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Abstract. Probabilistic timed automata are classical timed automata
extended with discrete probability distributions over edges. We introduce
clock-dependent probabilistic timed automata, a variant of probabilistic
timed automata in which transition probabilities can depend linearly on
clock values. Clock-dependent probabilistic timed automata allow the
modelling of a continuous relationship between time passage and the like-
lihood of system events. We show that the problem of deciding whether
the maximum probability of reaching a certain location is above a thresh-
old is undecidable for clock-dependent probabilistic timed automata. On
the other hand, we show that the maximum and minimum probabil-
ity of reaching a certain location in clock-dependent probabilistic timed
automata can be approximated using a region-graph-based approach.

1 Introduction

Reactive systems are increasingly required to satisfy a combination of quali-
tative criteria (such as safety and liveness) and quantitative criteria (such as
timeliness, reliability and performance). This trend has led to the development
of techniques and tools for the formal verification of both qualitative and quan-
titative properties. In this paper, we consider a formalism for real-time systems
that exhibit randomised behaviour, namely probabilistic timed automata (PTA)
[10,17]. PTAs extend classical Alur-Dill timed automata [4] with discrete prob-
abilistic branching over automata edges; alternatively a PTA can be viewed as a
Markov decision process [20] or a Segala probabilistic automaton [21] extended
with timed-automata-like clock variables and constraints over those clocks. PTAs
have been used previously to model case studies including randomised protocols
and scheduling problems with uncertainty [16,19], some of which have become
standard benchmarks in the field of probabilistic model checking.

We recall briefly the behaviour of a PTA: as time passes, the model stays
within a particular discrete state, and the values of its clocks increase at the
same rate; at a certain point in time, the model can leave the discrete state if
the current values of the clocks satisfy a constraint (called a guard) labelling one
of the probability distributions over edges leaving the state; then a probabilistic
choice as to which discrete state to then visit is made according to the cho-
sen edge distribution. In the standard presentation of PTAs, any dependencies
between time and probabilities over edges must be defined by utilising multiple
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distributions enabled with different sets of clock values. For example, to model
the fact that a packet loss is more likely as time passes, we can use clock x to
measure time, and two distributions μ1 and μ2 assigning probability λ1 and λ2

(for λ1 < λ2), respectively, to taking edges leading to a discrete state corre-
sponding to packet loss, where the guard of μ1 is x ≤ c and the guard of μ2 is
x > c, for some constant c ∈ N. Hence, when the value of clock x is not more
than c, a packet loss occurs with probability λ1, otherwise it occurs with prob-
ability λ2. A more direct way of expressing the relationship between time and
probability would be letting the probability of making a transition to a discrete
state representing packet loss be dependent on the value of the clock, i.e., let
the value of this probability be equal to f(x), where f is an increasing function
from the values of x to probabilities. We note that such a kind of dependence of
discrete branching probabilities on values of continuous variables is standard in
the field of stochastic hybrid systems, for example in [1].

In this paper we consider such a formalism based on PTAs, in which all
probabilities used by edge distributions can be expressed as functions of val-
ues of the clocks used by the model: the resulting formalism is called clock-
dependent probabilistic timed automata (cdPTA). We focus on a simple class of
functions from clock values to probabilities, namely those that can be expressed
as sums of continuous piecewise linear functions, and consider a basic problem
in the context of probabilistic model checking, namely probabilistic reachability:
determine whether the maximum (respectively, minimum) probability of reach-
ing a certain set of locations from the initial state is above (respectively, below)
a threshold. After introducing cdPTAs (in Sect. 2), our first result (in Sect. 3)
is that the probabilistic reachability problem is undecidable for cdPTA with a
least three clocks. This result is inspired from recent related work on stochastic
timed Markov decision processes [2]. Furthermore, we give an example of cdPTA
with one clock for which the maximal probability of reaching a certain location
involves a particular edge being taken when the clock has an irrational value.
This suggests that classical techniques for partitioning the state space into a
finite number of equivalence classes on the basis of a fixed, rational-numbered
time granularity, such as the region graph [4] or the corner-point abstraction [8],
cannot be applied directly to the case of cdPTA to obtain optimal reachability
probabilities, because they rely on the fact that optimal choices can be made
either at or arbitrarily closely to clock values that are multiples of the chosen
rational-numbered time granularity. In Sect. 4, we present a conservative approx-
imation method for cdPTA, i.e., maximum (respectively, minimum) probabilities
are bounded from above (respectively, from below) in the approximation. This
method is based on the region graph but uses concepts from the corner-point
abstraction to define transition distributions. We show that successive refinement
of the approximation, obtained by increasing the time granularity by a constant
factor, does not lead to a more conservative approximation: in practice, in many
cases such a refinement can lead to a substantial improvement in the computed
probabilities, which we show using a small example.
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2 Clock-Dependent Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers, Q
to denote the set of rational numbers and N to denote the set of natural num-
bers. A (discrete) probability distribution over a countable set Q is a function
μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. For a function μ : Q → R≥0 we define

support(μ) = {q ∈ Q : μ(q) > 0}. Then for an uncountable set Q we define
Dist(Q) to be the set of functions μ : Q → [0, 1], such that support(μ) is a count-
able set and μ restricted to support(μ) is a (discrete) probability distribution.
Given q ∈ Q, we use {q �→ 1} to denote the distribution that assigns probability
1 to the single element q.

A probabilistic transition system (PTS) T = (S, s,Act ,Δ) comprises the
following components: a set S of states with an initial state s ∈ S, a set Act of
actions, and a probabilistic transition relation Δ ⊆ S × Act × Dist(S). The sets
of states, actions and the probabilistic transition relation can be uncountable.
Transitions from state to state of a PTS are performed in two steps: if the current
state is s, the first step concerns a nondeterministic selection of a probabilistic
transition (s, a, μ) ∈ Δ; the second step comprises a probabilistic choice, made
according to the distribution μ, as to which state to make the transition (that
is, a transition to a state s′ ∈ S is made with probability μ(s′)). We denote such
a completed transition by s

a,μ−−→ s′. We assume that for each state s ∈ S there
exists some (s, a, μ) ∈ Δ.

An infinite run of the PTS T is an infinite sequence of consecutive transitions
r = s0

a0,μ0−−−→ s1
a1,μ1−−−→ · · · (i.e., the target state of one transition is the source

state of the next). Similarly, a finite run of T is a finite sequence of consecutive
transitions r = s0

a0,μ0−−−→ s1
a1,μ1−−−→ · · · an−1,μn−1−−−−−−−→ sn. We use InfRunsT to denote

the set of infinite runs of T , and FinRunsT the set of finite runs of T . If r is
a finite run, we denote by last(r) the last state of r. For any infinite run r and
i ∈ N, let r(i) = si be the (i + 1)th state along r. Let InfRunsT (s) refer to the
set of infinite runs of T commencing in state s ∈ S.

A strategy of a PTS T is a function σ mapping every finite run r ∈ FinRunsT

to a distribution in Dist(Δ) such that (s, a, μ) ∈ support(σ(r)) implies that
s = last(r). From [11, Lemma 4.10], without loss of generality we can assume
henceforth that strategies map to distributions assigning positive probability to
finite sets of elements, i.e., strategies σ for which |support(σ(r))| is finite for
all r ∈ FinRunsT . For any strategy σ, let InfRunsσ denote the set of infinite
runs resulting from the choices of σ. For a state s ∈ S, let InfRunsσ(s) =
InfRunsσ ∩ InfRunsT (s). Given a strategy σ and a state s ∈ S, we define the
probability measure Prσ

s over InfRunsσ(s) in the standard way [14].
Given a set SF ⊆ S, define ♦SF = {r ∈ InfRunsT : ∃i ∈ N s.t. r(i) ∈ SF } to

be the set of infinite runs of T such that some state of SF is visited along the
run. Given a set Σ′ ⊆ Σ of strategies, we define the maximum value over Σ′

with respect to SF as P
max
T ,Σ′(SF ) = supσ∈Σ′ Prσ

s (♦SF ). Similarly, the minimum
value over Σ′ with respect to SF is defined as P

min
T ,Σ′(SF ) = infσ∈Σ′ Prσ

s (♦SF ).
The maximal reachability problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≥, >} and
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λ ∈ [0, 1] is to decide whether Pmax
T ,Σ′(SF )�λ. Similarly, the minimal reachability

problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≤, <} and λ ∈ [0, 1] is to decide whether
P
min
T ,Σ′(SF ) � λ.

Clock-Dependent Probabilistic Timed Automata. Let X be a finite set
of real-valued variables called clocks, the values of which increase at the same
rate as real-time and which can be reset to 0. A function v : X → R≥0 is referred
to as a clock valuation and the set of all clock valuations is denoted by R

X
≥0. For

v ∈ R
X
≥0, t ∈ R≥0 and X ⊆ X , we use v+t to denote the clock valuation that

increments all clock values in v by t, and v[X:=0] to denote the clock valuation
in which clocks in X are reset to 0.

For a set Q, a distribution template d : RX
≥0 → Dist(Q) gives a distribution

over Q for each clock valuation. In the following, we use notation d[v], rather
than d(v), to denote the distribution corresponding to distribution template d
and clock valuation v. Let Dist(Q) be the set of distribution templates over Q.

The set CC (X ) of clock constraints over X is defined as the set of conjunctions
over atomic formulae of the form x ∼ c, where x ∈ X , ∼∈ {<,≤,≥, >}, and
c ∈ N. A clock valuation v satisfies a clock constraint ψ, denoted by v |= ψ, if ψ
resolves to true when substituting each occurrence of clock x with v(x).

A clock-dependent probabilistic timed automaton (cdPTA) P =
(L, l̄,X , inv , prob) comprises the following components: a finite set L of
locations with an initial location l̄ ∈ L; a finite set X of clocks; a function
inv : L → CC (X ) associating an invariant condition with each location; a set
prob ⊆ L × CC (X ) × Dist(2X × L) of probabilistic edges. A probabilistic edge
(l, g, p) ∈ prob comprises: (1) a source location l; (2) a clock constraint g, called
a guard ; and (3) a distribution template p with respect to pairs of the form
(X, l′) ∈ 2X × L (i.e., pairs consisting of a set X of clocks to be reset and a
target location l′).

The behaviour of a cdPTA takes a similar form to that of a standard prob-
abilistic timed automaton [10,17]: in any location time can advance as long as
the invariant holds, and the choice as to how much time elapses is made nonde-
terministically; a probabilistic edge can be taken if its guard is satisfied by the
current values of the clocks and, again, the choice as to which probabilistic edge
to take is made nondeterministically; for a taken probabilistic edge, the choice
of which clocks to reset and which target location to make the transition to is
probabilistic. The key difference with cdPTAs is that the distribution used to
make this probabilistic choice depends on the probabilistic edge taken and on
the current clock valuation.

Example 1. In Fig. 1 we give an example of a cdPTA modelling a simple robot
that must reach a certain geographical area and then carry out a particular task.
The usual conventions for the graphical representation of timed automata are
used in the figure. Black squares denote the distributions of probabilistic edges,
and expressions on probabilities used by distribution templates are written with
a grey background on their outgoing arcs. The robot can be in one of four
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Fig. 1. A cdPTA modelling a simple robot example.

geographical areas, which can be thought of as cells in a 2 × 2 grid, each of
which corresponds to a cdPTA location. The robot begins in the top-left cell
(corresponding to location TL), and its objective is to reach the bottom-right
cell (location BR). The robot can move either to the top-right cell (location
TR), or to the bottom-left cell (location BL), then to the bottom-right cell. In
each cell, the robot must wait a certain amount of time (1 time units in the
top cells and 2 time units in the bottom-left cell) before attempting to leave
the cell (for example, to recharge solar batteries), after which it can spend at
most 1 time unit attempting to leave the cell. With a certain probability, the
attempt to leave the cell will fail, and the robot must wait before trying to
leave the cell again; the more time is dedicated to leaving the cell, the more
likely the robot will succeed. Although passing through the top-right cell is not
slower than passing through the bottom-left cell, the probability of leaving the
cell successfully increases at a slower rate than in other cells (representing, for
example, terrain in which the robot finds it difficult to navigate). On arrival in
the bottom-right cell, the robot successfully carries out its task with a probability
that is inversely proportional to the total time elapsed (for example, the robot
could be transporting medical supplies, the efficacy of which may be inversely
proportional to the time elapsed). The clock x is used to represent the amount of
time used by the robot in its attempt to move from cell to cell, whereas the clock
y represents the total amount of time since the start of the robot’s mission. If the
clock y reaches its maximum amount cmax, then the mission fails (as denoted by
the edge to the location denoted by ✗, which is available in locations TL, TR, BL
and BR, as indicated by the dashed box). The objective of the robot’s controller
is to maximise the probability of reaching the location denoted by �. Note that
there is a trade-off between dedicating more time to movement between the cells,
which increases the probability of successful navigation and therefore progress
towards the target point, and spending less time on the overall mission, which
increases the probability of carrying out the required task at the target point. ��
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A state of a cdPTA is a pair comprising a location and a clock valuation
satisfying the location’s invariant condition, i.e., (l, v) ∈ L × R

X
≥0 such that

v |= inv(l). In any state (l, v), either a certain amount of time δ ∈ R≥0 elapses,
or a probabilistic edge is traversed. If time elapses, then the choice of δ requires
that the invariant inv(l) remains continuously satisfied while time passes. The
resulting state after this transition is (l, v+δ). A probabilistic edge (l′, g, p) ∈
prob can be chosen from (l, v) if l = l′ and it is enabled, i.e., the clock constraint g
is satisfied by v. Once a probabilistic edge (l, g, p) is chosen, a set of clocks to reset
and a successor location are selected at random, according to the distribution
p[v].

We make a number of assumptions concerning the cdPTA models considered.
Firstly, we restrict our attention to cdPTAs for which it is always possible to
take a probabilistic edge, either immediately or after letting time elapse. This
condition holds generally for PTA models in practice [16]. A sufficient syntac-
tic condition for this property has been presented formally in [12]. Secondly,
we consider cdPTAs that feature invariant conditions that prevent clock values
from exceeding some bound: formally, for each location l ∈ L, we have that
inv(l) contains a constraint of the form x ≤ c or x < c for each clock x ∈ X .
Thirdly, we assume that all possible target states of probabilistic edges satisfy
their invariants: for all probabilistic edges (l, g, p) ∈ prob, for all clock valuations
v ∈ R

X
≥0 such that v |= g, and for all (X, l′) ∈ 2X ×L, we have that p[v](X, l′) > 0

implies v[X := 0] |= inv(l′). Finally, we assume that any clock valuation that
satisfies the guard of a probabilistic edge also satisfies the invariant of the source
location: this can be achieved, without changing the underlying semantic PTS,
by replacing each probabilistic edge (l, g, p) ∈ prob by (l, g ∧ inv(l), p).

Let 0 ∈ R
X
≥0 be the clock valuation which assigns 0 to all clocks in X . The

semantics of the cdPTA P = (L, l̄,X , inv , prob) is the PTS [[P]] = (S, s,Act ,Δ)
where:

– S = {(l, v) : l ∈ L and v ∈ R
X
≥0 s.t. v |= inv(l)} and s = {(l̄,0)};

– Act = R≥0 ∪ prob;
– Δ =

−→
Δ ∪ Δ̂, where

−→
Δ ⊆ S ×R≥0 ×Dist(S) and Δ̂ ⊆ S × prob ×Dist(S) such

that:
• −→

Δ is the smallest set such that ((l, v), δ, {(l, v + δ) �→ 1}) ∈ −→
Δ if there

exists δ ∈ R≥0 such that v + δ′ |= inv(l) for all 0 ≤ δ′ ≤ δ;
• Δ̂ is the smallest set such that ((l, v), (l, g, p), μ) ∈ Δ̂ if

1. v |= g;
2. for any (l′, v′) ∈ S, we have μ(l′, v′) =

∑
X∈Reset(v,v′) p[v](X, l′), where

Reset(v, v′) = {X ⊆ X | v[X := 0] = v′}.

When considering maximum and minimum values for cdPTAs, we hence-
forth consider strategies that alternate between transitions from

−→
Δ (time elapse

transitions) and transitions from Δ̂ (probabilistic edge transitions). Formally, a
cdPTA strategy σ is a strategy such that, for a finite run r ∈ FinRuns [[P]] that
has s

a,μ−−→ s′ as its final transition, either (s, a, μ) ∈ −→
Δ and support(σ(r)) ∈ Δ̂, or

(s, a, μ) ∈ Δ̂ and support(σ(r)) ∈ −→
Δ . We write Σ for the set of cdPTA strategies
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Fig. 2. A one-clock cdPTA for which the maximum probability is attained by a time
delay corresponding to an irrational number.

of [[P]]. Given a set F ⊆ L of locations, subsequently called target locations, we
let SF = {(l, v) ∈ S : l ∈ F}. Let � ∈ {≥, >}, � ∈ {≤, <} and λ ∈ [0, 1]: then
the maximal (respectively, minimal) reachability problem for cdPTA is to decide
whether P

max
[[P]],Σ(SF ) � λ (respectively, Pmin

[[P]],Σ(SF ) � λ).

Piecewise Linear Clock Dependencies. In this paper, we concentrate on
a particular subclass of distribution templates based on continuous piecewise
linear functions. Let x ∈ X be a clock and p = (l, g, p) ∈ prob be a probabilistic
edge. Let Ip

x be the interval containing the values of x of clock valuations that
satisfy g: formally Ip

x = {v(x) ∈ R≥0 : v ∈ R
X
≥0 s.t. v |= g}. For example, for

g = (x ≥ 3)∧(x < 5)∧(y ≤ 8), we have Ip
x = [3, 5) and Ip

y = [0, 8]. We equip each
probabilistic edge p = (l, g, p) ∈ prob and e = (X, l′) ∈ 2X ×L with a continuous
piecewise linear function fp,e

x with domain Ip
x for each clock x ∈ X . Formally,

we consider a partition Ip,e
x of Ip

x (i.e.,
⋃

I∈Ip,e
x

I = Ip
x and I ∩ I ′ = ∅ for each

I, I ′ ∈ Ip,e
x such that I �= I ′), and sets {cp,e

x,I}I∈Ip,e
x

and {dp,e
x,I}I∈Ip,e

x
of constants

in Q such that: (a) for every I ∈ Ip,e
x and γ ∈ I, we have fp,e

x (γ) = cp,e
x,I +dp,e

x,I ·γ;
(b) fp,e

x is continuous (i.e., for each γ ∈ Ip
x , we have limζ→γ fp,e

x (ζ) = fp,e
x (γ)).

We make the following assumptions for each probabilistic edge p ∈ prob: (1)
all endpoints of intervals in Ip,e

x are natural numbers, for all clocks x ∈ X and
e ∈ 2X × L; (2)

∑
x∈X fp,e

x (v(x)) ∈ [0, 1] for each e ∈ 2X × L and v ∈ R
X
≥0

such that v |= g; (3)
∑

e∈2X ×L

∑
x∈X fp,e

x (v(x)) = 1 for each v ∈ R
X
≥0 such that

v |= g. Then the probabilistic edge p is piecewise linear if, for each e ∈ 2X × L
and each v ∈ R

X
≥0 such that v |= g, we have p[v](e) =

∑
x∈X fp,e

x (v(x)). We
assume henceforth that all probabilistic edges of cdPTAs are piecewise linear.

Example 2. Standard methods for the analysis of timed automata typically con-
sist of a finite-state system that represents faithfully the original model. In par-
ticular, the region graph [4] and the corner-point abstraction [8] both involve the
division of the state space according to a fixed, rational-numbered granularity.
The example of a one-clock cdPTA P of Fig. 2 shows that such an approach
cannot be used for the exact computation of optimal reachability probabilities
in cdPTAs, because optimality may be attained when the clock has an irrational
value. For an example of the formal description of a piecewise linear probabilistic
edge, consider the probabilistic edge from location C, which we denote by pC:
then we have IpC,(∅,D)

x = IpC,(∅,E)
x = {[0, 1)}, with c

pC,(∅,D)
x,[0,1) = 1, d

pC,(∅,D)
x,[0,1) = − 1

2 ,

c
pC,(∅,E)
x,[0,1) = 0, and d

pC,(∅,E)
x,[0,1) = 1

2 . Now consider the maximum probability of
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reaching location D (that is, Pmax
[[P]],Σ(S{D})). Intuitively, the longer the cdPTA

remains in location A, the lower the probability of making a transition to loca-
tion E from A, but the higher the probability of making a transition to E from
B and C. Note that, after A is left, the choice resulting in the maximum proba-
bility of reaching D is to take the outgoing transitions from B and C as soon as
possible (delaying in B and C will increase the value of x, therefore increasing
the probability of making a transition to E). Denoting by δ the amount of time
elapsed in A, the maximum probability of reaching D is equal to δ(1− δ)(1− δ

2 ),
which (within the interval [0, 1)) reaches its maximum at 1 −

√
3
3 . Hence, this

example indicates that abstractions based on the optimality of choices made at
(or arbitrarily close to) rational-numbered clock values (such as the region graph
or corner-point abstraction) do not yield exact analysis methods for cdPTAs. ��

3 Undecidability of Maximal Reachability of cdPTAs

Theorem 1. The maximal reachability problem is undecidable for cdPTAs with
at least 3 clocks.

Proof (sketch). We proceed by reducing the non-halting problem for two-counter
machines to the maximal reachability problem for cdPTAs. The reduction has
close similarities to a reduction presented in [2].

A two-counter machine M = (L, C) comprises a set L = {
1, ..., 
n} of instruc-
tions and a set C = {c1, c2} of counters. The instructions are of the following
form (for 1 ≤ i, j, k ≤ n and l ∈ {1, 2}):

1. 
i : cl := cl + 1; goto 
j (increment cl);
2. 
i : cl := cl − 1; goto 
j (decrement cl);
3. 
i : if (cl > 0) them goto 
j else goto 
k (zero check cl);
4. 
n : HALT (halting instruction).

A configuration (
, v1, v2) of a two-counter machine comprises an instruction 

and values v1 and v2 of counters c1 and c2, respectively. A run of a two-counter
machine consists of a finite or infinite sequence of configurations, starting from
configuration (
1, 0, 0), and where subsequent configurations are successively gen-
erated by following the rule specified in the associated configuration. A run is
finite if and only if the final instruction visited along the run is 
n (the halting
instruction). The halting problem for two-counter machines concerns determin-
ing whether the unique run of the two-counter machine is finite, and is undecid-
able [18]; hence the non-halting problem (determining whether the unique run
of the two-counter machine is infinite) is also undecidable.

Consider a two-counter machine M. We reduce the non-halting problem for
M to the maximal reachability problem in the following way. We construct
a cdPTA PM with three clocks {x1, x2, x3} by considering modules for each
form that the instructions of a two-counter machine can take. On entry to each
module, we have that x1 = 1

2c1 , x2 = 1
2c2 and x3 = 0. The module for simulating

an increment instruction is shown in Fig. 3. In location 
i, there is a delay of
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Fig. 3. The cdPTA module for simulating an increment instruction for counter c1.

1 − 1
2c1 , and hence the values of the clocks on entry to location B are x1 = 0,

x2 = 1
2c2 +1− 1

2c1 mod 1 and x3 = 1− 1
2c1 . A nondeterministic choice is then made

concerning the amount of time that elapses in location B: note that this amount
must be in the interval (0, 1

2c1 ). In order to correctly simulate the increment of
counter c1, the choice of delay in location B should be equal to 1

2c1+1 . On leaving
location B, a probabilistic choice is made: the rightward outcome corresponds
to continuing the simulation of the two-counter machine, whereas the downward
outcome corresponds to checking that the delay in location B was correctly 1

2c1+1 .
We write the delay in location B as 1

2c1+1 + ε, where − 1
2c1+1 < ε < 1

2c1+1 : hence,
for a correct simulation of the increment of c1, we require that ε = 0.

Consider the case in which the downward outcome (from the outgoing proba-
bilistic edge of location B) is taken: then the cdPTA fragment from location D has
the role of checking whether ε = 0. Note that, after entering location D, no time
elapses in locations D and E (as enforced by the reset of x2 to zero and the invari-
ant condition x2 = 0), and hence both clocks x1 and x3 retain the same values
that they had when location B was left. We show that the probability of reaching
the target location G from location D is 1

4 − ε2, and hence equal to 1
4 if and only

if ε = 0. To see that the probability of reaching G from D is 1
4 − ε2, observe that

the probability is equal to 1
2 (x1 + x3) = 1

2 ( 1
2c1+1 + ε + (1 − 1

2c1+1 ) + ε) = 1
2 + ε

multiplied by 1− 1
2 (x1+x3) = 1

2 −ε, i.e., equal to 1
4 −ε2. Hence the probability of

reaching location G from location D is equal to 1
4 if and only if ε = 0 (otherwise,

the probability is less than 1
4 ).

The module for simulating a decrement instruction is shown in Fig. 4. In a
similar manner to the cdPTA fragment in Fig. 3 for the simulation of an incre-
ment instruction, the only nondeterministic choice made is with regard to the
amount of time spent in location 
i, which is denoted by δ. For the correct sim-
ulation of the decrement instruction, δ should equal 1 − 1

2c1−1 . The rightward
outcome is taken from the probabilistic edge leaving location 
i corresponds to
the continuation of the simulation of the two-counter machine: hence, on entry
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2 (x2 + x3)

Fig. 4. The cdPTA module for simulating a decrement instruction for counter c1.

to location B, we have x1 = 0, x2 = 1
2c2 +δ and x3 = δ; then, on entry to location


j , we have x1 = δ, x2 = 1
2c2 and x3 = 0.

Let δ = 1− 1
2c1−1 +ε. For the correct simulation of the decrement instruction,

we require that ε = 0. The downward outcome from the probabilistic edge leaving
location 
i corresponds to checking that ε = 0, and takes a similar form to the
analogous downward edge of the cdPTA fragment for the increment instruction,
as shown in Fig. 3. Note that, on entry to location C, we have that x1 = 1− 1

2c1 +ε,
x2 = 0 and x3 = 1 − 1

2c1−1 + ε. Then, on entry to location D, we have that
x1 = 0, x2 = 1

2c1 − ε and x3 = 1 − 1
2c1 . As no time elapses in locations D and

E, we have that target location F is then reached with probability 1
2 (x2 + x3) =

1
2 ( 1

2c1 − ε+1− 1
2c1 ) = 1

2 + ε
2 multiplied by the probability 1− 1

2 (x2 +x3) = 1
2 − ε

2 ,
which equals 1

4 − ε2

4 . Hence we conclude that the probability of reaching location
F from location C is equal to 1

4 if and only if ε = 0.
Finally, the module for a zero test instruction 
i : if (c1 > 0) then goto 
j else

goto 
k is shown in Fig. 5. The module is almost identical to that of [3], and we
present it here only for completeness. After entry to location 
i, two probabilistic
edges are enabled: the rightward one is taken if c1 = 0 (i.e., if x1 = 1

20 = 1),
whereas the leftward one is taken otherwise. Both probabilistic edges involve an
outcome leading to a target location with probability 1

4 : if this outcome is not
taken, the cdPTA fragment then proceeds to location 
j or 
j , depending on
which probabilistic edge was taken.

Given the construction of a cdPTA simulating the two-counter machine using
the modules described above, we can now proceed to show Theorem 1. The rea-
soning is the same as that of Lemma 5 of [2]. If the two-counter machine halts in k
steps, and the strategy of the cdPTA correctly simulates the two-counter machine
the probability of reaching a target location will be 1

2 · 14+(12 )2· 14+...+(12 )k · 14 < 1
4 .

If the two-counter machine halts in k steps, and the strategy of the cdPTA
does not correctly simulate the two-counter machine, then this means that the
probability of reaching a target location is strictly less than that correspond-
ing to correct simulation, given that deviation from simulation of a certain step
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Fig. 5. The cdPTA module for simulating a zero-test instruction for counter c1.

corresponds to reaching the target locations with probability strictly less than
1
4 in that step. Now consider the case in which the two-counter machine does
not halt: in this case, faithful simulation in the cdPTA corresponds to reaching
target locations with probability

∑∞
i=1(

1
2 )i · 1

4 = 1
4 , whereas unfaithful simula-

tion in the cdPTA corresponds to reaching the target locations with probability∑∞
i=1(

1
2 )i · γi where γi ≤ 1

4 for all i ∈ N and γj < 1
4 for at least one j ∈ N, and

hence
∑∞

i=1(
1
2 )i ·γi < 1

4 . Therefore the two-counter machine does not halt if and
only if there exists a strategy in the constructed cdPTA that reaches the target
locations with probability at least 1

4 , concluding the proof of Theorem1. ��

4 Approximation of Reachability Probabilities

We now consider the approximation of maximal and minimal reachability prob-
abilities of cdPTAs. Our approach is to utilise concepts from the corner-point
abstraction [8]. However, while the standard corner-point abstraction is a finite-
state system that extends the classical region graph by encoding corner points
within states, the states of our finite-state system correspond to regions, and
we use corners of regions only to define available distributions. Furthermore, in
contrast to the widespread use of the corner-point abstraction in the context
of weighted (or priced) timed automata (see [7] for a survey), and in line with
the undecidability results presented in Sect. 3, our variant of the corner-point
abstraction does not result in a finite-state system that can be used to obtain a
quantitative measure that is arbitrarily close to the actual one: in the context
of cdPTAs, we will present a method that approximates maximal and minimal
reachability properties, and show that successive refinement of regions leads to
a more accurate approximation.

First we define regions and corner points. Let P = (L, l̄,X , inv , prob) be a
cdPTA, which we assume to be fixed throughout this section, and let M ∈ N

denote the upper bound on clocks in P. We choose k ∈ N, which we will refer to
as the (time) granularity, and let [k] = { c

k : c ∈ N} be the set of multiples of 1
k .

A k-region (h, [X0, ...,Xn]) over X comprises:

1. a function h : X → ([k]∩ [0,M ]) assigning a multiple of 1
k no greater than M

to each clock and
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2. a partition [X0, ...,Xn] of X , where Xi �= ∅ for all 1 ≤ i ≤ n and h(x) = M
implies x ∈ X0 for all x ∈ X .

Given clock valuation v ∈ R
X
≥0 and granularity k, the k-region R =

(h, [X0, ...,Xn]) containing v (written v ∈ R) satisfies the following conditions:

1. �k · v(x)�=k · h(x) for all clocks x ∈ X ;
2. v(x)=h(x) for all clocks x ∈ X0;
3. k · v(x) − �k · v(x)� ≤ k · v(y) − �k · v(y)� if and only if x ∈ Xi and y ∈ Xj

with i ≤ j, for all clocks x, y ∈ X .

Note that, rather than considering regions delimited by valuations corresponding
to natural numbers, in our definition regions are delimited by valuations corre-
sponding to multiples of 1

k . We use Regsk to denote the set of k-regions. For
R,R′ ∈ Regsk and clock constraint ψ ∈ CC (X ), we say that R′ is a ψ-satisfying
time successor of R if there exist v ∈ R and δ ∈ R≥0 such that (v+δ) ∈ R′ and
(v+δ′) |= ψ for all 0 ≤ δ′ ≤ δ. For a given k-region R ∈ Regsk, we let R[X := 0]
be the k-region that corresponds to resetting clocks in X to 0 from clock valua-
tions in R (that is, R[X := 0] contains valuations v[X := 0] for v ∈ R). We use
R0 to denote the k-region that contains the valuation 0.

A corner point α = 〈ai〉0≤i≤n ∈ ([k] ∩ [0,M ])n of k-region (h, [X0, ...,Xn]) is
defined by:

ai(x) =
{

h(x) if x ∈ Xj with j ≤ i
h(x) + 1

k if x ∈ Xj with j > i .

Note that a k-region (h, [X0, ...,Xn]) is associated with n + 1 corner points. Let
CP(R) be the set of corner points of k-region R. Given granularity k, we let
CornerPointsk be the set of all corner points.

Next we define the clock-dependent region graph with granularity k as the
finite-state PTS Ak = (Sk, s,Actk, Γk), where Sk = L×Regsk, s = (l̄, R0), Actk =
{τ} ∪ (CornerPointsk × prob), and Γk =

−→
Γk ∪ Γ̂k where

−→
Γk ⊆ Sk × {τ} ×Dist(Sk)

and Γ̂k ⊆ Sk × CornerPointsk × prob × Dist(Sk) such that:

–
−→
Γk is the smallest set of transitions such that ((l, R), τ, {(l, R′) �→ 1}) ∈ −→

Γk if
(l, R′) is an inv(l)-satisfying time successor of (l, R);

– Γ̂k is the smallest set such that ((l, R), (α, (l, g, p)), ν) ∈ Γ̂k if:
1. R |= g;
2. α ∈ CP(R);
3. for any (l′, R′) ∈ Sk, we have that ν(l′, R′) =

∑
X∈Reset(R,R′) p[α](X, l′),

where Reset(R,R′) = {X ⊆ X | R[X := 0] = R′}.

Hence the clock-dependent region graph of a cdPTA encodes corner points
within (probabilistic-edge-based) transitions, in contrast to the corner-point
abstraction, which encodes corner points within states. In fact, a literal appli-
cation of the standard corner-point abstraction, as presented in [7], does not
result in a conservative approximation, which we now explain with reference to
Example 2.
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Example 2 (continued). Recall that the states of the corner-point abstraction
comprise a location, a region and a corner point of the region, and transitions
maintain consistency between corner points of the source and target states. For
example, for the cdPTA of Fig. 2, consider the state (A, 0 < x < 1, x = 1), where
0 < x < 1 is used to refer to the state’s region component and x = 1 is used
to refer to the state’s corner point. Then the probabilistic edge leaving location
A is enabled (because the state represents the situation in which clock x is in
the interval (0, 1) and arbitrarily close to 1). Standard intuition on the corner-
point abstraction (adapted from weights in [7] to probabilities in distribution
templates in this paper) specifies that, when considering probabilities of outgoing
probabilistic edges, the state (A, 0 < x < 1, x = 1) should be associated with
probabilities for which x = 1. Hence the probability of making a transition
to location B is 1, and the target corner-point-abstraction state is (B, 0 < x <
1, x = 1). However, now consider the probabilistic edge leaving location B: in this
case, given that the corner point under consideration is x = 1, the probability
of making a transition to location C is 0, and hence the target location D is
reachable with probability 0. Furthermore, consider the state (A, 0 < x < 1, x =
0): in this case, if the probabilistic edge leaving location A is taken, then location
B is reached with probability 0, and hence location D is again reachable with
probability 0. We can conclude that such a direct application of the corner-point
abstraction to cdPTA is not a conservative approximation of the cdPTA, because
the maximum reachability probability in the corner-point abstraction is 0, i.e.,
less than the maximum reachability probability of the cdPTA (which we recall is
1−

√
3
3 ). Instead, in our definition of the clock-dependent region graph, we allow

“inconsistent” corner points to be used in successive transitions: for example,
from location A, the outgoing probabilistic edge can be taken using the value
of x corresponding to the corner point x = 1; then, from locations B and C,
the outgoing probabilistic edge can be taken using corner point x = 0. Hence
maximum probability of reaching the target location D, with k = 1, is 1. ��

Analogously to the case of cdPTA strategies, we consider strategies of clock-
dependent region graphs that alternate between transitions from

−→
Γk (time elapse

transitions) and transitions from Γ̂k (probabilistic edge transitions). Formally,
a region graph strategy σ is a strategy of Ak such that, for a finite run r ∈
FinRunsAk that has (l, R)

a,ν−−→ (l′, R′) as its final transition, either ((l, R), a, ν) ∈−→
Γk and support(σ(r)) ∈ Γ̂k, or ((l, R), a, ν) ∈ Γ̂k and support(σ(r)) ∈ −→

Γk. We
write Πk for the set of region graph strategies of Ak.

Let F ⊆ L be the set of target locations, which we assume to be fixed
in the following. Recall that SF = {(l, v) ∈ L × R

X
≥0 : l ∈ F} and let

RegsFk = {(l, R) ∈ Sk : l ∈ F}. The following result specifies that the maxi-
mum (minimum) probability for reaching target locations from the initial state
of a cdPTA is bounded from above (from below, respectively) by the corre-
sponding maximum (minimum, respectively) probability in the clock-dependent
region graph with granularity k. Similarly, the maximum (minimum) probability
computed in the region graph of granularity k is an upper (lower, respectively)
bound on the maximum (minimum, respectively) probability computed in the
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Fig. 6. Maximum probability of reaching location � in the cdPTA of Fig. 1.

region graph of granularity 2k (we note that this result can be adapted to hold
for granularity ck rather than 2k, for any c ∈ N \ {0, 1}). The proof of the
proposition can be found in [22].

Proposition 1

1. P
max
[[P]],Σ(SF ) ≤ P

max
Ak,Πk

(RegsFk ), Pmin
[[P]],Σ(SF ) ≥ P

min
Ak,Πk

(RegsFk ).
2. P

max
A2k,Π2k

(RegsF2k) ≤ P
max
Ak,Πk

(RegsFk ), Pmin
A2k,Π2k

(RegsF2k) ≥ P
min
Ak,Πk

(RegsFk ).

Example 2 (continued). We give the intuition underlying Proposition 1 using
Example 2 (Fig. 2), considering the maximum probability of reaching the target
location D. When k = 1, as described above, the maximum probability of reach-
ing D is 1. Instead, for k = 2, the maximum probability of reaching location
D corresponds to taking the probabilistic edge from location A for the corner
point x = 1

2 corresponding to the 2-region 0 < x < 1
2 and the probabilistic edges

from locations B and C for corner point x = 0, again for the 2-region 0 < x < 1
2

i.e., the probability is 1
2 . With granularity k = 4, the maximum probability of

reaching location D is 0.328125, obtained by taking the probabilistic edge from
A for the corner point x = 1

2 , and the probabilistic edges from B and C for
corner point x = 1

4 , where the 4-region used in all cases is 1
4 < x < 1

2 . ��

Example 1 (continued). In Fig. 6 we plot the values of the maximum probability
of reaching location � in the example of Fig. 1 for various values of cmax and
k, obtained by encoding the clock-dependent region graph as a finite-state PTS
and using Prism [15]. For this example, the difference between the probabilities
obtained from low values of k is substantial. We note that the number of states
of the largest instance that we considered here (for k = 16 and cmax = 15) was
140174. ��

5 Conclusion

In this paper we presented cdPTAs, an extension of PTAs in which probabilities
can depend on the values of clocks. We have shown that a basic probabilis-
tic model checking problem, maximal reachability, is undecidable for cdPTAs
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with at least three clocks. One direction of future research could be attempt-
ing to improve these results by considering cdPTAs with one or two clocks, or
identifying other kinds of subclass of cdPTAs for which for which probabilistic
reachability is decidable: for example, we conjecture decidability can be obtained
for cdPTAs in which all clock variables are reset after utilising a probabilistic
edge that depends non-trivially on clock values. Furthermore, we conjecture that
qualitative reachability problems (whether there exists a strategy such that the
target locations are reached with probability strictly greater than 0, or equal
to 1) are decidable (and in exponential time) for cdPTAs for which the piece-
wise linear functions are bounded away from 0 by a region graph construction.
The case of piecewise linear functions that can approach arbitrarily closely to 0
requires more care (because non-forgetful cycles, in the terminology of [5], can
lead to convergence of a probability used along a cdPTA path to 0). We also
presented a conservative overapproximation method for cdPTAs. At present this
method gives no guarantees on the distance of the obtained bounds to the actual
optimal probability: future work could address this issue, by extending the region
graph construction from a PTS to a stochastic game (to provide upper and lower
bounds on the maximum/minimum probability in the manner of [13]), or by con-
sidering approximate relations (by generalising the results of [6,9] from Markov
chains to PTSs).

Acknowledgments. The inspiration for cdPTA arose from a discussion with Patri-
cia Bouyer on the corner-point abstraction. Thanks also to Holger Hermanns, who
expressed interest in a cdPTA-like formalism in a talk at Dagstuhl Seminar 14441.
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