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Abstract. We are focused on the solvability/insolvability of the directed
s-t connectivity problem (DSTCON) parameterized by suitable size para-
meters m(x) on multi-tape deterministic Turing machines working on
instances x to DSTCON by consuming simultaneously polynomial time
and sub-linear space, where the informal term “sub-linear” refers to a
function of the form m(x)ε�(|x|) on instances x for a certain absolute
constant ε ∈ (0, 1) and a certain polylogarithmic function �(n). As nat-
ural size parameters, we take the numbers mver(x) of vertices and of
edges medg(x) of a graph cited in x. Parameterized problems solvable
simultaneously in polynomial time using sub-linear space form a com-
plexity class PsubLIN and it is unknown whether DSTCON parame-
terized by mver belongs to PsubLIN. Toward this open question, we
wish to investigate the relative complexity of DSTCON and its natural
variants and classify them according to a restricted form of many-one
and Turing reductions, known as “short reductions,” which preserve the
polynomial-time sub-linear-space complexity. As variants of DSTCON,
we consider the breadth-first search problem, the minimal path problem,
and the topological sorting problem. Certain restricted forms of them
fall into PsubLIN. We also consider a stronger version of “sub-linear,”
called “hypo-linear.” Additionally, we refer to a relationship to a practi-
cal working hypothesis known as the linear space hypothesis.

Keywords: Sub-linear space · Hypo-linear space · Directed s-t-
connectivity · NL search · NL optimization · Short reduction · Linear
space hypothesis

1 Background and Overview

1.1 Solvability of the Directed s-t Connectivity Problem

Polynomial-time computation has been widely acknowledged as a natural, rea-
sonable, theoretical model of tractable computation and all such tractable
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decision problems are known to form a complexity class, known as P. For
polynomial-time computation, we are more keen to its minimal use of mem-
ory space from theoretical and practical interest. A typical example of small
memory usage may be logarithmic-space computation (or log-space computation,
in short), which requires O(log n) memory space to complete its computation on
each input of size n. The complexity class L is composed of all decision problems
solvable in polynomial time using log space and its nondeterministic counterpart
is known as NL. Unlike NP (nondeterministic polynomial time), NL is known
to be closed under complementation [8,14]. Besides the well-studied P = NP
question, one of the most challenging open questions is the decades-old L = NL
question, which asks whether NL decision problems are all solvable using log
space.

One of the most studied NL problems is probably the directed s-t connectivity
problem1 (DSTCON) concerning the reachability of vertices in a directed graph.

Directed s-t Connectivity Problem (DSTCON):

◦ Instance: a directed graph G and two designated vertices s and t.
◦ Question: is there any path from s to t in G?

Decades ago, Jones [9] demonstrated that DSTCON is NL-complete (under log-
space many-one reductions). Even though instances are restricted to directed
acyclic graphs of maximum degree at most 3 (3DSTCON), the s-t connectivity
problem still remains NL-complete. Nonetheless, DSTCON has since then played
a key role as a typical NL-complete problem in quest of determining the exact
computational complexity of NL.

In order to solve DSTCON, a straightforward exhaustive search algorithm
requires simultaneously O(m + n) time and O(n log n) space for any directed
graph of n vertices and m edges. A more sophisticated deterministic algorithm
of Barnes et al. [4] solves it in polynomial time using at most n/2c

√
log n space

for a certain constant c > 0. This space bound is only slightly below a linear
function. For restricted graphs such as planar directed graphs, on the contrary,
Asano et al. [3] gave a polynomial-time,

√
n �(n)-space algorithm for DSTCON,

where � refers to a certain suitable polylogarithmic function. Moreover, Kannan
et al. [10] designed an nε�(n)-space algorithm for so-called directed unique-path
graphs, where ε is a constant in (0, 1). In particular, when directed graphs are
regular, DSTCON is solvable using O(log n) space [12]. For single-source pla-
nar directed acyclic graphs, there is an O(log n)-space algorithm to determine
their s-t connectivity [1]. The s-t connectivity problem for undirected graphs
(USTCON) can be solved using only O(log n) space [11]. In contrast, if we allow
super-polynomial (i.e., Θ(nlog n)) execution time, then there is a known deter-
ministic algorithm solving DSTCON using O(log2 n) space [13].

Despite decades of vigorous studies, it is still unknown whether DSTCON
or its search version can be solved in polynomial time using “significantly less”
memory space than any linear function.
1 This is also known as the graph accessibility problem and the graph reachability
problem in the literature.
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A search version of the DSTCON, denoted by Search-DSTCON, is to find
a (not necessary simple) path in a given directed graph between two specified
vertices if any (otherwise, it outputs a designated symbol “⊥”). Such a path
can be easily found using log space with an adaptive queries to oracles in NL.
Search-BFT, for example, is an NL search problem of constructing from a given
directed graph a breadth-first tree rooted at a given starting vertex and a typical
approach to solve DSTCON is to construct such breadth-first trees. In a similar
fashion, many NL decision problems can be turned into NL search problems and
NL optimization problems (or NLO problems, in short) [15,16].

1.2 Size Parameters and Parameterized Problems

We are more concerned with problems, which are parameterized by certain “size
parameters,” where size parameters in practice play important roles in measuring
the precise computational complexity of the problems. All the space-complexity
bounds stated in Sect. 1.1 concern with DSTCON parameterized by two partic-
ular size parameters, one of which is the total number mver(x) of vertices and
the other is the number medg(x) of edges of a graph in a graph-related instance
x. Generally, the choice of different size parameters tends to lead to different
complexities. To certain restricted variants of DSTCON and Search-DSTCON,
however, mver and medg endow the same complexity.

1.3 Sub-Linear and Hypo-Linear Space

For a further discussion and exposition, it is imperative to clarify our termi-
nology of the “sub-linearity.” Even though slightly unusual but for our conve-
nience, we informally use two different terms to describe a space bound below
any linear function. The informal term “sub linear” indicates functions of the
form m(x)ε�(|x|) on instances x for a certain constant ε ∈ (0, 1) and a suitable
polylogarithmic function � [17], whereas the term “hypo linear” (or possibly
“far sub-linear”) means functions upper-bounded by m(x)ε�(|x|) on instances
x for an arbitrary choice of ε ∈ (0, 1). The multiplicative factor � may become
redundant when m(x) is relatively large (e.g., m(x) ≥ (log |x|)c for any constant
c ≥ 1). Corresponding to the above terms, we express as PsubLIN the class of
all (parameterized) decision/search problems solvable in polynomial time using
sub-linear space [17]. Similarly, PhypoLIN is defined using hypo-linear space.

1.4 Short Reductions

The notion of reducibility has served as an effective tool in comparing the com-
putational complexity of problems.

As noted earlier, it is unknown whether DSTCON is in PsubLIN. To solve
this open question, it is imperative to understand the structure of the class
PsubLIN (as well as PhypoLIN). For our purpose, we will investigate the relative
complexity of DSTCON and its natural variants based on appropriately chosen
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“reducibilities,” in particular, space-bounded many-one and Turing reducibili-
ties, which are technical tools in measuring the relative complexity of two given
problems. Since we are concerned with sub-linear and hypo-linear space compu-
tations, for our study, we particularly need a quite restricted form of reducibility,
which are known as “short” reducibility [17].

Polynomial-time sub-linear-space computability makes quite different effects
on various NL-complete problems. Notably, even if DSTCON is polynomial-time,
sub-linear-space solvable, many other NL-complete problems may not be solved
in polynomial time using sub-linear space. Let us recall 3DSTCON. The problem
BDSTCON is to ask whether an s-t path of length at most k exists in a directed
graph. These problems 3DSTCON and BDSTCON are NL-complete but they
are not known to have the same complexity as DSTCON does from a viewpoint
of polynomial-time sub-linear-space computability.

This circumstance no longer makes a standard log-space reduction suitable
for our study on PsubLIN. For this very reason, we intend to use short reducibil-
ity, in which an outcome of a reduction must be linear in the size parameter of
each instance. This linear-size requirement is sufficient to guarantee the closure
property of PsubLIN under those short reductions.

Here, we consider three types of short reducibilities ≤sL
m , ≤sL

T , and ≤sSLRF
T ,

whose precise definitions will be given in Sect. 3.2. These short reducibilities
help us classify various NL decision, search, and optimization problems from the
viewpoint of polynomial-time sub-linear-space computability.

1.5 Major Contributions

A main motivation of this work is to determine the polynomial-time sub-linear-
space solvability/insolvability of DSTCON. We hope that this work will pave
a way to determining the minimum space usage necessary for all NL-complete
problems, which may lead us to an answer to the NL ⊆?PsubLIN problem or
even the decades-old L =?NL problem. In this preliminary report, we will provide
a number of results for DSTCON and other graph-related problems, aiming at
the better understandings of the relative complexity of DSTCON and its variants
parameterized by size parameters. The use of short reductions help us obtain a
classification of the computational complexity of those parameterized problems.
This classification result is summarized in Fig. 1, in which a lower problem is
≤sSLRF

T -reducible to an upper problem, both of which are parameterized by mver.
In what follows, we will give a brief explanation of the problems cited in the
figure.

One of the important properties of directed graphs is acyclicity, where a graph
is acyclic if there is no cycle (including self-loops) in it. We write ADSTCON for
the acyclic directed s-t connectivity problem, in which we determine the existence
of an s-t path in each given directed acyclic graph. Technically speaking, this
problem is a so-called “promise problem” because the acyclic property of a graph
G is guaranteed a priori when instances (G, s, t) of ADSTCON are given. In
contrast, the problem DCYCLE asks whether there is a cycle in a given directed
graph.
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Search-BFT, Search-SPT, MinPath, Search-BDSTCON, BDSTCON

Search-DSTCON

Search-3DSTCON

Search-DST

Search-ADST, TOPSORT

Search-Unique-DSTCON

Search-Unique-DCYCLE

Search-ADSTCON, ADSTCON

Search-Planar-DSTCON

Search-Planar-3DSTCON

Search-DGGSTCON

Search-LDGGSTCON, Search-Planar-3LDSTCON

Search-TOPDCON

Search-3TOPDCON

DSTCON

Search-DCYCLE

3DSTCON, 2SAT3

PsubLIN

Fig. 1. ≤sSLRF
T -reducibility relationships among decision/search problems parameter-

ized by mver. Problems below the dotted curved line are shown to be in PsubLIN.

It is useful to deal with an instance graph, which has at most one s-t path.
This restriction gives rise to another problem, called the unique directed s-t con-
nectivity problem (UniqueDSTCON). Similarly, we consider the unique directed
cycle problem (UniqueDCYCLE) by requiring “at most one cycle.”

Planarity is another important property, where a graph is planar if it can be
drawn on a plane in a way that no two edges intersect with each other except
for their endpoints. Such a drawing is called a planar combinatorial embed-
ding, which is a permutation of the edges adjacent to each vertex. We write
PlanarDSTCON for DSTCON whose inputs are planar graphs. Similarly, we
define Planar3DSTCON from 3DSTCON.

A directed graph G = (V,E) is said to be layered if the vertex set V is
partitioned into L1, L2, . . . , Lk with k ∈ N

+ such that, for every i ∈ [k − 1], all
edges from Li are directed to certain vertices in Li+1. We write 3LDSTCON for
3DSTCON limited to inputs of layered graphs.

As a special case of planar graphs, a grid graph is a graph G = (V,E) in
which V ⊆ N × N and all edges are of the form either ((i, j), (i + b, j)) or
((i, j), (i, j + b)) for a certain b ∈ {±1}. We consider the directed grid graph s-t
connectivity problem (DGGSTCON). A directed grid graph is called layered if
it contains only edges directed to east and south (i.e., rightward and downward
edges). The layered version of DGGSTCON is denoted by LDGGSTCON.

All the aforementioned problems are decision problems. To refer to their
associated search version, we use a simple notation of Search-P for each decision
problem P . For example, a search version of DSTCON is Search-DSTCON,
which is to find an s-t path in a given directed graph G.
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The minimum path problem, Min-Path, is an optimization problem of finding
a minimal s-t path in a directed graph G from each instance of the form (G, s, t).

The detailed explanations of the following graph-related concepts will be
given in Sect. 4.2. The notation Search-DST denotes the problem of finding a
(directed) spanning tree of any given directed graph G, rooted at a specified
vertex r in G. When instance graphs to Search-DST are promised to be directed
acyclic graphs, we write Search-ADST instead of Search-DST. We denote by
Search-SPT the problem of finding from each instance (G, r) a shortest-path tree
rooted at r. Search-BFT is the problem of finding a breadth-first tree of a given
directed graph rooted at a given vertex (with the left vertex condition).

In many application of DSTCON, certain features of instance graphs are often
used to simplify NL-completeness proofs. One such feature is topological ordering
of vertices of a given graph. Here, a topologically-ordered version of DSTCON
(resp., 3DSTCON) is denoted by TOPDCON (resp., 3TOPDCON). In contrast,
TOPSORT is a search problem whose task is to produce a topological ordering
of a given directed acyclic graph starting at a given vertex.

A sophisticated algorithm of Barnes et al. [4] together with the equiv-
alence in complexity among parameterized problems (Search-BFT,mver),
(Search-SPT,mver), and (Min-Path,mver) (see Proposition 9(2)) leads to the
following solvability result of them.

Theorem 1. (Search-BFT,mver), (Search-SPT,mver), and (Min-Path,mver)
are solved in polynomial time using at most n/2c

√
log n space for an absolute

constant c > 0.

Lately, the linear space hypothesis or LSH—a practical working hypothesis—
was introduced in [17] in connection to polynomial-time sub-linear-space com-
putability. The hypothesis LSH for 2SAT3 asserts that no polynomial-time
sub-linear-space deterministic algorithm solves 2SAT3, which is the satisfiabil-
ity problem restricted to 2CNF formulas, each variable of which appears at
most 3 times as literals. It was shown in [17] that LSH for 2SAT3 implies that
3DSTCON does not fall into PsubLIN. What follows in the next theorem is
a simple application of LSH for 2SAT3 to the computational complexity of
(TOPSORT,mver). An argument similar to [17, Sect. 6] proves the insolvability
of (TOPSORT,mver).

Theorem 2. Assuming LSH for 2SAT3, no deterministic Turing machine
solves (TOPSORT,mver) in polynomial time using O(mver(x)ε/2) space on
instances x to TOPSORT for any fixed constant ε ∈ [0, 1).

2 Basic Notions and Notation

2.1 Numbers and Graphs

Let N be the set of natural numbers (i.e., nonnegative integers) and set N
+ =

N−{0}. Two notations R and R
≥0 denote respectively the set of all real numbers
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and that of all nonnegative real numbers. For two integers m and n with m ≤ n,
an integer interval [m,n]Z is the set {m,m + 1,m + 2, . . . , n}. When n ≥ 1, we
conventionally write [n] in place of [1, n]Z.

All polynomials have nonnegative integer coefficients and all logarithms are
to base 2, provided that “log 0” is conveniently set to be 0. A polylogarithmic
(or polylog) function � is a function mapping N to R

≥0 for which there exists a
polynomial p satisfying �(n) = p(log n) for all n ∈ N.

A directed graph G is expressed as (V,E) with a set V of vertices and a
set E of edges. We explicitly express edges as pairs of vertices and this conven-
tion eliminates multi-edges. In a given graph G, a path from s to t is a series
(x1, x2, . . . , xn) of vertices in G with n ≥ 2 such that x1 = s, xn = t, and
(xi, xi+1) is an edge in G for every index i ∈ [n−1]. A path is called simple if no
internal vertex is repeated (i.e., there is no cycle or self-loop in it). An s-t path
is a path from vertex s to vertex t and is expressed as s � t. The length of a
path from v to u is the number of edges in the path. and the notation dis(u, v)
denotes the distance from u to v, which is the minimal length of any path from
u to v. A directed graph G is (weakly) connected if its underlying undirected
graph is connected. For each vertex v ∈ V , let in(v) = {u ∈ V | (u, v) ∈ E} and
out(v) = {u ∈ V | (v, u) ∈ E}. Each vertex v has indegree |in(v)| and outdegree
|out(v)|. We simply call |in(v) ∪ out(v)| the degree of vertex v. A source is a
vertex of indegree 0 and a sink is that of outdegree 0.

Let G = (V,E) be any directed graph. Given a subset S of V , we write
G \ S for the graph obtained from G by removing all vertices in S and all edges
incident on them. A subset S of V in G is called a planarizing set if G \ S is a
planar graph. A subset S of V is said to be separating if G \ S is disconnected,
and nonseparating otherwise.

2.2 Machine Models, Parameterized Problems, and Size Parameters

Our basic model of computation is a multi-tape Turing machine of the following
form. Our Turing machine consists of a read-only input tape, (possibly) a write-
only output tape, and a constant number of read/write work tapes. A tape head
on the output tape moves only to the right if it writes a non-blank symbol, and
it stays still otherwise. All other tape heads move in both directions (to the right
and to the left) unless it stays still. An oracle Turing machine is further equipped
with a query tape—a special output tape—on which the machine produces query
strings (or query words) to transmit to the oracle for its answer. Given an oracle
P , the notation MP (x) indicates an outcome of M on input x by making queries
to the oracle P .

We will study the computational complexity of problems based on a suitable
choice of “size parameters” in place of a standard size parameter, which is the
total length |x| of the binary representation of an input instance x. To emphasize
the choice of m, we often write (P,m) in place of P (when we use the standard
“length” of instances, we omit “m” and write P instead of (P,m)). A (log-space)
size parameter m(x) for a problem P is formally a function mapping Σ∗ to N
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such that (i) m(x) must be computed using O(log |x|) space and (2) there exists
a polynomial p satisfying m(x) ≤ p(|x|) for all instances x of P .

For any graph-related problem P , let medg(x) and mver(x) denote respec-
tively the total number of edges and that of vertices of a graph given as a part of
instance x of P . We say that a Turing machine M uses logarithmic space (or log
space, in short) with respect to size parameter m if there exist two absolute con-
stants c, d ≥ 0 such that, on each input x, each of the work tapes (not including
input and output tapes) used by M on x are upper-bounded by c log m(x) + d.

Associated with log-space computability, L and NL are respectively the
classes of all decision problems solvable on deterministic and nondeterminis-
tic Turing machines using log space. It is known that the additional requirement
of “polynomial runtime” does not change these classes. The notation FL stands
for a class of polynomially-bounded functions that can be computed using space
at most O(log |x|).

An NL search problem P parameterized by a (log-space) size parameter m(x)
is a pair (P,m) with P = (I, SOL) satisfying I ∈ L and I ◦ SOL ∈ auxFL,
where I consists of (admissible) instances and SOL is a function from I to a
set of strings such that, for any (x, y), y ∈ SOL(x) implies |y| ≤ m(x), where
I ◦ SOL for the set {(x, y) | x ∈ I, y ∈ SOL(x)} [15,16]. In addition, for each
fixed constant k > 0, the notation (I ◦ SOL)∃

m denotes the set {x ∈ I | ∃y ∈
SOL(x) [|y| ≤ km(x)+k∧(x, y) ∈ I◦SOL ]}. We say that a deterministic Turing
machine M solves (P,m) with P = (I, SOL) if, for any instance x ∈ I, M takes
x as input and produces a solution in SOL(x) if SOL(x) �= ∅, and produces a
designated symbol, ⊥, otherwise. We denote by Search-NL a collection of all NL
search problems. For convenience, its polynomial-time counterpart is denoted by
Search-NP. It follows that Search-NL ⊆ Search-NP. Search-PsubLIN denotes a
search version of PsubLIN.

3 Sub-Linear/Hypo-Linear Space and Short Reductions

3.1 Sub-Linear and Hypo-Linear Space Computation

Our target is search and optimization problems parameterized by suitable size
parameters m(x) for instances x. Throughout this paper, we informally use the
term “sub-linear” to mean a function of the form m(x)ε �(|x|) on input instances
x for a certain constant ε ∈ (0, 1) and a certain polylog function �(n). In contrast,
“hypo linear” (or possibly “far sub linear”) refers to functions upper-bounded
by the function m(x)ε �(|x|) on instances x for an arbitrary choice of constant
ε ∈ (0, 1) and for a certain polylog function �(n).

A (parameterized) search problem (P,m) with P = (I, SOL) is said to be
solvable in polynomial time using sub-linear space (resp., using hypo-linear space)
if, for a certain choice of constant ε ∈ (0, 1) (resp., for an arbitrary choice of
ε ∈ (0, 1), there exist a deterministic Turing machine Mε, a polynomial pε, and
a polylog function �ε for which M finds a valid solution in SOL(x) in at most
pε(|x|) steps using at most m(x)ε �ε(|x|) tape cells for all admissible instances x
in I. We use PsubLIN (resp., PhypoLIN) to denote the collection of all decision
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problems (P,m) that are solvable in polynomial time using sub-linear space
(resp., hypo-linear space), where the suffix “P” refers to “polynomial time.”

Moreover, we introduce the notation PTIME,SPACE(s(n)) to denote a class
composed of all (parameterized) decision problems (P,m) solvable deterministi-
cally in polynomial time (in |x|) using space at most s(m(x)) on any instance
x to P . It thus follows that L ⊆ PhypoLIN ⊆ PsubLIN ⊆ P. Note that L = P
implies L = PhypoLIN = PsubLIN = P.

3.2 Short Reductions Among Decision and Search Problems

Let us first extend the existing notion of short reducibilities, which was first
discussed in [17] for (parameterized) decision problems, to search problems.

We start with standard L-m-reducibility. For any two (parameterized) search
problems (P1,m1) and (P2,m2) with P1 = (I1, SOL1) and P2 = (I2, SOL2), we
say that (P1,m1) is L-m-reducible to (P2,m2), denoted by (P1,m1) ≤L

m (P2,m2),
if there are two functions (f, ‖), (g, ‖) ∈ FL (where ‖ refers to the bit length)
and two constants k1, k2 > 0 such that, for any x and y, (i) x ∈ I1 implies
f(x) ∈ I2, (ii) x ∈ I1 and y ∈ SOL2(f(x)) imply g(x, y) ∈ SOL1(x), and (iii)
m2(f(x)) ≤ m1(x)k1 + k1, and (iv) m1(g(x, y)) ≤ m2(y)k2 + k2. As for decision
problems, we simply drop Condition (iv). Notice that all functions in FL are, by
their definition, polynomially bounded.

To discuss the sub-linear-space solvability, however, we need to restrict the
L-m-reducibility, which we call the short L-m-reducibility (or sL-m-reducibility,
in short), obtained by replacing two equalities m2(f(x)) ≤ m1(x)k1 + k1 and
m1(g(x, y)) ≤ m2(y)k2 + k2 in the above definition of ≤L

m with m2(f(x)) ≤
k1m1(x) + k1 and m1(g(x, y)) ≤ k2m2(y) + k2, respectively. To express this new
reducibility, we use another notation of ≤sL

m . Obviously, every ≤sL
m -reduction is

an ≤L
m-reduction but the converse does not hold in general [17].

We say that (P1,m1) is SLRF-T-reducible to (P2,m2), denoted by
(P1,m1) ≤SLRF

T (P2,m2), if, for every fixed value ε > 0, there exist an oracle
Turing machine Mε, a polynomial pε, a polylog function �ε, and three constants
k1, k2, k3 ≥ 1 such that, (1) MP2

ε (x) runs in at most pε(|x|) time using at most
m1(x)ε �ε(|x|) space for all instances x of P1, provided that its query tape is not
subject to a space bound, (2) when MP2

ε (x) queries to P2 with query word z writ-
ten on a write-only query tape, m2(z) ≤ m1(x)k1 +k1 and |z| ≤ |x|k3 +k3 hold for
all instances x to P1, (3) for any oracle answer y, m1(MP2

ε (x)) ≤ m2(y)k2 + k2,
and (4) in response to the same word queries at any moment, the oracle P2 always
returns the same answer, which is a valid solution to P2. Any oracle answer must
be written on a read-once answer tape, in which its tape head moves from the
left to the right whenever it reads a non-blank symbol. After Mε makes a query,
in a single step, it erases its query tape, it returns its tape head back to the
initial cell, and an oracle writes its answer directly onto the answer tape.

We also define short SLRF-T-reducibility (or sSLRF-T-reducibility) by
replacing the above inequalities m2(z) ≤ m1(x)k1 + k1 and m1(MP2

ε (x)) ≤
m2(y)k2 + k2 with m2(z) ≤ k1m1(x) + k1 and m1(MP2

ε (x)) ≤ k2m2(y) + k2,
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respectively. We tend to use the notation ≤sSLRF
T to denote this new reducibil-

ity. Every ≤sSLRF
T -reduction is obviously an ≤SLRF

T -reduction. In the case where
Mε is limited to log-space usage, we use a new notation ≤sL

T . Note that any
≤sSLRF

T -reduction is an ≤SLRF
T -reduction but the converse is not true because

there is a pair of problems reducible by ≤SLRF
T -reductions but not by ≤sSLRF

T -
reductions [17].

We list several fundamental properties of short reductions [17].

Lemma 3. [17]

1. (P1,m1) ≤L
m (P2,m2) implies (P1,m1) ≤L

T (P2,m2), which further implies
that (P1,m1) ≤SLRF

T (P2,m2). The same statement holds also for ≤sL
m , ≤sL

T ,
and ≤sSLRF

T .
2. The reducibilities ≤SLRF

T and ≤sSLRF
T are reflexive and transitive.

3. PhypoLIN is closed under ≤SLRF
T -reductions and PsubLIN is closed under

≤sSLRF
T -reductions.

Given any reduction, say, ≤r, we say that A is ≤r-equivalent to B, denoted
by A ≡r B, if both A ≤r B and B ≤r A hold.

4 Relative Complexity of Search-DSTCON and Variants

The short reductions given in Sect. 3.2 are quite useful in determining the relative
complexity of various decision, search, and optimization problems in connection
to the polynomial-time sub-linear-space solvability. Figure 1 has shown numerous
reducibility relationships among those problems in terms of ≤sSLRF

T -reducibility.
In what follows, we will verify each of the relationships in the figure.

4.1 Connectivity of Acyclic, Planar, and Grid Graphs

We begin with DSTCON, ADSTCON, and DCYCLE and their search ver-
sions. It is important to note that a decision problem and its search version
are not necessarily equivalent in complexity. For acyclic graphs, however, their
associated decision and search problems are actually ≤sL

T -equivalent; namely,
(Search-ADSTCON,m) ≡sL

T (ADSTCON,m) for any m ∈ {mver,medg}. This
property is not yet observed for general graphs. For instance, we do not know
whether (DSTCON,m) ≡sL

m (Search-DSTCON,m).
The uniqueness condition makes (Search-UniqueDSTCON,m)

and (Search-UniqueDCYCLE,m) ≤sL
m -reducible to (Search-DSTCON,m) and

(Search-DCYCLE,m), respectively, for each size parameter m ∈ {mver,medg}.
In addition, the following relationships hold.

Lemma 4. Let m ∈ {mver,medg}.
1. (Search-DCYCLE,m) ≤sL

T (Search-DSTCON,m).
2. (Search-UniqueDCYCLE,m) ≤sL

T (Search-UniqueDSTCON,m).
3. (Search-ADSTCON,m) ≤sL

T (Search-UniqueDCYCLE,m).
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Proof. (1) The desired ≤sL
T -reduction works as follows. Let G = (V,E) be given

as an instance to Search-DCYCLE. Recursively, we choose one edge (s, t) in G.
We then define another graph G′ = (V ′, E′) with V ′ = V and E′ = E − {(s, t)}
and make a query of the form (G′, s, t) to Search-DSTCON, used as an oracle.
If the s-t path exists in G′, then G must have a cycle passing through s and t.
Otherwise, we choose another edge in the above recursion.

(2) This is essentially the same as (1).
(3) Given x = (G, s, t) with G = (V,E) as an instance to Search-ADSTCON,

we define another graph G′ = (V ′, E′) by setting V ′ = V and E′ = E ∪ {(t, s)}.
Since G is guaranteed to be acyclic, G′ has a cycle (passing through s and t) iff
there is an s-t path in G. Note that such a cycle is unique if it actually exists.
Since |V ′| = |V | and |E′| = |E| + 2, it follows that (Search-ADSTCON,m) ≤sL

T

(Search-UniqueDCYCLE,m). ��
Concerning the planarity property, the problem PlanarDSTCON belongs to

UL [5], where UL is a natural variant of NL. Note that testing whether a given
graph G is planar can be done in log space because such testing is reducible to
USTCON [2], where USTCON is known to belong to L [11]. Moreover, a planar
combinatorial embedding can be computed in log space [2].

At this point, we need to discuss the difference between two size parameters
mver and medg. In certain restricted cases, the choice of those size parameters
does not affect the computational complexity of graph-related problems.

Proposition 5. 1. (Search-DSTCON,medg) ≤sL
m (Search-DSTCON,mver).

2. (Search-3DSTCON,mver) ≡sL
m (Search-3DSTCON,medg).

3. (Search-PlanarDSTCON,mver) ≡sL
m (Search-PlanarDSTCON,medg).

It is not known at present that the opposite direction of Proposition 5(1)
holds; namely, (Search-DSTCON,mver) ≤sL

m (Search-DSTCON,medg).

Proof of Proposition 5. (1) Consider the following reduction function f . Given
a graph G = (V,E), if either s or t is an isolated vertex, then f immediately
outputs a graph consisting of {s, t} with no edges. Assuming otherwise, f trans-
forms G into another graph G′ = (V ′, E) by removing all isolated vertices from
G. Since |E| ≥ 1

2 |V ′|, it follows that mver(G′, s, t) ≤ 2medg(G, s, t).
(2) An argument similar to (1) works for Search-3DSTCON, and we then

obtain (Search-3DSTCON,mver) ≤sL
m (Search-3DSTCON,medg). Conversely, let

x = (G, s, t) with G = (V,E) be any instance to Search-3DSTCON. Assume,
without loss of generality, that s is a source, t is a sink, and no isolated ver-
tex exists in G. Since G has maximum indegree 2 and maximum outdegree
2, it follows that |E| ≤ 4|V |. This implies that (Search-3DSTCON,medg) ≤sL

m

(Search-3DSTCON,mver).
(3) This comes from the fact that, for any planar graph G = (V,E), if |V | ≥ 3,

then |E| ≤ 3|V | − 6 holds. ��
The problem LDGGSTCON is shown to be in UL ∩ co-UL [1] (stated as

a comment after Theorem 20 in [1]). Note that Allender et al. [1] proved
that (DGGSTCON,mver) ≡L

m (PlanarDSTCON,mver), but their L-m-reduction
from PlanarDSTCON to DGGSTCON is not a short reduction.
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Proposition 6. Let m ∈ {mver,medg}.
1. (Search-DGGSTCON,m) ≤sL

m (Search-Planar3DSTCON,m).
2. (Search-LDGGSTCON,m) ≡sL

T (Search-Planar3LDSTCON,m).

A (k, �)-graph is a graph in which every vertex has indegree at most k and
outdegree at most �. When instance graphs are limited to (k, �)-graphs, we write,
for example, (k, �)DSTCON in place of DSTCON.

Proof Sketch. In this proof, we will show only (2). We first claim that
(Search-Planar(2, 2)LDSTCON,m) ≡sL

m (Search-Planar3LDSTCON,m). Next,
we claim that (Search-Planar(2, 2)LDSTCON,m) ≡sL

m (Search-LDGGSTCON,
m). The reduction (Search-LDGGSTCON,m) ≤sL

m (Search-Planar(2, 2)
LDSTCON,m) is obvious. For the other direction, we use an argument of
Allender et al. [1], who demonstrated that PlanarDSTCON is ≤L

m-reducible to
DGGSTCON. Note that their L-m-reduction is not a short reduction, and thus we
need a slight modification of their reduction using the fact that our instance graphs
are layered.

One way to extend the notion of planarity is to consider embedding onto
orientable surfaces of genus more than 1, where the genus of a closed orientable
surface is roughly the number of “handles” added to a sphere. Given a constant
k ∈ N

+, EOS(k) denotes a set of all directed/undirected graphs whose underlying
undirected graphs can be embedded on orientable surfaces of genus g. For a
function g : N → N, EOSDCON(g) is DSTCON whose instance graphs G =
(V,E) are restricted to EOS(g(|V |)). In particular, EOSDCON(0) coincides with
PlanarDSTCON.

Theorem 7. Let m ∈ {mver,medg}.
1. (Search-PlanarDSTCON,m) ∈ PsubLIN.
2. For any constant ε ∈ (0, 1), (Search-EOSDCON(nε),m) ∈ PsubLIN.
3. (Search-LDGGSTCON,m) ∈ PhypoLIN.

Proof Sketch. (1)–(2) follow directly from [3,6].
(3) Let ε be any constant in [0, 1). It suffices to show that

(Search-LDGGSTCON,mver) belongs to PTIME,SPACE(nε · polylog(n)). Let
x = (G, s, t) be any instance to Search-LDGGSTCON. Let G = (V,E) and
assume that V = [n] × [n] for simplicity. Let ε ∈ (0, 1). For the value nε, we set
S = {(a, b) ∈ [n] × [n] | a + b = nε + 1}, V1 = {(a, b) ∈ [n] × [n] | a + b < nε + 1},
and V2 = {(a, b) ∈ [n] × [n] | a + b > nε + 1}. Note that |S| ≤ nε and
|V1| ≤ ∑nε−1

i=1 i = (nε−1)nε

2 . Pick (a, b) ∈ S. Consider a restricted grid graph
with source (a, b) and sink (n, n). Let Va,b = {(i, j) | a ≤ i ≤ n, b ≤ j ≤ n}. Note
that |Va,b| = (n − a + 1)(n − b + 1). Recursively, we split this graph and then
compute a path.

The optimization problem Min-Path is known to be complete for NLO∩PBO
(i.e., a class of nondeterministic log-space optimization problems whose solutions
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are polynomially bounded) under approximation-preserving AC0-reductions
[15,16] but it is not known to be complete for NLO. In contrast, the prob-
lem Max-Path of finding the maximum simple paths of directed graphs is shown
to be NPO-complete.

Given a function f : N → N, we further define (Min-BPath(f(n)),m) as a
parameterized problem of finding a minimum s-t path of length at most f(m(x))
on every instance x to Min-Path. Here, we claim that (Min-Path,m) can be
reduced to its restricted form (Min-BPath(nε),m) for each constant ε ∈ (0, 1).

Theorem 8. For any m ∈ {mver,medg} and ε ∈ (0, 1), (BDSTCON,m) ≡sL
T

(Min-Path,m) ≡sSLRF
T (Min-BPath(nε),m).

Proof. Let m ∈ {mver,medg} and ε ∈ (0, 1). To show (Min-Path,m) ≤sL
T

(BDSTCON,m), we start with x = (G, s, t), obtain the minimal length, say,
� of any s-t path by making queries to BDSTCON, and construct a path by
setting v1 = s and by finding recursively vi+1 from (v1, v2, . . . , vi) so that G has
a vi-t path of length � − i + 1. The converse (BDSTCON,m) ≤sL

m (Min-Path,m)
is obvious.

It is easy to see that (Min-BPath(nε),m) ≤sL
m (Min-Path,m). For the con-

verse, it suffices to show that (BDSTCON,m) ≤sSLRF
T (Min-BPath(nε),m). Let

x = (G, s, t, k) with G = (V,E) be any instance to BDSTCON. We want to
design an algorithm that determines whether the distance between s and t is at
most k.

Let |V | = n and ñ = �nε�. At stage i ≥ 1, compute D
(i)
0 = {u ∈ V |

dis(s, u) = i} by making queries of the form (G, s, u) to Min-BPath(nε). If
|D(i)

0 | > n1−ε, then move to the next stage i + 1. Assume otherwise. Starting
with j = 1, recursively compute D

(i)
j = {u ∈ V | ∃w ∈ D

(i)
j−1 [dis(w, u) =

ñ] }. If |D(i)
j | > n1−ε, then move to stage i + 1. Otherwise, increment j by

one and continue until j reaches �(k − i)/nε� + 1. We then decide whether
dis(w, t) ≤ ñ for a certain w ∈ D

(i)
j . This establishes the reducibility relation

(BDSTCON,m) ≤sSLRF
T (Min-BPath(nε),m). ��

4.2 Breadth-First Search and Topological Sorting

We have discussed in Sect. 1.5 a number of search and optimization prob-
lems without giving the meaning of technical terminology used to describe
these problems. First of all, we will explain such technical terminology to
clarify the definitions of Search-DST, Search-ADST, Search-SPT, Search-BFT,
Search-TOPDCON, and TOPSORT, and we will verify the reducibility relation-
ships, presented in Fig. 1, among these problems. See [7] for more information
on the terminology.

Let us explain a general notion of spanning trees used for Search-DST. A
(directed) spanning tree for a given directed graph G from vertex r is a directed
tree T rooted at r for which T is a subgraph of G and all vertices reachable in
G from r are also in T .
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An ordered tree is a rooted tree in which the children of each internal vertex
are linearly-ordered (in the left-to-right order among those children). Here, we
assume a fixed linear ordering of vertices. For two vertices, u and v, u is to the
left of v in G if either (i) u and v are children of a common parent and u is
smaller than v or (ii) a certain ancestor of u is to the left of a certain ancestor
of v. Similarly, we can define the notion of “to the right of”.

In Search-SPT, a shortest-path tree from vertex r in a directed graph G is
a directed tree T rooted at r that contains all vertices v reachable in G from
r in such a way that any path in T from r to v must be a shortest path in
G. All shortest-path trees are obviously spanning trees. Hence, it follows that
(Search-DST,m) ≤sL

m (Search-SPT,m).
Breadth-first trees used in Search-BFT are a special case of ordered, shortest-

path trees. A breadth-first tree of a directed graph G from a vertex r is
an ordered, shortest-path tree T of G, rooted at r, satisfying the following
left vertex condition: for any vertices u and v in G, (u, v) is incident to v
in T iff u is to the left of every vertex w in G and (w, v) is incident to
v. Search-BFT is closely related to an NL optimization problem of finding
the shortest s-t paths in given directed graphs. Concerning the complexity of
Search-BFT, we obtain (Search-DSTCON,m) ≤sL

m (Search-BFT,m) for each
size parameter m ∈ {mver,medg}. Barnes et al. [4] demonstrated in essence that
(Search-BFT,mver) ∈ PTIME,SPACE(n/2�

√
log n) for a certain constant � > 0.

Known polynomial-time algorithms solving DSTCON require more or less
a (partial) construction of either breadth-first or depth-first trees from a
given directed graph. Thus, we immediately obtain (Search-DSTCON,m) ≤sL

m

(Search-BFT,m) for any size parameter m ∈ {mver,medg}. Therefore, it is
important to investigate the space complexity of the breadth-first (and depth-
first) tree search problems.

Theorem 9. For any size parameter m ∈ {mver,medg}, (Search-BFT,m) ≡sL
T

(Search-SPT,m) ≡sL
T (Min-Path,m).

Proof. Since (Search-SPT,m) ≤sL
m (Search-BFT,m), it suffices to show

that (a) (Min-Path,m) ≤sL
m (Search-SPT,m) and (b) (Search-BFT,m) ≤sL

T

(Min-Path,m).
(a) Given an instance x = (G, s, t) to Min-Path, we make a query of the form

(G, s) to Search-SPT, which returns a breadth-first tree rooted at s if it exists.
We then output a unique s-t path in this tree. By the definition of breadth-first
trees, this s-t path must be the shortest in G.

(b) Let x = (G, r) with G = (V,E) be any instance to Search-BFT. For
each vertex v ∈ V , we make a query of the form (G, r, v) and calculate the
minimum path length, dis(r, v), between r and v from its oracle answer. Let Li

be a set of all vertices v satisfying dis(r, v) = i. Note that we can enumerate all
elements in Li according to a fixed linear ordering for G. We define a new graph
G′ = (V ′, E′) by setting V ′ = V and (u, v) ∈ E′ whenever there exists an index
i ≥ 1 such that (i) u ∈ Li, v ∈ Li+1, and (u, v) ∈ E and (ii) for any w ∈ Li with
w < u, (w, v) /∈ E. Clearly, G′ is a breadth-first tree of G. ��
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A topological sort (topological order or topological numbering) used for the
search problem TOPSORT serves as a key ingredient to the development of
many elementary graph algorithms. Given a directed acyclic graph G = (V,E),
a topological sort of G from source s is a linear ordering of all its vertices starting
at s satisfying that, for any edge (u, v) ∈ E, u < v holds, where “<” is a
logarithmic-space computable linear order. We express such a linear ordering as
(v1, v2, . . . , vn), where n = |V |. In Search-TOPDCON, however, we are given a
directed graph G = (V,E) such that (1) all vertices of G are numbered between
0 and n and (2) for any pair i, j ∈ [n], if (i, j) ∈ E, then i < j holds. The task
of this problem is to find a path in G from vertex 0 to vertex n.

Lemma 10. Let m ∈ {mver,medg}.
1. (Search-TOPDCON,m) ≤sL

m (Search-ADSTCON,m).
2. (Search-LDGGSTCON,m) ≤sL

m (Search-3TOPDCON,m).

Proof. We will prove only (2). Let x = (G, s, t) be any instance to
Search-LDGGSTCON with G = (V,E). Without loss of generality, we assume
that V = [n], s = (1, 1), and t = (n, n). We define a linear ordering < over all
vertices as follows: (1, 1) < (1, 2) < (2, 1) < · · · < (1, i) < (2, i − 1) < · · · <
(i, 1) < · · · < (n, n). Since G has only edges of the form ((i, j), (i, j + 1)) and
((i, j), (i + 1, j)), the above ordering satisfies that (u, v) ∈ E implies u < v. This
is clearly an instance to Search-(2, 2)TOPDCON.

Next, we transform Search-(2, 2)TOPDCON to Search-3TOPDCON. For
each vertex v, we can compute the degree deg(v) of v. Given each vertex v,
we remove all of its outgoing edges and, instead, add an extra vertex v′ and an
edge set {(v, v′), (v′, w) | (v, w) ∈ E}. Finally, we define a new linear order <∗

as follows: (1) if u,w ∈ V , then u <∗ w iff u < w, (2) v <∗ v′, and (3) if u = v′,
then v′ <∗ w iff v < w. ��
Proposition 11. For every size parameter m taken from {mver,medg},
(TOPSORT,m) ≡sL

T (Search-ADST,m) ≤sL
m (Search-DST,m).

Proof. Let m ∈ {mver,medg}. It is obvious that (Search-ADST,m) ≤sL
m

(Search-DST,m). Hereafter, we want to show the ≤sL
m -equivalence between

TOPSORT and Search-ADST. Let x = (G, s) with G = (V,E) be any instance
to TOPSORT. Assume that all vertices in G are linearly ordered. Note that G
is a directed acyclic graph. Let T be a depth-first tree of G from r, which is
obtained by making a query (G, r) to Search-ADST.

Let n = |V |. Recursively, we define Li for i ∈ [n]. Initially, we set L0 = {r}.
For each index i ≥ 1, from T , we determine the set Li of all vertices in T of
distance i from r. We sort Li’s according to the value i and then sort all vertices
in Li by a given linear order. Since T is a spanning tree, this process enumer-
ates all vertices in G connected from r. This establishes (TOPSORT,m) ≤sL

T

(Search-ADST,m).
Conversely, given an instance (G, s) to Search-ADST, we make a query to

TOPSORT and obtain a topological sorting (x1, x2, . . . , xn) of G starting at s.
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Choose i = n and consider the set in(xn). Choose the smallest index i for which
xi belongs to in(xn), keep the edge (xi, xn), and discard all the other edges
(xj , xn) with xj ∈ in(xn). Change i to i − 1 and repeat this process until i < 0.
It is not difficult to show that the resulted graph is a spanning tree of G. ��
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