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Abstract. We present the operational semantics of an abstract machine
that models computations of event-based asynchronous programs
inspired to the Node.js server-side system, a convenient platform for
developing Internet of Things applications. The goal of the formal
description of Node.js internals is twofold: (1) integrating the existing
documentation with a more rigorous semantics and (2) validating widely
used programming and transformation patterns by means of mathemat-
ical tools like transition systems. Our operational semantics is paramet-
ric in the transition system of the host scripting language to mimic the
infrastructure of the V8 virtual machine where Javascript code is exe-
cuted on top of the event-based engine provided by the C++ libuv con-
currency library. In this work we focus our attention on priority callback
queues, nested callbacks, and closures; these are widely used Node.js
programming features which, however, may render programs difficult to
understand, manipulate, and validate.

1 Introduction

Asynchronous programming is getting more and more popular thanks to emer-
gent server-side platforms like Node.js and operating systems for applications
that require a constant interaction with the user interface; this programming par-
adigm reduces the need of controlling concurrency using synchronization prim-
itives like lock and monitors. As an example, the execution model of Node.js is
based on a single threaded loop used to poll events with different priorities and
to serialize the execution of pending tasks by means of callbacks. Accordingly,
I/O operations are performed through calls to asynchronous functions where
callbacks are passed to specify how the computation continues once the corre-
sponding I/O operations completed asynchronously.

Taking inspiration from previous work [1,2,4–8,10], in this paper we focus
our attention on a formal semantics of asynchronous programs with the following
features: Priority callback queues; Nested callback definitions to model anony-
mous callbacks; Closures used to propagate the caller scope to the postponed
callback invocation. The formal semantics of the resulting system is given in a
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parametric form. Namely, we give a presentation that is modular in the tran-
sition system of the host programming language. We use callbacks as a bridge
between the two layers as in implementation of scripting languages like Node.js
running on virtual machines like Chrome V8. In our framework a callback is a
procedure whose execution is associated with a given event. When the event is
triggered by the program or by an external agent, the corresponding callback
is added to a queue of pending tasks. In our model the execution of callbacks
is controlled by an event-loop. After the complete execution of a callback, the
event loop polls the queue and selects the next callback to execute.

This kind of behavior is typically supported via concurrent executions of I/O
bound operations on a pool of worker threads. To get closer to the Node.js exe-
cution model, we model the behavior of the event loop using different phases.
More precisely, we provide continuations as a means to define pending tasks
with highest priority (they are executed at the end of a callback) as for the
process.nextTick1 operation in Node.js. Furthermore, we provide postponed
callbacks as a means to postpone a callback after the poll phase of standard
callbacks (internal, I/O, and networking events). This mechanism is similar to
the setImmediate operation provided in Node.js. As in Node.js, nested contin-
uations (a continuation that invokes a continuation) or the enqueuing of tasks
during the poll phase are potential sources of starvation for the event loop. In
actual implementations non termination in the poll phase is avoided by imposing
a hard limit on the number of callbacks to be executed in each tick. All pending
postponed callbacks are executed when the poll phase is quiescent.

Examples. To illustrate all above mentioned concepts, let us consider some
examples taken from the standard fs module supporting file system operations
in Node.js.

var fs = require(‘fs’);
fs.readFile(‘abc.txt’,function(err,data){err||console.log(data);});
console.log(‘ok’);

Function readFile is asynchronous; once the read operation has completed, its
continuation is defined by an anonymous callback with two parameters err and
data holding, respectively, an optional error object and the data read from the
file (in case no error occurred err contains null). If the read operation completes
successfully, then the callback will print the read data on the standard output,
but only after string ok. Let us now consider an example that uses the events
module in Node.js for emitting events and registering associated callbacks.

var EventEmitter = require(‘events’);
var Emitter = new EventEmitter();
var msg = function msg() { console.log(‘ok’); }
Emitter.on(‘evt1’, msg);
Emitter.emit(‘evt1’);
while (true);

1 Despite of the name, this is the current semantics of Node.js.
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On line 4 the callback msg is registered and associated with events of type ’evt1’,
then on the subsequent line an event of type msg is emitted; since method emit
exhibits a synchronous behaviour, the associated callback is immediately exe-
cuted and the message ok is printed before the program enters an infinite loop
where no other callback will ever be executed. We now modify the program above
as follows.

eventEmitter.on(‘evt1’, function () { setImmediate(msg); });
eventEmitter.emit(‘evt1’);
while (true);

Also in this case, after the event has been emitted, the associated callback is
synchronously executed, but then setImmediate is used to postpone the exe-
cution of function msg to the next loop iteration, and therefore the program
enters immediately the infinite loop without printing ok. System functions like
setImmediate are used to interleave the main thread and callbacks. While there
exists a rigorous semantics for Javascript, see e.g. [9], the Node.js on-line docu-
mentation [12] has not a formal counterpart and contains several ambiguities as
can be read in [13], and in several discussions on the meaning of operations like
setImmediate, nextTick, etc. see e.g. [11,14,15].

The combination of asynchronous programming with nested callbacks and
closures may lead to programs with a quite intricate semantics; let us consider,
for instance, the following fragment.

function test(){
var d = 5;
var foo = function(){ d = 10; }
process.nextTick(foo);
setImmediate(() => { console.log(d) })

}
test();

Function test defines a local variable d, which, however, is global to the inner
function foo which is passed as callback to process.nextTick; technically, foo
is called a closure, since it depends on the global variable d, which is updated
by foo itself. Function process.nextTick postpones the execution of foo to
the next loop iteration, however foo has higher priority over the callback passed
to setImmediate on the following line. After the call to test is executed, the
variable d local to the call is still allocated in the heap since it is referenced by
the closure foo; when foo is called, the value of d is updated to 10, therefore
the execution of console.log(d) will print 10 as result.

In the paper we propose a formal model for describing computations and to
clarify the semantics of this kind of programs.

Plan of the paper. In Sect. 2 we present the formal definitions of the opera-
tional semantics of a scripting language and of the abstract machine that cap-
tures the event-driven behavior of our scripts. Both components are inspired to
Node.js. Section 3 illustrates how to apply the operational semantics to reason
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about asynchronous programs. In Sect. 4 we define a specification language for
reasoning about computations of the resulting combined framework (abstract
machine and semantics of scripting language). Finally, in Sect. 5 we address
related work and future research directions.

2 Abstract Machine for Asynchronous Programs

In this section we define the formal semantics of the abstract machine. We will
first try to use a compositional method with respect to the semantics of the host
language. We will instantiate the language with a simplified scripting language.

Preliminaries. In the rest of the paper we will use the following notation.
A∗ = {v1 . . . vn|vi ∈ A, i : 1, . . . , n, n ≥ 0} denotes the set of words with
elements in A. We use w1 · w2 to denote concatenation of two lists and ε to
denote the empty word. A⊗ = {{v1 . . . vn}|vi ∈ A, i : 1, . . . , n, n ≥ 0} denotes
the set of multisets of elements in A. We use m1 ⊕ m2 to denote multiset union
of m1 and m2. We also use a ⊕ m to denote the addition of element a ∈ A to
m. An = {v = 〈v1, . . . , vn〉|vi ∈ A, i : 1, . . . , n n ≥ 1} denotes set of tuples with
elements in A. [A → B] denotes the set of maps from A to B. We use [x/a] to
denote the sequence of substitutions or maps [x1/a1, . . . , xn/an] for i : 1, . . . , n,
n ≥ 1. We use t[s/x] to denote the term obtained from t by substituting every
free occurrence of x with s. Furthermore, m[v/x] denotes the maps m′ defined
as m′(x) = v and m′(y) = m(y) for every y �= x. To manipulate callbacks
we will use lambda-terms. A variable x, a value v and the constant any are
lambda-terms. For a variable x and a lambda term t, λx.t is a lambda-term.
If t and t′ are lambda-terms, then t(t′) is a lambda-term. A variable x is free
in t if there are occurrences of x in t that are not in the scope of a binder λx.
Lambda terms are usually considered modulo renaming of bounded variable, i.e.,
all free occurrences under the scope of the same binder can be renamed without
changing the abstract structure of the term. If x does not occur free in t′, the
application (λx.t)(t′) reduces to the term t[t′/x] obtained by substituting all free
occurrences of x in t with the term t′.

2.1 Host Language

We assume here that programs are defined starting from sequential programs in
a host language L with basic constructs and (recursive) procedures. Let F be
a denumerable set of function names. Let us consider a denumerable set V al
of primitive values (pure names in our example) and a denumerable set V ar of
variables. Expressions are either values or variables. We will also use the special
term any to denote a non-deterministically selected value and in some example
consider natural numbers and expression with standard semantics. To simplify
the presentation, we will represent programs as words over the alphabet of pro-
gram instructions I with variables in V ar. An (anonymous) callback definition is
a lambda-term λx.s, where x ∈ V ark is the set of formal parameters, and s ∈ I∗.
Now let A be a finite set of names of asynchronous operations. Events is a finite
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set of (internal and external) event labels s.t. Events = Eventsi ∪ Eventse and
Eventsi ∩ Eventse = ∅. V ar may contain variable and function names in F . In
order to define environments we will extend V al in order to contain closures,
i.e., pairs in Env × Callback where Callback is the set of lambda terms that
denotes callback (function) definitions.

Furthermore, we introduce a denumerable set Loc of locations that we use
to denote memory references so as to obtain a semantics with stateful closures.
The association between locations and values will be defined via a global heap
memory H that will be part of the system configuration. The heap memory H
is a list of maps [l1/v1, . . . , lk/vk] s.t. li is a location and vi is a value (primitive
value or closure). We will use Heap to denote the set of possible heaps.

The set of environments Env consists of list of substitutions [x1/l1, . . . , xn/ln]
s.t. xi ∈ V ar and li ∈ V al for i : 1, . . . , n. Given � = [x1/l1, . . . , xn/ln], �(x) = l
if there exists i s.t. xi = x, �i = l, and xj �= x for j > i. In other words to
evaluate x in � we search the first occurrence of x from right to left and return
its value. Given an environment � and the heap memory H, we use �H to denote
the function defined as �H(v) = H(�(v)) for v ∈ V ar.

In this way we can use an environment as a stack and represent therein
nested scopes of variables. Listener is the finite set maps Events → (Env ×
F ∗)∗. A listener maps an event to a sequence of pairs each one consisting of
an environment (the current environment of the caller) and a list of callback
names (defined in the corresponding environment). CallF is the set of callback
calls {f(v)|f ∈ F,v ∈ V alk, k ≥ 0}. CallA is the set of asynchronous calls
{call(a, cb)|a ∈ A, cb ∈ F} where A is a set of labels. Finally, a frame (a record
of the call stack of the main program) is a pair 〈�, u〉 s.t. � ∈ Env and u ∈ I∗.

The host language provides a denumerable set of global variables V arG and
an operation store(x, e) to write the evaluation of expression e in the global
variable x. We assume here that store operations on undefined variables add
the variable to the environment (i.e. global environment can only be extended).
Furthermore, we provide a special operation obs to label specific control points
with the current value of an expression. The label is made observable by labeling
the transition relation with it. The proposed instance of the host language allows
us to design an assertional language to specify properties of computations in the
abstract machine.

A program expression has either the structure let x = e in B where x is a
local variables and e an expression denoting a primitive value (not a function), or
let f1 = λy1.P1, . . . , fk = λyk.Pk in B where P1, . . . , Pk are program expressions
(they may contain let declarations). In both cases B is a finite sequence of
instructions built on top of the above mentioned instruction set. We consider
then the following types of instructions.

– obs(e) is used to observe a certain event (a value)
– store(x, e) is used to store a value (the evaluation of e) in the global or local

variable x. We use the expression any to denote a value non deterministically
selected from the set of values.
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– f(e) is used to synchronously invoke a callback f with the vector of parame-
ters e. Actual parameters are global or local variables.

We assume that all necessary procedure definitions are declared in the pro-
gram (we will introduce an example language with let declarations) so that their
names are always defined in the current local environment. We now define the
set of configurations CL of the host language. CL consists of tuples of the form
〈G,H, S〉, where G ∈ Env, H is the global heap, and S ∈ Frame∗. In other
words S has the form 〈�1, S1〉 . . . 〈�n, Sn〉 for i : 1, . . . , n. A word of frames will
be interpreted as the stack of procedure calls. In a pair 〈�, w〉 � is the local
environment and w is the corresponding program to be executed.

�′ = �[x/l], lH(e) = v, H ′ = H[l/v], l �∈ dom(H)

〈G, H, 〈�, let x = e in B〉 · S〉 →L 〈G, H ′, 〈�′, B〉 · S〉 s1v

�′ = �[f1/l1, . . . , fk/lk], H ′ = H[l1/〈�, λx1.P1〉, . . . , lk/〈�, λxk.Pk〉]
li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, 〈�, let f1 = λx1.P1, . . . , fk = λxk.Pk in B〉 · S〉 →L 〈G, H ′, 〈�′, B〉 · S〉 s1f

〈G, H, 〈�, obs(e) · B〉 · S〉 → ̂�H (e)
L 〈G, H, 〈�, B〉 · S〉

s2

x �∈ dom(�) G · �H(e) = w �= λy.e

〈G, H, 〈�, store(x, e) · B〉 · S〉 →L 〈G[x/w], H, 〈�, B〉 · S〉 s3g

x ∈ dom(�) �H(e) = w �= λy.e �(x) = l

〈G, H, 〈�, store(x, e) · B〉 · S〉 →L 〈G, H[l/w], 〈�, B〉 · S〉 s3l

�H(f) = 〈�′, λy.u〉, G · (�H) · (�′
H)(v) = v′, H ′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, 〈�, f(v) · B〉 · S〉 →L 〈G, H ′, 〈�′′, u〉 · 〈�, B〉 · S〉 s4

〈G, H, 〈�, ε〉 · S〉 →L 〈G, H, S〉 s5

Fig. 1. Operational semantics of the host language

2.2 Operational Semantics

We assume that the operational semantics of programs in L is defined via a
transition system 〈CL,→L〉, where →L⊆ (CL × CL) defines small step opera-
tional semantics of generic statements of programs in L. We will use λ-terms to
represent callbacks in the local environment during program evaluation. In the
semantics of our language, lambda terms are used as values for function names.
Indeed, a local environment � is a map that associates function names to loca-
tions, and H associates locations to lambda expressions. By using location for
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both variables and function names we obtain a more general semantics open to
extensions in which variables can contain functions (as in Javascript) that can
be dynamically updates. The transition system is obtained as the minimal set
satisfying the rule schemes defined in Fig. 1. Rule s1v models the semantics of
the let expression for variables with primitive values (we assume here that e is
not a function nor a function call). Its effect is to update the local environment
with a new substitution between the variable name and a fresh location, and the
heap with an association between the new location and the value of the expres-
sion. Rule s1f models the semantics of the let expression. Its effect is to update
the local environment with new substitutions between function names and loca-
tions, and the heap with associations between locations of pairs that represent
the current environment and the lambda term that represents the body of the
callback definition. Rule s2 models the semantics of instructions. This rule cap-
tures the effect of observing an event by exporting the label to the meta-level
(i.e. as a label of the transition step). We assume here that if an expression a is
not defined in �H (and it is not a function name) than it is simply viewed as a
constant, i.e., ̂�H(e) = e if �H(e) is not defined. Rule s3 captures the effect of a
store(x, e) operation. We assume that store is defined only if x is a global vari-
able and e evaluates to a value that is not a function. Furthermore, �(any) ∈ V al
(non deterministically selected). Rule s4 models synchronous calls. In this rule
we first evaluate f in the current local environment to retrieve its definition. We
then evaluate the parameters in the concatenation of global and local environ-
ments. We push a new frame onto the call stack containing a copy of the current
environment (so as to transport the scope information from the current frame
to the new one) concatenated with the evaluation of the parameters and the
body of the function definition. Finally, rule s5 models the return from a call by
eliminating the frame on top of the stack when its body is empty. In our host
language, we can define a stronger rule by observing that local environments are
copied from old to new frames and that local environments are not used as state
by other frames. In other words, we can reason modulo the following equivalence
between stack expressions: (S1 · 〈�, ε〉 · S2) ≡ (S1 · S2).

2.3 Abstract Machine

In this section we define the formal semantics of an abstract machine that can
handle programs as those specified in the previous section extended with built-
in instructions for associating event-handlers (callbacks) to event names, and
to control the priority queues via special enqueues built-in primitives. More
precisely, programs are defined by enriching the language L with the following
control instructions:

– reg(e, u): registers callbacks in the word (list) u ∈ F ∗ for event e, we use a
list since the callbacks must be processed in order.

– unreg(e, P ): unregisters all callbacks in the set P ∈ P(F ) for event e.
– call(op, cb): invokes an asynchronous operation op and registers the callback

cb to be executed upon its termination. We assume here that the operation
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generates a vector of input values that are passed, upon termination of op, to
the callback cb.

– nexttick(f,v): enqueues the call to f with parameters v in the nextTick
queue.

– setimmediate(f,v): postpones the call to function f with parameters v to
the next tick of the event loop.

– trigger(e,v): generates event e ∈ Eventsi (pushing callbacks in the poll
queue) with actual parameters v.

We now define the operational semantics of programs. We first define the
set of configurations CL of the host language. CL consists of tuples of the form
〈G,H, S〉 where G ∈ Env, H is the heap memory, and S ∈ Frame∗. In other
words S has the form 〈�1, S1〉 . . . 〈�n, Sn〉 for i : 1, . . . , n. A word of frames will
be interpreted as the stack of procedure calls. In a pair 〈�, w〉 � is the local
environment and w is the corresponding program to be executed. We assume that
the operational semantics of programs in L are defined via a transition system
〈CL,→L〉, where →L⊆ (CL × CL) defines small step operational semantics of
generic statements of programs in L.

A configuration is a tuple 〈G,H,E, S,C,Q, P,R〉, where G ∈ Env, H ∈
Heap, E ∈ Listener, S ∈ Frame∗, C,Q, P ∈ (Env × CallF )∗, and R ∈
(Env × CallA)⊗. C,Q, P and R are sequences of pairs consisting of a local
environment and of a function invocation. C is the (nexttick) queue of pending
callback invocations generated by nexttick, Q is the (poll) queue of pending call-
back invocations generated by trigger and by external events. P is the (setimme-
diate) queue of pending callback invocations generated by setimmediate. Local
environments are used to evaluate variables defined in the body of a callback at
the moment of registration, synchronous or asynchronous invocation.

We associate to every L-program Π enriched with control instructions a tran-
sition system TΠ = 〈Conf,→〉 in which Conf is the set of configurations, and
→ is a relation in Conf ×Conf . Furthermore, we will use labeled versions of the
transition relations, namely, →α and →α

L, in order to keep track of observations
generated by the evaluation of programs instructions. Labels are either values,
variable or function names. For simplicity, we will use → [resp. →L] to denote
→ε [resp. →ε

L].
The initial configuration is the tuple

γ0 = 〈∅, ∅, ∅, 〈ε, P 〉, ε, ε, ε, ∅〉
where we use ∅ to denote an empty map or multiset, ε to denote empty queues
and local environments (both treated as words). In the rest of the paper we
will use ⊥ to denote the empty call stack (it helps in reading configurations).
In order to evaluate expressions we need to combine G and a local environment
�. We use G · � to indicate the concatenations of the substitutions contained in
G and �. As for environments, to evaluate x we inspect the list of substitutions
in G · � from right to left (a local variable can hide a global one with the same
name). In the rest of the section we assume that procedure names occurring in
a rule are always defined in the corresponding local environment. The transition
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system is obtained as the minimal set satisfying the rule schemes defined in
Fig. 2. Rule r1 is used to embed the semantics of L into the semantics of the
abstract machine. Rule r2 associates the current environment and the ordered
list of callbacks u to the event evt. Everytime evt is triggered, the callbacks in
u will be added to the queue of pending tasks together with the environment
in the same order as they occur in u. Rule r3 unregisters all callbacks in P for
event evt. We use � to denote this operation. Rule r4 assigns a semantics to the
trigger instruction. It corresponds to the combination of emit and setImmediate
discussed in the introduction. The rationale behind this definition is that when
evt is triggered, all registered callbacks are added to the pending queue. The
current local environment is stored together with the callback invocation. The
formal parameters are instantiated with the actual parameters defined in the
trigger statement. The environment can be used to evaluate variables occurring
in the body of the callback definition. The actual parameters v are evaluated
using the composition of the global and local environment.

We now consider asynchronous calls of built-in libraries to be executed in
a thread pool. Rule r5 adds the call to a pool of pending tasks submitted to
the pool thread. We do not model the internal behavior of asynchronous calls.
The only information maintained in R is a pointer to the callback cb that has
to be executed upon termination of the thread execution. The pool R is used
to keep track of the operations that have been submitted to the thread pool.
Since the termination order of these calls is not known a priori and, at least
in principle, the calls might be processed in parallel by different threads, we
abstract from the order and use a multiset for modeling the pool. According to
this idea, rule r6 models the termination of a thread and the invocation of the
corresponding callback cb. We assume here that cb expects k parameters. The
callback is invoked with k non-deterministically generated values (they model
the result returned by the asynchronous call). We remark that the constant a is
used as a label and has no specific semantics (it helps in the examples).

In order to handle the response to external events (e.g. connections, etc.)
we use the non-deterministic rule r7. We assume here that the data generated
by the operation are non-deterministically selected from the set of values and
associated with the formal parameters of the callback functions p1, . . . , pk. Every
callback invocation is stored together with the corresponding local environment.

Rule r8 deals with nextTick callbacks. Invocation of such an operation is
defined as follows. The callback invocation is stored together with the current
local environment. Rule r9 is used to deal with setImmediate invocations. The
callback invocation is stored together with the current local environment. In r8
and r9 the actual parameters are evaluated using the composition of the global
and local environment.

Rule r10 and r11 define the selection of pending tasks. The selection phase
is defined according with the following priority order: nextTick, poll, setImmedi-
ate. nextTick callbacks are selected every time the call stack becomes empty (at
the end of a callback execution). Poll callbacks are selected only when the call
stack is empty and there are no nextTick callbacks to execute. The local envi-
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〈G, H, S〉 →α
L 〈G′, H′, S′〉

〈G, H, E, S, C, Q, P, R〉 →α 〈G′, H′, E, S′, C, Q, P, R〉 r1

E′ = E[evt/(E(evt) · 〈�, u〉)]
〈G, H, E, 〈�, reg(evt, u) · w〉 · S, C, Q, P, R〉 → 〈G, H, E′, 〈�, w〉 · S, C, Q, P, R〉 r2

E′ = E[evt/(E(evt) 	 u)]

〈G, H, E, 〈�, unreg(evt, u) · w〉 · S, C, Q, P, R〉 → 〈G, H, E′, 〈�, w〉 · S, C, Q, P, R〉 r3

evt ∈ Eventsi E(evt) = 〈�1, u1〉 . . . 〈�m, um〉 ui = pi
1 · . . . · pi

ki
for i : 1, . . . , m

r = 〈�1, p1
1(v)〉 · . . . · 〈�1, p1

k1
(v)〉 . . . 〈�m, pm

1 (v)〉 · . . . · 〈�m, pm
km

(v)〉 v ∈ V alk

〈G, H, E, 〈�, trigger(evt, v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q · r, P, R〉 r4

R′ = R ⊕ {〈�, call(a, cb)〉}
〈G, H, E, 〈�, call(a, cb) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q, P, R′〉 r5

u = 〈�, cb(v)〉 v ∈ V alk R′ = R \ {〈�, call(a, cb)〉}
〈G, H, E, S, C, Q, P, R〉 → 〈G, H, E, S, C, Q · u, P, R′〉 r6

evt ∈ Eventse E(evt) = 〈�1, u1〉 . . . 〈�m, um〉 ui = pi
1 · . . . · pi

ki
for i : 1, . . . , m

r = 〈�1, p1
1(v)〉 · . . . · 〈�1, p1

k1
(v)〉 . . . 〈�m, pm

1 (v)〉 · . . . · 〈�m, pm
km

(v)〉 v ∈ V alk

〈G, H, E, S, C, Q, P, R〉 → 〈G, H, E, S, C, Q · r, P, R〉 r7

G · �H(v) = v′

〈G, H, E, 〈�, nexttick(f,v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C · 〈�, f(v′)〉, Q, P, R〉 r8

G · �H(v) = v′

〈G, H, E, 〈�, setimmediate(f,v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q, P · 〈�, f(v′)〉, R〉 r9

�H(p) = 〈�′, λy.s〉, G · (�H) · (�′
H)(v) = v′, H′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, E, ⊥, 〈�, p(v)〉 · C, Q, P, R〉 → 〈G, H′, E, 〈�′, s〉, C, Q, P, R〉 r10

�H(f) = 〈�′, λy.s〉, G · (�H) · (�′
H)(v) = v′, H′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, E, ⊥, ε, p(v) · Q, P, R〉 → 〈G, H′, E, 〈�′, s〉, ε, Q, P, R〉 r11

〈G, H, E, ⊥, ε, ε, P, R〉 → 〈G, H, E, ⊥, ε, P, ε, R〉 r12

Fig. 2. Operational semantics of the abstract machine

ronment is initialized with the stored environment � and the map that associates
parameters to actual values. SetImmediate callbacks are selected only when both
the call stack and the nextTick queue are empty. We assume that the definition
of p is available in the local environment stored with the callback (the global
environment does not contain function definitions). The local environment is ini-
tialized with the stored environment � and the map that associates parameters
to actual values. Finally, in rule r12 all (pending) setImmediate callbacks are
executed before passing to the next tick of the event loop.

Given a program P with initial state γ0 and transition relation →, we use
→∗ to denote the reflexive and transitive closure of →. The sequence of labels
generated during the unfolding of the transition relation → gives rise to possibly
infinite words in Labels∗ that we will use to observe the behavior of a given
instance of the host language when executed in the abstract machine. Starting
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from an initial state γ0, a program can give rise to several different computations
obtained by considering every possible reordering of asynchronous operations.
This feature, in combination with the callback mechanism that can delay the
execution of a function, makes our programs a non trivial computational model
even in the simple case of Boolean programs, i.e., programs in which all data are
abstracted into a finite set of possible values.

We will restrict our attention to infinite executions under fairness conditions
to ensure the termination of asynchronous callbacks after finitely many steps.
Indeed, asynchronous callbacks are typically built-in operations that terminate
with an error if something goes wrong in their execution. Similarly, we might
restrict our attention to infinite executions in which external events, for which
there are registered callbacks, occur infinitely often.

3 Formal Reasoning

In this section we will consider some example of formal reasoning via the tran-
sition systems introduced in the previous sections. For the sake of simplicity,
in all examples but the last one on closures with state, we will omit the heap
component and consider only environments mapping variables to values. We will
use the complete semantics when considering side effects on closures.

Let us first consider the program defined as follows.

P = let f = (let (cb = λx. obs(x)) in call(read, cb) · f) in f()

A possible computation, in which we apply the reduction 〈�, f〉 · 〈�, ε〉 ≡ 〈�, f〉,
is given below.

ρ1 = 〈∅, ∅, ∅, 〈ε, P 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉 s.t. � defines f →
ρ3 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, let cb = λx.obs(x) in call(read, cb) · f〉, ε, ε, ε, ∅〉 →
ρ5 = 〈∅, ∅, ∅, 〈�′, call(read, cb) · f〉, ε, ε, ε, ∅〉 s.t. �′ defines cb →
ρ6 = 〈∅, ∅, ∅, 〈�′, f〉, ε, ε, ε, {〈�′, call(read, cb)〉}〉

In the configuration ρ6 we can either assume that the asynchronous call is already
terminated or continue with the execution of the current callback. In the former
case we have the following continuation.

ρ6 → ρ7 = 〈∅, ∅, ∅, 〈�′, f〉, ε, ε, 〈�′, cb(d)〉, ∅〉 for d ∈ V al

In the latter case we will add a new frame to the call stack with the body of
f . We now observe that, in both cases, the callback stack will never get empty
again. Therefore, the callback cb, defined in the local environment �′, will never
be selected for execution even under additional fairness conditions. As a con-
sequence, the transition system will never generate observations during any of
its infinitely many possible computations (the termination of the asynchronous
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call can happen anytime). This formally explains why in systems like Node.js
everytime the main application has a recursive structure (e.g. to model an infi-
nite loop) in order to make it responsive to external events, it is necessary to
encapsulate the recursive call into invocations of primitives like setImmediate
and nextTick. To illustrate this idea, let us consider the following modified
program.

P1 = let f = (let cb = λx. obs(x) in call(read, cb) · setimmediate(f)) in f()

We obtain the following behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε, P1〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉s.t. � defines f →∗

ρ3 = 〈∅, ∅, ∅, 〈�′, setimmediate(f)〉, ε, ε, ε, {〈�′, call(read, cb)〉}〉 s.t. �′ def. f, cb

Again we have a bifurcation here. For instance, let us assume that read termi-
nates. We obtain then the following computation.

ρ3 → ρ4 = 〈∅, ∅, ∅, 〈�, setimmediate(f)〉, ε, cb(d), ε, ∅〉 →∗

ρ5 = 〈∅, ∅, ∅,⊥, ε, 〈�′, cb(d)〉, 〈�′, f〉, ∅〉 →
ρ6 = 〈∅, ∅, ∅, 〈�′, cb(d)〉, ε, 〈�′, f〉, ∅〉 →
ρ7 = 〈∅, ∅, ∅, 〈�′[x/d], obs(x)〉, ε, 〈�′, f〉, ∅〉 →d

ρ8 = 〈∅, ∅, ∅, 〈�′[x/d], ε〉, ε, 〈�′, f〉, ∅〉 . . .

It is interesting to observe here that callbacks are evaluated in the environment
of the caller. For instance, in this example function cb and f are both defined in
�′, the local environment used to initialize the frame associated to the invocation
cb(d). In other words, under fairness conditions on the termination of asynchro-
nous callbacks, the execution of program P1 generates infinite traces labeled
with an arbitrary sequence of values that correspond to successful termination
of read operations.

To understand the difference between nextTick and setImmediate, let us
first consider the nextTick operation.

NT = let f1 = (λd1.obs(a)), f2 = (λd2.obs(b)), f3 = (λz.obs(c))
in nexttick(f1) · call(b, f2) · call(c, f3)

We then apply our operational semantics to study its behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε,W 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, nexttick(f1) · call(b, f2) · call(c, f3)〉, ε, ε, ε, ∅〉
s.t. � cont. all def. →
ρ3 = 〈∅, ∅, ∅, 〈�, call(b, f2) · call(c, f3)〉, 〈�, f1〉, ε, ε, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, call(b, f2)〉, 〈�, f〉, ε, ε, {call(c, f3)〉

We now have possible bifurcations due delays in the termination of c. We could
for instance reach one of the following two configurations:

ρ5 = 〈∅, ∅, ∅, 〈�, call(c, f3)〉, 〈�, f1〉, call(b, f2), ε, ∅〉
ρ′
5 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, ε, ε, {call(b, f2), call(c, f3)}〉
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From the latter we can obtain

ρ′
6 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, call(b, f2) · call(c, f3), ε, ∅〉

ρ′′
6 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, call(b, f3) · call(c, f2), ε, ∅〉

In all cases f1 will be executed before f2 and f3 because of the priority order
used to inspect the queue of pending calls when the call stack becomes empty,
i.e., neither f2 nor f3 can overtake f1.

Now let us consider the same program with setimmediate replacing nexttick.

NT = let f1 = (λd1.obs(a)), f2 = (λd2.obs(b)), f3 = (λz.obs(c))
in setimmediate(f1) · call(b, f2) · call(c, f3)

We then apply our operational semantics to study its behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε,W 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, setimmediate(f1) · call(b, f2) · call(c, f3)〉, ε, ε, ε, ∅〉
s.t. � cont. all def. →
ρ3 = 〈∅, ∅, ∅, 〈�, call(b, f2) · call(c, f3)〉, ε, ε, 〈�, f1〉, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, call(b, f2)〉, ε, ε, 〈�, f1〉, {call(c, f3)}〉

We now have possible bifurcations due delays in the termination of c. We could
for instance reach one of the following two configurations:

ρ5 = 〈∅, ∅, ∅, 〈�, call(c, f3)〉, ε, call(b, f2), 〈�, f1〉, ∅〉
ρ′
5 = 〈∅, ∅, ∅,⊥, ε, ε, 〈�, f1〉, {〈�, call(b, f2)〉, 〈�, call(c, f3)〉}〉

From the latter we can obtain one of the following configurations:

ρ6 = 〈∅, ∅, ∅, 〈�, f1〉, ε, ε, {〈�, call(b, f2)〉 · 〈�, call(c, f3)〉}〉
ρ7 = 〈∅, ∅, ∅,⊥, 〈�, call(b, f2)〉 · 〈�, call(c, f3)〉, 〈�, f1〉, ∅〉
ρ8 = 〈∅, ∅, ∅,⊥, 〈�, call(c, f3)〉 · 〈�, call(b, f2)〉, 〈�, f1〉, ∅〉

4 Property Specification Language

The formalization of the operational semantics for an abstract machine for even-
loop based programs has several possible applications. First of all, it gives a for-
mal meaning to complex computational models underlying widely used systems
like Node.js. The informal documentation of operations like nextTick, setIm-
mediate, etc. that we found in the dev site [12] is ambiguous and difficult to
parse. A transition system like the one presented in this paper gives a precise
mathematical meaning to each operation in terms of evolution of configurations.
Based on this, we can use the operational semantics as a formal tool to reason
about computations in the abstract machines. For this purpose, we introduce
an extension of regular expressions in order to handle values from an infinite
domain, i.e., represent labels associated to values. A finite state automata is a
tuple A = 〈Q,Σ, δ, q0〉 in which Q is a finite set of states, δ : Q × Σ → Q is
the transition relation and q0 is an initial state. A computation is a (possibly
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infinite) sequence q0a0q1a1q2 . . . s.t. qi+1 = δ(qi, ai) for i ≥ 0. The observation
of a computation q0a0q1a1q2 . . . is the possibly infinite word a0a1a2 . . . of labels
occurring along the computation.

For an alphabet Σ, let ̂Σ = {â|a ∈ Σ}. An extended automata EA is an
automata A = 〈Q,Σ∪ ̂Σ, δ, q0〉. We use x̂ as a sort of variable. The effect of x̂ is to
associate a value v, non deterministically chosen, to x and to instantiate x with v
in every successive transition labeled with x until the next x̂ label is encountered
and so on. If there are no occurrences of â then the label is interpreted as a.
In other words during the unfolding of the transition relation of an extended
automata for each label we maintain its current state. The initial state of label
a is a itself. However everytime we encounter â its state is updated with some
value taken from D. More precisely, the configuration of an extended automata
is a tuple 〈q, ρ〉 where ρ : Σ → D. The initial state is defined as 〈q0, idΣ〉, where
idΣ(a) = a for each a ∈ Σ. Given a configuration 〈q, ρ〉, a ∈ Σ and δ(q, a) = q′,
we have that 〈q, ρ〉 →a 〈q′, ρ〉. Given a configuration 〈q, ρ〉, a ∈ Σ and δ(q, â) =
q′, we have that 〈q, ρ〉 →v 〈q′, ρ′〉 where ρ′(a) = v for some v ∈ D and ρ′(b) = ρ(b)
for b �= a, b ∈ Σ. A computation is a sequence 〈q0, ρ0〉α0〈q1, ρ1〉α1 . . . such that
〈qi, ρi〉 →α

i 〈qi+1, ρi+1〉 for i ≥ 0. The sequence of labels α0α1 . . . is called here
observation. This simple extension of finite automata allows us to represent
observations of value non-deterministically generated during a computation and
passed from one callback to another. By definition, we consider only a finite
number of variables in order to keep the model as simplest as possible. Finally, we
say that a program P conforms to specification given as an extended automata A
iff for every computation c of program P in the abstract machine that generates
a sequence of labels σ, there exists a computation in the extended automata
with observation σ.

To validate examples extracted from Node.js code, we have written a meta-
interpreter in Prolog that can explore all possible bounded executions of the
proposed model and catch unexpected execution orders with respect to specifi-
cations given in a sublanguage of the automata based language proposed in this
section. The interpreter [16] exploits the search mechanism of the Prolog run-
time system in order to analyze sets of executions of a given input program. We
remark that, although Node.js are at first sight sequential programs, their com-
putation is often highly non- deterministic due to the heavy use of asynchronous
operations and internal and external events.

5 Conclusions and Related Work

We have presented a first attempt of formalizing the operational semantics of the
Node.js event-loop asynchronous computation model including some of the more
intricate elements (priority callback queues, nested callbacks, closures) of such
a programming system. Following the underlying structured of the event-based
loop (inspired to the V8 engine), we have formulated the semantics in terms of
an abstract machine operating on a parametric transition system describing the
semantics of the host scripting language. We believe that formal specification
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and verification of this kind of systems will be more and more important in
order to improve the development process of Internet of Things applications,
their reliability, and in order to provide non ambiguous documentations of low
level details of primitives like those described in this paper. More work has still
to be done concerning automation of the verification task e.g. by exploiting
approximated algorithms and abstraction for both procedural and functional
scripting languages.

There exist several works on formal models of asynchronous programs. In [10]
the authors provide verification algorithms for asynchronous systems modeled
as pushdown systems with external memory. The external memory is defined as
a multiset of pending procedure calls. Theoretical results on recognizability of
Parikh images of context-free language are used to obtain an algorithmic char-
acterization of the reachable set of the resulting model. The algorithms have
been extended to other types of external memory in [2]. Algorithms for liveness
properties are studied in [7] and for real-time extensions are given in [5]. A com-
plexity analysis of decidable fragments is given in [6]. In [8] the authors consider
a general model of event-based systems in which task are maintained in FIFO
queues. The focus of their analysis again is providing algorithmic techniques for
different types of restrictions of the model via reductions to Petri Nets, PDS,
and Lossy channel systems. In [3] the authors define a model for asynchronous
programs with task buffers in which events and buffers are dynamically created.
Decidable fragments are obtained via reductions to Data nets. Differently from
the above mentioned work, the goal of the present paper is not that of isolat-
ing decidable fragments. We are interested instead in giving a precise semantics
to the interplay between asynchronous architecture like Node.js and scripting
languages executed on top of them see e.g. more empirical works like [1,4]. In
this sense we think that, more than restrictions, our framework needs further
extensions in order to capture for instance objects and dynamic memory alloca-
tion as done in formal semantics of languages like Javascript [9]. Our validation
approach is based on enumeration techniques and partial search similar to tools
used for concurrent systems.
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