define
Deg+w(i) = max{k ∈ N ∪ {∞} : k ∈ Sw(i)} and Deg−

w(i) = max{k ∈ N ∪ {∞} :
−k ∈ Sw(i)}. The corresponding degree of a letter at position i in w is Degw(i)
= max{Deg+w(i), Deg−

w(i)}.

Consider the word w = a(bc)ω over Σ = {a, b, c}, I = {(b, c), (c, b)}. We
have Degw(1) = 0 since for all v ∼I w, (1, 1) ∈ Corrw,v. We have Degw(2) = ∞
since for all k ∈ N, there is vk = ack+1(bc)ω, such that vk ∼I w and (2, k + 3) ∈
Corrw,vk

. This implies Deg+w(2) > k for all k ∈ N, and hence Deg+w(2) = ∞.
The corresponding degree Degw(i) tells us the maximum length of how long

the letter at position i in w can commute. Moreover, for a set of words L ∈ Σ∞,
we define the corresponding degree of L as Deg(L) = max{k ∈ N ∪ {∞} | w ∈
L, i ∈ Pos(w), k ∈ Degw(i)}. If Deg(L) = ∞, then for any k ∈ N, there is a
word wk in L such that one letter of w can commute more than k steps to the
left or right. For example, consider the automaton A in Example 1. We have
Deg(L(A)) = ∞ since there is w = abω ∈ L(A) and its first letter can commute
more than k steps to the right for any k ∈ N.

For any NBA A over (Σ, I), let Tr(A) be the set of words over a finite or
infinite path of A, i.e. Tr(A) = {a1a2 . . . ∈ Σ∞ | ∃p1, p2, . . . ∈ QA : (p1, a1, p2),
(p2, a2, p3), . . . ∈ EA}. We will show that for any two NBA A, B, if the corre-
sponding degree of Tr(A) is finite and B is complete, then the reverse direction
of Lemma 1 also holds. We will show this by using the delay game from [8] as
an intermediate game. The delay game is similar to the multi-buffer simulation
game. However the winning condition is given by a function f : R1 → R2, where
R1 ⊆ Run(A) and R2 ⊆ Run(B). In this game, Duplicator can read any letter
freely, even the one that is not yet read by Spoiler.

108 M. Hutagalung

A delay game Γ k(A,B, f) is played between Spoiler and Duplicator in
A, B in which the configuration is a pair (rA, rB) of finite runs of A, B with
0 ≤ |rA| − |rB| ≤ k. The initial configuration is the pair (pI , qI) of the initial
states of A, B. In every round i > 0 with a configuration (rA, rB),

– Spoiler extends rA to some finite run r′
A := rAap in A, and

– Duplicator extends rB to some finite run r′
B := rBb1q1b2 . . . bnqn in B.

The next configuration is (r′
A, r′

B). If one of the players gets stuck, then the
opponent wins. Otherwise, the play goes on infinitely many rounds and produces
two infinite runs ρ, ρ′ of A, B, respectively. Duplicator wins iff whenever
ρ ∈ Dom(f) then ρ′ = f(ρ).

Example 4. Consider the automata A, B from Example 1. Let f : AccRun(A) →
AccRun(B) be a trace preserving function. In this case, there is such a unique f ,
i.e. f(ρ) = q0a(q1b)ω for all ρ ∈ AccRun(A). Duplicator wins the delay game
Γ 0(A,B, f) with the following winning strategy: first she reads a, then she reads
bbb . . . for the rest of the play. Since Duplicator always forms the image of
Spoiler’s run without any delay, she wins Γ 0(A,B, f).

The existence of winning strategy for the Duplicator in the delay game with
finite delay basically corresponds to the Lipschitz continuity of the function that
defines the winning condition.

Lemma 2. For any two NBA A, B in which B is complete, Duplicator wins
ΓC(A,B, f) iff f is Lipschitz continuous with constant 2C .

Proof (⇐). Consider the following winning strategy for Duplicator. Suppose
we are at configuration (rA, rB) and Spoiler extends his run to r′

A := rAap. If
r′
A cannot be extended to any ρ ∈ Dom(f), then Duplicator extends her run

to r′
B, such that word(r′

A) ∼I word(r′
B). This is possible since B is complete. If

r′
A can be extended to some ρ ∈ Dom(f) and there exists r′

B := rBb1q1 . . . bnqn,
such that for every such a run ρ, f(ρ) is started with r′

B, then Duplicator
extends her run to such a maximal r′

B. Otherwise, Duplicator skips her turn.
If Duplicator plays according to this strategy, then there is no round with

a configuration (rA, rB), in which |rA|− |rB| > C. Suppose there is such a round
m. Duplicator does not extend her run to some run longer than rB in round
m, because there exist two runs ρ1, ρ2 ∈ Dom(f) that can be extended from
rA, i.e. d(ρ1, ρ2) ≤ 2−(|rA|+1), and both f(ρ1), f(ρ2) can be extended from rB,
but not from any run longer than rB, i.e. d(f(ρ1), f(ρ2)) = 2−(|rB|+1). Since
|rA| − |rB| > C, we have d(f(ρ1), f(ρ2)) > 2C · d(ρ1, ρ2). This contradicts that
f is Lipschitz continuous with constant 2C .

Since in every round the length difference between Spoiler and Duplica-
tor’s runs is at most C ∈ N, then if Spoiler forms an infinite run, Duplicator
also forms an infinite run. Moreover, since the invariant holds that in any round
i with a configuration (r(i)A , r

(i)
B), if ρ is started with r

(i)
A then ρ′ is started with

r
(i)
B , then whenever Spoiler plays ρ ∈ Dom(f), Duplicator forms the f -image

of ρ, i.e. ρ′ = f(ρ). Duplicator wins ΓC(A,B, f).

Topological Characterisation of Multi-buffer Simulation 109

(⇒) Let k ∈ N be some number. If f is not Lipschitz continuous, then there
exist ρ1, ρ2 ∈ AccRun(A), such that d(f(ρ1), f(ρ2)) > 2k ·d(ρ1, ρ2). Otherwise, f
is Lipschitz continuous and k is a Lipschitz constant of f . Let n ∈ N, such that
2−n = d(ρ1, ρ2). The winning strategy for Spoiler is to first play ρ1. On round
n−k +1, if Duplicator forms a finite run r′ that is not a prefix of f(ρ1), then
Spoiler keeps playing ρ1 for the rest of the play. Otherwise, he continues by
playing ρ2. This is possible, since ρ1, ρ2 share the same prefix of length n. In the
first case, Spoiler wins because Duplicator does not form the f -image of ρ1.
In the second case, since d(f(ρ1), f(ρ2)) > 2k−n, i.e. f(ρ1), f(ρ2) share the same
prefix of length less than n − k, and |r′| > n − k, so r′ is not a prefix of f(ρ0).
In this case, Duplicator does not form the f -image of ρ2.

Unfortunately, the winning strategy for Duplicator in the delay game may
not be suitable for the buffer game. Consider Duplicator’s winning strategy in
Example 4. It is not winning in Gω,ω(A,B), because in the first round, Spoiler
might not read a, and hence Duplicator cannot pop a from the buffer. In the
multi-buffer game over Σ̂ = (Σ1, . . . , Σn), if w, w′ are the words produced by
Spoiler and Duplicator in some round, then πi(w) is a prefix of πi(w′) for all
i ∈ {1, . . . , n}. This is not always the case in the delay game. Duplicator can
read letters that are not yet read by Spoiler. We need to translate the winning
strategy from the delay to the buffer game. Duplicator should just take the
longest output in the delay game that is allowed in the buffer game.

Lemma 3. Let f : AccRun(A) → AccRun(B) be a trace preserving function for
two NBA A, B, in which A is complete. If Duplicator wins Γ k(A,B, f) for
some k ∈ N, then she wins Gω,...,ω(A,B).

Proof. Suppose the NBA A, B are over (Σ, I) with distributed alphabet Σ̂ =
(Σ1, . . . , Σn). The translation is as follows. Suppose in Gω,...,ω(A,B), Spoiler
and Duplicator form finite runs rA and rB. Let w = word(rA) and w′ =
word(rB). If the strategy in the delay game tells Duplicator to extend rB
to r′

B := rBb1p1 . . . bmpm, m ≥ 0, then in the buffer game, we extend rB to
rBb1q1 . . . bm′qm′ , m′ ≤ m, the maximal prefix of r′

B, such that πi(w′b1 . . . bm′)
is a prefix of πi(w) for all i ∈ {1, . . . , n}.

Let ρ, ρ1 be the accepting runs that are formed by Spoiler and Duplicator
in Γ k(A, B, f), and ρ, ρ2 be the runs that are formed in Gω,...,ω(A,B) according
to the translation. Since we always extend Duplicator’s run in the buffer game
by taking the prefix of the original extension in the delay game, any finite prefix
of ρ2 is also a prefix of ρ1. The converse also holds: any finite prefix of ρ1 is a
prefix of ρ2. Suppose rB is a finite prefix of ρ1. There is rA, a finite prefix of ρ,
such that in the delay game, when Spoiler extends his run to rA, Duplicator
extends her run to rB. Let w = word(rA) and w′ = word(rB). Since f is trace
preserving, there is r′

A := rAa1p1 . . . akpk, k ≥ 0, a finite prefix of ρ, such that
πi(w′) is a prefix of πi(wa1 . . . ak) for all i ∈ {1, . . . , n}. Hence when Spoiler
forms r′

A, Duplicator extends her run to rB in the delay game. This implies

110 M. Hutagalung

that rB is also a prefix of ρ2. We have ρ1 = ρ2. Thus, whenever Spoiler plays
an accepting run ρ in Gω,...,ω(A,B), then Duplicator forms an accepting run
ρ′ = f(ρ).

If we additionally assume that the corresponding degree of Tr(A) is finite,
then we can show that Duplicator also wins the buffer game with some
bounded capacity. Such an assumption is needed to avoid the case where Spoiler
produces a word in which one of its letter commutes unboundedly, and makes
Duplicator store unboundedly many irrelevant letters before she reads the
corresponding one, as we exemplify in Example 3.

Lemma 4. Let f : AccRun(A) → AccRun(B) be a trace preserving function for
two NBA A, B, in which the corresponding degree of Tr(A) is finite, and B
is complete. If Duplicator wins Γ k(A,B, f) for some k ∈ N, then she wins
Gκ(A,B) for some κ ∈ N

∗.

Proof. Let k′ ∈ N be the corresponding degree of Tr(A), i.e. k′ = Deg(Tr(A)).
Suppose Duplicator wins for some k ∈ N. By Lemma 2 we can assume that
Duplicator wins Γ k(A,B, f) with the winning strategy as defined before. Con-
sider the translation in which Duplicator output the maximal prefix that is
allowed in the buffer game. We will show that the translated winning strategy
in Lemma 3 is not only winning in Gω,...,ω(A,B), but also in Gk′+k,...,k′+k(A,B).
We will show this by contradiction. Suppose while playing in Gω,...,ω(A,B), there
exists a round, such that one of the buffers is filled with k + k′ + 1 letters. Let
rA, rB be the runs that are formed by Spoiler and Duplicator in this round.
We have |rA| − |rB| > k + k′. Duplicator does not extend her run longer than
rB, because either the winning strategy in Γ k(A,B, f) tells her to extend to rB,
or it actually tells her to extend to some run r′

B longer than rB, but rB is the
maximal prefix of r′

B that satisfies

πi(word(rB)) is a prefix of πi(word(rA)), (1)

for all i ∈ {1, . . . , n}. In the first case, since it implies |rA| − |rB| > k, this con-
tradicts the strategy is winning in Γ k(A,B, f). In the second case, suppose r′

B is
extended from rB by reading u, i.e. r′

B = rBu(1)p1 . . . u(
)p�,
 > 0, and suppose
u(1) = a. Since (1) holds, we have |word(rB)|a ≤ |word(rA)|a. However since rB
is the maximal prefix of r′

B that satisfies (1), we have |word(rB)|a = |word(rA)|a,
since otherwise rBap1 also satisfies (1) and contradicts the maximality of rB. Let
w,w′ be the words that are produced respectively by Spoiler and Duplicator
in Gω,...,ω(A,B). Hence word(rA) and word(r′

B) are prefixes of w and w′, respec-
tively. Since we assume f is trace preserving and Duplicator plays according
to the winning strategy in Lemma2, we have w ∼I w′. Let n0 = |word(rA)|a =
|word(rB)|a, i0 ∈ Pos(w), and i1 ∈ Pos(w′), such that w(i0) = w′(i1) = a and
|w(1) . . . w(i0)|a = |w′(1) . . . w′(i1)|a = n0 +1. Hence i0 > |rA| and i1 = |rB|+1.
This implies i0 − i1 > k′ since |rA| − |rB| > k′. Since (i0, i1) ∈ Corrw,w′ and
w ∈ Tr(A), this contradicts Deg(Tr(A)) = k′.

Topological Characterisation of Multi-buffer Simulation 111

Hence if the corresponding degree of Tr(A) is finite and B is complete, the
existence of a Lipschitz continuous trace preserving function implies that multi-
buffer simulation holds for some bounded buffers. Together with Lemma1, we
have the following characterisation.

Theorem 1. Let A, B be two NBA, in which the corresponding degree of Tr(A)
is finite and B is complete. A�k,...,k B for some k ∈ N iff there exists a Lipschitz
continuous trace preserving function f : AccRun(A) → AccRun(B).

5 Cyclic-Path-Connected Automata

Recall that an automaton A is loop-connected if every cycle in A produces a
connected word. If A is not loop-connected, then the corresponding degree of
Tr(A) is not finite. For example, consider the automaton A with two states q0, q1,
over Σ = {a, b} and I = {(a, b), (b, a)}, i.e. a, b is independent with each other.
Suppose EA = {(q0, a, q1), (q1, b, q0)}. Hence, A is not loop-connected since ab
is not connected. The corresponding degree of Tr(A) is also not finite since for
every k ∈ N, we can consider the word (ab)k+1 ∈ Tr(A), in which its first letter
can commute more than k steps to the right. Hence Deg(Tr(A)) = ∞.

Lemma 5. If the corresponding degree of Tr(A) is finite, then A is loop-
connected.

Proof. Suppose A is not loop-connected. There exists a cycle c in A over a non-
connected word w. For any k ∈ N, let v = wk+1. Since w is not connected, there
exists 〈Σ1, Σ2〉 a partition of Σw, such that the dependency graph Gw consists of
two non-connected components Σ1 and Σ2. Every letter in Σ1 and Σ2 commutes
with each other, i.e. w ∼I π1(w)π2(w) ∼I π2(w)π1(w), where πi is the projection
to Σi for i ∈ {1, 2}. This implies v ∼I π1(w)k+1π2(w)k+1 ∼I π2(w)k+1π1(w)k+1.
Let b ∈ {1, 2}, such that v(1) ∈ Σb. Let v′ = πb̄(w)k+1πb(w)k+1 and n =
|πb̄(w)k+1|. We have n > k since at least one letter of w belongs to Σb̄. The first
letter of v corresponds to the (n + 1)-th letter of v′, i.e. (1, n + 1) ∈ Corrv,v′ .
Hence for every k ∈ N, there exists v ∈ Tr(A), such that Deg+v (1) > k. This
implies Deg+v (1) = ∞, and hence Deg(Tr(A)) = ∞.

The converse of this lemma, however, does not hold. Consider the automaton
A from Example 1. It is loop-connected, but we have seen that the corresponding
degree of Tr(A) is not finite. We will show that we can characterise A, in which
the corresponding degree of Tr(A) is finite, by considering a more restrictive
condition than loop-connected. Instead of only for the cycle, we require every
path in A that contains a cycle to produce a connected word. We call such an
automaton cyclic-path-connected.

Definition 3. An automaton A over (Σ, I) is cyclic-path-connected if for every
path p u−→ q v−→ q w−−→ r, where u,w ∈ Σ∗ and v ∈ Σ+, the word uvw is connected.

112 M. Hutagalung

Note that the automaton A in Example 1 is loop-connected, but not cyclic-
path-connected. The word ba is over a cyclic-path of A but not connected with
respect to the given independence alphabet. Note that the corresponding degree
of Tr(A) is also not finite. This is because for every k ∈ N we can consider the
word bk+1a ∈ Tr(A). The last letter of such a word can commute more than k
steps to the left, and hence Deg(Tr(A)) = ∞. This actually also holds in general.

Theorem 2. If the corresponding degree of Tr(A) is finite, then A is cyclic-
path-connected.

Proof. Suppose A is not cyclic-path-connected. If A is also not loop-connected,
then by Lemma 5, the corresponding degree of Tr(A) is not finite. Suppose
A is loop-connected but not cyclic-path-connected. There exists a cyclic-path
r over a non-connected word w. Without loss of generality, let w = w′w′′,
where w′ is produced by a cycle. For any k ∈ N, let v = w′k+1w′′. Since
w is not connected, there exists 〈Σ1, Σ2〉 a non-empty partition of Σw, such
that w ∼I π1(w)π2(w) ∼I π2(w)π1(w). This implies v ∼I w′kπ1(w)π2(w) ∼I

w′kπ2(w) π1(w). Let b ∈ {1, 2}, such that Σw′ ⊆ Σb. There exists such a b
since w′ is connected. Let i0 be the smallest position in v, such that v(i0) ∈ Σb̄.
Since w′ �= ε and Σw′ ∩ Σb̄ = ∅, we have i0 > |w′k+1| > k. Since every let-
ter in Σ1 and Σ2 commutes with each other, we have v ∼I πb̄(w)w′kπb(w).
Let v′ = πb̄(w)w′kπb(w). The first letter of v′ corresponds to the i0-th letter
of v i.e. (i0, 1) ∈ Corrv,v′ . Hence for every k ∈ N, there exist v ∈ Tr(A) and
i0 ∈ Pos(v), such that Deg−

v (i0) > k. This implies Deg−
v (i0) = ∞, and hence

Deg(Tr(A)) = ∞.

The converse of Theorem 2 also holds. However, we need a more involved
technique. We will show this by considering a relation Blockw ⊆ Pos(w)×Pos(w).
This relation tells us positions of two letters in w that do not commute with each
other.

Definition 4. Let w ∈ Σ∞ be a word over an independence alphabet (Σ, I).
The relation Blockw ⊆ Pos(w)×Pos(w) is the transitive closure of Dw = {(i, j) |
i ≤ j, (w(i), w(j)) ∈ D}, where D = Σ2 \ I.

Consider the word w = cdbca over an independence alphabet (Σ, I) with
dependency graph G : a−b−c−d. We have (1, 3), (3, 5) ∈ Blockw since (c, b) ∈ D
and (b, a) ∈ D. By transitivity, we also have (1, 5) ∈ Blockw.

If we have (i, j) ∈ Blockw for some two positions i, j of w over (Σ, I), then the
letters at positions i and j in w do not commute with each other. This implies
that their corresponding positions in some word w′ that is trace equivalent with
w, do not change order, since otherwise the letter at position i in w commute
with the one at position j.

Lemma 6. Let w ∈ Σ∞ be a word over (Σ, I). If (i, j) ∈ Blockw then
Corrw,w′(i) ≤ Corrw,w′(j) for all w′ ∼I w.

Topological Characterisation of Multi-buffer Simulation 113

Proof. Suppose (i, j) ∈ Blockw. Let k ∈ Pos(w), such that i ≤ k < j,
(i, k) ∈ Blockw, and (w(k), w(j)) ∈ D. Suppose there exists w′, such that
Corrw,w′(k) > Corrw,w′(j). Let k′ = Corrw,w′(k) and j′ = Corrw,w′(j). Let a, b ∈
Σ, such that w(k) = w′(k′) = a, w(j) = w′(j′) = b, and let Σ̂ = (Σ1, . . . , Σm)
be the corresponding distributed alphabet of (Σ, I). Since we assume (a, b) ∈ D,
there exists
 ∈ {1, . . . , m}, such that a, b ∈ Σ�. Let n1 = |w(1) . . . w(k)|a =
|w′(1) . . . w′(k′)|a and n2 = |w(1) . . . w(j)|b = |w′(1) . . . w′(j′)|b. Note that in the
projection of w to Σ�, i.e. π�(w), since k < j, there exist at least n1 many as that
occur before the n2-th b. However, in the projection of w′ to Σ�, i.e. π�(w′), since
k′ > j′, the n1-th a occurs after the n2-th b. There are less than n1 many as that
occur before the n2-th b. Hence, π�(w) �= π�(w′). This contradicts w′ ∼I w. For
all w′ ∼I w, we have Corrw,w′(k) ≤ Corrw,w′(j). By induction hypothesis, we also
have Corrw,w′(i) ≤ Corrw,w′(k) for all w′ ∼I w. Thus, Corrw,w′(i) ≤ Corrw,w′(j)
for all w′ ∼I w.

In contrast, if we have (i, j) /∈ Blockw for some position i < j in w over
(Σ, I), then the letters at positions i and j commute with each other. If there
are n many positions of such i then the letter at position j can commute n many
steps to the left.

Lemma 7. Let w ∈ Σ∞ be a word over (Σ, I). If there are positions i1, . . . , in <
j0 ∈ Pos(w), such that (i1, j0), . . . , (in, j0) /∈ Blockw, then there exists w′ ∼I w,
such that (j0, j0 − n) ∈ Corrw,w′ .

Proof. Let i1, . . . , in and j0 be such positions in w. Without loss of gener-
ality, we can assume that in is the largest position such that in < j0 and
(in, j0) /∈ Blockw. Hence for all k, in < k < j0, (k, j0) ∈ Blockw. This implies
(w(in), w(k)) /∈ D for all k, in < k < j0, since otherwise (in, j0) ∈ Blockw.
Let u1 = w(1)w(2) . . . w(in − 1), u2 = w(in)w(in + 1) . . . w(j0), and u3 =
w(j0 +1)w(j0 +2) . . ., such that w = u1u2u3. Let u′

2 = w(in +1) . . . w(j0)w(in).
We have u2 ∼I u′

2 since (w(in), w(k)) /∈ D for all k, in + 1 ≤ k ≤ j0. Hence we
have w ∼I u1u

′
2u3. Let w′ = u1u

′
2u3. The letter at position j0 in w corresponds

to the one at position j0 − 1 in w′, i.e. (j0, j0 − 1) ∈ Corrw,w′ . By induction
hypothesis, there exists w′′ ∼ w′, such that (j0 − 1, j0 − n) ∈ Corrw′,w′′ . Hence
we have (j0, j0 − n) ∈ Corrw,w′′ .

Let us define Block+w(i) = {j > i | (i, j) /∈ Blockw} and Block−
w(i) = {j < i |

(j, i) /∈ Blockw}. We have j ∈ Block+w(i) or j ∈ Block−
w(i) if the letter at position

j �= i commutes with the one at position i. The positive and negative signs are
used to indicate whether it occurs before or after the letter at position i. In the
following, we show that the size of Block+w(i) and Block−

w(i) give us the bound
on how long the letter at position i commutes to the right and left, respectively.

Lemma 8. For all b ∈ {+,−}, Degbw(i) = |Blockbw(i)|.
Proof. We will show this for b = −. A similar argument can also be used for
b = +. Let k1 = Deg−

w(i) and k2 = |Block−
w(i)|. If k1 < k2, then there are at

114 M. Hutagalung

least k1 + 1 many distinct positions in Block−
w(i), i.e. there are i1, . . . , ik1+1 < i,

such that (i1, i), . . . , (ik1+1, i) /∈ Blockw. By Lemma 7, there exists w′, such that
w′ ∼I w and (i, i − (k1 + 1)) ∈ Corrw,w′ . This means Deg−

w(i) > k1, which
contradicts Deg−

w(i) = k1.
If k1 > k2, then Deg−

w(i) > k2. There exist a word w′ and a position j ∈
Pos(w′) such that w ∼I w′, (i, j) ∈ Corrw,w′ , and i − j > k2. Consider the set
S = {i′ < i | Corrw,w′(i′) > j}. We have |S| = i − j, and hence |S| > k2. Since
there are only k2 many positions in Block−

w(i), there is at least one position
that is not in Block−

w(i), but belongs to S. Let i′ be such a position. We have
(i′, i) ∈ Blockw and Corrw,w′(i′) > Corrw,w′(i). This contradicts Lemma 6. We
have k1 = k2 since k1 �< k2 and k1 �> k2.

One interesting property regarding the cyclic-path-connected automata is
that whenever we have a path that goes through a cycle, then every letter on
the path does not commute with at least one letter in the cycle. This is always
the case since otherwise the cyclic-path will not be connected.

Lemma 9. Let A be a cyclic-path-connected automaton, and p
w1−−→ q u−→

q
w2−−→ p′ a cyclic-path over w = w1uw2. Let P1 = {1, . . . , |w1|}, P2 = {|w1| +

1, . . . , |w1u|}, P3 = {|w1u| + 1, . . . , |w1uw2|} ⊆ Pos(w).

– For all i ∈ P1, there exists j ∈ P2, such that (i, j) ∈ Blockw.
– For all j ∈ P3, there exists i ∈ P2, such that (i, j) ∈ Blockw.

Proof. We will show this for the first part. A similar argument can also be
used to prove the second one. Let i ∈ P1, n = |w1|, P ′

1 = {i, i + 1, . . . , n}, and
w′

1 = w(i)w(i+1) . . . w(n). Since the word w′
1u is produced by a cyclic-path, w′

1u
is connected. There exists j ∈ P ′

1∪P2, such that (w(i), w(j)) ∈ D. If j ∈ P2, then
by definition, (i, j) ∈ Blockw. If j ∈ P ′

1, then by induction hypothesis there exists
j′ ∈ P2, such that (j, j′) ∈ Blockw. Since (i, j) ∈ Blockw, we have (i, j′) ∈ Blockw.

Let us call a path r in A wall if for every path r′ that is extended from r,
every letter that is read before r and after r does not commute with each other.

Definition 5. A path r = p0
a1−−→ p1

a2−−→ . . .
an−−→ pn over w = a1 . . . an in A is

called a wall if for every path r′ that is extended from r, i.e. r′ = q
w1−−→ p0

w−−→ pn

w2−−→ q′, over w′ = w1ww2, we have (i, j) ∈ Blockw′ for all i ∈ {1, . . . , |w1|},
j ∈ {|w1w| + 1, . . . , |w1ww2|}.

Moreover, let C(A) bethe set of simple cycles of A. By simple cycle, we mean
a path that does not visit the same state twice except the first and the last state,
i.e. C(A) = {p1

a1−−→ p2
a2−−→ . . .

ak−−→ pk | p1 �= p2 . . . �= pk−1 and p1 = pk}. If we

have a path of length |A|2 · |C(A)|, then there exists a simple cycle that is visited
at least n = |A| many times. This is because for every path of length |A|, there
exists a state that is visited at least twice.

Topological Characterisation of Multi-buffer Simulation 115

Proposition 3. For any automaton A, if r is a path in A of length |A|2 ·|C(A)|,
then there exists c ∈ C(A) that is visited at least |A| many times in r.

We use this proposition to show the following lemma.

Lemma 10. If A is a cyclic-path-connected automaton, then every path of
length |A|2 · |C(A)| is a wall.

Proof. Suppose r is a path of length |A|2 · |C(A)| from p to p′. By
Proposition 3, there exists a simple cycle c ∈ C(A), suppose over u, that
is visited at least n = |A| many times in r. The path r is over the word
w = v0uv1 . . . uvn for some v0, . . . , vn ∈ Σ∗. Let r′ be a path extended from r, i.e.
r′ = s

w1−−→ p
w−−→ p′ w2−−→ s′, over the word w′ = w1ww2. Let i0 ∈ {1, . . . , |w1|} and

j0 ∈ {|w1w| + 1, . . . , |w1ww2|}. We will show that (i0, j0) ∈ Blockw′ . Let mk =
|w1v0u . . . uvk−1| and Pk = {mk +1, . . . , mk + |u|} for all k ∈ {1, . . . , n}. Since A
is cyclic-path-connected and we can see r′ as s

w1v0−−−−→ q
u−→ q

v1u...uvnw2−−−−−−−−→ s′, by

the first part of Lemma 9, there exists i1 ∈ P1, such that (i0, i1) ∈ Blockw′ . More-
over, since s

w1v0u...uvn−1−−−−−−−−−−→ q u−→ q
vnw2−−−−→ s′, by the second part of Lemma 9, there

exists j1 ∈ Pn, such that (j1, j0) ∈ Blockw′ . We will show that (i1, j1) ∈ Blockw′ .
Since the word u is connected and w′(i1), w′(j1) ∈ Σu, there exists a

path from w′(i1) to w′(j1) in the dependency graph Gu. There exists such
a path of length m ≤ n since |Gu| = |Σu| ≤ n. Let
 be such a path,
and i2 ∈ P2, . . . , im ∈ Pm, such that
 = w′(i1)w′(i2) . . . w′(im). Since an
edge in the dependency graph represents dependency between letters, we have
(w′(i1), w′(i2)), . . ., (w′(im−1), w′(im)) ∈ D. Since i1 < . . . < im, we have (i1, i2),
. . ., (im−1, im) ∈ Blockw′ . Moreover, since w′(im) = w′(j1) and im ≤ j1, we also
have (im, j1) ∈ Blockw′ . Hence (i1, j1) ∈ Blockw′ , and we have (i0, j0) ∈ Blockw′ .

This implies that for every finite or infinite path p1a1p2a2 . . . over w =
a1a2 . . ., in a cyclic-path-connected automaton with n states and m simple cycles,
the letter ai does not commute with aj for all j < i − n2m and j > i + n2m.
This is because for any i > 0, the path piai . . . pi+n2m or pi−n2m . . . ai−1pi is a
wall in A. Hence there are at most n2m many letters to the left or right of ai

that commute with ai, i.e. |Blockbw(i)| ≤ n2m, for any b ∈ {+,−}.
Hence if A is cyclic-path-connected, then for any word w ∈ Tr(A) and posi-

tion i ∈ Pos(w), max {Deg+w(i), Deg−
w(i)} ≤ |A|2 · |C(A)|. In other words, the

corresponding degree of Tr(A) is finite. Since A is cyclic-path-conneted iff the
corresponding degree of Tr(A) is finite, we can refine the characterisation in
Theorem 1 into the following theorem.

Theorem 3. For any two NBA A, B, in which A is cyclic-path-connected and B
is complete, then A�k,...,kB for some k ∈ N iff there exists a Lipschitz continuous
trace preserving function f : AccRun(A) → AccRun(B).

116 M. Hutagalung

L(A) ⊆ [L(B)]I ∃ trace preserving (TP) f : AccRun(A) → AccRun(B)

A �ω,...,ω B ∃ Continuous TP f : AccRun(A) → AccRun(B)

A �k,...,k B ∃ Lipschitz continuous TP f : AccRun(A) → AccRun(B)

+
A cyclic-path-connected, B complete

Thm. 3

Prop. 1

Prop. 2

Lem. 1

Fig. 1. Topological characterisation of multi-buffer simulation

6 Conclusion

We have shown that we can lift the characterisation of multi-buffer simulation
with unbounded buffers to the one with bounded buffers if the automaton for
Spoiler is cyclic-path-connected and the automaton for Duplicator is com-
plete. In this case, multi-buffer simulation with bounded buffers can be charac-
terised by the existence of a Lipschitz continuous function that witnesses trace
closure inclusion. We summarise the topological characterisation of multi-buffer
simulation in Fig. 1.

References

1. Abdulla, P.A., Bouajjani, A., Hoĺık, L., Kaati, L., Vojnar, T.: Computing sim-
ulations over tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 8

2. Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987)
3. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-

tion preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp.
255–265. Springer, Heidelberg (1992). doi:10.1007/3-540-55179-4 25

4. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and
state space reduction for Büchi automata. In: Orejas, F., Spirakis, P.G., Leeuwen,
J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 694–707. Springer, Heidelberg (2001).
doi:10.1007/3-540-48224-5 57

5. Finkel, O.: Three applications to rational relations of the high undecidability of
the infinite post correspondence problem in a regular ω-language. Int. J. Found.
Comput. Sci. 23(7), 1481–1498 (2012)

6. Fritz, C., Wilke, T.: Simulation relations for alternating Büchi automata. Theor.
Comput. Sci. 338(1), 275–314 (2005)

7. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64–81 (2002)

8. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite
games. Log. Methods Comput. Sci. 8(3) (2012)

9. Hutagalung, M., Hundeshagen, N., Kuske, D., Lange, M., Lozes, É.: Multi-buffer
simulations for trace language inclusion. In: GandALF 2016, pp. 213–227 (2016)

http://dx.doi.org/10.1007/978-3-540-78800-3_8
http://dx.doi.org/10.1007/978-3-540-78800-3_8
http://dx.doi.org/10.1007/3-540-55179-4_25
http://dx.doi.org/10.1007/3-540-48224-5_57

Topological Characterisation of Multi-buffer Simulation 117

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages: Vol. 3: Beyond
Words. Springer, New York (1977)

11. Sakarovitch, J.: The “last” decision problem for rational trace languages. In: Simon,
I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992).
doi:10.1007/BFb0023848

http://dx.doi.org/10.1007/BFb0023848

	Topological Characterisation of Multi-buffer Simulation
	1 Introduction
	2 Preliminaries
	2.1 Mazurkiewicz Traces
	2.2 Multi-buffer Simulation

	3 Topological Characterisation
	4 Characterisation of k,�,k, kN
	5 Cyclic-Path-Connected Automata
	6 Conclusion
	References

