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Preface

This volume contains the papers presented at the 11th International Workshop on
Reachability Problems (RP), held on September 7–9, 2017, at Royal Holloway,
University of London, UK. Previous workshops in the series were located at: Aalborg
University (2016), the University of Warsaw (2015), the University of Oxford (2014),
Uppsala University (2013), the University of Bordeaux (2012), the University of
Genoa (2011), Masaryk University Brno (2010), École Polytechnique (2009), the
University of Liverpool (2008), and Turku University (2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modelling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational aspects of semigroups, groups, and rings; reachability in dynamical and
hybrid systems; frontiers between decidable and undecidable reachability problems;
complexity and decidability aspects; predictability in iterative maps, and new com-
putational paradigms.

The invited speakers at the 2017 workshop were:

– Hana Chockler, King’s College London
– Laurent Doyen, LSV-ENS Cachan
– Raphaël Jungers, Université catholique de Louvain
– Andreas Podelski, University of Freiburg

The workshop received 17 submissions. Each submission was reviewed by three
Program Committee (PC) members. The members of the PC and the list of external
reviewers can be found on the next two pages. The PC is grateful for the high quality
work produced by these external reviewers. Based on these reviews, the PC decided to
accept 12 papers, in addition to the four invited talks. Overall this volume contains 12
contributed papers and one paper by an invited speaker. The workshop also provided
the opportunity to researchers to give informal presentations, prepared shortly before
the event, informing the participants about current research and work in progress.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this
volume possible in time for the workshop. Finally, we thank all the authors for their
high-quality contributions, and the participants for making RP 2017 a success.

September 2017 Igor Potapov
Matthew Hague
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Trace Abstraction

Andreas Podelski

University of Freiburg, Germany

Abstract. Trace abstraction refers to a new approach to program verification
algorithms. Instead of trying to construct a proof for the input program directly,
we first construct auxiliary programs from proofs. We construct each auxiliary
program (which can be of general form) from the proof for a program in a
specific form, namely a program in the form of a trace (i.e., a sequence of
statements). A trace is a program (where the statements have a semantics). At
the same time, a trace is a word over a finite alphabet (where the semantics of
statements is ignored). As a word, a sequence of statements can be read by an
automaton. Just as we ask whether there exists an accepting run of a given
automaton on a sequence of letters, we can ask whether there exists a correctness
proof for a sequence of statements, a correctness proof that can be assembled
from a given finite set of Hoare triples. We iteratively construct auxiliary pro-
grams from proofs for traces. The iteration stops when the constructed programs
together cover all possible behaviors of the input program. A crucial step here is
the covering check. This step is based on algorithms for automata (inclusion test,
minimization, …). The approach applies to a range of verification problems, for
sequential programs with (possibly recursive) procedures and concurrent pro-
grams with possibly unboundedly many threads, and even to real-time
programs.



How Do We Know That Our System
Is Correct?

Hana Chockler

King’s College London, UK

Abstract. A negative answer from the model-checking procedure is accompa-
nied by a counterexample – a trace demonstrating what went wrong. On the
other hand, when the answer from the model-checker is positive, usually no
further information is given. The issue of “suspecting the positive answer” first
arose in industry, where positive answers from model-checkers often concealed
serious bugs in hardware designs. In this talk, I discuss some reasons why the
positive answer from the model-checker may require further investigation and
briefly and in broad terms describe algorithms for such investigations, called
sanity checks.

The talk also (briefly) introduces the theory of causality and counterfactual
reasoning and its applications to model-checking, mostly in the context of the
subject of this talk, including some recent complexity results and applications of
structure-based causality.

The talk then attempts to define the main goal of the sanity checks, expla-
nations, and related algorithms, or at least provide some food for thought
regarding the question of the mail goal.

I conclude the talk with outlining some promising future directions.
The talk is based on many papers written by many people, and is not limited

to my own research. It is reasonably self-contained.



Path-Complete Lyapunov Techniques:
Stability, Safety, and Beyond

Raphaël M. Jungers

ICTEAM Institute, Université catholique de Louvain
raphael.jungers@uclouvain.be

Path-complete Lyapunov Techniques1 are a family of methods that combine
Automata-Theoretic tools with algebraic formulas in order to derive ad hoc criteria for
the control of complex systems. These criteria are typically solved with Convex
Optimization solvers. They initially appeared in the framework of switched systems,
which are dynamical systems for which the state dynamics varies between different
operating modes. They take the form

xðtþ 1Þ ¼ frðtÞðxðtÞÞ ð1Þ

where the state xðtÞ evolves in R
n. The mode rðtÞ of the system at time t takes its value

in a set f1; . . .;Mg for some integer M; and each mode of the system is described by a
continuous map fiðxÞ : Rn ! R

n.
When the functions fi are linear functions, we say that the system is a linear

switched system. The stability problem is reputedly very hard, even in the restricted
case of linear functions (see e.g. [14, Sect. 2.2]). In this case, one can easily obtain a
sufficient condition for stability, through the existence of a common quadratic Lya-
punov function (see e.g. [18, Sect. II-A]). However, such a Lyapunov function may not
exist, even when the system is asymptotically stable (see e.g. [17, 18]). Less conser-
vative parameterizations of candidate Lyapunov functions have been proposed, at the
cost of greater computational effort (e.g. for linear switching systems, [19] uses
sum-of-squares polynomials, [12] uses max-of-quadratics Lyapunov functions, and [4]
uses polytopic Lyapunov functions).Multiple Lyapunov functions (see [7, 13, 21]) arise
as an alternative to common Lyapunov functions. In the case of linear systems, the
multiple quadratic Lyapunov functions such as those introduced in [6, 8, 9, 16] hold
special interest as checking for their existence boils down to solving a set of LMIs. The
general framework of Path-Complete Lyapunov functions was recently introduced in
[1, 15] in this context, for analyzing and unifying these approaches.

In this talk, we first present these criteria guaranteeing that the system (1) is stable
under arbitrary switching, i.e. where the function rð�Þ is not constrained, and one is

R.J. is supported by the Communauté française de Belgique - Actions de Recherche Concertées,
and by the Belgian Programme on Interuniversity Attraction Poles initiated by the Belgian Federal
Science Policy Office. He is a Fulbright Fellow and a FNRS Fellow, currently visiting the Dept.
of Electrical Engineering at UCLA.
1 Path-complete techniques are implemented in the JSR toolbox [22].



interested in the worst-case stability. We then show how this very natural idea can be
leveraged for much more general purposes: we present recent works were the same idea
has been applied to more general systems than the ones described above [20], or for
proving different properties than stability [10].

These techniques give rise to many natural questions: First, they essentially provide
algebraic criteria, that is, equations and inequations, that can be solved numerically in
order to (hopefully) conclude stability, if a solution is found. But what do they mean in
terms of control systems? Do they have a geometric interpretation in the state space?
Second, among the different criteria in this framework, which one should an engineer
pick in practice? Do these criteria compare with each other (in terms of conserva-
tiveness)? How to algorithmically choose the good criterion, when one is given a
particular problem? While recent progress has been done to provide a geometric
interpretation of these criteria [3], several problems remain open, like the one of
comparing two given path-complete criteria [2].

Finally, we draw connections with other recent works in Control and Computer
Science, which bear similarities with path-complete techniques, in safety analysis of
computer programs [5], or in connection with tropical Kraus maps [11].

References
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Fig. 1. Graphical illustration of the level set of a path-complete Lyapunov function.We will show in
the talk that these level sets can always be expressed as unions of intersections of Ellipsoids.
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The Multiple Dimensions
of Mean-Payoff Games

Laurent Doyen

LSV, ENS Paris-Saclay & CNRS

Abstract. We consider quantitative game models for the design of reactive
systems working in resource-constrained environment. The game is played on a
finite weighted graph where some resource (e.g., battery) can be consumed or
recharged along the edges of the graph.

In mean-payoff games, the resource usage is computed as the long-run
average resource consumption. In energy games, the resource usage is the initial
amount of resource necessary to maintain the resource level always positive.

We review fundamental results about mean-payoff games that show the
existence of memoryless optimal strategies, and the equivalence of mean-payoff
games with finite-duration reachability games, as well as with energy games
(which can also be viewed as safety games). These results provide conceptually
simple backward-induction algorithms for solving mean-payoff games, and for
constructing memoryless optimal strategies. It follows that mean-payoff games
can be solved in NP \ coNP.

Then we consider games with multiple mean-payoff conditions for systems
using multiple resources. In multi-dimension mean-payoff games, memory is
necessary for optimal strategies, and the previous equivalence results with
reachability and energy (safety) games no longer hold. First, infinite memory is
necessary in general for optimal strategies. With infinite memory, the limit of the
long-run average resource consumption may not exist, and it is necessary to
distinguish between the limsup and the liminf of the long-run average resource
consumption. Second, the equivalence with a multi-dimensional version of
energy games holds only if the players are restricted to use finite-memory
strategies, and in that case the limsup- and the liminf-value coincide.

The complexity of solving multi-dimension mean-payoff games is as fol-
lows, depending on which class of strategies is given to the player: NP-complete
for memoryless strategies, coNP-complete for finite-memory strategies, NP \
coNP for infinite-memory strategies and a conjunction of limsup objectives, and
coNP-complete for infinite-memory strategies and a conjunction of liminf
objectives.
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The Multiple Dimensions of Mean-Payoff Games

(Extended Abstract)

Laurent Doyen(B)

LSV, ENS Paris-Saclay and CNRS, Cachan, France
doyen@lsv.fr

Outline. We consider quantitative game models for the design of reactive sys-
tems working in resource-constrained environment. The game is played on a
finite weighted graph where some resource (e.g., battery) can be consumed or
recharged along the edges of the graph.

In mean-payoff games, the resource usage is computed as the long-run average
resource consumption. In energy games, the resource usage is the initial amount
of resource necessary to maintain the resource level always positive.

We review fundamental results about mean-payoff games that show the exis-
tence of memoryless optimal strategies, and the equivalence of mean-payoff
games with finite-duration reachability games, as well as with energy games
(which can also be viewed as safety games). These results provide conceptually
simple backward-induction algorithms for solving mean-payoff games, and for
constructing memoryless optimal strategies. It follows that mean-payoff games
can be solved in NP ∩ coNP.

Then we consider games with multiple mean-payoff conditions for systems
using multiple resources. In multi-dimension mean-payoff games, memory is nec-
essary for optimal strategies, and the previous equivalence results with reachabil-
ity and energy (safety) games no longer hold. First, infinite memory is necessary
in general for optimal strategies. With infinite memory, the limit of the long-run
average resource consumption may not exist, and it is necessary to distinguish
between the limsup and the liminf of the long-run average resource consumption.
Second, the equivalence with a multi-dimensional version of energy games holds
only if the players are restricted to use finite-memory strategies, and in that case
the limsup- and the liminf-value coincide.

The complexity of solving multi-dimension mean-payoff games is as follows,
depending on which class of strategies is given to the player: NP-complete for
memoryless strategies, coNP-complete for finite-memory strategies, NP ∩ coNP
for infinite-memory strategies and a conjunction of limsup objectives, and coNP-
complete for infinite-memory strategies and a conjunction of liminf objectives.

Games. We consider two-player games of infinite duration, as a model of non-
terminating reactive systems with controllable and uncontrollable actions. Such
models have applications in the verification and synthesis of reactive systems [3,
36,38], and fundamental connections with many areas of computer science, such
as logic and automata [24,27,37].

c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 1–8, 2017.
DOI: 10.1007/978-3-319-67089-8 1



2 L. Doyen

The game is played for infinitely many rounds, on a finite graphs 〈V,E〉 with
vertices V = V1 � V2 partitioned into player-1 and player-2 vertices. Initially a
token is placed on a designated vertex v0 ∈ V . In each round the player owning
the vertex vi where the token lies moves the token to a successor vertex vi+1

along an edge (vi, vi+1) ∈ E of the graph. The outcome of the game is an infinite
path v0, v1, . . . called a play. In the traditional qualitative analysis, plays are
classified as either winning or losing (for player 1). An objective is a set Ω ⊆ V ω

of winning plays. The goal of player 1 is to achieve a winning play: the central
qualitative question is to decide if there exists a strategy for player 1 such that
for all strategies of player 2 the outcome is a winning play in Ω. Sets of winning
plays defined by ω-regular conditions are central in verification and synthesis of
reactive systems [36,38] and have been extensively studied [10,18,26].

Mean-Payoff and Energy Games. For the design of reactive systems work-
ing in resource-constrained environment, we consider weighted graphs 〈V,E,w〉
where w : E → Z is a weight function that assigns a resource consumption to
each edge of the graph. The limit-average value (or mean-payoff value) of a play
ρ = v0, v1, . . . is defined in two variants, the limsup-average

MP(ρ) = lim sup
n→∞

1
n

·
n−1∑

i=0

w(vi, vi+1),

and the liminf-average

MP(ρ) = lim inf
n→∞

1
n

·
n−1∑

i=0

w(vi, vi+1).

The goal of player 1 is to maximize the mean-payoff value, and the associated
decision problem is to decide, given a threshold value ν ∈ Q, whether there
exists a winning strategy for player 1 for the mean-payoff objective MP≥ν = {ρ |
MP(ρ) ≥ ν} (or, MP≥ν = {ρ | MP(ρ) ≥ ν}) with a mean-payoff value at least ν.
In the sequel we only consider the case ν = 0, which can be obtained by shifting
all weights in the graph by the given value ν (and scaling them to get integers).

Memoryless strategies are sufficient to win mean-payoff games [23] and the
associated decision problem lies in NP ∩ coNP [32,43]. The solution of mean-
payoff games is more intuitive by considering the class of energy games [6,11]
where the objective of player 1 is to maintain the accumulated resource level
(i.e., the energy level) always nonnegative, given an initial credit value c0 ∈ N.
The energy level of a finite path with initial credit c0 is defined by

ELc0(v0, v1, . . . , vn) = c0 +
n−1∑

i=0

w(vi, vi+1),

and the energy objective is

EL≥0
c0 = {v0, v1, . . . | ∀n ∈ N : ELc0(v0, v1, . . . , vn) ≥ 0}.
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The associated decision problem asks whether there exists c0 such that
player 1 has a winning strategy for the energy objective with initial credit c0. It
is important that the initial credit c0 is not fixed to obtain the equivalence with
mean-payoff games (see next paragraph). For fixed initial credit we get a variant
of energy games (see Related Work). Note that the energy condition is a safety
condition [1]: if a finite prefix of a play violates the energy condition, then every
continuation violates the energy condition.

Memoryless Determinacy and Equivalence Results. Intuitively, player 1
wins the energy game if he can ensure that whenever a cycle is formed in the
play, the cycle has nonnegative sum of weights. The converse is also true [6,39].
Consider a finite-duration game played analogously to the games we considered
so far, but that stops whenever a cycle is formed, and declared won by player 1
if and only if the cycle is nonnegative. If player 1 wins the finite-duration game,
then we can use his strategy to play the energy game and ensure that all cycles
that are formed are nonnegative and therefore a finite initial credit c0 is sufficient
to survive along acyclic portions of the play (thus c0 ≤ |V |·W is sufficient, where
W is the largest absolute weight in the graph). Conversely, if player 1 cannot
avoid that a negative cycle is formed in the finite-duration game, then it is easy
to show that player 2 can fix a strategy to ensure that only negative cycles
are formed in the energy game, which would exhaust any arbitrary finite initial
credit. Thus player 1 cannot win the energy game.

This argument reduces energy games to a reachability game in the finite
tree obtained by unfolding the original graph and stopping a branch whenever
a cycle is formed. Each leaf corresponds to the closing of a cycle, and the leaves
associated with a positive cycle define the target nodes of a reachability objective
for player 1. Using backward induction on the tree it is easy to establish that from
all nodes where player 1 has a winning strategy for the reachability objective,
finite initial credit is sufficient for the energy objective.

Finally, to establish the equivalence with mean-payoff games [6,23], it is easy
to see that if player 1 can ensure that only nonnegative cycles are formed along
a play, than the mean-payoff value is nonnegative (both for the limsup and the
liminf variants), and otherwise player 2 can ensure that only negative cycles are
formed, and the mean-payoff value is negative. It follows that mean-payoff games
are determined (i.e., if player 1 does not have a winning strategy for MP≥0, then
player 2 has a winning strategy for the complement V ω \MP≥0). Moreover, view-
ing energy games as a safety game it is easy to show that memoryless strategies
are sufficient to win energy games, and that the same strategy can be used for
the mean-payoff objective, showing the memoryless determinacy of mean-payoff
games.

We can solve mean-payoff games in NP by guessing a memoryless strat-
egy for player 1 and checking that it induces only nonnegative reachable cycles
in the graph game, which can be done in polynomial time using shortest-
path algorithms. By memoryless determinacy, a coNP algorithm can guess a
memoryless winning strategy for player 2. Hence mean-payoff games are in
NP ∩ coNP [32,43], which can be improved to UP ∩ coUP [30]. Mean-payoff
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games can be solved in O(|V |·|E|·W ), thus in P for weights encoded in unary [9].
It is a long-standing open question to know whether mean-payoff games can be
solved in polynomial time for weights encoded in binary.

Multi-Dimension Mean-Payoff Games. In multi-dimension mean-payoff
games, the weight function w : E → Z

k assigns a vector of resource con-
sumption to each edge of the graph. The objective of player 1 is to ensure
the mean-payoff objective in each dimension 1, . . . , k, thus a conjunction of k
one-dimension mean-payoff objectives with threshold 0. Hence for player 2 the
objective is a disjunction of mean-payoff objectives. Simple examples show that
infinite memory may be necessary for player 1, for both the limsup and the
liminf variants [42]. Moreover, the conjunction of mean-payoff objectives is not
equivalent to a conjunction of energy conditions (which requires to maintain
the accumulated resource level always nonnegative in every dimension, for some
vector of finite initial credit).

Since infinite memory may be necessary for player 1, we consider the prob-
lem of deciding the existence of a winning strategy with the following memory
restrictions: memoryless strategies, finite-memory strategies, and the general
case of infinite-memory strategies [42]. With memoryless strategies, the deci-
sion problem is NP-complete. With finite-memory strategies, multi-dimension
mean-payoff games are equivalent to energy games, in both the limsup and the
liminf variants; memoryless strategies are sufficient for player 2 and the problem
is coNP-complete. In the general case with infinite-memory strategies, the prob-
lem is in NP ∩ coNP for conjunctions of limsup-average, and coNP-complete for
conjunctions of liminf-average. In both cases memoryless strategies are sufficient
for player 2. Thus in all cases player 2 does not need memory, but the proofs of
the memoryless results rely on different techniques (see next paragraph).

Memoryless Strategies in Mean-Payoff Games. In the results presented
above, it is crucial to establish that memoryless strategies are sufficient for one
player (and sometimes for both). We emphasize that different techniques can be
used to prove those memorylessness results.

Edge induction and shuffling. A general technique is to use edge induction [25,
34]: to prove that a player is memoryless, consider for example a vertex v owned
by that player with two outgoing edges, and consider the game G1 obtained
by removing the first outgoing edge, and the game G2 obtained by removing
the second outgoing edge. By induction we argue that memoryless strategies are
sufficient for the player owning v in the games G1 and G2, and we need to show
that no (arbitrary) strategy in the original game can achieve a better value than
either the optimal (memoryless) strategy in G1 or in G2. Thus switching between
the two outgoing transitions when visiting the vertex v does not give a better
play (for the owner of v). Roughly, such a play can be decomposed into the
appropriate shuffling of a play in G1 and a play in G2, and essentially it suffices
to show (in case the owner of v is a minimizer, i.e., player 2) that the mean-payoff
value of a shuffle of two plays is not smaller than the min of the values of the
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two plays, which holds for liminf-average (but not for limsup-average [33,42]).
Dually, in case the owner of v is a maximizer, i.e., player 1, we need to show
that the mean-payoff value of a shuffle of two plays is not greater than the max
of the values of the two plays.

This technique can be used to show that player 2 is memoryless in multi-
dimension energy games, and in the liminf-average variant of mean-payoff games.

Backward induction. To show memorylessness in one-dimension energy games,
a simpler proof uses a monotonicity property that if an outgoing edge is a good
choice from a vertex v when the current accumulated resource level is x, then
the same outgoing edge is a good choice in v for all accumulated resource levels
x′ > x. Therefore in every vertex there exists a choice of outgoing edge that
is independent of the current resource level and defines a memoryless winning
strategy. This argument is similar to the proof that safety games admit memo-
ryless winning strategies: to win a safety game it is sufficient to always choose a
successor vertex that lies in the winning set.

Nested memoryless objectives. As the edge-induction technique does not work
to show that player 2 is memoryless in limsup-average mean-payoff games, we
use a specific result, based on nested (iterated) elimination of losing vertices: if
from a given vertex v player 1 cannot win for one of the limsup-average mean-
payoff objective, then v is a losing vertex for player 1 (and player 2 can use
a memoryless strategy to win). Given a set L ⊆ V of such losing vertices, all
vertices from which player 2 can ensure to reach L are also losing for player 1.
Note that player 2 can use a memoryless strategy to reach L. As long as such
losing vertices (for player 1) exist, the above argument shows that player 2 has
a memoryless strategy to win. The conclusion of the argument is to show that if
no losing vertex remains (for any of the one-dimension objectives), then player 1
wins for the multi-dimension objective from every remaining vertex [42].

Related Work. We give pointers to the literature related to multiple mean-
payoff conditions in graphs and games. Deriving a deterministic algorithm from
the coNP result for multi-dimension mean-payoff games gives an algorithm
that is exponential in the number of vertices. The hyperplane separation tech-
nique gives an algorithm that is polynomial for fixed dimension k and bounded
weights [21]. The technique has been extended to obtain a pseudo-polynomial
algorithm for solving multi-dimension energy games of fixed dimension with a
fixed initial credit [31]. Strategy synthesis is studied in [20] showing that expo-
nential memory is sufficient for winning strategies in multi-dimension energy
games (and thus in multi-dimension mean-payoff games under finite-memory
strategies). Finitary variants of mean-payoff objectives have been considered
in [17].

The vector of Pareto-optimal thresholds for multi-dimension mean-payoff
games is studied in [8], showing that deciding if there exists a vector of thresh-
old in a given polyhedron that can be ensured by player 1 is complete for
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NPNP. Games with a Boolean combination of mean-payoff objectives are unde-
cidable [41], and their restriction to finite-memory strategies is inter-reducible
with Hilbert’s tenth problem over the rationals [40]. Mean-payoff conditions have
been used to define quantitative specification frameworks with appealing expres-
siveness and closure properties [2,15]. The special case of a Boolean combination
of mean-payoff objectives defined by a one-dimension weight function gives rise
to interval objectives, solvable in NP ∩ coNP [29].

We discuss three directions to extend the model of two-player mean-payoff
games. First, the mean-payoff objective has been combined with Boolean objec-
tives such as the parity condition, a canonical form to express ω-regular con-
ditions, in one dimension [13,19] and in multiple dimensions [5,20]. Note that
parity games can be reduced to (one-dimension) mean-payoff games [30], which
can be reduced to discounted-sum games, themselves reducible to simple sto-
chastic games [43]. Second, the mean-payoff objective has been considered in
Markov decision processes [7,12] and stochastic games [4,14], in combination
with parity condition [16] and under finite-memory strategies [14]. Third, mean-
payoff and energy games (in single dimension) with partial observation have
been shown undecidable [22,28]. Special assumptions on the structure of the
game lead to decidable subclasses [28]. Partial-observation energy games with
fixed initial credit are Ackermann-complete [35].
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Abstract. Integer reset timed automata (IRTA) are known to be a
determinizable subclass of timed automata, but it is not known whether
they are input-determined, i.e., the clock values are completely deter-
mined by an input timed word. We first define a syntactic subclass of
IRTA called strict IRTA and show that strict IRTA is equivalent to IRTA.
We show that the class of strict IRTA is indeed input-determined. Visibly
pushdown automata is another input-determined class of automata with
a stack that is also closed under boolean operations and admits a logical
characterization. We propose dtIRVPA as a class of timed automata with
a dense-timed stack. Similar to strict IRTA, we define strict dtIRVPA and
show that strict dtIRVPA is input-determined where both – stack oper-
ations and the values of the integer reset clocks – are determined by the
input word, and this helps us to get the monadic second-order (MSO)
logical characterization of dtIRVPA. We prove the closure properties of
dtIRVPA under union, intersection, complementation, and determiniza-
tion. Further, we show that reachability of dtIRVPA is PSPACE-complete,
i.e. the complexity is no more than that of timed automata.

Keywords: Visibly pushdown automata · Dense-timed stack · Integer
reset timed automata · Logical characterization · MSO

1 Introduction

Program verification involves ensuring that a program does not exhibit any unin-
tended behavior. Such verification is often done by building a suitable computa-
tional model of the program, which needs to be sufficiently powerful to express
program semantics, but without losing decidability of several interesting proper-
ties. Analysis and verification of such programs amount to checking various lan-
guage theoretic properties of their corresponding models. For programs involving
timed behaviour, timed automaton [4] is a simple yet powerful computational
model. They use a finite set of real-valued variables – called clocks – all of which
increase at the same rate as time elapses. Clocks can be reset as desired, which
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is useful to measure the time delay between various events. From a language
theoretic perspective, though timed automata are closed under union and inter-
section, they are not closed under complementation and determinization. For
this reason, it is not possible to verify a program modeled as a timed automaton
against specifications given by another timed automaton.

Suman et al. [20] identified integer reset timed automata (IRTA), where a
clock can be reset only when the value of some clock in an IRTA is an integer,
as a perfect subclass of timed automata, that are closed under all the language
theoretic operations such as union, intersection, complementation and deter-
minization. Naturally, universality checking and inclusion checking are decidable
for IRTA. But interestingly, IRTA are shown to be equivalent to their one clock
counterpart.

Apart from timing constraints, presence of function calls and interrupts in
the programs make the task of their verification difficult. Pushdown automata
(PDA) is a popular formalism for modeling function calls. PDA are closed under
union, but not under intersection, which limits their use for verification. A visibly
pushdown automaton (VPA) [5] is a perfect subclass of deterministic PDA that
is closed under union, intersection and complementation leading to decidable
language emptiness and inclusion.

Though IRTA forms a relatively restricted class of timed automata, Mohalik
el al. [19] have successfully used it in the latency analysis of distributed real-
time systems that synchronize on integer global times. They model tasks which
run periodically and communicate asynchronously using buffers with IRTA. Here
Fig. 1 shows a self recursive procedure P in one such task which implements a
boolean lock. Procedure P is a handler routine which is activated periodically
by a module that uses integer reset clocks. We do not show that module, but
instead discuss the usefulness of dense-timed stack in verifying richer properties.
In Fig. 1, the dashed transitions correspond to either call or return transitions
in different contexts of P. Now, consider the following specification: “If a lock is
acquired in any context of a procedure, it must be released in the same context
within 5 time units”. Such requirement is enforced by pushing a symbol α on
the stack when a lock is acquired and checking whether the age of α is within 5
units of time while releasing the lock.

Contributions. We consider task models as used in [19] augmented with dense-
timed stacks. This motivates us to model recursive time-sensitive tasks using
dense-timed integer reset visibly pushdown automata (dtIRVPA) as a model for
real-time recursive programs. Our model uses integer reset clocks, visible alpha-
bet and a dense-timed stack. Like VPA, an input symbol determines the stack
operations, with the difference that we use a dense-timed stack. We show that
the formalism of dtIRVPA enjoys all good properties like closure under union,
intersection and determinization that paves the way to decidability of language
inclusion based model checking, where the specification is given in terms of
dtIRVPA. We consider a canonical form of dtIRVPA called the strict dtIRVPA
that enjoys input determinacy property, i.e. when reading a timed word u, the
clock values are completely determined by u. For the ease of presentation, we
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Bool lock = false;

procedure p() {
if(lock == false) {

lock = true;

P(); // Recursive call

lock = false;

// Must unlock within 5 time units

}
}

Fig. 1. A recursive program and its dtIRVPA model

first define strict IRTA and show that it is equivalent to the class of IRTA. A
similar construction can be made for dtIRVPA which implies that the class of
dtIRVPA is equivalent to the class of strict dtIRVPA. In this work, we also pro-
vide the monadic second-order (MSO) logical characterization for strict dtIRVPA.
This allows us to check a system modelled as a dtIRVPA against any specification
given by such an MSO formula. Another significant contribution of this work is to
show that the location reachability checking is PSPACE-complete for dtIRVPA.

Related Work. Various models are known that combine clocks and pushdown
stack to model programs with timing constraints on function calls. The earliest
such model is a pushdown timed system [9]. It uses a set of global continuous
variables and a timeless stack. Reachability of a location in the pushdown timed
system is shown to be decidable. Dang [11] studied a model called pushdown
timed automata that uses global clocks, but the clocks here are never pushed on
the stack. Trivedi and Wojtczak [21] extended timed automata with recursion
where they permitted pushing the clocks onto a stack using various mechanisms
like pass-by-value and pass-by-reference and studied reachability and termina-
tion problems for this model. The model of dense-timed pushdown automata
(dtPDA) by Abdulla et al. [1] is also closely related to our work. Whenever a
stack symbol is pushed on the stack of a dtPDA, a real value called age is asso-
ciated with the stack symbol. Ages of all symbols present in the stack increase
uniformly with time. The problem of checking whether given a dtPDA and a
location � in it, there exists a run from an initial location of the dtPDA to loca-
tion � is shown to be decidable by Abdulla et al. [1] and is EXPTIME-complete.
We mention here that in dtPDA, the age of a newly pushed stack symbol is ini-
tialized to a non-deterministic value while in the model of dtIRVPA introduced
here, the age is initialized to zero. However, this difference is merely syntactic in
nature and does not affect expressiveness [10]. Another noteworthy contribution
is nested timed automata (NeTA) proposed by Li et al. [16]. In their model, an
instance of timed automata can be pushed on the stack along with the clocks.
Clocks of timed automata continue to run while on the stack. They have shown



12 D. Bhave and S. Guha

the decidability of the reachability problem by reducing it to dtPDA. Recently
they have further explored the model of NeTA where clocks on the stack are
either frozen or progressing [17]. However reachability for this extension is unde-
cidable for multiple global clocks.

Timed matching logic proposed by Droste and Perevoshchikov [12] is an exis-
tential fragment of second-order logic characterizing dtPDA. They effectively
reduce a formula in timed matching logic to dtPDA such that it is satisfiable
iff the language accepted by the corresponding dtPDA is non-empty. Recently
Bhave et al. [7] proposed dense-timed visibly pushdown automata (dtVPA)
as a perfect subclass of timed context-free languages in the sense that it is
closed under union, intersection, complementation and determinization. Lan-
guage inclusion is shown to be decidable for dtVPA. Further an equivalent MSO
logic has been proposed for dtVPA. In [8], they have also studied a perfect sub-
class of context-sensitive timed languages called dense-timed multistack visibly
pushdown automata (dtMVPA). Informally, a round of multistack computation
accesses each stack once. dtMVPA has been shown to enjoy all good properties
as that of dtVPA for the words having k-rounds of computations. For multistack
dense-timed pushdown systems, Akshay et al. [3] have proposed a tree automata
based technique for reachability problem on words with k-rounds.

Organization. We set up the technical definitions in Sect. 2. In Sect. 3, we give an
effective construction to convert any IRTA into a language equivalent canonical
strict IRTA. We show that strict IRTA are input-determined automata (IDA)
that implies input determinacy for strict dtIRVPA, a property that we need for
the logical characterization of strict dtIRVPA. In Sect. 4, we define dtIRVPA,
discuss its closure properties, show that the model is determinizable and discuss
the complexity of checking emptiness of dtIRVPA. In Sect. 5, we give a logical
characterization of strict dtIRVPA. We conclude in Sect. 6.

We note that the abstract procedure for determinization of timed automata
given in [6] identifies IRTA as a subset of timed automata that can be deter-
minized by following the procedure. It constructs an intermediate symbolic infi-
nite timed tree that satisfies the input-determinacy property. The deterministic
symbolic infinite tree is folded back to construct the resulting deterministic timed
automaton. The folding into a timed automaton is possible only when the num-
ber of active clocks in each node of the infinite tree is bounded by some γ ∈ N.
The folding back requires mapping the clocks of the infinite tree to a finite set
of clocks Xγ . Under the γ-clock-boundedness, the only requirement is that each
time a new clock in Xγ is needed for mapping a clock of the infinite tree to a
clock in Xγ , one free clock is available in Xγ . This renaming, however, does not
preserve the input-determinacy property and any relation to input-determinacy
cannot be ascertained from the procedure in [6].

Also, once we show that strict IRTA is input-determined, from [13], it auto-
matically implies that there exists an MSO logical characterization for strict
IRTA and such a logical characterization can be derived from the framework
given in [13] for any generic input-determined timed automaton. In [13], the
authors define a timed MSO (TMSO) and show the equivalence between the
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language of an IDA and a set of timed words satisfying a TMSO formula using
a proper symbolic alphabet. The logic in [13] uses an input-determined operator
Δ that has a semantic function of the signature [[Δ]] : (TΣω × N) �→ 2IQ , where
TΣω is the set of infinite timed words over an alphabet Σ, and IQ is the set
of rational-bounded intervals over the non-negative reals. We use an operator
ζk : N �→ IQ ∪ {�}, where the symbol � denotes the clock values greater than
some integer k.

2 Preliminaries

A timed automaton (TA) is a non-deterministic automaton that allows modeling
of events to take place at specific time instants or within a time interval. It allows
modeling the passage of time by a finite number of clock variables. All the clocks
increase at the same rate. Lower case letters x, y, z will be used to denote clock
variables and C will denote the set of clock variables. Clock variables are assigned
non-negative real values.

Let � denote the disjoint union of sets. For a given k ∈ N, let Ik = {(p, p +
1) | 0 ≤ p < k} ∪ {[p, p] | 0 ≤ p ≤ k} ∪ {(k,∞)}, where p ∈ N, be a set of real
disjoint intervals. Let x ∈ C be a clock variable. Whenever it is clear from the
context, we use I instead of Ik. A clause is of the form x ∈ I. We say that
a clause (x ∈ I) holds true iff the current value of a clock variable x is in the
interval I. A guard is a conjunction of finitely many such clauses and its syntax
is given as g := g ∧ g|(x ∈ I) where x ∈ C and I ∈ I. Let g[(x + p)/x] be an
expression obtained by replacing the variable x by the expression (x + p) in the
formula g. Let Φ(C) be the set of all guards.

A clock valuation or simply a valuation is a function v : C �→ IR≥0. For a
clock x ∈ C and a valuation v, we use v(x) to denote the value of clock x in v. We
use �v(x)� to denote the integer part of v(x) while frac(v(x)) is used to denote
the fractional part of v(x). We define 
v(x)� = �v(x)�+1 if frac(v(x)) �= 0, else

v(x)� = �v(x)�.

For a clock valuation v, we use v+d to denote the clock valuation where every
clock is being increased by an amount d ∈ IR≥0. Formally, for each d ∈ IR≥0,
the valuation v + d is defined as (v + d)(x) = v(x) + d, for each x ∈ C.

For a clock valuation v, we use v[R←0] to denote the clock valuation where
every clock in R ⊆ C is set to zero, while the value of the remaining clocks remain
the same as in v. Formally, for each R ⊆ C, the valuation v[R←0] is defined by
v[R←0](x) = 0 if x ∈ R, else v[R←0](x) = v(x). We say that a valuation v satisfies
a guard g, denoted v |= g, if for each clock x appearing in g, the formula obtained
by replacing x with v(x) is valid.

A timed automaton is defined by the tuple (L,L0, Σ,C,E,Lf ) where L is
a finite set of locations, L0 is a non-empty set of initial locations, Σ is a finite
alphabet disjoint from IR≥0, C is a finite set of clocks, E ⊆ L×Σ×Φ(C)×2C ×L
is a finite set of edges and Lf ⊆ L is a set of accepting locations. Note that our
definition of guards is not succinct but it is equally expressive as the definition
of [4]. The definition that we use in this paper allows us to have cleaner proofs.
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A timed transition system [14], (TTS for short), S = 〈Q,Q0, Σ,→, ↪→, QF 〉,
where Σ is a finite alphabet, Q is a set of states, q0 ∈ Q0 is an initial state,
→⊆ Q× IR≥0 ×Q is a set of delay transition relations, and ↪→⊆ Q×Σ ×Q is a

set of discrete transition relations. We write q
d−→ q′ if (q, d, q′) ∈ → and q

a
↪→ q′

if (q, a, q′) ∈ ↪→.
Let A = 〈L,L0, Σ,C,E,Lf 〉 be a timed automaton. The semantics of a timed

automaton is described by a TTS. The timed transition system T (A) generated
by A is defined as T (A) = 〈Q,Q0, Σ,→, ↪→, QF 〉, where

– Q = {(�, v) | � ∈ L, v is a clock valuation}, is a set of states. Note that due
to the real-valued nature of time, this set is generally uncountable.

– Let vinit denote the valuation such that vinit(x) = 0 for all x ∈ C. Then
Q0 = {(�0, vinit) | l0 ∈ L0}.

– → = {((�, v), (�, v + d)) | (�, v), d, (�, v + d) ∈ Q} for all d ∈ IR≥0.
– ↪→ = {((�, v), a, (�′, v′)) such that (�, v), (�′, v′) ∈ Q and there is an edge

e = (�, a, g,R, �′) ∈ E and v |= g and v′ = v[R←0]}. From a state (�, v), if
v |= g, then there exists a a ∈ Σ transition to a state (�′, v′); after this, the
clocks in R are reset while the values of the clocks in C\R remain unchanged.

– QF = {(�, v) | l ∈ Lf and v is a clock valuation}.

For a timed automaton state p = (�, v), we denote by vx(p) the value of clock x for
state p. A run of a timed automaton is of the form π = (�0, v0)

d0−→ (�0, v0+d0)
a0−→

(�1, v1)
d1−→ (�1, v1 + d1)

a1
↪→ (�2, v2) . . .

dk−→ (�k, vk + dk)
ak
↪→ (�k+1, vk+1) where for

all i ≥ 0, we have di ∈ IR≥0 and ai ∈ Σ. Note that π is a continuous run in

the sense that for a delay transition (�i, vi),
di−→ (�i, vi + di), it includes all states

(�i, vi +d) for all 0 ≤ d ≤ di. A run is said to be initial if �0 ∈ L0 and v0 = vinit.
An initial run is accepting if it ends in an accepting location. A timed word
w = (a0, t0)(a1, t1) . . . (ak, tk) is said to be read on π whenever ti =

∑i
j=0 dj for

every 1 ≤ i ≤ k. The timed word w is said to be accepted by A if there is an
initial and accepting run of A that reads u. We write L(A) for the set of timed
words (or timed language) accepted by A. We say that a TA A is deterministic
whenever every timed word w produces at most one unique run. The set of finite
words over Σ is denoted by Σ∗. Additionally, we denote the set of all finite timed
words by TΣ∗.

An integer reset timed automaton (IRTA) [20] is a timed automaton A =
〈L,L0, Σ,C,E,Lf 〉 with the restriction that for every edge e = 〈�, a, g,R, �′〉, if
R �= ∅, then g has a clause of the form x ∈ I for some x ∈ C and I is of the
form [p, p] for p ∈ N. Such clauses in the guard ensure that all resets happen at
integer time units. A consequence of this is that at any time, for any run of an
IRTA, the fractional parts of the values of all the clocks are the same [20].

It is known that given an IRTA A, it can be determinized to produce another
IRTA B whose size is exponential in the number of locations of A [18]. Further,
given an IRTA A with an arbitrary number of clocks, it can be converted to
an IRTA B such that B has a single clock and the number of locations in B is
exponential in the number of clocks of A [18]. In both the above constructions,
the timed language accepted by A is preserved.
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A strong timed simulation relation between two timed systems Ti =
〈Qi, Q0,i, Σ, →i, ↪→i, QF,i〉, for i ∈ {1, 2} is a relation R ⊆ Q1 × Q2 such that if
(q1, q2) ∈ R, and q1

α� q′
1, where �=→ and α ∈ IR≥0, or �=↪→ and α ∈ Σ,

then there exists q′
2 ∈ Q2 such that q2

α� q′
2 and (q′

1, q
′
2) ∈ R. A strong timed

bisimulation relation between two timed systems Ti for i ∈ {1, 2} is a relation
R ⊆ Q1 × Q2 such that both R and R−1 are strong timed simulation relations.
We say that two timed automata A1 and A2 are timed bisimilar if for every
initial state q1 of T (A1), there exists an initial state q2 of T (A2) such that there
exists a strong timed bisimulation containing q1 and q2, and for every initial
state q2 of T (A2), there exists an initial state q1 of T (A1) such that there exists
a strong timed bisimulation containing q1 and q2.

Visibly pushdown automata [5] are a determinizable subclass of pushdown
automata that operate over words that dictate the stack operations. This notion
is formalized by giving an explicit partition of the alphabet into three dis-
joint sets of call, return, and local symbols and the visibly pushdown automata
must push one symbol to the stack while reading a call symbol, and must
pop one symbol (given the stack is non-empty) while reading a return sym-
bol, and must not touch the stack while reading the local symbol. A visibly
pushdown alphabet is a tuple Σ = 〈Σc, Σr, Σl〉where Σ is partitioned into
a call alphabet Σc, a return alphabet Σr, and a local alphabet Σl. A visi-
bly pushdown automaton over Σ = 〈Σc, Σr, Σl〉 is a tuple(L,Σ, Γ, L0, E, Lf )
where L is a finite set of locations including a set L0 ⊆ L of initial loca-
tions, a finite stack alphabet Γ with special end-of-stack symbol �, and E ⊆
(L×Σc×L×(Γ \�)) ∪ (L×Σr×Γ×L) ∪ (L×Σl×L) and Lf ⊆ L is a set of final
locations. Alur and Madhusudan [5] showed that visibly pushdown automata
are determinizable and closed under Boolean operations, concatenation, Kleene
closure, and projection. They also showed that the language accepted by visibly
pushdown automata can be characterized by MSO over words augmented with
a binary matching predicate first studied in [15].

3 Transformation to Strict IRTA

In this section, we first define strict IRTA and show that the class of strict
IRTA is equivalent to IRTA. Then we show that strict IRTA are input-determined
automata.

Definition 1. An IRTA is said to be strict iff (i) it has only one clock and (ii)
every edge having a guard condition of the form [p, p] with p ∈ N resets the clock.

Assume wlog that we are given a one-clock (not necessarily deterministic),
but non-strict IRTA A = (L,L0, Σ, {x}, E, Lf ). We now describe a construction
that yields a strict IRTA B which is timed bisimilar to A. For the following
discussion, we assume k to be the maximum constant appearing in the guards
of A.

First, we present an intuition behind our construction with some observa-
tions. Consider the one clock IRTA A in Fig. 2 having a single clock x. We do
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not show the labels on the edges with the letters from Σ in the figure. Clearly A
is not a strict IRTA as the edge from �2 to �3 has an integer guard, but it does not
reset x. Suppose we forcefully reset x on the �2 to �3 edge, then we need to suit-
ably change the guards on all the edges that may be taken thereafter to preserve
the timed language. For example, one of the changes that we can immediately
identify is to make the guard in the edge from �3 to �1 as x ∈ (0, 1) instead of
earlier x ∈ (3, 4) as the new value of x lags by 3. Clearly, the other side effects
of resetting x must be taken care of appropriately. These side effects are path
sensititive, i.e. for each location the amount of lag in x introduced because of
additional reset of x depends completely on the incoming path to that location.

As a general principle, consider an edge �
a,x∈[m,m],∅−−−−−−−−→ �′ which denotes a

transition from a location � to �′ on an input symbol a and checks whether the
value of the clock x is m, but does not reset x. Suppose we modify it by adding
a reset to it, clock x will then lag by m units along the run until x is reset again.
Intuitively our construction keeps track of such a time lag introduced along the
run in the locations. Let N≤m = {0, 1, . . . ,m} denote the set of natural numbers
less than or equal to m. We maintain sets of lags X� ⊆ N≤k for each location
� ∈ L, where k is the maximum integer appearing in the guards of the IRTA. Let
γ : E �→ 2N≤k give the lag introduced by each edge. Recall that a guard I on an
edge u of the one clock IRTA A is of the form [m,m] or (m,m + 1) for m ∈ N.

γ(u)=

⎧
⎨

⎩

{m} if u = (�1, x ∈ [m,m], a, ∅, �2)
{0} if u = (�1, x ∈ [m,m], a, {x}, �2)
X�1 ∩ N≤inf(I) if u=(�1, x ∈ I, a, ∅, �2), where I �= [m,m] for m ∈ N≤k

Let pre(�) be the set of all incoming edges to location �. For computing the
possible set of lags at each location, we write the set of fixed point equations
for each location � as X� =

⋃
u∈pre(�) γ(u). For initial locations, there is no lag

initially, so we initialize X� to {0} for � ∈ L0. Fixed point solution to these sets
of equations exists as the sets are finite and set union is monotonicity preserving.
Note that in each iteration γ(u) is computed by intersecting with a constant set.
Let X� denote the fixed point solutions.

Now we construct a strict IRTA B = (LB, LB
0 , Σ, {x}, EB, LB

f ). We record
the time lag along the run in the locations of B such that LB = {(�, p) | � ∈
L and p ∈ X�} and initial locations are LB = L0 × {0}. Final locations are
LB

f = {(�, p) | � ∈ Lf and (�, p) ∈ LB}. The set of edges of B are given by

EB =

{(
(�, p), a, (x + p ∈ I), ∅, (�′, p)

) | (�, x ∈ I, a, ∅, �′) ∈ E
and I �= [m,m] for m ∈ N≤k and p ≤ inf(I)}∪

{(
(�, p), a, (x + p ∈ [m,m]), {x}, (�′,m)

) | (�, (x ∈ [m,m]), a, ∅, �′) ∈ E
and p ≤ m}∪

{(
(�, p), a, (x + p ∈ [m,m]), {x}, (�′, 0)

) | (�, (x ∈ [m,m]), a, {x}, �′) ∈ E
and p ≤ m}

Remark 1. Note that since the IRTA A has only one clock and its guards belong
to I, the size of the IRTA B is polynomial in the size of A. Further, from EB, we
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note that the maximum constant with which the clock is compared to in B is no
more than the maximum constant with which the clock is compared to in A.

We now apply our construction on the automaton in Fig. 2. We compute the
set X�i for each location �i where 0 ≤ i ≤ 3. Initially X�0 is set to {0}, while for
i �= 0, we set Xli = ∅. Next X�1 is set to {0} as it propagates from X�0 due to the
presence of the edge from �0 to �1. Then X�2 is set to {0} as it propagates from
X�1 because of the edge from �1 to �2. Then X�3 is set to {3} because of the edge
from �2 to �3. Again X�1 is modified to {0, 3} since 3 is propagated from X�3 due
to the presence of the edge from �3 to �1. Thus we reach the following fixed point:
X�0 = {0}, X�1 = {0, 3}, X�2 = {0} and X�3 = {3}. Note that 3 is not added to
X�2 since 3 is greater than the infimum of the guard on the edge from �1 to �2
which is 1. The edges are added following the definition of EB given above. For
example, for the edge from �3 to �1, consider the locations (�3, 3) and (�1, 3). In
the strict IRTA that is obtained, we have the edge

(
(�3, 3), ·, x+3 ∈ (3, 4), (�1, 3)

)
.

The strict IRTA obtained is shown in Fig. 3.

Theorem 1. Given a one clock IRTA A, the construction presented above pro-
duces a strict IRTA B such that A and B are timed bisimilar.

�0 �1

�2 �3

{x}

x ∈ (0, 1)

x ∈ [2, 2]

x∈(1, 2)

x ∈ [3, 3]

x ∈ (3, 4)

Fig. 2. An IRTA that is not strict.

�0, 0 �1, 0

�2, 0 �3, 3

�1, 3

{x}

{x}

x ∈ (0, 1)

x ∈ [2, 2]

x∈(1, 2)

x ∈ [3, 3]

x ∈ (0, 1)

Fig. 3. A strict IRTA obtained from the
one in Fig. 2.

We say that the class of timed automata has the property of input determi-
nacy if the values of the clocks along a run are completely determined by the
input timed word alone and do not depend on any specific instance of a timed
automaton. Clearly the class of IRTA as a whole does not have this property,
however, we claim that the strict IRTA does have the input determinacy property.

Lemma 1. Strict IRTA have the input determinacy property.

4 Dense-Timed Integer Reset Visibly Pushdown
Automata

We introduce dense-timed integer reset visibly pushdown automata (dtIRVPA)
as an IRTA augmented with a dense-timed stack having a visibly pushdown
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alphabet. Let an input alphabet Σ = Σc � Σr � Σl be partitioned into call,
return and local symbols respectively. Let � be the special stack symbol denoting
the bottom of the stack. We now formally define dtIRVPA and describe their
semantics.

Definition 2 (dtIRVPA). A dense-timed integer reset visibly pushdown
automaton (dtIRVPA) over Σ = Σc �Σr �Σl is a tuple A = (L,L0, Σ, Γ,C,E =
Ec �Er �El, Lf ), where L is the finite set of locations, L0, Lf ⊆ L are the set of
initial and final locations respectively, Γ is the finite stack alphabet with special
end-of-stack symbol �, Ec ⊆ (L × Σc × Φ(C) × 2C × L × (Γ\ �)) is the finite
set of call transitions, Er ⊆ (L × Σr × Φ(C) × 2C × Γ × I × L) is the finite set
of return transitions, and El ⊆ (L × Σl × Φ(C) × 2C × L) is the finite set of
local transitions. Additionally, the set of clocks that get reset in a transition is
nonempty only if its guard condition contains a clause of the form (x ∈ [p, p])
where x is some clock in C and p ∈ N.

Each symbol on the stack has an associated clock-like real value (called age)
which increments uniformly with time. When a symbol is pushed on the stack,
its age is initialized to zero. As time elapses, ages of all stack symbols increase
uniformly. A pop transition checks the age of the topmost stack symbol. We
denote the contents of the stack in a configuration using a timed word itself.
Let σ be such a timed word where untime(σ) ∈ Γ ∗ is the string of (untimed)
stack symbols while age(σ) is the string of real valued ages. We define the age of
stack bottom symbol � to be of undefined value, denoted by the special symbol
⊥ which is not affected by the passage of time. Hence (⊥ + m) is defined to be
⊥ for any m ∈ R≥0. We introduce a string concatenation operation :: for both
types of strings for convenience in the next discussion.

Let w = (a1, t1), · · · , (an, tn) be a timed word. A configuration of dtIRVPA
is a tuple (�, v, (γσ, age(γσ))), where � is the current location of the dtIRVPA, v
is the clock valuation, γσ ∈ ΓΓ ∗ is the content of the stack with γ being the
topmost symbol and σ is the untimed word representing the stack content below
γ, while age(γσ) is a string of real numbers encoding the ages of all the stack
symbols (the time elapsed since each of them was pushed on to the stack).

The run of a dtIRVPA on a timed word w = (a1, t1), . . . , (an, tn) is a sequence
of configurations given as follows: (�0, v0, (〈�〉, 〈⊥〉)), (�1, v1, (σ1, age(σ1))), . . . ,
(�n, vn, (σn, age(σn))) where �i ∈ L, σi ∈ Γ ∗, �0 ∈ L0, t0 = 0, and for each i,
1 ≤ i ≤ n, we have:

– If ai ∈ Σc, then there is a transition (�i−1, ai, g, R, �i, γ) ∈ E such that
vi−1 +(ti − ti−1) |= g. The clock valuation vi = (vi−1 +(ti − ti−1))[R←0̄]. The
symbol γ ∈ Γ\{�} is then pushed onto the stack, and its age is initialized to
zero, obtaining (σi, age(σi)) = (γ :: σi−1, 0 :: (age(σi−1) + (ti − ti−1))). Note
that the age of all symbols in the stack excluding the topmost one increases
by ti − ti−1.

– If ai ∈ Σr, then there is a transition (�i−1, ai, g, R, γ, I, �i) ∈ E. The
configuration (�i−1, vi−1, (σi−1, age(σi−1))) evolves to (�i, vi, (σi, age(σi))) iff
vi−1 +(ti − ti−1) |= g, σi−1 = γ :: κ ∈ ΓΓ ∗ and age(γ)+ (ti − ti−1) ∈ I. Then
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we obtain σi = κ, with age(σi) = age(κ) + (ti − ti−1). However, if γ = �,
the symbol is not popped, and the attached interval I is irrelevant. The clock
valuation vi = (vi−1 + (ti − ti−1))[R←0̄].

– If ai ∈ Σl, then there is a transition (�i−1, ai, g, R, �i) ∈ E such that vi−1+(ti−
ti−1) � g. The clock valuation vi = (vi−1 + (ti − ti−1))[R←0̄]. In this case the
stack remains unchanged i.e. σi = σi−1, and age(σi) = age(σi−1)+(ti −ti−1).
All symbols in the stack age by ti − ti−1.

A run ρ of a dtIRVPA A is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of A on w. The
language L(A) of a dtIRVPA A, is the set of all timed words w accepted by A.

Definition 3 (Deterministic dtIRVPA). A dtIRVPA A = (L,L0, Σ, Γ,C,E,
Lf ) is said to be deterministic if it has exactly one start location, and for
every location and input symbol pair exactly one transition is enabled at all
times. Formally, we have the following conditions: (i) for call transitions
(�, a, g1, R1, �

′, γ1), (�, a, g2, R2, �′, γ2) ∈ Ec, we have g1 ∧ g2 is unsatisfiable.
(ii) for return transitions (�, a, g1, R1, γ1, I1, �

′), (�, a, g2, R2, γ2, I2, �
′) ∈ Er,

either g1 ∧ g2 is unsatisfiable or I1 ∩ I2 = ∅. (iii) for local transitions
(�, a, g1, R1, �

′), (�, a, g2, R2, �
′) ∈ El, we have g1 ∧ g2 is unsatisfiable.

Now we state one of the central results of the paper.

Theorem 2. dtIRVPA are determinizable and closed under union, intersection
and complementation. Also, their language emptiness and inclusion is decidable.

Determinization. Although IRTA and VPA are individually determinizable, their
determinization techniques cannot be easily combined for determinizing dtIRVPA
due to the presence of a dense-timed stack. However technique used for deter-
minization of dtVPA in [7] is helpful for handling dense-timed stack. We have
the following result about the determinization of dtIRVPA.

Lemma 2. dtIRVPA are determinizable.

Closure properties and decision problems. The closure of dtIRVPA under union
follows from the non-deterministic union of two dtIRVPA, while the intersection
follows from their cross product construction. To obtain a complement of a
given dtIRVPA, we first determinize it and then interchange final and non-final
locations. We state the following results about the closure properties of dtIRVPA.

Lemma 3. dtIRVPA are closed under union, intersection and complementation.

The reachability problem for a dtPDA amounts to checking whether there
exists a run starting from an initial configuration to a given configuration
in the given dtPDA. If the given configuration is a final one, then this
amounts to checking whether the language accepted by the dtPDA is empty.
Abdulla et al. [1] proved that the configuration reachability checking problem
for dtPDA is EXPTIME-complete. We now state the following theorem for the
reachability checking of dtIRVPA.
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Theorem 3. The reachability checking for dtIRVPA is PSPACE-complete.

PSPACE-hardness follows after a minor change in the initialization edges of the
constructed timed automaton to yield an IRTA in the proof of the reachability
problem of timed automata as given in [2]. An NPSPACE algorithm for emptiness
checking is given below.

We first define the notion of regions for dtIRVPA, then state the construction
of a region graph. Let A = (L,L0, Σ, Γ,C,E,Lf ) be a dtIRVPA with k as a
maximum constant used in the guards. We define the regions for A as follows:
The region is a triple (�, u, b) where � ∈ L is a location, u : C �→ N ∪ {k+} is a
function that abstracts a clock valuation, and b ∈ {0, 1} is a flag which denotes
whether the fractional parts of the values of the clocks is zero. Here k+ is a special
symbol that represents clock values greater than k. We use b = 0 to denote that
the fractional part of all clocks is zero and b = 1 to denote non-zero value of
fractional part. Recall that Lemma 5 ensures that the value of fractional parts
of all integer reset clocks is the same. For a valuation v, for each clock x ∈ C,
we have u(x) = k+ if v(x) > k, else u(x) = �v(x)�. We say that a state (�, v, σ),
where σ is the stack content, belongs to a region (�, u, b) if for each clock x ∈ C,
we have u(x) = �v(x)� when v(x) <= k, and u(x) = k+ when v(x) > k. Let R
be the set of all such regions.

The region graph G induced by A is a graph in which the vertices are regions
in R and the directed edges are labeled either by symbols in Σ or by intervals in
I. Edges are labeled by input symbols for discrete transitions between regions.
If there is an edge labeled I ∈ I from region r1 to r2, it means that for every
state (�1, v1, σ1) ∈ r1, there exists a t ∈ I such that there is a concrete run from
(�1, v1, σ1) that reaches some state (�2, v2, σ2) ∈ r2 after time t ∈ I.

Example 1. Consider a dtIRVPA A with a maximum constant k = 2 in the guards.
This yields the set of intervals I =

{
[0, 0], (0, 1), [1, 1], (1, 2), [2, 2], (2,∞)

}
. The

set of clocks of A is C = {x, y, z}. Let the stack symbols be Γ = {α, β}. Consider
a state s1 =

(
�1, v1 = 〈1.2, 2.2, 0.2〉, σ1 = 〈(α, 1.2), (β, 0.1)〉) of A. Recall that all

the clocks in an IRTA always have the same fractional part. The region r1 to which
s1 belongs is r1 = (�1, u1 = 〈1, 2+, 0〉, 1). Note that the stack contents are not
recorded in the regions. Now consider the effect of a time delay of 0.8 units on s1.
We get s2 =

(
�1, v2 = 〈2.0, 3.0, 1.0〉, σ2 = 〈(α, 2.0), (β, 0.9)〉). The state s2 belongs

to region r2 = (�1, u2 = 〈2, 2+, 1〉, 1). This gives us an edge in the region graph

r1
(0,1)−−−→ r2. In fact for every state s ∈ r1, we can always choose some t ∈ (0, 1)

such that by delaying time t we reach some state in r2.

Construction of region graph. We now use an alternative definition of timed
words that uses delay intervals instead of global timestamps. For a timed word
w = (a1, δ1) . . . (an, δn), duration of w is Σn

i=1δi. Duration of a run is the duration
of the timed word that induces the run. We define an interval reachability relation
RI between the regions such that if (r1, r2) ∈ RI then for every state s1 ∈ r1,
there exists a t ∈ I and a concrete run that reaches some state s2 ∈ r2 after time
t. A region graph is constructed using the reachability relation R =

⋃
I∈I RI .
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Definition 4. We define interval reachability relation RI recursively as follows.
We say (r, r′) ∈ RI if one of the following cases holds.

–
[
Case I

]
there are states (�, v1, σ1) ∈ r and (�, v2, σ2) ∈ r′ and a time delay

t ∈ I such that v2 = v1 + t and σ2 = σ1 + t. This case is for reachability by
delay transition.

–
[
Case I ◦ L

]
(r, r1) ∈ RI and there is a local transition from r1 to r′

–
[
Case C ◦ I ◦ R

]
all of the following hold

• there is a call transition from r to r1 that pushes a symbol α on the stack
• there exists some I-labeled edge from r1 to r2 i.e. (r1, r2) ∈ RI

• there is a return transition from r2 to r′ with stack condition pop(α) ∈ I
–

[
Case I ◦ I

]
there exist (r, r1) ∈ RJ1 and (r1, r′) ∈ RJ2 and there exist t1 ∈

J1, t2 ∈ J2 and t ∈ I such that t1 + t2 = t.

We now give an NPSPACE algorithm to check if a region r2 is reachable
from a region r1. The size of the input is O(log k) bits as the input contains the
description of a given dtIRVPA. Each abstract value of a clock requires O(log k)
bits and hence the function u needs |C| · O(log k) bits of memory. Thus a region
requires O(log k) bits which is polynomial in the size of the input. We system-
atically guess the regions at each transition along the run such that only O(1)
regions are stored in each step. Our algorithm performs the following steps until
no new relation can be inferred further. (i) It add (r1, r2) ∈ RI for delay tran-
sitions using case I. (ii) It guesses regions r1, r2 and r3 such that (r1, r2) ∈ RI1

and (r2, r3) ∈ RI2 . It then concatenates them to get reachability from r1 to r3
using case I ◦ I. (iii) It guesses regions (r1, r2) ∈ RI and guesses call and return
transitions such that r → r1 is a call transition and r2 → r′ is return transition.
It then infers that (r, r′) ∈ RI using case C ◦ I ◦ R. (iv)It guesses regions r1, r2
and r3 such that (r1, r2) ∈ RI1 and (r2, r3) is a local transition. It then infers
the reachability from r1 to r3 using case I ◦ L.

A timed word is called well-matched if there is no call position without a
matching return position and vice versa. Our reachability algorithm can as well
be extended to words that are not well-matched by treating unmatched calls and
returns as local variables.

The problem of language inclusion checking for dtIRVPA is stated as whether
L(A) ⊆ L(B) for dtIRVPA A and B and this can be done by testing if L(A) ∩
L(B) = ∅. The language inclusion checking for VPA is EXPTIME-complete [5].
As VPA is a proper subclass of dtIRVPA, we have the following lemma.

Lemma 4. For dtIRVPA A and B, checking whether L(A) ⊆ L(B) is decidable
and is EXPTIME-hard.

5 MSO Characterization for Strict dtIRVPA

We can extend Definition 1 to dtIRVPA to obtain a strict dtIRVPAin a straight-
forward way. We restate the following key lemmas regarding the properties of
IRTA that are instrumental in obtaining a strict IRTA from any given IRTA and
given a dtIRVPA, we can obtain a strict dtIRVPA analogously.
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Lemma 5. [20] Let A be an IRTA and v be a clock valuation in any given run
in A. Then for all clocks x and y of A, we have frac(v(x)) = frac(v(y)).

Lemma 6. [18] Given an IRTA A, a deterministic one clock IRTA B can be
constructed such that L(A) = L(B).

Using the lemmas stated above and following a construction similar to the
one presented in Sect. 3, we have the following lemma.

Lemma 7 (Clock reduction and strictness). For every dtIRVPA A, there
is a strict dtIRVPA B such that L(A) = L(B).

Theorem 4. Strict dtIRVPA have input determinacy property.

The above theorem allows us to have an MSO characterization for strict dtIRVPA.
Let w = (a1, t1) . . . (am, tm) be a finite timed word accepted by a strict

dtIRVPA A. Let Dw = {1, . . . , m} be the set of positions in w called the domain
of w. Owing to Theorem 4, the value of the (only) clock at each position of w
can be computed and is given by a function ζk : Dw �→ [0, k] ∪ �, where [0, k]
is the set of reals from zero to k and � is an artificially added symbol which
intuitively denotes the clock values greater than k. We let t0 = 0 to be the initial
timestamp. Formally ζk(0) = 0 and for j > 0,

ζk(j) =

⎧
⎨

⎩

tj − ti if i is the largest position with 0 ≤ i < j and having integer
ti and tj − ti ≤ k and ζk(i) �= �

� otherwise.

We now define the syntax of MSO(Σ, k) formulas over alphabet Σ and para-
meter k ∈ N using the following syntax.

ϕ ::= Qa(n) | ζk
I (n) | μI(n1, n2) | n1 < n2 | n ∈ X | ¬ϕ | (ϕ ∨ ϕ) | ∃n ϕ(n) | ∃X ϕ(X)

For every timed word w, we associate a word model w on which MSO(Σ, k)
formulas are evaluated. Predicate Qa(n) checks whether the symbol a ∈ Σ occurs
at position n in w. Predicate ζk

I (n) checks whether the value of function ζk is
in the interval I ∈ I ∪ {�} at position n. The ordering relation < and the set
membership relation ∈ over the set positions Dw have their usual meaning. We
introduce a stack matching predicate μI(n1, n2) which holds true when n1 is a
call position that pushes a stack symbol γ on the stack and n2 is a matching
return position which pops the same γ from the stack. Further, the time delay
between the positions n1 and n2 is in the interval I. This ensures that the age
of the topmost stack symbol at position n2 is in I.

Consider an MSO(Σ, k) formula ϕ(n1, . . . , np,X1, . . . , Xq) having p first order
and q second order free variables. Let V ar be the set of variables. Let I : V ar �→
Dw ∪ 2Dw

be the function which assigns values to all the free variables in ϕ. We
denote the interpretation I = (k1, k2, . . . , kp,K1,K2, . . . ,Kq) such that it assigns
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ki to the first order free variable ni and Ki to the second order free variable Xi

in ϕ respectively.
The model of the formula ϕ(n1, . . . , np,X1, . . . , Xq) is a tuple 〈w, I〉 where

w ∈ TΣ∗ is a finite timed word and I is an interpretation. This model is obtained
by extending TΣ with a bit vector of size p + q. For this purpose, we let Σp+q

c =
Σc × {0, 1}p+q, Σp+q

r = Σr × {0, 1}p+q, and Σp+q
l = Σl × {0, 1}p+q be extended

call, extended return and extended local alphabets respectively. Let Σp+q =
Σp+q

c ∪ Σp+q
r ∪ Σp+q

l . Similarly we define TΣp+q = TΣ × {0, 1}p+q. Let w =
(a1, t1), . . . , (a|w|, t|w|) ∈ TΣ∗ be a timed word. We encode I into an extended
timed word u = (α1, t1), . . . , (α|w|, t|w|) ∈ (TΣp+q)∗ whose untimed alphabet set
is extended to Σp+q. This encoding is done as follows.

– Both w and u have the same length.
– for each position i ∈ Dw, αi = (ai, b

1
i , . . . , b

p
i , c

1
i , . . . , c

q
i ) ∈ Σp+q such that

• bj
i = 1 iff I(nj) = i

• cj
i = 1 iff i ∈ I(Xj)

We define the language of ϕ as L(ϕ) = {u ∈ (TΣp+q)∗ | 〈w, I〉 |= ϕ}.
The semantics of an MSO(Σ, k) formula in this system is given as follows.

〈w, I〉 |= Qa(n) iff a occurs at the position I(n)
〈w, I〉 |= ζk

I (n) iff ζk(I(n)) ∈ I
〈w, I〉 |= μI(n1, n2) iff I(n1) is a call and I(n2) is matching return and

(tI(n2) − tI(n1)) ∈ I
〈w, I〉 |= n1 < n2 iff I(n1) < I(n2)
〈w, I〉 |= n ∈ X iff I(n) ∈ I(X)
〈w, I〉 |= ¬ϕ iff w, I �|= ϕ
〈w, I〉 |= ϕ ∨ ϕ′ iff 〈w, I〉 |= ϕ or 〈w, I〉 |= ϕ′

〈w, I〉 |= ∃nϕ(n) iff there exists an i ∈ Dw such that 〈w, I[i/n]〉 |= ϕ(n)
〈w, I〉 |= ∃X ϕ(X) iff there exists an S ⊆ Dw such that 〈w, I[S/X]〉 |= ϕ(X)

where I[i/n] denotes I(n) := i and I[S/X] denotes I(X) := S.

Theorem 5. L is a timed language over Σ accepted by a dtIRVPA with k as a
maximum constant used in its guards iff there is an MSO(Σ, k) sentence ϕ that
defines L.

Let MSO1(Σ, k) be the MSO logic obtained by removing atom μI(n1, n2)
from MSO(Σ, k). One proof of the MSO1 characterization of strict IRTA follows
from Lemma 1 and the work by D’Souza and Tabareau [13]. As strict IRTA
are a proper subclass of strict dtIRVPA, we get another proof of their MSO1

characterization based on Theorem 5 and we state it as the following corollary.

Corollary 1. L is a timed language over Σ accepted by a IRTA with k as a
maximum constant used in its guards iff there is an MSO1(Σ, k) sentence ϕ that
defines L.
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6 Conclusion

The class of dense-timed integer reset timed automata introduced in this paper
is a perfect subclass of timed context-free languages. The decidability of their
inclusion checking paves the way for the model checking programs described
as dtIRVPA against the subclass of richer timed context-free specifications. The
other novelty is that their emptiness checking is PSPACE-complete which is
same as that of timed automata. This is significant as timed automata cannot
describe context free specifications.

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
LICS, pp. 35–44 (2012)

2. Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of
model checking for timed modal logics. J. Log. Algebr. Program. 52–53, 7–51
(2002)

3. Akshay, S., Gastin, P., Krishna, S.N.: Analyzing timed systems using tree
automata. In: CONCUR, pp. 27:1–27:14 (2016)

4. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235
(1994)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211
(2004)

6. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02930-1 4

7. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical charac-
terization for dense-time visibly pushdown automata. In: Dediu, A.-H., Janoušek,
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Abstract. Higher-Order Fixpoint Logic (HFL) is a modal specification
language whose expressive power reaches far beyond that of Monadic
Second-Order Logic, achieved through an incorporation of a typed λ-
calculus into the modal μ-calculus. Its model checking problem on finite
transition systems is decidable, albeit of high complexity, namely k-
EXPTIME-complete for formulas that use functions of type order at
most k > 0. In this paper we present a fragment with a presumably
easier model checking problem. We show that so-called tail-recursive for-
mulas of type order k can be model checked in (k − 1)-EXPSPACE,
and also give matching lower bounds. This yields generic results for the
complexity of bisimulation-invariant non-regular properties, as these can
typically be defined in HFL.

1 Introduction

Higher-Order Modal Fixpoint Logic (HFL) [18] is an extension of the modal
μ-calculus [9] by a simply typed λ-calculus. Formulas do not only denote sets
of states in labelled transition systems but also functions from such sets to sets,
functions from sets to functions on sets, etc. The syntax becomes a bit more
complicated because the presence of fixpoint quantifiers requires formulas to be
strongly typed in order to guarantee monotonicity of the function transformers
(rather than just set transformers) whose fixpoints are quantified over.

HFL is an interesting specification language for reactive systems: the abil-
ity to construct functions at arbitrary type levels gives it an enormous expres-
sive power compared to the μ-calculus, the standard yardstick for the expressive
power of bisimulation-invariant specification languages [7]. HFL has the power to
express non-MSO-definable properties [11,13,18] like certain assume-guarantee
properties; all context-free and even some context-sensitive reachability proper-
ties; structural properties like being a balanced tree, being bisimilar to a word,
etc. As a bisimulation-invariant fixpoint logic, HFL is essentially an extremely
powerful logic for specifying complex reachability properties.
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There is a natural hierarchy of fragments HFLk formed by the maximal
function order k of types used in a formula where HFL0 equals the modal μ-
calculus. The aforementioned examples are all expressible in fragments of low
order, namely in HFL1 or in exceptional cases only HFL2.

Type order is a major factor for model-theoretic and computational proper-
ties of HFL. It is known that HFLk+1 is strictly more expressive than HFLk.
The case of k = 0 is reasonably simple since the expressive power of the modal
μ-calculus, i.e. HFL0 is quite well understood, including examples of properties
that are known not to be expressible in it. The aforementioned tree property of
being balanced is such an example [4]. For k > 0 this follows from considerations
in computational complexity: model checking HFLk is k-EXPTIME-complete [3]
and this already holds for the data complexity. I.e. each HFLk, k ≥ 1, contains
formulas which express some decision problem that is hard for deterministic k-
fold exponential time. Expressive strictness of the type order hierarchy is then
a direct consequence of the time hierarchy theorem [6] which particularly shows
that k-EXPTIME � (k + 1)-EXPTIME.

Here we study the complexity of HFL model checking w.r.t. space usage.
We identify a syntactical criterion on formulas – tail-recursion – which causes
space-efficiency in a relative sense. It has been developed for PHFL, a polyadic
extension of HFL, in the context of descriptive complexity. Extending Otto’s
result showing that a polyadic version of the modal μ-calculus [1] captures the
bisimulation-invariant fragment of polynomial time [14], PHFL0 ≡ P/∼ in short,
it was shown that PHFL1 ≡ EXPTIME/∼ [12], i.e. polyadic HFL formulas of
function order at most 1 express exactly the bisimulation-invariant graph prop-
erties that can be evaluated in deterministic exponential time. Tail-recursion
restricts the allowed combinations of fixpoint types (least or greatest), modality
types (existential or universal), Boolean operators (disjunctions and conjunc-
tions) and nestings of function applications. Its name is derived from the fact
that a standard top-down evaluation algorithm working on states of a transition
system and formulas can be implemented tail-recursively and, hence, intuitively
in a rather space-efficient way. In the context of descriptive complexity, it was
shown that the tail-recursive fragment of PHFL1 captures polynomial space
modulo bisimilarity, PHFL1

tail ≡ PSPACE/∼ [12].
These results can be seen as an indication that tail-recursion is indeed a

synonym for space-efficiency. In this paper we show that this is not restricted
to order 1. We prove that the model checking problem for the tail-recursive
fragment of HFLk+1 is k-EXPSPACE-complete. This already holds for the data
complexity which yields a strict hierarchy of expressive power within HFLtail, as
a consequence of the space hierarchy theorem [16].

In Sect. 2 we recall HFL and apply the concept of tail-recursion, originally
developed for a polyadic extension, to this monadic logic. In Sect. 3 we present
upper bounds; matching lower bounds are presented in Sect. 4.
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2 Higher-Order Fixpoint Logic

Labeled Transition Systems. Fix a set P = {p, q, . . . } of atomic propositions
and a set A = {a, b, . . . } of actions. A labeled transition system (LTS) is a tuple
T = (S, { a−→}a∈A, �), where S is a set of states, a−→ is a binary relation for
each a ∈ A and � : S → P(P) is a function assigning, to each state, the set of
propositions that are satisfied in it. We write s

a−→ t to denote that (s, t) ∈ a−→.

Types. The semantics of HFL is defined via complete function lattices over a
transition system. In order to guarantee monotonicity (and other well-formedness
conditions), formulas representing functions need to be strongly typed according
to a simple type system. It defines types inductively from a ground type via
function forming: the set of HFL-types is given by the grammar

τ ::= • | τv → τ

where v ∈ {+,−, 0} is called a variance. It indicates whether a function uses its
argument in a monotone, antitone or arbitrary way.

The order ord(τ) of a type τ is defined inductively as ord(•) = 0, and ord(σ →
τ) = max(1 + ord(σ), ord(τ)).

The function type constructor → is right-associative. Thus, every type is of
the form τv1

1 → . . . τvm
m → •.

Formulas. Let P and A be as above. Additionally, let Vλ = {x, y, . . . } and
Vfp = {X,Y, . . . } be two sets of variables. We only distinguish them in order to
increase readability of formulas, referring to Vλ as λ -variables and Vfp as fixpoint
variables. The set of (possibly non-well-formed) HFL formulas is then given by
the grammar

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | [a]ϕ | x | λ(xv : τ). ϕ | ϕϕ

| X | μ(X : τ). ϕ | ν(X : τ). ϕ

where p ∈ P, a ∈ A, x ∈ Vλ,X ∈ Vfp, τ is an HFL-type and v is a variance.
Derived connectives such as ⇒,⇔,
,⊥ can be added in the usual way, but we
consider ∧, [a] and ν to be built-in operators instead of derived connectives. The
set of subformulas sub(ϕ) of a formula ϕ is defined in the usual way. Note that
fixpoint variables need no decoration by a variance since they can only occur in
a monotonic fashion.

The intuition for the operators not present in the modal μ-calculus is as
follows: λ(x : τ). ϕ defines a function that consumes an argument x of type τ and
returns what ϕ evaluates to, x returns the value of λ-variable x, and ϕ ψ applies
ψ as an argument to the function ϕ. If a formula consists of several consecutive
λ abstractions, we compress the argument display in favor of readability. For
example, λ(x : τ). λ(y : σ). ψ becomes λ(x : τ, y : σ). ψ or even λ(x, y : τ). ψ if
τ = σ.
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Γ � p : •
Γ � ϕ : •

Γ � 〈a〉ϕ : •
Γ � ϕ : •

Γ � [a]ϕ : •
Γ � ϕ : •

Γ � ¬ϕ : •
Γ � ϕ : • Γ � ψ : •

Γ � ϕ ∨ ψ : •
Γ � ϕ : • Γ � ψ : •

Γ � ϕ ∧ ψ : •
v ∈ {+, 0}

Γ , xv : τ � x : τ

Γ , X+ : τ � X : τ

Γ, xv : σ � ϕ : τ

Γ � λ(xv : σ). ϕ : σv → τ

Γ, X+ : τ � ϕ : τ

Γ � μ(X : τ). ϕ : τ

Γ, X+ : τ � ϕ : τ

Γ � ν(X : τ). ϕ : τ

Γ � ϕ : σ+ → τ Γ � ψ : σ

Γ � ϕ ψ : τ

Γ � ϕ : σ− → τ Γ � ψ : σ

Γ � ϕ ψ : τ

Γ � ϕ : σ0 → τ Γ � ψ : σ Γ � ψ : σ

Γ � ϕ ψ : τ

Fig. 1. The HFL typing system

A sequence of the form Xv1
1 : τ1, . . . , X

vn
n : τn, x

v′
1

1 : τ ′
1, . . . , x

v′
j

j : τ ′
j where the

Xi are fixpoint variables, the xj are λ-variables, the τi, τ
′
j are types and the vi, v

′
j

are variances, is called a context. We assume that each fixpoint variable and each
λ-variable occurs only once per context. The context Γ is obtained from Γ by
replacing all typing hypotheses of the form X+ : τ by X− : τ and vice versa, and
doing the same for λ-variables. An HFL-formula ϕ has type τ in context Γ if
Γ � ϕ : τ can be derived via the typing rules in Fig. 1. A formula ϕ is well-formed
if Γ � ϕ : τ can be derived for some Γ and τ . Note that, while fixpoint variables
may only be used in a monotonic fashion, contexts with fixpoint variables of
negative variance are still necessary to type formulas of the form μ(X : •). ¬¬X.
In some examples, we may sometimes omit type and/or variance anotations.

Moreover, we also assume that in a well-formed formula ϕ, each fixpoint
variable X ∈ Vfp is bound at most once, i.e., there is at most one subformula of
the form μ(X : τ). ψ or ν(X : τ). ψ. Then there is a function fp : Vfp → sub(ϕ)
such that fp(X) is the unique subformula σ(X : τ). ϕ′ with σ ∈ {μ, ν}. Note that
it is possible to order the fixpoints in such a formula as X1, . . . , Xn such that
fp(Xi) /∈ sub(fp(Xj)) for j > i.

The order of a formula ϕ is the maximal type order k of any type used in a
proof of ∅ � ϕ : •. With HFLk we denote the set of all well-formed HFL formulas
of ground type whose order is at most k. In particular, HFL0 is the modal μ-
calculus Lμ. The notion of order of a formula can straightforwardly be applied
to formulas which are not of ground type •. We will therefore also speak of the
order of some arbitrary subformula of an HFL formula.

Semantics. Given an LTS T , each HFL type τ induces a complete lattice �τ�T

starting with the usual powerset lattice of its state space, and then lifting this to
lattices of functions of higher order. When the underlying LTS is clear from the
context we only write �τ� rather than �τ�T . We also identify a lattice with its
underlying set and write f ∈ �τ� for instance. These lattices are then inductively
defined as follows:
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– �•�T is the lattice P(S) ordered by the inclusion relation ⊆,
– �σv → τ�T is the lattice whose domain is the set of all (if v = 0), resp.

monotone (if v = +), resp. antitone (if v = −) functions of type �σ�T → �τ�T

ordered pointwise, i.e. f �σv→τ g iff f(x) �τ g(x) for all x ∈ �σ�T .

Given a context Γ , an environment η that respects Γ is a partial map from
Vλ ∪Vfp such that η(x) ∈ �τ� if Γ � x : τ and η(X) ∈ �τ ′� if Γ � x : τ ′. From now
on, all environments respect the context in question. The update η[X �→ f ] is
defined in the usual way as η[X �→ f ](x) = η(x), η[X �→ f ](Y ) = η(Y ) if Y �= X
and η(Y ) = f if X = Y . Updates for λ-variables are defined analogously.

Fig. 2. Semantics of HFL

The semantics of an HFL formula is defined inductively as per Fig. 2. We write
T , s |=η ϕ : τ if s ∈ �Γ � ϕ : τ�η for suitable Γ and abbreviate the special case
with a closed formula of ground type writing T , s |= ϕ instead of T , s |=∅ ϕ : •.

The Tail-Recursive Fragment. In general, a tail-recursive function is one
that is never called recursively in an intermediate step of the evaluation of its
body, either for evaluating a condition on branching, or for evaluating an argu-
ment of a function call. Tail-recursive functions are known to be more space-
efficient in general as they do not require a call stack for their evaluation.

The notion of tail-recursion has been transposed to the framework of higher-
order fixpoint logics, originally for a polyadic extension of HFL [12]. The adap-
tation to HFL is straight-forward, presented in the following. Intuitively, tail-
recursion restricts the syntax of the formulas such that fixpoint variables do not
occur freely under the operators ∧ and [a], nor in an operand position.
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Definition 1. An HFL formula ϕ is tail-recursive if the statement tail(ϕ, ∅) can
be derived via the rules in Fig. 3. HFLk

tail consists of all tail-recursive formulas
in HFLk.

tail(p, X̄) tail(x, X̄)

X ∈ X̄

tail(X, X̄)

tail(ϕ, ∅)

tail(¬ϕ, X̄)

tail(ϕ, X̄) tail(ψ, X̄)

tail(ϕ ∨ ψ, X̄)

tail(ϕ, ∅) tail(ψ, X̄)

tail(ϕ ∧ ψ, X̄)

tail(ϕ, X̄)

tail(〈a〉ϕ, X̄)

tail(ϕ, ∅)

tail([a]ϕ, X̄)

tail(ϕ, X̄) tail(ψ, ∅)

tail(ϕ ψ, X̄)

tail(ϕ, X̄)

tail(λ(x : τv).ϕ, X̄)

tail(ϕ, X̄ ∪ {Z})

tail(μ(Z : τ).ϕ, X̄)

tail(ϕ, X̄ ∪ {Z})

tail(ν(Z : τ).ϕ, X̄)

Fig. 3. Derivation rules for establishing tail-recursiveness. The set X̄ denotes the set
of allowed free fixpoint variables of the formula in question.

Note that these rules do not treat conjunctions symmetrically. For instance,
μX.p ∨ (q ∧ 〈−〉X) – the straight-forward translation of the CTL reachability
property E(q U p) – is tail-recursive, but μX.p ∨ (〈−〉X ∧ q) is not tail-recursive
because the rule for ∧ in Fig. 3 only allows recursive calls to fixpoint variables
via the right conjunct of a conjunction. Of course, adding one more rule to
Fig. 3, one could make HFLtail closed under commutations of ∧ operands, the
only important point is that all of the free recursive variables occur on at most
one side of each ∧.

Example 2. The HFL1 formula
(
νF.λx.λy.(x ⇒ y) ∧ (F 〈a〉x 〈b〉y)

)

 〈b〉


has been introduced for expressing a form of assume-guarantee property [18].
This formula is tail-recursive, as one can easily check.

The property of being a balanced tree can also be formalised by a tail-
recursive HFL1 formula:

(
μF.λx.[−]⊥ ∨ (F [−]x)

)
⊥.

In the next section, we will see that these properties and any other express-
ible in HFL1

tail can be checked in polynomial space, thus improving a known
exponential time upper bound [2,3].

Example 3. Consider reachability properties of the form “there is a maximal
path labelled with a word from L” where L ⊆ Σ∗ is some formal language.
For context-free languages the logic formalising such properties is Proposi-
tional Dynamic Logic of Context-Free Programs [5]. It can be model checked
in polynomial time [10]. However, formal-language constrained reachability is
not restricted to context-free languages only. Consider the reachability problem
above for L = {anbncn | n ≥ 1}. It can be formalised by the HFL2 formula

(
μF.λf.λg.λh.λx.f(g(h(x))) ∨ (F (λx.f 〈a〉x) (λx.g 〈b〉x) (λx.h 〈c〉x)

)

id id id [−]⊥
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with type x : •; f, g, h : τ1 := •+ → • and F : τ+
1 → τ+

1 → τ+
1 → •+ → •. Again,

one can check that it is tail-recursive. Since it is of order 2, Theorem5 yields
that the corresponding reachability problem can be checked using exponential
space.

3 Upper Bounds in the Exponential Space Hierarchy

Consider an HFL fixpoint formula of the form ψ = σ(X : τ).ϕ and its finite
approximants defined via

X0 :=

{
⊥ , if σ = μ,


 , otherwise
and Xi+1 := ϕ[Xi/X] .

where ϕ[Xi/X] denotes the simultaneous replacement of every free occurrence
of X by Xi in ϕ.

It is known that over a finite LTS T = (S, { a−→}, �), ψ is equivalent to
Xm, where m is the height ht(τ) of the lattice of τ . Generally, ht(τ) is k-fold
exponential in the size of |S| for k = ord(τ) [3]. Note that a k-fold exponentially
large number can be represented by (k − 1)-fold exponentially many bits.

For an HFLk
tail formula ϕ, we define its recursion depth rd(ϕ):

rd(p) = rd(X) := 0
rd(ϕ1 ∨ ϕ2) := max(rd(ϕ1), rd(ϕ2))
rd(ϕ1 ∧ ϕ2) := max(rd(ϕ2), 1 + rd(ϕ1))
rd(ϕ1 ϕ2) := max(rd(ϕ1, 1 + rd(ϕ2))

rd(〈a〉ϕ) = rd(λX.ϕ) = rd(μX.ϕ) = rd(νX.ϕ) := rd(ϕ)
rd(¬ϕ) = rd([a]ϕ) := 1 + rd(ϕ)

The recursion depth of a formula measures the number of times that a top-
down nondeterministic local model-checking procedure has to maintain calling
contexts. For example, when verifying whether a state is a model of a disjunction,
it is sufficient to nondeterministically guess a disjunct and continue with it; the
other disjunct is irrelevant. For a conjunction, the procedure also descends into
one of the conjuncts first, but has to remember, e.g., the environment at the
conjunction itself in case the procedure has to backtrack. Note that the recursion
depth of a formula is linear in its size.

We combine the bounded number of calling contexts and the above unfolding
property into a model-checking algorithm that avoids the enumeration of full
function tables for fixpoint definitions of the highest order by only evaluating it
at arguments actually occurring in the formula. Unfolding a fixpoint expression
is results in the evaluation of the same fixpoint at different arguments, and the
unfolding property allows to give an upper bound on the number of unfoldings
needed. Tail-recursiveness ensures that this procedure proceeds in a mostly linear
fashion, since the number of calling contexts that need to maintained at any given
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moment during the evaluation is bounded by the recursion depth of the formula
in question.

For the remainder we fix a formula ψ ∈ HFLk
tail and an LTS T = (S, { a−→}, �).

We present two mutually recursive functions check and buildFT. The function
check(s, ϕ, (f1, . . . , fn), η, cnt) consumes a state s ∈ S, a subformula ϕ of ψ,
a list of function tables, an environment η and a partial function cnt from Vfp

to N and checks whether s |=η (· · · (ϕfn) · · · f1) if all free fixpoint variables X
of ϕ are replaced by Xcnt(X) in a suitable order. The function buildFT(ϕ, η)
consumes a subformula ϕ of ψ and an environment η and builds the complete
function table of ϕ with respect to η, i.e., computes �ϕ�η.

The definition of check(s, ϕ, (f1, . . . , fn), η, cnt) depends on the form of ϕ:

– If ϕ is an atomic formula, return true if s |= ϕ and false otherwise.
– If ϕ = ϕ1 ∨ ϕ2, guess i ∈ {1, 2} and return check(s, ϕi, (f1, . . . , fn), η, cnt).
– If ϕ = ϕ1∧ϕ2, note that rd(ϕ1) < rd(ϕ) and that ϕ1 has no free fixpoint vari-

ables. Return false if check(s, ϕ1, (f1, . . . , fn), η, ∅) returns false. Otherwise,
return check(s, ϕ2, (f1, . . . , fn), η, cnt).

– If ϕ = 〈a〉ϕ′, guess t with s
a−→ t and return check(t, ϕ′, (f1, . . . , fn), η, cnt).

– If ϕ = [a]ϕ′, note that rd(ϕ′) < rd(ϕ) and that ϕ′ has no free fixpoint vari-
ables. Iterate over all t with s a−→ t. If check(t, ϕ′, (f1, . . . , fn), η, ∅) returns
false for at least one such t, return false. Otherwise, return true.

– If ϕ = ¬ϕ′, note that rd(ϕ′) < rd(ϕ) and that ϕ′ has no free fixpoint variables.
If check(s, ϕ′, (f1, . . . , fn), η, ∅) returns true, return false and vice versa.

– If ϕ = ϕ′ ϕ′′, note that rd(ϕ′′) < rd(ϕ) and that ϕ′′ has no free fixpoint vari-
ables. Compute fn+1 = buildFT(ϕ′′, η) and return check(s, ϕ′, (f1, . . . , fn,
fn+1), η, cnt).

– If ϕ = x, return true if s ∈ (· · · (η(x) fn) · · · f1), return false otherwise.
– If ϕ = λx.ϕ′, return check(s, ϕ′, (f1, . . . , fn−1), η[x �→ fn], cnt).
– If ϕ = μ(X : τ).ϕ′, return check(s, ϕ′, (f1, . . . , fn), η, cnt[X �→ ht(τ)]).
– If ϕ = ν(X : τ).ϕ′, return check(s, ϕ′, (f1, . . . , fn), η, cnt[X �→ ht(τ)]).
– If ϕ = X, return false if cnt(X) = 0 and X is a least fixpoint variable, return

true if cnt(X) = 0 and X is a greatest fixpoint variable, otherwise, return
check(s, fp(X), (f1, . . . , fn), η, cnt′), where cnt′(Y ) = cnt(Y ) if Y �= X and
cnt′(X) = cnt(X) − 1.

The definition of buildFT(ϕ, η) is rather simple: If ϕ : τn → · · · → τ1 → •,
iterate over all s ∈ S and all (fn, . . . , f1) ∈ �τn� × · · · × �τ1� and call
check(s, ϕ, (f1, . . . , fn), η, ∅) for each combination. This will yield the function
table �ϕ�η via �ϕ�η = {f ∈ �τn → · · · → τ1 → •� | (· · · (f fn) · · · f1) = {s ∈ S |
check(s, ϕ, (f1, . . . , fn), η, ∅) = true}}.

Theorem 4. Let ψ ∈ HFLtail. Then check(s, ψ, ε, ∅, ∅) returns true iff T , s |= ψ.

Proof (Sketch). Fix an order of the fixpoint variables of ψ as X1, . . . , Xm such
that fp(Xi) /∈ sub(fp(Xj)) if j > i. Note that this also orders the possible values
of cnt by ordering them lexicographically and assuming that undefined values
are larger than ht(τ) for any τ appearing in ψ.
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Consider a subformula ϕ of ψ. Given a partial map cnt made total as in the
previous paragraph, we write ϕcnt to denote ϕ[Xcnt(X1)

1 /X1, . . . , X
cnt(Xn)
n /Xn],

i.e., the result of simultaneously replacing free fixpoint variables of ϕ by their
approximants as per cnt such that none of them occur free anymore.

In fact, check(s, ϕ, (f1, . . . , fn), η, cnt) returns true iff s ∈ �ϕcnt�η fn · · · f1
assuming that buildFT(ϕ, η) computes �ϕ�η. It is easy to see that the statement
in the theorem follows from this. The proof itself is a routine induction over
the syntax of ψ to show that the above invariant is maintained. In each step,
the procedure either passes to a proper subformula and maintains the value of
cnt and recursion depth, or, in case of fixpoint unfoldings, properly decreases
cnt but keeps recursion depth, or, in case of calls that are not tail-recursive,
passes to a formula with properly reduced recursion depth. Moreover, in the
case of function application, the call to buildFT will result in calls to check
with properly reduced recursion depth, and buildFT just computes a tabular
representation of the HFL semantics. Hence, the procedure eventually halts and
works correctly. ��

Theorem 5. The model checking problem for HFLk+1
tail is in k-EXPSPACE.

Proof. By Savitch’s Theorem [15] and Theorem 4, it suffices to show that the
nondeterministic procedure check can be implemented to use at most k-fold
exponential space for formulas in HFLk+1

tail .
The information required to evaluate check(s, ϕ, (f1, . . . , fn), η, cnt) takes k-

fold exponential space: references to a state and a subformula take linear space,
each of the function tables f1, . . . , fn appears in operand position and, hence,
is a function of order at most k, which takes k-fold exponential space. An envi-
ronment is just a partial map from Vλ to more function tables, also of order at
most k. Finally, cnt stores |Vfp| many numbers whose values are bounded by an
(k + 1)-fold exponential. Hence, they can be represented as k-fold exponentially
long bit strings.

During evaluation, check operates in a tail-recursive fashion for most oper-
ators, which means that no stack has to be maintained and the space needed
is restricted to what is described in the previous paragraph. A calling context
(which is just an instance of check as described above, with an added loga-
rithmically sized counter in case of [a]ϕ) has to be preserved only at the steps
where the recursion depth decreases. In the case of negation, it is not necessary
to maintain the complete calling context. Instead, the nondeterministic proce-
dure for the negated subformula is called and the return value is inverted. By
Savitch’s Theorem, the procedure can actually be implemented to run deter-
ministically with the same space requirements, and, hence, is safe to call in a
nondeterministic procedure.

Since the recursion depth of an HFLk
tail-formula is linear in the size of the

formula, only linearly many such calling contexts have to be stored at any given
point during the evaluation, which does not exceed nondeterministic k-fold expo-
nential space. Moreover, Savitch’s Theorem has to be applied only linearly often
on any computation path. ��
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Note that occurrences of negation do not lead to proper backtracking to a
calling context, but rather mark an invocation of Savitch’s Theorem. Hence, the
definition of recursion depth could be changed to not increase at negation. We
chose to include applications of Savitch’s Theorem into the definition of recursion
depth for reasons of clarity.

4 Matching Lower Bounds

A typical k-EXPSPACE-complete problem (for k ≥ 0) is the order-k corridor
tiling problem [17]: A tiling system is of the form K = (T,H, V, tI , t�, tF ) where
T is a finite set of tile types, H,V ⊆ T × T are the so-called horizontal and
vertical matching relations, and tI , t�, tF ∈ T are three designated tiles called
initial, blank and final.

Let 2n
0 = n and 2n

k+1 = 22
n
k . The order-k corridor tiling problem is the

following: given a tiling system K as above and a natural number n encoded
unarily, decide whether or not there is some m and a sequence ρ0, . . . , ρm−1 of
words over the alphabet T , with |ρi| = 2n

k for all i ∈ {0, . . . , m − 1}, and such
that the following four conditions hold. We write ρ(j) for the j-th letter of the
word ρ, beginning with j = 0.

– ρ0 = tIt� . . . t�
– For each i = 0, . . . ,m−1 and j = 0, . . . , 2n

k −2 we have (ρi(j), ρi(j +1)) ∈ H.
– For each i = 0, . . . , m − 2 and j = 0, . . . , 2n

k − 1 we have (ρi(j), ρi+1(j)) ∈ V .
– ρm−1(0) = tF

Such a sequence of words is also called a solution to the order-k corridor tiling
problem on input K and n. The i-th word in this sequence is also called the i-th
row.

Proposition 6 ([17]). For each k ≥ 0, the order-k corridor tiling problem is
k-EXPSPACE-hard.

In the following we construct a polynomial reduction from the order-k cor-
ridor tiling problem to the model checking problem for HFLk+1

tail . Fix a tiling
system K = (T,H, V, tI , tF ) and an n ≥ 1. W.l.o.g. we assume |T | ≤ n, and we
fix an enumeration T = {t0, . . . , t|T |−1} of the tiles such that t0 = tI , t|T |−2 = t�,
and t|T |−1 = tF .

We define the transition system TK,n = (S, { a−→}a∈A, �) as follows:

– S = {0, . . . , n − 1},
– A = {h, v, e, u, d} with h−→ = {(i, j) | (ti, tj) ∈ H} (for “horizontal”), v−→ =

{(i, j) | (ti, tj) ∈ V } (for “vertical”), e−→ = {0, . . . , n − 1} × {0, . . . , n − 1}
(for “everywhere”), u−→ = {(i, j) | 0 ≤ i < j ≤ n − 1} (for “up”) and
d−→ = {(i, j) | 0 ≤ j < i ≤ n − 1} (for “down”).

– �(0) = {pI}, �(|T | − 2) = {p�}, and �(|T | − 1) = pF
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The states of this transition system appear in two roles. On one hand, they
encode the different tiles of the tiling problem K, with the generic tiles tI , t�, tF
identified by propositional labeling, while the rest remain anonymous. The hori-
zontal and vertical matching relations are encoded by the accessibility relations
h and v, respectively. On the other hand, the states double as the digits of the
representation of large numbers. The relation u connects a digit to all digits of
higher significance, d connects to all digits of lower significance, and e is the
global accessibility relation.

Next we construct, for all k ≥ 1, an HFLk+1
tail formula ϕk such that TK,n |=

ϕk holds iff (K, n) admits a solution to the order-k corridor tiling problem.
We encode the rows of a tiling as functions of order k. Column numbers in
{0, . . . , 2n

k − 1} are encoded as functions of order k − 1, following an approach
similar to Jones [8].

Let τ0 = • and τk+1 = τk → • for all k ≥ 0. For all k ≥ 0 and i ∈
{0, . . . , 2n

k+1 − 1}, let jonesk(i) be the function in the space �τk�TK,n defined as
follows:

– jones0(i) is the set of bits equal to 1 in the binary representation of i, i.e.
jones0(i) = S ⊆ {0, . . . , n − 1} where S is such that i =

∑
j∈S 2j

– jonesk+1(i) maps jonesk(j) (for all j ∈ {0, . . . , 2n
k+1 − 1}) to {0, . . . , n − 1} if

the j-th bit of i is 1, otherwise jonesk+1(i) maps jonesk(j) to ∅.

Consider the following formulas.

ite = λ(b : •), (x : •), (y : •). (b ∧ x) ∨ (¬b ∧ y)
zero0 = ⊥
zerok+1 = λ(m : τk). ⊥
gt0 = λ(m1,m2 : τ0). 〈e〉

(
m2 ∧ ¬m1 ∧ [u](m1 ⇒ m2)

)

gtk+1 = λ(m1,m2 : τk+1). existsk
(
λ(i : τk). (m2 i) ∧ ¬(m1 i)∧

forallk
(
λ(j : τk). (gtk i j) ⇒ (m1 j) ⇒ (m2 j)

))

next0 = λ(m : •). ite m (〈d〉¬m) ([d]m)
nextk+1 = λ(m : τk+1, i : τk). ite (m i)(

existsk
(
λ(j1 : τk). (gtk i j1) ∧ ¬(m j1)

))

(
forallk

(
λ(j2 : τk). (gtk i j2) ⇒ (m j2)

))

existsk = λ(p : τk+1).
((

μ(F : τk → •) . λ(m : τk) . ([e](p m))∨
F (nextk m)

)
zerok

)

forallk = λ(p : τk+1). ¬existsk (¬p)

Let 
S = �
�TK,n = {0, . . . , n−1} and ⊥S = �⊥�TK,n = ∅. The functions above
encode the if-then-else-operator, respectively arithmetic functions on Jones
encodings of large natural numbers. The function gtk allows to compare two inte-
gers : for all m1,m2 ∈ {0, . . . , 2n

k+1 − 1}, m1 < m2 iff gtk jonesm1
(k) jonesm2

(k)
evaluates to 
S . Level 0 Jones encodings of numbers m1 and m2 are in relation
gt0 if, there is a bit that is set in jones0(m2) but not in jones0(m1), and all more
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significant bits that are set in jones0(m1) are also set in jones0(m2). The function
gtk+1 operates on the same principle, except that bit positions are now level k
Jones encodings of numbers, and the bit at position j is set in jonesk+1(mi)
iff (mi j) returns 
S . Moreover, quantification over all bit positions uses the
functions forallk and existsk instead of the relation e.

The function nextk returns the level k Jones encoding of the number encoded
by its input, incremented by one: If a bit is set in the encoding of the input, it
stays set if and only if there is a bit of lesser significance that is not set. If it was
not set in the input, it is set if and only if all lower bits were set in the input. For
example, if m is the set {0, 1, 3} that encodes the number 11, then next0 returns
the set {2, 3} which encodes 12. Encoding of bits and quantification over them
works as in the case of gtk.

Finally, the function existsk checks for the existence of (the level k Jones
encoding of) a number such that parameter p returns 
S with this number as
an argument. This is achieved by iterating over all level k Jones encodings of
numbers between 0 and 2n

k+1 − 1. Consequently, existsk expects an argument p
of type τk+1, i.e., a function consuming an argument of type τk.

Lemma 7. The following hold:
1. Assume η(b) ∈ {
S ,⊥S}. If η(b) = 
S , then �ite b x y�η is η(x), else it is

η(y).
2. �zerok� = jonesk(0) for all k ≥ 0.
3. If �nextk m�η = jonesk(i) and η(m) = jonesk(j), then i = j + 1 modulo 2m

k+1.
4. �existsk p�η = 
S if there exists X ∈ �τk�TK,n such that �p x�η[x�→X ] = 
S ,

otherwise �existsk p�η = ⊥S

We are now ready to define the encoding of rows of width 2n
k as functions in

the space �τk�TK,n . Let ρ = ρ0 . . . ρ2nk ∈ T ∗ be a row of width 2n
k for some k ≥ 1.

The coding rowk(ρ) of ρ is the function that maps jonesk−1(i) to {j} where j is
the number of i-th tile of the row, i.e. ρi = tj . For example, the initial row of
a tiling problem has the form tI t� · · · t�, i.e., the initial tile followed by 2n

k − 1
instances of t�. The function encoding it would return the set {0} of tiles labeled
by tI at argument jonesk−1(0) and return the set {|T | − 2} of tiles labeled by t�
at arguments jonesk−1(1), . . . , jonesk−1(2n

k − 1).
Consider then the following formulas.

isTile = λ(x : •), . [e]
(
x ⇒

(
([u]¬x) ∧ ([d]¬x) ∧ (pF ∨ 〈u〉pF ))

))

isRowk = λ(r : τk). forallk−1

(
λ(m : τk−1). isTile (r m)

)

isZero0 = λ(m : τ0). [e]¬m
isZerok+1 = λ(m : τk+1). forallk

(
λ(o : τk). isZero0(m o)

)

initk = λ(m : τk−1). ite (isZerok m) pI p�
isFinalk = λ(r : τk). [e]

(
(r zerok−1) ⇒ pF

)

horizk = λ(r : τk). forallk−1

(
λ(m : τk−1).

[e]
(
(r m) ⇒

(
(isZerok−1 (nextk−1 m)) ∨ 〈h〉(r (nextk−1 m))

)))

vertk = λ(r1, r2 : τk). forallk−1

(
λ(m : τk−1). [e]

(
(r1 m) ⇒ 〈v〉(r2 m)

))
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The function isTile checks whether its argument uniquely identifies a tile by
verifying that it is a singleton set, and that it is not a state of index greater
than |T | − 1. The function isRow checks whether its argument r is a proper
encoding of a row by verifying that r m returns the encoding of a tile for each
m ∈ {jonesk−1(0), . . . , jonesk−1(2n

k −1)}. The function initk returns the initial row
encoded as described in the previous paragraph, while isFinalk verifies that its
argument is a final row, i.e., a row where the tile in position 0 is tF . Moreover, the
function horizk verifies that the row r satisfies the horizontal matching condition.
This is achieved by checking that, for each m ∈ {jonesk−1(0), . . . , jonesk−1(2n

k −
1)}, either m is jonesk−1(2n

k ) (whence the value isZerok−1(nextk−1 m) is 
S) or
that there is a h-transition from the singleton set (r m) into the singleton set
r (nextk−1 m). Finally, vertk verifies that two rows satisfy the vertical matching
condition in a similar way.

Lemma 8. The following hold:

1. �isTile x�η evaluates to 
S if η(x) = {i} for some i ∈ {0, . . . , |T | − 1}, other-
wise it evaluates to ⊥S .

2. �isRowk x�η evaluates to 
S iff η(x) = rowk(ρ) for some row ρ of width 2n
k ,

otherwise it evaluates to ⊥S .
3. �initk� evaluates to rowk(tI · t� · · · t�).
4. Assume η(r) = rowk(ρ) and η(r′) = rowk(ρ′) for some rows ρ = ρ0 . . . ρ2nk

and ρ′ = ρ′
0 . . . ρ′

2nk
. Then

(a) �isFinalk r�η evaluates to 
S if ρ0 = tF , otherwise it evaluates to ⊥S .
(b) �horizk r�η evaluates to 
S if (ρi, ρi+1) ∈ H for all i ∈ {0, . . . , 2n

k − 1},
otherwise it evaluates to ⊥S .

(c) �vertk r r′�η evaluates to 
S if (ρi, ρ
′
i) ∈ V for all i ∈ {0, . . . , 2n

k − 1},
otherwise it evaluates to ⊥S .

We now have introduced all the pieces we need for defining ϕk. Intuitively, ϕk

should check for the existence of a solution to the order-k corridor tiling problem
by performing an iteration that starts with a representation of the initial row in
a solution and then guesses the next rows, each time checking that they match
the previous one vertically. The iteration stops when a row is found that begins
with the final tile. Let

ϕk =
(
μ(P : τk+1). λ(r1 : τk).(isFinalk r1) ∨ (exists succk r1 P )

)
initk

where

exists succk = λ(r1 : τk, p : τk+1). existsk
(
λ(r2 : τk). (horizk r2) ∧ (vertk r1 r2) ∧ (p r2).

Here, exists succ consumes a row r1 of type τk, and a function p of type τk+1. It
guesses a row r2 using existsk, verifies that it matches r1 vertically from above,
and then applies p to r2. Of course, p in this setting is the fixpoint P which
generates new rows using exists succ until one of them is a final row, or ad
infinitum, if the tiling problem is unsolvable.
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Theorem 9. The model-checking problem of HFLk+1
tail is k-EXPSPACE-hard in

data complexity for k ≥ 0.

Proof. For k = 0 this is already known: there is a simple and fixed HFL1 formula
ϕ0 that expresses the universality problem for NFA [2], a problem known to be
PSPACE-hard, i.e. 0-EXPSPACE-hard. It is easy to check that this ϕ0 is in fact
tail-recursive.

Let k ≥ 1. The problem of deciding whether Tn,K |= ϕk is equivalent to the
problem of deciding whether (K, n) has a solution to the order-k corridor tiling
problem. Therefore, we only need to give a formula ψk that is tail-recursive and
equivalent to ϕk. Note indeed that ϕk is not tail recursive, because the recursive
variable P of type τk+1 appears as an argument of exists succk. However, after
β-reduction of exists succk r1 P and then existsk(λr2 . . . ), we get a formula ψk

equivalent to ϕk and of the form
(
μ(P : τk+1). λ(r1 : τk).

(. . . ) ∨
(
μ(F : τk+1).λ(r2 : τk) ((. . . ) ∧ (P r2)) ∨ (F (nextk r2))

)
r1

)
initk

where the (. . . ) parts do not contain the recursive variables P and F , hence this
formula is tail-recursive. ��

The upper bound and the fact that the lower one holds for the data com-
plexity already yield a hierarchy of expressive power within HFLtail.

Corollary 10. For all k ≥ 0, HFLk
tail � HFLk+1

tail .

Proof. Suppose this was not the case. Then there would be a k ≥ 0 such that
HFLk

tail ≡ HFLk+1
tail . We need to distinguish the cases k = 0 and k > 0.

Let k = 0. Note that HFL0
tail is a fragment of the modal μ-calculus which can

only express regular properties. On the other hand, HFL1
tail contains formulas

that express non-regular properties, for instance uniform inevitability [2].
Now let k > 0 and suppose that for every ϕ ∈ HFLk+1

tail there would exist
a ϕ̂ ∈ HFLk

tail such that ϕ̂ ≡ ϕ. Take the formula ϕk+1 as constructed above
and used in the proof of Theorem9. Fix some function enc which represents a
transition system and a state as a string over some suitable alphabet. According
to Theorem 9, L := {enc(T , s) | T , s |= ϕk+1} is a k-EXPSPACE-hard language.

On the other hand, consider ϕ̂k+1 which, by assumption, belongs to HFLk
tail

and is equivalent to ϕk+1. Hence, L = {enc(T , s) | T , s |= ϕ̂k+1}. According
to Theorem 5, we have L ∈ (k−1)-EXPSPACE and therefore k-EXPSPACE =
(k − 1)-EXPSPACE which contradicts the space hierarchy theorem [16]. ��

5 Conclusion

We have presented a fragment of HFL that, given equal type order, is more
efficient to model-check than regular HFL: Instead of (k + 1)-fold exponential
time, model-checking an order k + 1 tail-recursive formula requires only k-fold
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exponential space. We have shown that this is optimal. Moreover, since the result
already holds for data complexity, the space hierarchy theorem yields a strict
hierarchy of expressive power within HFLtail.

The definition of tail recursion presented in this paper was designed for clarity
and can be extended with some syntactic sugar. For example, we take advantage
of the free nondeterminism available due to Savitch’s Theorem to resolve dis-
junctions and modal diamonds. One can, of course, also design a tail-recursive
fragment that uses co-nondeterminism, allows unrestricted use of conjunctions
and modal boxes, but restricts use of their duals. For symmetry reasons this
fragment enjoys the same complexity theoretic properties as the fragment pre-
sented here. In fact, it is even possible to mix both fragments: tail recursion
demands that (some) subformulas under operators that are not covered by Sav-
itch’s Theorem be safe in the sense that they have no free fixpoint variables. It
is completely reasonable to allow a switch from nondeterministic tail recursion
to co-nondeterministic tail recursion, and vice versa, at such safe points. Since
clever use of negation can emulate this in the fragment presented in this paper,
we have chosen not to introduce such switches in this paper for reasons of clar-
ity. Making co-nondeterminism available can be helpful if formulas in negation
normal form, which HFL admits, are needed.

An open question is how much the restrictions of tail recursion can be lifted
for fixpoint definitions of order below the maximal order in a formula. A näıve
approach would conclude that one can lift tail recursion for fixpoints of low order,
since there is enough space available to compute their semantics via traditional
fixpoint iteration. However, this can have undesired effects when lower-order
fixpoints are nested with higher-order ones, breaking tail recursion. Outlining
the definite border on what is possible with respect to lower-order fixpoints is a
direction for future work.
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Abstract. Real-time programs are made of instructions that can per-
form assignments to discrete and real-valued variables. They are general
enough to capture interesting classes of timed systems such as timed
automata, stopwatch automata, time(d) Petri nets and hybrid automata.
We propose a semi-algorithm using refinement of trace abstractions to
solve both the reachability verification problem and the parameter syn-
thesis problem for real-time programs. We report on the implementation
of our algorithm and we show that our new method provides solutions
to problems which are unsolvable by the current state-of-the-art tools.

1 Introduction

Model-checking is a widely used formal method to assist in verifying software
systems. A wide range of model-checking techniques and tools are available and
there are numerous successful applications in the safety-critical industry and the
hardware industry – in addition the approach is seeing an increasing adoption
in the general software engineering community. The main limitation of this for-
mal verification technique is the so-called state explosion problem. Abstraction
refinement techniques were introduced to overcome this problem. The most well-
known technique is probably the Counter Example Guided Abstraction Refine-
ment (CEGAR) method pioneered by Clarke et al. [12]. In this method the
state space is abstracted with predicates on the concrete values of the pro-
gram variables. The (counter-example guided) refinement of trace abstraction
(TAR) method was proposed recently by Heizmann et al. [17,18] and is based
on abstracting the set of traces of a program rather than the set of states.
These two techniques have been widely used in the context of software verifi-
cation. Their effectiveness and versatility in verifying qualitative (or functional)
properties of C programs is reflected in the most recent Software Verification
competition results [6,11].

Analysis of Timed Systems. Reasoning about quantitative properties of
programs requires extended modeling features like real-time clocks. Timed
Automata [1] (TA), introduced by Alur and Dill in 1989, is a very popular
formalism to model real-time systems with dense-time clocks. Efficient sym-
bolic model-checking techniques for TA are implemented in the real-time model-
checker Uppaal [4]. Extending TA, e.g., with the ability to stop and resume
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 42–58, 2017.
DOI: 10.1007/978-3-319-67089-8 4
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clocks (stopwatches), leads to undecidability of the reachability problem [9,20].
Semi-algorithms have been designed to verify hybrid systems (extended classes
of TA) and are implemented in a number of dedicated tools [15,16,19]. How-
ever, a common difficulty with the analysis of quantitative properties of timed
automata and extensions thereof is that ad-hoc data-structures are needed for
each extension and each type of problem. As a consequence, the analysis tools
have special-purpose efficient algorithms and data-structures suited and opti-
mized only towards their specific problem and extension.

In this work we aim to provide a uniform solution to the analysis of timed
systems by designing a generic semi-algorithm to analyze real-time programs
which semantically captures a wide range of specification formalisms, including
hybrid automata. We demonstrate that our new method provides solutions to
problems which are unsolvable by the current state-of-the-art tools. We also show
that our technique can be extended to solve specific problems like robustness and
parameter synthesis.

Related Work. The refinement of trace abstractions (TAR) was proposed by
Heizmann et al. [17,18]. It has not been extended to the verification of real-time
systems. Wang et al. [23] proposed the use of TAR for the analysis of timed
automata. However, their approach is based on the computation of the standard
zones which comes with usual limitations: it is not applicable to extensions of
TA (e.g., stopwatch automata) and can only discover predicates that are zones.
Their approach has not been implemented and it is not clear whether it can
outperform state-of-the-art techniques e.g., as implemented in Uppaal. Dierks
et al. [14] proposed a CEGAR based method for Timed Systems. To the best of
our knowledge, this method got limited attention in the community.

Tools such as Uppaal [4], SpaceEx [16], HyTech [19], PHAver [15],
verifix [21], symrob [22] and Imitator [2] all rely on special-purpose polyhe-
dra libraries to realize their computation.

Our technique is radically different to previous approaches and leverages the
power of SMT-solvers to discover non-trivial invariants for the class of hybrid
automata. All the previous analysis techniques compute, reduce and check the
state-space either up-front or on-the-fly, leading to the construction of significant
parts of the statespace. In contrast our approach is an abstraction refinement
method and the refinements are built by discovering non-trivial program invari-
ants that are not always expressible using zones, or polyehdra. This enables us to
successfully analyze (terminate) instances of non-decidable classes like stopwatch
automata. A simple example is discussed in Sect. 2.

Our Contribution. In this paper, we propose a refinement of trace abstractions
(TAR) technique to solve the reachability problem and the parameter synthesis
problem for real-time programs.

Our approach combines an automata-theoretic framework and state-of-the-
art Satisfiability Modulo Theory (SMT) techniques for discovering program
invariants. We demonstrate on a number of case-studies that this new app-
roach can compute answers to problems unsolvable by special-purpose tools and
algorithms in their respective domain.
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2 Motivating Example

The finite automaton A1 (Fig. 1), accepts the regular language L(A1) = i.t0.t
∗
1.t2.

By interpreting the labels of A1 according to the Table in Fig. 1, we can view it
as a stopwatch automaton with 2 clocks, x and z, and one stopwatch y (the vari-
ables). Each label defines a guard g (a Boolean constraint on the variables), an

ι �0 �1 �2

Edge Guard Update Rate
i True x:=y:=z:=0 dy/dt=1
t0 True z:=0 dy/dt=0
t1 x==1 x:=0 dy/dt=0
t2 x-y>=1 and z<1 - dy/dt=0

i t0

t1

t2

Fig. 1. Finite automaton A1

update u which is a (discrete)
assignment to the variables, and
a rate (vector) r that defines the
derivatives of the variables.1 We
associate with a sequence w =
a0.a1. · · · .an ∈ L(A1), a (possibly
empty) set of timed words, τ(w),
of the form (a0, δ0). · · · (an, δn)
where δi ≥ 0, i ∈ [0 . . . n]. For
instance, the timed words associ-
ated with i.t0.t2 are of the form
(i, δ0).(t0, δ1).(t2, δ2), for all δi ∈
R≥0, i ∈ {0, 1, 2} such that following constraints can be satisfied:

x0 = y0 = z0 = δ0 ∧ δ0 ≥ 0 (P0)
x1 = x0 + δ1 ∧ y1 = y0 ∧ z1 = δ1 ∧ δ1 ≥ 0 (P1)
x1 − y1 ≥ 1 ∧ z1 < 1 ∧ x2 = x1 + δ2 ∧ y2 = y1 ∧ z2 = z1 + δ2 ∧ δ2 ≥ 0 (P2)

The initial values of the variables x, y, z (in location ι, source of edge i) are
denoted x−1, y−1, z−1 and are unconstrained. Hence we assume that the initial
predicate on the variables x−1, y−1, z−1 is P−1 = True. P0 must be satisfied after
taking i and letting time progress for δ0 ≥ 0 time units, which is enforced by
a constraint on the variables2 x0, y0, z0 that stand for the values of x, y, z after
taking i; similarly P0∧P1 must hold after i.t0 and P0∧P1∧P2 after i.t0.t2. Hence
the set of timed words associated with i.t0.t2 is not empty iff P0 ∧ P1 ∧ P2 is
satisfiable. The timed language, T L(A1), accepted by A1 is the set of timed words
associated with all the words w accepted by A1 i.e., T L(A1) = ∪w∈L(A1)τ(w).

The language emptiness problem is a standard problem in Timed Automata
theory and is stated as follows [1]: “given a (Timed) Automaton A, is T L(A)
empty?”. It is known that the emptiness problem is decidable for some classes
of real-time programs (e.g., Timed Automata [1]), but undecidable for slightly
more expressive classes (e.g., Stopwatch Automata [20]). It is usually possible to
compute symbolic representations of sets of reachable valuations after a sequence
of labels. However, to compute the set of reachable valuations we may need to
explore an arbitrary and unbounded number of sequences. Hence only semi-
algorithms exist to compute the set of reachable valuations. For instance, using
PHAver to compute the set of reachable valuations for A1 does not terminate

1 As x and z are clocks their rate is always 1 and omitted in the Table.
2 If x was not reset by i, we would have a constraint x0 = x−1, with x−1 unconstrained.
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(Table 1). To force termination, we can compute an over-approximation of the set
of reachable valuations. Computing an over-approximation is sound (if we declare
a timed language to be empty it is empty) but incomplete i.e., it may result in
false positives (we declare a timed language non empty whereas it is empty).
This is witnessed by the column “Uppaal” in Table 1 where Uppaal over-
approximates sets of valuations in the stopwatch automaton with DBMs. After
i.t0, the over-approximation is 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x. This over-approximation
intersects the guard x − y ≥ 1 ∧ z − y < 1 of t2 and �2 is reachable but this is an
artifact of the over-approximation.3

Table 1. Symbolic representation of reachable states after a sequence of instructions.
Uppaal concludes that T L(A1) �= ∅ due to the over-approximation using DBMs.
PHAver does not terminate.

Sequence PHAver Uppaal

i.t0 z = x − y ∧ 0 ≤ z ≤ x 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x

i.t0.t1 z = x − y + 1 ∧ 0 ≤ x ≤ z ≤ x + 1 0 ≤ z − x ≤ 1 ∧ 0 ≤ y

i.t0.(t1)
2 z = x − y + 2 ∧ 0 ≤ x ≤ z − 1 ≤ x + 1 1 ≤ z − x ≤ 2 ∧ 0 ≤ y

i.t0.(t1)
3 z = x − y + 3 ∧ 0 ≤ x ≤ z − 2 ≤ x + 1 2 ≤ z − x ≤ 3 ∧ 0 ≤ y

. . . . . . . . .

i.t0.(t1)
k z = x − y + k ∧ 0 ≤ x ≤ z − k + 1 ≤ x + 1 k − 1 ≤ z − x ≤ k ∧ 0 ≤ y

. . . . . . . . .

Neither Uppaal nor PHAver can prove that T L(A1) = ∅. The technique
we introduce in this paper enables us to discover arbitrary abstractions and
invariants that enable us to prove T L(A1) = ∅. Our method is a version of
the Trace Abstraction Refinement (TAR) technique introduced in [17]. Let us
demonstrate how the method works on the stopwatch automaton A1:

– find a (untimed) word accepted by A1. Let w1 = i.t0.t2 be such a word. We
check whether τ(w1) = ∅ by encoding the corresponding associated timed
traces as described by Eqs. (P0)–(P2) and then check whether P0 ∧ P1 ∧ P2 is
satisfiable4. As P0 ∧ P1 ∧ P2 is not satisfiable we have τ(w1) = ∅.

– from the proof that P0 ∧P1 ∧P2 is not satisfiable, we can obtain an inductive
interpolant that comprises of two predicates I0, I1 – one for each conjunction
– over the clocks x, y, z. An example of inductive interpolant5 is I0 = x ≤ y
and I1 = x − y ≤ z. These predicates are invariants of any timed word of
the untimed word w1, and can be used to annotate w1 with pre- and post-
conditions (Eq. 1), which are Hoare triples of the form {P} a {Q}:

3 Uppaal terminates with the result “the language may not be empty”.
4 This can be done using an SMT-solver e.g., Z3.
5 This is the pair returned by Z3 for P0 ∧ P1 ∧ P2.



46 F. Cassez et al.

{True} i {I0} t0 {I1} t2 {False} (1)
{True} i {I0} t0 {I1}{I1}{I1} (t1)∗(t1)∗(t1)∗ {I1}{I1}{I1} t2 {False} (2)

We can also prove that {I1} (t1)∗ {I1} is a valid Hoare triple and combined
with Eq. 1 this gives Eq. 2. For each word w ∈ i.t0.(t1)∗.t2, τ(w) = ∅ and as
L(A1) ⊆ i.t0.(t1)∗.t2 we can conclude that T L(A1) = ∅.

3 Real-Time Programs

Our approach is general enough and applicable to a wide range of timed systems
called real-time programs. As an example, timed, stopwatch, hybrid automata
and time Petri nets are special cases of real-time programs.

In this section we define real-time programs. Real-time programs define the
control flow of instructions, just as standard imperative programs do. The
instructions can update variables by assigning new values to them. Each instruc-
tion has a semantics and together with the control flow this precisely defines the
semantics of real-time programs.

Notations. A finite automaton over an alphabet Σ is a tuple A = (Q, ι,Σ,
Δ, F ) where Q is a finite set of locations s.t. ι ∈ Q is the initial location, Σ is a
finite alphabet of actions, Δ ⊆ (Q×Σ ×Q) is a finite transition relation, F ⊆ Q
is the set of accepting locations. A word w = α0.α1. · · · .αn is a finite sequence
of letters from Σ; we let w[i] = αi the i-th letter, |w| be the length of w which
is n + 1. Let ε be the empty word and |ε| = 0, Σ∗ is the set of finite words over
Σ. The language, L(A), accepted by A is defined in the usual manner as the set
of words that can lead to F from ι.

Let V be a finite set of real-valued variables. A valuation is a function ν :
V → R. The set of valuations is [V → R]. We denote by β(V ) a set of constraints
on the variables in V . Given ϕ ∈ β(V ), we let Vars(ϕ) be the set of free variables
in ϕ. The truth value of a constraint ϕ given a valuation ν is denoted by ϕ(ν)
and we write ν |= ϕ when ϕ(ν) = True. We let �ϕ� = {ν | ν |= ϕ}. An update of
the variables in V is a binary relation μ ⊆ [V → R]× [V → R]. Given an update
μ and a set of valuations V, we let μ(V) = {ν′ | ∃ν ∈ V and (ν, ν′) ∈ μ}. We let
U(V ) be the set of updates on the variables in V . A rate ρ is a function from V
to Q (rates can be negative), i.e., an element of Q

V . We let R(V ) ⊆ Q
V be a set

of valid rates – that is, rates that can be written (syntactically) as a predicate
on an edge. Given a valuation ν, a valid rate ρ ∈ Q(V ) and a timestep δ ∈ R≥0

the valuation ν + ρ × δ is defined by: (ν + ρ × δ)(v) = ν(v) + ρ(v) × δ for v ∈ V .

Real-Time Instructions. Let I = β(V ) × U(V ) × R(V ) be a countable set of
instructions. Each α ∈ I is a tuple (guard, update, rates) denoted by (γα, μα, ρα).
Let ν : V → R and ν′ : V → R be two valuations. For each pair (α, δ) ∈ I ×R≥0

we define the following transition relation:

ν
α,δ−−−→ ν′ ⇐⇒

⎧
⎪⎨

⎪⎩

1. ν |= γα (guard of α is satisfied in ν),
2. ∃ν′′ s.t. (ν, ν′′) ∈ μα (discrete update allowed by α) and
3. ν′ = ν′′ + δ × ρα (continuous update as defined by α).
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The semantics of α ∈ I is a mapping �α� : [V → R] → [V → R] that can be
extended to sets of valuations as follows:

ν ∈ [V → R], �α�(ν) = {ν′ | ∃δ ≥ 0, ν
α,δ−−−→ ν′}

K ⊆ [V → R], �α�(K) =
⋃

ν∈K

�α�(ν).

Let K be a set of valuations, α ∈ I and w ∈ I∗. We inductively define the
post operator Post as follows:

Post(K, ε) = K

Post(K,α.w) = Post(�α�(K), w)

The post operator extends to logical constraints ϕ ∈ β(V ) by defining
Post(ϕ,w) = Post(�ϕ�, w). In the sequel, we assume that, when ϕ ∈ β(V ),

then �α�(�ϕ�) is also definable as a constraint in β(V ). This inductively
implies that Post(ϕ,w) can also be expressed as a constraint in β(V ) for
sequences of instructions w ∈ I∗.

Timed Words and Feasible Words. A timed word (over alphabet I) is a
finite sequence σ = (α0, δ0).(α1, δ1). · · · .(αn, δn) such that for each 0 ≤ i ≤ n,
δi ∈ R≥0 and αi ∈ I. The timed word σ is feasible if and only if there exists a
set of valuations {ν0, . . . , νn+1} ⊆ [V → R] such that:

ν0
α0,δ0−−−−→ ν1

α1,δ1−−−−→ ν2 · · · νn
αn,δn−−−−−→ νn+1.

We let Unt(σ) = α0.α1. · · · .αn be the untimed version of σ. We overload the
term feasible as follows: an untimed word w ∈ I∗ is feasible iff w = Unt(σ) for
some feasible timed word σ.

Lemma 1. An untimed word w ∈ I∗ is feasible iff Post(True, w) �= False.

Proof. The lemma follows trivially from the inductive definition of Post. 
�

Real-Time Programs. The specification of a real-time program decouples the
control (e.g., for Timed Automata, the locations) and the data (the clocks).
A real-time program is a pair P = (AP , �·�) where AP is a finite automaton
AP = (Q, ι, I,Δ, F ) over the finite alphabet6 I ⊆ I, Δ defines the control-flow
graph of the program and �·� (as defined previously for I) provides the semantics
of each instruction. A timed word σ is accepted by P if and only if:

1. Unt(σ) is accepted by AP (Unt(σ) ∈ L(AP )) and
2. σ is feasible.

6 I can be infinite but we require the control-flow graph Δ (transition relation) of AP

to be finite.
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Notice that the definition of feasibility of a timed word σ is independent from
the acceptance of Unt(σ) by AP .

The timed language, T L(P ), of a real-time program P is the set of timed
words accepted by P , i.e., σ ∈ T L(P ) if and only if Unt(σ) ∈ L(AP ) and σ is
feasible.

Remark 1. We do not assume any particular values initially for the variables of
a real-time program (the variables that appear in I). This is reflected by the
definition of feasibility that only requires the existence of valuations without
containing the initial one ν0. When specifying a real-time program, initial values
can be set by regular instructions. This is similar to standard programs where
the first instructions can set the values of some variables.

Timed Language Emptiness Problem. The (timed) language emptiness
problem asks the following:

Given a real-time program P , is T L(P ) empty?

Theorem 1. T L(P ) �= ∅ iff ∃w ∈ L(AP ) such that Post(True, w) �⊆ False.

Proof. T L(P ) �= ∅ iff there exists a feasible timed word σ such that Unt(σ) is
accepted by AP . This is equivalent to the existence of a feasible word w ∈ L(AP ),
and by Lemma 1, feasibility of w is equivalent to Post(True, w) �⊆ False. 
�

Useful Classes of Real-Time Programs. Timed Automata are a special
case of real-time programs. The variables are called clocks. β(V ) is restricted
to constraints on individual clocks or difference constraints generated by the
grammar:

b1, b2 ::=True | False | x − y � k | x � k | b1 ∧ b2 (3)

where x, y ∈ V , k ∈ Q≥0 and �∈ {<,≤,=,≥, >}7. We note that wlog. we
omit location invariants as for the language emptiness problem, these can be
implemented as guards. An update in μ ∈ U(V ) is defined by a set of clocks to
be reset. Each pair (ν, ν′) ∈ μ is such that ν′(x) = ν(x) or ν′(x) = 0 for each
x ∈ V . The valid rates are fixed to 1, and thus R(V ) = {1}V .

Stopwatch Automata can also be defined as a special case of real-time pro-
grams. As defined in [9], Stopwatch Automata are Timed Automata extended
with stopwatches which are clocks that can be stopped. β(V ) and U(V ) are the
same as for Timed Automata but the set of valid rates is defined by the functions
of the form R(V ) = {0, 1}V (the clock rates can be either 0 or 1). An example
of a Stopwatch Automaton is given by the timed system A1 in Fig. 1.

As there exists syntactic translations (preserving reachability) that maps
hybrid automata to stopwatch automata [9], and translations that map time
Petri nets [5,10] and extensions [7,8] thereof to timed automata, it follows that
time Petri nets and hybrid automata are also special cases of real-time programs.
This shows that the method we present in the next section is applicable to wide
range of timed systems.
7 While difference constraints are strictly disallowed in most definitions of Timed

Automata, the method we propose retain its properties regardless of their presence.
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ι 0 1 2

Edge Guard Update
i True x:=y:=k:=0
t0 x ≥ 1 —
t1 True x:=0; k++
t2 y < k —

i
t0

t1

t2

Fig. 2. Real-time program P2

What is remarkable as well, is that
it is not restricted to timed systems
that have a finite number of discrete
states but can also accommodate infinite
discrete state spaces. For example, the
automaton in Fig. 2 has two clocks x and
y and an unbounded integer variable k.
Even though k is unbounded, our tech-
nique discovers the invariant y ≥ k at
location 1 which is over a real-time clock
y and the integer variable k. It allows us
to prove that T L(P2) = ∅.

4 Trace Abstraction Refinement for Real-Time Programs

In this section we propose a semi-algorithm to solve the language emptiness
problem for real-time programs. The semi-algorithm is a version of the refinement
of trace abstractions (TAR) approach [17] for timed systems.

Refinement of Trace Abstraction for Real-Time Programs. Figure 3
gives a precise description of the TAR semi-algorithm for real-time programs.
This is the standard trace abstraction refinement semi-algorithm as introduced
in [17] – we therefore omit theorems of completeness and soundness as these will
be equivalent to the theorems in [17] and are proved in the exact same man-
ner. The input to the semi-algorithm is a real-time program P = (AP , �·�). An
invariant of the semi-algorithm is that R is empty or contains only infeasible
traces.

Step 1: L(AP ) ⊆ R? Step 2: w is feasible?

T L(P ) = ∅ T L(P ) �= ∅, w is a witness

R = ∅ Step 3: R := R ∪ L(IA(w))

Yes
No. Let w ∈ L(AP ) \ R

Yes

No

Fig. 3. Trace abstraction refinement semi-algorithm for real-time programs

Initially the refinement R is the empty set. The semi-algorithm works as
follows:

Step 1. Check whether all the (untimed) traces in L(AP ) are in R. If this is the
case, T L(P ) is empty and the semi-algorithm terminates. Otherwise, there is
a sequence w ∈ L(AP ) \ R, goto Step 2;
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Step 2. If w is feasible i.e., there is a feasible timed word σ such that Unt(σ) =
w, then σ ∈ T L(P ) and T L(P ) �= ∅ and the semi-algorithm terminates.
Otherwise w is not feasible, goto Step 3;

Step 3. w is infeasible and given the reason for infeasibility we can construct a
finite interpolant automaton, IA(w), that accepts w and other words that are
infeasible for the same reason. How IA(w) is computed is addressed in the
sequel. The automaton IA(w) is added to the previous refinement R and the
semi-algorithm starts a new round at Step 1.

Checking Feasibility. Given a word w ∈ I∗, we can check whether w is feasible
by encoding the side-effects of each instruction in w, similar to a Static Single
Assignment (SSA) form in programming languages.

Let us define a function for constructing such a constraint-system character-
izing the feasibility of a given trace. We shall assume that constraints in β(V )
and updates in U(V ) are syntactically defined. Let P = (Q, q0, I,Δ, F ) be a real-
time program and w ∈ I∗ be a word over I. Let V n = {xn, xn

μ | x ∈ V } ∪ {δn}
be a set of variables extended with an index n ∈ N≥0. For a given constraint-
system ϕ ∈ β(V ) write ϕ[V/V n] for replacing all occurrences of V with their
indexed occurrence in V n (implying that ϕ[V/V n] ∈ β(V n)). We assume that
the relation μ ∈ U(V ) is of SSA form, and let μ[V/(V n,V m)] be the replacement
of all occurrences of variables x ∈ V with their indexes and sub-scripted occur-
rence in V n if x is assigned to and from V m if x is read from. As an example,
(v ← v+w)[V/(V n,V m)] = vn

μ ← vm+wm where ← denotes assignment. Given this
we can now recursively define the function Enc : I∗ → β({V n | 0 ≤ n ≤ |w|})

Enc(ε) =True
Enc(w.α) =Enc(w) ∧ δn ≥ 0 ∧ ϕ[V/V n−1] ∧ δn ≥ 0 ∧ μ[V/(V n

µ ,V n−1)]

∧
∧

v∈V

vn = vn
μ + ρ(v) × δn where n = |w| − 1 and (ϕ, μ, ρ) = α

The function Enc : I∗ → β(V N≥0) constructs a constraint-system characterizing
exactly the feasibility of a word w:

Lemma 2. A word w is feasible i.e., Post(True, w) �⊆ False iff Enc(w) is satis-
fiable.

We shall frequently refer to such a constraints system C = Enc(w) for some
word w where |w| = n as a sequence of conjunctions P0 ∧· · ·∧Pm ∧· · ·∧Pn = C
where Pm ∈ β(V m−1 ∪ V m) refers to the encoding of the m’th instruction, and
we shall call such an element Pm a predicate.

An example of an encoding for the real-time program A1 (Fig. 1) is given
by the predicates in Eqs. (P0)–(P2). The variables xk, yk, zk denote the values
of x, y, z after k steps (initially the variables can have arbitrary values). The
sequence w1 = i.t0.t2 is feasible iff Enc(w1) = P0 ∧ P1 ∧ P2 is satisfiable.

From such a sequence we can use interpolating SMT-solvers to construct a
sequence of craig-interpolants.
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Construction of Interpolant Automata. When it is determined that a trace
w is infeasible, we can easily discard such a single trace and continue searching.
However, the power of the TAR method is to generalize the infeasibility of a
single trace w into a family (regular set) of traces. This regular set of infeasible
traces is computed from the reason of infeasibility of w and is formally specified
by an interpolant automaton, IA(w). The reason for infeasibility itself has the
form of an inductive interpolant.

Given a conjunctive formula f = P0 ∧ · · · ∧ Pm, if f is unsatisfiable, an
interpolating SMT-solver is capable of producing inductive arguments for the
unsatisfiability reason. This argument is an inductive interpolant I0, . . . , Im−1

s.t. for each 0 ≤ n ≤ m − 1, In ∧ Pn+1 implies In+1 (with Im = False), and for
each 0 ≤ n ≤ m − 1, the variables in In appear in both Pn and Pn+1.

One can intuitively think of each interpolant as a sufficient condition for
infeasibility of the post-fix of the trace and this can be represented by a sequence
of Hoare triples of the form {P} a {Q}:

{True} a0 {I0} a1 {I1} · · · {Im−1} am {False}

Consider the real-time program P2 of Fig. 2 and the two infeasible untimed words
w1 = i.t0.t2 and w2 = i.t0.t1.t0.t2. The Hoare triples for w1 and w2 are given
by Eq. 4 and 5 where the predicates are: I1 = y ≥ x ∧ (k = 0), I2 = y ≥ k,
I3 = y ≥ x ∧ k ≤ 0, I4 = y ≥ 1 ∧ k ≤ 0, I5 = y ≥ k + x, I6 = y ≥ k + 1.

{True} i {I1} t0 {I2} t2 {False} (4)
{True} i {I3} t0 {I4} t1 {I5} t0 {I6} t2 {False} (5)

As can be seen in Eq. 5, the sequence contains two occurrences of t0: this suggests
that a loop occurs in the program, and this loop may be infeasible as well.
Formally, because Post(I6, t1) ⊆ I5, any trace of the form i.t0.t1.(t0.t1.t0)∗.t2 is
infeasible. This enables us to construct IA(w2) as accepting the regular set of
infeasible traces i.t0.t1.(t0.t1.t0)∗.t2. Overall, because w1 is also infeasible, we
obtain a refinement which is L(IA(w1)) ∪ L(IA(w2)), Fig. 4.

Let us formalize the interpolant-automata construction. Given the inter-
polants I0, . . . Ik for the constraint-system P0 ∧ · · · ∧ Pk+1 = Enc(w) for some
word w where k = |w| − 1 and given the automata description of our Real Time
Program A = (Q, q0, Σ,Δ, F ), then we can construct an interpolant automaton
AI = (QI , qI

0 , Σ
I ,ΔI , F I) s.t. w ∈ L(AI) and for all w′ ∈ L(AI) we have that w′

True

I1

I3 I4 I5 I6

False

I2
t0

t2

t0 t1
t0

t1

t2

i

i

Fig. 4. Interpolant automaton for L(IA(w1)) ∪ L(IA(w2)).
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is infeasible. Let Q = {True,False, I0, . . . , Ik}, q0 = True, ΣI = Σ, F = {False},
then we let the transition-function be the largest transition-function satisfying
the following.

1. (True, w[0], I0) ∈ ΔI ,
2. (Ik, w[k],False) ∈ ΔI ,
3. (In−1, w[n − 1], ln) ∈ ΔI for 1 < n ≤ k, and
4. for each 1 ≤ n,m ≤ k, if Im ⊂V In then (In−1, w[n − 1], Im) ∈ ΔI where ⊂V

is subset-checking, modulo variable indexing.

The above conditions induce an algorithm IA for constructing interpolant
automata from an untimed word w.

Theorem 2 (Interpolant Automata). Let w be an infeasible word over P ,
then for all w′ ∈ L(IA(w)), w′ is infeasible.

We can verify that the construction using rules 1–3 is correct as these come
directly from the feasibility-check of the trace and the definition of interpolants.

The pumping-rule (rule 4) utilizes that if by firing some transition labeled α
from some interpolant In−1 gives us a “stronger” argument for infeasibility than
in Im, then surely every sequence which is infeasible from Im is also infeasible
from In−1 after firing α.

Feasibility Beyond Timed Automata. Satisfiability can be checked with
an SMT-solver (and decision procedures exist for useful theories). In the case
of timed automata and stopwatch automata, the feasibility of a trace can be
encoded as a linear program. The corresponding theory, Linear Real Arithmetic
(LRA) is decidable and supported by most SMT-solvers. It is also possible to
encode non-linear constraints (non-linear guards and assignments). In the latter
cases, the SMT-solver may not be able to provide an answer to the SAT problem
as non-linear theories are undecidable. However, we can still build on a semi-
decision procedure of the SMT-solver, and if it provides an answer, get the status
of a trace (feasible or not).

5 Parameter Synthesis for Real-Time Programs

In this section we show how to use the trace abstraction refinement semi-
algorithm presented in Sect. 4 to synthesize good initial values for some of the
program variables. Given a real-time program P , the objective is to determine
a set of initial valuations I ⊆ [V → R] such that, when we start the program in
I, P does not accept any timed word.

Given a constraint I ∈ β(V ), we define the associated assume guard-
transformer for instructions that for a letter α = (γ, ρ, μ) defines Assume(α, I) =
(γ′, ρ, μ) s.t. γ = γ ∧ I. Let P = (Q, ι, I,Δ, F ) be a real-time program. Then
we can define the real-time program Assume(I).P = (Q, ι, I, (Δ \ {(ι, i, q0)}) ∪
{(ι,Assume(i, I), q0)}, F ).
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Safe Initial Set Problem. The safe initial state problem asks the following:

Given a real-time program P , is there I ∈ β(V ) s.t. T L(Assume(I).P ) =
∅?

Semi-Algorithm for the Safe Initial State Problem. Let w ∈ L(P ).
When Enc(w) is satisfiable, we define the (existentially quantified) constraint
∃Vars(Enc(w)) \ V−1.Enc(w) i.e., the projection of the set of solutions on the
initial values of the variables. We let ∃i(w) be ∃Vars(Enc(w))\V−1.Enc(w) with
all the free occurrences of x−1 replaced by x (remove index for each var). ∃i(w)
is a constraint over the set of variables V (and existential quantifiers)8.
The semi-algorithm in Fig. 5 works as follows: (1) initially I = True (2) using the
semi-algorithm from Fig. 3, test if T L(Assume(I).P ) is empty – if so P does not
accept any timed word when we start from �I� (3) Otherwise, there is a witness
word σ ∈ T L(Assume(I).P ), implying that I ∧ Enc(Unt(σ)) is satisfiable. We
can then determine a sufficient condition I ′ = ∃i(Unt(σ)) for the feasibility s.t.
(¬I ′) ∧ Enc(Unt(σ)) is unsatisfiable and use this to strengthen the constraint I
(step 2).

If the semi-algorithm terminates, it computes exactly the set of parameters
for which the system is not safe (I), captured formally by Theorem3.

Theorem 3. If the semi-algorithm SafeInit terminates and outputs I, then for
any I ′ ∈ β(V ), T L(Assume(I ′).P ) = ∅ if and only if I ′ ⊆ I.

Proof (=⇒). Let us assume by contradiction that upon termination we have
T L(Assume(I).P ) �= ∅. This violates the termination critirion of either Fig. 3
or 5. 
�

Proof (⇐=). Let us assume by contradiction that upon termination there exists
some I ′ �= ∅ for which I ′ ∩ I = ∅ and T L(Assume(I ′).P ) = ∅. Then let us
prove inductively that no such I ′ can ever exist.

In the base-case in step 1, if the algorithm terminates, clearly I ′ = ∅ violat-
ing our requirements for the contradiction. For our contradiction to be valid, we
must instead look at how we modify I in step 2. For I ′ to be non-empty, the quan-
tification over parameter-values for σ must construct a larger-than-needed set of
parameter value, i.e., that I ′ ⊆ ¬∃iEnc(Unt(σ)). This contradicts the definition
of existential quantification. As we never over-approximate the parameter-set
needed for the valuation in step 2, we can conclude that I ′ cannot exist. 
�

6 Experiments

We have conducted two sets of experiments, each testing the applicability of our
proposed method (denoted by rttar) compared to state-of-the-art tools with
8 Existential quantification for the theory of Linear Real Arithmetic is within the

theory via Fourier-Motzkin-elimination – hence the solver only needs support for
Linear Real Arithmetic for Parameter Synthesis for Stopwatch and Timed Automata.
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1: T L(Assume(I).P ) = ∅?

I

I := True

2: I := I ∧ ¬∃iEnc(Unt(σ))

Yes

No
Let σ ∈ T L(Assume(I).P )

Fig. 5. Semi-algorithm SafeInit .

specialized data-structures and algorithms for the given setting. All experiments
were conducted on AMD Opteron 6376 Processors and limited to 1 hour of
computation. The rttar tool uses the Uppaal parsing-library, but relies on Z3
[13] for the interpolant computation.

Verification of Timed and Stopwatch Automata. The real-time programs,
P1 of Fig. 1 and P2 of Fig. 2 can be analyzed with our technique. The analysis
(rttar algorithm, Fig. 3) terminates in two iterations for the program P1, a
stopwatch automaton. As emphasized in the introduction, neither Uppaal (over-
approximation with DBMs) nor PHAver can provide the correct answer to
reachability problem for P1.

To prove that location 2 is unreachable in program P2 requires to discover
an invariant that mixes integers (discrete part of the state) and clocks (continu-
ous part). Our technique successfully discovers the program invariants I5 and I6
(thanks to the interpolating SMT-solver). As a result the refinement depicted in
Fig. 2 is constructed and as it contains L(AP2) the refinement algorithm termi-
nates and proves that 2 is not reachable. AP2 can only be analyzed in Uppaal
with significant computational effort and bounded integers.

Robustness of Timed Automata. Another remarkable feature of our tech-
nique is that it can readily be used to check robustness of timed automata. In
essence, checking robustness amounts to enlarging the guards of an TA A by an
ε > 0. The resulting TA is Aε. The automaton A is (safety) robust iff there is
some ε > 0 such T L(Aε) = ∅.

To address the robustness problem for a real-time program P , we use the
semi-algorithm presented in Sect. 5 and reduce the robustness-checking problem
to that of parameter-synthesis. Assuming P is robust9 i.e., there exists some ε >
0 such that T L(Aε) = ∅ and the previous process terminates we can compute
the largest set of parameters for which P is robust.

9 Proving that a system is non-robust requires proving feasibility of infinite traces for
ever decreasing ε. We have developed some techniques to do so but this is outside of
the scope of this paper.
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Test Time ε < Time ε <

symrob rttar

csma 05 0.43 1/3 68.23 1/3
csma 06 2.44 1/3 227.15 1/3
csma 07 8.15 1/3 1031.72 1/3
fischer 04 0.16 1/2 45.24 1/2
fischer 05 0.65 1/2 249.45 1/2
fischer 06 3.71 1/2 1550.89 1/2
M3c 4.34 250/3 43.10 ∞
M3 N/A N/A 43.07 ∞
a 27.90 1/4 15661.14 1/2

Table 2. Results for robustness analysis
comparing rttar with symrob. Time is
given in seconds. N/A indicates that sym-
rob was unable to compute the robustness
for the given model.

As Table 2 demonstrates, sym-
rob [22] and rttar do not always
agree on the results. Notably, since
the TA M3 contains strict guards,
symrob is unable to compute the
robustness of it. Furthermore, sym-
rob over-approximates ε, an artifact
of the so-called “loop-acceleration”-
technique and the polyhedra-based
algorithm. This can be observed in
the modified model M3c, which is now
analyzable by symrob, but differ in
results compared to rttar. This is the
same case with the model denoted a.
We experimented with ε-values to con-
firm that M3 is safe for all the values
tested – while a is safe only for values
tested respecting ε < 1

2 . We can also
see that our proposed method is sig-
nificantly slower than symrob. As our tool is currently only a prototype with
rudimentary state-space-reduction-techniques, this is to be expected.

Parametric Stopwatch Automata. In our last series of tests, we compare the
rttar tool to Imitator [2] – the state-of-the-art parameter synthesis tool for
reachability10. We shall here use the semi-algorithm is presented in Sect. 5 For the
test-cases we use the gadget presented initially in Fig. 1, a few of the test-cases
used in [3], as well as two modified version of Fischers Protocol, shown in Fig. 6.
In the first version we replace the constants in the model with parameters. In
the second version (marked by robust), we wish to compute an expression, that
given an arbitrary upper and lower bound yields the robustness of the system –
in the same style as the experiments presented in Sect. 6, but here for arbitrary
guard-values.

As illustrated by Table 3 the performance of rttar is slower than Imitator
when Imitatoris able to compute the results. On the other hand, when using
Imitator to verify our motivating example from Fig. 1, we observe that Imi-
tator never terminates, due to the divergence of the polyhedra-computation.
This is the effect illustrated in Table 1.

When trying to synthesize the parameters for Fischers algorithm, in all
cases, Imitator times out and never computes a result. For both two and four
processes in Fischers algorithm, our tool detects that the system is safe if and
only if a < 0 ∨ b < 0 ∨ b − a > 0. Notice that a < 0 ∨ b < 0 is a trivial constraint
preventing the system from doing anything. The constraint b− a > 0 is the only
useful one. Our technique provides a formal proof that the algorithm is correct
for b − a > 0.
10 We compare with the EFSynth-algorithm in the Imitator tool as this yielded the

lowest computation time in the two terminating instances.
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Table 3. Results for parameter-synthesis
comparing rttar with Imitator. Time is
given in seconds. DNF marks that the tool
did not complete the computation within
an hour.

Test Imitator rttar

Sched2.50.0 201.95 1656.00

Sched2.100.0 225.07 656.26

A1 DNF 0.1

fischer 2 DNF 0.23

fischer 4 DNF 40.13

fischer 2 robust DNF 0.38

fischer 4 robust DNF 118.11

Fig. 6. A Uppaal template for a sin-
gle process in Fischers Algorithm. The
variables e, a and b are parameters for
ε, lower and upper bounds for clock-
values respectively.

In the same manner, our technique can compute the most general constraint
ensuring that Fischers algorithm is robust.

The result of rttar algorithm is that the system is robust iff ε ≤ 0 ∨ a <
0∨b < 0∨b−a−2ε > 0 – which for ε = 0 (modulo the initial non-zero constraint
on ε) reduces to the constraint-system obtained in the non-robust case.

7 Conclusion

We have proposed a version of the trace abstraction refinement approach to real-
time programs. We have demonstrated that our semi-algorithm can be used to
solve the reachability problem for instances which are not solvable by state-of-
the-art analysis tools.

Our algorithms can handle the general class of real-time programs that com-
prises of classical models for real-time systems including timed automata, stop-
watch automata, hybrid automata and time(d) Petri nets.

As demonstrated in Sect. 6, our tool is capable of solving instances of reach-
ability problems problems, robustness, parameter synthesis, that current tools
are incapable of handling.

For future work we would like to improve the scalability of the proposed
method, utilizing well known techniques such as extrapolations, partial order
reduction and compositional verification. Furthermore, we would like to extend
our approach from reachability to more expressive temporal logics.

Acknowledgments. The research leading to these results was made possible by an
external stay partially funded by Otto Mønsted Fonden.
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Abstract. We present the operational semantics of an abstract machine
that models computations of event-based asynchronous programs
inspired to the Node.js server-side system, a convenient platform for
developing Internet of Things applications. The goal of the formal
description of Node.js internals is twofold: (1) integrating the existing
documentation with a more rigorous semantics and (2) validating widely
used programming and transformation patterns by means of mathemat-
ical tools like transition systems. Our operational semantics is paramet-
ric in the transition system of the host scripting language to mimic the
infrastructure of the V8 virtual machine where Javascript code is exe-
cuted on top of the event-based engine provided by the C++ libuv con-
currency library. In this work we focus our attention on priority callback
queues, nested callbacks, and closures; these are widely used Node.js
programming features which, however, may render programs difficult to
understand, manipulate, and validate.

1 Introduction

Asynchronous programming is getting more and more popular thanks to emer-
gent server-side platforms like Node.js and operating systems for applications
that require a constant interaction with the user interface; this programming par-
adigm reduces the need of controlling concurrency using synchronization prim-
itives like lock and monitors. As an example, the execution model of Node.js is
based on a single threaded loop used to poll events with different priorities and
to serialize the execution of pending tasks by means of callbacks. Accordingly,
I/O operations are performed through calls to asynchronous functions where
callbacks are passed to specify how the computation continues once the corre-
sponding I/O operations completed asynchronously.

Taking inspiration from previous work [1,2,4–8,10], in this paper we focus
our attention on a formal semantics of asynchronous programs with the following
features: Priority callback queues; Nested callback definitions to model anony-
mous callbacks; Closures used to propagate the caller scope to the postponed
callback invocation. The formal semantics of the resulting system is given in a

c© Springer International Publishing AG 2017
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parametric form. Namely, we give a presentation that is modular in the tran-
sition system of the host programming language. We use callbacks as a bridge
between the two layers as in implementation of scripting languages like Node.js
running on virtual machines like Chrome V8. In our framework a callback is a
procedure whose execution is associated with a given event. When the event is
triggered by the program or by an external agent, the corresponding callback
is added to a queue of pending tasks. In our model the execution of callbacks
is controlled by an event-loop. After the complete execution of a callback, the
event loop polls the queue and selects the next callback to execute.

This kind of behavior is typically supported via concurrent executions of I/O
bound operations on a pool of worker threads. To get closer to the Node.js exe-
cution model, we model the behavior of the event loop using different phases.
More precisely, we provide continuations as a means to define pending tasks
with highest priority (they are executed at the end of a callback) as for the
process.nextTick1 operation in Node.js. Furthermore, we provide postponed
callbacks as a means to postpone a callback after the poll phase of standard
callbacks (internal, I/O, and networking events). This mechanism is similar to
the setImmediate operation provided in Node.js. As in Node.js, nested contin-
uations (a continuation that invokes a continuation) or the enqueuing of tasks
during the poll phase are potential sources of starvation for the event loop. In
actual implementations non termination in the poll phase is avoided by imposing
a hard limit on the number of callbacks to be executed in each tick. All pending
postponed callbacks are executed when the poll phase is quiescent.

Examples. To illustrate all above mentioned concepts, let us consider some
examples taken from the standard fs module supporting file system operations
in Node.js.

var fs = require(‘fs’);
fs.readFile(‘abc.txt’,function(err,data){err||console.log(data);});
console.log(‘ok’);

Function readFile is asynchronous; once the read operation has completed, its
continuation is defined by an anonymous callback with two parameters err and
data holding, respectively, an optional error object and the data read from the
file (in case no error occurred err contains null). If the read operation completes
successfully, then the callback will print the read data on the standard output,
but only after string ok. Let us now consider an example that uses the events
module in Node.js for emitting events and registering associated callbacks.

var EventEmitter = require(‘events’);
var Emitter = new EventEmitter();
var msg = function msg() { console.log(‘ok’); }
Emitter.on(‘evt1’, msg);
Emitter.emit(‘evt1’);
while (true);

1 Despite of the name, this is the current semantics of Node.js.
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On line 4 the callback msg is registered and associated with events of type ’evt1’,
then on the subsequent line an event of type msg is emitted; since method emit
exhibits a synchronous behaviour, the associated callback is immediately exe-
cuted and the message ok is printed before the program enters an infinite loop
where no other callback will ever be executed. We now modify the program above
as follows.

eventEmitter.on(‘evt1’, function () { setImmediate(msg); });
eventEmitter.emit(‘evt1’);
while (true);

Also in this case, after the event has been emitted, the associated callback is
synchronously executed, but then setImmediate is used to postpone the exe-
cution of function msg to the next loop iteration, and therefore the program
enters immediately the infinite loop without printing ok. System functions like
setImmediate are used to interleave the main thread and callbacks. While there
exists a rigorous semantics for Javascript, see e.g. [9], the Node.js on-line docu-
mentation [12] has not a formal counterpart and contains several ambiguities as
can be read in [13], and in several discussions on the meaning of operations like
setImmediate, nextTick, etc. see e.g. [11,14,15].

The combination of asynchronous programming with nested callbacks and
closures may lead to programs with a quite intricate semantics; let us consider,
for instance, the following fragment.

function test(){
var d = 5;
var foo = function(){ d = 10; }
process.nextTick(foo);
setImmediate(() => { console.log(d) })

}
test();

Function test defines a local variable d, which, however, is global to the inner
function foo which is passed as callback to process.nextTick; technically, foo
is called a closure, since it depends on the global variable d, which is updated
by foo itself. Function process.nextTick postpones the execution of foo to
the next loop iteration, however foo has higher priority over the callback passed
to setImmediate on the following line. After the call to test is executed, the
variable d local to the call is still allocated in the heap since it is referenced by
the closure foo; when foo is called, the value of d is updated to 10, therefore
the execution of console.log(d) will print 10 as result.

In the paper we propose a formal model for describing computations and to
clarify the semantics of this kind of programs.

Plan of the paper. In Sect. 2 we present the formal definitions of the opera-
tional semantics of a scripting language and of the abstract machine that cap-
tures the event-driven behavior of our scripts. Both components are inspired to
Node.js. Section 3 illustrates how to apply the operational semantics to reason
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about asynchronous programs. In Sect. 4 we define a specification language for
reasoning about computations of the resulting combined framework (abstract
machine and semantics of scripting language). Finally, in Sect. 5 we address
related work and future research directions.

2 Abstract Machine for Asynchronous Programs

In this section we define the formal semantics of the abstract machine. We will
first try to use a compositional method with respect to the semantics of the host
language. We will instantiate the language with a simplified scripting language.

Preliminaries. In the rest of the paper we will use the following notation.
A∗ = {v1 . . . vn|vi ∈ A, i : 1, . . . , n, n ≥ 0} denotes the set of words with
elements in A. We use w1 · w2 to denote concatenation of two lists and ε to
denote the empty word. A⊗ = {{v1 . . . vn}|vi ∈ A, i : 1, . . . , n, n ≥ 0} denotes
the set of multisets of elements in A. We use m1 ⊕ m2 to denote multiset union
of m1 and m2. We also use a ⊕ m to denote the addition of element a ∈ A to
m. An = {v = 〈v1, . . . , vn〉|vi ∈ A, i : 1, . . . , n n ≥ 1} denotes set of tuples with
elements in A. [A → B] denotes the set of maps from A to B. We use [x/a] to
denote the sequence of substitutions or maps [x1/a1, . . . , xn/an] for i : 1, . . . , n,
n ≥ 1. We use t[s/x] to denote the term obtained from t by substituting every
free occurrence of x with s. Furthermore, m[v/x] denotes the maps m′ defined
as m′(x) = v and m′(y) = m(y) for every y �= x. To manipulate callbacks
we will use lambda-terms. A variable x, a value v and the constant any are
lambda-terms. For a variable x and a lambda term t, λx.t is a lambda-term.
If t and t′ are lambda-terms, then t(t′) is a lambda-term. A variable x is free
in t if there are occurrences of x in t that are not in the scope of a binder λx.
Lambda terms are usually considered modulo renaming of bounded variable, i.e.,
all free occurrences under the scope of the same binder can be renamed without
changing the abstract structure of the term. If x does not occur free in t′, the
application (λx.t)(t′) reduces to the term t[t′/x] obtained by substituting all free
occurrences of x in t with the term t′.

2.1 Host Language

We assume here that programs are defined starting from sequential programs in
a host language L with basic constructs and (recursive) procedures. Let F be
a denumerable set of function names. Let us consider a denumerable set V al
of primitive values (pure names in our example) and a denumerable set V ar of
variables. Expressions are either values or variables. We will also use the special
term any to denote a non-deterministically selected value and in some example
consider natural numbers and expression with standard semantics. To simplify
the presentation, we will represent programs as words over the alphabet of pro-
gram instructions I with variables in V ar. An (anonymous) callback definition is
a lambda-term λx.s, where x ∈ V ark is the set of formal parameters, and s ∈ I∗.
Now let A be a finite set of names of asynchronous operations. Events is a finite
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set of (internal and external) event labels s.t. Events = Eventsi ∪ Eventse and
Eventsi ∩ Eventse = ∅. V ar may contain variable and function names in F . In
order to define environments we will extend V al in order to contain closures,
i.e., pairs in Env × Callback where Callback is the set of lambda terms that
denotes callback (function) definitions.

Furthermore, we introduce a denumerable set Loc of locations that we use
to denote memory references so as to obtain a semantics with stateful closures.
The association between locations and values will be defined via a global heap
memory H that will be part of the system configuration. The heap memory H
is a list of maps [l1/v1, . . . , lk/vk] s.t. li is a location and vi is a value (primitive
value or closure). We will use Heap to denote the set of possible heaps.

The set of environments Env consists of list of substitutions [x1/l1, . . . , xn/ln]
s.t. xi ∈ V ar and li ∈ V al for i : 1, . . . , n. Given � = [x1/l1, . . . , xn/ln], �(x) = l
if there exists i s.t. xi = x, �i = l, and xj �= x for j > i. In other words to
evaluate x in � we search the first occurrence of x from right to left and return
its value. Given an environment � and the heap memory H, we use �H to denote
the function defined as �H(v) = H(�(v)) for v ∈ V ar.

In this way we can use an environment as a stack and represent therein
nested scopes of variables. Listener is the finite set maps Events → (Env ×
F ∗)∗. A listener maps an event to a sequence of pairs each one consisting of
an environment (the current environment of the caller) and a list of callback
names (defined in the corresponding environment). CallF is the set of callback
calls {f(v)|f ∈ F,v ∈ V alk, k ≥ 0}. CallA is the set of asynchronous calls
{call(a, cb)|a ∈ A, cb ∈ F} where A is a set of labels. Finally, a frame (a record
of the call stack of the main program) is a pair 〈�, u〉 s.t. � ∈ Env and u ∈ I∗.

The host language provides a denumerable set of global variables V arG and
an operation store(x, e) to write the evaluation of expression e in the global
variable x. We assume here that store operations on undefined variables add
the variable to the environment (i.e. global environment can only be extended).
Furthermore, we provide a special operation obs to label specific control points
with the current value of an expression. The label is made observable by labeling
the transition relation with it. The proposed instance of the host language allows
us to design an assertional language to specify properties of computations in the
abstract machine.

A program expression has either the structure let x = e in B where x is a
local variables and e an expression denoting a primitive value (not a function), or
let f1 = λy1.P1, . . . , fk = λyk.Pk in B where P1, . . . , Pk are program expressions
(they may contain let declarations). In both cases B is a finite sequence of
instructions built on top of the above mentioned instruction set. We consider
then the following types of instructions.

– obs(e) is used to observe a certain event (a value)
– store(x, e) is used to store a value (the evaluation of e) in the global or local

variable x. We use the expression any to denote a value non deterministically
selected from the set of values.
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– f(e) is used to synchronously invoke a callback f with the vector of parame-
ters e. Actual parameters are global or local variables.

We assume that all necessary procedure definitions are declared in the pro-
gram (we will introduce an example language with let declarations) so that their
names are always defined in the current local environment. We now define the
set of configurations CL of the host language. CL consists of tuples of the form
〈G,H, S〉, where G ∈ Env, H is the global heap, and S ∈ Frame∗. In other
words S has the form 〈�1, S1〉 . . . 〈�n, Sn〉 for i : 1, . . . , n. A word of frames will
be interpreted as the stack of procedure calls. In a pair 〈�, w〉 � is the local
environment and w is the corresponding program to be executed.

�′ = �[x/l], lH(e) = v, H ′ = H[l/v], l �∈ dom(H)

〈G, H, 〈�, let x = e in B〉 · S〉 →L 〈G, H ′, 〈�′, B〉 · S〉 s1v

�′ = �[f1/l1, . . . , fk/lk], H ′ = H[l1/〈�, λx1.P1〉, . . . , lk/〈�, λxk.Pk〉]
li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, 〈�, let f1 = λx1.P1, . . . , fk = λxk.Pk in B〉 · S〉 →L 〈G, H ′, 〈�′, B〉 · S〉 s1f

〈G, H, 〈�, obs(e) · B〉 · S〉 → ̂�H (e)
L 〈G, H, 〈�, B〉 · S〉

s2

x �∈ dom(�) G · �H(e) = w �= λy.e

〈G, H, 〈�, store(x, e) · B〉 · S〉 →L 〈G[x/w], H, 〈�, B〉 · S〉 s3g

x ∈ dom(�) �H(e) = w �= λy.e �(x) = l

〈G, H, 〈�, store(x, e) · B〉 · S〉 →L 〈G, H[l/w], 〈�, B〉 · S〉 s3l

�H(f) = 〈�′, λy.u〉, G · (�H) · (�′
H)(v) = v′, H ′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, 〈�, f(v) · B〉 · S〉 →L 〈G, H ′, 〈�′′, u〉 · 〈�, B〉 · S〉 s4

〈G, H, 〈�, ε〉 · S〉 →L 〈G, H, S〉 s5

Fig. 1. Operational semantics of the host language

2.2 Operational Semantics

We assume that the operational semantics of programs in L is defined via a
transition system 〈CL,→L〉, where →L⊆ (CL × CL) defines small step opera-
tional semantics of generic statements of programs in L. We will use λ-terms to
represent callbacks in the local environment during program evaluation. In the
semantics of our language, lambda terms are used as values for function names.
Indeed, a local environment � is a map that associates function names to loca-
tions, and H associates locations to lambda expressions. By using location for



An Abstract Machine for Asynchronous Programs 65

both variables and function names we obtain a more general semantics open to
extensions in which variables can contain functions (as in Javascript) that can
be dynamically updates. The transition system is obtained as the minimal set
satisfying the rule schemes defined in Fig. 1. Rule s1v models the semantics of
the let expression for variables with primitive values (we assume here that e is
not a function nor a function call). Its effect is to update the local environment
with a new substitution between the variable name and a fresh location, and the
heap with an association between the new location and the value of the expres-
sion. Rule s1f models the semantics of the let expression. Its effect is to update
the local environment with new substitutions between function names and loca-
tions, and the heap with associations between locations of pairs that represent
the current environment and the lambda term that represents the body of the
callback definition. Rule s2 models the semantics of instructions. This rule cap-
tures the effect of observing an event by exporting the label to the meta-level
(i.e. as a label of the transition step). We assume here that if an expression a is
not defined in �H (and it is not a function name) than it is simply viewed as a
constant, i.e., ̂�H(e) = e if �H(e) is not defined. Rule s3 captures the effect of a
store(x, e) operation. We assume that store is defined only if x is a global vari-
able and e evaluates to a value that is not a function. Furthermore, �(any) ∈ V al
(non deterministically selected). Rule s4 models synchronous calls. In this rule
we first evaluate f in the current local environment to retrieve its definition. We
then evaluate the parameters in the concatenation of global and local environ-
ments. We push a new frame onto the call stack containing a copy of the current
environment (so as to transport the scope information from the current frame
to the new one) concatenated with the evaluation of the parameters and the
body of the function definition. Finally, rule s5 models the return from a call by
eliminating the frame on top of the stack when its body is empty. In our host
language, we can define a stronger rule by observing that local environments are
copied from old to new frames and that local environments are not used as state
by other frames. In other words, we can reason modulo the following equivalence
between stack expressions: (S1 · 〈�, ε〉 · S2) ≡ (S1 · S2).

2.3 Abstract Machine

In this section we define the formal semantics of an abstract machine that can
handle programs as those specified in the previous section extended with built-
in instructions for associating event-handlers (callbacks) to event names, and
to control the priority queues via special enqueues built-in primitives. More
precisely, programs are defined by enriching the language L with the following
control instructions:

– reg(e, u): registers callbacks in the word (list) u ∈ F ∗ for event e, we use a
list since the callbacks must be processed in order.

– unreg(e, P ): unregisters all callbacks in the set P ∈ P(F ) for event e.
– call(op, cb): invokes an asynchronous operation op and registers the callback

cb to be executed upon its termination. We assume here that the operation
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generates a vector of input values that are passed, upon termination of op, to
the callback cb.

– nexttick(f,v): enqueues the call to f with parameters v in the nextTick
queue.

– setimmediate(f,v): postpones the call to function f with parameters v to
the next tick of the event loop.

– trigger(e,v): generates event e ∈ Eventsi (pushing callbacks in the poll
queue) with actual parameters v.

We now define the operational semantics of programs. We first define the
set of configurations CL of the host language. CL consists of tuples of the form
〈G,H, S〉 where G ∈ Env, H is the heap memory, and S ∈ Frame∗. In other
words S has the form 〈�1, S1〉 . . . 〈�n, Sn〉 for i : 1, . . . , n. A word of frames will
be interpreted as the stack of procedure calls. In a pair 〈�, w〉 � is the local
environment and w is the corresponding program to be executed. We assume that
the operational semantics of programs in L are defined via a transition system
〈CL,→L〉, where →L⊆ (CL × CL) defines small step operational semantics of
generic statements of programs in L.

A configuration is a tuple 〈G,H,E, S,C,Q, P,R〉, where G ∈ Env, H ∈
Heap, E ∈ Listener, S ∈ Frame∗, C,Q, P ∈ (Env × CallF )∗, and R ∈
(Env × CallA)⊗. C,Q, P and R are sequences of pairs consisting of a local
environment and of a function invocation. C is the (nexttick) queue of pending
callback invocations generated by nexttick, Q is the (poll) queue of pending call-
back invocations generated by trigger and by external events. P is the (setimme-
diate) queue of pending callback invocations generated by setimmediate. Local
environments are used to evaluate variables defined in the body of a callback at
the moment of registration, synchronous or asynchronous invocation.

We associate to every L-program Π enriched with control instructions a tran-
sition system TΠ = 〈Conf,→〉 in which Conf is the set of configurations, and
→ is a relation in Conf ×Conf . Furthermore, we will use labeled versions of the
transition relations, namely, →α and →α

L, in order to keep track of observations
generated by the evaluation of programs instructions. Labels are either values,
variable or function names. For simplicity, we will use → [resp. →L] to denote
→ε [resp. →ε

L].
The initial configuration is the tuple

γ0 = 〈∅, ∅, ∅, 〈ε, P 〉, ε, ε, ε, ∅〉
where we use ∅ to denote an empty map or multiset, ε to denote empty queues
and local environments (both treated as words). In the rest of the paper we
will use ⊥ to denote the empty call stack (it helps in reading configurations).
In order to evaluate expressions we need to combine G and a local environment
�. We use G · � to indicate the concatenations of the substitutions contained in
G and �. As for environments, to evaluate x we inspect the list of substitutions
in G · � from right to left (a local variable can hide a global one with the same
name). In the rest of the section we assume that procedure names occurring in
a rule are always defined in the corresponding local environment. The transition
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system is obtained as the minimal set satisfying the rule schemes defined in
Fig. 2. Rule r1 is used to embed the semantics of L into the semantics of the
abstract machine. Rule r2 associates the current environment and the ordered
list of callbacks u to the event evt. Everytime evt is triggered, the callbacks in
u will be added to the queue of pending tasks together with the environment
in the same order as they occur in u. Rule r3 unregisters all callbacks in P for
event evt. We use � to denote this operation. Rule r4 assigns a semantics to the
trigger instruction. It corresponds to the combination of emit and setImmediate
discussed in the introduction. The rationale behind this definition is that when
evt is triggered, all registered callbacks are added to the pending queue. The
current local environment is stored together with the callback invocation. The
formal parameters are instantiated with the actual parameters defined in the
trigger statement. The environment can be used to evaluate variables occurring
in the body of the callback definition. The actual parameters v are evaluated
using the composition of the global and local environment.

We now consider asynchronous calls of built-in libraries to be executed in
a thread pool. Rule r5 adds the call to a pool of pending tasks submitted to
the pool thread. We do not model the internal behavior of asynchronous calls.
The only information maintained in R is a pointer to the callback cb that has
to be executed upon termination of the thread execution. The pool R is used
to keep track of the operations that have been submitted to the thread pool.
Since the termination order of these calls is not known a priori and, at least
in principle, the calls might be processed in parallel by different threads, we
abstract from the order and use a multiset for modeling the pool. According to
this idea, rule r6 models the termination of a thread and the invocation of the
corresponding callback cb. We assume here that cb expects k parameters. The
callback is invoked with k non-deterministically generated values (they model
the result returned by the asynchronous call). We remark that the constant a is
used as a label and has no specific semantics (it helps in the examples).

In order to handle the response to external events (e.g. connections, etc.)
we use the non-deterministic rule r7. We assume here that the data generated
by the operation are non-deterministically selected from the set of values and
associated with the formal parameters of the callback functions p1, . . . , pk. Every
callback invocation is stored together with the corresponding local environment.

Rule r8 deals with nextTick callbacks. Invocation of such an operation is
defined as follows. The callback invocation is stored together with the current
local environment. Rule r9 is used to deal with setImmediate invocations. The
callback invocation is stored together with the current local environment. In r8
and r9 the actual parameters are evaluated using the composition of the global
and local environment.

Rule r10 and r11 define the selection of pending tasks. The selection phase
is defined according with the following priority order: nextTick, poll, setImmedi-
ate. nextTick callbacks are selected every time the call stack becomes empty (at
the end of a callback execution). Poll callbacks are selected only when the call
stack is empty and there are no nextTick callbacks to execute. The local envi-
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〈G, H, S〉 →α
L 〈G′, H′, S′〉

〈G, H, E, S, C, Q, P, R〉 →α 〈G′, H′, E, S′, C, Q, P, R〉 r1

E′ = E[evt/(E(evt) · 〈�, u〉)]
〈G, H, E, 〈�, reg(evt, u) · w〉 · S, C, Q, P, R〉 → 〈G, H, E′, 〈�, w〉 · S, C, Q, P, R〉 r2

E′ = E[evt/(E(evt) 	 u)]

〈G, H, E, 〈�, unreg(evt, u) · w〉 · S, C, Q, P, R〉 → 〈G, H, E′, 〈�, w〉 · S, C, Q, P, R〉 r3

evt ∈ Eventsi E(evt) = 〈�1, u1〉 . . . 〈�m, um〉 ui = pi
1 · . . . · pi

ki
for i : 1, . . . , m

r = 〈�1, p1
1(v)〉 · . . . · 〈�1, p1

k1
(v)〉 . . . 〈�m, pm

1 (v)〉 · . . . · 〈�m, pm
km

(v)〉 v ∈ V alk

〈G, H, E, 〈�, trigger(evt, v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q · r, P, R〉 r4

R′ = R ⊕ {〈�, call(a, cb)〉}
〈G, H, E, 〈�, call(a, cb) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q, P, R′〉 r5

u = 〈�, cb(v)〉 v ∈ V alk R′ = R \ {〈�, call(a, cb)〉}
〈G, H, E, S, C, Q, P, R〉 → 〈G, H, E, S, C, Q · u, P, R′〉 r6

evt ∈ Eventse E(evt) = 〈�1, u1〉 . . . 〈�m, um〉 ui = pi
1 · . . . · pi

ki
for i : 1, . . . , m

r = 〈�1, p1
1(v)〉 · . . . · 〈�1, p1

k1
(v)〉 . . . 〈�m, pm

1 (v)〉 · . . . · 〈�m, pm
km

(v)〉 v ∈ V alk

〈G, H, E, S, C, Q, P, R〉 → 〈G, H, E, S, C, Q · r, P, R〉 r7

G · �H(v) = v′

〈G, H, E, 〈�, nexttick(f,v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C · 〈�, f(v′)〉, Q, P, R〉 r8

G · �H(v) = v′

〈G, H, E, 〈�, setimmediate(f,v) · w〉 · S, C, Q, P, R〉 → 〈G, H, E, 〈�, w〉 · S, C, Q, P · 〈�, f(v′)〉, R〉 r9

�H(p) = 〈�′, λy.s〉, G · (�H) · (�′
H)(v) = v′, H′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, E, ⊥, 〈�, p(v)〉 · C, Q, P, R〉 → 〈G, H′, E, 〈�′, s〉, C, Q, P, R〉 r10

�H(f) = 〈�′, λy.s〉, G · (�H) · (�′
H)(v) = v′, H′ = H[l/v′], �′′ = �[y/l],

for l = l1, . . . , lk, li �∈ dom(H), li �= lj , for i, j : 1, . . . , k, i �= j

〈G, H, E, ⊥, ε, p(v) · Q, P, R〉 → 〈G, H′, E, 〈�′, s〉, ε, Q, P, R〉 r11

〈G, H, E, ⊥, ε, ε, P, R〉 → 〈G, H, E, ⊥, ε, P, ε, R〉 r12

Fig. 2. Operational semantics of the abstract machine

ronment is initialized with the stored environment � and the map that associates
parameters to actual values. SetImmediate callbacks are selected only when both
the call stack and the nextTick queue are empty. We assume that the definition
of p is available in the local environment stored with the callback (the global
environment does not contain function definitions). The local environment is ini-
tialized with the stored environment � and the map that associates parameters
to actual values. Finally, in rule r12 all (pending) setImmediate callbacks are
executed before passing to the next tick of the event loop.

Given a program P with initial state γ0 and transition relation →, we use
→∗ to denote the reflexive and transitive closure of →. The sequence of labels
generated during the unfolding of the transition relation → gives rise to possibly
infinite words in Labels∗ that we will use to observe the behavior of a given
instance of the host language when executed in the abstract machine. Starting
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from an initial state γ0, a program can give rise to several different computations
obtained by considering every possible reordering of asynchronous operations.
This feature, in combination with the callback mechanism that can delay the
execution of a function, makes our programs a non trivial computational model
even in the simple case of Boolean programs, i.e., programs in which all data are
abstracted into a finite set of possible values.

We will restrict our attention to infinite executions under fairness conditions
to ensure the termination of asynchronous callbacks after finitely many steps.
Indeed, asynchronous callbacks are typically built-in operations that terminate
with an error if something goes wrong in their execution. Similarly, we might
restrict our attention to infinite executions in which external events, for which
there are registered callbacks, occur infinitely often.

3 Formal Reasoning

In this section we will consider some example of formal reasoning via the tran-
sition systems introduced in the previous sections. For the sake of simplicity,
in all examples but the last one on closures with state, we will omit the heap
component and consider only environments mapping variables to values. We will
use the complete semantics when considering side effects on closures.

Let us first consider the program defined as follows.

P = let f = (let (cb = λx. obs(x)) in call(read, cb) · f) in f()

A possible computation, in which we apply the reduction 〈�, f〉 · 〈�, ε〉 ≡ 〈�, f〉,
is given below.

ρ1 = 〈∅, ∅, ∅, 〈ε, P 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉 s.t. � defines f →
ρ3 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, let cb = λx.obs(x) in call(read, cb) · f〉, ε, ε, ε, ∅〉 →
ρ5 = 〈∅, ∅, ∅, 〈�′, call(read, cb) · f〉, ε, ε, ε, ∅〉 s.t. �′ defines cb →
ρ6 = 〈∅, ∅, ∅, 〈�′, f〉, ε, ε, ε, {〈�′, call(read, cb)〉}〉

In the configuration ρ6 we can either assume that the asynchronous call is already
terminated or continue with the execution of the current callback. In the former
case we have the following continuation.

ρ6 → ρ7 = 〈∅, ∅, ∅, 〈�′, f〉, ε, ε, 〈�′, cb(d)〉, ∅〉 for d ∈ V al

In the latter case we will add a new frame to the call stack with the body of
f . We now observe that, in both cases, the callback stack will never get empty
again. Therefore, the callback cb, defined in the local environment �′, will never
be selected for execution even under additional fairness conditions. As a con-
sequence, the transition system will never generate observations during any of
its infinitely many possible computations (the termination of the asynchronous
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call can happen anytime). This formally explains why in systems like Node.js
everytime the main application has a recursive structure (e.g. to model an infi-
nite loop) in order to make it responsive to external events, it is necessary to
encapsulate the recursive call into invocations of primitives like setImmediate
and nextTick. To illustrate this idea, let us consider the following modified
program.

P1 = let f = (let cb = λx. obs(x) in call(read, cb) · setimmediate(f)) in f()

We obtain the following behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε, P1〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, f〉, ε, ε, ε, ∅〉s.t. � defines f →∗

ρ3 = 〈∅, ∅, ∅, 〈�′, setimmediate(f)〉, ε, ε, ε, {〈�′, call(read, cb)〉}〉 s.t. �′ def. f, cb

Again we have a bifurcation here. For instance, let us assume that read termi-
nates. We obtain then the following computation.

ρ3 → ρ4 = 〈∅, ∅, ∅, 〈�, setimmediate(f)〉, ε, cb(d), ε, ∅〉 →∗

ρ5 = 〈∅, ∅, ∅,⊥, ε, 〈�′, cb(d)〉, 〈�′, f〉, ∅〉 →
ρ6 = 〈∅, ∅, ∅, 〈�′, cb(d)〉, ε, 〈�′, f〉, ∅〉 →
ρ7 = 〈∅, ∅, ∅, 〈�′[x/d], obs(x)〉, ε, 〈�′, f〉, ∅〉 →d

ρ8 = 〈∅, ∅, ∅, 〈�′[x/d], ε〉, ε, 〈�′, f〉, ∅〉 . . .

It is interesting to observe here that callbacks are evaluated in the environment
of the caller. For instance, in this example function cb and f are both defined in
�′, the local environment used to initialize the frame associated to the invocation
cb(d). In other words, under fairness conditions on the termination of asynchro-
nous callbacks, the execution of program P1 generates infinite traces labeled
with an arbitrary sequence of values that correspond to successful termination
of read operations.

To understand the difference between nextTick and setImmediate, let us
first consider the nextTick operation.

NT = let f1 = (λd1.obs(a)), f2 = (λd2.obs(b)), f3 = (λz.obs(c))
in nexttick(f1) · call(b, f2) · call(c, f3)

We then apply our operational semantics to study its behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε,W 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, nexttick(f1) · call(b, f2) · call(c, f3)〉, ε, ε, ε, ∅〉
s.t. � cont. all def. →
ρ3 = 〈∅, ∅, ∅, 〈�, call(b, f2) · call(c, f3)〉, 〈�, f1〉, ε, ε, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, call(b, f2)〉, 〈�, f〉, ε, ε, {call(c, f3)〉

We now have possible bifurcations due delays in the termination of c. We could
for instance reach one of the following two configurations:

ρ5 = 〈∅, ∅, ∅, 〈�, call(c, f3)〉, 〈�, f1〉, call(b, f2), ε, ∅〉
ρ′
5 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, ε, ε, {call(b, f2), call(c, f3)}〉



An Abstract Machine for Asynchronous Programs 71

From the latter we can obtain

ρ′
6 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, call(b, f2) · call(c, f3), ε, ∅〉

ρ′′
6 = 〈∅, ∅, ∅,⊥, 〈�, f1〉, call(b, f3) · call(c, f2), ε, ∅〉

In all cases f1 will be executed before f2 and f3 because of the priority order
used to inspect the queue of pending calls when the call stack becomes empty,
i.e., neither f2 nor f3 can overtake f1.

Now let us consider the same program with setimmediate replacing nexttick.

NT = let f1 = (λd1.obs(a)), f2 = (λd2.obs(b)), f3 = (λz.obs(c))
in setimmediate(f1) · call(b, f2) · call(c, f3)

We then apply our operational semantics to study its behavior.

ρ1 = 〈∅, ∅, ∅, 〈ε,W 〉, ε, ε, ε, ∅〉 →
ρ2 = 〈∅, ∅, ∅, 〈�, setimmediate(f1) · call(b, f2) · call(c, f3)〉, ε, ε, ε, ∅〉
s.t. � cont. all def. →
ρ3 = 〈∅, ∅, ∅, 〈�, call(b, f2) · call(c, f3)〉, ε, ε, 〈�, f1〉, ∅〉 →
ρ4 = 〈∅, ∅, ∅, 〈�, call(b, f2)〉, ε, ε, 〈�, f1〉, {call(c, f3)}〉

We now have possible bifurcations due delays in the termination of c. We could
for instance reach one of the following two configurations:

ρ5 = 〈∅, ∅, ∅, 〈�, call(c, f3)〉, ε, call(b, f2), 〈�, f1〉, ∅〉
ρ′
5 = 〈∅, ∅, ∅,⊥, ε, ε, 〈�, f1〉, {〈�, call(b, f2)〉, 〈�, call(c, f3)〉}〉

From the latter we can obtain one of the following configurations:

ρ6 = 〈∅, ∅, ∅, 〈�, f1〉, ε, ε, {〈�, call(b, f2)〉 · 〈�, call(c, f3)〉}〉
ρ7 = 〈∅, ∅, ∅,⊥, 〈�, call(b, f2)〉 · 〈�, call(c, f3)〉, 〈�, f1〉, ∅〉
ρ8 = 〈∅, ∅, ∅,⊥, 〈�, call(c, f3)〉 · 〈�, call(b, f2)〉, 〈�, f1〉, ∅〉

4 Property Specification Language

The formalization of the operational semantics for an abstract machine for even-
loop based programs has several possible applications. First of all, it gives a for-
mal meaning to complex computational models underlying widely used systems
like Node.js. The informal documentation of operations like nextTick, setIm-
mediate, etc. that we found in the dev site [12] is ambiguous and difficult to
parse. A transition system like the one presented in this paper gives a precise
mathematical meaning to each operation in terms of evolution of configurations.
Based on this, we can use the operational semantics as a formal tool to reason
about computations in the abstract machines. For this purpose, we introduce
an extension of regular expressions in order to handle values from an infinite
domain, i.e., represent labels associated to values. A finite state automata is a
tuple A = 〈Q,Σ, δ, q0〉 in which Q is a finite set of states, δ : Q × Σ → Q is
the transition relation and q0 is an initial state. A computation is a (possibly



72 D. Ancona et al.

infinite) sequence q0a0q1a1q2 . . . s.t. qi+1 = δ(qi, ai) for i ≥ 0. The observation
of a computation q0a0q1a1q2 . . . is the possibly infinite word a0a1a2 . . . of labels
occurring along the computation.

For an alphabet Σ, let ̂Σ = {â|a ∈ Σ}. An extended automata EA is an
automata A = 〈Q,Σ∪ ̂Σ, δ, q0〉. We use x̂ as a sort of variable. The effect of x̂ is to
associate a value v, non deterministically chosen, to x and to instantiate x with v
in every successive transition labeled with x until the next x̂ label is encountered
and so on. If there are no occurrences of â then the label is interpreted as a.
In other words during the unfolding of the transition relation of an extended
automata for each label we maintain its current state. The initial state of label
a is a itself. However everytime we encounter â its state is updated with some
value taken from D. More precisely, the configuration of an extended automata
is a tuple 〈q, ρ〉 where ρ : Σ → D. The initial state is defined as 〈q0, idΣ〉, where
idΣ(a) = a for each a ∈ Σ. Given a configuration 〈q, ρ〉, a ∈ Σ and δ(q, a) = q′,
we have that 〈q, ρ〉 →a 〈q′, ρ〉. Given a configuration 〈q, ρ〉, a ∈ Σ and δ(q, â) =
q′, we have that 〈q, ρ〉 →v 〈q′, ρ′〉 where ρ′(a) = v for some v ∈ D and ρ′(b) = ρ(b)
for b �= a, b ∈ Σ. A computation is a sequence 〈q0, ρ0〉α0〈q1, ρ1〉α1 . . . such that
〈qi, ρi〉 →α

i 〈qi+1, ρi+1〉 for i ≥ 0. The sequence of labels α0α1 . . . is called here
observation. This simple extension of finite automata allows us to represent
observations of value non-deterministically generated during a computation and
passed from one callback to another. By definition, we consider only a finite
number of variables in order to keep the model as simplest as possible. Finally, we
say that a program P conforms to specification given as an extended automata A
iff for every computation c of program P in the abstract machine that generates
a sequence of labels σ, there exists a computation in the extended automata
with observation σ.

To validate examples extracted from Node.js code, we have written a meta-
interpreter in Prolog that can explore all possible bounded executions of the
proposed model and catch unexpected execution orders with respect to specifi-
cations given in a sublanguage of the automata based language proposed in this
section. The interpreter [16] exploits the search mechanism of the Prolog run-
time system in order to analyze sets of executions of a given input program. We
remark that, although Node.js are at first sight sequential programs, their com-
putation is often highly non- deterministic due to the heavy use of asynchronous
operations and internal and external events.

5 Conclusions and Related Work

We have presented a first attempt of formalizing the operational semantics of the
Node.js event-loop asynchronous computation model including some of the more
intricate elements (priority callback queues, nested callbacks, closures) of such
a programming system. Following the underlying structured of the event-based
loop (inspired to the V8 engine), we have formulated the semantics in terms of
an abstract machine operating on a parametric transition system describing the
semantics of the host scripting language. We believe that formal specification



An Abstract Machine for Asynchronous Programs 73

and verification of this kind of systems will be more and more important in
order to improve the development process of Internet of Things applications,
their reliability, and in order to provide non ambiguous documentations of low
level details of primitives like those described in this paper. More work has still
to be done concerning automation of the verification task e.g. by exploiting
approximated algorithms and abstraction for both procedural and functional
scripting languages.

There exist several works on formal models of asynchronous programs. In [10]
the authors provide verification algorithms for asynchronous systems modeled
as pushdown systems with external memory. The external memory is defined as
a multiset of pending procedure calls. Theoretical results on recognizability of
Parikh images of context-free language are used to obtain an algorithmic char-
acterization of the reachable set of the resulting model. The algorithms have
been extended to other types of external memory in [2]. Algorithms for liveness
properties are studied in [7] and for real-time extensions are given in [5]. A com-
plexity analysis of decidable fragments is given in [6]. In [8] the authors consider
a general model of event-based systems in which task are maintained in FIFO
queues. The focus of their analysis again is providing algorithmic techniques for
different types of restrictions of the model via reductions to Petri Nets, PDS,
and Lossy channel systems. In [3] the authors define a model for asynchronous
programs with task buffers in which events and buffers are dynamically created.
Decidable fragments are obtained via reductions to Data nets. Differently from
the above mentioned work, the goal of the present paper is not that of isolat-
ing decidable fragments. We are interested instead in giving a precise semantics
to the interplay between asynchronous architecture like Node.js and scripting
languages executed on top of them see e.g. more empirical works like [1,4]. In
this sense we think that, more than restrictions, our framework needs further
extensions in order to capture for instance objects and dynamic memory alloca-
tion as done in formal semantics of languages like Javascript [9]. Our validation
approach is based on enumeration techniques and partial search similar to tools
used for concurrent systems.
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Abstract. Copyless streaming string transducers (copyless SST) have
been introduced by R. Alur and P. Černý in 2010 as a one-way determin-
istic automata model to define transductions of finite strings. Copyless
SST extend deterministic finite state automata with a set of variables
in which to store intermediate output strings, and those variables can
be combined and updated all along the run, in a linear manner, i.e., no
variable content can be copied on transitions. It is known that copyless
SST capture exactly the class of MSO-definable string-to-string trans-
ductions, and are as expressive as deterministic two-way transducers.
They enjoy good algorithmic properties. Most notably, they have decid-
able equivalence problem (in PSpace).

On the other hand, HDT0L systems have been introduced for a while,
the most prominent result being the decidability of the equivalence prob-
lem. In this paper, we propose a semantics of HDT0L systems in terms
of transductions, and use it to study the class of deterministic copyful
SST. Our contributions are as follows:
(i) HDT0L systems and total deterministic copyful SST have the same

expressive power,
(ii) the equivalence problem for deterministic copyful SST and the equiv-

alence problem for HDT0L systems are inter-reducible, in linear
time. As a consequence, equivalence of deterministic SST is decid-
able,

(iii) the functionality of non-deterministic copyful SST is decidable,
(iv) determining whether a deterministic copyful SST can be transformed

into an equivalent deterministic copyless SST is decidable in poly-
nomial time.

1 Introduction

The theory of languages is extremely rich and important automata-logic corre-
spondances have been shown for various classes of logics, automata, and struc-
tures. There are less known automata-logic connections in the theory of trans-
ductions. Nevertheless, important results have been obtained for the class of
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MSO-definable transductions, as defined by Courcelle. Most notably, it has been
shown by J. Engelfriet and H.J. Hoogeboom that MSO-definable (finite) string
to string transductions are exactly those transductions defined by deterministic
two-way transducers [12]. This result has then been extended to ordered ranked
trees by J. Engelfriet and S. Maneth, for the class of linear-size increase macro
tree transducers [13] and recently to nested words-to-words transductions [10].
MSO-definable transductions of finite strings have also been characterized by a
new automata model, that of (copyless) streaming string transducers, by R. Alur
and P. Černý [2].

Copyless streaming string transducers (SST) extend deterministic finite state
automata with a finite set of string variables X,Y, . . . . Each variable stores
an intermediate string output and can be combined and updated with other
variables. Along the transitions, a finite string can be appended or prepended to
a variable, and variables can be reset or concatenated. The variable updates along
the transitions are formally defined by variable substitutions and the copyless
restriction is defined by considering only linear substitutions. Therefore, variable
update such as X := XX are forbidden by the copyless restriction. The SST
model has then been extended to other structures such as infinite strings [7],
trees [4], and quantitative languages [5].

Two examples of SST are depicted in Fig. 1:

– The SST T0 depicted on the left realizes the function f0 mapping any input
word u ∈ Σ∗ to the word uu, where u is the mirror image of the word u.
Indeed, when the input word u has been read by the automaton, the variable
X contains the word u, while the variable Y contains the word u. Hence, the
final output, defined as XY , is equal to the concatenation uu. It is worth
noting that this SST is copyless.

– The SST T1 depicted on the right realizes the function f1 mapping any input
word u = an, with n ≥ 1, to the output word a2n

. This SST is copyful.

XY

σ

∣
∣
∣
∣

X := Xσ
Y := σY

XX
a

∣
∣X := a

a
∣
∣X := XX

Fig. 1. Two streaming string transducers T0 (left) and T1 (right).

One of the most important and fundamental problem in the theory of trans-
ducers is the equivalence problem, which asks, given two transducers, whether
they realize the same transduction. This problem is well known to be decidable
for rational functions, and more generally for MSO-definable transductions [14],
and hence for copyless SST (in PSpace, as shown in [1]). The problem gets
undecidable when the transducers define binary relations instead of functions:
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it is already undecidable for rational transducers [17], a strict subclass of non-
deterministic SST. However, it was unknown whether, in the functional case,
decidability still holds without the copyless restriction, as mentioned in [3], an
extended version of [4].

HDT0L systems allow to define languages by means of morphism iteration: a
sequence of indices i1, . . . , ik induces a composition of morphisms (one morphism
for each index ij) which, applied on an initial and fixed word, produces a new
word. An important result related to HDT0L systems has been obtained in
the 80’s, see [9]. It states that the equivalence of finite-valued transducers over
HDT0L languages is decidable, with unknown complexity.

In this paper, we build a tight connection between HDT0L systems and
streaming string transducers. To this end, we introduce a new semantics of
HDT0L systems, viewed as transducers. This allows us to prove that (total)
copyful SST and HDT0L systems (seen as transducers) have the same expressive
power, with back and forth transformations of linear complexity. As a corollary
of this result, we obtain that the equivalence problem of copyful SST and the
equivalence problem of HDT0L systems are inter-reducible, in linear time. This
result has two consequences:

– first, the decidability of SST equivalence directly follows from [9],
– second, the functionality problem for non-deterministic (copyful) SST is

decidable.

Note that the decidability of SST equivalence also follows from the two recent
results [8,21].

Last, we study the following subclass definability problem: given a (copyful)
SST, does there exist an equivalent copyless SST? We show that this problem is
decidable in polynomial time, using a reduction to a boundedness problem for
products of matrices studied by Mandel and Simon [20], and show that when
possible, we can build an equivalent copyless SST.

Organization of the paper. We introduce the models of streaming string
transducers and HDT0L systems in Sect. 2. In Sect. 3, we prove that these two
models are equi-expressive. We apply this result to prove the decidability of the
equivalence of copyful SST and of the functionality of non-deterministic SST in
Sect. 4. Last, in Sect. 5, we study the subclass definability problem for copyless
SST.

2 Preliminaries

For all finite alphabets Σ, we denote by Σ∗ the set of finite words over Σ, and
by ε the empty word. Given two alphabets Σ and Γ , a transduction R from Σ∗

to Γ ∗ is a subset of Σ∗ × Γ ∗. It is functional if it defines a function, i.e. for all
w ∈ Σ∗, there exists at most one v ∈ Γ ∗ such that (w, v) ∈ R. The domain of
R, denoted by Dom(R), is the set Dom(R) = {w ∈ Σ∗ | ∃v ∈ Γ ∗, (w, v) ∈ R}.
A transduction is total if Dom(R) = Σ∗. Given two finite alphabets Σ,Γ , a
morphim from Σ∗ to Γ ∗ is a mapping h : Σ∗ → Γ ∗ such that h(uv) = h(u)h(v)
for any two words u, v ∈ Σ∗.
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2.1 Streaming String Transducers

Let X be a finite set of variables denoted by X,Y, . . . and Γ be a finite alphabet.
A substitution s is defined as a mapping s : X → (Γ ∪ X )∗. Let SX ,Γ be the set of
all substitutions. Any substitution s can be extended to ŝ : (Γ ∪X )∗ → (Γ ∪X )∗

in a straightforward manner. The composition s1 ◦ s2 (or s1s2 for short) of
two substitutions s1, s2 ∈ SX ,Γ is defined as the standard function composition
ŝ1 ◦ s2, i.e. (s1s2)(X) = (ŝ1s2)(X) = ŝ1(s2(X)) for all X ∈ X .

Definition 1. A non-deterministic streaming string transducer (NSST for
short) is a tuple T = (Σ,Γ,Q,Q0, Qf ,Δ,X , ρ, s0, sf ) where:

– Σ and Γ are finite alphabets of input and output symbols,
– Q is a finite set of states,
– Q0 ⊆ Q is a set of initial states,
– Qf ⊆ Q is a set of final states,
– Δ ⊆ Q × Σ × Q is a transition relation,
– X is a finite set of variables,
– ρ : Δ → 2SX ,Γ is a variable update function such that ρ(t) is finite, for all

t ∈ Δ,
– s0 : X → Γ ∗ is the initial function that gives the initial content of the vari-

ables,
– sf : Qf → (X ∪ Γ )∗ is the final output function, which gives what is output

for each final state.

The concept of a run of an NSST is defined in an analogous manner to
that of a finite state automaton: it is a finite sequence r ∈ (QΣ)∗Q, denoted
r = q0

σ1−→ q1
σ2−→ q2 . . . qn−1

σn−−→ qn, such that (qi, σi+1, qi+1) ∈ Δ for all
0 ≤ i < n. It is accepting if q0 ∈ Q0 and qn ∈ Qf . A sequence of substitutions
s = 〈si〉1≤i≤n in SX ,Γ is compatible with r if for all 1 ≤ i ≤ n, si ∈ ρ(qi−1, σi, qi).

If r is accepting, the output of r, denoted by Out(r) ⊆ Γ ∗, is defined as

Out(r) = {s0s1 . . . snsf (qn) | 〈si〉1≤i≤n ∈ (SX ,Γ )∗ is compatible with r}.

For all words w ∈ Σ∗, the output of w by T , denoted by T (w), is T (w) =
{Out(r) | r is an accepting run on w}. The domain of T , denoted by Dom(T ), is
defined as the set of words w such that T (w) �= ∅. The transduction �T � defined
by T is the relation from Σ∗ to Γ ∗ given by the set of pairs (w, v) such that
v ∈ T (w).

Deterministic and functional SST. A deterministic SST (SST for short) is an
NSST such that |Q0| = 1 and for all p ∈ Q,σ ∈ Σ, there exists at most one
q ∈ Q such that (p, σ, q) ∈ Δ, and such that for all t ∈ Δ, |ρ(t)| = 1. When an
SST is deterministic, we identify Q0 with q0, and given t ∈ Δ, we write ρ(t) = s
instead of ρ(t) = {s}.

In the following, the streaming string transducers we consider are determin-
istic, unless they are explicitly stated to be non deterministic.
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In [2,6], the variable updates are required to be copyless, i.e. for every
variable X ∈ X , and for every transition t ∈ Δ, X occurs at most once in
ρ(t)(X1), . . . , ρ(t)(Xn) where {X1, . . . , Xn} = X . One of the main result of [2]
is to show that this restriction, as well as determinism, allows one to capture
exactly the class of MSO-definable transductions.

It is worth noting that any SST, since it is deterministic, defines a functional
transduction. More generally, we say that an NSST T is functional if �T � is
functional. It is known that functional NSST with copyless update are no more
expressive than (deterministic) SST with copyless update [6]. We show a similar
result for (copyful) SST:

Proposition 1. Functional NSST and SST are equi-expressive.

Proof. Let T = (Σ,Γ,Q,Q0, Qf ,Δ,X , ρ, s0, sf ) be a functional NSST. Without
loss of generality, we assume that T is trim, i.e. every state of T is reachable
from some initial state, and co-reachable from an accepting state. Any SST can
be made trim by filtering out the states that do not have this property (which
is decidable in PTime).

The main idea is to realize a subset construction on T (a similar construction
was given in [7]). On states, the subset construction is just as the subset construc-
tion for NFA. On variables, one needs to duplicate each variable as many times
as the number of states. The invariant property is the following: after reading a
word w, if there exists a run ρ of T on w leading to q, then for all X ∈ X such
that there exists an accepting continuation w′ of w (i.e. ww′ ∈ Dom(T )) whose
output uses the content of X after ρ, then Xq and X have the same content after
reading w. There might be several runs of T leading to q, but since T is trim
and functional, then content of F does not depend on the chosen run. Hence the
invariant is well-defined.

Formally, we define an equivalent SST T ′ = (Σ,Γ,Q′, q′
0, Q

′
f ,Δ′,X ′, ρ′,

s′
0, s

′
f ) such that (Σ,Γ,Q′, q′

0, Q
′
f ,Δ′) is the DFA resulting from the classical

subset construction (in particular Q′ = 2Q) and such that:

– X ′ = X × Q (each variable is denoted by Xq)
– ∀t′ = (Q1, σ,Q2) ∈ Δ′,∀q2 ∈ Q2,∀X ∈ X , ρ′(t′)(Xq2) = renameq1(ρ(t)(X))

for some q1 ∈ Q1 such that t = (q1, σ, q2) ∈ Δ, where renameq1 is the identity
morphism on Σ and replaces any Y ∈ X by Yq1 . As explained before, the
functionality of T entails that the choice of q1 is not important (a different
choice would give the same value to Xq2). This choice can be made canonical
by using some order on the states of T .

– ∀P ∈ Q′
f , ρ′(P ) = renameq(ρ(q)) for some q ∈ P ∩ Qf . Once again,

by functionality of T , the choice of q does not matter and can be made
canonical. ��
We say that a SST T is total if �T � is total. We also show that regarding

the equivalence problem, considering total SST is harmless, as one can modify
a SST in linear time in order to make it total.
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Proposition 2. Given two SST T, T ′, one can build in linear time two total
SST Ttot and T ′

tot such that �T � = �T ′� iff �Ttot� = �T ′
tot�.

Proof. Indeed, let # �∈ Γ . Any (partial) SST T can be transformed into an SST
Ttot that defines the following transduction: �Ttot�(u) = �T �(u) if u ∈ Dom(T ),
and �Ttot�(u) = # otherwise. This is achieved using a new variable X# whose
content is always #, and by completing the rules of T by adding an accepting
sink state qsink. We also modify final states and the final output function: states
that were not final are declared final, and the final output function associates
with these states the variable X#. ��

2.2 HDT0L Systems

Lindenmayer introduced in the sixties a formal grammar in order to model the
developement process of some biological systems [19]. We consider here a par-
ticular class of these systems, called HDT0L systems (HDT0L stands for Deter-
ministic 0-context Lindenmayer systems with Tables and with an additional
Homomorphism).

Definition 2 (HDT0L System). An HDT0L system over Σ and Γ is defined
as a tuple H = (Σ,A, Γ, v, h, (hσ)σ∈Σ) where:

– Σ, A and Γ are finite alphabets,
– v ∈ A∗ is the initial word,
– h is a morphism from A∗ to Γ ∗,
– for each σ ∈ Σ, hσ is a morphism from A∗ to A∗.

The equivalence problem for HDT0L systems asks, given two such systems
H = (Σ,A, Γ, v, h, (hσ)σ∈Σ) and G = (Σ,A, Γ,w, g, (gσ)σ∈Σ), whether, for every
σ1 . . . σk ∈ Σ∗, we have h(hσ1 . . . hσk

(v)) = g(gσ1 . . . gσk
(w)). This problem is

known to be decidable [9], with unknown complexity. The original proof of [9] is
based on Ehrenfeucht’s conjecture and Makanin’s algorithm. Honkala provided
a simpler proof in [18], based on Hilbert’s Basis Theorem.

In order to transfer this decidability result to SST, we introduce a semantics
of HDT0L systems in terms of transductions.

Definition 3 (Transduction realized by an HDT0L system). Let H =
(Σ,A, Γ, v, h, (hσ)σ∈Σ) be an HDT0L system. We define �H� as a (total) trans-
duction from Σ∗ to Γ ∗ defined by �H�(σ1 . . . σk) = h(hσ1 . . . hσk

(v)).

Example 1. Let us consider the function f0 introduced in the introduction. We
define an HDT0L H0 = (Σ,A,Σ, v0, h, (hσ)σ∈Σ) such that �H0� = f0, with
A = {$1, $2, a, b}, Σ = {a, b}, v0 = $1$2, and the morphisms are defined as
follows:

h : a → a ha : a → a hb : a → a
b → b b → b b → b
$1 → ε $1 → $1a $1 → $1b
$2 → ε $2 → a$2 $2 → b$2
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For instance, we have the following derivation:

�H0�(abb) = hhabb($1$2) = hhab ◦ hb($1$2) = hhab($1bb$2) = hha($1bbbb$2)
= h($1abbbba$2) = abbbba

We can now rephrase the result of [9] as follows:

Theorem 1 [9]. Given two HDT0L systems H1,H2 over Σ and Γ , it is decid-
able whether �H1� = �H2�.

In the next section, we show that HDT0L systems and SST define the same
class of transductions.

3 SST and HDT0L Systems Are Equi-Expressive

Let Σ and Γ two alphabets. In this section, we always consider that SST and
HDT0L systems are over Σ and Γ . We prove the following theorem:

Theorem 2. HDT0L systems over Σ and Γ and total SST define the same class
of transductions. Moreover, the constructions are effective in both directions, in
linear-time.

A direct consequence of this result is:

Corollary 1. The equivalence problems for HDT0L systems and for (copyful)
streaming string transducers are inter-reducible in linear time.

We prove successively the two directions of Theorem 2.

Lemma 1. For all HDT0L systems H, there exists an equivalent (total) SST T
with only one state.

Proof. Let H = (Σ,A, Γ, v, h, (hσ)σ∈Σ) be an HDT0L system. We construct a
total SST T over Σ and Γ such that �T � = �H�. The SST has one state q,
both initial and accepting. Its set of variables is the set X = {Xa | a ∈ A}. Its
transitions are defined by q

σ−→ q for all σ ∈ Σ.
To define the update functions, we first introduce the morphism renameX :

A∗ → X ∗ defined for all a ∈ A by renameX(a) = Xa. Then, the update function
ρ is defined, for all σ ∈ Σ and a ∈ A by ρ((q, σ, q))(Xa) = renameX(hσ(a)).

Finally, the initial function is defined by s0(Xa) = h(a) for all a ∈ A, and
the final function sf by sf (q) = renameX(v). ��
Example 2. For the HDT0L system H0 of Example 1, we obtain the SST T2

depicted in Fig. 2.

We now prove the converse.

Lemma 2. For all total SST T , there exists an equivalent HDT0L system H.
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q1 X$1X$2

Xa := a
Xb := b

X$1 := ε
X$2 := ε

σ

∣
∣
∣
∣
∣
∣
∣
∣

Xa := Xa

Xb := Xb

X$1 := X$1Xσ

X$2 := XσX$2

Fig. 2. A SST T2.

Proof. Let T = (Σ,Γ,Q, q0, Qf ,Δ,X , ρ, s0, sf ) be a total SST (remember that
by default an SST is deterministic). We define an equivalent HDT0L H as follows.

We consider the finite alphabet A = {αq | α ∈ Γ ∪ X , q ∈ Q}. For every
q ∈ Q, we consider the morphism subscriptq : (Γ ∪ X )∗ → A∗ defined for all
α ∈ Γ ∪ X by subscriptq(α) = αq.

As T is total, we have that Qf = Q. We consider an enumeration q1, . . . , qn

of Q. We define the initial word v as follows:

v = subscriptq1(sf (q1)) . . . subscriptqn
(sf (qn))

We define the morphim h : A∗ → Γ ∗ as follows:

h : γq0 → γ with γ ∈ Γ
Xq0 → s0(X) with X ∈ X
αq → ε with q �= q0 and α ∈ Γ ∪ X

Last, given σ ∈ Σ we define the morphism hσ : A∗ → A∗ as follows. Given a
state q, we define the set Preσ

q ⊆ Q as the set of states p such that (p, σ, q) ∈ Δ.
We define: (by convention, the product over the empty set gives the empty

word)
∀γ ∈ Γ, hσ(γq) = Πp∈Preσ

q
subscriptp(γ)

∀X ∈ X , hσ(Xq) = Πp∈Preσ
q
subscriptp(ρ(p, σ, q)(X))

Intuitively, the HDT0L system simulates the computations of the SST in
a backward manner, starting from the final states. These computations are
encoded using the labelling of symbols by states. One can easily prove by induc-
tion on the length of some input word w that after reading w, for every state q,
the projection of hw(v) on the subalphabet subscriptq(Γ ∪X ) encodes the run of
the SST on w starting in state q, which is unique since T is deterministic. The
morphism h then simply erases parts of the computations that did not reach the
initial state q0. ��

We point out the following result, which follows from Lemmas 1 and 2:

Corollary 2. For all SST T , one can construct in polynomial time an equivalent
SST T ′ such that the underlying input DFA of T ′ is the minimal complete DFA
recognizing Dom(T ).
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Proof. If T is total, then the result is a direct consequence of the successive
application of Lemmas 2 and 1. Note that in this case, T ′ has only one state.

If T is not total, we make it total as in the proof of Proposition 2, and
obtain a total SST S which can be converted into a single state SST S′. Then,
we minimize the underlying input DFA of T (which recognizes Dom(T )) into a
minimal complete DFA Amin. Finally, T ′ is defined as a kind of product of S′

and Amin: if Amin = (Σ,P, p0, Pf , δ) and S′ = (Σ,Γ, {q}, q, {q}, {(q, σ, q) | σ ∈
Σ},X , ρ, s0, sf ), then we let T ′ = (Σ,Γ, P, p0, Pf , δ,X , ρ′, s0, s′

f ) where:

– ρ′(p, σ, p′) = ρ(q, σ, q) for all (p, σ, p′) ∈ δ,
– s′

f (pf ) = sf (q) for all pf ∈ Pf . ��
Remark 1. By this corollary, any total SST is equivalent to some single state
SST.

4 Applications: SST Equivalence and Functionality
of NSST

Based on the correspondence between SST and HDT0L systems, and the fact
that the HDT0L system equivalence problem is decidable, we show that that the
SST equivalence and functionality problems are decidable.

Theorem 3. 1. Given two SST T and T ′, it is decidable whether they are equiv-
alent, i.e. �T � = �T ′�.

2. Given an NSST T , it is decidable whether T is functional.

Proof. The first statement is straightforward by Theorems 1, 2 and
Proposition 2.

To prove the second statement, we reduce the functionality problem
to the equivalence of two (deterministic) SST T1 and T2. Let T =
(Σ,Γ,Q,Q0, Qf ,Δ,X , ρ, s0, sf ) be an NSST. We extend the alphabet Σ with
pairs of rules of T as follows: Σ′ = Σ × Δ2. Now, T1 and T2 are defined as the
square of T : they run on words w′ over Σ′, and make sure that the sequence
of transitions are valid runs of T on the Σ-projections of w′. In addition, Ti

simulates T on the (i+1)-th component, for all i = 1, 2, by following the transi-
tions defined on the input letters. Clearly, T1 and T2 have the same domain, are
deterministic, and are equivalent iff all pairs of accepting runs of T on the same
input word produce the same output, i.e., iff T is functional. The conclusion
follows from statement 1. ��

5 Deciding the Subclass of Copyless SST

The subclass of copyless SST is of great interest, as it exactly corresponds to
the class of regular functions which enjoys multiple characterizations (MSO
transductions and deterministic two-way transducers for instance) and has been
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widely studied in the literature (see for instance [16] for a survey). Given a copy-
ful SST, it is thus a natural question whether there exists an equivalent copyless
SST and if so, whether one can actually compute such an equivalent machine.
In this section, we answer these questions positively:

Theorem 4. Given an SST T, it is decidable in PTime whether there exists an
equivalent copyless SST. If this is the case, one can build an equivalent copyless
SST.

It is well-known that copyless SST define transductions f that are linear-size
increase (LSI for short), i.e. there exists some constant M such that for every
w, we have |f(w)| ≤ M |w| (this can be observed for instance using the MSOT
presentation). We will use this semantical condition in order to solve the above
problem.

Proof. Let T = (Σ,Γ,Q, q0, Qf ,Δ,X , ρ, s0, sf ) be an SST. Consider a run q0
σ1−→

q1 . . . qn−1
σn−−→ qn = p of T starting in the initial state. By definition of the

semantics of T , after this run, one can associate, in state p, with variable X the
content ν(X) ∈ Γ ∗ defined as s0s1 . . . sn(X) where si = ρ(qi−1, σi, qi). We use
the notation q0

σ1...σn−−−−→ (p, ν) to describe this fact, and may remove the label
σ1 . . . σn when it is useless.

We also say that a pair (p,X) ∈ Q×X is co-accessible whenever there exists
a run starting in state p reaching a final state qf such that the final output
sf (qf ) involves a variable whose content depends on the content of X at the
beginning of the run. In other words, the content of X at configuration (p,X)
flows into sf (qf ), i.e. X is “useful” for sf (qf ). This intuitive notion of variable
flow is formally defined in [15].

We introduce the following objects:

– we let val(p,X) = {ν(X) ∈ Γ ∗ | there exists a run q0 → (p, ν)}
– we let INF = {(p,X) | (p,X) is co-accessible and val(p,X) is infinite}
– we define (p,X)

u|n−−→ (q, Y ) if there exists a run from p to q on word u on
which X flows n times in Y . We may omit u when it is useless.

Claim: �T � is definable by a copyless SST iff there exists K ∈ N such that
for all (p,X) n−→ (q, Y ) with (p,X), (q, Y ) ∈ INF , we have n ≤ K.

Before proving the claim, we show that it implies decidability. First, the
set INF is computable in polynomial time (fixpoint computation in the set
of pairs (p,X) ∈ Q × X ). Second, we define the following set M of square
matrices indexed by elements of INF with coefficients in N ∪ {⊥}. We suppose
that ⊥ behaves as 0: for every integer n ∈ N, we have n.⊥ = ⊥.n = ⊥ and
n+⊥ = ⊥+n = n. The set M is defined as the set of finite products of matrices
{Ma | a ∈ Σ}, where, for each letter a ∈ Σ, we define matrix Ma by:

Ma[(p,X), (q, Y )] =
{

n if (p, a, q) ∈ Δ and |ρ(p, a, q)(Y )|X = n
⊥ if (p, a, q) �∈ Δ
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We then observe that the right property of the claim is satisfied iff the set M is
finite. By Mandel and Simon [20], this last property is decidable in polynomial
time.

We turn to the proof of the claim:

⇒ We prove the contraposition, by showing that if the right property of the claim
is not satisfied, then �T � is not LSI, which implies that �T � is not definable by
a copyless SST as copyless SST are LSI. We thus assume that the set of flow
matrices defined previously is not bounded. By the characterization proven
in Mandel and Simon of this property, two cases may occur:
1. there exists (p,X) ∈ INF such that (p,X) n−→ (p,X) with n ≥ 2,

2. there exist (p,X), (q, Y ) ∈ INF such that (p,X)
u|n1−−−→ (p,X),

(p,X)
u|n2−−−→ (q, Y ) and (q, Y )

u|n3−−−→ (q, Y ), with n1, n2, n3 ≥ 1, for some
word u.

In the first case, using the fact that (p,X) ∈ INF , one can prove that �T � is
not LSI.
In the second case, for every n ≥ 1, one has (p,X)

un|m−−−→ (q, Y ) for some
m ≥ n. Again, one can use this property to show that �T � is not LSI.

⇐ The constraint expressed by the right property of the claim precisely states
that, with respect to pairs (p,X) ∈ INF , the SST is bounded copy. One
can then easily remove variables (p,X) that do not belong to INF , so as to
obtain a bounded copy SST, and it is known that every bounded copy SST
can be turned into an equivalent copyless SST [7,11]. ��

6 Conclusion

Our results establish a bridge between the theory of SST and the theory of
systems of iterated morphisms. It allows to solve an interesting open problem
for copyful streaming string transducers, namely the decidability of the equiv-
alence problem. We have also proven the decidability of functionality for non-
deterministic SST, and that of the subclass of copyless SST, using a reduction
to a boundedness problem.

We hope that these positive decidability results will pave the way to a further
study of the class of copyful SST. As future work, we want to investigate what
the theory of iterated morphisms can bring to the theory of SST, and conversely,
in terms of tight complexity results. For instance, the class of copyless SST, for
which equivalence is PSpace-complete, could have an interesting interpretation
in terms of HDT0L systems.
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Abstract. Interpreting formulas over infinite-state relational structures
whose states are words over some alphabet and whose relations are
recognised by transducers is known under the term “automatic struc-
tures” in the world of predicate logic, or as “regular model checking” in
formal verification. Both approaches use synchronised transducers, i.e.
finite automata reading tuples of letters in each step. This is a strong
transducer model with high expressive power leading to undecidability of
model checking for any specification language that can express transitive
closure.

We develop conditions on a class of binary word relations which are
sufficient for the CTL model checking problem to be computable over the
class of automatic structures generated by such relations. As an example,
we consider recognisable relations. This is an interesting model from an
algebraic point of view but it is also far less expressive than those given
by synchronised transducers. As a consequence of the weaker expressive
power we obtain that this class satisfies the aforementioned sufficient
conditions, hence we obtain a decidability result for CTL model check-
ing over a restricted class of infinite-state automatic structures.

1 Introduction

Model checking is a well-known model-based method for proving correctness
of the behaviour of dynamic systems [4]. The earliest approaches were con-
fined to finite-state systems [15], limited by the rather obvious undecidability
of checking even the simplest temporal properties – namely reachability – on
arbitrary infinite-state spaces. The ability to also model check infinite-state sys-
tems is indispensable for the verification of software systems, though. Much
effort has therefore gone into the design and study of model checking procedures
for infinite-state systems, mainly focussing on particular classes of finitely rep-
resentable infinite-state systems like pushdown systems [10,34], Petri nets [28],
process algebraic descriptions of infinite-state systems [20,25], recursion schemes
[26], etc.

A rich formalism that gives rise to particular infinite-state systems is known
as automatic structures [6]. The name is derived from the fact that (finite-state)
automata play a major role in the construction of such systems: their states are
represented as finite words, and the relations in these structures are recognised by
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 87–100, 2017.
DOI: 10.1007/978-3-319-67089-8 7
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synchronous transducers. Standard automata-theoretic constructions can then
be used to show that the model checking problem for First-Order Logic (FO)
is decidable over such structures [7]. It is also not difficult to see that model
checking for Transitive Closure Logic already – the extension of FO with an
operator to express inclusion in the transitive closure of some binary relation
– becomes undecidable as the configuration graph of a Turing Machine can be
modelled as an automatic structure.

The richness and flexibility of this framework makes it interesting for verifi-
cation purposes, despite the fact that even the simplest specification languages
for typical correctness properties in verification incorporate transitive closures in
some form or other [14]. This has led to the study of regular model checking [9], a
term describing the framework of verifying labelled transition systems (i.e. rela-
tional structures with unary and binary relations only) represented as automatic
structures. Interestingly, the use of such structures in the rather difficult domain
of verification of temporal properties has started a while before the positive and
elegant results on FO model checking were discovered [22,36].

Research on regular model checking has seen a great amount of effort spent
on the computation of transitive closures [12,31] using various techniques that
circumvent undecidability issues, for instance by giving up completeness or pre-
cision, like fixpoint acceleration [1,21], widening [32], abstraction [8], inference
[18], etc.

One can argue that the restriction to the computation of transitive closures
still facilitates “doing model checking”, at least for relatively simple temporal
properties like safety or liveness. The approximative nature of procedures like
the ones cited above usually prohibits the study of combinations of such proper-
ties, as safety verification typically requires over-approximations whereas liveness
verification needs under-approximations.

In this paper we want to study the possibility to do model checking for
a richer class of temporal properties than just safety or liveness. The simple
branching-time temporal logic CTL [11] provides a framework for the specifica-
tion of combinations of such properties. Our object of interest is therefore the
model checking problem for CTL over automatic structures. As stated above,
this problem is clearly undecidable, and the multitude of work that has gone
into studying the subproblem of verifying liveness or safety properties shows
that one cannot expect to find many positive results for regular CTL model
checking unless one gives up completeness, precision, or expressive power. We
aim to retain completeness and precision and study the case where expressive
power is limited on the side of the automatic structures rather than the temporal
specification language. We consider a particular case of automatic structures for
which the accessibility relation is recognisable. The concept of recognisability,
defined via morphisms onto a finite monoid, is central in the field of algebraic
automata theory. An overview over the classes of relations in focus and the notion
of recognisability and synchronisation can be found in [5,29].

The class of recognisable relations is a proper subclass of the synchronous
ones. Hence, the class of automatic structures defined over them is significantly
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smaller than the class of automatic structures over synchronous transducers. It
remains to be seen whether this class includes families of structures that are
interesting for software verification purposes for instance. On the other hand, a
consequence of this loss in expressive power is – as we show here – that CTL
model checking, i.e. including the verification of simple safety or liveness proper-
ties, as well as combinations thereof, is decidable over this class of infinite-state
systems.

The paper is organised as follows. In Sect. 2 we recall CTL and transition
systems as its standard model of interpretation. CTL model checking over auto-
matic structures defined by recognisable relations is not meant to be the ultimate
goal in infinite-state verification; instead we want to provide the basis for the
study of temporal logic model checking over restricted classes of automatic struc-
tures here. We therefore present a generic description of automatic structures as
transition systems, parametrised by the machinery used to define its transition
relation; recognisable relations and their corresponding automaton model are
one example of such machinery that falls into this framework, and it is the one
studied in further detail here.

Section 3 recalls the generic bottom-up global CTL model checking algo-
rithm, and it then develops necessary criteria on the underlying structures for
this algorithm to be terminating and correct. In Sect. 4 we then consider the
aforementioned recognisable relations, resp. the automatic structures generated
by them and show that they satisfy the necessary conditions laid out before.
Hence, we get decidability of CTL model checking over this class of automatic
structures. Finally, Sect. 5 concludes with remarks on further work in this area.

2 Preliminaries

2.1 Labelled Transition Systems

Let P = {p, q, . . .} be a set of proposition symbols. A labelled transition system
(LTS) is a T = (S,−→, �) where S is a (possibly infinite) set of states, −→ ⊆ S×S
is the transition relation which is always assumed to be total, i.e. for every s ∈ S
there is a t ∈ S with (s, t) ∈ −→. We usually write s−→ t instead of (s, t) ∈ −→.
Finally, � : P → 2S is a partial labelling function which assigns sets �(p) of states
in which p is true, to some propositions p. We assume that �(p) is defined for
finitely many p only, for otherwise it is not clear how an LTS should be finitely
representable as (part of the) input to an algorithm solving some computation
problem.

Let S ⊆ S. We write PreT (S) for the set of predecessors of S, i.e. {t ∈ S |
∃s ∈ S s.t. t −→ s}.

A path in T starting in state s is an infinite sequence π = s0, s1, . . . such that
s0 = s and si −→ si+1 for all i ≥ 0. For such a path π and i ∈ N let π(i) denote
its i-th state, i.e. si. Let ΠT (s) denote the set of all paths in T that start in s.
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2.2 The Branching-Time Logic CTL

Let P be as above. Formulas of the branching-time logic CTL are built according
to the following grammar.

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | EXϕ | E(ϕUϕ) | EGϕ

where p ∈ P.
Besides the usual abbreviations for the Boolean operators like ∧,→, tt, ff we

also introduce the standard temporal operators via E(ϕ Rψ) := E(ψ U (ϕ ∧ ψ)) ∨
EGψ, AXϕ := ¬EX¬ϕ, A(ϕ Rψ) := ¬E(¬ϕ U¬ψ), EFϕ := E(tt Uϕ), AGϕ := ¬EF¬ϕ,
and AFϕ := ¬EG¬ϕ.

Formulas of CTL are interpreted over labelled transition systems T =
(S,−→, �). The semantics inductively defines the set of states at which each sub-
formula is true.

[[p]]T := �(p)

[[ϕ ∨ ψ]]T := [[ϕ]]T ∪ [[ψ]]T

[[¬ϕ]]T := S \ [[ϕ]]T

[[EXϕ]]T := {s ∈ S | ∃t ∈ S s.t. s−→ t and t ∈ [[ϕ]]T }
[[E(ϕ Uψ)]]T := {s ∈ S | ∃π ∈ ΠT (s), i ≥ 0 s.t. π(i) ∈ [[ψ]]T

and for all j < i : π(j) ∈ [[ϕ]]T }
[[EGϕ]]T := {s ∈ S | ∃π ∈ ΠT (s) s.t. for all i ≥ 0 : π(i) ∈ [[ϕ]]T }

The (global) model checking problem for CTL and a class of labelled transi-
tion systems is: given a T ∈ and a ϕ ∈ CTL (over the same set of atomic
propositions), compute [[ϕ]]T . It is well-known that the model checking problem
for CTL over finite LTS is computable in polynomial time [15].

2.3 Automatic Structures

We are interested in particular LTS over infinite state spaces, known as auto-
matic structures [6]. Originally, the term refers to (possibly infinite) relational
structures that can be represented using automata. Here we consider a slightly
modified variant that does not bear any essential differences. First, we restrict
our attention to unary and binary relations – note that LTS are specific rela-
tional structures such that the arities of their relations are two (for the transition
relation) and one (for all the atomic propositions).

Second, we consider a slight generalisation, owed to the limits that the orig-
inal proposal faces in terms of decidability issues. In the original definition of
automatic structures, relations are recognised by synchronous transducers, i.e.
finite automata over alphabets of the form Σk for some k ≥ 1 (which equals
the arity of the underlying relation). This makes the concept of an automatic
structure a syntactic definition.
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The aim of this work is to find (restricted) classes of automatic structures
for which the CTL model checking problem is computable. One way to obtain
this is to study restricted mechanisms for defining the relations in an LTS. We
therefore prefer a semantic definition of automatic structures here, allowing the
representation mechanism to become a parameter for a class of infinite-state
structures.

We assume the reader to be familiar with the basic notions of formal language
theory and the theory of finite-state automata. We use Σ for a finite alphabet
and Σ∗ for the set of all finite words over Σ. The empty word is denoted by ε.

A nondeterministic finite automaton (NFA) over Σ is a A = (Q,Σ, qI , δ, F )
with finite state set Q, initial state qI ∈ Q, final states F ⊆ Q and transition
relation δ : Q × Σ → 2Q. The language of A is denoted L(A), and it consists
of all words w ∈ Σ∗ for which there is an accepting run of A on w. We use the
standard homomorphic extension δ̂ of δ to words via δ̂(q, ε) = {q} and δ̂(q, wa) =
{q′ | ∃q′′ ∈ δ̂(q, w) s.t. q′ ∈ δ(q′′, a)}. Hence, L(A) = {w | ∃f ∈ δ̂(qI , w)}.

For our notion of automatic structure we need an abstract concept of a
mechanism that represents binary relations over words.

Definition 1. A binary acceptor A is any finite representation of a binary rela-
tion R(A) ⊆ Σ∗ × Σ∗.

This yields a parametric notion of automatic structures.

Definition 2. Let A be a class of binary acceptors over some alphabet Σ.
An LTS T = (S,−→, �) is said to be an A-automatic transition system, or A-
automatic in short, if

– S = Σ∗,
– for each p ∈ P with �(p) 
= undef there is an NFA Ap s.t. L(Ap) = �(p),
– there is a binary acceptor Atr ∈ A s.t. R(Atr) = {(s, t) | s−→ t}.

Thus, roughly speaking, a transition system is automatic, if the labels are
represented by an NFA and the transition relation by a binary acceptor. The
size of an A-automatic structure T , denoted |T |, is the sum of the sizes of the
NFA used to define the interpretation of the atomic propositions plus the size of
the binary acceptor, assuming that some sensible notion of representation size
is given for it.

The standard notion of an automatic structure as known from [6] – at least
when restricted to one binary and otherwise only unary relations – is obtained
in this setting as a Tsync-automatic transition system with Tsync being the class
of synchronous transducers, i.e. NFA over the alphabet Σ2 ∪{(a,#), (#, a) | a ∈
Σ}. The relation of such a transducer A is then defined as R(A) = {(u, v) |
zip(u, v) ∈ L(A)} where zip merges the two words u, v ∈ Σ∗ into a two-tracked
word over Σ2, possibly appending the padding symbol # in case their lengths
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are not equal. It is inductively defined via

zip(au, bv) :=
(

a
b

)
zip(u, v), zip(ε, bv) :=

(
#
b

)
zip(ε, v),

zip(au, ε) :=
(

a
#

)
zip(u, ε), zip(ε, ε) := ε,

where a, b ∈ Σ and u, v ∈ Σ∗.
Another example of a binary acceptor is given by the notion of recognisable

relations, to be looked at in detail in Sect. 4 as a mechanism to define a class
of automatic structures we call recognisable automatic structures. The notion
of binary acceptor is flexible enough, though, to incorporate all sorts of other
mechanisms for defining binary relations. For instance a pair of two NFAs (A,B)
with R(A,B) = L(A) × L(B) would also be a very simple case of a binary
acceptor, leading to what one may call fully asynchronous automatic structures.
In fact, such a pair yields a very special case of a recognisable relation.

3 Model Checking CTL

We describe the generic and well-known procedure that can be used to compute
the set of states in a transition system which satisfy a given CTL formula [10].
It can immediately be derived from the semantics and the fixpoint principle,
stating that the set of states satisfying E(ϕUψ), resp. EGϕ, can be computed
iteratively in a least, resp. greatest fixpoint recursion.

Note that the procedure ModelCheck as given in Algorithm 1 is not an
algorithm strictly speaking: if |S| < ∞ then clearly PreT (·) is computable,
and termination of the repeat-until-loops is guaranteed by monotonicity and
boundedness of the values of the variable T in both cases. Hence, procedure
ModelCheck can safely be called an algorithm for CTL model checking on
finite structures.

In case of |S| = ∞, termination is not necessarily guaranteed. This does
not mean, though, that computability of the model checking problem is not
given. As in the case of FO model checking on automatic structures which only
uses computable operations on possibly infinite sets, a thorough look at Mod-
elCheck reveals some sufficient conditions under which CTL model checking
becomes computable. For this, we assume the given LTS to be A-automatic for
some class A. Then the computability of the Boolean operations is guaranteed
for as long as they are applied to sets of states which form a regular language.
Moreover, computability of the Pre (·)-predicate is needed, which is the counter-
part to closure under projections in the decidability proof for FO model checking
on automatic structures. At last, we need one more property which has no coun-
terpart in FO model checking, since FO has no recursion mechanism but CTL
has one in the form of the temporal operators EU and EG.

Definition 3. Let A be a class of binary acceptors and T be a class of
A-automatic structures. We say that T has finite U-closure ordinals if for any
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Algorithm 1. The standard procedure for model checking CTL.
procedure ModelCheck(ϕ) � assume LTS T = (S, −→, �) fixed

case ϕ of
p: return �(p) � p ∈ P
¬ψ:

return S\ ModelCheck(ψ)
ψ1 ∨ ψ2:

return ModelCheck(ψ1) ∪ ModelCheck(ψ2)
EXψ:

return PreT (ModelCheck(ψ))
E(ψUχ):

L1 ← ModelCheck(ψ); L2 ← ModelCheck(χ); M ← ∅
repeat

M ′ ← M ; M ← L2 ∪ (L1 ∩ PreT (M))
until M = M ′

return M
EGψ:

L ← ModelCheck(ψ); M ← S
repeat

M ′ ← M ; M ← L ∩ PreT (M)
until M = M ′

return M
end case

end procedure

T ∈ T and any regular languages L1, L2 the increasing chain M0 ⊆ M1 ⊆ . . .
becomes stationary where

M0 := ∅, Mi+1 := L2 ∪ (L1 ∩ PreT (Mi)).

Likewise, we say that T has finite G-closure ordinals if for any T ∈ T and any
regular language L the decreasing chain M0 ⊇ M1 ⊇ . . . becomes stationary
where

M0 := Σ∗, Mi+1 := L ∩ PreT (Mi).

We say that T has finite closure ordinals if it has finite U- and finite G-closure
ordinals.

Here, becoming stationary means that there is an n ∈ N such that Mn+1 =
Mn. It is a simple consequence of the monotonicity of the operators PreT (·),
union and intersection that the series (Mi)i≥0 indeed forms an increasing, resp.
decreasing chain.

Lemma 4. The model checking problem for CTL over the class T of
A-automatic transition systems is computable if

(a) for any LTS T ∈ T and any regular language L, the set PreT (L) is effectively
regular, i.e. an NFA can be computed for it from an NFA for L, and

(b) T has finite closure ordinals.
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Proof. It is a standard exercise to show by induction on the structure of ϕ that
calling ModelCheck(ϕ) on T returns [[ϕ]]T [4, Theorem 6.23] [13, Lemma 7.3.4],
provided that it terminates. It then only remains to see that termination is
guaranteed when each call to any of the two repeat-until loops terminates.

First we note that by assumption (a), each subcall to ModelCheck returns a
regular language. Then assumption (b) is applicable and guarantees termination
of the loops since they iterate through the values of the chains from Definition 3
in their variables M and M ′ until they become stable. ��

4 CTL Model Checking over Recognisable Automatic
Transition Systems

In this section we examine a particular class of binary acceptor and the com-
putability of the CTL model checking problem over automatic structures gener-
ated by this class. Semantically, it consists of the class of recognisable relations
which forms a proper subclass of the relations represented by synchronous trans-
ducers. These, in turn, are included in the well-known class of rational relations
[29, Theorem 6.4].

An automaton model for the class of recognisable relations can immediately
be derived from the fact that every recognisable relation can be expressed as
the finite union of the product of some regular languages [5, Theorem 1.5]. This
gives rise to a syntactic transducer model for these relations.

Definition 5. An input-output-independent (IOI) automaton is a triple A =
(I,O, F ) such that I = (QI, Σ, qII , δI, ∅) and O = (QO, Σ, qOI , δO, ∅) are NFAs
and F ⊆ QI × QO.

The relation defined by an IOI automaton is

R(A) := {(u, v) ∈ Σ∗ × Σ∗ | ∃(p, q) ∈ F s.t. p ∈ δ̂Ii (qII , u) and q ∈ δ̂Oi (qOI , v)}.

Intuitively, an IOI automaton is a pair of NFAs which are only synchronised
via final states. They read the input and output word independently, and the
acceptance condition prescribes which pairs of states their runs need to end in
for the pair of words to be accepted. Clearly, IOI automata are a special form
of binary acceptors according to Definition 1. Hence, they give rise to a class of
automatic structures, henceforth called recognisable automatic structures.
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Example 6. Let A = (I,O, F ) be the IOI automaton such that I and O are both
the following NFA.

A state at the bottom is reached by a word that contains exactly two b’s,
hence, it is of the form an1ban2ban3 for some n1, n2, n3 ≥ 0. Such a state x1x2x3

then indicates the parities (even/odd) of n1, n2 and n3.
The final state pairs of A are those of the row at the bottom that differ in

at least two positions, i.e.

F := {(x1x2x3, y1y2y3) | xi 
= yi for at least two i ∈ {1, 2, 3}}.

Thus, a pair of words (an1ban2ban3 , am1bam2bam3) is in R(A), iff ni = mi mod 2
for at most one i ∈ {1, 2, 3}.

A generates a recognisable automatic structure with state space {a, b}∗ that
is partly shown in Fig. 1. The grey circles denote subgraphs of nodes of the form
an1ban2ban3 for which the values of n1 + n2 + n3 do not differ. The dashed line
abbreviates edges from every node in the left subgraph to the node on the right.
Note that R(A) is symmetric in this case, simply because I = O and F happens
to be symmetric.

Fig. 1. An excerpt of the relation R(A) for the IOI automaton A from Example 6.

In order to prove computability of the model checking problem for CTL over
recognisable automatic structures it suffices to show that this class satisfies the
two conditions laid out in Lemma 4.

Lemma 7. Let L be a regular language and T be a recognisable automatic struc-
ture. Then PreT (L) is effectively regular.

Proof. Let L be a regular language accepted, e.g., by some NFA B =
(QB, Σ, qBI , δB, FB) and let A = (I,O, FA) be the IOI automaton that recognises
the transition relation of some recognisable automatic structure T . Consider the
IOI automaton A � B := (I,O′, F ) with O′ = (QO × QB, Σ, (qOI , qBI ), δ, ∅),

δ((p, q), a) = {(p′, q′) | p′ ∈ δO(p, a), q′ ∈ δB(q, a)}
and F := {(f1, (f2, f)) | (f1, f2) ∈ FA, f ∈ FB}. It has the same input compo-
nent as A, but its output component O′ is the synchronous product of the one
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of A and B. Hence, it recognises the relation R(A�B) = {(u, v) | (u, v) ∈ R(A)
and v ∈ L(B)}.

Next, consider the NFA I′ := (QI, Σ, qII , δI, F ′) with F ′ := {f1 | ∃(f2, f)
s.t. (f1, (f2, f)) ∈ F}. We then have L(I′) = {u | ∃v s.t. (u, v) ∈ R(A � B)} =
PreT (L). ��

This is of course a standard construction of forming the intersection of the
automaton’s second component with a regular language and then projecting it
onto its first component. We have spelled out the construction in detail because
of an important observation to be made: note that the transition table of the
NFA for PreT (L) does not depend on L; instead, L only determines its accepting
states. This can be seen as an indication of the weakness of IOI automata as a
model for automatic structures; however, some sort of weakness is necessary in
order to obtain computability.

Lemma 8. The class of recognisable automatic structures has finite closure
ordinals.

Proof. We will only prove the claim for finite U-closure ordinals. The case of
G-closure ordinals is analogous.

Let A = (I,O, F ) be the IOI automaton underlying some recognisable auto-
matic structure T , and let L1, L2 be two regular languages. Consider the chain
M0 ⊆ M1 ⊆ . . . approximating the set of states in T that satisfy – by slight
abuse of notation – E(L1 UL2), as constructed in Definition 3.

By the observation following the previous lemma, we have that PreT (L) is
recognised by an NFA of the form (QI, Σ, qII , δI, F ) for some F ⊆ QI. Thus,
the graph structure of the NFA does not depend on the input language L, only
the set of final states does. Therefore, there are at most 2|QI| many different
languages PreT (L) for arbitrary regular L.

Now consider the chain M0 ⊆ M1 . . .. Each Mi with i > 0 is obtained as
L2 ∪ (L1 ∩ PreT (Mi−1)). Assuming that union and intersection are always
formed using the same procedure on the same fixed NFA for L1 and L2, we get
that there are at most 2|QI| many different NFA for the Mi. With union and
intersection being monotone operations, the chain M0 ⊆ M1 ⊆ . . . has to become
stable after at most 2|QI| many steps. ��

Putting Lemmas 4, 7 and 8 together, we immediately obtain the following.

Theorem 9. The model checking problem for CTL over the class of recognisable
automatic structures is computable.

An immediate question arising from such a decidability result concerns the
worst-case complexity of the model checking problem for CTL over recognis-
able automatic transition systems. We note that the time needed to compute
[[ϕ]]T for some such T and arbitrary CTL formula ϕ is determined by several
factors: (1) the use of intersection and complementation constructions arising
from conjunctions and negated subformulas; (2) upper bounds on the number of
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iterations needed to obtain stability in the in-/decreasing chains of Definition 3.
The following lemma shows that stability is reached after a small number of
iterations.

Lemma 10. Consider an IOI automaton A = (I,O, F ) and two regular lan-
guages L1, L2 ⊆ Σ∗ represented by NFA B1,B2. Let A0,A1, . . . be the sequence
of NFA recognising the languages M0,M1, . . . in an in-/decreasing chain accord-
ing to Definition 3, and let F0, F1, . . . be their final states respectively. Then
F0, F1, . . . also forms an increasing, resp. decreasing chain.

Proof. We assume that in each step of building the Ai, i ≥ 1, the standard
constructions for forming the union and intersection of two languages are being
used. Hence, for every final state f in some Fi we have that f is either a final
state of B2, or it is of the form (f ′, f ′′) such that f ′ is a final state of B1 and f ′′

is a final state of the NFA constructed in the proof of Lemma7 by projecting
the automaton A � Ai−1 accordingly.

Now consider the case in which M0 ⊆ M1 ⊆ . . . forms an increasing chain.
The case of a decreasing chain is entirely analogous. W.l.o.g. we can assume that
F0 = ∅ since M0 = ∅. Clearly, we have F0 ⊆ F1. Now let i > 0 and assume that
Fi−1 ⊆ Fi. We want to show that Fi ⊆ Fi+1 holds.

Take some f ∈ Fi. If f is a final state of B2 then it clearly also belongs to
Fi+1. Hence, suppose that f = (f ′, f ′′) with f ′ being a final state of B1 and f ′′

being a final state of the NFA for PreT (Mi−1). According to the construction of
the automaton A�Ai−1 as in the proof of Lemma7 there must exist some g, g′

such that (f ′′, (g, g′)) is a final state of A�Ai−1. This is only possible if (f ′′, g)
is a final state of the automaton A and g′ is a final state of the NFA Ai−1,
thus g′ ∈ Fi−1. Then we can apply the induction hypothesis and get g′ ∈ Fi and
therefore (f ′′, (g, g′)) as a final state of A�Ai. Then f ′′ is also a final state of the
NFA for PreT (Mi) and therefore f is a final state of the NFA for L1 ∩PreT (Mi)
and, hence, f ∈ Fi+1. ��

Note that this does not necessarily yield a polynomial bound on the number
of iterations needed to compute [[E(ϕUψ)]]T for instance. Lemma 10 shows that
the fixpoint will be reached after after at most nϕ +nψ ·n steps where nϕ, nψ are
the number of states of an NFA recognising [[ϕ]]T and [[ψ]]T , respectively. Again,
similar considerations can be made for the decreasing chains in Definition 3 and
formulas of the form EGϕ. In any case, n equals the number of states of the
output component of the IOI automaton recognising the accessibility relation
of the underlying recognisable transition system. Hence, n is clearly bounded
by |T |, the size of a representation of T . However, nϕ and nψ are not a priori
bounded since these subformulas can be arbitrary and in particular make use of
expensive intersection and complementation constructions.

5 Conclusion and Further Work

We have defined a simple framework for the study of restricted classes of auto-
matic structures in which the binary relations are defined by weaker automata
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than synchronous ones. This can of course be extended to relations of arbitrary
arity, but automatic structures that represent transition systems (i.e. have rela-
tions of arity at most two) are most interesting for purposes of verification of
reactive and concurrent systems. This also motivates the choice of specification
language, here the branching-time temporal logic CTL.

There are plenty of ways that this work can be extended to in the future. The
exact complexity of CTL model checking over recognisable automatic transition
systems needs to be established. It also remains to be seen whether the sufficient
conditions (or similar ones) on IOI automata can be used to prove decidability
of model checking problems for richer or similar specification languages like PDL
[17] with various extensions [30], regular extensions of CTL [3,19,24] or even the
modal μ-calculus [23]. Note that these logics are all state-based in the sense that
typical global model checking procedures can proceed in a bottom-up fashion
similar to Algorithm 1.

The next question that comes up in terms of investigations w.r.t. specification
languages concerns linear-time logics like LTL [27] and PSL [2] and then com-
binations with branching-time features resulting in something like CTL∗ [16].
Note that model checking for such logics typically requires very different tech-
niques like automata- [33] or tableau-based [35] ones. It therefore remains to see
if the sufficient conditions laid out in Lemma 4 would also yield computability of
model checking problems for linear-time properties, or whether other conditions
can be found similarly.

Another obvious direction for future work is of course to find further instan-
tiations of the relaxed framework of binary acceptors which preferably leads to
richer classes of automatic structures but still satisfies the conditions of Lemma4.
One way to go about this is to give up working with essentially two-tracked
words since this is one of the main course of undecidability. A simple sugges-
tion for a binary acceptor that is based in the world of one-tracked words is,
for instance, the following: given an NFA A, let R(A) = {(u, v) | uv ∈ L(A)}.
Hence, it defines a relation by cutting words in a regular language apart. It is
a simple exercise, though, to see that this model of binary acceptor is effec-
tively equivalent to the IOI automata studied here. Hence, it does not generate
a new class. We therefore propose a slight variant and leave it open whether this
model of binary acceptor satisfies the conditions of Lemma 4: given an NFA A,
let R(A) = {(u, v) | there is w ∈ L(A) such that u is a prefix of w and v is a
suffix of w}. We suspect that CTL model checking is computable for the class of
automatic structures defined by such binary acceptors but have no formal proof
at the moment.

We also suspect that recognisable relations may form the largest class of
syntactically definable relations for which CTL model checking, or even model
checking for some weaker logic like EF, is decidable. It remains to be seen whether
it is possible to encode some undecidable reachability problem using an arbitrary
relation that incorporates only the slightest form of synchronisation between the
runs on the input and the output word.



Model Checking CTL over Restricted Classes of Automatic Structures 99

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
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Abstract. Multi-buffer simulation is an extension of simulation pre-
order that can be used to approximate inclusion of languages recog-
nised by Büchi automata up to their trace closures. It has been shown
that multi-buffer simulation with unbounded buffers can be characterised
with the existence of a continuous function f that witnesses trace clo-
sure inclusion. In this paper, we show that such a characterisation can
be refined to the case where we only consider bounded buffers by requir-
ing the function f to be Lipschitz continuous. This characterisation only
holds for some restricted classes of automata. One of the automata should
only produce words where each letter does not commute unboundedly
to the left or right. We will show that such an automaton can be char-
acterised with a cyclic-path-connected automaton, which is a refinement
of a syntactic characterisation of an automaton that has a regular trace
closure.

1 Introduction

Simulation is a pre-order relation that relates two automata A, B in the sense
that one automaton simulates the other. It is used to minimise and approximate
language inclusion between automata on words and trees [1,3,4,6].

Multi-buffer simulation is introduced in [9] as an extension of simulation for
non-deterministic Büchi automata [7]. It extends the framework of the standard
simulation with n FIFO buffers of capacities k1, . . . , kn ∈ N∪{ω}. The buffers are
associated with the alphabets Σ1, . . . , Σn ⊆ Σ, respectively. Spoiler plays as
in the standard simulation. He moves his pebble by reading a letter one by one.
However, Duplicator can skip her turn, and push the letter that is chosen
by Spoiler to the associated buffers. Duplicator can move and pop some
letters from the buffers in some round later. In [9], it is shown that multi-buffer
simulation is undecidable in general but decidable if all buffers have bounded
capacities, i.e. when k1, . . . , kn ∈ N. Multi-buffer simulation can be used to
approximate inclusion of Mazurkiewicz trace closure. If we have multi-buffer
simulation A �k,...,k B for some k ∈ N∪ {ω}, then we have L(A) ⊆ [L(B)]I that
is equivalent to the inclusion of Mazurkiewicz trace closure [L(A)]I ⊆ [L(B)]I ,
which is known to be undecidable [11] and even highly undecidable [5].

The winning strategy for Duplicator in multi-buffer simulation game can
be characterised with a continuous function [9]. We have multi-buffer simulation
c© Springer International Publishing AG 2017
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A �ω,...,ω B iff there exists a continuous function f that maps the accepting runs
of A to the ones of B over trace equivalent words. Intuitively, this characterisation
could also be lifted to the case of bounded buffer: A �k,...,k B, for some k ∈ N iff
there exists such a Lipschitz continuous function f . Unfortunately this is not the
case. There are A, B in which such a Lipschitz continuous function f exists but
buffered simulation with bounded buffers does not hold, i.e. A ��k,...,k B for any
k ∈ N. Hence one may ask whether we can add some restriction on the structure
of A, B such that the characterisation holds. This would give a good theoretical
justification for multi-buffer simulation with bounded buffers.

We answer this question in this work. We first show that the characterisa-
tion with Lipschitz continuity fails in two cases. The first one is the case where
Spoiler can form a non-accepting run that cannot be mimicked by Duplica-
tor, which is irrelevant to the use of multi-buffer simulation. We can avoid this
by restricting Duplicator’s automaton to be complete. The second one is the
case where Spoiler can produce a word, in which one of its letters, suppose a,
can commute unboundedly to the left or right. Spoiler might read a word where
a occurs at a very late position, but in a trace equivalent word that should be
produced by Duplicator, a occurs at a very early position. In this case, Dupli-
cator needs to store unboundedly many irrelevant letters before she can read a,
and eventually violates the capacity constraint. We will show that we can avoid
this by restricting Spoiler’s automaton to only produce words where each of
its letters cannot commute unboundedly, i.e. there exists a bound k ∈ N, such
that each letter commutes at most k steps to the left or right.

Note that the first restriction is a syntactic restriction, but the second one
is not. We cannot check syntactically whether Spoiler’s automaton A admits
such a bound k by looking at the structure of A. Hence, it is reasonable to ask
whether we can have an equivalent syntactic restriction. For this purpose, we will
show that we can lift the syntactic characterisation of loop-connected automaton,
a syntactic characterisation of an automaton that has a regular trace closure [2].

2 Preliminaries

For any alphabet Σ, we denote the set of finite words over Σ with Σ∗, the set
of infinite words over Σ with Σω, and Σ∞ = Σ∗ ∪Σω. For any word w ∈ Σ∞ of
length n ∈ N∪{∞}, we denote with |w| = n the length of w, |w|a the number of
a in w, Pos(w) ⊆ N the set of positions in w, w(i) the letter of w at position i,
and Σw = {w(i) | i ∈ Pos(w)} the alphabet of w.

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, qI , E, F ),
where Q is a finite set of states, Σ is an alphabet, qI ∈ Q is the initial state,
E ⊆ Q × Σ × Q is the transition relation, and F ⊆ Q is the set of final states.
We denote with |A| the number of states of A. We sometimes write p

a−→ p′ if

(p, a, p′) ∈ E. A run of A on a0a1 . . . ∈ Σ∞ is an alternating sequence of states
and letters ρ = q0a0q1a1 . . . with q0 being the initial state of A and (qi, ai, qi+1)
∈ E for all i ≥ 0. The run ρ is accepting if qi ∈ F for infinitely many i ∈ N.
The set of runs and accepting runs are respectively denoted with Run(A) and



Topological Characterisation of Multi-buffer Simulation 103

AccRun(A). For any run ρ = q0a0q1a1 . . . , the word of ρ is word(ρ) = a0a1 . . . ∈
Σ∞, and the language of A is L(A) = {word(ρ) | ρ ∈ AccRun(A)}. Moreover,
for any finite run r = q0a0q1a1 . . . qn, the length of r is |r| = n.

2.1 Mazurkiewicz Traces

An independence alphabet is a pair (Σ, I), where Σ is a finite alphabet and
I ⊆ Σ ×Σ is an irreflexive and symmetric relation, called independence relation.
The relation D = Σ × Σ \ I is called the dependence relation, and the graph
G = (Σ,E), where E = {(a, b) | (a, b) ∈ D and a �= b} is called the dependency
graph of (Σ, I). The tuple Σ̂ = (Σ1, . . . , Σn) where the set {Σ1, . . . , Σn} is the
set of maximal cliques in G is called the distributed alphabet of (Σ, I).

Given an independence alphabet (Σ, I), let Σ̂ = (Σ1, . . . , Σn) be the cor-
responding distributed alphabet, and let πi : Σ∞ → Σ∞

i be a projection
from the word over Σ to the word over Σi for all i ∈ {1, . . . , n}. The pro-
jection πi(w) is obtained by deleting from w all letters that do not belong
to Σi. For any w,w′ ∈ Σ∞ over (Σ, I), we say w is trace equivalent with
w′, i.e. w ∼I w′, iff πi(w) = πi(w′) for all i ∈ {1, . . . , n}. For example
if Σ = {a, b, c}, I = {(b, c), (c, b)} then Σ̂ = ({a, b}, {a, c}), and we have
a(bc)ω ∼I a(cb)ω. For any NBA A over (Σ, I), the trace closure of A is the
language [L(A)]I = {w ∈ Σω | ∃w′ ∈ L(A) : w ∼I w′}.

Given an NBA A over (Σ, I), there is an important result regarding the
regularity of [L(A)]I . This result uses the notion of connected word. A word
w ∈ Σ∞ over (Σ, I) is called connected if the subgraph of the dependency graph
induced by Σw is connected [10]. We denote such a subgraph with Gw, and call it
the dependency graph of w. For example, the word w = a(bc)ω over Σ = {a, b, c}
and I = {(b, c), (c, b)}, is connected, but its infinite suffix (bc)ω is not. The
automaton A is called loop-connected if every cycle in A produces a connected
word. For any NBA A over (Σ, I), [L(A)]I is regular iff A is loop-connected [2].

2.2 Multi-buffer Simulation

Given two NBA A, B over (Σ, I), let Σ̂ = (Σ1, . . . , Σn) be the distributed
alphabet of (Σ, I), and κ = (k1, . . . , kn) a vector over N ∪ {ω}, the multi-buffer
simulation game Gκ,Σ̂(A,B), or simply Gκ(A,B) is played between Spoiler and
Duplicator in the automata A, B with n buffers of capacity k1, . . . , kn, and
the buffers are associated with the alphabets Σ1, . . . , Σn, respectively. Initially,
two pebbles are placed each on the initial states of A and B. Spoiler moves the
pebble in A by reading a letter a ∈ Σ, and pushes a copy of the a-symbol to each
buffer i, in which a ∈ Σi. Duplicator either skips her turn or moves the pebble
in B by reading a word b1 . . . bm. While doing so, for every i ∈ {1, . . . , m}, starting
from i = 1, she pops bi from each buffer that is associated with bi. More formally,
a configuration is a tuple (p, β1, . . . , βn, q) ∈ QA × Σ∗

1 × . . . × Σ∗
n × QB, where

|βi| ≤ ki for all i ∈ {1, . . . , n}. The initial configuration is (p0, ε, . . . , ε, q0), where
p0, q0 are the initial states of A, B, and in every configuration (p, β1, . . . , βn, q),
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– Spoiler chooses a letter a ∈ Σ, a state p′ ∈ QA, such that p
a−→ p′,

– Duplicator chooses a finite path q
b1−−→ q1

b2−−→ q2 . . .
bm−−→ qm from q in B,

such that πi(aβi) = πi(β′
ib1 . . . bm) for all i ∈ {1, . . . , n}. The next configura-

tion is (p′, β′
1, . . . , β

′
k, q′).

If one of the players gets stuck, then the opponent wins, otherwise Spoiler
and Duplicator respectively form infinite runs ρ in A and ρ′ in B. In this
case, Duplicator wins iff ρ is not accepting or ρ′ is accepting and every letter
that is pushed by Spoiler into a buffer is eventually popped by Duplicator.
We write A �κ B if Duplicator wins Gκ(A,B), and in this case it implies
L(A) ⊆ [L(B)]I .

Example 1. Consider the following two NBA A, B over the independence alpha-
bet (Σ, I), in which Σ̂ = ({a}, {b}), i.e. Σ = {a, b}, I = {(a, b), (b, a)}.

p0 p1

b
a

b

q0 q1 q2
a

b

b

a
a, b

We have A �0,ω B, since Duplicator has the following winning strategy
in G0,ω(A,B): she skips her moves, except when Spoiler reads a. In this case,
Duplicator goes to q1: she pops all the bs from the second buffer, and a from
the first buffer. From this state, if Spoiler reads b then Duplicator also reads
b by looping in q1 and pops b from the buffer. Duplicator wins since either
Spoiler forms a non-accepting run, or Duplicator forms an accepting run
and every letter that is pushed by Spoiler into a buffer is eventually popped by
Duplicator. Duplicator however loses the game G0,k(A,B) for any k ∈ N,
since Spoiler can loop in p0 indefinitely and push unboundedly many b before
he goes to p1. In this case, Duplicator eventually violates the buffer constraint.

3 Topological Characterisation

Given two NBA A, B, and a function f : R1 → R2, R1 ⊆ Run(A), R2 ⊆ Run(B),
let us call f trace preserving if for all ρ ∈ Dom(f), word(ρ) ∼I word(f(ρ)). Trace
closure inclusion L(A) ⊆ [L(B)]I can be characterised with a trace preserving
f : AccRun(A) → AccRun(B). This is because such a function f exists iff for
every ρ ∈ AccRun(A), there exists ρ′ ∈ AccRun(B) over trace equivalent words.

Proposition 1. L(A) ⊆ [L(B)]I iff there exists a trace preserving function f :
AccRun(A) → AccRun(B).

For such a function f : R1 → R2, we can define its continuity by con-
sidering the standard metric for infinite words. This is because every run
ρ ∈ Run(A) can be seen as an infinite word over Σ′ = QA · Σ. We con-
sider the metric d : AccRun(A)2 → [0, 1], where d(ρ, ρ′) = 0 if ρ = ρ′, and
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d(ρ, ρ′) = 2−min{i | piai �=qibi} if ρ = p0a0 p1a1 . . ., ρ′ = q0b0 q1b1 . . . are different.
Intuitively, the distance between two runs is small if they share a long common
prefix.

In [9], it is shown that we can refine the characterisation in Proposition 1 for
multi-buffer simulation A�ω,...,ω B by requiring the function f to be continuous.
Recall that f is continuous if for any two distinct runs ρ, ρ′ ∈ Dom(f) that are
very close, they are mapped into two runs f(ρ), f(ρ′) that are also very close.

Proposition 2 [9]. A �ω,...,ω B iff there exists a continuous trace preserving
function f : AccRun(A) → AccRun(B).

Consider again the NBA A, B from Example 1. We have a continuous trace
preserving function f : AccRun(A) → AccRun(B) that maps every accepting run
of A, i.e. over b∗abω, to the one of B over abω. This function is trace preserving
since for every n ≥ 0, bnabω ∼I abω. It is also continuous since there is only one
accepting run in B, therefore the distance between two outputs of f is always 0,
i.e. trivially very small.

Such a characterisation of winning strategies with continuous functions is
far from new. For example, in the delay game [8], it is shown that the winning
strategy for Duplicator can be characterised with a continuous function, and in
the case of finite delay, the characterisation can be lifted to the one that consider
a Lipschitz continuous function. Recall that a function is Lipschitz continuous if
there exists a constant C ∈ R, such that for any two inputs of distance d, their
outputs’ distance is at most C · d.

We would like to have such a topological characterisation for multi-buffer
simulation. The characterisation with a continuous function holds for multi-
buffer simulation as we can see in Proposition 2. However, the characterisation
with a Lipschitz continuous function fails.

Example 2. Consider the following two automata A,B over the independence
alphabet (Σ, I) with Σ̂ = ({a, b}), i.e. Σ = {a, b} and I = ∅,

q0 q1q2
a

a
b

b p0 p1
a

a

In this case, we have a Lipschitz continuous and trace preserving function
f : AccRun(A) → AccRun(B) that maps the only accepting run of A to the one of
B. This function is trace preserving and also Lipschitz continuous with constant
0. However, Spoiler wins the game Gk(A,B) for any k ∈ N. He wins by playing
the word bω. For every k ∈ N, Duplicator eventually fills the buffer more than
its capacity in round k + 1, and loses the game Gk(A,B).

Example 3. Consider again the NBA A, B from Example 1. We have a trace pre-
serving and continuous function f : AccRun(A) → AccRun(B) as shown before.
It is also Lipschitz continuous with Lipschitz constant 0. However, Spoiler wins
the game Gk,k(A,B) for all k ∈ N. He wins by first reading bbb . . . indefinitely.
Duplicator either skips her move forever, or eventually moves by reading b. If
Duplicator eventually moves by reading b, she would never form an accepting
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run, and Spoiler can continue read abω and form an accepting run. However if
Duplicator never moves, then she violates the buffer constraint in round k+1.
Hence in both cases Duplicator loses.

We will show that there are some restricted classes of A, B where we can lift
the characterisation in Proposition 2 to the case of bounded buffers by consider-
ing a Lipschitz continuous function.

4 Characterisation of �k,...,k, k ∈ N

First note that if multi-buffer simulation A �k,...,k B holds with some bounded
capacity k ∈ N, then we can construct a Lipschitz continuous trace preserving
function f : AccRun(A) → AccRun(B). For every ρ ∈ AccRun(A), we define
f(ρ) as the run that is formed by Duplicator in Gk,...,k(A,B), assuming that
Spoiler plays ρ and Duplicator plays according to the winning strategy.
Such a function is trace preserving since it is derived from a winning strategy
of Duplicator, and it is Lipschitz continuous with Lipschitz constant C =
k + . . . + k since for any output run f(ρ) the i-th letter of f(ρ) is determined by
the first C + i letters of ρ.

Lemma 1. If A �k,...,k B for some k ∈ N, then there exists a Lipschitz contin-
uous trace preserving function f : AccRun(A) → AccRun(B).

Proof. For every ρ ∈ AccRun(A), we define f(ρ) as the run that is formed by
Duplicator in Gk,...,k(A,B), assuming that Spoiler plays ρ and Duplicator
plays according to the winning strategy. The function f is trace preserving since
it is derived from a winning strategy of Duplicator.

Let n ∈ N be some number and C = k + . . . + k. If Spoiler plays
ρ ∈ AccRun(A), then since Duplicator wins Gk,...,k(A,B), in round n + C,
Duplicator forms a finite run of length at least n. If there is ρ′ ∈ AccRun(A)
with d(ρ, ρ′) ≤ 2−(n+C+1), then in the first n + C rounds, Duplicator does
not see any difference whether Spoiler actually plays ρ or ρ′. Duplicator
makes the same moves in response to ρ or ρ′. The output runs f(ρ) and f(ρ′)
share the same prefix of length n, i.e. d(f(ρ), f(ρ′)) ≤ 2−(n+1). This implies
d(f(ρ), f(ρ′)) ≤ 2C · d(ρ, ρ′). The function f is Lipschitz continuous with Lip-
schitz constant 2C .

As we can see in the previous section, the reverse direction of this lemma does
not hold. In Example 2, the reason why Duplicator loses is because Spoiler
can play a non-accepting run that cannot be mimicked by Duplicator. We can
easily avoid this by assuming that Duplicator’s automaton is complete: for
every q ∈ QB and a ∈ Σ, there is q′ ∈ QB such that (q, a, q′) ∈ EB.

In Example 3, the reason why Duplicator loses is different. The automaton
of Duplicator is complete. But in this case, Spoiler can produce b∗abω, in
which the letter a can commute unboundedly to the left or right. The letter a
can be read by Spoiler in a very late round, but has to be read by Duplicator
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in an early round. In order to read its trace equivalent word: abω, Duplicator
first needs to store indefinitely many bs that are read by Spoiler. To avoid this,
we need to restrict words that are produced by Spoiler. He should only produce
words, in which each letter cannot commute unboundedly to the left or right.
To formalise this restriction we introduce the notion of corresponding relation.

For any two words w, v ∈ Σ∞, the corresponding relation Corrw,v relates the
position of w and v that are over the same letter and have the same order with
respect to the letter.

Definition 1. For any w, v ∈ Σ∞, the corresponding relation Corrw,v ⊆
Pos(w) × Pos(v) is defined as Corrw,v = {(i, j) | ∃a ∈ Σ, w(i) = v(j) =
a, |w(1) . . . w(i)|a = |v(1) . . . v(j)|a}.
Consider (Σ, I) where Σ = {a, b, c}, I = {(b, c), (c, b)}. w = a(bc)ω and v =
a(cb)ω. We have Corrw,v = {(1, 1)} ∪ {(i, i + 1)| i > 1 is even} ∪ {(i, i − 1)| i > 1
is odd}.

If w, v are two words over (Σ, I) and w ∼I v, then Corrw,v is a bijection. This
is because for every a ∈ Σ, the number of a in w and v are the same. We will
use the relation Corrw,v, in which w ∼I v, to determine how long a letter in w
or v can commute.

Definition 2. Given a word w ∈ Σ∞ over an independence alphabet (Σ, I),
and i ∈ Pos(w), let Sw(i) = {j − i | (i, j) ∈ Corrw,v, w ∼I v}. We define
Deg+w(i) = max{k ∈ N ∪ {∞} : k ∈ Sw(i)} and Deg−

w(i) = max{k ∈ N ∪ {∞} :
−k ∈ Sw(i)}. The corresponding degree of a letter at position i in w is Degw(i)
= max{Deg+w(i), Deg−

w(i)}.

Consider the word w = a(bc)ω over Σ = {a, b, c}, I = {(b, c), (c, b)}. We
have Degw(1) = 0 since for all v ∼I w, (1, 1) ∈ Corrw,v. We have Degw(2) = ∞
since for all k ∈ N, there is vk = ack+1(bc)ω, such that vk ∼I w and (2, k + 3) ∈
Corrw,vk

. This implies Deg+w(2) > k for all k ∈ N, and hence Deg+w(2) = ∞.
The corresponding degree Degw(i) tells us the maximum length of how long

the letter at position i in w can commute. Moreover, for a set of words L ∈ Σ∞,
we define the corresponding degree of L as Deg(L) = max{k ∈ N ∪ {∞} | w ∈
L, i ∈ Pos(w), k ∈ Degw(i)}. If Deg(L) = ∞, then for any k ∈ N, there is a
word wk in L such that one letter of w can commute more than k steps to the
left or right. For example, consider the automaton A in Example 1. We have
Deg(L(A)) = ∞ since there is w = abω ∈ L(A) and its first letter can commute
more than k steps to the right for any k ∈ N.

For any NBA A over (Σ, I), let Tr(A) be the set of words over a finite or
infinite path of A, i.e. Tr(A) = {a1a2 . . . ∈ Σ∞ | ∃p1, p2, . . . ∈ QA : (p1, a1, p2),
(p2, a2, p3), . . . ∈ EA}. We will show that for any two NBA A, B, if the corre-
sponding degree of Tr(A) is finite and B is complete, then the reverse direction
of Lemma 1 also holds. We will show this by using the delay game from [8] as
an intermediate game. The delay game is similar to the multi-buffer simulation
game. However the winning condition is given by a function f : R1 → R2, where
R1 ⊆ Run(A) and R2 ⊆ Run(B). In this game, Duplicator can read any letter
freely, even the one that is not yet read by Spoiler.
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A delay game Γ k(A,B, f) is played between Spoiler and Duplicator in
A, B in which the configuration is a pair (rA, rB) of finite runs of A, B with
0 ≤ |rA| − |rB| ≤ k. The initial configuration is the pair (pI , qI) of the initial
states of A, B. In every round i > 0 with a configuration (rA, rB),

– Spoiler extends rA to some finite run r′
A := rAap in A, and

– Duplicator extends rB to some finite run r′
B := rBb1q1b2 . . . bnqn in B.

The next configuration is (r′
A, r′

B). If one of the players gets stuck, then the
opponent wins. Otherwise, the play goes on infinitely many rounds and produces
two infinite runs ρ, ρ′ of A, B, respectively. Duplicator wins iff whenever
ρ ∈ Dom(f) then ρ′ = f(ρ).

Example 4. Consider the automata A, B from Example 1. Let f : AccRun(A) →
AccRun(B) be a trace preserving function. In this case, there is such a unique f ,
i.e. f(ρ) = q0a(q1b)ω for all ρ ∈ AccRun(A). Duplicator wins the delay game
Γ 0(A,B, f) with the following winning strategy: first she reads a, then she reads
bbb . . . for the rest of the play. Since Duplicator always forms the image of
Spoiler’s run without any delay, she wins Γ 0(A,B, f).

The existence of winning strategy for the Duplicator in the delay game with
finite delay basically corresponds to the Lipschitz continuity of the function that
defines the winning condition.

Lemma 2. For any two NBA A, B in which B is complete, Duplicator wins
ΓC(A,B, f) iff f is Lipschitz continuous with constant 2C .

Proof (⇐). Consider the following winning strategy for Duplicator. Suppose
we are at configuration (rA, rB) and Spoiler extends his run to r′

A := rAap. If
r′
A cannot be extended to any ρ ∈ Dom(f), then Duplicator extends her run

to r′
B, such that word(r′

A) ∼I word(r′
B). This is possible since B is complete. If

r′
A can be extended to some ρ ∈ Dom(f) and there exists r′

B := rBb1q1 . . . bnqn,
such that for every such a run ρ, f(ρ) is started with r′

B, then Duplicator
extends her run to such a maximal r′

B. Otherwise, Duplicator skips her turn.
If Duplicator plays according to this strategy, then there is no round with

a configuration (rA, rB), in which |rA|− |rB| > C. Suppose there is such a round
m. Duplicator does not extend her run to some run longer than rB in round
m, because there exist two runs ρ1, ρ2 ∈ Dom(f) that can be extended from
rA, i.e. d(ρ1, ρ2) ≤ 2−(|rA|+1), and both f(ρ1), f(ρ2) can be extended from rB,
but not from any run longer than rB, i.e. d(f(ρ1), f(ρ2)) = 2−(|rB|+1). Since
|rA| − |rB| > C, we have d(f(ρ1), f(ρ2)) > 2C · d(ρ1, ρ2). This contradicts that
f is Lipschitz continuous with constant 2C .

Since in every round the length difference between Spoiler and Duplica-
tor’s runs is at most C ∈ N, then if Spoiler forms an infinite run, Duplicator
also forms an infinite run. Moreover, since the invariant holds that in any round
i with a configuration (r(i)A , r

(i)
B ), if ρ is started with r

(i)
A then ρ′ is started with

r
(i)
B , then whenever Spoiler plays ρ ∈ Dom(f), Duplicator forms the f -image

of ρ, i.e. ρ′ = f(ρ). Duplicator wins ΓC(A,B, f).
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(⇒) Let k ∈ N be some number. If f is not Lipschitz continuous, then there
exist ρ1, ρ2 ∈ AccRun(A), such that d(f(ρ1), f(ρ2)) > 2k ·d(ρ1, ρ2). Otherwise, f
is Lipschitz continuous and k is a Lipschitz constant of f . Let n ∈ N, such that
2−n = d(ρ1, ρ2). The winning strategy for Spoiler is to first play ρ1. On round
n−k +1, if Duplicator forms a finite run r′ that is not a prefix of f(ρ1), then
Spoiler keeps playing ρ1 for the rest of the play. Otherwise, he continues by
playing ρ2. This is possible, since ρ1, ρ2 share the same prefix of length n. In the
first case, Spoiler wins because Duplicator does not form the f -image of ρ1.
In the second case, since d(f(ρ1), f(ρ2)) > 2k−n, i.e. f(ρ1), f(ρ2) share the same
prefix of length less than n − k, and |r′| > n − k, so r′ is not a prefix of f(ρ0).
In this case, Duplicator does not form the f -image of ρ2.

Unfortunately, the winning strategy for Duplicator in the delay game may
not be suitable for the buffer game. Consider Duplicator’s winning strategy in
Example 4. It is not winning in Gω,ω(A,B), because in the first round, Spoiler
might not read a, and hence Duplicator cannot pop a from the buffer. In the
multi-buffer game over Σ̂ = (Σ1, . . . , Σn), if w, w′ are the words produced by
Spoiler and Duplicator in some round, then πi(w) is a prefix of πi(w′) for all
i ∈ {1, . . . , n}. This is not always the case in the delay game. Duplicator can
read letters that are not yet read by Spoiler. We need to translate the winning
strategy from the delay to the buffer game. Duplicator should just take the
longest output in the delay game that is allowed in the buffer game.

Lemma 3. Let f : AccRun(A) → AccRun(B) be a trace preserving function for
two NBA A, B, in which A is complete. If Duplicator wins Γ k(A,B, f) for
some k ∈ N, then she wins Gω,...,ω(A,B).

Proof. Suppose the NBA A, B are over (Σ, I) with distributed alphabet Σ̂ =
(Σ1, . . . , Σn). The translation is as follows. Suppose in Gω,...,ω(A,B), Spoiler
and Duplicator form finite runs rA and rB. Let w = word(rA) and w′ =
word(rB). If the strategy in the delay game tells Duplicator to extend rB
to r′

B := rBb1p1 . . . bmpm, m ≥ 0, then in the buffer game, we extend rB to
rBb1q1 . . . bm′qm′ , m′ ≤ m, the maximal prefix of r′

B, such that πi(w′b1 . . . bm′)
is a prefix of πi(w) for all i ∈ {1, . . . , n}.

Let ρ, ρ1 be the accepting runs that are formed by Spoiler and Duplicator
in Γ k(A, B, f), and ρ, ρ2 be the runs that are formed in Gω,...,ω(A,B) according
to the translation. Since we always extend Duplicator’s run in the buffer game
by taking the prefix of the original extension in the delay game, any finite prefix
of ρ2 is also a prefix of ρ1. The converse also holds: any finite prefix of ρ1 is a
prefix of ρ2. Suppose rB is a finite prefix of ρ1. There is rA, a finite prefix of ρ,
such that in the delay game, when Spoiler extends his run to rA, Duplicator
extends her run to rB. Let w = word(rA) and w′ = word(rB). Since f is trace
preserving, there is r′

A := rAa1p1 . . . akpk, k ≥ 0, a finite prefix of ρ, such that
πi(w′) is a prefix of πi(wa1 . . . ak) for all i ∈ {1, . . . , n}. Hence when Spoiler
forms r′

A, Duplicator extends her run to rB in the delay game. This implies
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that rB is also a prefix of ρ2. We have ρ1 = ρ2. Thus, whenever Spoiler plays
an accepting run ρ in Gω,...,ω(A,B), then Duplicator forms an accepting run
ρ′ = f(ρ).

If we additionally assume that the corresponding degree of Tr(A) is finite,
then we can show that Duplicator also wins the buffer game with some
bounded capacity. Such an assumption is needed to avoid the case where Spoiler
produces a word in which one of its letter commutes unboundedly, and makes
Duplicator store unboundedly many irrelevant letters before she reads the
corresponding one, as we exemplify in Example 3.

Lemma 4. Let f : AccRun(A) → AccRun(B) be a trace preserving function for
two NBA A, B, in which the corresponding degree of Tr(A) is finite, and B
is complete. If Duplicator wins Γ k(A,B, f) for some k ∈ N, then she wins
Gκ(A,B) for some κ ∈ N

∗.

Proof. Let k′ ∈ N be the corresponding degree of Tr(A), i.e. k′ = Deg(Tr(A)).
Suppose Duplicator wins for some k ∈ N. By Lemma 2 we can assume that
Duplicator wins Γ k(A,B, f) with the winning strategy as defined before. Con-
sider the translation in which Duplicator output the maximal prefix that is
allowed in the buffer game. We will show that the translated winning strategy
in Lemma 3 is not only winning in Gω,...,ω(A,B), but also in Gk′+k,...,k′+k(A,B).
We will show this by contradiction. Suppose while playing in Gω,...,ω(A,B), there
exists a round, such that one of the buffers is filled with k + k′ + 1 letters. Let
rA, rB be the runs that are formed by Spoiler and Duplicator in this round.
We have |rA| − |rB| > k + k′. Duplicator does not extend her run longer than
rB, because either the winning strategy in Γ k(A,B, f) tells her to extend to rB,
or it actually tells her to extend to some run r′

B longer than rB, but rB is the
maximal prefix of r′

B that satisfies

πi(word(rB)) is a prefix of πi(word(rA)), (1)

for all i ∈ {1, . . . , n}. In the first case, since it implies |rA| − |rB| > k, this con-
tradicts the strategy is winning in Γ k(A,B, f). In the second case, suppose r′

B is
extended from rB by reading u, i.e. r′

B = rBu(1)p1 . . . u(
)p�, 
 > 0, and suppose
u(1) = a. Since (1) holds, we have |word(rB)|a ≤ |word(rA)|a. However since rB
is the maximal prefix of r′

B that satisfies (1), we have |word(rB)|a = |word(rA)|a,
since otherwise rBap1 also satisfies (1) and contradicts the maximality of rB. Let
w,w′ be the words that are produced respectively by Spoiler and Duplicator
in Gω,...,ω(A,B). Hence word(rA) and word(r′

B) are prefixes of w and w′, respec-
tively. Since we assume f is trace preserving and Duplicator plays according
to the winning strategy in Lemma2, we have w ∼I w′. Let n0 = |word(rA)|a =
|word(rB)|a, i0 ∈ Pos(w), and i1 ∈ Pos(w′), such that w(i0) = w′(i1) = a and
|w(1) . . . w(i0)|a = |w′(1) . . . w′(i1)|a = n0 +1. Hence i0 > |rA| and i1 = |rB|+1.
This implies i0 − i1 > k′ since |rA| − |rB| > k′. Since (i0, i1) ∈ Corrw,w′ and
w ∈ Tr(A), this contradicts Deg(Tr(A)) = k′.
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Hence if the corresponding degree of Tr(A) is finite and B is complete, the
existence of a Lipschitz continuous trace preserving function implies that multi-
buffer simulation holds for some bounded buffers. Together with Lemma1, we
have the following characterisation.

Theorem 1. Let A, B be two NBA, in which the corresponding degree of Tr(A)
is finite and B is complete. A�k,...,k B for some k ∈ N iff there exists a Lipschitz
continuous trace preserving function f : AccRun(A) → AccRun(B).

5 Cyclic-Path-Connected Automata

Recall that an automaton A is loop-connected if every cycle in A produces a
connected word. If A is not loop-connected, then the corresponding degree of
Tr(A) is not finite. For example, consider the automaton A with two states q0, q1,
over Σ = {a, b} and I = {(a, b), (b, a)}, i.e. a, b is independent with each other.
Suppose EA = {(q0, a, q1), (q1, b, q0)}. Hence, A is not loop-connected since ab
is not connected. The corresponding degree of Tr(A) is also not finite since for
every k ∈ N, we can consider the word (ab)k+1 ∈ Tr(A), in which its first letter
can commute more than k steps to the right. Hence Deg(Tr(A)) = ∞.

Lemma 5. If the corresponding degree of Tr(A) is finite, then A is loop-
connected.

Proof. Suppose A is not loop-connected. There exists a cycle c in A over a non-
connected word w. For any k ∈ N, let v = wk+1. Since w is not connected, there
exists 〈Σ1, Σ2〉 a partition of Σw, such that the dependency graph Gw consists of
two non-connected components Σ1 and Σ2. Every letter in Σ1 and Σ2 commutes
with each other, i.e. w ∼I π1(w)π2(w) ∼I π2(w)π1(w), where πi is the projection
to Σi for i ∈ {1, 2}. This implies v ∼I π1(w)k+1π2(w)k+1 ∼I π2(w)k+1π1(w)k+1.
Let b ∈ {1, 2}, such that v(1) ∈ Σb. Let v′ = πb̄(w)k+1πb(w)k+1 and n =
|πb̄(w)k+1|. We have n > k since at least one letter of w belongs to Σb̄. The first
letter of v corresponds to the (n + 1)-th letter of v′, i.e. (1, n + 1) ∈ Corrv,v′ .
Hence for every k ∈ N, there exists v ∈ Tr(A), such that Deg+v (1) > k. This
implies Deg+v (1) = ∞, and hence Deg(Tr(A)) = ∞.

The converse of this lemma, however, does not hold. Consider the automaton
A from Example 1. It is loop-connected, but we have seen that the corresponding
degree of Tr(A) is not finite. We will show that we can characterise A, in which
the corresponding degree of Tr(A) is finite, by considering a more restrictive
condition than loop-connected. Instead of only for the cycle, we require every
path in A that contains a cycle to produce a connected word. We call such an
automaton cyclic-path-connected.

Definition 3. An automaton A over (Σ, I) is cyclic-path-connected if for every
path p u−→ q v−→ q w−−→ r, where u,w ∈ Σ∗ and v ∈ Σ+, the word uvw is connected.
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Note that the automaton A in Example 1 is loop-connected, but not cyclic-
path-connected. The word ba is over a cyclic-path of A but not connected with
respect to the given independence alphabet. Note that the corresponding degree
of Tr(A) is also not finite. This is because for every k ∈ N we can consider the
word bk+1a ∈ Tr(A). The last letter of such a word can commute more than k
steps to the left, and hence Deg(Tr(A)) = ∞. This actually also holds in general.

Theorem 2. If the corresponding degree of Tr(A) is finite, then A is cyclic-
path-connected.

Proof. Suppose A is not cyclic-path-connected. If A is also not loop-connected,
then by Lemma 5, the corresponding degree of Tr(A) is not finite. Suppose
A is loop-connected but not cyclic-path-connected. There exists a cyclic-path
r over a non-connected word w. Without loss of generality, let w = w′w′′,
where w′ is produced by a cycle. For any k ∈ N, let v = w′k+1w′′. Since
w is not connected, there exists 〈Σ1, Σ2〉 a non-empty partition of Σw, such
that w ∼I π1(w)π2(w) ∼I π2(w)π1(w). This implies v ∼I w′kπ1(w)π2(w) ∼I

w′kπ2(w) π1(w). Let b ∈ {1, 2}, such that Σw′ ⊆ Σb. There exists such a b
since w′ is connected. Let i0 be the smallest position in v, such that v(i0) ∈ Σb̄.
Since w′ �= ε and Σw′ ∩ Σb̄ = ∅, we have i0 > |w′k+1| > k. Since every let-
ter in Σ1 and Σ2 commutes with each other, we have v ∼I πb̄(w)w′kπb(w).
Let v′ = πb̄(w)w′kπb(w). The first letter of v′ corresponds to the i0-th letter
of v i.e. (i0, 1) ∈ Corrv,v′ . Hence for every k ∈ N, there exist v ∈ Tr(A) and
i0 ∈ Pos(v), such that Deg−

v (i0) > k. This implies Deg−
v (i0) = ∞, and hence

Deg(Tr(A)) = ∞.

The converse of Theorem 2 also holds. However, we need a more involved
technique. We will show this by considering a relation Blockw ⊆ Pos(w)×Pos(w).
This relation tells us positions of two letters in w that do not commute with each
other.

Definition 4. Let w ∈ Σ∞ be a word over an independence alphabet (Σ, I).
The relation Blockw ⊆ Pos(w)×Pos(w) is the transitive closure of Dw = {(i, j) |
i ≤ j, (w(i), w(j)) ∈ D}, where D = Σ2 \ I.

Consider the word w = cdbca over an independence alphabet (Σ, I) with
dependency graph G : a−b−c−d. We have (1, 3), (3, 5) ∈ Blockw since (c, b) ∈ D
and (b, a) ∈ D. By transitivity, we also have (1, 5) ∈ Blockw.

If we have (i, j) ∈ Blockw for some two positions i, j of w over (Σ, I), then the
letters at positions i and j in w do not commute with each other. This implies
that their corresponding positions in some word w′ that is trace equivalent with
w, do not change order, since otherwise the letter at position i in w commute
with the one at position j.

Lemma 6. Let w ∈ Σ∞ be a word over (Σ, I). If (i, j) ∈ Blockw then
Corrw,w′(i) ≤ Corrw,w′(j) for all w′ ∼I w.
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Proof. Suppose (i, j) ∈ Blockw. Let k ∈ Pos(w), such that i ≤ k < j,
(i, k) ∈ Blockw, and (w(k), w(j)) ∈ D. Suppose there exists w′, such that
Corrw,w′(k) > Corrw,w′(j). Let k′ = Corrw,w′(k) and j′ = Corrw,w′(j). Let a, b ∈
Σ, such that w(k) = w′(k′) = a, w(j) = w′(j′) = b, and let Σ̂ = (Σ1, . . . , Σm)
be the corresponding distributed alphabet of (Σ, I). Since we assume (a, b) ∈ D,
there exists 
 ∈ {1, . . . , m}, such that a, b ∈ Σ�. Let n1 = |w(1) . . . w(k)|a =
|w′(1) . . . w′(k′)|a and n2 = |w(1) . . . w(j)|b = |w′(1) . . . w′(j′)|b. Note that in the
projection of w to Σ�, i.e. π�(w), since k < j, there exist at least n1 many as that
occur before the n2-th b. However, in the projection of w′ to Σ�, i.e. π�(w′), since
k′ > j′, the n1-th a occurs after the n2-th b. There are less than n1 many as that
occur before the n2-th b. Hence, π�(w) �= π�(w′). This contradicts w′ ∼I w. For
all w′ ∼I w, we have Corrw,w′(k) ≤ Corrw,w′(j). By induction hypothesis, we also
have Corrw,w′(i) ≤ Corrw,w′(k) for all w′ ∼I w. Thus, Corrw,w′(i) ≤ Corrw,w′(j)
for all w′ ∼I w.

In contrast, if we have (i, j) /∈ Blockw for some position i < j in w over
(Σ, I), then the letters at positions i and j commute with each other. If there
are n many positions of such i then the letter at position j can commute n many
steps to the left.

Lemma 7. Let w ∈ Σ∞ be a word over (Σ, I). If there are positions i1, . . . , in <
j0 ∈ Pos(w), such that (i1, j0), . . . , (in, j0) /∈ Blockw, then there exists w′ ∼I w,
such that (j0, j0 − n) ∈ Corrw,w′ .

Proof. Let i1, . . . , in and j0 be such positions in w. Without loss of gener-
ality, we can assume that in is the largest position such that in < j0 and
(in, j0) /∈ Blockw. Hence for all k, in < k < j0, (k, j0) ∈ Blockw. This implies
(w(in), w(k)) /∈ D for all k, in < k < j0, since otherwise (in, j0) ∈ Blockw.
Let u1 = w(1)w(2) . . . w(in − 1), u2 = w(in)w(in + 1) . . . w(j0), and u3 =
w(j0 +1)w(j0 +2) . . ., such that w = u1u2u3. Let u′

2 = w(in +1) . . . w(j0)w(in).
We have u2 ∼I u′

2 since (w(in), w(k)) /∈ D for all k, in + 1 ≤ k ≤ j0. Hence we
have w ∼I u1u

′
2u3. Let w′ = u1u

′
2u3. The letter at position j0 in w corresponds

to the one at position j0 − 1 in w′, i.e. (j0, j0 − 1) ∈ Corrw,w′ . By induction
hypothesis, there exists w′′ ∼ w′, such that (j0 − 1, j0 − n) ∈ Corrw′,w′′ . Hence
we have (j0, j0 − n) ∈ Corrw,w′′ .

Let us define Block+w(i) = {j > i | (i, j) /∈ Blockw} and Block−
w(i) = {j < i |

(j, i) /∈ Blockw}. We have j ∈ Block+w(i) or j ∈ Block−
w(i) if the letter at position

j �= i commutes with the one at position i. The positive and negative signs are
used to indicate whether it occurs before or after the letter at position i. In the
following, we show that the size of Block+w(i) and Block−

w(i) give us the bound
on how long the letter at position i commutes to the right and left, respectively.

Lemma 8. For all b ∈ {+,−}, Degbw(i) = |Blockbw(i)|.
Proof. We will show this for b = −. A similar argument can also be used for
b = +. Let k1 = Deg−

w(i) and k2 = |Block−
w(i)|. If k1 < k2, then there are at
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least k1 + 1 many distinct positions in Block−
w(i), i.e. there are i1, . . . , ik1+1 < i,

such that (i1, i), . . . , (ik1+1, i) /∈ Blockw. By Lemma 7, there exists w′, such that
w′ ∼I w and (i, i − (k1 + 1)) ∈ Corrw,w′ . This means Deg−

w(i) > k1, which
contradicts Deg−

w(i) = k1.
If k1 > k2, then Deg−

w(i) > k2. There exist a word w′ and a position j ∈
Pos(w′) such that w ∼I w′, (i, j) ∈ Corrw,w′ , and i − j > k2. Consider the set
S = {i′ < i | Corrw,w′(i′) > j}. We have |S| = i − j, and hence |S| > k2. Since
there are only k2 many positions in Block−

w(i), there is at least one position
that is not in Block−

w(i), but belongs to S. Let i′ be such a position. We have
(i′, i) ∈ Blockw and Corrw,w′(i′) > Corrw,w′(i). This contradicts Lemma 6. We
have k1 = k2 since k1 �< k2 and k1 �> k2.

One interesting property regarding the cyclic-path-connected automata is
that whenever we have a path that goes through a cycle, then every letter on
the path does not commute with at least one letter in the cycle. This is always
the case since otherwise the cyclic-path will not be connected.

Lemma 9. Let A be a cyclic-path-connected automaton, and p
w1−−→ q u−→

q
w2−−→ p′ a cyclic-path over w = w1uw2. Let P1 = {1, . . . , |w1|}, P2 = {|w1| +

1, . . . , |w1u|}, P3 = {|w1u| + 1, . . . , |w1uw2|} ⊆ Pos(w).

– For all i ∈ P1, there exists j ∈ P2, such that (i, j) ∈ Blockw.
– For all j ∈ P3, there exists i ∈ P2, such that (i, j) ∈ Blockw.

Proof. We will show this for the first part. A similar argument can also be
used to prove the second one. Let i ∈ P1, n = |w1|, P ′

1 = {i, i + 1, . . . , n}, and
w′

1 = w(i)w(i+1) . . . w(n). Since the word w′
1u is produced by a cyclic-path, w′

1u
is connected. There exists j ∈ P ′

1∪P2, such that (w(i), w(j)) ∈ D. If j ∈ P2, then
by definition, (i, j) ∈ Blockw. If j ∈ P ′

1, then by induction hypothesis there exists
j′ ∈ P2, such that (j, j′) ∈ Blockw. Since (i, j) ∈ Blockw, we have (i, j′) ∈ Blockw.

Let us call a path r in A wall if for every path r′ that is extended from r,
every letter that is read before r and after r does not commute with each other.

Definition 5. A path r = p0
a1−−→ p1

a2−−→ . . .
an−−→ pn over w = a1 . . . an in A is

called a wall if for every path r′ that is extended from r, i.e. r′ = q
w1−−→ p0

w−−→ pn

w2−−→ q′, over w′ = w1ww2, we have (i, j) ∈ Blockw′ for all i ∈ {1, . . . , |w1|},
j ∈ {|w1w| + 1, . . . , |w1ww2|}.

Moreover, let C(A) bethe set of simple cycles of A. By simple cycle, we mean
a path that does not visit the same state twice except the first and the last state,
i.e. C(A) = {p1

a1−−→ p2
a2−−→ . . .

ak−−→ pk | p1 �= p2 . . . �= pk−1 and p1 = pk}. If we

have a path of length |A|2 · |C(A)|, then there exists a simple cycle that is visited
at least n = |A| many times. This is because for every path of length |A|, there
exists a state that is visited at least twice.
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Proposition 3. For any automaton A, if r is a path in A of length |A|2 ·|C(A)|,
then there exists c ∈ C(A) that is visited at least |A| many times in r.

We use this proposition to show the following lemma.

Lemma 10. If A is a cyclic-path-connected automaton, then every path of
length |A|2 · |C(A)| is a wall.

Proof. Suppose r is a path of length |A|2 · |C(A)| from p to p′. By
Proposition 3, there exists a simple cycle c ∈ C(A), suppose over u, that
is visited at least n = |A| many times in r. The path r is over the word
w = v0uv1 . . . uvn for some v0, . . . , vn ∈ Σ∗. Let r′ be a path extended from r, i.e.
r′ = s

w1−−→ p
w−−→ p′ w2−−→ s′, over the word w′ = w1ww2. Let i0 ∈ {1, . . . , |w1|} and

j0 ∈ {|w1w| + 1, . . . , |w1ww2|}. We will show that (i0, j0) ∈ Blockw′ . Let mk =
|w1v0u . . . uvk−1| and Pk = {mk +1, . . . , mk + |u|} for all k ∈ {1, . . . , n}. Since A
is cyclic-path-connected and we can see r′ as s

w1v0−−−−→ q
u−→ q

v1u...uvnw2−−−−−−−−→ s′, by

the first part of Lemma 9, there exists i1 ∈ P1, such that (i0, i1) ∈ Blockw′ . More-
over, since s

w1v0u...uvn−1−−−−−−−−−−→ q u−→ q
vnw2−−−−→ s′, by the second part of Lemma 9, there

exists j1 ∈ Pn, such that (j1, j0) ∈ Blockw′ . We will show that (i1, j1) ∈ Blockw′ .
Since the word u is connected and w′(i1), w′(j1) ∈ Σu, there exists a

path from w′(i1) to w′(j1) in the dependency graph Gu. There exists such
a path of length m ≤ n since |Gu| = |Σu| ≤ n. Let 
 be such a path,
and i2 ∈ P2, . . . , im ∈ Pm, such that 
 = w′(i1)w′(i2) . . . w′(im). Since an
edge in the dependency graph represents dependency between letters, we have
(w′(i1), w′(i2)), . . ., (w′(im−1), w′(im)) ∈ D. Since i1 < . . . < im, we have (i1, i2),
. . ., (im−1, im) ∈ Blockw′ . Moreover, since w′(im) = w′(j1) and im ≤ j1, we also
have (im, j1) ∈ Blockw′ . Hence (i1, j1) ∈ Blockw′ , and we have (i0, j0) ∈ Blockw′ .

This implies that for every finite or infinite path p1a1p2a2 . . . over w =
a1a2 . . ., in a cyclic-path-connected automaton with n states and m simple cycles,
the letter ai does not commute with aj for all j < i − n2m and j > i + n2m.
This is because for any i > 0, the path piai . . . pi+n2m or pi−n2m . . . ai−1pi is a
wall in A. Hence there are at most n2m many letters to the left or right of ai

that commute with ai, i.e. |Blockbw(i)| ≤ n2m, for any b ∈ {+,−}.
Hence if A is cyclic-path-connected, then for any word w ∈ Tr(A) and posi-

tion i ∈ Pos(w), max {Deg+w(i), Deg−
w(i)} ≤ |A|2 · |C(A)|. In other words, the

corresponding degree of Tr(A) is finite. Since A is cyclic-path-conneted iff the
corresponding degree of Tr(A) is finite, we can refine the characterisation in
Theorem 1 into the following theorem.

Theorem 3. For any two NBA A, B, in which A is cyclic-path-connected and B
is complete, then A�k,...,kB for some k ∈ N iff there exists a Lipschitz continuous
trace preserving function f : AccRun(A) → AccRun(B).
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L(A) ⊆ [L(B)]I ∃ trace preserving (TP) f : AccRun(A) → AccRun(B)

A �ω,...,ω B ∃ Continuous TP f : AccRun(A) → AccRun(B)

A �k,...,k B ∃ Lipschitz continuous TP f : AccRun(A) → AccRun(B)

+
A cyclic-path-connected, B complete

Thm. 3

Prop. 1

Prop. 2

Lem. 1

Fig. 1. Topological characterisation of multi-buffer simulation

6 Conclusion

We have shown that we can lift the characterisation of multi-buffer simulation
with unbounded buffers to the one with bounded buffers if the automaton for
Spoiler is cyclic-path-connected and the automaton for Duplicator is com-
plete. In this case, multi-buffer simulation with bounded buffers can be charac-
terised by the existence of a Lipschitz continuous function that witnesses trace
closure inclusion. We summarise the topological characterisation of multi-buffer
simulation in Fig. 1.
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Abstract. In a previous work, we explained how Euler’s method for
computing approximate solutions of systems of ordinary differential
equations can be used to synthesize safety controllers for sampled
switched systems. We continue here this line of research by showing how
Euler’s method can also be used for synthesizing safety controllers in
a distributed manner. The global system is seen as an interconnection
of two (or more) sub-systems where, for each component, the sub-state
corresponding to the other component is seen as an “input”; the method
exploits (a variant of) the notions of incremental input-to-state stability
(δ-ISS) and ISS Lyapunov function. We illustrate this distributed control
synthesis method on a building ventilation example.

1 Introduction

The computation of reachable sets for continuous-time dynamical systems has
been intensively studied during the last decades. Most of the methods to compute
the reachable set start from an initial value problem for a system of ordinary
differential equations (ODE) defined by

ẋ(t) = f(t, x(t)) with x(0) ∈ X0 ⊂ R
n and t ∈ [0, tend] . (1)

As an analytical solution of Eq. (1) is usually not computable, numerical
approaches have been considered. A numerical method to solve Eq. (1), when
X0 is reduced to one value, produces a discretization of time, such that t0 �
· · · � tN = tend, and a sequence of states x0, . . . , xN based on an integration
method which starts from an initial value x0 at time t0 and a finite time hori-
zon h (the step-size), produces an approximation xk+1 at time tk+1 = tk + h,
of the exact solution x(tk+1), for all k = 0, . . . , N − 1. The simplest numerical
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 118–131, 2017.
DOI: 10.1007/978-3-319-67089-8 9
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method is Euler’s method in which tk+1 = tk + h for some step-size h and
xk+1 = xk + hf(tk, xk); so the derivative of x at time tk, f(tk, xk), is used as
an approximation of the derivative on the whole time interval.

The global error error(t) at t = t0+kh is equal to ‖x(t)−xk‖. In case n = 1,
if the solution x has a bounded second derivative and f is Lipschitz continuous
in its second argument, then it satisfies:

error(t) ≤ hM

2L
(eL(t−t0) − 1) (2)

where M is an upper bound on the second derivative of x on the given interval
and L is the Lipschitz constant of f [3].1

In [14], we gave an upper bound on the global error error(t), which is more
precise than (2). This upper bound makes use of the notion of One-Sided Lip-
schitz (OSL) constant. This notion has been used for the first time by [7] in
order to treat “stiff” systems of differential equations for which the explicit Euler
method is numerically “unstable” (unless the step size is taken to be extremely
small). Unlike Lipschitz constants, OSL constants can be negative, which express
a form of contractivity of the system dynamics. Even if the OSL constant is pos-
itive, it is in practice much lower than the Lipschitz constant [5]. The use of OSL
thus allows us to obtain a much more precise upper bound for the global error.
We also explained in [14] how such a precise estimation of the global error can
be used to synthesize safety controllers for a special form hybrid systems, called
“sampled switched systems”.

In this paper, we explain how such an Euler-based method can be extended
to synthesize safety controllers in a distributed manner. This allows us to control
separately a component using only partial information on the other components.
It also allows us to scale up the size of the global systems for which a control can
be synthesized. In order to perform such a distributed synthesis, we will see the
components of the global systems as being interconnected (see, e.g., [18]), and
use (a variant of) the notions of incremental input-to-state stability (δ-ISS) and
ISS Lyapunov functions [11] instead of the notion of OSL used in the centralized
framework.

The plan of the paper is as follows: In Sect. 2, we recall the results of [14]
obtained in the centralized framework; in Sect. 3 we extend these results to
the framework of distributed systems; we then apply the distributed synthesis
method to a nontrivial example (Sect. 4), and conclude in Sect. 5.

2 Euler’s Method Applied to Control Synthesis

In this Section, we recall the results obtained in [14]. We first give results con-
cerning a system governed by a single ODE system (Sect. 2.1), then consider
results for a switched system composed of several ODEs (Sect. 2.2).

1 Such a bound has been used in hybridization methods: error(t) = ED
L

(eLt − 1)
[2,4], where ED gives the maximum difference of the derivatives of the original and
approximated systems.
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2.1 ODE Systems

We make the following hypothesis:

(H0) f is a locally Lipschitz continuous map.

We make the assumption that the vector field f is such that the solutions of
the differential equation (7) are defined. We will denote by φ(t;x0) the solution
at time t of the system:

ẋ(t) = f(x(t)),

x(0) = x0.
(3)

Consider a compact and convex set S ⊂ R
n, called “safety set”. We denote by T

a compact overapproximation of the image by φ of S for 0 ≤ t ≤ τ , i.e., T is
such that

T ⊇ {φ(t;x0) | 0 ≤ t ≤ τ, x0 ∈ S}.

The existence of T is guaranteed by assumption (H0). We know furthermore
by (H0) that there exists a constant L > 0 such that:

‖f(y) − f(x)‖ ≤ L ‖y − x‖ ∀x, y ∈ S. (4)

Let us define C:
C = sup

x∈S
L‖f(x)‖. (5)

We make the additional hypothesis that the mapping f is one-sided Lipschitz
(OSL) [7]. Formally:

(H1) There exists a constant λ ∈ R such that

〈f(y) − f(x), y − x〉 ≤ λ ‖y − x‖2 ∀x, y ∈ T,

where 〈·, ·〉 denotes the scalar product of two vectors of Rn.

Remark 1. Constants λ, L and C can be computed using constrained optimiza-
tion algorithms, namely, the ‘sqp’ function from GNU Octave [8].

Given an initial point x̃0 ∈ S, we define the following “linear approximate
solution” φ̃(t; x̃0) for t on [0, τ ] by:

φ̃(t; x̃0) = x̃0 + tf(x̃0). (6)

We define the closed ball of center x ∈ R
n and radius r > 0, denoted B(x, r),

as the set {x′ ∈ R
n | ‖x′ − x‖ ≤ r}.

Given a positive real δ0, we now define the expression δ(t) which, as we will
see in Theorem 1, represents (an upper bound on) the error associated to φ̃(t; x̃0)
(i.e., ‖φ̃(t; x̃0) − φ(t;x0)‖).

Definition 1. Let δ0 be a positive constant. Let us define, for all 0 ≤ t ≤ τ ,
δ(t) as follows:
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Fig. 1. Illustration of Corollary 1, with x̃1 = φ̃(τ ; x̃0) and x1 = φ(τ ; x0).

– if λ < 0:

δ(t) =
(

(δ0)2eλt +
C2

λ2

(
t2 +

2t

λ
+

2
λ2

(
1 − eλt

))) 1
2

– if λ = 0 :
δ(t) =

(
(δ0)2et + C2(−t2 − 2t + 2(et − 1))

) 1
2

– if λ > 0 :

δ(t) =
(

(δ0)2e3λt +
C2

3λ2

(
−t2 − 2t

3λ
+

2
9λ2

(
e3λt − 1

))) 1
2

Note that δ(t) = δ0 for t = 0. The function δ(·) depends implicitly on para-
meter: δ0 ∈ R. In Sect. 2.2, we will use the notation δ′(·) where the parameter is
denoted by (δ′)0.

Theorem 1. Given an ODE system satisfying (H0-H1), consider a point x̃0

and a positive real δ0. We have, for all x0 ∈ B(x̃0, δ0), t ∈ [0, τ ]:

φ(t;x0) ∈ B(φ̃(t; x̃0), δ(t)).

Corollary 1. Given an ODE system satisfying (H0-H1), consider a point x̃0 ∈
S and a real δ0 > 0 such that:

1. B(x̃0, δ0) ⊆ S,
2. B(φ̃(τ ; x̃0), δ(τ)) ⊆ S, and
3. d2(δ(t))

dt2 > 0 for all t ∈ [0, τ ].

Then we have, for all x0 ∈ B(x̃0, δ0) and t ∈ [0, τ ]: φ(t;x0) ∈ S. See Fig. 1 for
an illustration of Corollary 1.
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2.2 Sampled Switched Systems

Let us consider the nonlinear switched system

ẋ(t) = fσ(t)(x(t)) (7)

defined for all t ≥ 0, where x(t) ∈ R
n is the state of the system, σ(·) : R+ −→ U

is the switching rule. The finite set U = {1, . . . , N} is the set of switching modes
of the system. We focus on sampled switched systems: given a sampling period
τ > 0, switchings will occur at times τ , 2τ , . . . The switching rule σ(·) is thus
constant on the time interval [(k − 1)τ, kτ) for k ≥ 1. For all j ∈ U , fj is a
function from R

n to R
n.

We will denote by φσ(t;x0) the solution at time t of the system:

ẋ(t) = fσ(t)(x(t)),

x(0) = x0.
(8)

Often, we will consider φσ(t;x0) on the interval 0 ≤ t < τ for which σ(t)
is equal to a constant, say j ∈ U . In this case, we will abbreviate φσ(t;x0) as
φj(t;x0). We will also consider φσ(t;x0) on the interval 0 ≤ t < kτ where k
is a positive integer, and σ(t) is equal to a constant, say jk′ , on each interval
[(k′ − 1)τ, k′τ) with 1 ≤ k′ ≤ k; in this case, we will abbreviate φσ(t;x0) as
φπ(t;x0), where π is a sequence of k modes (or “pattern”) of the form π =
j1 · j2 · · · · · jk.

We will assume that φσ is continuous at time kτ for all positive integer k.
This means that there is no “reset” at time k′τ (1 ≤ k′ ≤ k); the value of
φσ(t, x0) for t ∈ [(k′ − 1)τ, kτ ] corresponds to the solution of ẋ(u) = fjk′ (x(u))
for u ∈ [0, τ ] with initial value φσ((k′ − 1)τ ;x0).

More generally, given an initial point x̃0 ∈ S and pattern π of Uk, we can
define a “(piecewise linear) approximate solution” φ̃π(t; x̃0) of φπ at time t ∈
[0, kτ ] as follows:

– φ̃π(t; x̃0) = tfj(x̃0) + x̃0 if π = j ∈ U , k = 1 and t ∈ [0, τ ], and
– φ̃π(kτ + t; x̃0) = tfj(z̃) + z̃ with z̃ = φ̃π′((k − 1)τ ; x̃0), if k ≥ 2, t ∈ [0, τ ],

π = j · π′ for some j ∈ U and π′ ∈ Uk−1.

We wish to synthesize a safety control σ for φσ using the approximate
functions φ̃π. Hypotheses (H0) and (H1), as defined in Sect. 2.1, are naturally
extended to every mode j of U , as well as definition of T , constants L, C and λ,
definitions of φ̃j and δ0 (see [14]). From a notation point of view, we will assign
an index j to symbols λ,L,C, . . . in order to relate them to the dynamics of
mode j.

Consider a point x̃0 ∈ S, a positive real δ0 and a pattern π of length k. Let
π(k′) denote the k′-th element (mode) of π for 1 ≤ k′ ≤ k. Let us abbreviate
the k′-th approximate point φ̃π(k′τ ; x̃0) as x̃k′

π for k′ = 1, ..., k, and let x̃k′
π = x̃0

for k′ = 0. It is easy to show that x̃k′
π can be defined recursively for k′ = 1, ..., k,

by: x̃k′
π = x̃k′−1

π + τfj(x̃k′−1
π ) with j = π(k′).
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Let us now define the expression δk′
π as follows: For k′ = 0: δk′

π = δ0, and for
1 ≤ k′ ≤ k: δk′

π = δ′
j(τ) where (δ′)0 denotes δk′−1

π , and j denotes π(k′). Likewise,
for 0 ≤ t ≤ kτ , let us define the expression δπ(t) as follows:

– for t = 0: δπ(t) = δ0,
– for 0 < t ≤ kτ : δπ(t) = δ′

j(t
′) with (δ′)0 = δ�

π, j = π(�), t′ = t − �τ and
� = 
 t

τ �.

Note that, for 0 ≤ k′ ≤ k, we have: δπ(k′τ) = δk′
π . We have

Theorem 2. Given a sampled switched system satisfying (H0-H1), consider a
point x̃0 ∈ S, a positive real δ0 and a pattern π of length k such that, for all
1 ≤ k′ ≤ k:

1. B(x̃k′
π , δk′

π ) ⊆ S and

2. d2(δ′
j(t))

dt2 > 0 for all t ∈ [0, τ ], with j = π(k′) and (δ′)0 = δk′−1
π .

Then we have, for all x0 ∈ B(x̃0, δ0) and t ∈ [0, kτ ]: φπ(t;x0) ∈ S.

Remark 2. In Theorem 2, we have supposed that the step size h used in Euler’s
method was equal to the sampling period τ of the switching system. Actually, in
order to have better approximations, it is often convenient to take a fraction of
τ as for h (e.g., h = τ

10 ). Such a splitting is called “sub-sampling” in numerical
methods.

Consider now a compact set R, called “recurrence set”, contained in the
safety set S ⊂ R

n (R ⊆ S). We are interested in the synthesis of a control such
that: starting from any initial point x ∈ R, the controlled trajectory always
returns to R within a bounded time while never leaving S.

Corollary 2. Given a switched system satisfying (H0-H1), consider a positive
real δ0 and a finite set of points x̃1, . . . x̃m of S such that all the balls B(x̃i, δ

0)
cover R and are included into S (i.e., R ⊆ ⋃m

i=1 B(x̃i, δ
0) ⊆ S).

Suppose furthermore that, for all 1 ≤ i ≤ m, there exists a pattern πi of
length ki such that:

1. B((x̃i)k′
πi

, δk′
πi

) ⊆ S, for all k′ = 1, . . . , ki − 1
2. B((x̃i)ki

πi
, δki

πi
) ⊆ R.

3. d2(δ′
j(t))

dt2 > 0 with j = πi(k′) and (δ′)0 = δk′−1
πi

, for all k′ ∈ {1, ..., ki} and
t ∈ [0, τ ].

These properties induce a control σ2 which guarantees

2 Given an initial point x ∈ R, the induced control σ corresponds to a sequence of
patterns πi1 , πi2 , . . . defined as follows: Since x ∈ R, there exists a a point x̃i1 with
1 ≤ i1 ≤ m such that x ∈ B(x̃i1 , δ0); then using pattern πi1 , one has: φπi1

(ki1τ ; x) ∈
R. Let x′ = φπi1

(ki1τ ; x); there exists a point x̃i2 with 1 ≤ i2 ≤ m such that

x′ ∈ B(x̃i2 , δ0), etc.
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Fig. 2. (a): A set of balls covering R and contained in S. (b): Control of ball B(x̃3, δ
0)

with Euler-based method.

– (safety): if x ∈ R, then φσ(t;x) ∈ S for all t ≥ 0, and
– (recurrence): if x ∈ R then φσ(kτ ;x) ∈ R for some k ∈ {k1, . . . , km}.

Corollary 2 gives the theoretical foundations of the following method for
synthesizing σ ensuring recurrence in R and safety in S:

– we (pre-)compute λj , Lj , Cj for all j ∈ U ;
– we find m points x̃1, . . . x̃m of S and δ0 > 0 such that R ⊆ ⋃m

i=1 B(x̃i, δ
0) ⊆ S;

– we find m patterns πi (i = 1, ...,m) such that conditions 1-2-3 of Corollary 2
are satisfied.

A covering of R with balls as stated in Corollary 2 is illustrated in Fig. 2 (a).
The control synthesis method based on Corollary 2 is illustrated in Fig. 2 (b).

For the sake of simplicity, we will suppose in the following that R is a rec-
tangle, i.e., the Cartesian product of n closed real intervals, and we will denote
its center by c. We will also assume that T is a ball of centre c and radius Δ
(i.e., T = B(c,Δ)).

3 Distributed Synthesis

The goal is to split the system into two (or more) sub-systems and synthesize
controllers for the sub-systems independently. The allows to break the exponen-
tial complexity (curse of dimensionality) of the method w.r.t. the dimension of
the system, as well as the dimension of the control input.

We consider the distributed control system

ẋ1 = f1
j1(x1, x2) (9)

ẋ2 = f2
j2(x1, x2) (10)
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where x1 ∈ R
n1 and x2 ∈ R

n2 , with n1 + n2 = n. Furthermore, j1 ∈ U1 and
j2 ∈ U2 and U = U1 × U2.

Note that the system (9–10) can be seen as the interconnection of sub-
system (9) where x2 plays the role of an “input” given by (10), with sub-
system (10) where x1 is an “input” given by (9).

Let: R = R1 × R2, S = S1 × S2, and c = (c1, c2)3. We denote by L1
j1

the
Lipschitz constant for sub-system 1 under mode j1 on S:

‖f1
j1(x1, x2) − f1

j1(y1, y2)‖ ≤ L1
j1

∥∥∥∥
(

x1

x2

)
−

(
y1
y2

)∥∥∥∥
We then introduce the constant:

C1
j1 = sup

x1∈S1

L1
j1‖f1

j1(x1, c2)‖

Similarly, we define the constants for sub-system 2:

‖f2
j2(x1, x2) − f2

j2(y1, y2)‖ ≤ L2
j2

∥∥∥∥
(

x1

x2

)
−

(
y1
y2

)∥∥∥∥
and

C2
j2 = sup

x2∈S2

L2
j2‖f2

j2(c1, x2)‖

Let us now make additional assumptions on the coupled sub-systems, closely
related to the notion of (incremental) input-to-state stability.

(H2) For every mode j1 ∈ U1, there exists constants λ1
j1

∈ R and γ1
j1

∈ R≥0

such that ∀x, x′ ∈ T1 and ∀y, y′ ∈ T2, the following expression holds

〈f1
j1(x, y) − f1

j1(x
′, y′), x − x′〉 ≤ λ1

j1‖x − x′‖2 + γ1
j1‖x − x′‖‖y − y′‖.

(H3) For every mode j2 ∈ U2, there exists constants λ2
j2

∈ R and γ2
j2

∈ R≥0

such that ∀x, x′ ∈ T1 and ∀y, y′ ∈ T2, the following expression holds

〈f2
j2(x, y) − f2

j2(x
′, y′), y − y′〉 ≤ λ2

j2‖y − y′‖2 + γ2
j2‖x − x′‖‖y − y′‖.

These assumptions express (a variant of) the fact that the function V (x, x′) =
‖x−x′‖2 is an ISS-Lyapunov function (see, e.g., [1,9]). Note that all the constants
defined above can be numerically computed using constrained optimization algo-
rithms.

Let us define the distributed Euler scheme:

x̃1(τ) = x̃1(0) + τf1
j1(x̃1(0), c2) (11)

x̃2(τ) = x̃2(0) + τf2
j2(c1, x̃2(0)) (12)

The exact trajectory is now denoted, for all t ∈ [0, τ ], by φ(j1,j2)(t;x
0) for an

initial condition x0 =
(
x0
1 x0

2

)�, and when sub-system 1 is in mode j1 ∈ U1, and
sub-system 2 is in mode j2 ∈ U2.
3 So T = T1 × T2 with: T1 = B(c1, Δ), T2 = B(c2, Δ).
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We define the approximate trajectory computed with the distributed Euler
scheme by φ̃1

j1
(t; x̃0

1) = x̃0
1 + tf1

j1
(x̃0

1, c2) for t ∈ [0, τ ], when sub-system 1 is in
mode j1 and with an initial condition x̃0

1. Similarly, for sub-system 2, φ̃2
j2

(t; x̃0
2) =

x̃0
2+tf2

j2
(c1, x̃0

2) when sub-system 2 is in mode j2 and with an initial condition x̃0
2.

We now give a distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system, a positive real δ0 and
a point x̃0

1 ∈ S1, suppose that sub-system 1 satisfies (H2) and φ̃1
j1

(t; x̃0
1) belongs

to S1 for all t ∈ [0, τ ]. We have, for all x0
1 ∈ B(x̃0

1, δ
0), x0

2 ∈ S2, t ∈ [0, τ ],
j1 ∈ U1, j2 ∈ U2:

φ(j1,j2)(t;x
0)|1 ∈ B(φ̃1

j1(t; x̃
0
1), δj1(t)).

with x0 =
(
x0
1 x0

2

)� and

– if λ1
j1

< 0,

δj1(t) =

(
(C1

j1
)2

−(λ1
j1

)4
(
−(λ1

j1)
2t2 − 2λ1

j1t + 2eλ1
j1

t − 2
)

+
2

(λ1
j1

)2

(
C1

j1
γ1

j1
Δ

−λ1
j1

(
−λ1

j1t + eλ1
j1

t − 1
)

+ λ1
j1

(
(γ1

j1
)2Δ2

−λ1
j1

(eλ1
j1

t − 1) + λ1
j1(δ

0)2eλ1
j1

t

)))1/2

(13)

– if λ1
j1

> 0,

δj1(t) =
1

(3λ1
j1

)3/2

(
C2

1

λ1
j1

(
−9(λ1

j1)
2t2 − 6λ1

j1t + 2e3λ1
j1

t − 2
)

+ 6λ1
j1

(
C1γ

1
j1

Δ

λ1
j1

(
−3λ1

j1t + e3λ1
j1

t − 1
)

+ 3λ1
j1

(
(γ1

j1
)2Δ2

λ1
j1

(e3λ1
j1

t − 1) + 3λ1
j1(δ

0)2e3λ1
j1

t

)))1/2

(14)

– if λ1
j1

= 0,

δj1(t) =
(
(C1

j1)
2
(−t2 − 2t + 2et − 2

)
+

(
2C1

j1γ
1
j1Δ

(−t + et − 1
)

+
(
(γ1

j1)
2Δ2(et − 1) + (δ0)2et

)))1/2
(15)

A similar result can be established for sub-system 2, permitting to perform
a distributed control synthesis.
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Proof. Consider on t ∈ [0, τ ] the differential system (9–10) with initial conditions
x1(0) ∈ B(x̃1(0), δ0), x2(0) ∈ S2, and the system (11–12) with initial conditions
x̃1(0) ∈ S1, x̃2(0) ∈ S2. We will abbreviate φj1(t;x1(0)) as x1, φj2(t;x2(0))
as x2, and φ̃j1(t;x1(0)) as x̃1. In order to simplify the notation, we omit the
mode j1 and write f1

j1
≡ f1, L1

j1
≡ L1, C1

j1
≡ C1, λ1

j1
≡ λ1. Since, d(x1−x̃1)

dt =
f1(x1, x2) − f1(x̃1(0), c2), we have, using the facts x̃1 ∈ S1 and c2 ∈ S2:

1
2

d(‖x1 − x̃1‖2)
dt

= 〈f1(x1, x2) − f1(x̃1(0), c2), x1 − x̃1〉
= 〈f1(x1, x2) − f1(x̃1, c2) + f1(x̃1, c2) − f1(x̃1(0), c2), x1 − x̃1〉
≤ 〈f1(x1, x2) − f1(x̃1, c2), x1 − x̃1〉 + 〈f1(x̃1, c2) − f1(x̃1(0), c2), x1 − x̃1〉
≤ 〈f1(x1, x2) − f1(x̃1, c2), x1 − x̃1〉 + ‖f1(x̃1, c2) − f1(x̃1(0), c2)‖‖x1 − x̃1‖

≤ 〈f1(x1, x2) − f1(x̃1, c2), x1 − x̃1〉 + L1

∥∥∥∥
(

x̃1

c2

)
−

(
x̃1(0)

c2

)∥∥∥∥ ‖x1 − x̃1‖

≤ λ1‖x1 − x̃1‖2 + γ1‖x2 − c2‖‖x1 − x̃1‖ + L1t ‖f1(x̃1(0), c2)‖ ‖x1 − x̃1‖
≤ λ1‖x1 − x̃1‖2 + (γ1Δ + C1t) ‖x1 − x̃1‖

Using the fact that ‖x1 − x̃1‖ ≤ 1
2 (α‖x1 − x̃1‖2 + 1

α ) for any α > 0, we can write
three formulas following the sign of λ1.

– if λ1 < 0, we can choose α = −λ1
C1t+γ1Δ , and we get the differential inequality:

d(‖x1 − x̃1‖2)
dt

≤ λ1‖x1 − x̃1‖2 +
C2

1

−λ1
t2 +

2C1γ1Δ

−λ1
t +

γ2
1Δ2

−λ1

– if λ1 > 0, we can choose α = λ1
C1t+γ1Δ , and we get the differential inequality:

d(‖x1 − x̃1‖2)
dt

≤ 3λ1‖x1 − x̃1‖2 +
C2

1

λ1
t2 +

2C1γ1Δ

λ1
t +

γ2
1Δ2

λ1

– if λ1 = 0, we can choose α = 1
C1t+γ1Δ , and we get the differential inequality:

d(‖x1 − x̃1‖2)
dt

≤ ‖x1 − x̃1‖2 + C2
1 t2 + 2C1γ1Δt + γ2

1Δ2

In every case, the differential inequalities can be integrated to obtain the
formulas of the theorem.

��
It then follows a distributed version of Corollary 2.

Corollary 3. Given a positive real δ0, consider two sets of points x̃1
1, . . . , x̃

1
m1

and x̃2
1, . . . , x̃

2
m2

such that all the balls B(x̃1
i1

, δ0) and B(x̃2
i2

, δ0), for 1 ≤ i1 ≤ m1

and 1 ≤ i2 ≤ m2, cover R1 and R2. Suppose that there exists patterns π1
i1

and
π2

i2
of length ki1 and ki2 such that:
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1. B((x̃1
i1

)k′
π1
i1

, δk′
π1
i1

) ⊆ S1, for all k′ = 1, . . . , ki1 − 1

2. B((x̃1
i1

)ki1
π1
i1

, δ
ki1
π1
i1

) ⊆ R1.

3.
d2(δ′

j1
(t))

dt2 > 0 with j1 = π1
i1

(k′) and (δ′)0 = δk′−1
π1
i1

, for all k′ ∈ {1, ..., ki1} and

t ∈ [0, τ ].

1. B((x̃2
i2

)k′
π2
i2

, δk′
π2
i2

) ⊆ S2, for all k′ = 1, . . . , ki2 − 1

2. B((x̃2
i2

)ki2
π2
i2

, δ
ki2
π2
i2

) ⊆ R2.

3.
d2(δ′

j2
(t))

dt2 > 0 with j2 = π2
i2

(k′) and (δ′)0 = δk′−1
π2
i2

, for all k′ ∈ {1, ..., ki2} and

t ∈ [0, τ ].

The above properties induce a distributed control σ = (σ1, σ2) guaranteeing
(non simultaneous) recurrence in R and safety in S. I.e.

– if x ∈ R, then φσ(t;x) ∈ S for all t ≥ 0
– if x ∈ R, then φσ(k1τ ;x)|1 ∈ R1 for some k1 ∈ {ki1 , . . . , kim1

}, and symmet-
rically φσ(k2τ ;x)|2 ∈ R2 for some k2 ∈ {ki2 , . . . , kim2

}.

4 Application

We demonstrate the feasibility of our approach on a (linearized) building ventila-
tion application adapted from [16]. The system is a four-room apartment subject
to heat transfer between the rooms, with the external environment and with the
underfloor. The dynamics of the system is given by the following equation:

dTi

dt
=

∑
j∈N *\{i}

aij(Tj − Ti) + ci max
(

0,
Vi − V *

i

V̄i − V *
i

)
(Tu − Ti). (16)

The state of the system is given by the temperatures in the rooms Ti, for
i ∈ N = {1, . . . , 4}. Room i is subject to heat exchange with different entities
stated by the indexes N * = {1, 2, 3, 4, u, o, c}. The heat transfer between the
rooms is given by the coefficients aij for i, j ∈ N 2, and the different perturbations
are the following:

– The external environment: it has an effect on room i with the coefficient aio

and the outside temperature To, set to 30◦C.
– The heat transfer through the ceiling: it has an effect on room i with the

coefficient aic and the ceiling temperature Tc, set to 30◦C.
– The heat transfer with the underfloor: it is given by the coefficient aiu and

the underfloor temperature Tu, set to 17◦C (Tu is constant, regulated by a
PID controller).
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The control Vi, i ∈ N , is applied through the term ci max (0,
Vi−V *

i

V̄i−V *
i

)(Tu−Ti).
A voltage Vi is applied to force ventilation from the underfloor to room i, and the
command of an underfloor fan is subject to a dry friction. Because we work in a
switching control framework, Vi can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment,
V1 and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values
0V or 3V. This leads to a system of the form (8) with σ(t) ∈ U = {1, . . . , 16},
the 16 switching modes corresponding to the different possible combinations of
voltages Vi. The system can be decomposed in sub-systems of the form (9)–(10).
The sampling period is τ = 30s. The parameters V *

i , V̄i, aij , bi, ci are given
in [16] and have been identified with a proper identification procedure detailed
in [17].

The main difficulty of this example is the large number of modes in the
switching system, which induces a combinatorial issue. The centralized controller
was obtained with 256 balls in 48 s, the distributed controller was obtained with
16+16 balls in less than a second. In both cases, patterns of length 2 are used. A
sub-sampling of h = τ/20 is required to obtain a controller with the centralized
approach. For the distributed approach, no sub-sampling is required for the
first sub-system, while the second one requires a sub-sampling of h = τ/10.
Simulations of the centralized and distributed controllers are given in Fig. 3,
where the control objective is to stabilize the temperature in [20, 22]4 while
never going out of [19, 23]4 (Tables 1 and 2).

Table 1. Numerical results for centralized four-room example.

Centralized

R [20, 22]4

S [19, 23]4

τ 30

Time subsampling τ/20

Complete control Yes

Error parameters max
j=1,...,16

λj = −6.30 × 10−3

max
j=1,...,16

Cj = 4.18 × 10−6

Number of balls/tiles 256

Pattern length 2

CPU time 48 s
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Table 2. Numerical results for the distributed four-room example.

Sub-system 1 Sub-system 2

R [20, 22]2 × [20, 22]2

S [19, 23]2 × [19, 23]2

τ 30

Time subsampling No τ/10

Complete control Yes Yes

Error parameters max
j1=1,...,4

λ1
j1 = −1.39 × 10−3 max

j2=1,...,4
λ2

j2 = −1.42 × 10−3

max
j1=1,...,4

γ1
j1 = 1.79 × 10−4 max

j2=1,...,4
γ2

j2 = 2.47 × 10−4

max
j1=1,...,4

C1
j1 = 4.15 × 10−4 max

j2=1,...,4
C2

j2 = 5.75 × 10−4

Number of balls/tiles 16 16

Pattern length 2 2

CPU time < 1 s < 1 s

Fig. 3. Simulation of the centralized (left) and distributed (right) controllers from the
initial condition (22, 22, 22, 22).

5 Final Remarks and Future Work

We have given a new distributed control synthesis method based on Euler’s
method. The method makes use of the notions of δ-ISS-stability and ISS Lya-
punov functions. From a certain point of view, this method is along the lines
of [6,12] which are inspired by small-gain theorems of control theory (see, e.g.,
[10]). In the future, we plan to apply our distributed Euler-based method to
significant examples such as the 11-room example treated in [13,15].
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Reachability Problem for Polynomial Iteration
Is PSPACE-complete
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Abstract. In the reachability problem for polynomial iteration, we are
given a set of polynomials over integers and we are asked whether a
particular integer can be reached by a non-deterministic application of
polynomials. This model can be seen as a generalisation of vector addi-
tion systems. Our main result is that the problem is PSPACE-complete
for single variable polynomials. On the other hand, the problem is unde-
cidable for multidimensional polynomials, already starting with three
dimensions.

Keywords: Reachability problem · Polynomial iteration · Decidability

1 Introduction

In this paper, we consider the reachability problem for polynomial iteration. That
is, we are given a set of integer valued polynomials {p1(x), p2(x), . . . , pn(x)} ⊆
Z[x], two integers x0 and xf , and asked whether there exists a finite sequence of
polynomials pi1(x), pi2(x), . . . , pij (x) that maps x0 to xf , i.e., whether

pij (pij−1(· · · pi2(pi1(x0)) · · · ) = xf .

The problem can be seen as a special case of polynomial register machines of
[6], where the machine has a single state. In [6], it was proved that the reacha-
bility problem is PSPACE-complete. We show that the reachability problem for
polynomial iteration has the same complexity. The upper bound follows natu-
rally from [6] and we highlight authors’ observations regarding this surprising
complexity. First observation is that the reachability set is not semi-linear which
can be seen by considering the polynomial p(x) = x2 and its reachability set,
which is illustrated in Fig. 1. The second observation is that the representation
of evaluations of x grows exponentially with the number of times a polynomial
is applied.

To prove the lower bound, we need to modify the proof of PSPACE-hardness
for register machines with polynomial updates to remove the need for the state
structure of the machine. To this end, we follow the proof of [6] and reduce
the reachability problem for linear-bounded automata to polynomial iteration.
Linear-bounded automata were studied in [12,13], where the authors showed
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 132–143, 2017.
DOI: 10.1007/978-3-319-67089-8 10
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−2 −1 0 1 2 3 4 5 6 7 8

p(x) = x2
p(x) = x2

Fig. 1. Iterating −2 with polynomial p(x) = x2 two times.

that the linear-bounded automata accept exactly context-sensitive languages. A
linear-bounded automaton is a Turing machine with a finite tape whose length
is bounded by a linear function of the length of the input. The reachability
problem for the linear-bounded automaton is to decide whether starting from
the initial state and the read/write head in the leftmost cell of the empty tape,
the machine can reach a final state with the empty tape. The problem is a well-
known PSPACE-complete problem. We use a similar encoding to the encoding
used in [6], where the tape content of a linear-bounded automaton was encoded
as a solution to a system of linear congruences and the state structure was
encoded as a state structure of a polynomial register machine. Unlike Finkel’s,
Göller’s and Haase’s encoding, we will also encode the state structure of the
linear-bounded automaton as a solution to additional linear congruences making
our automaton stateless.

We also consider iterating multidimensional polynomials and show that
the reachability problem is undecidable for three-dimensional polynomials. The
result is not surprising as the reachability problem for register machines with
two-dimensional affine updates is undecidable [15]. Unfortunately, we are not
able to obtain as strong result for polynomial iteration as, in our construction,
simulating the state structure requires an additional dimension and polynomials
of higher degree than one.

The models similar to our polynomial iteration have been studied before.
In [3], polynomial iteration in Q was studied and the reachability problem was
proved to be decidable using p-adic norms. Polynomials over Q are significantly
harder to analyze than polynomials over Z, as in a finite interval [a, b], there
might be infinite number of reachable values.

Multidimensional linear polynomial iteration has been considered from a dif-
ferent aspect. The vector reachability problem for d-dimensional matrices over
F, where F = Z,Q,C, . . ., studies whether for given two vectors x0,xf and a
set of matrices {M1, . . . Mk} ⊆ F

d×d, there exists a finite sequence of matri-
ces such that Mi1 · · · Mijx0 = xf . Since transforming a vector by a matrix
can be expressed as a system of linear equations, the multidimensional lin-
ear polynomial iteration can be seen as a vector reachability problem. The
main difference from our consideration is that we consider only polynomials
of the form p(x1, . . . , xd) = (p1(x1), . . . , pd(xd)) for some univariate polynomials
pi(x), while the polynomials in the vector reachability problem are of the form
p(x1, . . . , xd) = (a11x1 + . . . + a1dxd, . . . , ad1x1 + . . . + addxd). The vector reach-
ability problem has been proven to be undecidable for six 3-dimensional integer
matrices in [7] and for two 11-dimensional integer matrices in [8].



134 R. Niskanen

In [1], the authors studied reachability of a point in Q
2 by two-dimensional

affine transformations. They proved that the problem is undecidable already for
five such affine polynomials. The affine transformations used are of the form

p(x, y) = (q1x + q2y + q3, q4x + q5y + q6).

The above mentioned undecidability results relied on the undecidability of the
Post correspondence problem with seven pairs of words and having particular
structure known as Claus instances [4]. The state-of-art bound on number of
pairs of words is five [14], which could result in lower bounds on number of
matrices and linear transformations as well.

The polynomial iteration can be also considered as piecewise maps. That is,
a polynomial p(x) is applicable only when x ∈ [a, b) for some a, b ∈ Z ∪ {±∞}.
Piecewise maps and related reachability problems have been studied extensively
[2,9,10]. The problem is undecidable for two-dimensional piecewise affine maps.
The decidability of the reachability problem for one-dimensional piecewise affine
map is an open problem even when there are only two intervals. On the other
hand, for more general updates the problem is undecidable. For example if the
updates are based on the elementary functions {x2, x3,

√
x, 3

√
x, 2x, x + 1, x − 1}

or on rational functions of the form p(x) = ax2+bx+c
dx+e , where the coefficients are

rational numbers [11], then the problem is undecidable.
This paper is organized as follows. In the next section, we introduce basic def-

initions and models used in the paper. In Sect. 3, we prove our main result that
the reachability problem for polynomial iteration is PSPACE-complete. We also
consider the multidimensional case and prove undecidability for three-dimensional
polynomials.

2 Preliminaries

In this section we present basic definitions used throughout the paper. The sets of
integers and rational numbers are denoted by Z and Q, respectively. The integers
are assumed to be encoded in binary. By Z[x] we denote the ring of polynomials
with integer variable x. A polynomial p(x) ∈ Z[x] is p(x) = anxn + . . .+a1x+a0,
where ai ∈ Z and n ≥ 0. We represent polynomials in sparse encoding by a
sequence of pairs (i, ai)i∈I , where I = {i ∈ {0, . . . , n} | ai �= 0}. Deciding
whether for a given y ∈ Z, the polynomial p(y) evaluates to a positive number
can be done in polynomial time [5].

In our encoding, we use the Chinese remainder theorem to find the unique
solution to a system of linear congruences. That is, for given pairwise co-prime
positive integers n1, . . . , nk and b1, . . . , bk ∈ Z, the system of linear congruences
x ≡ bi mod ni for i = 1, . . . , k has a unique solution modulo n1 · · · nk. Recall
that a residue class b modulo n is the set of integers {. . . , b − n, b, b + n, . . .}.

A polynomial register machine (PRM) is a tuple R = (S,Δ), where S is a finite
set of states, Δ ⊆ S ×Z[x] × S is the set of transitions labelled with update poly-

nomials. A transition (s, p(x), s′) is often written as s
p(x)−−−→ s′. A configuration

c of R is a tuple [s, z] ∈ S × Z. A configuration [s, z] is said to yield a configu-
ration [s′, y] if there is a transition (s, p(x), s′) ∈ Δ such that p(z) = y. This is
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denoted by [s, z] →R [s′, y]. The reflexive and transitive closure of →R is denoted
by →∗

R. The reachability problem is to decide, given two configurations [s0, x0] and
[sf , xf ], does [s0, x0] →∗

R [sf , xf ] hold? It is easy to reduce the general reach-
ability problem to [s0, 0] →∗

R′ [sf , 0] for some R′. Note, that when considering
d-dimensional polynomial updates, the updates are applied componentwise, i.e.,
p(x1, . . . , xd) = (p1(x1), . . . , pd(xd)), where pi(x) ∈ Z[x].

A linear-bounded automaton (LBA) is a Turing machine with a tape bounded
by a linear function of the length of the input. Equivalently, LBA can be defined
as a Turing machine with a finite tape. We denote an LBA M by a tuple (Q,Γ, δ),
where Q is a finite set of states, Γ = {�, �, 0, 1} is a finite tape alphabet, con-
taining two special symbols � and �, which mark the left and right borders of
the tape. The transition function δ is a mapping from Q×Γ to Q×Γ ×{L,R},
where L and R tell the read/write head to move left or right, respectively. The
automaton respects the boundary symbols, that is, δ(q1, �) = (q2, �, L) and
δ(q3, �) = (q4, �, R) for any states q1, q3 ∈ Q and where q2, q4 ∈ Q. A config-
uration is a triple [q, i, �w�], where w ∈ {0, 1}n and i = 0, . . . , n + 1. Intuitively,
in the configuration the automaton is in state q, the read/write head is in the
ith cell and w is written on the tape. Let →∗

M be the reflexive and transitive
closure of the transition relation →M defined in the usual way. The reachability
problem for a given LBA is to decide whether [q0, 0, �0n�] →∗

M [qf , 0, �0n�] holds
and is a well-known PSPACE-complete problem. Without loss of generality, we
can assume that qf appears only in the configuration [qf , 0, �0n�]. Furthermore,
we can enumerate the states such that q0 is the first state and qf is the last
state, i.e., qf = q|Q|−1. By w[i] we denote the ith letter of w.

Finally, we define the main decision problem of the paper. Given a finite
set of polynomials P = {p1(x), . . . , pn(x)} ⊆ Z[x] and an initial integer x0, we
iterate x0 by non-deterministically applying polynomials from P to it. We are
interested whether when iterating x0 in such way the result is 0 or not. This
model can be seen as a PRM where |S| = 1 and self-loops are labelled with
pi(x).

3 Iterating Polynomials

In this section we prove that the reachability problem for iterating polynomials is
PSPACE-complete. The proof of lower bound is similar to the proof of PSPACE-
hardness of the reachability problem for polynomial register machines. Both
proofs reduce from the reachability problem for LBA. Let us fix an LBA M with
tape of n symbols for the remainder of the section. The main difference of the
proofs is that in [6], the states of PRM contain the information on the state of M,
position of the read/write head and the letter that the head is currently reading,
while the tape content was encoded as an integer and modified by the transitions
according to the instructions of M. In our proof, the whole configuration of M
is encoded as an integer and updated according to the instructions of M.
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First, let us recall some definitions from [6]. Let pi denote the (i+3)-th prime
number, that is, p1 = 7, p2 = 11, . . . and let P be the product of m such primes,
P =

∏m
i=1 pi, where m = n+n · |Q|. The main idea of the encoding is to consider

the integer line Z modulo P and integers as the corresponding residue classes.
We are interested in the residue classes that satisfy linear equations modulo pi

for different pi. First n primes will correspond to each cell of the tape and the
next n · |Q| primes will correspond to the head being in a particular state in a
particular cell. Note, that for the sake of simplicity, we omit the border symbols
of the tape and the behaviour of the head on them. In fact, it is quite easy to
deal with them as, among other information, we also encode the position of the
head into our integer. Then, it is easy to hard-code the behaviour of M on the
border symbols into corresponding polynomials.

We are not interested in all residue classes modulo P and only a tiny fraction
of residue classes is used to store information. A residue class r is of interest to
us if for every 1 ≤ i ≤ m there is some bi ∈ {0, 1, 2} such that r = bi mod pi.
We call such residue class sane and denote the set of all sane residue classes by
S. A configuration [qj , i, w], where i = {1, . . . , n} and w ∈ {0, 1}n, corresponds
to a residue class r satisfying the system of congruence equations

r ≡ w[1] mod p1,

r ≡ w[2] mod p2,

...
r ≡ w[n] mod pn,

r ≡ 1 mod p� if � = n + j + (i − 1)|Q|,
r ≡ 0 mod p� if � > n and � �= n + j + (i − 1)|Q|.

(1)

We illustrate how a configuration [q3, 2, 1001 · · · 1] of an LBA corresponds to
the residue class r satisfying the system of linear Eq. (1) in Fig. 2.

To simulate a move δ(qj , a) = (qk, a′, L), we need to check that the current
residue class r satisfies congruence equations

r ≡ 1 mod pn+j+(i−1)|Q| and r ≡ a mod pi

for some i ∈ {1, . . . , n} and then move to a residue class r′ satisfying congruence
equations

r′ ≡ 0 mod pn+j+(i−1)|Q|,
r′ ≡ 1 mod pn+k+(i−2)|Q|,
r′ ≡ a′ mod pi,

r′ ≡ r mod p� for all
� ∈ {1, . . . , n + n · |Q|} \ {i, n + j + (i − 1)|Q|, n + k + (i − 2)|Q|}.

That is, first we need to check that the current residue class r corresponds to
a configuration [qj , i, w], where w[i] = a. Then, we move to the residue class r′
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q3

· · ·
n

tape
content

1st cell 2nd cell nth cellPosition of the head:

...

mod p1

mod p2

...

mod pn

...

mod pn+1

mod pn+2

mod pn+2

...

mod pn+|Q|

...

mod pn+|Q|+1
mod pn+|Q|+2
mod pn+|Q|+3

...

mod pn+2|Q|

· · ·
...

mod pn+(n−1)|Q|+1
mod pn+(n−1)|Q|+2
mod pn+(n−1)|Q|+3

...

mod pn+n|Q|

state q1
state q2
state q3

...

state q|Q|

Fig. 2. An illustration how configuration [q3, 2, 1001 · · · 1] of an LBA (left) is encoded
as residue class r satisfying a system of linear equations. Here, symbols 0 and 1 are
represented by a white and gray squares, respectively. A gray square in the ith cell
column and the jth state row represents the head being in the ith cell in state qj .

corresponding to the configuration [qk, i − 1, w′], where w′[i] = a′ and w′[�] =
w[�], for all � = {1, . . . , n} \ {i}.

To this end, we need to locally modify the residue classes. That is, we need
to have a polynomial p(x) such that p(r) = r′. There are three mappings that
are defined for each index i ∈ {1, . . . , m}, flipi,eqzeroi,eqonei : S → S.

For the mapping flipi(r) there are three cases depending on whether r ≡
0, 1, 2 mod pi:

if r ≡ 0 mod pi : if r ≡ 1 mod pi : if r ≡ 2 mod pi :

flipi(r) ≡
{

1 mod pi

r mod pj

flipi(r) ≡
{

0 mod pi

r mod pj

flipi(r) ≡
{

2 mod pi

r mod pj .

Similarly, for the remaining two mappings, there are three cases depending
on whether r ≡ 0, 1, 2 mod pi.

if r ≡ 0 mod pi : if r ≡ 1, 2 mod pi :

eqzeroi(r) ≡
{

0 mod pi

r mod pj

eqzeroi(r) ≡
{

2 mod pi

r mod pj

if r ≡ 1 mod pi : if r ≡ 0, 2 mod pi :

eqonei(r) ≡
{

1 mod pi

r mod pj

eqzeroi(r) ≡
{

2 mod pi

r mod pj .
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The move δ(qj , 0) = (qk, 0, L) of LBA M when the head is in ith position is
now realized by

flipn+k+(i−2)|Q| ◦ flipn+j+(i−1)|Q| ◦ eqzeroi ◦ eqonen+j+(i−1)|Q|.

In Fig. 3 we illustrate how moves δ(qj , 0) = (qk, 0, L) and δ(qj , 1) = (qk, 0, R) of
LBA M are realized for the configuration [q, i, w]. Note, that we do not assume
that q = qj or that w[i] = 0 for the first move or w[i] = 1 for the second move.
Moves eqzero� and eqone� verify that the bit encoded in the residue class
modulo p� is 0 or 1, respectively.

(qj , 0) = (qk, 0, L)

eqzeroi

flipn+k+(i−2)|Q| ◦ flipn+j+(i−1)|Q| ◦ eqonen+j+(i−1)|Q|

(qj , 1) = (qk, 0, R)

flipi ◦ eqonei

flipn+k+i|Q| ◦ flipn+j+(i−1)|Q| ◦ eqonen+j+(i−1)|Q|

Fig. 3. An illustration of mappings corresponding to moves of LBA.

The crucial ingredient for the simulation is that the functions flipi, eqzeroi

and eqonei can be realized by polynomials with coefficients in {0, . . . , P − 1}.
We present the lemma of [6].

Lemma 1. For any 1 ≤ i ≤ m and any of flipi,eqzeroi,eqonei : S → S,
there is a a quadratic polynomial with coefficients from {0, . . . , P−1} that realizes
the respective function.

Proof. First, we show the polynomials corresponding to the mappings flipi,
eqzeroi and eqonei that map the values correctly when considering only
Z/piZ. Then, we mention how to modify them to also map the values correctly
for all Z/pjZ where j �= i.

It is easy to verify that the polynomials

peqzero(x) = −x2 + 3x, peqone(x) = x2 − 2x + 2 and

pflip(x) = 3 · 2−1x2 − 5 · 2−1x + 1

realize the respective mappings. Note that since pi ≥ 7, 2 has a multiplicative
inverse. For example, let pi = 11, then 2−1 = 6 and

Although these polynomials realize the conditions of flipi, eqzeroi and
eqonei for i, they (generally) do not realize the conditions when j �= i. That
is, peqzero(x) �= x when considering the polynomials in Z/pjZ. To illustrate this,
consider peqzero(1) as above, but now with respect to pj = 7. By the definition
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x peqzero(x) peqone(x) pflip(x)

0 −02 + 3 · 0 ≡ 0 02 − 2 · 0 + 2 ≡ 2 3 · 6 · 02 − 5 · 6 · 0 + 1 ≡ 1

1 −12 + 3 · 1 ≡ 2 12 − 2 · 1 + 2 ≡ 1 3 · 6 · 12 − 5 · 6 · 1 + 1 = −11 ≡ 0

2 −22 + 3 · 2 ≡ 2 22 − 2 · 2 + 2 ≡ 2 3 · 6 · 22 − 5 · 6 · 2 + 1 = 13 ≡ 2

of eqzeroi, it should remain unchanged, that is peqzero(1) = 1 with respect to
pj . This is not the case, as 1 and 2 are different residue classes. To obtain poly-
nomials corresponding to flipi, eqzeroi and eqonei, we consider polynomials
peqzero(x), peqone(x) and pflip(x) as a2x2 + a1x + a0 and construct a system of
congruences for each � = {0, 1, 2}:

x ≡ a� mod pi

x ≡ b� mod pj for each j ∈ {1, . . . , m} \ {i},

where b1 = 1 and b0 = b2 = 0. By applying the Chinese remainder theorem,
we obtain the unique solution for each coefficient and obtain the polynomials
peqzero,i(x), peqone,i(x) and pflip,i(x) by replacing the original coefficients with
these unique solutions. 
�

Now, for each i ∈ {1, . . . , n} and each transition δ(qj , a) = (qk, a′,D), where
a, a′ ∈ {0, 1} and D = {L,R}, there exists a polynomial of at most degree 32
realizing this transition by Lemma1. These polynomials are exactly our set of
polynomials P. Note, that our simulation is slightly different from [6] as there,
in each step, the PRM guessed (and verified) the content of the cell where the
head moves in the successive configuration and only correct moves are available
due to the state structure. In our model, as there is no state structure, each time
a move is simulated, we have to verify that indeed both the state and current
cell are correct. The initial value x0 satisfies

x0 ≡ 1 mod pn+1 and x0 ≡ 0 mod p� if � �= n + 1.

Main idea is still the same, if M is simulated incorrectly, the value x becomes 2
modulo some prime p� and will remain 2 forever.

By induction on the length of the run of LBA M, it is easy to see that
[q1, 0, �0n�] →∗ [qf , 0, �0n�] in M if and only if a residue class r, such that

r ≡ 1 mod pn+|Q|−1 and r ≡ 0 mod p� if � �= n + |Q| − 1,

is reachable from x0 by applying polynomials from P. To reach 0, we need three
additional polynomials: one polynomial to move to a residue class r′ such that
r′ ≡ 0 mod p� for all 1 ≤ � ≤ m, and two polynomials to move from the integer
r′ to 0. The first polynomial is pflip,n+|Q|−1(peqone,n+|Q|−1(x)) as we assumed
that the final state appears only in the configuration [q|Q|−1, 0, �0n�]. The latter
polynomials are p+(x) = x + P and p−(x) = x − P .

We have proved the following lemma:
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Lemma 2. The reachability problem for polynomial iteration is PSPACE-hard
for polynomials with integer coefficients.

Example 3. We illustrate the simulation of an LBA with polynomials. Let M be
an LBA with a single state, a tape with two cells and a move δ(q1, 0) = (q1, 1, R).
For the sake of readability, we present all the integers modulo P = 7 ·11 ·13 ·17 =
17017. The integers r and s representing configurations [q1, 1, 00] and [q1, 2, 10]
can be solved from the system of congruences

r ≡ 0 mod 7, s ≡ 1 mod 7
r ≡ 0 mod 11, s ≡ 0 mod 11,
r ≡ 1 mod 13, s ≡ 0 mod 13,
r ≡ 0 mod 17, s ≡ 1 mod 17.

That is, r = 3927 and s = 715. The move δ(q1, 0) = (q1, 1, R) is realized by
flip1 ◦ eqzero1 ◦ flip4 ◦ flip3 ◦ eqone3. By Lemma 1, eqone3 is realized by a
quadratic polynomial a′

2x
2+a′

1x+a′
0 with coefficients satisfying the congruences

a′
2 ≡ 0 mod 7, a′

1 ≡ 1 mod 7, a′
0 ≡ 0 mod 7,

a′
2 ≡ 0 mod 11, a′

1 ≡ 1 mod 11, a′
0 ≡ 0 mod 11,

a′
2 ≡ 1 mod 13, a′

1 ≡ −2 mod 13, a′
0 ≡ 2 mod 13,

a′
2 ≡ 0 mod 17, a′

1 ≡ 1 mod 17, a′
0 ≡ 0 mod 17.

Solving these systems, we see that peqone,3(x) = 3927x2 + 5237x + 7854. The
other polynomials are solved from similar systems of congruences.

pflip,3 = 14399x2 + 11782x + 3927,

pflip,4 = 12012x2 + 6007x + 8008,

peqzero,1 = 7293x2 + 2432x,

pflip,1 = 14586x2 + x + 9724.

Finally, the composition of the polynomials is p(x) = 11968x4 + 8041x3 +
9207x2 + 11056x + 8569. It can be easily verified that p(x) simulates the move
δ(q1, 0) = (q1, 1, R) from the configuration [q1, 1, 00] correctly, i.e., p(r) = s.

To prove that the reachability problem is PSPACE-complete, it remains to
prove that the problem can be solved in PSPACE.

Lemma 4. The reachability problem for polynomial iteration is PSPACE for
polynomials with integer coefficients.

Proof. Consider the set P as a PRM with a single state and where the transitions
are labelled by the polynomials of P. The reachability problem for PRM can be
solved in PSPACE and thus also the reachability problem for polynomial iteration
is in PSPACE. 
�
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We highlight some crucial observations from the proof that the reachability
problem for PRM is in PSPACE of [6]. Firstly, most of the polynomials have
monotonic behaviour when integers with large absolute values are evaluated,
and this bound is of polynomial size. Secondly, the only polynomials that do
not have monotonic behaviour are of the form ±x + b for some b ∈ Z. They can
be simulated by a one-dimensional vector addition system with states extracted
from the given PRM.

Combining Lemmas 2 and 4, we have our main result.

Theorem 5. The reachability problem for polynomial iteration is PSPACE-
complete for polynomials with integer coefficients.

Next, we extend the previous results by considering polynomials over the
field Q. Additionally, we modify the polynomials to ensure that the image is
always in [0, 1].

Let p(x) be a polynomial from our set P. Then, the corresponding set of
rational polynomials Q has a polynomial p′(x) = 1

p( 1
x )

. It is easy to see that in

fact p′ is of the form r(x)
q(x) for some r(x), q(x) ∈ Z[x]. We can inherit the lower

bound for the reachability for rational polynomials from Lemma2.

Corollary 6. The reachability problem for polynomial iteration is PSPACE-
hard, when the polynomials are of form r(x)

q(x) : [0, 1] → [0, 1] over polynomial
ring Q[x].

Finally, we prove that the reachability problem for multidimensional polyno-
mial iteration is undecidable. We construct a three-dimensional polynomials that
simulate a two-dimensional PRM with affine updates with undecidable reacha-
bility problem [15].

Theorem 7. The reachability problem for multidimensional polynomial itera-
tion is undecidable already for three-dimensional polynomials.

Proof. Let M be a two-dimensional PRM with affine updates and n states. Let
Q = {q1, . . . , qn} be its states and Δ the set of transitions. Without loss of
generality, we can assume that q1 is the initial state and qn is the final state.
We construct a three-dimensional set of polynomials P such that the first two
dimensions are updated as in M and the third dimension is used to simulate
the state transition of M. As in the beginning of the section, let pi be (i + 3)-th
prime number and P be the product of n primes P =

∏n
i=1 pi. Intuitively, we

will encode current state qj into a residue class r satisfying r ≡ 1 mod pj and
r ≡ 0 mod p� if � �= j. Then a transition qj → qk is simulated by a polynomial
corresponding to flipk ◦ flipj ◦ eqonej . By Lemma 1, such polynomials exist.
More formally, for each transition (qj , (p1(x), p2(x)), qk) ∈ Δ the polynomial
(p1(x), p2(x), pflip,k(pflip,j(peqone,j(x))) is added to P.

It is easy to see that [q1, (x0, y0)] →∗
M [qn, (xf , yf )] if and only if (xf , yf , rf ) is

reachable from (x0, y0, r0), where r0 is the residue class satisfying r0 ≡ 1 mod p1
and r0 ≡ 0 mod p� if � > 1 and r1 satisfies rf ≡ 1 mod pn and rf ≡ 0 mod p�
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if � < n. We add polynomials p−(x, y, z) = (x, y, z−P ), p+(x, y, z) = (x, y, z+P )
and p(x, y, z) = (x, y, pflip,n(peqone,n(z))) to P to reach (0, 0, 0).

The reachability problem for two-dimensional PRM with affine updates is
undecidable [15] and hence so is the reachability for three-dimensional polyno-
mial iteration. 
�

4 Conclusion

In this paper, we considered the reachability problem for polynomial itera-
tion. We showed that for one-dimensional polynomials, the problem is PSPACE-
complete and for three-dimensional polynomials it is undecidable. The remaining
case of two-dimensional polynomials remains open.

It would be interesting to see how the techniques of the proof can be applied
to polynomials over rational numbers. Corollary 6 provides a lower bound for
polynomials in the interval [0, 1] but the upper bound is not clear as there are
infinite number of rational numbers in the interval. It is possible that p-adic
norms used in similar settings in [3] can be useful to provide an upper bound,
or at the very least, to prove decidability.
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Abstract. Probabilistic timed automata are classical timed automata
extended with discrete probability distributions over edges. We introduce
clock-dependent probabilistic timed automata, a variant of probabilistic
timed automata in which transition probabilities can depend linearly on
clock values. Clock-dependent probabilistic timed automata allow the
modelling of a continuous relationship between time passage and the like-
lihood of system events. We show that the problem of deciding whether
the maximum probability of reaching a certain location is above a thresh-
old is undecidable for clock-dependent probabilistic timed automata. On
the other hand, we show that the maximum and minimum probabil-
ity of reaching a certain location in clock-dependent probabilistic timed
automata can be approximated using a region-graph-based approach.

1 Introduction

Reactive systems are increasingly required to satisfy a combination of quali-
tative criteria (such as safety and liveness) and quantitative criteria (such as
timeliness, reliability and performance). This trend has led to the development
of techniques and tools for the formal verification of both qualitative and quan-
titative properties. In this paper, we consider a formalism for real-time systems
that exhibit randomised behaviour, namely probabilistic timed automata (PTA)
[10,17]. PTAs extend classical Alur-Dill timed automata [4] with discrete prob-
abilistic branching over automata edges; alternatively a PTA can be viewed as a
Markov decision process [20] or a Segala probabilistic automaton [21] extended
with timed-automata-like clock variables and constraints over those clocks. PTAs
have been used previously to model case studies including randomised protocols
and scheduling problems with uncertainty [16,19], some of which have become
standard benchmarks in the field of probabilistic model checking.

We recall briefly the behaviour of a PTA: as time passes, the model stays
within a particular discrete state, and the values of its clocks increase at the
same rate; at a certain point in time, the model can leave the discrete state if
the current values of the clocks satisfy a constraint (called a guard) labelling one
of the probability distributions over edges leaving the state; then a probabilistic
choice as to which discrete state to then visit is made according to the cho-
sen edge distribution. In the standard presentation of PTAs, any dependencies
between time and probabilities over edges must be defined by utilising multiple
c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 144–159, 2017.
DOI: 10.1007/978-3-319-67089-8 11
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distributions enabled with different sets of clock values. For example, to model
the fact that a packet loss is more likely as time passes, we can use clock x to
measure time, and two distributions μ1 and μ2 assigning probability λ1 and λ2

(for λ1 < λ2), respectively, to taking edges leading to a discrete state corre-
sponding to packet loss, where the guard of μ1 is x ≤ c and the guard of μ2 is
x > c, for some constant c ∈ N. Hence, when the value of clock x is not more
than c, a packet loss occurs with probability λ1, otherwise it occurs with prob-
ability λ2. A more direct way of expressing the relationship between time and
probability would be letting the probability of making a transition to a discrete
state representing packet loss be dependent on the value of the clock, i.e., let
the value of this probability be equal to f(x), where f is an increasing function
from the values of x to probabilities. We note that such a kind of dependence of
discrete branching probabilities on values of continuous variables is standard in
the field of stochastic hybrid systems, for example in [1].

In this paper we consider such a formalism based on PTAs, in which all
probabilities used by edge distributions can be expressed as functions of val-
ues of the clocks used by the model: the resulting formalism is called clock-
dependent probabilistic timed automata (cdPTA). We focus on a simple class of
functions from clock values to probabilities, namely those that can be expressed
as sums of continuous piecewise linear functions, and consider a basic problem
in the context of probabilistic model checking, namely probabilistic reachability:
determine whether the maximum (respectively, minimum) probability of reach-
ing a certain set of locations from the initial state is above (respectively, below)
a threshold. After introducing cdPTAs (in Sect. 2), our first result (in Sect. 3)
is that the probabilistic reachability problem is undecidable for cdPTA with a
least three clocks. This result is inspired from recent related work on stochastic
timed Markov decision processes [2]. Furthermore, we give an example of cdPTA
with one clock for which the maximal probability of reaching a certain location
involves a particular edge being taken when the clock has an irrational value.
This suggests that classical techniques for partitioning the state space into a
finite number of equivalence classes on the basis of a fixed, rational-numbered
time granularity, such as the region graph [4] or the corner-point abstraction [8],
cannot be applied directly to the case of cdPTA to obtain optimal reachability
probabilities, because they rely on the fact that optimal choices can be made
either at or arbitrarily closely to clock values that are multiples of the chosen
rational-numbered time granularity. In Sect. 4, we present a conservative approx-
imation method for cdPTA, i.e., maximum (respectively, minimum) probabilities
are bounded from above (respectively, from below) in the approximation. This
method is based on the region graph but uses concepts from the corner-point
abstraction to define transition distributions. We show that successive refinement
of the approximation, obtained by increasing the time granularity by a constant
factor, does not lead to a more conservative approximation: in practice, in many
cases such a refinement can lead to a substantial improvement in the computed
probabilities, which we show using a small example.
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2 Clock-Dependent Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers, Q
to denote the set of rational numbers and N to denote the set of natural num-
bers. A (discrete) probability distribution over a countable set Q is a function
μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. For a function μ : Q → R≥0 we define

support(μ) = {q ∈ Q : μ(q) > 0}. Then for an uncountable set Q we define
Dist(Q) to be the set of functions μ : Q → [0, 1], such that support(μ) is a count-
able set and μ restricted to support(μ) is a (discrete) probability distribution.
Given q ∈ Q, we use {q �→ 1} to denote the distribution that assigns probability
1 to the single element q.

A probabilistic transition system (PTS) T = (S, s,Act ,Δ) comprises the
following components: a set S of states with an initial state s ∈ S, a set Act of
actions, and a probabilistic transition relation Δ ⊆ S × Act × Dist(S). The sets
of states, actions and the probabilistic transition relation can be uncountable.
Transitions from state to state of a PTS are performed in two steps: if the current
state is s, the first step concerns a nondeterministic selection of a probabilistic
transition (s, a, μ) ∈ Δ; the second step comprises a probabilistic choice, made
according to the distribution μ, as to which state to make the transition (that
is, a transition to a state s′ ∈ S is made with probability μ(s′)). We denote such
a completed transition by s

a,μ−−→ s′. We assume that for each state s ∈ S there
exists some (s, a, μ) ∈ Δ.

An infinite run of the PTS T is an infinite sequence of consecutive transitions
r = s0

a0,μ0−−−→ s1
a1,μ1−−−→ · · · (i.e., the target state of one transition is the source

state of the next). Similarly, a finite run of T is a finite sequence of consecutive
transitions r = s0

a0,μ0−−−→ s1
a1,μ1−−−→ · · · an−1,μn−1−−−−−−−→ sn. We use InfRunsT to denote

the set of infinite runs of T , and FinRunsT the set of finite runs of T . If r is
a finite run, we denote by last(r) the last state of r. For any infinite run r and
i ∈ N, let r(i) = si be the (i + 1)th state along r. Let InfRunsT (s) refer to the
set of infinite runs of T commencing in state s ∈ S.

A strategy of a PTS T is a function σ mapping every finite run r ∈ FinRunsT

to a distribution in Dist(Δ) such that (s, a, μ) ∈ support(σ(r)) implies that
s = last(r). From [11, Lemma 4.10], without loss of generality we can assume
henceforth that strategies map to distributions assigning positive probability to
finite sets of elements, i.e., strategies σ for which |support(σ(r))| is finite for
all r ∈ FinRunsT . For any strategy σ, let InfRunsσ denote the set of infinite
runs resulting from the choices of σ. For a state s ∈ S, let InfRunsσ(s) =
InfRunsσ ∩ InfRunsT (s). Given a strategy σ and a state s ∈ S, we define the
probability measure Prσ

s over InfRunsσ(s) in the standard way [14].
Given a set SF ⊆ S, define ♦SF = {r ∈ InfRunsT : ∃i ∈ N s.t. r(i) ∈ SF } to

be the set of infinite runs of T such that some state of SF is visited along the
run. Given a set Σ′ ⊆ Σ of strategies, we define the maximum value over Σ′

with respect to SF as P
max
T ,Σ′(SF ) = supσ∈Σ′ Prσ

s (♦SF ). Similarly, the minimum
value over Σ′ with respect to SF is defined as P

min
T ,Σ′(SF ) = infσ∈Σ′ Prσ

s (♦SF ).
The maximal reachability problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≥, >} and
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λ ∈ [0, 1] is to decide whether Pmax
T ,Σ′(SF )�λ. Similarly, the minimal reachability

problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≤, <} and λ ∈ [0, 1] is to decide whether
P
min
T ,Σ′(SF ) � λ.

Clock-Dependent Probabilistic Timed Automata. Let X be a finite set
of real-valued variables called clocks, the values of which increase at the same
rate as real-time and which can be reset to 0. A function v : X → R≥0 is referred
to as a clock valuation and the set of all clock valuations is denoted by R

X
≥0. For

v ∈ R
X
≥0, t ∈ R≥0 and X ⊆ X , we use v+t to denote the clock valuation that

increments all clock values in v by t, and v[X:=0] to denote the clock valuation
in which clocks in X are reset to 0.

For a set Q, a distribution template d : RX
≥0 → Dist(Q) gives a distribution

over Q for each clock valuation. In the following, we use notation d[v], rather
than d(v), to denote the distribution corresponding to distribution template d
and clock valuation v. Let Dist(Q) be the set of distribution templates over Q.

The set CC (X ) of clock constraints over X is defined as the set of conjunctions
over atomic formulae of the form x ∼ c, where x ∈ X , ∼∈ {<,≤,≥, >}, and
c ∈ N. A clock valuation v satisfies a clock constraint ψ, denoted by v |= ψ, if ψ
resolves to true when substituting each occurrence of clock x with v(x).

A clock-dependent probabilistic timed automaton (cdPTA) P =
(L, l̄,X , inv , prob) comprises the following components: a finite set L of
locations with an initial location l̄ ∈ L; a finite set X of clocks; a function
inv : L → CC (X ) associating an invariant condition with each location; a set
prob ⊆ L × CC (X ) × Dist(2X × L) of probabilistic edges. A probabilistic edge
(l, g, p) ∈ prob comprises: (1) a source location l; (2) a clock constraint g, called
a guard ; and (3) a distribution template p with respect to pairs of the form
(X, l′) ∈ 2X × L (i.e., pairs consisting of a set X of clocks to be reset and a
target location l′).

The behaviour of a cdPTA takes a similar form to that of a standard prob-
abilistic timed automaton [10,17]: in any location time can advance as long as
the invariant holds, and the choice as to how much time elapses is made nonde-
terministically; a probabilistic edge can be taken if its guard is satisfied by the
current values of the clocks and, again, the choice as to which probabilistic edge
to take is made nondeterministically; for a taken probabilistic edge, the choice
of which clocks to reset and which target location to make the transition to is
probabilistic. The key difference with cdPTAs is that the distribution used to
make this probabilistic choice depends on the probabilistic edge taken and on
the current clock valuation.

Example 1. In Fig. 1 we give an example of a cdPTA modelling a simple robot
that must reach a certain geographical area and then carry out a particular task.
The usual conventions for the graphical representation of timed automata are
used in the figure. Black squares denote the distributions of probabilistic edges,
and expressions on probabilities used by distribution templates are written with
a grey background on their outgoing arcs. The robot can be in one of four
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Fig. 1. A cdPTA modelling a simple robot example.

geographical areas, which can be thought of as cells in a 2 × 2 grid, each of
which corresponds to a cdPTA location. The robot begins in the top-left cell
(corresponding to location TL), and its objective is to reach the bottom-right
cell (location BR). The robot can move either to the top-right cell (location
TR), or to the bottom-left cell (location BL), then to the bottom-right cell. In
each cell, the robot must wait a certain amount of time (1 time units in the
top cells and 2 time units in the bottom-left cell) before attempting to leave
the cell (for example, to recharge solar batteries), after which it can spend at
most 1 time unit attempting to leave the cell. With a certain probability, the
attempt to leave the cell will fail, and the robot must wait before trying to
leave the cell again; the more time is dedicated to leaving the cell, the more
likely the robot will succeed. Although passing through the top-right cell is not
slower than passing through the bottom-left cell, the probability of leaving the
cell successfully increases at a slower rate than in other cells (representing, for
example, terrain in which the robot finds it difficult to navigate). On arrival in
the bottom-right cell, the robot successfully carries out its task with a probability
that is inversely proportional to the total time elapsed (for example, the robot
could be transporting medical supplies, the efficacy of which may be inversely
proportional to the time elapsed). The clock x is used to represent the amount of
time used by the robot in its attempt to move from cell to cell, whereas the clock
y represents the total amount of time since the start of the robot’s mission. If the
clock y reaches its maximum amount cmax, then the mission fails (as denoted by
the edge to the location denoted by ✗, which is available in locations TL, TR, BL
and BR, as indicated by the dashed box). The objective of the robot’s controller
is to maximise the probability of reaching the location denoted by �. Note that
there is a trade-off between dedicating more time to movement between the cells,
which increases the probability of successful navigation and therefore progress
towards the target point, and spending less time on the overall mission, which
increases the probability of carrying out the required task at the target point. ��
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A state of a cdPTA is a pair comprising a location and a clock valuation
satisfying the location’s invariant condition, i.e., (l, v) ∈ L × R

X
≥0 such that

v |= inv(l). In any state (l, v), either a certain amount of time δ ∈ R≥0 elapses,
or a probabilistic edge is traversed. If time elapses, then the choice of δ requires
that the invariant inv(l) remains continuously satisfied while time passes. The
resulting state after this transition is (l, v+δ). A probabilistic edge (l′, g, p) ∈
prob can be chosen from (l, v) if l = l′ and it is enabled, i.e., the clock constraint g
is satisfied by v. Once a probabilistic edge (l, g, p) is chosen, a set of clocks to reset
and a successor location are selected at random, according to the distribution
p[v].

We make a number of assumptions concerning the cdPTA models considered.
Firstly, we restrict our attention to cdPTAs for which it is always possible to
take a probabilistic edge, either immediately or after letting time elapse. This
condition holds generally for PTA models in practice [16]. A sufficient syntac-
tic condition for this property has been presented formally in [12]. Secondly,
we consider cdPTAs that feature invariant conditions that prevent clock values
from exceeding some bound: formally, for each location l ∈ L, we have that
inv(l) contains a constraint of the form x ≤ c or x < c for each clock x ∈ X .
Thirdly, we assume that all possible target states of probabilistic edges satisfy
their invariants: for all probabilistic edges (l, g, p) ∈ prob, for all clock valuations
v ∈ R

X
≥0 such that v |= g, and for all (X, l′) ∈ 2X ×L, we have that p[v](X, l′) > 0

implies v[X := 0] |= inv(l′). Finally, we assume that any clock valuation that
satisfies the guard of a probabilistic edge also satisfies the invariant of the source
location: this can be achieved, without changing the underlying semantic PTS,
by replacing each probabilistic edge (l, g, p) ∈ prob by (l, g ∧ inv(l), p).

Let 0 ∈ R
X
≥0 be the clock valuation which assigns 0 to all clocks in X . The

semantics of the cdPTA P = (L, l̄,X , inv , prob) is the PTS [[P]] = (S, s,Act ,Δ)
where:

– S = {(l, v) : l ∈ L and v ∈ R
X
≥0 s.t. v |= inv(l)} and s = {(l̄,0)};

– Act = R≥0 ∪ prob;
– Δ =

−→
Δ ∪ Δ̂, where

−→
Δ ⊆ S ×R≥0 ×Dist(S) and Δ̂ ⊆ S × prob ×Dist(S) such

that:
• −→

Δ is the smallest set such that ((l, v), δ, {(l, v + δ) �→ 1}) ∈ −→
Δ if there

exists δ ∈ R≥0 such that v + δ′ |= inv(l) for all 0 ≤ δ′ ≤ δ;
• Δ̂ is the smallest set such that ((l, v), (l, g, p), μ) ∈ Δ̂ if

1. v |= g;
2. for any (l′, v′) ∈ S, we have μ(l′, v′) =

∑
X∈Reset(v,v′) p[v](X, l′), where

Reset(v, v′) = {X ⊆ X | v[X := 0] = v′}.

When considering maximum and minimum values for cdPTAs, we hence-
forth consider strategies that alternate between transitions from

−→
Δ (time elapse

transitions) and transitions from Δ̂ (probabilistic edge transitions). Formally, a
cdPTA strategy σ is a strategy such that, for a finite run r ∈ FinRuns [[P]] that
has s

a,μ−−→ s′ as its final transition, either (s, a, μ) ∈ −→
Δ and support(σ(r)) ∈ Δ̂, or

(s, a, μ) ∈ Δ̂ and support(σ(r)) ∈ −→
Δ . We write Σ for the set of cdPTA strategies
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Fig. 2. A one-clock cdPTA for which the maximum probability is attained by a time
delay corresponding to an irrational number.

of [[P]]. Given a set F ⊆ L of locations, subsequently called target locations, we
let SF = {(l, v) ∈ S : l ∈ F}. Let � ∈ {≥, >}, � ∈ {≤, <} and λ ∈ [0, 1]: then
the maximal (respectively, minimal) reachability problem for cdPTA is to decide
whether P

max
[[P]],Σ(SF ) � λ (respectively, Pmin

[[P]],Σ(SF ) � λ).

Piecewise Linear Clock Dependencies. In this paper, we concentrate on
a particular subclass of distribution templates based on continuous piecewise
linear functions. Let x ∈ X be a clock and p = (l, g, p) ∈ prob be a probabilistic
edge. Let Ip

x be the interval containing the values of x of clock valuations that
satisfy g: formally Ip

x = {v(x) ∈ R≥0 : v ∈ R
X
≥0 s.t. v |= g}. For example, for

g = (x ≥ 3)∧(x < 5)∧(y ≤ 8), we have Ip
x = [3, 5) and Ip

y = [0, 8]. We equip each
probabilistic edge p = (l, g, p) ∈ prob and e = (X, l′) ∈ 2X ×L with a continuous
piecewise linear function fp,e

x with domain Ip
x for each clock x ∈ X . Formally,

we consider a partition Ip,e
x of Ip

x (i.e.,
⋃

I∈Ip,e
x

I = Ip
x and I ∩ I ′ = ∅ for each

I, I ′ ∈ Ip,e
x such that I �= I ′), and sets {cp,e

x,I}I∈Ip,e
x

and {dp,e
x,I}I∈Ip,e

x
of constants

in Q such that: (a) for every I ∈ Ip,e
x and γ ∈ I, we have fp,e

x (γ) = cp,e
x,I +dp,e

x,I ·γ;
(b) fp,e

x is continuous (i.e., for each γ ∈ Ip
x , we have limζ→γ fp,e

x (ζ) = fp,e
x (γ)).

We make the following assumptions for each probabilistic edge p ∈ prob: (1)
all endpoints of intervals in Ip,e

x are natural numbers, for all clocks x ∈ X and
e ∈ 2X × L; (2)

∑
x∈X fp,e

x (v(x)) ∈ [0, 1] for each e ∈ 2X × L and v ∈ R
X
≥0

such that v |= g; (3)
∑

e∈2X ×L

∑
x∈X fp,e

x (v(x)) = 1 for each v ∈ R
X
≥0 such that

v |= g. Then the probabilistic edge p is piecewise linear if, for each e ∈ 2X × L
and each v ∈ R

X
≥0 such that v |= g, we have p[v](e) =

∑
x∈X fp,e

x (v(x)). We
assume henceforth that all probabilistic edges of cdPTAs are piecewise linear.

Example 2. Standard methods for the analysis of timed automata typically con-
sist of a finite-state system that represents faithfully the original model. In par-
ticular, the region graph [4] and the corner-point abstraction [8] both involve the
division of the state space according to a fixed, rational-numbered granularity.
The example of a one-clock cdPTA P of Fig. 2 shows that such an approach
cannot be used for the exact computation of optimal reachability probabilities
in cdPTAs, because optimality may be attained when the clock has an irrational
value. For an example of the formal description of a piecewise linear probabilistic
edge, consider the probabilistic edge from location C, which we denote by pC:
then we have IpC,(∅,D)

x = IpC,(∅,E)
x = {[0, 1)}, with c

pC,(∅,D)
x,[0,1) = 1, d

pC,(∅,D)
x,[0,1) = − 1

2 ,

c
pC,(∅,E)
x,[0,1) = 0, and d

pC,(∅,E)
x,[0,1) = 1

2 . Now consider the maximum probability of
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reaching location D (that is, Pmax
[[P]],Σ(S{D})). Intuitively, the longer the cdPTA

remains in location A, the lower the probability of making a transition to loca-
tion E from A, but the higher the probability of making a transition to E from
B and C. Note that, after A is left, the choice resulting in the maximum proba-
bility of reaching D is to take the outgoing transitions from B and C as soon as
possible (delaying in B and C will increase the value of x, therefore increasing
the probability of making a transition to E). Denoting by δ the amount of time
elapsed in A, the maximum probability of reaching D is equal to δ(1− δ)(1− δ

2 ),
which (within the interval [0, 1)) reaches its maximum at 1 −

√
3
3 . Hence, this

example indicates that abstractions based on the optimality of choices made at
(or arbitrarily close to) rational-numbered clock values (such as the region graph
or corner-point abstraction) do not yield exact analysis methods for cdPTAs. ��

3 Undecidability of Maximal Reachability of cdPTAs

Theorem 1. The maximal reachability problem is undecidable for cdPTAs with
at least 3 clocks.

Proof (sketch). We proceed by reducing the non-halting problem for two-counter
machines to the maximal reachability problem for cdPTAs. The reduction has
close similarities to a reduction presented in [2].

A two-counter machine M = (L, C) comprises a set L = {
1, ..., 
n} of instruc-
tions and a set C = {c1, c2} of counters. The instructions are of the following
form (for 1 ≤ i, j, k ≤ n and l ∈ {1, 2}):

1. 
i : cl := cl + 1; goto 
j (increment cl);
2. 
i : cl := cl − 1; goto 
j (decrement cl);
3. 
i : if (cl > 0) them goto 
j else goto 
k (zero check cl);
4. 
n : HALT (halting instruction).

A configuration (
, v1, v2) of a two-counter machine comprises an instruction 

and values v1 and v2 of counters c1 and c2, respectively. A run of a two-counter
machine consists of a finite or infinite sequence of configurations, starting from
configuration (
1, 0, 0), and where subsequent configurations are successively gen-
erated by following the rule specified in the associated configuration. A run is
finite if and only if the final instruction visited along the run is 
n (the halting
instruction). The halting problem for two-counter machines concerns determin-
ing whether the unique run of the two-counter machine is finite, and is undecid-
able [18]; hence the non-halting problem (determining whether the unique run
of the two-counter machine is infinite) is also undecidable.

Consider a two-counter machine M. We reduce the non-halting problem for
M to the maximal reachability problem in the following way. We construct
a cdPTA PM with three clocks {x1, x2, x3} by considering modules for each
form that the instructions of a two-counter machine can take. On entry to each
module, we have that x1 = 1

2c1 , x2 = 1
2c2 and x3 = 0. The module for simulating

an increment instruction is shown in Fig. 3. In location 
i, there is a delay of
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Fig. 3. The cdPTA module for simulating an increment instruction for counter c1.

1 − 1
2c1 , and hence the values of the clocks on entry to location B are x1 = 0,

x2 = 1
2c2 +1− 1

2c1 mod 1 and x3 = 1− 1
2c1 . A nondeterministic choice is then made

concerning the amount of time that elapses in location B: note that this amount
must be in the interval (0, 1

2c1 ). In order to correctly simulate the increment of
counter c1, the choice of delay in location B should be equal to 1

2c1+1 . On leaving
location B, a probabilistic choice is made: the rightward outcome corresponds
to continuing the simulation of the two-counter machine, whereas the downward
outcome corresponds to checking that the delay in location B was correctly 1

2c1+1 .
We write the delay in location B as 1

2c1+1 + ε, where − 1
2c1+1 < ε < 1

2c1+1 : hence,
for a correct simulation of the increment of c1, we require that ε = 0.

Consider the case in which the downward outcome (from the outgoing proba-
bilistic edge of location B) is taken: then the cdPTA fragment from location D has
the role of checking whether ε = 0. Note that, after entering location D, no time
elapses in locations D and E (as enforced by the reset of x2 to zero and the invari-
ant condition x2 = 0), and hence both clocks x1 and x3 retain the same values
that they had when location B was left. We show that the probability of reaching
the target location G from location D is 1

4 − ε2, and hence equal to 1
4 if and only

if ε = 0. To see that the probability of reaching G from D is 1
4 − ε2, observe that

the probability is equal to 1
2 (x1 + x3) = 1

2 ( 1
2c1+1 + ε + (1 − 1

2c1+1 ) + ε) = 1
2 + ε

multiplied by 1− 1
2 (x1+x3) = 1

2 −ε, i.e., equal to 1
4 −ε2. Hence the probability of

reaching location G from location D is equal to 1
4 if and only if ε = 0 (otherwise,

the probability is less than 1
4 ).

The module for simulating a decrement instruction is shown in Fig. 4. In a
similar manner to the cdPTA fragment in Fig. 3 for the simulation of an incre-
ment instruction, the only nondeterministic choice made is with regard to the
amount of time spent in location 
i, which is denoted by δ. For the correct sim-
ulation of the decrement instruction, δ should equal 1 − 1

2c1−1 . The rightward
outcome is taken from the probabilistic edge leaving location 
i corresponds to
the continuation of the simulation of the two-counter machine: hence, on entry
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Fig. 4. The cdPTA module for simulating a decrement instruction for counter c1.

to location B, we have x1 = 0, x2 = 1
2c2 +δ and x3 = δ; then, on entry to location


j , we have x1 = δ, x2 = 1
2c2 and x3 = 0.

Let δ = 1− 1
2c1−1 +ε. For the correct simulation of the decrement instruction,

we require that ε = 0. The downward outcome from the probabilistic edge leaving
location 
i corresponds to checking that ε = 0, and takes a similar form to the
analogous downward edge of the cdPTA fragment for the increment instruction,
as shown in Fig. 3. Note that, on entry to location C, we have that x1 = 1− 1

2c1 +ε,
x2 = 0 and x3 = 1 − 1

2c1−1 + ε. Then, on entry to location D, we have that
x1 = 0, x2 = 1

2c1 − ε and x3 = 1 − 1
2c1 . As no time elapses in locations D and

E, we have that target location F is then reached with probability 1
2 (x2 + x3) =

1
2 ( 1

2c1 − ε+1− 1
2c1 ) = 1

2 + ε
2 multiplied by the probability 1− 1

2 (x2 +x3) = 1
2 − ε

2 ,
which equals 1

4 − ε2

4 . Hence we conclude that the probability of reaching location
F from location C is equal to 1

4 if and only if ε = 0.
Finally, the module for a zero test instruction 
i : if (c1 > 0) then goto 
j else

goto 
k is shown in Fig. 5. The module is almost identical to that of [3], and we
present it here only for completeness. After entry to location 
i, two probabilistic
edges are enabled: the rightward one is taken if c1 = 0 (i.e., if x1 = 1

20 = 1),
whereas the leftward one is taken otherwise. Both probabilistic edges involve an
outcome leading to a target location with probability 1

4 : if this outcome is not
taken, the cdPTA fragment then proceeds to location 
j or 
j , depending on
which probabilistic edge was taken.

Given the construction of a cdPTA simulating the two-counter machine using
the modules described above, we can now proceed to show Theorem 1. The rea-
soning is the same as that of Lemma 5 of [2]. If the two-counter machine halts in k
steps, and the strategy of the cdPTA correctly simulates the two-counter machine
the probability of reaching a target location will be 1

2 · 14+(12 )2· 14+...+(12 )k · 14 < 1
4 .

If the two-counter machine halts in k steps, and the strategy of the cdPTA
does not correctly simulate the two-counter machine, then this means that the
probability of reaching a target location is strictly less than that correspond-
ing to correct simulation, given that deviation from simulation of a certain step
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Fig. 5. The cdPTA module for simulating a zero-test instruction for counter c1.

corresponds to reaching the target locations with probability strictly less than
1
4 in that step. Now consider the case in which the two-counter machine does
not halt: in this case, faithful simulation in the cdPTA corresponds to reaching
target locations with probability

∑∞
i=1(

1
2 )i · 1

4 = 1
4 , whereas unfaithful simula-

tion in the cdPTA corresponds to reaching the target locations with probability∑∞
i=1(

1
2 )i · γi where γi ≤ 1

4 for all i ∈ N and γj < 1
4 for at least one j ∈ N, and

hence
∑∞

i=1(
1
2 )i ·γi < 1

4 . Therefore the two-counter machine does not halt if and
only if there exists a strategy in the constructed cdPTA that reaches the target
locations with probability at least 1

4 , concluding the proof of Theorem1. ��

4 Approximation of Reachability Probabilities

We now consider the approximation of maximal and minimal reachability prob-
abilities of cdPTAs. Our approach is to utilise concepts from the corner-point
abstraction [8]. However, while the standard corner-point abstraction is a finite-
state system that extends the classical region graph by encoding corner points
within states, the states of our finite-state system correspond to regions, and
we use corners of regions only to define available distributions. Furthermore, in
contrast to the widespread use of the corner-point abstraction in the context
of weighted (or priced) timed automata (see [7] for a survey), and in line with
the undecidability results presented in Sect. 3, our variant of the corner-point
abstraction does not result in a finite-state system that can be used to obtain a
quantitative measure that is arbitrarily close to the actual one: in the context
of cdPTAs, we will present a method that approximates maximal and minimal
reachability properties, and show that successive refinement of regions leads to
a more accurate approximation.

First we define regions and corner points. Let P = (L, l̄,X , inv , prob) be a
cdPTA, which we assume to be fixed throughout this section, and let M ∈ N

denote the upper bound on clocks in P. We choose k ∈ N, which we will refer to
as the (time) granularity, and let [k] = { c

k : c ∈ N} be the set of multiples of 1
k .

A k-region (h, [X0, ...,Xn]) over X comprises:

1. a function h : X → ([k]∩ [0,M ]) assigning a multiple of 1
k no greater than M

to each clock and
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2. a partition [X0, ...,Xn] of X , where Xi �= ∅ for all 1 ≤ i ≤ n and h(x) = M
implies x ∈ X0 for all x ∈ X .

Given clock valuation v ∈ R
X
≥0 and granularity k, the k-region R =

(h, [X0, ...,Xn]) containing v (written v ∈ R) satisfies the following conditions:

1. �k · v(x)�=k · h(x) for all clocks x ∈ X ;
2. v(x)=h(x) for all clocks x ∈ X0;
3. k · v(x) − �k · v(x)� ≤ k · v(y) − �k · v(y)� if and only if x ∈ Xi and y ∈ Xj

with i ≤ j, for all clocks x, y ∈ X .

Note that, rather than considering regions delimited by valuations corresponding
to natural numbers, in our definition regions are delimited by valuations corre-
sponding to multiples of 1

k . We use Regsk to denote the set of k-regions. For
R,R′ ∈ Regsk and clock constraint ψ ∈ CC (X ), we say that R′ is a ψ-satisfying
time successor of R if there exist v ∈ R and δ ∈ R≥0 such that (v+δ) ∈ R′ and
(v+δ′) |= ψ for all 0 ≤ δ′ ≤ δ. For a given k-region R ∈ Regsk, we let R[X := 0]
be the k-region that corresponds to resetting clocks in X to 0 from clock valua-
tions in R (that is, R[X := 0] contains valuations v[X := 0] for v ∈ R). We use
R0 to denote the k-region that contains the valuation 0.

A corner point α = 〈ai〉0≤i≤n ∈ ([k] ∩ [0,M ])n of k-region (h, [X0, ...,Xn]) is
defined by:

ai(x) =
{

h(x) if x ∈ Xj with j ≤ i
h(x) + 1

k if x ∈ Xj with j > i .

Note that a k-region (h, [X0, ...,Xn]) is associated with n + 1 corner points. Let
CP(R) be the set of corner points of k-region R. Given granularity k, we let
CornerPointsk be the set of all corner points.

Next we define the clock-dependent region graph with granularity k as the
finite-state PTS Ak = (Sk, s,Actk, Γk), where Sk = L×Regsk, s = (l̄, R0), Actk =
{τ} ∪ (CornerPointsk × prob), and Γk =

−→
Γk ∪ Γ̂k where

−→
Γk ⊆ Sk × {τ} ×Dist(Sk)

and Γ̂k ⊆ Sk × CornerPointsk × prob × Dist(Sk) such that:

–
−→
Γk is the smallest set of transitions such that ((l, R), τ, {(l, R′) �→ 1}) ∈ −→

Γk if
(l, R′) is an inv(l)-satisfying time successor of (l, R);

– Γ̂k is the smallest set such that ((l, R), (α, (l, g, p)), ν) ∈ Γ̂k if:
1. R |= g;
2. α ∈ CP(R);
3. for any (l′, R′) ∈ Sk, we have that ν(l′, R′) =

∑
X∈Reset(R,R′) p[α](X, l′),

where Reset(R,R′) = {X ⊆ X | R[X := 0] = R′}.

Hence the clock-dependent region graph of a cdPTA encodes corner points
within (probabilistic-edge-based) transitions, in contrast to the corner-point
abstraction, which encodes corner points within states. In fact, a literal appli-
cation of the standard corner-point abstraction, as presented in [7], does not
result in a conservative approximation, which we now explain with reference to
Example 2.
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Example 2 (continued). Recall that the states of the corner-point abstraction
comprise a location, a region and a corner point of the region, and transitions
maintain consistency between corner points of the source and target states. For
example, for the cdPTA of Fig. 2, consider the state (A, 0 < x < 1, x = 1), where
0 < x < 1 is used to refer to the state’s region component and x = 1 is used
to refer to the state’s corner point. Then the probabilistic edge leaving location
A is enabled (because the state represents the situation in which clock x is in
the interval (0, 1) and arbitrarily close to 1). Standard intuition on the corner-
point abstraction (adapted from weights in [7] to probabilities in distribution
templates in this paper) specifies that, when considering probabilities of outgoing
probabilistic edges, the state (A, 0 < x < 1, x = 1) should be associated with
probabilities for which x = 1. Hence the probability of making a transition
to location B is 1, and the target corner-point-abstraction state is (B, 0 < x <
1, x = 1). However, now consider the probabilistic edge leaving location B: in this
case, given that the corner point under consideration is x = 1, the probability
of making a transition to location C is 0, and hence the target location D is
reachable with probability 0. Furthermore, consider the state (A, 0 < x < 1, x =
0): in this case, if the probabilistic edge leaving location A is taken, then location
B is reached with probability 0, and hence location D is again reachable with
probability 0. We can conclude that such a direct application of the corner-point
abstraction to cdPTA is not a conservative approximation of the cdPTA, because
the maximum reachability probability in the corner-point abstraction is 0, i.e.,
less than the maximum reachability probability of the cdPTA (which we recall is
1−

√
3
3 ). Instead, in our definition of the clock-dependent region graph, we allow

“inconsistent” corner points to be used in successive transitions: for example,
from location A, the outgoing probabilistic edge can be taken using the value
of x corresponding to the corner point x = 1; then, from locations B and C,
the outgoing probabilistic edge can be taken using corner point x = 0. Hence
maximum probability of reaching the target location D, with k = 1, is 1. ��

Analogously to the case of cdPTA strategies, we consider strategies of clock-
dependent region graphs that alternate between transitions from

−→
Γk (time elapse

transitions) and transitions from Γ̂k (probabilistic edge transitions). Formally,
a region graph strategy σ is a strategy of Ak such that, for a finite run r ∈
FinRunsAk that has (l, R)

a,ν−−→ (l′, R′) as its final transition, either ((l, R), a, ν) ∈−→
Γk and support(σ(r)) ∈ Γ̂k, or ((l, R), a, ν) ∈ Γ̂k and support(σ(r)) ∈ −→

Γk. We
write Πk for the set of region graph strategies of Ak.

Let F ⊆ L be the set of target locations, which we assume to be fixed
in the following. Recall that SF = {(l, v) ∈ L × R

X
≥0 : l ∈ F} and let

RegsFk = {(l, R) ∈ Sk : l ∈ F}. The following result specifies that the maxi-
mum (minimum) probability for reaching target locations from the initial state
of a cdPTA is bounded from above (from below, respectively) by the corre-
sponding maximum (minimum, respectively) probability in the clock-dependent
region graph with granularity k. Similarly, the maximum (minimum) probability
computed in the region graph of granularity k is an upper (lower, respectively)
bound on the maximum (minimum, respectively) probability computed in the
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Fig. 6. Maximum probability of reaching location � in the cdPTA of Fig. 1.

region graph of granularity 2k (we note that this result can be adapted to hold
for granularity ck rather than 2k, for any c ∈ N \ {0, 1}). The proof of the
proposition can be found in [22].

Proposition 1

1. P
max
[[P]],Σ(SF ) ≤ P

max
Ak,Πk

(RegsFk ), Pmin
[[P]],Σ(SF ) ≥ P

min
Ak,Πk

(RegsFk ).
2. P

max
A2k,Π2k

(RegsF2k) ≤ P
max
Ak,Πk

(RegsFk ), Pmin
A2k,Π2k

(RegsF2k) ≥ P
min
Ak,Πk

(RegsFk ).

Example 2 (continued). We give the intuition underlying Proposition 1 using
Example 2 (Fig. 2), considering the maximum probability of reaching the target
location D. When k = 1, as described above, the maximum probability of reach-
ing D is 1. Instead, for k = 2, the maximum probability of reaching location
D corresponds to taking the probabilistic edge from location A for the corner
point x = 1

2 corresponding to the 2-region 0 < x < 1
2 and the probabilistic edges

from locations B and C for corner point x = 0, again for the 2-region 0 < x < 1
2

i.e., the probability is 1
2 . With granularity k = 4, the maximum probability of

reaching location D is 0.328125, obtained by taking the probabilistic edge from
A for the corner point x = 1

2 , and the probabilistic edges from B and C for
corner point x = 1

4 , where the 4-region used in all cases is 1
4 < x < 1

2 . ��

Example 1 (continued). In Fig. 6 we plot the values of the maximum probability
of reaching location � in the example of Fig. 1 for various values of cmax and
k, obtained by encoding the clock-dependent region graph as a finite-state PTS
and using Prism [15]. For this example, the difference between the probabilities
obtained from low values of k is substantial. We note that the number of states
of the largest instance that we considered here (for k = 16 and cmax = 15) was
140174. ��

5 Conclusion

In this paper we presented cdPTAs, an extension of PTAs in which probabilities
can depend on the values of clocks. We have shown that a basic probabilis-
tic model checking problem, maximal reachability, is undecidable for cdPTAs
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with at least three clocks. One direction of future research could be attempt-
ing to improve these results by considering cdPTAs with one or two clocks, or
identifying other kinds of subclass of cdPTAs for which for which probabilistic
reachability is decidable: for example, we conjecture decidability can be obtained
for cdPTAs in which all clock variables are reset after utilising a probabilistic
edge that depends non-trivially on clock values. Furthermore, we conjecture that
qualitative reachability problems (whether there exists a strategy such that the
target locations are reached with probability strictly greater than 0, or equal
to 1) are decidable (and in exponential time) for cdPTAs for which the piece-
wise linear functions are bounded away from 0 by a region graph construction.
The case of piecewise linear functions that can approach arbitrarily closely to 0
requires more care (because non-forgetful cycles, in the terminology of [5], can
lead to convergence of a probability used along a cdPTA path to 0). We also
presented a conservative overapproximation method for cdPTAs. At present this
method gives no guarantees on the distance of the obtained bounds to the actual
optimal probability: future work could address this issue, by extending the region
graph construction from a PTS to a stochastic game (to provide upper and lower
bounds on the maximum/minimum probability in the manner of [13]), or by con-
sidering approximate relations (by generalising the results of [6,9] from Markov
chains to PTSs).

Acknowledgments. The inspiration for cdPTA arose from a discussion with Patri-
cia Bouyer on the corner-point abstraction. Thanks also to Holger Hermanns, who
expressed interest in a cdPTA-like formalism in a talk at Dagstuhl Seminar 14441.
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Abstract. Most ample, persistent, and stubborn set methods use some
special condition for ensuring that the analysis is not terminated prema-
turely. In the case of stubborn set methods for safety properties, imple-
mentation of the condition is usually based on recognizing the terminal
strong components of the reduced state space and, if necessary, expand-
ing the stubborn sets used in their roots. In an earlier study it was
pointed out that if the system may execute a cycle consisting of only
invisible actions and that cycle is concurrent with the rest of the sys-
tem in a non-obvious way, then the method may be fooled to construct
all states of the full parallel composition. This problem is solved in this
study by a method that is based on “freezing” the actions in the cycle.

Keywords: Partial-order methods · Stubborn sets · Safety properties ·
Ignoring problem

1 Introduction

Ample set [1,8,9], persistent set [5,6], and stubborn set [12,15] methods, or aps
set methods in brief, alleviate state explosion by only firing a subset of enabled
actions in each constructed state. Statically available information on generalized
concurrency and causal dependency between actions is exploited to choose the
subsets so that correct answers to analysis questions are obtained. Also the class
of analysis questions affects the choice of the subsets. In general, the smaller
is the class, the weaker conditions the subsets must satisfy, the better are the
chances of finding legal subsets with only few enabled actions, and the better
are the reduction results. In this study we focus on safety properties, that is,
properties whose counter-examples are finite sequences of actions.

Ample, persistent, and stubborn sets are based on the same overall idea, but
differ significantly at a more detailed level. They also differ in the mathematical
language used to develop the methods and prove them correct. The differences
are discussed extensively in [17].

Excluding the earliest publications, aps set methods are usually described
using abstract conditions. Theorems on the correctness of the methods rely on
these conditions, instead of information about how the sets are actually con-
structed. Then zero or more algorithms are described and proven correct that

c© Springer International Publishing AG 2017
M. Hague and I. Potapov (Eds.): RP 2017, LNCS 10506, pp. 160–175, 2017.
DOI: 10.1007/978-3-319-67089-8 12
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yield sets that obey the conditions in question. Usually more than one set satis-
fies the conditions. In particular, usually the set of all (enabled) actions satisfies
them. To obtain good reduction results, the algorithms prefer sets with few
enabled actions.

As illustrated in [17], in most cases, ample and persistent set conditions are
more straightforward and perhaps easier to understand but have less potential
for state space reduction than stubborn set conditions. In most cases, ample and
persistent set algorithms are simpler than stubborn set algorithms but take more
enabled actions to the sets. An important difference is that ample and persistent
sets were defined as sets of enabled actions, while stubborn sets may also contain
disabled actions. This implies, among other things, that condition 1 of Theorem1
of the present study cannot be expressed naturally in ample and persistent set
terminology. Indeed, the algorithm described after the theorem has only been
used with stubborn sets. A similar comment holds on the condition V in Sect. 2,
which is provably better than the corresponding ample set condition [17].

Almost all aps set methods need a condition to solve the ignoring problem
illustrated in Sect. 2. The best conditions that are known to solve the ignoring
problem in the case of safety properties are implemented based on recognizing
the terminal strong components of the reduced state space [13,14]. Recently,
there has been significant advances in them [16,17,19]. Perhaps ironically, when
writing [20], it turned out that excluding a somewhat pathological situation, the
condition is not needed in the end, and in the pathological situation, even its
recently improved forms suffer from a problem. The goal of this study is to first
illustrate this background and then solve the remaining problem.

Ample and persistent set methods do not use terminal strong component
conditions, probably because of the following reason. A well-known example
(e.g., [17, Fig. 5]) demonstrates that terminal strong component conditions do
not necessarily suffice for infinite counter-examples. As a consequence, when the
goal is to preserve also so-called liveness properties, a stricter condition called
the cycle condition is usually used. It has been described in [1] and elsewhere,
together with a concrete implementation. The cycle condition does not make the
terminal strong component conditions useless, because it is much stronger than
the latter and thus has less potential for good reduction results. Furthermore,
a drawback has been found in its most widely known implementation; please
see [2] and, for instance, [17].

Section 2 explains the intuition behind stubborn sets in general. Terminal
strong component conditions, including recent developments and the remaining
problem, are illustrated in Sect. 3. The remaining problem can be solved with
a new method of frozen actions that is described in Sect. 4 and proven correct
in Sect. 5. The correctness proof assumes that actions are deterministic. Fortu-
nately, Sect. 6 demonstrates that for the usual way of computing stubborn sets,
the assumption is not needed in the end. Section 7 concludes this study.
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2 Stubborn Sets and (In)visible Actions

We use the obvious arrow notation for occurrences of actions and finite sequences
of actions. In Sect. 5 we will assume that actions are deterministic, that is, if
s −a→ s1 and s −a→ s2, then s1 = s2. Let en(s) denote the set of actions
that are enabled at s. The stubborn set used at s is denoted with stubb(s). The
reduced state space is the triple (Sr,Δr, ŝ), where ŝ is the initial state, and Sr and
Δr are the smallest sets such that ŝ ∈ Sr and whenever s ∈ Sr, s −a→ s′ and
a ∈ stubb(s), we have s′ ∈ Sr and (s, a, s′) ∈ Δr. The full (that is, ordinary) state
space (S,Δ, ŝ) is obtained by always letting stubb(s) be the set of all actions.
Obviously Sr ⊆ S and Δr ⊆ Δ. By an r-state, r-path, and so on we mean a state,
path, and so on in the reduced state space.

All ample, persistent, and stubborn set methods have a condition that “keeps
the system running” in a sense illustrated soon, and one or two conditions that
describe how generalized concurrency and dependency relations are exploited.
In the case of stubborn sets on nondeterministic actions, the following triple can
be used.

D0. If en(s0) �= ∅, then stubb(s0) ∩ en(s0) �= ∅.
D1. If a ∈ stubb(s0), s0 −a1 · · · ana→ s′

n, and a1, . . . , an are not in stubb(s0),
then s0 −aa1 · · · an→ s′

n.
D2. If a ∈ stubb(s0), s0 −a1 · · · an→ sn, a1, . . . , an are not in stubb(s0), and

s0 −a→ s′
0, then there is s′

n such that s′
0 −a1 · · · an→ s′

n and sn −a→ s′
n.

With deterministic actions, the part “s′
0 −a1 · · · an→ s′

n” is unnecessary in
D2, because it can be derived from sn −a→ s′

n, D1, and the determinism of
actions.

Before discussing the consequences of these conditions, let us briefly show
one possible way of computing sets that satisfy them. The ideas are not strictly
tied to any particular formalism, but, to avoid being too abstract, it is useful to
choose some formalism. We consider systems of the form (L1 || · · · || LN ) \ H,
where L1, . . ., LN are labelled transition systems (LTSs). An LTS is a rooted
edge-labelled directed graph with a set called the alphabet. The labels of the
edges must belong to the alphabet. The elements of the alphabet are called
actions. The states of the system are of the form s = (s1, . . . , sN ). The system
executes an action a such that every Li that has a in its alphabet executes a,
and the remaining Li stand still. An action is invisible if and only if it is of
the form τi or it belongs to H (this is the purpose of H), and visible otherwise.
Figure 2 shows an example of a system of this form.

Compared to familiar process-algebraic notation, we do not use the special
invisible action symbol τ as such, but may use it with a subscript that refers to
the component who executes it. The symbols || and \ have the same meaning
as in process algebras, except that \ only declares actions invisible instead of
converting them to τ . For more details on this formalism, please see [14,16,19].

By eni(si) we mean the actions that Li is ready to execute when it is in its
local state si. That is, eni(si) is the set of the labels of the edges of Li whose
tail is si. The proof of the following theorem can be found in [19]. The key idea
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is that in case 1, Li keeps a disabled until an element of stubb(s) occurs, and in
case 2, a is concurrent with all actions that are not in stubb(s).

Theorem 1. Assume that the following hold for s = (s1, . . . , sN ) and for every
a ∈ stubb(s):

1. If a /∈ en(s), then there is i such that 1 ≤ i ≤ N , a is in the alphabet of Li,
and a /∈ eni(si) ⊆ stubb(s).

2. If a ∈ en(s), then for every i such that 1 ≤ i ≤ N and a is in the alphabet of
Li we have eni(si) ⊆ stubb(s).

Then stubb(s) satisfies D1 and D2.

Cases 1 and 2 can be interpreted as spanning rules of the form a �s b, meaning
that if a ∈ stubb(s), then also b must be in stubb(s) (but not necessarily vice
versa). In case 1, there may be more than one i that satisfies the condition. To
avoid ambiguity, we artificially assume that the smallest one is chosen. Whether
or not a �s b may depend on the state s.

If there are no enabled actions, then any set of actions trivially satisfies
D0, D1, and D2. Otherwise, any set that contains an enabled action and is
closed with respect to the �s-relation satisfies them. Good such sets can be
found efficiently using Tarjan’s strong component algorithm [11], as has been
explained in [17,19] and elsewhere. A good practical improvement to Tarjan’s
algorithm has been presented in [3]. It was re-invented and slightly modified
in [4].

It is now the time to start discussing the consequencies of D0, D1, and D2.
For the sake of illustration, assume that the goal is to verify that the system
cannot reach a state after which action b can never occur. Assume that s0 −b1→
s1 −b2→ · · · −bm→ sm is a counter-example to this property, where s0 is the
initial state of the system. If b1 ∈ stubb(s0), then the transition s0 −b1→ s1 is
in the reduced state space, that is, an r-transition. So the problem becomes the
problem of finding a counter-example for s1. More generally, if any of b1, . . ., bm is
in stubb(s0), then let bi be the first one. D1 yields s′

0 and si such that s0 −bi→
s′
0 −b1 · · · bi−1→ si −bi+1 · · · bm→ sm, transforming the problem to finding a

counter-example for s′
0.

The case remains where none of b1, . . ., bm is in stubb(s0). If en(s0) = ∅
(implying m = 0), then s0 is an r-state after which b can never occur. So a
counter-example has been found. Otherwise D0 implies that stubb(s0) contains
an enabled action a. So for some s′

0, s0 −a→ s′
0 in the reduced state space.

By D2, there is s′
m such that sm −a→ s′

m and s′
0 −b1 · · · bm→ s′

m. Because
sm −a→ s′

m and b can never occur after sm, b can never occur after s′
m. Again,

the problem has been moved to s′
0.

In this example, D0 “kept the system running” by ensuring that whenever
D1 does not apply and the goal has not yet been reached, D2 does apply.
Unfortunately, this does not suffice for guaranteeing that the reduced state space
contains a counter-example if the full state space does. Consider . Let
ŝ denote its initial state. Firing b once disables b forever and is thus a counter-
example. The choice stubb(ŝ) = {τ1} satisfies D0, D1, and D2. It constructs the
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r-transition ŝ −τ1→ ŝ, after which all encountered states have been investigated
and the analysis stops. So b was never fired and no counter-example was found.

In terms of D0, D1, and D2, the problem is that an application of D2 does
not necessarily make any progress towards completing a counter-example: the
path s′

0 −b1 · · · bi−1bi+1 · · · bm→ sm yielded by D1 is shorter than the original
counter-example, but the path s′

0 −b1 · · · bm→ s′
m yielded by D2 is not. That the

analysis terminates without completing any existing counter-example is called
the ignoring problem in the literature. In this example, b was ignored.

With many properties, it suffices to observe a subset of actions. For instance,
when checking mutual exclusion between two clients, the only important thing is
the projection of the execution on the actions enter1, enter2, leave1, and leave2.
The location of request access1 and request access2 does not matter. We follow
process algebra parlance and call this kind of projections traces. This notion is
not the same as Mazurkiewicz traces [7].

To take this into account in stubborn, ample, and persistent set methods,
the distinction between visible and invisible actions has been introduced. When
applying the methods to process algebras, the distinction is already there to
start with. In other applications, an action is declared invisible if and only if it
is known that it need not be observed. This formulation allows the use of the
methods even if, as is sometimes the case, for some actions, it is difficult to find
out whether observing them is important.

Let V denote the set of visible actions. We discuss the following condition.

V If stubb(s0) contains an enabled visible action, then V ⊆ stubb(s0).

If the a in D1 is invisible, then the trace of a1 · · · ana (that is, the projection of
a1 · · · ana on V ) is the same as the trace of aa1 · · · an, so the trace is preserved.
The same holds with D2, a1 · · · an, and aa1 · · · an. If the a in D1 is visible, then
a1, . . ., an are invisible, because then a is an enabled action in stubb(s0) ∩ V , so
all visible actions are in stubb(s0) by V, but a1, . . ., an are not in stubb(s0) by
D1. Similar reasoning applies when the a in D2 is visible. So V guarantees that
when applying D1 or D2, the traces are not broken.

V can be taken into account in the construction of stubborn sets by extending
the �s-relation with a �s b for every enabled visible a and every visible b.
(Please see [17] for why V has potential for better reduction results than the
corresponding condition C2 in ample set theory.)

3 Terminal Strong Component Conditions

When counter-examples are finite, the ignoring problem can be solved with a
terminal strong component condition. The reduced state space is constructed in
depth-first order and its terminal strong components are recognized on-the-fly.
This can be done efficiently with Tarjan’s algorithm [3,4,11], as is described
in [17] and elsewhere.

The root of a strong component is the state in it that the depth-first search
finds first (and therefore backtracks from last). Each time when the construction
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Fig. 1. Illustrating the non-optimality of Sen and SV.

is about to backtrack from a root of a terminal strong component, it checks that
the stubborn sets used in the component together contain “sufficiently many”
actions. Different terminal strong component conditions use different notions of
“sufficiently many”. If necessary, the stubborn set used at the root is expanded,
that is, actions are added to it such that also the result is stubborn. Expanding
the stubborn set of the root does not conflict with Tarjan’s algorithm. Unless the
analysis is terminated earlier because of finding a counter-example, eventually
every terminal strong component covers “sufficiently many” actions. At that
point, for every r-state s, either a state where D1 applies is r-reachable from s,
or it is known that s does not have any counter-example.

The first two terminal strong component conditions were the following.

Sen. For every a ∈ en(s0) there is sa such that a ∈ stubb(sa) and sa is r-
reachable from s0 [13,14].

SV. For every a ∈ V there is sa such that a ∈ stubb(sa) and sa is r-reachable
from s0 [14].

Among other things, Sen suffices for checking whether the system can reach
a state after which b can never occur. Together with V it preserves the process-
algebraic trace equivalence. Surprisingly, they also preserve the fair testing equiv-
alence of [10,21], although it appears to be of branching time nature and is strong
enough for processing a meaningful fairness assumption [19]. These two process-
algebraic equivalences are also preserved by SV and V.

Applying Sen to an r-deadlock state s0 implies en(s0) = ∅, that is, s0 is a
deadlock also in the full state space. This is because otherwise s0 must either
have an a-transition (if sa = s0) or a transition towards the state sa (if sa �=
s0). So Sen implies D0. Applying SV to an r-deadlock state s0 yields that no
visible action can be enabled in the future, because then V ⊆ stubb(s0), so each
execution leading to an occurrence of a visible action must contain, by D1, an
element of stubb(s0) ∩ en(s0). D0 does not necessarily follow, but where it does
not, the only trace of the state is the empty trace that it trivially also has in the
reduced state space. In conclusion, Sen and SV “keep the system running” to
the necessary extent, and D0 need not be (explicitly) required.

It has been known for a long time that both Sen and SV are not optimal,
at least with the implementation described above. In [18], this was illustrated
with Fig. 1. In it, t5 is the only visible Petri net transition, and t4 is permanently
disabled in a non-trivial way. The stubborn set method first constructs the cycle
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M̂ −t1t2t3→ M̂ . Then Sen forces it to expand stubb(M̂) with t6, although t6
is clearly irrelevant for checking whether t5 can ever occur. On the other hand,
SV allows to forget about t6. Unfortunately, it requires t5 ∈ stubb(M) for some
M in the cycle. Therefore, the implementation expands stubb(M̂) by adding t2,
t4, and t5 to it, although t2 already occurs elsewhere in the cycle.

This problem was solved in [17] with a new condition. In the root r of each
terminal strong component, a set V(r) of actions is computed so that V ⊆ V(r)
and the following holds:

Dd. If a ∈ V(r), r −a1 · · · an→ sn, a1, . . . , an are not in V(r), and ¬(r −a→),
then ¬(sn −a→).

That is, if an element of V(r) is disabled in r, then it remains disabled at least
until an occurrence of an element of V(r). The set V(r) can be computed using
similar techniques as when ensuring D1, D2, and V.

Then it is checked that each element of V(r)∩ en(r) occurs somewhere in the
component. If necessary, stubb(r) is expanded with at least one missing element
of V(r) ∩ en(r) and whatever else is needed to maintain D1, D2, and V. In
Fig. 1, V(M̂) = {t1, t2, t4, t5} and V(M̂)∩ en(M̂) = {t1, t2}. Because both t1 and
t2 occur in the cycle M̂ −t1t2t3→ M̂ , stubb(M̂) need not be expanded.

This implements the following abstract condition:

S. There are r and V(r) such that r is r-reachable from s0, V ⊆ V(r), V(r)
satisfies Dd, and for every a ∈ V(r) ∩ en(r) there is sa such that it is
r-reachable from r and a ∈ stubb(sa).

Theorem 2. If every r-state satisfies D1, D2, V, and S, then the reduced and
full state space have the same traces.

Proof. Any trace of the reduced state space is also a trace of the full state space,
because every r-path is also a path in the full state space by Sr ⊆ S and Δr ⊆ Δ.

To prove the opposite direction, consider a path s0 −b1 · · · bm→ in the full
state space such that s0 is an r-state. If none of b1, . . ., bm is visible, then the
trace of s0 −b1 · · · bm→ is the empty sequence. It is yielded by the trivial r-path
that consists of just s0.

Otherwise there is some 1 ≤ v ≤ m such that bv ∈ V . By S, there is an
r-path s′

0 −c1→ s′
1 −c2→ · · · −ch→ s′

h such that s′
0 = s0 and s′

h plays the role
of r in S. Let j be the smallest such that j = h or {b1, . . . , bm} ∩ stubb(s′

j) �= ∅.
By applying D2 j times we get s0 −c1 · · · cj→ s′

j −b1 · · · bm→. For 1 ≤ k ≤ j,
ck is invisible, because otherwise V would imply bv ∈ stubb(s′

k−1), contradicting
the choice of j. Therefore, c1 · · · cjb1 · · · bm has the same trace as b1 · · · bm.

If {b1, . . . , bm} ∩ stubb(s′
j) �= ∅, then let ι be the smallest such that bι ∈

{b1, . . . , bm}∩stubb(s′
j). By D1 there is s′′ such that s′

j −bι→ s′′ is an r-transition
and s′′ −b1 · · · bι−1bι+1 · · · bm→. By V, bιb1 · · · bι−1bι+1 · · · bm has the same trace
as b1 · · · bm. By induction, there is an r-path s′′ −σ→ that has the same trace
as b1 · · · bι−1bι+1 · · · bm. Now s0 −c1 · · · cj→ s′

j −bι→ s′′ −σ→ is an r-path that
has the same trace as s0 −b1 · · · bm→.
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Fig. 2. A system with V = {a, b} where after s3, every state has an invisible transition

Otherwise j = h and we have s′
h −b1 · · · bm→. Because bv ∈ V ⊆ V(s′

h),
there is a smallest ι such that bι ∈ V(s′

h). Dd yields bι ∈ en(s′
h). S implies

the existence of sbι
such that bι ∈ stubb(sbι

) and there is an r-path from s′
h to

sbι
. The proof continues by applying D2 along this path until a state z with

{b1, . . . , bm} ∩ stubb(z) �= ∅ is reached and then applying D1 and induction,
similarly to the above. 	


Figure 2 [20] illustrates a problem with the method in Theorem2. In it, the
actions u and τ2 are invisible. Originally only b is enabled, then only τ2, and
then only u and τ2. After firing u, the τ2-cycle of L2 and the aa-sequence of L4

are in parallel, and b and u are permanently disabled.
Assume that in s3, the construction of stubborn sets is started with a.

Because a is enabled and visible, V forces to also take b into stubb(s3), if a
is taken. However, b is disabled because of L2. If the stubborn set construction
algorithm is good enough, it detects that b is permanently disabled, chooses
stubb(s3) = {a, b}, and only fires a in s3. However, detecting that an action
is permanently disabled is PSPACE-hard in general. So it is not realistic to
assume that a stubborn set construction algorithm can always detect that an
action is permanently disabled. For the sake of an example, we assume that the
algorithm in [19] is used without any advanced features. It fails to detect that b
is permanently disabled.

Because b is disabled by L2 and only by it, the algorithm in [19] focuses
on what L2 can do next, that is, τ2. Because τ2 is enabled, invisible, not syn-
chronized to by any other component, and its start state has no other outgoing
transitions, {τ2} qualifies as stubb(s3). Because {τ2} has fewer enabled actions
than {a, b, τ2}, the algorithm chooses stubb(s3) = {τ2}. So the method constructs
the r-transition s3 −τ2→ s4. In the resulting state s4 the situation is similar to
s3, so the r-transition s4 −τ2→ s5 is constructed.

The situation is only slightly more complicated in s5. Because u is an alter-
native for τ2, the algorithm takes also u into stubb(s5). The algorithm detects
that u is disabled by L3 which is in a deadlock, so it does not continue analysis
further from u. So the method constructs (only) the r-transition s5 −τ2→ s3. In
conclusion, the cycle s3 −τ2→ s4 −τ2→ s5 −τ2→ s3 is constructed.
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At this point the method computes V(s3) = {a, b, τ2}, to satisfy S. We have
V(s3) ∩ en(s3) = {a, τ2}, but τ2 already occurs in the cycle. So the method
constructs s3 −a→ s6.

The same behaviour repeats in s6 and finally in s9 (except that a is found
disabled in s9). The method constructed all states of the full state space, although
the τ2-cycle and aa-sequence are in parallel.

We say that a state is stable if and only if it cannot execute any invisible
action. In the next section we will present a novel idea that solves the problem
that was illustrated above. Before that, let us point out that the problem arose in
a situation where from s3 on, no stable state was reachable. We will soon prove
that this was not a coincidence. Before that, let us replace D0 by a condition
that exploits the fact that when verifying safety properties, if it is certain that
no visible action can become enabled after a state, then it is not necessary to
continue the analysis from that state even if it has enabled actions.

D0V. If en(s0) �= ∅, then either stubb(s0) ∩ en(s0) �= ∅ or V ⊆ stubb(s0).

The following theorem is from [16,20].

Theorem 3. Assume that s0 is an r-state and s0 −b1 · · · bm→ sm such that sm

is stable and at least one of b1, . . ., bm is visible. If D0V, D1, D2, and V are
obeyed, then there is an r-path of length at most m such that it starts at s0 and
has the same trace as b1 · · · bm.

Proof. Let bv be visible. Because it exists, also b1 exists. So s0 −b1→. Assume
that none of b1, . . ., bm is in stubb(s0). Then bv /∈ stubb(s0), and D0V implies
that stubb(s0) contains some enabled action a. By D2, sm −a→. Because sm

is stable, a ∈ V . So V implies that V ⊆ stubb(s0), a contradiction with bv /∈
stubb(s0). So at least one of b1, . . ., bm is in stubb(s0). Application of first D1
and then induction yields the claim. 	


This means that every trace leading to a stable state is preserved, even if
the simple condition D0V is used instead of S. That is, if the system has the
property that from every reachable state, a stable state is reachable, then the
condition S is not needed. Furthermore, thanks to the following theorem, the
user need not know in advance that the system has this property.

Theorem 4. Assume that s0 is an r-state and has the trace σ in the full but
not in the reduced state space. If D0V, D1, D2, and V are obeyed, then some
prefix of σ that s0 has in the reduced state space leads to an r-state after which
all r-states are r-unstable and have no visible output r-transitions.

Proof. Assume that σ arises from s0 −b1 · · · bm→. Let s′
0 = s0 and let us choose

the states s′
1, s′

2, . . . as follows. If bj ∈ stubb(s′
i−1) for some 1 ≤ j ≤ m,

then let k be the smallest such j and let s′
i−1 −bk→ s′

i be the r-transition
yielded by D1. We say that the application of D1 consumes bk. Otherwise,
if s′

i−1 is not in a terminal strong component, choose s′
i−1 −a→ s′

i such that
a ∈ en(s′

i−1) ∩ stubb(s′
i−1) and s′

i is closer to a terminal strong component than
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s′
i−1, and apply D2. Applications of D2 consume nothing from b1 · · · bm. Because
D1 can be applied at most m − 1 times, this procedure eventually leads to a
terminal strong component C. Then traverse around C applying D1 and D2
until D1 can no longer be applied.

Let c1 · · · ck be the remaining part of b1 · · · bm, and let s be any state in C. D2
yields s −c1 · · · ck→ in the full state space. Because σ was not fully consumed,
some cv is visible. We have stubb(s)∩ en(s)∩V = ∅, because otherwise V would
make D1 applicable, because of cv. For the same reason, V �⊆ stubb(s). So D0V
implies that C is not an r-deadlock. 	


This means that if the reduced state space obeys D0V, D1, D2, and V,
then either the traces are preserved or the reduced state space exhibits patho-
logical behaviour: it contains a state from which neither termination nor any
visible activity is reachable. This pathological property can be detected from
the reduced state space with well-known linear-time algorithms, by performing
a graph search using the edges in reverse and using the deadlocks and tail states
of visible transitions as the starting points. That the reduced state space has
this property does not prove that also the original system does. However, by
Theorem 3, it does prove that the original system cannot reach a stable state
from the states in question. If this is considered as sufficient reason for declaring
the original system incorrect, then the easily implementable conditions D0V,
D1, D2, and V suffice.

If we want to preserve the traces even when we already know that the system
can no longer reach a stable state, we run the risk of the problem that was
illustrated with Fig. 2. The next section solves this problem.

4 Frozen Actions

In this section we solve the performance problem pointed out in the previous
section with the new notion of frozen actions. The idea resembles the frozen
actions in [16], but also has important differences. In [16], the goal was to improve
the performance when preserving divergence traces.

Figure 3 shows how frozen actions are used during the construction of
the reduced state space. The algorithm is based on the well-known recursive
method for constructing (Sr,Δr, ŝ) in depth-first order. It is initially called with
DFS(ŝ, ∅). Like in the previous section, Tarjan’s algorithm [3,4,11] is applied on
top of the depth-first search, to recognize terminal strong components. In the
figure, stubb(S′) =

⋃

s′∈S′
stubb(s′) and Rr(s) = {s′ | s′ is r-reachable from s}.

The parameter old frozen and variable new frozen are pointers to or index
numbers of sets of actions. The computation of stubborn sets behaves as if
frozen actions did not exist. This implies that frozen actions never enter the
set more stubborn computed on line 5 and are thus never fired. When line 5 is
re-executed, the computation does not return the stubborn set in full, but only
the expansion to the previous stubborn set. The previous stubborn set consists
of the originally computed stubborn set and its already returned expansions.



170 A. Valmari

Fig. 3. Implementation of S with frozen actions

When an r-state s is entered, the algorithm enters the while-loop. It com-
putes a stubborn set avoiding the elements of new frozen. The algorithm exe-
cutes all enabled actions in the stubborn set in all possible ways, storing the
resulting r-transitions and entering those of the resulting r-states that have not
yet been entered. In later iterations of the while-loop, this is done to the current
expansion of the stubborn set, not to the stubborn set as a whole.

After having processed the stubborn set or expansion, the algorithm back-
tracks if it contained no enabled actions; s is currently not the root of a terminal
strong component of the reduced state space; or a visible action occurs in the
terminal strong component whose root s is. Otherwise, the algorithm freezes all
actions in all stubborn sets of the component and computes an expansion to the
stubborn set or previous expansion. All enabled actions in the original stubborn
set and previous expansions are now frozen, so line 5 gives a new result. Each
iteration of the while-loop other than the last freezes at least one enabled action,
so the loop terminates.

Consider again Fig. 2. We already saw that the algorithm constructs the cycle
s3 −τ2→ s4 −τ2→ s5 −τ2→ s3. When it has done so and is about to backtrack
from s3, it freezes u and τ2, and computes an expansion to the stubborn set.
This computation returns {a, b}, because τ2 is frozen and a non-frozen enabled
action must be returned if possible. So the algorithm executes s3 −a→ s6. In
s6 it again only executes a, for the same reason. In the next state s9 it executes
nothing.

The example also illustrates that freezing an action prematurely may cause
an erroneous result. If τ2 is frozen already in the initial state, the trace ba is lost.
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5 Correctness

In this section we assume that actions are deterministic, that is, if s −a→ s1 and
s −a→ s2, then s1 = s2. To prove the correctness of the method in the previous
section, we re-develop D1, D2, and Dd in the presence of frozen actions. The
set of actions that are frozen in s is denoted with F(s). More precisely, s was
constructed by some call DFS(s, old frozen), and F(s) is the value of old frozen.

D1F. If a ∈ stubb(s0) \ F(s0), s0 −a1 · · · ana→ s′
n, and a1, . . . , an are not in

stubb(s0) ∪ F(s0), then s0 −aa1 · · · an→ s′
n.

D2F. If a ∈ stubb(s0) \ F(s0), s0 −a1 · · · an→ sn, a1, . . . , an are not in
stubb(s0) ∪ F(s0), and s0 −a→ s′

0, then there is s′
n such that s′

0 −a1 · · · an→
s′

n and sn −a→ s′
n.

DdF. If a ∈ V(r) \ F(s0), r −a1 · · · an→ sn, a1, . . . , an are not in V(r) ∪ F(s0),
and ¬(r −a→), then ¬(sn −a→).

We have to prove that the full and reduced state spaces have the same traces.
One direction remains trivial: every r-trace is a trace of the system because we
still have Sr ⊆ S and Δr ⊆ Δ.

To prove the other direction, consider a path s0 −b1 · · · bm→ sm such that
s0 ∈ Sr and none of b1, . . ., bm is in F(s0). The initial call DFS(ŝ, ∅) makes the
parameter old frozen empty, justifying the assumption that none of b1, . . . , bm

is in F(s0). We will soon show that the assumption is justified also when the set
of frozen actions is not empty.

Because none of b1, . . ., bm is in F(s0), D1F, D2F, and DdF work like D1,
D2, and Dd did in Sects. 2 and 3. V has not changed, so it works in the good
old way. S has changed only by using DdF instead of Dd. What is different
from Sects. 2 and 3 is that when D1F or D2F yields an r-transition s0 −a→ s′

0,
we may have F(s′

0) �= F(s0). To cope with this, we will use the following lemma.

Lemma 5. For each r-state s0, if s0 −b1 · · · bm→ and c1 · · · cn is the result of
the removal of all elements of F(s0) from b1 · · · bm, then s0 −c1 · · · cn→.

Proof. The r-state s0 was originally found via some r-path ŝ = z0 −d1 · · · dk→
zk = s0, where always on line 9, zi /∈ Sr held. We use induction along this r-path.
Because old frozen ⊆ new frozen in the algorithm, ∅ = F(z0) ⊆ F(z1) ⊆ · · · ⊆
F(zk).

The base case has F(z0) = ∅, so the claim holds with c1 · · · cn = b1 · · · bm.
If zi −b1 · · · bm→, then zi−1 −dib1 · · · bm→. Because zi−1 −di→ zi was con-

structed, di /∈ F(zi−1). By the induction assumption, zi−1 −die1 · · · e�→, where
e1 · · · e� is the result of the removal of all elements of F(zi−1) from b1 · · · bm.
Because actions are deterministic, we have zi −e1 · · · e�→.

If F(zi) = F(zi−1), then c1 · · · cn = e1 · · · e�, and we have the claim. Other-
wise F(zi) contains extra actions that were added during one or more iterations
of the while-loop in Fig. 3. At that time, zi−1 was the root of a terminal strong
component. If ei ∈ F(zi) \ F(zi−1), then ei was added to new frozen by line 14.
This means that the component contains a state z′ such that ei ∈ stubb(z′).
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By the definition of strong component, there is an r-path from zi−1 to z′ and
back. We apply D1F and D2F along this r-path. D1F can be applied at least
in z′, so at least one element of F(zi) \ F(zi−1) is consumed. The action di

is not consumed, because we are now discussing events that took place before
firing zi−1 −di→ zi. This reasoning can be repeated until zi−1 −dic1 · · · cn→ is
obtained. 	


As a consequence, each time when an application of D1F or D2F takes the
reasoning to an r-state, the frozen actions of that state can be removed from the
sequence. This implies that the above assumption is justified, and correctness
follows analogously to Sects. 2 and 3.

6 Nondeterministic Actions

In this section we present a construction via which a system of LTSs with non-
deterministic actions can be converted to an equivalent system of LTSs with
deterministic actions. The construction is transparent in the sense that stub-
born sets of the original system that are obtained using Theorem1 correspond
to stubborn sets of the deterministic system. This means that the construction
need not be implemented. Its existence suffices for dropping the assumption of
determinism. In conclusion, if stubborn sets are computed using Theorem1, then
the algorithm in Fig. 3 also applies with nondeterministic actions.

Intuitively, the system executes deterministic verbose actions, and actions in
the original sense are abstractions of verbose actions. So the original system is
an abstraction of a deterministic system, although the original notion of actions
conceals this fact.

Let L be an LTS and a an action. The a-width of L, denoted with w(L, a),
is the maximum i such that some state of L has precisely i outgoing transitions
labelled with a. If w(L, a) = 0, then (and only then) L has no a-transitions.

We still consider systems of the form (L1 || · · · || LN ) \ H. For 1 ≤ i ≤ N , let
Li = (Si, Σi,Δi, ŝi), where Si is the set of the states of Li, ŝi is the initial state
of Li (so ŝi ∈ Si), Σi is the alphabet of Li, and Δi is the set of the transitions
of Li (so Δi ⊆ Si × Σi × Si). For each a in Σ1 ∪ · · · ∪ ΣN , let Vb(a) (called the
verbose set of a) be the set of the vectors (a; j1, . . . , jN ), where ji = 0 if a /∈ Σi,
and ji ∈ {1, . . . , w(Li, a)} if a ∈ Σi. If some Li has a in its alphabet but has no
a-transitions, then Vb(a) = ∅.

Each Li is replaced by L′
i = (Si, Σ

′
i,Δ

′
i, ŝi), where Σ′

i =
⋃

a∈Σi

Vb(a) (that is,

the actions are replaced by the verbose actions) and Δ′
i is obtained as follows.

Let (s, a, s′) ∈ Δi. We artificially give each a-labelled outgoing transition of
s a distinct number starting from 1. Let the number of (s, a, s′) be k. Then
Δ′

i contains the transition (s, (a; j1, . . . , jN ), s′) for each (a; j1, . . . , jN ) ∈ Vb(a)
such that ji = k. That is, the kth outgoing a-transition of s is replaced by
|Vb(a)|/w(Li, a) transitions, one for each possible way of synchronizing with a-
transitions of the other component LTSs. Finally, an operator is added on top
of L1 || · · · || LN that maps each (a; j1, . . . , jN ) to a.
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The nondeterminism of the original action a of Li is resolved by the com-
ponent ji of (a; j1, . . . , jN ). It is straightforward to check that the construc-
tion yields the same (full) LTS as the original system. This is because the only
thing that has happened is that the names of actions have been extended, for
1 ≤ i ≤ N , with information about which alternative Li chose from among the
possible ways of executing the action.

It remains to be shown that the construction is transparent regarding stub-
born set computation. We assume that stubb(s) is computed as suggested by
Theorem 1 using original actions, and show that stubb′(s) =

⋃

a∈stubb(s)

Vb(a) is

stubborn in terms of verbose actions. Analogously to eni(si), let en′
i(si) denote

the set of the labels of the outgoing transitions of si in L′
i. We first point out

that if (a; j1, . . . , jN ) ∈ en′
i(si), then a ∈ eni(si). (The reverse does not neces-

sarily hold, but it will not be needed.) Therefore, if eni(si) ⊆ stubb(s), then
en′

i(si) ⊆ stubb′(s).
If a is disabled, then case 1 of Theorem 1 yields some i such that Li disables

a and eni(si) ⊆ stubb(s). The corresponding L′
i disables every member of Vb(a).

So case 1 holds also with verbose actions. If a is enabled, then by case 2 of
Theorem 1, eni(si) ⊆ stubb(s) holds for every 1 ≤ i ≤ N such that a ∈ Σi.
Therefore, for each (a; j1, . . . , jN ) ∈ Vb(a), en′

i(si) ⊆ stubb′(s) holds for every
1 ≤ i ≤ N such that (a; j1, . . . , jN ) ∈ Σ′

i. If (a; j1, . . . , jN ) is enabled, this
directly matches case 2. If (a; j1, . . . , jN ) is disabled, then some L′

i disables it,
and case 1 holds with that i.

7 Conclusions

We discussed the motivation behind and recent developments in terminal strong
component conditions that are used to solve the ignoring problem in the use of
stubborn set methods for checking safety properties. We have pointed out that
the earlier conditions may be fooled to compute all states of the full parallel
composition. Now we developed a new freezing technique that solves this prob-
lem. At the time of writing, the new method has not been implemented and
experimented with.

Trace-preserving stubborn set methods tend to also preserve [16,19] a certain
non-standard but useful notion of fairness [10,21]. This probably makes the
results in this study applicable also beyond safety properties.

Until now, stubborn set methods for process algebras have used nondetermin-
istic actions. In the present study, the proof of Lemma5 relied on the assump-
tion that actions are deterministic. The assumption was dropped in Sect. 6 for
the typical way of computing stubborn sets of systems with nondeterministic
actions, that is, using Theorem 1. This works, but is not as elegant as one might
wish. It requires checking the validity of stubborn set algorithms that go beyond
Theorem 1. It would be nicer, if the inherent hidden determinism could be cap-
tured into some abstract condition similar to D1 and D2.
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Because D0V, D1, D2, and V are strictly weaker than or the same as the
corresponding conditions in ample and persistent set methods, the discussion
towards the end of Sect. 3 applies to aps set methods in general. It is likely that
also the problem illustrated with Fig. 2 affects aps set methods in general. The
message is that, when verifying safety properties, for many systems, nothing
needs to be done to solve the ignoring problem; and for the remaining systems,
the ignoring problem is nastier than has been thought. This nasty part has not
been detected until recently, because the domain where nothing needs to be done
is rather wide (although also this has not been known until recently).

Originally, ample set methods focused on verifying both safety and liveness
properties. A well-known example presented in [17] and elsewhere demonstrates
that terminal strong component conditions do not suffice for that purpose.
Instead, the standard solution has been to construct the reduced state space
in depth-first order and, whenever firing an action in the aps set leads to a state
in the depth-first stack, the aps set must contain all enabled actions (please see,
e.g., [1]). A performance problem with this solution was pointed out in [2]. In [17]
it was demonstrated that with two cyclic non-interacting processes, the solution
may lead to the construction of all reachable states. That is, analogously to
the failure of terminal strong component conditions that motivated the present
study, also this solution may fail totally, this time in a situation that should have
been easy.

The message is that standard solutions should not be taken for granted,
although they are now more than 20 years old. More research on these conditions
is still needed.

Acknowledgements. We thank the anonymous reviewers for their comments.
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Abstract. We are focused on the solvability/insolvability of the directed
s-t connectivity problem (DSTCON) parameterized by suitable size para-
meters m(x) on multi-tape deterministic Turing machines working on
instances x to DSTCON by consuming simultaneously polynomial time
and sub-linear space, where the informal term “sub-linear” refers to a
function of the form m(x)ε�(|x|) on instances x for a certain absolute
constant ε ∈ (0, 1) and a certain polylogarithmic function �(n). As nat-
ural size parameters, we take the numbers mver(x) of vertices and of
edges medg(x) of a graph cited in x. Parameterized problems solvable
simultaneously in polynomial time using sub-linear space form a com-
plexity class PsubLIN and it is unknown whether DSTCON parame-
terized by mver belongs to PsubLIN. Toward this open question, we
wish to investigate the relative complexity of DSTCON and its natural
variants and classify them according to a restricted form of many-one
and Turing reductions, known as “short reductions,” which preserve the
polynomial-time sub-linear-space complexity. As variants of DSTCON,
we consider the breadth-first search problem, the minimal path problem,
and the topological sorting problem. Certain restricted forms of them
fall into PsubLIN. We also consider a stronger version of “sub-linear,”
called “hypo-linear.” Additionally, we refer to a relationship to a practi-
cal working hypothesis known as the linear space hypothesis.

Keywords: Sub-linear space · Hypo-linear space · Directed s-t-
connectivity · NL search · NL optimization · Short reduction · Linear
space hypothesis

1 Background and Overview

1.1 Solvability of the Directed s-t Connectivity Problem

Polynomial-time computation has been widely acknowledged as a natural, rea-
sonable, theoretical model of tractable computation and all such tractable
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decision problems are known to form a complexity class, known as P. For
polynomial-time computation, we are more keen to its minimal use of mem-
ory space from theoretical and practical interest. A typical example of small
memory usage may be logarithmic-space computation (or log-space computation,
in short), which requires O(log n) memory space to complete its computation on
each input of size n. The complexity class L is composed of all decision problems
solvable in polynomial time using log space and its nondeterministic counterpart
is known as NL. Unlike NP (nondeterministic polynomial time), NL is known
to be closed under complementation [8,14]. Besides the well-studied P = NP
question, one of the most challenging open questions is the decades-old L = NL
question, which asks whether NL decision problems are all solvable using log
space.

One of the most studied NL problems is probably the directed s-t connectivity
problem1 (DSTCON) concerning the reachability of vertices in a directed graph.

Directed s-t Connectivity Problem (DSTCON):

◦ Instance: a directed graph G and two designated vertices s and t.
◦ Question: is there any path from s to t in G?

Decades ago, Jones [9] demonstrated that DSTCON is NL-complete (under log-
space many-one reductions). Even though instances are restricted to directed
acyclic graphs of maximum degree at most 3 (3DSTCON), the s-t connectivity
problem still remains NL-complete. Nonetheless, DSTCON has since then played
a key role as a typical NL-complete problem in quest of determining the exact
computational complexity of NL.

In order to solve DSTCON, a straightforward exhaustive search algorithm
requires simultaneously O(m + n) time and O(n log n) space for any directed
graph of n vertices and m edges. A more sophisticated deterministic algorithm
of Barnes et al. [4] solves it in polynomial time using at most n/2c

√
log n space

for a certain constant c > 0. This space bound is only slightly below a linear
function. For restricted graphs such as planar directed graphs, on the contrary,
Asano et al. [3] gave a polynomial-time,

√
n �(n)-space algorithm for DSTCON,

where � refers to a certain suitable polylogarithmic function. Moreover, Kannan
et al. [10] designed an nε�(n)-space algorithm for so-called directed unique-path
graphs, where ε is a constant in (0, 1). In particular, when directed graphs are
regular, DSTCON is solvable using O(log n) space [12]. For single-source pla-
nar directed acyclic graphs, there is an O(log n)-space algorithm to determine
their s-t connectivity [1]. The s-t connectivity problem for undirected graphs
(USTCON) can be solved using only O(log n) space [11]. In contrast, if we allow
super-polynomial (i.e., Θ(nlog n)) execution time, then there is a known deter-
ministic algorithm solving DSTCON using O(log2 n) space [13].

Despite decades of vigorous studies, it is still unknown whether DSTCON
or its search version can be solved in polynomial time using “significantly less”
memory space than any linear function.
1 This is also known as the graph accessibility problem and the graph reachability
problem in the literature.
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A search version of the DSTCON, denoted by Search-DSTCON, is to find
a (not necessary simple) path in a given directed graph between two specified
vertices if any (otherwise, it outputs a designated symbol “⊥”). Such a path
can be easily found using log space with an adaptive queries to oracles in NL.
Search-BFT, for example, is an NL search problem of constructing from a given
directed graph a breadth-first tree rooted at a given starting vertex and a typical
approach to solve DSTCON is to construct such breadth-first trees. In a similar
fashion, many NL decision problems can be turned into NL search problems and
NL optimization problems (or NLO problems, in short) [15,16].

1.2 Size Parameters and Parameterized Problems

We are more concerned with problems, which are parameterized by certain “size
parameters,” where size parameters in practice play important roles in measuring
the precise computational complexity of the problems. All the space-complexity
bounds stated in Sect. 1.1 concern with DSTCON parameterized by two partic-
ular size parameters, one of which is the total number mver(x) of vertices and
the other is the number medg(x) of edges of a graph in a graph-related instance
x. Generally, the choice of different size parameters tends to lead to different
complexities. To certain restricted variants of DSTCON and Search-DSTCON,
however, mver and medg endow the same complexity.

1.3 Sub-Linear and Hypo-Linear Space

For a further discussion and exposition, it is imperative to clarify our termi-
nology of the “sub-linearity.” Even though slightly unusual but for our conve-
nience, we informally use two different terms to describe a space bound below
any linear function. The informal term “sub linear” indicates functions of the
form m(x)ε�(|x|) on instances x for a certain constant ε ∈ (0, 1) and a suitable
polylogarithmic function � [17], whereas the term “hypo linear” (or possibly
“far sub-linear”) means functions upper-bounded by m(x)ε�(|x|) on instances
x for an arbitrary choice of ε ∈ (0, 1). The multiplicative factor � may become
redundant when m(x) is relatively large (e.g., m(x) ≥ (log |x|)c for any constant
c ≥ 1). Corresponding to the above terms, we express as PsubLIN the class of
all (parameterized) decision/search problems solvable in polynomial time using
sub-linear space [17]. Similarly, PhypoLIN is defined using hypo-linear space.

1.4 Short Reductions

The notion of reducibility has served as an effective tool in comparing the com-
putational complexity of problems.

As noted earlier, it is unknown whether DSTCON is in PsubLIN. To solve
this open question, it is imperative to understand the structure of the class
PsubLIN (as well as PhypoLIN). For our purpose, we will investigate the relative
complexity of DSTCON and its natural variants based on appropriately chosen
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“reducibilities,” in particular, space-bounded many-one and Turing reducibili-
ties, which are technical tools in measuring the relative complexity of two given
problems. Since we are concerned with sub-linear and hypo-linear space compu-
tations, for our study, we particularly need a quite restricted form of reducibility,
which are known as “short” reducibility [17].

Polynomial-time sub-linear-space computability makes quite different effects
on various NL-complete problems. Notably, even if DSTCON is polynomial-time,
sub-linear-space solvable, many other NL-complete problems may not be solved
in polynomial time using sub-linear space. Let us recall 3DSTCON. The problem
BDSTCON is to ask whether an s-t path of length at most k exists in a directed
graph. These problems 3DSTCON and BDSTCON are NL-complete but they
are not known to have the same complexity as DSTCON does from a viewpoint
of polynomial-time sub-linear-space computability.

This circumstance no longer makes a standard log-space reduction suitable
for our study on PsubLIN. For this very reason, we intend to use short reducibil-
ity, in which an outcome of a reduction must be linear in the size parameter of
each instance. This linear-size requirement is sufficient to guarantee the closure
property of PsubLIN under those short reductions.

Here, we consider three types of short reducibilities ≤sL
m , ≤sL

T , and ≤sSLRF
T ,

whose precise definitions will be given in Sect. 3.2. These short reducibilities
help us classify various NL decision, search, and optimization problems from the
viewpoint of polynomial-time sub-linear-space computability.

1.5 Major Contributions

A main motivation of this work is to determine the polynomial-time sub-linear-
space solvability/insolvability of DSTCON. We hope that this work will pave
a way to determining the minimum space usage necessary for all NL-complete
problems, which may lead us to an answer to the NL ⊆?PsubLIN problem or
even the decades-old L =?NL problem. In this preliminary report, we will provide
a number of results for DSTCON and other graph-related problems, aiming at
the better understandings of the relative complexity of DSTCON and its variants
parameterized by size parameters. The use of short reductions help us obtain a
classification of the computational complexity of those parameterized problems.
This classification result is summarized in Fig. 1, in which a lower problem is
≤sSLRF

T -reducible to an upper problem, both of which are parameterized by mver.
In what follows, we will give a brief explanation of the problems cited in the
figure.

One of the important properties of directed graphs is acyclicity, where a graph
is acyclic if there is no cycle (including self-loops) in it. We write ADSTCON for
the acyclic directed s-t connectivity problem, in which we determine the existence
of an s-t path in each given directed acyclic graph. Technically speaking, this
problem is a so-called “promise problem” because the acyclic property of a graph
G is guaranteed a priori when instances (G, s, t) of ADSTCON are given. In
contrast, the problem DCYCLE asks whether there is a cycle in a given directed
graph.
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Search-BFT, Search-SPT, MinPath, Search-BDSTCON, BDSTCON

Search-DSTCON

Search-3DSTCON

Search-DST

Search-ADST, TOPSORT

Search-Unique-DSTCON

Search-Unique-DCYCLE

Search-ADSTCON, ADSTCON

Search-Planar-DSTCON

Search-Planar-3DSTCON

Search-DGGSTCON

Search-LDGGSTCON, Search-Planar-3LDSTCON

Search-TOPDCON

Search-3TOPDCON

DSTCON

Search-DCYCLE

3DSTCON, 2SAT3

PsubLIN

Fig. 1. ≤sSLRF
T -reducibility relationships among decision/search problems parameter-

ized by mver. Problems below the dotted curved line are shown to be in PsubLIN.

It is useful to deal with an instance graph, which has at most one s-t path.
This restriction gives rise to another problem, called the unique directed s-t con-
nectivity problem (UniqueDSTCON). Similarly, we consider the unique directed
cycle problem (UniqueDCYCLE) by requiring “at most one cycle.”

Planarity is another important property, where a graph is planar if it can be
drawn on a plane in a way that no two edges intersect with each other except
for their endpoints. Such a drawing is called a planar combinatorial embed-
ding, which is a permutation of the edges adjacent to each vertex. We write
PlanarDSTCON for DSTCON whose inputs are planar graphs. Similarly, we
define Planar3DSTCON from 3DSTCON.

A directed graph G = (V,E) is said to be layered if the vertex set V is
partitioned into L1, L2, . . . , Lk with k ∈ N

+ such that, for every i ∈ [k − 1], all
edges from Li are directed to certain vertices in Li+1. We write 3LDSTCON for
3DSTCON limited to inputs of layered graphs.

As a special case of planar graphs, a grid graph is a graph G = (V,E) in
which V ⊆ N × N and all edges are of the form either ((i, j), (i + b, j)) or
((i, j), (i, j + b)) for a certain b ∈ {±1}. We consider the directed grid graph s-t
connectivity problem (DGGSTCON). A directed grid graph is called layered if
it contains only edges directed to east and south (i.e., rightward and downward
edges). The layered version of DGGSTCON is denoted by LDGGSTCON.

All the aforementioned problems are decision problems. To refer to their
associated search version, we use a simple notation of Search-P for each decision
problem P . For example, a search version of DSTCON is Search-DSTCON,
which is to find an s-t path in a given directed graph G.
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The minimum path problem, Min-Path, is an optimization problem of finding
a minimal s-t path in a directed graph G from each instance of the form (G, s, t).

The detailed explanations of the following graph-related concepts will be
given in Sect. 4.2. The notation Search-DST denotes the problem of finding a
(directed) spanning tree of any given directed graph G, rooted at a specified
vertex r in G. When instance graphs to Search-DST are promised to be directed
acyclic graphs, we write Search-ADST instead of Search-DST. We denote by
Search-SPT the problem of finding from each instance (G, r) a shortest-path tree
rooted at r. Search-BFT is the problem of finding a breadth-first tree of a given
directed graph rooted at a given vertex (with the left vertex condition).

In many application of DSTCON, certain features of instance graphs are often
used to simplify NL-completeness proofs. One such feature is topological ordering
of vertices of a given graph. Here, a topologically-ordered version of DSTCON
(resp., 3DSTCON) is denoted by TOPDCON (resp., 3TOPDCON). In contrast,
TOPSORT is a search problem whose task is to produce a topological ordering
of a given directed acyclic graph starting at a given vertex.

A sophisticated algorithm of Barnes et al. [4] together with the equiv-
alence in complexity among parameterized problems (Search-BFT,mver),
(Search-SPT,mver), and (Min-Path,mver) (see Proposition 9(2)) leads to the
following solvability result of them.

Theorem 1. (Search-BFT,mver), (Search-SPT,mver), and (Min-Path,mver)
are solved in polynomial time using at most n/2c

√
log n space for an absolute

constant c > 0.

Lately, the linear space hypothesis or LSH—a practical working hypothesis—
was introduced in [17] in connection to polynomial-time sub-linear-space com-
putability. The hypothesis LSH for 2SAT3 asserts that no polynomial-time
sub-linear-space deterministic algorithm solves 2SAT3, which is the satisfiabil-
ity problem restricted to 2CNF formulas, each variable of which appears at
most 3 times as literals. It was shown in [17] that LSH for 2SAT3 implies that
3DSTCON does not fall into PsubLIN. What follows in the next theorem is
a simple application of LSH for 2SAT3 to the computational complexity of
(TOPSORT,mver). An argument similar to [17, Sect. 6] proves the insolvability
of (TOPSORT,mver).

Theorem 2. Assuming LSH for 2SAT3, no deterministic Turing machine
solves (TOPSORT,mver) in polynomial time using O(mver(x)ε/2) space on
instances x to TOPSORT for any fixed constant ε ∈ [0, 1).

2 Basic Notions and Notation

2.1 Numbers and Graphs

Let N be the set of natural numbers (i.e., nonnegative integers) and set N
+ =

N−{0}. Two notations R and R
≥0 denote respectively the set of all real numbers
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and that of all nonnegative real numbers. For two integers m and n with m ≤ n,
an integer interval [m,n]Z is the set {m,m + 1,m + 2, . . . , n}. When n ≥ 1, we
conventionally write [n] in place of [1, n]Z.

All polynomials have nonnegative integer coefficients and all logarithms are
to base 2, provided that “log 0” is conveniently set to be 0. A polylogarithmic
(or polylog) function � is a function mapping N to R

≥0 for which there exists a
polynomial p satisfying �(n) = p(log n) for all n ∈ N.

A directed graph G is expressed as (V,E) with a set V of vertices and a
set E of edges. We explicitly express edges as pairs of vertices and this conven-
tion eliminates multi-edges. In a given graph G, a path from s to t is a series
(x1, x2, . . . , xn) of vertices in G with n ≥ 2 such that x1 = s, xn = t, and
(xi, xi+1) is an edge in G for every index i ∈ [n−1]. A path is called simple if no
internal vertex is repeated (i.e., there is no cycle or self-loop in it). An s-t path
is a path from vertex s to vertex t and is expressed as s � t. The length of a
path from v to u is the number of edges in the path. and the notation dis(u, v)
denotes the distance from u to v, which is the minimal length of any path from
u to v. A directed graph G is (weakly) connected if its underlying undirected
graph is connected. For each vertex v ∈ V , let in(v) = {u ∈ V | (u, v) ∈ E} and
out(v) = {u ∈ V | (v, u) ∈ E}. Each vertex v has indegree |in(v)| and outdegree
|out(v)|. We simply call |in(v) ∪ out(v)| the degree of vertex v. A source is a
vertex of indegree 0 and a sink is that of outdegree 0.

Let G = (V,E) be any directed graph. Given a subset S of V , we write
G \ S for the graph obtained from G by removing all vertices in S and all edges
incident on them. A subset S of V in G is called a planarizing set if G \ S is a
planar graph. A subset S of V is said to be separating if G \ S is disconnected,
and nonseparating otherwise.

2.2 Machine Models, Parameterized Problems, and Size Parameters

Our basic model of computation is a multi-tape Turing machine of the following
form. Our Turing machine consists of a read-only input tape, (possibly) a write-
only output tape, and a constant number of read/write work tapes. A tape head
on the output tape moves only to the right if it writes a non-blank symbol, and
it stays still otherwise. All other tape heads move in both directions (to the right
and to the left) unless it stays still. An oracle Turing machine is further equipped
with a query tape—a special output tape—on which the machine produces query
strings (or query words) to transmit to the oracle for its answer. Given an oracle
P , the notation MP (x) indicates an outcome of M on input x by making queries
to the oracle P .

We will study the computational complexity of problems based on a suitable
choice of “size parameters” in place of a standard size parameter, which is the
total length |x| of the binary representation of an input instance x. To emphasize
the choice of m, we often write (P,m) in place of P (when we use the standard
“length” of instances, we omit “m” and write P instead of (P,m)). A (log-space)
size parameter m(x) for a problem P is formally a function mapping Σ∗ to N
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such that (i) m(x) must be computed using O(log |x|) space and (2) there exists
a polynomial p satisfying m(x) ≤ p(|x|) for all instances x of P .

For any graph-related problem P , let medg(x) and mver(x) denote respec-
tively the total number of edges and that of vertices of a graph given as a part of
instance x of P . We say that a Turing machine M uses logarithmic space (or log
space, in short) with respect to size parameter m if there exist two absolute con-
stants c, d ≥ 0 such that, on each input x, each of the work tapes (not including
input and output tapes) used by M on x are upper-bounded by c log m(x) + d.

Associated with log-space computability, L and NL are respectively the
classes of all decision problems solvable on deterministic and nondeterminis-
tic Turing machines using log space. It is known that the additional requirement
of “polynomial runtime” does not change these classes. The notation FL stands
for a class of polynomially-bounded functions that can be computed using space
at most O(log |x|).

An NL search problem P parameterized by a (log-space) size parameter m(x)
is a pair (P,m) with P = (I, SOL) satisfying I ∈ L and I ◦ SOL ∈ auxFL,
where I consists of (admissible) instances and SOL is a function from I to a
set of strings such that, for any (x, y), y ∈ SOL(x) implies |y| ≤ m(x), where
I ◦ SOL for the set {(x, y) | x ∈ I, y ∈ SOL(x)} [15,16]. In addition, for each
fixed constant k > 0, the notation (I ◦ SOL)∃

m denotes the set {x ∈ I | ∃y ∈
SOL(x) [|y| ≤ km(x)+k∧(x, y) ∈ I◦SOL ]}. We say that a deterministic Turing
machine M solves (P,m) with P = (I, SOL) if, for any instance x ∈ I, M takes
x as input and produces a solution in SOL(x) if SOL(x) �= ∅, and produces a
designated symbol, ⊥, otherwise. We denote by Search-NL a collection of all NL
search problems. For convenience, its polynomial-time counterpart is denoted by
Search-NP. It follows that Search-NL ⊆ Search-NP. Search-PsubLIN denotes a
search version of PsubLIN.

3 Sub-Linear/Hypo-Linear Space and Short Reductions

3.1 Sub-Linear and Hypo-Linear Space Computation

Our target is search and optimization problems parameterized by suitable size
parameters m(x) for instances x. Throughout this paper, we informally use the
term “sub-linear” to mean a function of the form m(x)ε �(|x|) on input instances
x for a certain constant ε ∈ (0, 1) and a certain polylog function �(n). In contrast,
“hypo linear” (or possibly “far sub linear”) refers to functions upper-bounded
by the function m(x)ε �(|x|) on instances x for an arbitrary choice of constant
ε ∈ (0, 1) and for a certain polylog function �(n).

A (parameterized) search problem (P,m) with P = (I, SOL) is said to be
solvable in polynomial time using sub-linear space (resp., using hypo-linear space)
if, for a certain choice of constant ε ∈ (0, 1) (resp., for an arbitrary choice of
ε ∈ (0, 1), there exist a deterministic Turing machine Mε, a polynomial pε, and
a polylog function �ε for which M finds a valid solution in SOL(x) in at most
pε(|x|) steps using at most m(x)ε �ε(|x|) tape cells for all admissible instances x
in I. We use PsubLIN (resp., PhypoLIN) to denote the collection of all decision
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problems (P,m) that are solvable in polynomial time using sub-linear space
(resp., hypo-linear space), where the suffix “P” refers to “polynomial time.”

Moreover, we introduce the notation PTIME,SPACE(s(n)) to denote a class
composed of all (parameterized) decision problems (P,m) solvable deterministi-
cally in polynomial time (in |x|) using space at most s(m(x)) on any instance
x to P . It thus follows that L ⊆ PhypoLIN ⊆ PsubLIN ⊆ P. Note that L = P
implies L = PhypoLIN = PsubLIN = P.

3.2 Short Reductions Among Decision and Search Problems

Let us first extend the existing notion of short reducibilities, which was first
discussed in [17] for (parameterized) decision problems, to search problems.

We start with standard L-m-reducibility. For any two (parameterized) search
problems (P1,m1) and (P2,m2) with P1 = (I1, SOL1) and P2 = (I2, SOL2), we
say that (P1,m1) is L-m-reducible to (P2,m2), denoted by (P1,m1) ≤L

m (P2,m2),
if there are two functions (f, ‖), (g, ‖) ∈ FL (where ‖ refers to the bit length)
and two constants k1, k2 > 0 such that, for any x and y, (i) x ∈ I1 implies
f(x) ∈ I2, (ii) x ∈ I1 and y ∈ SOL2(f(x)) imply g(x, y) ∈ SOL1(x), and (iii)
m2(f(x)) ≤ m1(x)k1 + k1, and (iv) m1(g(x, y)) ≤ m2(y)k2 + k2. As for decision
problems, we simply drop Condition (iv). Notice that all functions in FL are, by
their definition, polynomially bounded.

To discuss the sub-linear-space solvability, however, we need to restrict the
L-m-reducibility, which we call the short L-m-reducibility (or sL-m-reducibility,
in short), obtained by replacing two equalities m2(f(x)) ≤ m1(x)k1 + k1 and
m1(g(x, y)) ≤ m2(y)k2 + k2 in the above definition of ≤L

m with m2(f(x)) ≤
k1m1(x) + k1 and m1(g(x, y)) ≤ k2m2(y) + k2, respectively. To express this new
reducibility, we use another notation of ≤sL

m . Obviously, every ≤sL
m -reduction is

an ≤L
m-reduction but the converse does not hold in general [17].

We say that (P1,m1) is SLRF-T-reducible to (P2,m2), denoted by
(P1,m1) ≤SLRF

T (P2,m2), if, for every fixed value ε > 0, there exist an oracle
Turing machine Mε, a polynomial pε, a polylog function �ε, and three constants
k1, k2, k3 ≥ 1 such that, (1) MP2

ε (x) runs in at most pε(|x|) time using at most
m1(x)ε �ε(|x|) space for all instances x of P1, provided that its query tape is not
subject to a space bound, (2) when MP2

ε (x) queries to P2 with query word z writ-
ten on a write-only query tape, m2(z) ≤ m1(x)k1 +k1 and |z| ≤ |x|k3 +k3 hold for
all instances x to P1, (3) for any oracle answer y, m1(MP2

ε (x)) ≤ m2(y)k2 + k2,
and (4) in response to the same word queries at any moment, the oracle P2 always
returns the same answer, which is a valid solution to P2. Any oracle answer must
be written on a read-once answer tape, in which its tape head moves from the
left to the right whenever it reads a non-blank symbol. After Mε makes a query,
in a single step, it erases its query tape, it returns its tape head back to the
initial cell, and an oracle writes its answer directly onto the answer tape.

We also define short SLRF-T-reducibility (or sSLRF-T-reducibility) by
replacing the above inequalities m2(z) ≤ m1(x)k1 + k1 and m1(MP2

ε (x)) ≤
m2(y)k2 + k2 with m2(z) ≤ k1m1(x) + k1 and m1(MP2

ε (x)) ≤ k2m2(y) + k2,
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respectively. We tend to use the notation ≤sSLRF
T to denote this new reducibil-

ity. Every ≤sSLRF
T -reduction is obviously an ≤SLRF

T -reduction. In the case where
Mε is limited to log-space usage, we use a new notation ≤sL

T . Note that any
≤sSLRF

T -reduction is an ≤SLRF
T -reduction but the converse is not true because

there is a pair of problems reducible by ≤SLRF
T -reductions but not by ≤sSLRF

T -
reductions [17].

We list several fundamental properties of short reductions [17].

Lemma 3. [17]

1. (P1,m1) ≤L
m (P2,m2) implies (P1,m1) ≤L

T (P2,m2), which further implies
that (P1,m1) ≤SLRF

T (P2,m2). The same statement holds also for ≤sL
m , ≤sL

T ,
and ≤sSLRF

T .
2. The reducibilities ≤SLRF

T and ≤sSLRF
T are reflexive and transitive.

3. PhypoLIN is closed under ≤SLRF
T -reductions and PsubLIN is closed under

≤sSLRF
T -reductions.

Given any reduction, say, ≤r, we say that A is ≤r-equivalent to B, denoted
by A ≡r B, if both A ≤r B and B ≤r A hold.

4 Relative Complexity of Search-DSTCON and Variants

The short reductions given in Sect. 3.2 are quite useful in determining the relative
complexity of various decision, search, and optimization problems in connection
to the polynomial-time sub-linear-space solvability. Figure 1 has shown numerous
reducibility relationships among those problems in terms of ≤sSLRF

T -reducibility.
In what follows, we will verify each of the relationships in the figure.

4.1 Connectivity of Acyclic, Planar, and Grid Graphs

We begin with DSTCON, ADSTCON, and DCYCLE and their search ver-
sions. It is important to note that a decision problem and its search version
are not necessarily equivalent in complexity. For acyclic graphs, however, their
associated decision and search problems are actually ≤sL

T -equivalent; namely,
(Search-ADSTCON,m) ≡sL

T (ADSTCON,m) for any m ∈ {mver,medg}. This
property is not yet observed for general graphs. For instance, we do not know
whether (DSTCON,m) ≡sL

m (Search-DSTCON,m).
The uniqueness condition makes (Search-UniqueDSTCON,m)

and (Search-UniqueDCYCLE,m) ≤sL
m -reducible to (Search-DSTCON,m) and

(Search-DCYCLE,m), respectively, for each size parameter m ∈ {mver,medg}.
In addition, the following relationships hold.

Lemma 4. Let m ∈ {mver,medg}.
1. (Search-DCYCLE,m) ≤sL

T (Search-DSTCON,m).
2. (Search-UniqueDCYCLE,m) ≤sL

T (Search-UniqueDSTCON,m).
3. (Search-ADSTCON,m) ≤sL

T (Search-UniqueDCYCLE,m).
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Proof. (1) The desired ≤sL
T -reduction works as follows. Let G = (V,E) be given

as an instance to Search-DCYCLE. Recursively, we choose one edge (s, t) in G.
We then define another graph G′ = (V ′, E′) with V ′ = V and E′ = E − {(s, t)}
and make a query of the form (G′, s, t) to Search-DSTCON, used as an oracle.
If the s-t path exists in G′, then G must have a cycle passing through s and t.
Otherwise, we choose another edge in the above recursion.

(2) This is essentially the same as (1).
(3) Given x = (G, s, t) with G = (V,E) as an instance to Search-ADSTCON,

we define another graph G′ = (V ′, E′) by setting V ′ = V and E′ = E ∪ {(t, s)}.
Since G is guaranteed to be acyclic, G′ has a cycle (passing through s and t) iff
there is an s-t path in G. Note that such a cycle is unique if it actually exists.
Since |V ′| = |V | and |E′| = |E| + 2, it follows that (Search-ADSTCON,m) ≤sL

T

(Search-UniqueDCYCLE,m). ��
Concerning the planarity property, the problem PlanarDSTCON belongs to

UL [5], where UL is a natural variant of NL. Note that testing whether a given
graph G is planar can be done in log space because such testing is reducible to
USTCON [2], where USTCON is known to belong to L [11]. Moreover, a planar
combinatorial embedding can be computed in log space [2].

At this point, we need to discuss the difference between two size parameters
mver and medg. In certain restricted cases, the choice of those size parameters
does not affect the computational complexity of graph-related problems.

Proposition 5. 1. (Search-DSTCON,medg) ≤sL
m (Search-DSTCON,mver).

2. (Search-3DSTCON,mver) ≡sL
m (Search-3DSTCON,medg).

3. (Search-PlanarDSTCON,mver) ≡sL
m (Search-PlanarDSTCON,medg).

It is not known at present that the opposite direction of Proposition 5(1)
holds; namely, (Search-DSTCON,mver) ≤sL

m (Search-DSTCON,medg).

Proof of Proposition 5. (1) Consider the following reduction function f . Given
a graph G = (V,E), if either s or t is an isolated vertex, then f immediately
outputs a graph consisting of {s, t} with no edges. Assuming otherwise, f trans-
forms G into another graph G′ = (V ′, E) by removing all isolated vertices from
G. Since |E| ≥ 1

2 |V ′|, it follows that mver(G′, s, t) ≤ 2medg(G, s, t).
(2) An argument similar to (1) works for Search-3DSTCON, and we then

obtain (Search-3DSTCON,mver) ≤sL
m (Search-3DSTCON,medg). Conversely, let

x = (G, s, t) with G = (V,E) be any instance to Search-3DSTCON. Assume,
without loss of generality, that s is a source, t is a sink, and no isolated ver-
tex exists in G. Since G has maximum indegree 2 and maximum outdegree
2, it follows that |E| ≤ 4|V |. This implies that (Search-3DSTCON,medg) ≤sL

m

(Search-3DSTCON,mver).
(3) This comes from the fact that, for any planar graph G = (V,E), if |V | ≥ 3,

then |E| ≤ 3|V | − 6 holds. ��
The problem LDGGSTCON is shown to be in UL ∩ co-UL [1] (stated as

a comment after Theorem 20 in [1]). Note that Allender et al. [1] proved
that (DGGSTCON,mver) ≡L

m (PlanarDSTCON,mver), but their L-m-reduction
from PlanarDSTCON to DGGSTCON is not a short reduction.
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Proposition 6. Let m ∈ {mver,medg}.
1. (Search-DGGSTCON,m) ≤sL

m (Search-Planar3DSTCON,m).
2. (Search-LDGGSTCON,m) ≡sL

T (Search-Planar3LDSTCON,m).

A (k, �)-graph is a graph in which every vertex has indegree at most k and
outdegree at most �. When instance graphs are limited to (k, �)-graphs, we write,
for example, (k, �)DSTCON in place of DSTCON.

Proof Sketch. In this proof, we will show only (2). We first claim that
(Search-Planar(2, 2)LDSTCON,m) ≡sL

m (Search-Planar3LDSTCON,m). Next,
we claim that (Search-Planar(2, 2)LDSTCON,m) ≡sL

m (Search-LDGGSTCON,
m). The reduction (Search-LDGGSTCON,m) ≤sL

m (Search-Planar(2, 2)
LDSTCON,m) is obvious. For the other direction, we use an argument of
Allender et al. [1], who demonstrated that PlanarDSTCON is ≤L

m-reducible to
DGGSTCON. Note that their L-m-reduction is not a short reduction, and thus we
need a slight modification of their reduction using the fact that our instance graphs
are layered.

One way to extend the notion of planarity is to consider embedding onto
orientable surfaces of genus more than 1, where the genus of a closed orientable
surface is roughly the number of “handles” added to a sphere. Given a constant
k ∈ N

+, EOS(k) denotes a set of all directed/undirected graphs whose underlying
undirected graphs can be embedded on orientable surfaces of genus g. For a
function g : N → N, EOSDCON(g) is DSTCON whose instance graphs G =
(V,E) are restricted to EOS(g(|V |)). In particular, EOSDCON(0) coincides with
PlanarDSTCON.

Theorem 7. Let m ∈ {mver,medg}.
1. (Search-PlanarDSTCON,m) ∈ PsubLIN.
2. For any constant ε ∈ (0, 1), (Search-EOSDCON(nε),m) ∈ PsubLIN.
3. (Search-LDGGSTCON,m) ∈ PhypoLIN.

Proof Sketch. (1)–(2) follow directly from [3,6].
(3) Let ε be any constant in [0, 1). It suffices to show that

(Search-LDGGSTCON,mver) belongs to PTIME,SPACE(nε · polylog(n)). Let
x = (G, s, t) be any instance to Search-LDGGSTCON. Let G = (V,E) and
assume that V = [n] × [n] for simplicity. Let ε ∈ (0, 1). For the value nε, we set
S = {(a, b) ∈ [n] × [n] | a + b = nε + 1}, V1 = {(a, b) ∈ [n] × [n] | a + b < nε + 1},
and V2 = {(a, b) ∈ [n] × [n] | a + b > nε + 1}. Note that |S| ≤ nε and
|V1| ≤ ∑nε−1

i=1 i = (nε−1)nε

2 . Pick (a, b) ∈ S. Consider a restricted grid graph
with source (a, b) and sink (n, n). Let Va,b = {(i, j) | a ≤ i ≤ n, b ≤ j ≤ n}. Note
that |Va,b| = (n − a + 1)(n − b + 1). Recursively, we split this graph and then
compute a path.

The optimization problem Min-Path is known to be complete for NLO∩PBO
(i.e., a class of nondeterministic log-space optimization problems whose solutions
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are polynomially bounded) under approximation-preserving AC0-reductions
[15,16] but it is not known to be complete for NLO. In contrast, the prob-
lem Max-Path of finding the maximum simple paths of directed graphs is shown
to be NPO-complete.

Given a function f : N → N, we further define (Min-BPath(f(n)),m) as a
parameterized problem of finding a minimum s-t path of length at most f(m(x))
on every instance x to Min-Path. Here, we claim that (Min-Path,m) can be
reduced to its restricted form (Min-BPath(nε),m) for each constant ε ∈ (0, 1).

Theorem 8. For any m ∈ {mver,medg} and ε ∈ (0, 1), (BDSTCON,m) ≡sL
T

(Min-Path,m) ≡sSLRF
T (Min-BPath(nε),m).

Proof. Let m ∈ {mver,medg} and ε ∈ (0, 1). To show (Min-Path,m) ≤sL
T

(BDSTCON,m), we start with x = (G, s, t), obtain the minimal length, say,
� of any s-t path by making queries to BDSTCON, and construct a path by
setting v1 = s and by finding recursively vi+1 from (v1, v2, . . . , vi) so that G has
a vi-t path of length � − i + 1. The converse (BDSTCON,m) ≤sL

m (Min-Path,m)
is obvious.

It is easy to see that (Min-BPath(nε),m) ≤sL
m (Min-Path,m). For the con-

verse, it suffices to show that (BDSTCON,m) ≤sSLRF
T (Min-BPath(nε),m). Let

x = (G, s, t, k) with G = (V,E) be any instance to BDSTCON. We want to
design an algorithm that determines whether the distance between s and t is at
most k.

Let |V | = n and ñ = �nε�. At stage i ≥ 1, compute D
(i)
0 = {u ∈ V |

dis(s, u) = i} by making queries of the form (G, s, u) to Min-BPath(nε). If
|D(i)

0 | > n1−ε, then move to the next stage i + 1. Assume otherwise. Starting
with j = 1, recursively compute D

(i)
j = {u ∈ V | ∃w ∈ D

(i)
j−1 [dis(w, u) =

ñ] }. If |D(i)
j | > n1−ε, then move to stage i + 1. Otherwise, increment j by

one and continue until j reaches �(k − i)/nε� + 1. We then decide whether
dis(w, t) ≤ ñ for a certain w ∈ D

(i)
j . This establishes the reducibility relation

(BDSTCON,m) ≤sSLRF
T (Min-BPath(nε),m). ��

4.2 Breadth-First Search and Topological Sorting

We have discussed in Sect. 1.5 a number of search and optimization prob-
lems without giving the meaning of technical terminology used to describe
these problems. First of all, we will explain such technical terminology to
clarify the definitions of Search-DST, Search-ADST, Search-SPT, Search-BFT,
Search-TOPDCON, and TOPSORT, and we will verify the reducibility relation-
ships, presented in Fig. 1, among these problems. See [7] for more information
on the terminology.

Let us explain a general notion of spanning trees used for Search-DST. A
(directed) spanning tree for a given directed graph G from vertex r is a directed
tree T rooted at r for which T is a subgraph of G and all vertices reachable in
G from r are also in T .
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An ordered tree is a rooted tree in which the children of each internal vertex
are linearly-ordered (in the left-to-right order among those children). Here, we
assume a fixed linear ordering of vertices. For two vertices, u and v, u is to the
left of v in G if either (i) u and v are children of a common parent and u is
smaller than v or (ii) a certain ancestor of u is to the left of a certain ancestor
of v. Similarly, we can define the notion of “to the right of”.

In Search-SPT, a shortest-path tree from vertex r in a directed graph G is
a directed tree T rooted at r that contains all vertices v reachable in G from
r in such a way that any path in T from r to v must be a shortest path in
G. All shortest-path trees are obviously spanning trees. Hence, it follows that
(Search-DST,m) ≤sL

m (Search-SPT,m).
Breadth-first trees used in Search-BFT are a special case of ordered, shortest-

path trees. A breadth-first tree of a directed graph G from a vertex r is
an ordered, shortest-path tree T of G, rooted at r, satisfying the following
left vertex condition: for any vertices u and v in G, (u, v) is incident to v
in T iff u is to the left of every vertex w in G and (w, v) is incident to
v. Search-BFT is closely related to an NL optimization problem of finding
the shortest s-t paths in given directed graphs. Concerning the complexity of
Search-BFT, we obtain (Search-DSTCON,m) ≤sL

m (Search-BFT,m) for each
size parameter m ∈ {mver,medg}. Barnes et al. [4] demonstrated in essence that
(Search-BFT,mver) ∈ PTIME,SPACE(n/2�

√
log n) for a certain constant � > 0.

Known polynomial-time algorithms solving DSTCON require more or less
a (partial) construction of either breadth-first or depth-first trees from a
given directed graph. Thus, we immediately obtain (Search-DSTCON,m) ≤sL

m

(Search-BFT,m) for any size parameter m ∈ {mver,medg}. Therefore, it is
important to investigate the space complexity of the breadth-first (and depth-
first) tree search problems.

Theorem 9. For any size parameter m ∈ {mver,medg}, (Search-BFT,m) ≡sL
T

(Search-SPT,m) ≡sL
T (Min-Path,m).

Proof. Since (Search-SPT,m) ≤sL
m (Search-BFT,m), it suffices to show

that (a) (Min-Path,m) ≤sL
m (Search-SPT,m) and (b) (Search-BFT,m) ≤sL

T

(Min-Path,m).
(a) Given an instance x = (G, s, t) to Min-Path, we make a query of the form

(G, s) to Search-SPT, which returns a breadth-first tree rooted at s if it exists.
We then output a unique s-t path in this tree. By the definition of breadth-first
trees, this s-t path must be the shortest in G.

(b) Let x = (G, r) with G = (V,E) be any instance to Search-BFT. For
each vertex v ∈ V , we make a query of the form (G, r, v) and calculate the
minimum path length, dis(r, v), between r and v from its oracle answer. Let Li

be a set of all vertices v satisfying dis(r, v) = i. Note that we can enumerate all
elements in Li according to a fixed linear ordering for G. We define a new graph
G′ = (V ′, E′) by setting V ′ = V and (u, v) ∈ E′ whenever there exists an index
i ≥ 1 such that (i) u ∈ Li, v ∈ Li+1, and (u, v) ∈ E and (ii) for any w ∈ Li with
w < u, (w, v) /∈ E. Clearly, G′ is a breadth-first tree of G. ��
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A topological sort (topological order or topological numbering) used for the
search problem TOPSORT serves as a key ingredient to the development of
many elementary graph algorithms. Given a directed acyclic graph G = (V,E),
a topological sort of G from source s is a linear ordering of all its vertices starting
at s satisfying that, for any edge (u, v) ∈ E, u < v holds, where “<” is a
logarithmic-space computable linear order. We express such a linear ordering as
(v1, v2, . . . , vn), where n = |V |. In Search-TOPDCON, however, we are given a
directed graph G = (V,E) such that (1) all vertices of G are numbered between
0 and n and (2) for any pair i, j ∈ [n], if (i, j) ∈ E, then i < j holds. The task
of this problem is to find a path in G from vertex 0 to vertex n.

Lemma 10. Let m ∈ {mver,medg}.
1. (Search-TOPDCON,m) ≤sL

m (Search-ADSTCON,m).
2. (Search-LDGGSTCON,m) ≤sL

m (Search-3TOPDCON,m).

Proof. We will prove only (2). Let x = (G, s, t) be any instance to
Search-LDGGSTCON with G = (V,E). Without loss of generality, we assume
that V = [n], s = (1, 1), and t = (n, n). We define a linear ordering < over all
vertices as follows: (1, 1) < (1, 2) < (2, 1) < · · · < (1, i) < (2, i − 1) < · · · <
(i, 1) < · · · < (n, n). Since G has only edges of the form ((i, j), (i, j + 1)) and
((i, j), (i + 1, j)), the above ordering satisfies that (u, v) ∈ E implies u < v. This
is clearly an instance to Search-(2, 2)TOPDCON.

Next, we transform Search-(2, 2)TOPDCON to Search-3TOPDCON. For
each vertex v, we can compute the degree deg(v) of v. Given each vertex v,
we remove all of its outgoing edges and, instead, add an extra vertex v′ and an
edge set {(v, v′), (v′, w) | (v, w) ∈ E}. Finally, we define a new linear order <∗

as follows: (1) if u,w ∈ V , then u <∗ w iff u < w, (2) v <∗ v′, and (3) if u = v′,
then v′ <∗ w iff v < w. ��
Proposition 11. For every size parameter m taken from {mver,medg},
(TOPSORT,m) ≡sL

T (Search-ADST,m) ≤sL
m (Search-DST,m).

Proof. Let m ∈ {mver,medg}. It is obvious that (Search-ADST,m) ≤sL
m

(Search-DST,m). Hereafter, we want to show the ≤sL
m -equivalence between

TOPSORT and Search-ADST. Let x = (G, s) with G = (V,E) be any instance
to TOPSORT. Assume that all vertices in G are linearly ordered. Note that G
is a directed acyclic graph. Let T be a depth-first tree of G from r, which is
obtained by making a query (G, r) to Search-ADST.

Let n = |V |. Recursively, we define Li for i ∈ [n]. Initially, we set L0 = {r}.
For each index i ≥ 1, from T , we determine the set Li of all vertices in T of
distance i from r. We sort Li’s according to the value i and then sort all vertices
in Li by a given linear order. Since T is a spanning tree, this process enumer-
ates all vertices in G connected from r. This establishes (TOPSORT,m) ≤sL

T

(Search-ADST,m).
Conversely, given an instance (G, s) to Search-ADST, we make a query to

TOPSORT and obtain a topological sorting (x1, x2, . . . , xn) of G starting at s.
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Choose i = n and consider the set in(xn). Choose the smallest index i for which
xi belongs to in(xn), keep the edge (xi, xn), and discard all the other edges
(xj , xn) with xj ∈ in(xn). Change i to i − 1 and repeat this process until i < 0.
It is not difficult to show that the resulted graph is a spanning tree of G. ��
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14. Szelepcsényi, R.: The method of forced enumeration for nondeterministic

automata. Acta Inf. 26, 279–284 (1988)
15. Tantau, T.: Logspace optimization problems and their approximation properties.

Theory Comput. Syst. 41, 327–350 (2007)
16. Yamakami, T.: Uniform-circuit and logarithmic-space approximations of refined

combinatorial optimization problems. In: Widmayer, P., Xu, Y., Zhu, B. (eds.)
COCOA 2013. LNCS, vol. 8287, pp. 318–329. Springer, Cham (2013). doi:10.1007/
978-3-319-03780-6 28. A complete version is available at arXiv:1601.01118v1

17. Yamakami, T.: The 2CNF Boolean formula satisfiability problem and the linear
space hypothesis. In: The Proceedings of MFCS 2017, 7–11 August 2017. Leibniz
International Proceedings in Informatics (2017, to appear)

http://dx.doi.org/10.1007/978-3-662-44465-8_5
http://dx.doi.org/10.1007/978-3-319-03780-6_28
http://dx.doi.org/10.1007/978-3-319-03780-6_28
http://arxiv.org/abs/1601.01118v1


Author Index

Alexandre dit Sandretto, J. 118
Ancona, Davide 59

Bhave, Devendra 9
Bruse, Florian 26

Cassez, Franck 42
Chamoin, L. 118
Chapoutot, A. 118

De Vuyst, F. 118
Delzanno, Giorgio 59
Doyen, Laurent 1

Filiot, Emmanuel 75
Franceschini, Luca 59
Fribourg, L. 118

Guha, Shibashis 9
Guldstrand Larsen, Kim 42

Hundeshagen, Norbert 87
Hutagalung, Milka 101

Jensen, Peter Gjøl 42

Lange, Martin 26, 87
Le Coënt, A. 118
Leotta, Maurizio 59
Lozes, Etienne 26

Niskanen, Reino 132

Prampolini, Enrico 59

Reynier, Pierre-Alain 75
Ribaudo, Marina 59
Ricca, Filippo 59

Sproston, Jeremy 144

Valmari, Antti 160

Yamakami, Tomoyuki 176


	Preface
	Organization
	Abstracts of Invited Talks
	Trace Abstraction
	How Do We Know That Our System Is Correct?
	Path-Complete Lyapunov Techniques: Stability, Safety, and Beyond
	The Multiple Dimensions of Mean-Payoff Games
	Contents
	The Multiple Dimensions of Mean-Payoff Games
	References

	Adding Dense-Timed Stack to Integer Reset Timed Automata
	1 Introduction
	2 Preliminaries
	3 Transformation to Strict IRTA
	4 Dense-Timed Integer Reset Visibly Pushdown Automata
	5 MSO Characterization for Strict dtIRVPA
	6 Conclusion
	References

	Space-Efficient Fragments of Higher-Order Fixpoint Logic
	1 Introduction
	2 Higher-Order Fixpoint Logic
	3 Upper Bounds in the Exponential Space Hierarchy
	4 Matching Lower Bounds
	5 Conclusion
	References

	Refinement of Trace Abstraction for Real-Time Programs
	1 Introduction
	2 Motivating Example
	3 Real-Time Programs
	4 Trace Abstraction Refinement for Real-Time Programs
	5 Parameter Synthesis for Real-Time Programs
	6 Experiments
	7 Conclusion
	References

	An Abstract Machine for Asynchronous Programs with Closures and Priority Queues
	1 Introduction
	2 Abstract Machine for Asynchronous Programs
	2.1 Host Language
	2.2 Operational Semantics
	2.3 Abstract Machine

	3 Formal Reasoning
	4 Property Specification Language
	5 Conclusions and Related Work
	References

	Copyful Streaming String Transducers
	1 Introduction
	2 Preliminaries
	2.1 Streaming String Transducers
	2.2 HDT0L Systems

	3 SST and HDT0L Systems Are Equi-Expressive
	4 Applications: SST Equivalence and Functionality of NSST
	5 Deciding the Subclass of Copyless SST
	6 Conclusion
	References

	Model Checking CTL over Restricted Classes of Automatic Structures
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 The Branching-Time Logic CTL
	2.3 Automatic Structures

	3 Model Checking CTL
	4 CTL Model Checking over Recognisable Automatic Transition Systems
	5 Conclusion and Further Work
	References

	Topological Characterisation of Multi-buffer Simulation
	1 Introduction
	2 Preliminaries
	2.1 Mazurkiewicz Traces
	2.2 Multi-buffer Simulation

	3 Topological Characterisation
	4 Characterisation of k,�,k, kN
	5 Cyclic-Path-Connected Automata
	6 Conclusion
	References

	Distributed Control Synthesis Using Euler's Method
	1 Introduction
	2 Euler's Method Applied to Control Synthesis
	2.1 ODE Systems
	2.2 Sampled Switched Systems

	3 Distributed Synthesis
	4 Application
	5 Final Remarks and Future Work
	References

	Reachability Problem for Polynomial Iteration Is PSPACE-complete
	1 Introduction
	2 Preliminaries
	3 Iterating Polynomials
	4 Conclusion
	References

	Probabilistic Timed Automata with Clock-Dependent Probabilities
	1 Introduction
	2 Clock-Dependent Probabilistic Timed Automata
	3 Undecidability of Maximal Reachability of cdPTAs
	4 Approximation of Reachability Probabilities
	5 Conclusion
	References

	Stubborn Sets with Frozen Actions
	1 Introduction
	2 Stubborn Sets and (In)visible Actions
	3 Terminal Strong Component Conditions
	4 Frozen Actions
	5 Correctness
	6 Nondeterministic Actions
	7 Conclusions
	References

	Parameterized Graph Connectivity and Polynomial-Time Sub-Linear-Space Short Reductions
	1 Background and Overview
	1.1 Solvability of the Directed s-t Connectivity Problem
	1.2 Size Parameters and Parameterized Problems
	1.3 Sub-Linear and Hypo-Linear Space
	1.4 Short Reductions
	1.5 Major Contributions

	2 Basic Notions and Notation
	2.1 Numbers and Graphs
	2.2 Machine Models, Parameterized Problems, and Size Parameters

	3 Sub-Linear/Hypo-Linear Space and Short Reductions
	3.1 Sub-Linear and Hypo-Linear Space Computation
	3.2 Short Reductions Among Decision and Search Problems

	4 Relative Complexity of Search-DSTCON and Variants
	4.1 Connectivity of Acyclic, Planar, and Grid Graphs
	4.2 Breadth-First Search and Topological Sorting

	References

	Author Index



