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Abstract. Interpreting formulas over infinite-state relational structures
whose states are words over some alphabet and whose relations are
recognised by transducers is known under the term “automatic struc-
tures” in the world of predicate logic, or as “regular model checking” in
formal verification. Both approaches use synchronised transducers, i.e.
finite automata reading tuples of letters in each step. This is a strong
transducer model with high expressive power leading to undecidability of
model checking for any specification language that can express transitive
closure.

We develop conditions on a class of binary word relations which are
sufficient for the CTL model checking problem to be computable over the
class of automatic structures generated by such relations. As an example,
we consider recognisable relations. This is an interesting model from an
algebraic point of view but it is also far less expressive than those given
by synchronised transducers. As a consequence of the weaker expressive
power we obtain that this class satisfies the aforementioned sufficient
conditions, hence we obtain a decidability result for CTL model check-
ing over a restricted class of infinite-state automatic structures.

1 Introduction

Model checking is a well-known model-based method for proving correctness
of the behaviour of dynamic systems [4]. The earliest approaches were con-
fined to finite-state systems [15], limited by the rather obvious undecidability
of checking even the simplest temporal properties – namely reachability – on
arbitrary infinite-state spaces. The ability to also model check infinite-state sys-
tems is indispensable for the verification of software systems, though. Much
effort has therefore gone into the design and study of model checking procedures
for infinite-state systems, mainly focussing on particular classes of finitely rep-
resentable infinite-state systems like pushdown systems [10,34], Petri nets [28],
process algebraic descriptions of infinite-state systems [20,25], recursion schemes
[26], etc.

A rich formalism that gives rise to particular infinite-state systems is known
as automatic structures [6]. The name is derived from the fact that (finite-state)
automata play a major role in the construction of such systems: their states are
represented as finite words, and the relations in these structures are recognised by
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synchronous transducers. Standard automata-theoretic constructions can then
be used to show that the model checking problem for First-Order Logic (FO)
is decidable over such structures [7]. It is also not difficult to see that model
checking for Transitive Closure Logic already – the extension of FO with an
operator to express inclusion in the transitive closure of some binary relation
– becomes undecidable as the configuration graph of a Turing Machine can be
modelled as an automatic structure.

The richness and flexibility of this framework makes it interesting for verifi-
cation purposes, despite the fact that even the simplest specification languages
for typical correctness properties in verification incorporate transitive closures in
some form or other [14]. This has led to the study of regular model checking [9], a
term describing the framework of verifying labelled transition systems (i.e. rela-
tional structures with unary and binary relations only) represented as automatic
structures. Interestingly, the use of such structures in the rather difficult domain
of verification of temporal properties has started a while before the positive and
elegant results on FO model checking were discovered [22,36].

Research on regular model checking has seen a great amount of effort spent
on the computation of transitive closures [12,31] using various techniques that
circumvent undecidability issues, for instance by giving up completeness or pre-
cision, like fixpoint acceleration [1,21], widening [32], abstraction [8], inference
[18], etc.

One can argue that the restriction to the computation of transitive closures
still facilitates “doing model checking”, at least for relatively simple temporal
properties like safety or liveness. The approximative nature of procedures like
the ones cited above usually prohibits the study of combinations of such proper-
ties, as safety verification typically requires over-approximations whereas liveness
verification needs under-approximations.

In this paper we want to study the possibility to do model checking for
a richer class of temporal properties than just safety or liveness. The simple
branching-time temporal logic CTL [11] provides a framework for the specifica-
tion of combinations of such properties. Our object of interest is therefore the
model checking problem for CTL over automatic structures. As stated above,
this problem is clearly undecidable, and the multitude of work that has gone
into studying the subproblem of verifying liveness or safety properties shows
that one cannot expect to find many positive results for regular CTL model
checking unless one gives up completeness, precision, or expressive power. We
aim to retain completeness and precision and study the case where expressive
power is limited on the side of the automatic structures rather than the temporal
specification language. We consider a particular case of automatic structures for
which the accessibility relation is recognisable. The concept of recognisability,
defined via morphisms onto a finite monoid, is central in the field of algebraic
automata theory. An overview over the classes of relations in focus and the notion
of recognisability and synchronisation can be found in [5,29].

The class of recognisable relations is a proper subclass of the synchronous
ones. Hence, the class of automatic structures defined over them is significantly
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smaller than the class of automatic structures over synchronous transducers. It
remains to be seen whether this class includes families of structures that are
interesting for software verification purposes for instance. On the other hand, a
consequence of this loss in expressive power is – as we show here – that CTL
model checking, i.e. including the verification of simple safety or liveness proper-
ties, as well as combinations thereof, is decidable over this class of infinite-state
systems.

The paper is organised as follows. In Sect. 2 we recall CTL and transition
systems as its standard model of interpretation. CTL model checking over auto-
matic structures defined by recognisable relations is not meant to be the ultimate
goal in infinite-state verification; instead we want to provide the basis for the
study of temporal logic model checking over restricted classes of automatic struc-
tures here. We therefore present a generic description of automatic structures as
transition systems, parametrised by the machinery used to define its transition
relation; recognisable relations and their corresponding automaton model are
one example of such machinery that falls into this framework, and it is the one
studied in further detail here.

Section 3 recalls the generic bottom-up global CTL model checking algo-
rithm, and it then develops necessary criteria on the underlying structures for
this algorithm to be terminating and correct. In Sect. 4 we then consider the
aforementioned recognisable relations, resp. the automatic structures generated
by them and show that they satisfy the necessary conditions laid out before.
Hence, we get decidability of CTL model checking over this class of automatic
structures. Finally, Sect. 5 concludes with remarks on further work in this area.

2 Preliminaries

2.1 Labelled Transition Systems

Let P = {p, q, . . .} be a set of proposition symbols. A labelled transition system
(LTS) is a T = (S,−→, �) where S is a (possibly infinite) set of states, −→ ⊆ S×S
is the transition relation which is always assumed to be total, i.e. for every s ∈ S
there is a t ∈ S with (s, t) ∈ −→. We usually write s−→ t instead of (s, t) ∈ −→.
Finally, � : P → 2S is a partial labelling function which assigns sets �(p) of states
in which p is true, to some propositions p. We assume that �(p) is defined for
finitely many p only, for otherwise it is not clear how an LTS should be finitely
representable as (part of the) input to an algorithm solving some computation
problem.

Let S ⊆ S. We write PreT (S) for the set of predecessors of S, i.e. {t ∈ S |
∃s ∈ S s.t. t −→ s}.

A path in T starting in state s is an infinite sequence π = s0, s1, . . . such that
s0 = s and si −→ si+1 for all i ≥ 0. For such a path π and i ∈ N let π(i) denote
its i-th state, i.e. si. Let ΠT (s) denote the set of all paths in T that start in s.
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2.2 The Branching-Time Logic CTL

Let P be as above. Formulas of the branching-time logic CTL are built according
to the following grammar.

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | EXϕ | E(ϕUϕ) | EGϕ

where p ∈ P.
Besides the usual abbreviations for the Boolean operators like ∧,→, tt, ff we

also introduce the standard temporal operators via E(ϕ Rψ) := E(ψ U (ϕ ∧ ψ)) ∨
EGψ, AXϕ := ¬EX¬ϕ, A(ϕ Rψ) := ¬E(¬ϕ U¬ψ), EFϕ := E(tt Uϕ), AGϕ := ¬EF¬ϕ,
and AFϕ := ¬EG¬ϕ.

Formulas of CTL are interpreted over labelled transition systems T =
(S,−→, �). The semantics inductively defines the set of states at which each sub-
formula is true.

[[p]]T := �(p)

[[ϕ ∨ ψ]]T := [[ϕ]]T ∪ [[ψ]]T

[[¬ϕ]]T := S \ [[ϕ]]T

[[EXϕ]]T := {s ∈ S | ∃t ∈ S s.t. s−→ t and t ∈ [[ϕ]]T }
[[E(ϕ Uψ)]]T := {s ∈ S | ∃π ∈ ΠT (s), i ≥ 0 s.t. π(i) ∈ [[ψ]]T

and for all j < i : π(j) ∈ [[ϕ]]T }
[[EGϕ]]T := {s ∈ S | ∃π ∈ ΠT (s) s.t. for all i ≥ 0 : π(i) ∈ [[ϕ]]T }

The (global) model checking problem for CTL and a class of labelled transi-
tion systems is: given a T ∈ and a ϕ ∈ CTL (over the same set of atomic
propositions), compute [[ϕ]]T . It is well-known that the model checking problem
for CTL over finite LTS is computable in polynomial time [15].

2.3 Automatic Structures

We are interested in particular LTS over infinite state spaces, known as auto-
matic structures [6]. Originally, the term refers to (possibly infinite) relational
structures that can be represented using automata. Here we consider a slightly
modified variant that does not bear any essential differences. First, we restrict
our attention to unary and binary relations – note that LTS are specific rela-
tional structures such that the arities of their relations are two (for the transition
relation) and one (for all the atomic propositions).

Second, we consider a slight generalisation, owed to the limits that the orig-
inal proposal faces in terms of decidability issues. In the original definition of
automatic structures, relations are recognised by synchronous transducers, i.e.
finite automata over alphabets of the form Σk for some k ≥ 1 (which equals
the arity of the underlying relation). This makes the concept of an automatic
structure a syntactic definition.
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The aim of this work is to find (restricted) classes of automatic structures
for which the CTL model checking problem is computable. One way to obtain
this is to study restricted mechanisms for defining the relations in an LTS. We
therefore prefer a semantic definition of automatic structures here, allowing the
representation mechanism to become a parameter for a class of infinite-state
structures.

We assume the reader to be familiar with the basic notions of formal language
theory and the theory of finite-state automata. We use Σ for a finite alphabet
and Σ∗ for the set of all finite words over Σ. The empty word is denoted by ε.

A nondeterministic finite automaton (NFA) over Σ is a A = (Q,Σ, qI , δ, F )
with finite state set Q, initial state qI ∈ Q, final states F ⊆ Q and transition
relation δ : Q × Σ → 2Q. The language of A is denoted L(A), and it consists
of all words w ∈ Σ∗ for which there is an accepting run of A on w. We use the
standard homomorphic extension δ̂ of δ to words via δ̂(q, ε) = {q} and δ̂(q, wa) =
{q′ | ∃q′′ ∈ δ̂(q, w) s.t. q′ ∈ δ(q′′, a)}. Hence, L(A) = {w | ∃f ∈ δ̂(qI , w)}.

For our notion of automatic structure we need an abstract concept of a
mechanism that represents binary relations over words.

Definition 1. A binary acceptor A is any finite representation of a binary rela-
tion R(A) ⊆ Σ∗ × Σ∗.

This yields a parametric notion of automatic structures.

Definition 2. Let A be a class of binary acceptors over some alphabet Σ.
An LTS T = (S,−→, �) is said to be an A-automatic transition system, or A-
automatic in short, if

– S = Σ∗,
– for each p ∈ P with �(p) 
= undef there is an NFA Ap s.t. L(Ap) = �(p),
– there is a binary acceptor Atr ∈ A s.t. R(Atr) = {(s, t) | s−→ t}.

Thus, roughly speaking, a transition system is automatic, if the labels are
represented by an NFA and the transition relation by a binary acceptor. The
size of an A-automatic structure T , denoted |T |, is the sum of the sizes of the
NFA used to define the interpretation of the atomic propositions plus the size of
the binary acceptor, assuming that some sensible notion of representation size
is given for it.

The standard notion of an automatic structure as known from [6] – at least
when restricted to one binary and otherwise only unary relations – is obtained
in this setting as a Tsync-automatic transition system with Tsync being the class
of synchronous transducers, i.e. NFA over the alphabet Σ2 ∪{(a,#), (#, a) | a ∈
Σ}. The relation of such a transducer A is then defined as R(A) = {(u, v) |
zip(u, v) ∈ L(A)} where zip merges the two words u, v ∈ Σ∗ into a two-tracked
word over Σ2, possibly appending the padding symbol # in case their lengths
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are not equal. It is inductively defined via

zip(au, bv) :=
(

a
b

)
zip(u, v), zip(ε, bv) :=

(
#
b

)
zip(ε, v),

zip(au, ε) :=
(

a
#

)
zip(u, ε), zip(ε, ε) := ε,

where a, b ∈ Σ and u, v ∈ Σ∗.
Another example of a binary acceptor is given by the notion of recognisable

relations, to be looked at in detail in Sect. 4 as a mechanism to define a class
of automatic structures we call recognisable automatic structures. The notion
of binary acceptor is flexible enough, though, to incorporate all sorts of other
mechanisms for defining binary relations. For instance a pair of two NFAs (A,B)
with R(A,B) = L(A) × L(B) would also be a very simple case of a binary
acceptor, leading to what one may call fully asynchronous automatic structures.
In fact, such a pair yields a very special case of a recognisable relation.

3 Model Checking CTL

We describe the generic and well-known procedure that can be used to compute
the set of states in a transition system which satisfy a given CTL formula [10].
It can immediately be derived from the semantics and the fixpoint principle,
stating that the set of states satisfying E(ϕUψ), resp. EGϕ, can be computed
iteratively in a least, resp. greatest fixpoint recursion.

Note that the procedure ModelCheck as given in Algorithm 1 is not an
algorithm strictly speaking: if |S| < ∞ then clearly PreT (·) is computable,
and termination of the repeat-until-loops is guaranteed by monotonicity and
boundedness of the values of the variable T in both cases. Hence, procedure
ModelCheck can safely be called an algorithm for CTL model checking on
finite structures.

In case of |S| = ∞, termination is not necessarily guaranteed. This does
not mean, though, that computability of the model checking problem is not
given. As in the case of FO model checking on automatic structures which only
uses computable operations on possibly infinite sets, a thorough look at Mod-
elCheck reveals some sufficient conditions under which CTL model checking
becomes computable. For this, we assume the given LTS to be A-automatic for
some class A. Then the computability of the Boolean operations is guaranteed
for as long as they are applied to sets of states which form a regular language.
Moreover, computability of the Pre (·)-predicate is needed, which is the counter-
part to closure under projections in the decidability proof for FO model checking
on automatic structures. At last, we need one more property which has no coun-
terpart in FO model checking, since FO has no recursion mechanism but CTL
has one in the form of the temporal operators EU and EG.

Definition 3. Let A be a class of binary acceptors and T be a class of
A-automatic structures. We say that T has finite U-closure ordinals if for any
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Algorithm 1. The standard procedure for model checking CTL.
procedure ModelCheck(ϕ) � assume LTS T = (S, −→, �) fixed

case ϕ of
p: return �(p) � p ∈ P
¬ψ:

return S\ ModelCheck(ψ)
ψ1 ∨ ψ2:

return ModelCheck(ψ1) ∪ ModelCheck(ψ2)
EXψ:

return PreT (ModelCheck(ψ))
E(ψUχ):

L1 ← ModelCheck(ψ); L2 ← ModelCheck(χ); M ← ∅
repeat

M ′ ← M ; M ← L2 ∪ (L1 ∩ PreT (M))
until M = M ′

return M
EGψ:

L ← ModelCheck(ψ); M ← S
repeat

M ′ ← M ; M ← L ∩ PreT (M)
until M = M ′

return M
end case

end procedure

T ∈ T and any regular languages L1, L2 the increasing chain M0 ⊆ M1 ⊆ . . .
becomes stationary where

M0 := ∅, Mi+1 := L2 ∪ (L1 ∩ PreT (Mi)).

Likewise, we say that T has finite G-closure ordinals if for any T ∈ T and any
regular language L the decreasing chain M0 ⊇ M1 ⊇ . . . becomes stationary
where

M0 := Σ∗, Mi+1 := L ∩ PreT (Mi).

We say that T has finite closure ordinals if it has finite U- and finite G-closure
ordinals.

Here, becoming stationary means that there is an n ∈ N such that Mn+1 =
Mn. It is a simple consequence of the monotonicity of the operators PreT (·),
union and intersection that the series (Mi)i≥0 indeed forms an increasing, resp.
decreasing chain.

Lemma 4. The model checking problem for CTL over the class T of
A-automatic transition systems is computable if

(a) for any LTS T ∈ T and any regular language L, the set PreT (L) is effectively
regular, i.e. an NFA can be computed for it from an NFA for L, and

(b) T has finite closure ordinals.
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Proof. It is a standard exercise to show by induction on the structure of ϕ that
calling ModelCheck(ϕ) on T returns [[ϕ]]T [4, Theorem 6.23] [13, Lemma 7.3.4],
provided that it terminates. It then only remains to see that termination is
guaranteed when each call to any of the two repeat-until loops terminates.

First we note that by assumption (a), each subcall to ModelCheck returns a
regular language. Then assumption (b) is applicable and guarantees termination
of the loops since they iterate through the values of the chains from Definition 3
in their variables M and M ′ until they become stable. ��

4 CTL Model Checking over Recognisable Automatic
Transition Systems

In this section we examine a particular class of binary acceptor and the com-
putability of the CTL model checking problem over automatic structures gener-
ated by this class. Semantically, it consists of the class of recognisable relations
which forms a proper subclass of the relations represented by synchronous trans-
ducers. These, in turn, are included in the well-known class of rational relations
[29, Theorem 6.4].

An automaton model for the class of recognisable relations can immediately
be derived from the fact that every recognisable relation can be expressed as
the finite union of the product of some regular languages [5, Theorem 1.5]. This
gives rise to a syntactic transducer model for these relations.

Definition 5. An input-output-independent (IOI) automaton is a triple A =
(I,O, F ) such that I = (QI, Σ, qII , δI, ∅) and O = (QO, Σ, qOI , δO, ∅) are NFAs
and F ⊆ QI × QO.

The relation defined by an IOI automaton is

R(A) := {(u, v) ∈ Σ∗ × Σ∗ | ∃(p, q) ∈ F s.t. p ∈ δ̂Ii (qII , u) and q ∈ δ̂Oi (qOI , v)}.

Intuitively, an IOI automaton is a pair of NFAs which are only synchronised
via final states. They read the input and output word independently, and the
acceptance condition prescribes which pairs of states their runs need to end in
for the pair of words to be accepted. Clearly, IOI automata are a special form
of binary acceptors according to Definition 1. Hence, they give rise to a class of
automatic structures, henceforth called recognisable automatic structures.
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Example 6. Let A = (I,O, F ) be the IOI automaton such that I and O are both
the following NFA.

A state at the bottom is reached by a word that contains exactly two b’s,
hence, it is of the form an1ban2ban3 for some n1, n2, n3 ≥ 0. Such a state x1x2x3

then indicates the parities (even/odd) of n1, n2 and n3.
The final state pairs of A are those of the row at the bottom that differ in

at least two positions, i.e.

F := {(x1x2x3, y1y2y3) | xi 
= yi for at least two i ∈ {1, 2, 3}}.

Thus, a pair of words (an1ban2ban3 , am1bam2bam3) is in R(A), iff ni = mi mod 2
for at most one i ∈ {1, 2, 3}.

A generates a recognisable automatic structure with state space {a, b}∗ that
is partly shown in Fig. 1. The grey circles denote subgraphs of nodes of the form
an1ban2ban3 for which the values of n1 + n2 + n3 do not differ. The dashed line
abbreviates edges from every node in the left subgraph to the node on the right.
Note that R(A) is symmetric in this case, simply because I = O and F happens
to be symmetric.

Fig. 1. An excerpt of the relation R(A) for the IOI automaton A from Example 6.

In order to prove computability of the model checking problem for CTL over
recognisable automatic structures it suffices to show that this class satisfies the
two conditions laid out in Lemma 4.

Lemma 7. Let L be a regular language and T be a recognisable automatic struc-
ture. Then PreT (L) is effectively regular.

Proof. Let L be a regular language accepted, e.g., by some NFA B =
(QB, Σ, qBI , δB, FB) and let A = (I,O, FA) be the IOI automaton that recognises
the transition relation of some recognisable automatic structure T . Consider the
IOI automaton A � B := (I,O′, F ) with O′ = (QO × QB, Σ, (qOI , qBI ), δ, ∅),

δ((p, q), a) = {(p′, q′) | p′ ∈ δO(p, a), q′ ∈ δB(q, a)}
and F := {(f1, (f2, f)) | (f1, f2) ∈ FA, f ∈ FB}. It has the same input compo-
nent as A, but its output component O′ is the synchronous product of the one
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of A and B. Hence, it recognises the relation R(A�B) = {(u, v) | (u, v) ∈ R(A)
and v ∈ L(B)}.

Next, consider the NFA I′ := (QI, Σ, qII , δI, F ′) with F ′ := {f1 | ∃(f2, f)
s.t. (f1, (f2, f)) ∈ F}. We then have L(I′) = {u | ∃v s.t. (u, v) ∈ R(A � B)} =
PreT (L). ��

This is of course a standard construction of forming the intersection of the
automaton’s second component with a regular language and then projecting it
onto its first component. We have spelled out the construction in detail because
of an important observation to be made: note that the transition table of the
NFA for PreT (L) does not depend on L; instead, L only determines its accepting
states. This can be seen as an indication of the weakness of IOI automata as a
model for automatic structures; however, some sort of weakness is necessary in
order to obtain computability.

Lemma 8. The class of recognisable automatic structures has finite closure
ordinals.

Proof. We will only prove the claim for finite U-closure ordinals. The case of
G-closure ordinals is analogous.

Let A = (I,O, F ) be the IOI automaton underlying some recognisable auto-
matic structure T , and let L1, L2 be two regular languages. Consider the chain
M0 ⊆ M1 ⊆ . . . approximating the set of states in T that satisfy – by slight
abuse of notation – E(L1 UL2), as constructed in Definition 3.

By the observation following the previous lemma, we have that PreT (L) is
recognised by an NFA of the form (QI, Σ, qII , δI, F ) for some F ⊆ QI. Thus,
the graph structure of the NFA does not depend on the input language L, only
the set of final states does. Therefore, there are at most 2|QI| many different
languages PreT (L) for arbitrary regular L.

Now consider the chain M0 ⊆ M1 . . .. Each Mi with i > 0 is obtained as
L2 ∪ (L1 ∩ PreT (Mi−1)). Assuming that union and intersection are always
formed using the same procedure on the same fixed NFA for L1 and L2, we get
that there are at most 2|QI| many different NFA for the Mi. With union and
intersection being monotone operations, the chain M0 ⊆ M1 ⊆ . . . has to become
stable after at most 2|QI| many steps. ��

Putting Lemmas 4, 7 and 8 together, we immediately obtain the following.

Theorem 9. The model checking problem for CTL over the class of recognisable
automatic structures is computable.

An immediate question arising from such a decidability result concerns the
worst-case complexity of the model checking problem for CTL over recognis-
able automatic transition systems. We note that the time needed to compute
[[ϕ]]T for some such T and arbitrary CTL formula ϕ is determined by several
factors: (1) the use of intersection and complementation constructions arising
from conjunctions and negated subformulas; (2) upper bounds on the number of
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iterations needed to obtain stability in the in-/decreasing chains of Definition 3.
The following lemma shows that stability is reached after a small number of
iterations.

Lemma 10. Consider an IOI automaton A = (I,O, F ) and two regular lan-
guages L1, L2 ⊆ Σ∗ represented by NFA B1,B2. Let A0,A1, . . . be the sequence
of NFA recognising the languages M0,M1, . . . in an in-/decreasing chain accord-
ing to Definition 3, and let F0, F1, . . . be their final states respectively. Then
F0, F1, . . . also forms an increasing, resp. decreasing chain.

Proof. We assume that in each step of building the Ai, i ≥ 1, the standard
constructions for forming the union and intersection of two languages are being
used. Hence, for every final state f in some Fi we have that f is either a final
state of B2, or it is of the form (f ′, f ′′) such that f ′ is a final state of B1 and f ′′

is a final state of the NFA constructed in the proof of Lemma7 by projecting
the automaton A � Ai−1 accordingly.

Now consider the case in which M0 ⊆ M1 ⊆ . . . forms an increasing chain.
The case of a decreasing chain is entirely analogous. W.l.o.g. we can assume that
F0 = ∅ since M0 = ∅. Clearly, we have F0 ⊆ F1. Now let i > 0 and assume that
Fi−1 ⊆ Fi. We want to show that Fi ⊆ Fi+1 holds.

Take some f ∈ Fi. If f is a final state of B2 then it clearly also belongs to
Fi+1. Hence, suppose that f = (f ′, f ′′) with f ′ being a final state of B1 and f ′′

being a final state of the NFA for PreT (Mi−1). According to the construction of
the automaton A�Ai−1 as in the proof of Lemma7 there must exist some g, g′

such that (f ′′, (g, g′)) is a final state of A�Ai−1. This is only possible if (f ′′, g)
is a final state of the automaton A and g′ is a final state of the NFA Ai−1,
thus g′ ∈ Fi−1. Then we can apply the induction hypothesis and get g′ ∈ Fi and
therefore (f ′′, (g, g′)) as a final state of A�Ai. Then f ′′ is also a final state of the
NFA for PreT (Mi) and therefore f is a final state of the NFA for L1 ∩PreT (Mi)
and, hence, f ∈ Fi+1. ��

Note that this does not necessarily yield a polynomial bound on the number
of iterations needed to compute [[E(ϕUψ)]]T for instance. Lemma 10 shows that
the fixpoint will be reached after after at most nϕ +nψ ·n steps where nϕ, nψ are
the number of states of an NFA recognising [[ϕ]]T and [[ψ]]T , respectively. Again,
similar considerations can be made for the decreasing chains in Definition 3 and
formulas of the form EGϕ. In any case, n equals the number of states of the
output component of the IOI automaton recognising the accessibility relation
of the underlying recognisable transition system. Hence, n is clearly bounded
by |T |, the size of a representation of T . However, nϕ and nψ are not a priori
bounded since these subformulas can be arbitrary and in particular make use of
expensive intersection and complementation constructions.

5 Conclusion and Further Work

We have defined a simple framework for the study of restricted classes of auto-
matic structures in which the binary relations are defined by weaker automata
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than synchronous ones. This can of course be extended to relations of arbitrary
arity, but automatic structures that represent transition systems (i.e. have rela-
tions of arity at most two) are most interesting for purposes of verification of
reactive and concurrent systems. This also motivates the choice of specification
language, here the branching-time temporal logic CTL.

There are plenty of ways that this work can be extended to in the future. The
exact complexity of CTL model checking over recognisable automatic transition
systems needs to be established. It also remains to be seen whether the sufficient
conditions (or similar ones) on IOI automata can be used to prove decidability
of model checking problems for richer or similar specification languages like PDL
[17] with various extensions [30], regular extensions of CTL [3,19,24] or even the
modal μ-calculus [23]. Note that these logics are all state-based in the sense that
typical global model checking procedures can proceed in a bottom-up fashion
similar to Algorithm 1.

The next question that comes up in terms of investigations w.r.t. specification
languages concerns linear-time logics like LTL [27] and PSL [2] and then com-
binations with branching-time features resulting in something like CTL∗ [16].
Note that model checking for such logics typically requires very different tech-
niques like automata- [33] or tableau-based [35] ones. It therefore remains to see
if the sufficient conditions laid out in Lemma 4 would also yield computability of
model checking problems for linear-time properties, or whether other conditions
can be found similarly.

Another obvious direction for future work is of course to find further instan-
tiations of the relaxed framework of binary acceptors which preferably leads to
richer classes of automatic structures but still satisfies the conditions of Lemma4.
One way to go about this is to give up working with essentially two-tracked
words since this is one of the main course of undecidability. A simple sugges-
tion for a binary acceptor that is based in the world of one-tracked words is,
for instance, the following: given an NFA A, let R(A) = {(u, v) | uv ∈ L(A)}.
Hence, it defines a relation by cutting words in a regular language apart. It is
a simple exercise, though, to see that this model of binary acceptor is effec-
tively equivalent to the IOI automata studied here. Hence, it does not generate
a new class. We therefore propose a slight variant and leave it open whether this
model of binary acceptor satisfies the conditions of Lemma 4: given an NFA A,
let R(A) = {(u, v) | there is w ∈ L(A) such that u is a prefix of w and v is a
suffix of w}. We suspect that CTL model checking is computable for the class of
automatic structures defined by such binary acceptors but have no formal proof
at the moment.

We also suspect that recognisable relations may form the largest class of
syntactically definable relations for which CTL model checking, or even model
checking for some weaker logic like EF, is decidable. It remains to be seen whether
it is possible to encode some undecidable reachability problem using an arbitrary
relation that incorporates only the slightest form of synchronisation between the
runs on the input and the output word.
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