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Outline. We consider quantitative game models for the design of reactive sys-
tems working in resource-constrained environment. The game is played on a
finite weighted graph where some resource (e.g., battery) can be consumed or
recharged along the edges of the graph.

In mean-payoff games, the resource usage is computed as the long-run average
resource consumption. In energy games, the resource usage is the initial amount
of resource necessary to maintain the resource level always positive.

We review fundamental results about mean-payoff games that show the exis-
tence of memoryless optimal strategies, and the equivalence of mean-payoff
games with finite-duration reachability games, as well as with energy games
(which can also be viewed as safety games). These results provide conceptually
simple backward-induction algorithms for solving mean-payoff games, and for
constructing memoryless optimal strategies. It follows that mean-payoff games
can be solved in NP ∩ coNP.

Then we consider games with multiple mean-payoff conditions for systems
using multiple resources. In multi-dimension mean-payoff games, memory is nec-
essary for optimal strategies, and the previous equivalence results with reachabil-
ity and energy (safety) games no longer hold. First, infinite memory is necessary
in general for optimal strategies. With infinite memory, the limit of the long-run
average resource consumption may not exist, and it is necessary to distinguish
between the limsup and the liminf of the long-run average resource consumption.
Second, the equivalence with a multi-dimensional version of energy games holds
only if the players are restricted to use finite-memory strategies, and in that case
the limsup- and the liminf-value coincide.

The complexity of solving multi-dimension mean-payoff games is as follows,
depending on which class of strategies is given to the player: NP-complete for
memoryless strategies, coNP-complete for finite-memory strategies, NP ∩ coNP
for infinite-memory strategies and a conjunction of limsup objectives, and coNP-
complete for infinite-memory strategies and a conjunction of liminf objectives.

Games. We consider two-player games of infinite duration, as a model of non-
terminating reactive systems with controllable and uncontrollable actions. Such
models have applications in the verification and synthesis of reactive systems [3,
36,38], and fundamental connections with many areas of computer science, such
as logic and automata [24,27,37].
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The game is played for infinitely many rounds, on a finite graphs 〈V,E〉 with
vertices V = V1 � V2 partitioned into player-1 and player-2 vertices. Initially a
token is placed on a designated vertex v0 ∈ V . In each round the player owning
the vertex vi where the token lies moves the token to a successor vertex vi+1

along an edge (vi, vi+1) ∈ E of the graph. The outcome of the game is an infinite
path v0, v1, . . . called a play. In the traditional qualitative analysis, plays are
classified as either winning or losing (for player 1). An objective is a set Ω ⊆ V ω

of winning plays. The goal of player 1 is to achieve a winning play: the central
qualitative question is to decide if there exists a strategy for player 1 such that
for all strategies of player 2 the outcome is a winning play in Ω. Sets of winning
plays defined by ω-regular conditions are central in verification and synthesis of
reactive systems [36,38] and have been extensively studied [10,18,26].

Mean-Payoff and Energy Games. For the design of reactive systems work-
ing in resource-constrained environment, we consider weighted graphs 〈V,E,w〉
where w : E → Z is a weight function that assigns a resource consumption to
each edge of the graph. The limit-average value (or mean-payoff value) of a play
ρ = v0, v1, . . . is defined in two variants, the limsup-average

MP(ρ) = lim sup
n→∞

1
n

·
n−1∑

i=0

w(vi, vi+1),

and the liminf-average

MP(ρ) = lim inf
n→∞

1
n

·
n−1∑

i=0

w(vi, vi+1).

The goal of player 1 is to maximize the mean-payoff value, and the associated
decision problem is to decide, given a threshold value ν ∈ Q, whether there
exists a winning strategy for player 1 for the mean-payoff objective MP≥ν = {ρ |
MP(ρ) ≥ ν} (or, MP≥ν = {ρ | MP(ρ) ≥ ν}) with a mean-payoff value at least ν.
In the sequel we only consider the case ν = 0, which can be obtained by shifting
all weights in the graph by the given value ν (and scaling them to get integers).

Memoryless strategies are sufficient to win mean-payoff games [23] and the
associated decision problem lies in NP ∩ coNP [32,43]. The solution of mean-
payoff games is more intuitive by considering the class of energy games [6,11]
where the objective of player 1 is to maintain the accumulated resource level
(i.e., the energy level) always nonnegative, given an initial credit value c0 ∈ N.
The energy level of a finite path with initial credit c0 is defined by

ELc0(v0, v1, . . . , vn) = c0 +
n−1∑

i=0

w(vi, vi+1),

and the energy objective is

EL≥0
c0 = {v0, v1, . . . | ∀n ∈ N : ELc0(v0, v1, . . . , vn) ≥ 0}.
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The associated decision problem asks whether there exists c0 such that
player 1 has a winning strategy for the energy objective with initial credit c0. It
is important that the initial credit c0 is not fixed to obtain the equivalence with
mean-payoff games (see next paragraph). For fixed initial credit we get a variant
of energy games (see Related Work). Note that the energy condition is a safety
condition [1]: if a finite prefix of a play violates the energy condition, then every
continuation violates the energy condition.

Memoryless Determinacy and Equivalence Results. Intuitively, player 1
wins the energy game if he can ensure that whenever a cycle is formed in the
play, the cycle has nonnegative sum of weights. The converse is also true [6,39].
Consider a finite-duration game played analogously to the games we considered
so far, but that stops whenever a cycle is formed, and declared won by player 1
if and only if the cycle is nonnegative. If player 1 wins the finite-duration game,
then we can use his strategy to play the energy game and ensure that all cycles
that are formed are nonnegative and therefore a finite initial credit c0 is sufficient
to survive along acyclic portions of the play (thus c0 ≤ |V |·W is sufficient, where
W is the largest absolute weight in the graph). Conversely, if player 1 cannot
avoid that a negative cycle is formed in the finite-duration game, then it is easy
to show that player 2 can fix a strategy to ensure that only negative cycles
are formed in the energy game, which would exhaust any arbitrary finite initial
credit. Thus player 1 cannot win the energy game.

This argument reduces energy games to a reachability game in the finite
tree obtained by unfolding the original graph and stopping a branch whenever
a cycle is formed. Each leaf corresponds to the closing of a cycle, and the leaves
associated with a positive cycle define the target nodes of a reachability objective
for player 1. Using backward induction on the tree it is easy to establish that from
all nodes where player 1 has a winning strategy for the reachability objective,
finite initial credit is sufficient for the energy objective.

Finally, to establish the equivalence with mean-payoff games [6,23], it is easy
to see that if player 1 can ensure that only nonnegative cycles are formed along
a play, than the mean-payoff value is nonnegative (both for the limsup and the
liminf variants), and otherwise player 2 can ensure that only negative cycles are
formed, and the mean-payoff value is negative. It follows that mean-payoff games
are determined (i.e., if player 1 does not have a winning strategy for MP≥0, then
player 2 has a winning strategy for the complement V ω \MP≥0). Moreover, view-
ing energy games as a safety game it is easy to show that memoryless strategies
are sufficient to win energy games, and that the same strategy can be used for
the mean-payoff objective, showing the memoryless determinacy of mean-payoff
games.

We can solve mean-payoff games in NP by guessing a memoryless strat-
egy for player 1 and checking that it induces only nonnegative reachable cycles
in the graph game, which can be done in polynomial time using shortest-
path algorithms. By memoryless determinacy, a coNP algorithm can guess a
memoryless winning strategy for player 2. Hence mean-payoff games are in
NP ∩ coNP [32,43], which can be improved to UP ∩ coUP [30]. Mean-payoff
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games can be solved in O(|V |·|E|·W ), thus in P for weights encoded in unary [9].
It is a long-standing open question to know whether mean-payoff games can be
solved in polynomial time for weights encoded in binary.

Multi-Dimension Mean-Payoff Games. In multi-dimension mean-payoff
games, the weight function w : E → Z

k assigns a vector of resource con-
sumption to each edge of the graph. The objective of player 1 is to ensure
the mean-payoff objective in each dimension 1, . . . , k, thus a conjunction of k
one-dimension mean-payoff objectives with threshold 0. Hence for player 2 the
objective is a disjunction of mean-payoff objectives. Simple examples show that
infinite memory may be necessary for player 1, for both the limsup and the
liminf variants [42]. Moreover, the conjunction of mean-payoff objectives is not
equivalent to a conjunction of energy conditions (which requires to maintain
the accumulated resource level always nonnegative in every dimension, for some
vector of finite initial credit).

Since infinite memory may be necessary for player 1, we consider the prob-
lem of deciding the existence of a winning strategy with the following memory
restrictions: memoryless strategies, finite-memory strategies, and the general
case of infinite-memory strategies [42]. With memoryless strategies, the deci-
sion problem is NP-complete. With finite-memory strategies, multi-dimension
mean-payoff games are equivalent to energy games, in both the limsup and the
liminf variants; memoryless strategies are sufficient for player 2 and the problem
is coNP-complete. In the general case with infinite-memory strategies, the prob-
lem is in NP ∩ coNP for conjunctions of limsup-average, and coNP-complete for
conjunctions of liminf-average. In both cases memoryless strategies are sufficient
for player 2. Thus in all cases player 2 does not need memory, but the proofs of
the memoryless results rely on different techniques (see next paragraph).

Memoryless Strategies in Mean-Payoff Games. In the results presented
above, it is crucial to establish that memoryless strategies are sufficient for one
player (and sometimes for both). We emphasize that different techniques can be
used to prove those memorylessness results.

Edge induction and shuffling. A general technique is to use edge induction [25,
34]: to prove that a player is memoryless, consider for example a vertex v owned
by that player with two outgoing edges, and consider the game G1 obtained
by removing the first outgoing edge, and the game G2 obtained by removing
the second outgoing edge. By induction we argue that memoryless strategies are
sufficient for the player owning v in the games G1 and G2, and we need to show
that no (arbitrary) strategy in the original game can achieve a better value than
either the optimal (memoryless) strategy in G1 or in G2. Thus switching between
the two outgoing transitions when visiting the vertex v does not give a better
play (for the owner of v). Roughly, such a play can be decomposed into the
appropriate shuffling of a play in G1 and a play in G2, and essentially it suffices
to show (in case the owner of v is a minimizer, i.e., player 2) that the mean-payoff
value of a shuffle of two plays is not smaller than the min of the values of the
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two plays, which holds for liminf-average (but not for limsup-average [33,42]).
Dually, in case the owner of v is a maximizer, i.e., player 1, we need to show
that the mean-payoff value of a shuffle of two plays is not greater than the max
of the values of the two plays.

This technique can be used to show that player 2 is memoryless in multi-
dimension energy games, and in the liminf-average variant of mean-payoff games.

Backward induction. To show memorylessness in one-dimension energy games,
a simpler proof uses a monotonicity property that if an outgoing edge is a good
choice from a vertex v when the current accumulated resource level is x, then
the same outgoing edge is a good choice in v for all accumulated resource levels
x′ > x. Therefore in every vertex there exists a choice of outgoing edge that
is independent of the current resource level and defines a memoryless winning
strategy. This argument is similar to the proof that safety games admit memo-
ryless winning strategies: to win a safety game it is sufficient to always choose a
successor vertex that lies in the winning set.

Nested memoryless objectives. As the edge-induction technique does not work
to show that player 2 is memoryless in limsup-average mean-payoff games, we
use a specific result, based on nested (iterated) elimination of losing vertices: if
from a given vertex v player 1 cannot win for one of the limsup-average mean-
payoff objective, then v is a losing vertex for player 1 (and player 2 can use
a memoryless strategy to win). Given a set L ⊆ V of such losing vertices, all
vertices from which player 2 can ensure to reach L are also losing for player 1.
Note that player 2 can use a memoryless strategy to reach L. As long as such
losing vertices (for player 1) exist, the above argument shows that player 2 has
a memoryless strategy to win. The conclusion of the argument is to show that if
no losing vertex remains (for any of the one-dimension objectives), then player 1
wins for the multi-dimension objective from every remaining vertex [42].

Related Work. We give pointers to the literature related to multiple mean-
payoff conditions in graphs and games. Deriving a deterministic algorithm from
the coNP result for multi-dimension mean-payoff games gives an algorithm
that is exponential in the number of vertices. The hyperplane separation tech-
nique gives an algorithm that is polynomial for fixed dimension k and bounded
weights [21]. The technique has been extended to obtain a pseudo-polynomial
algorithm for solving multi-dimension energy games of fixed dimension with a
fixed initial credit [31]. Strategy synthesis is studied in [20] showing that expo-
nential memory is sufficient for winning strategies in multi-dimension energy
games (and thus in multi-dimension mean-payoff games under finite-memory
strategies). Finitary variants of mean-payoff objectives have been considered
in [17].

The vector of Pareto-optimal thresholds for multi-dimension mean-payoff
games is studied in [8], showing that deciding if there exists a vector of thresh-
old in a given polyhedron that can be ensured by player 1 is complete for



6 L. Doyen

NPNP. Games with a Boolean combination of mean-payoff objectives are unde-
cidable [41], and their restriction to finite-memory strategies is inter-reducible
with Hilbert’s tenth problem over the rationals [40]. Mean-payoff conditions have
been used to define quantitative specification frameworks with appealing expres-
siveness and closure properties [2,15]. The special case of a Boolean combination
of mean-payoff objectives defined by a one-dimension weight function gives rise
to interval objectives, solvable in NP ∩ coNP [29].

We discuss three directions to extend the model of two-player mean-payoff
games. First, the mean-payoff objective has been combined with Boolean objec-
tives such as the parity condition, a canonical form to express ω-regular con-
ditions, in one dimension [13,19] and in multiple dimensions [5,20]. Note that
parity games can be reduced to (one-dimension) mean-payoff games [30], which
can be reduced to discounted-sum games, themselves reducible to simple sto-
chastic games [43]. Second, the mean-payoff objective has been considered in
Markov decision processes [7,12] and stochastic games [4,14], in combination
with parity condition [16] and under finite-memory strategies [14]. Third, mean-
payoff and energy games (in single dimension) with partial observation have
been shown undecidable [22,28]. Special assumptions on the structure of the
game lead to decidable subclasses [28]. Partial-observation energy games with
fixed initial credit are Ackermann-complete [35].
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mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15205-4 22

23. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J.
Game Theory 8(2), 109–113 (1979)

24. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of FOCS: Foundations of Computer Science, pp. 368–377. IEEE (1991)

25. Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek,
V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28629-5 53

http://dx.doi.org/10.1007/978-3-540-45212-6_9
http://dx.doi.org/10.1007/978-3-540-77050-3_39
http://dx.doi.org/10.1007/978-3-642-14162-1_50
http://dx.doi.org/10.1007/978-3-642-14162-1_50
http://dx.doi.org/10.1007/978-3-642-15375-4_19
http://dx.doi.org/10.1007/978-3-642-15375-4_19
http://dx.doi.org/10.1007/978-3-642-54830-7_14
http://dx.doi.org/10.1007/978-3-319-02444-8_10
http://dx.doi.org/10.1007/978-3-642-40184-8_35
http://dx.doi.org/10.1007/978-3-642-40184-8_35
http://dx.doi.org/10.1007/978-3-642-15205-4_22
http://dx.doi.org/10.1007/978-3-642-15205-4_22
http://dx.doi.org/10.1007/978-3-540-28629-5_53


8 L. Doyen
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