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Abstract. In the classical transportation problem, it is assumed that
the transportation costs are known constants. In practice, however, trans-
port costs depend on weather, road and technical conditions. The concept
of fuzzy numbers is one approach to modeling the uncertainty associ-
ated with such factors. There have been a large number of papers in
which models of transportation problems with fuzzy parameters have
been presented. Just as in classical models, these models are constructed
under the assumption that the total transportation costs are minimized.
This article proposes two models of a transportation problem where deci-
sions are based on two criteria. According to the first model, the unit
transportation costs are fuzzy numbers. Decisions are based on minimiz-
ing both the possibilistic expected value and the possibilistic variance
of the transportation costs. According to the second model, all of the
parameters of the transportation problem are assumed to be fuzzy. The
optimization criteria are the minimization of the possibilistic expected
values of the total transportation costs and minimization of the total
costs related to shortages (in supply or demand). In addition, the article
defines the concept of a truncated fuzzy number, together with its pos-
sibilistic expected value. Such truncated numbers are used to define how
large shortages are. Some illustrative examples are given.

1 Introduction

We present some elements of the theory of fuzzy sets. The concept of a fuzzy set
was proposed by Zadeh (1965).

An interval fuzzy number X̃ is a family of intervals of real numbers [X̃]λ,
where λ ∈ [0, 1] such that: λ1 < λ2 ⇒ [X̃]λ1 ⊂ [X̃]λ2 and I ⊆ [0, 1] ⇒ [X̃]sup I =
∩λ∈I [X̃]λ. For a given λ ∈ [0, 1], the interval [X̃]λ is called the λ-level of the
fuzzy number X̃. This interval will be denoted by [X̃]λ = [x(λ), x(λ)].

Dubois and Prade (1978) introduced the following useful definition of the
class of L-R fuzzy numbers. A fuzzy number X̃ is called an L-R fuzzy number,
if its membership function is given by

μX(x) =

⎧
⎪⎨

⎪⎩

L
(m−x

α

)
for x < m

1 for m ≤ x ≤ m

R
(

x−m
β

)
for x > m

, (1)
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where L(x) and R(x) are continuous non-increasing functions and x, α, β > 0.
The functions L(x) and R(x) are called the shape functions of the fuzzy

numbers. The most commonly applied shape functions are max{0, 1 − xp} and
exp(−xp), x ∈ [0,∞), p ≥ 1. An interval fuzzy number for which L(x) = R(x) =
max{0, 1 − xp} and m = m = m is called a triangular fuzzy number and will be
denoted by (m,α, β).

Let X̃ and Ỹ be two fuzzy numbers with membership functions given by
μX(x) and μY (y), respectively. Based on Zadeh’s extension principle (Zadeh
1965), the membership functions of the sum Z̃ = X̃ + Ỹ and the prod-
uct Ṽ = X̃Ỹ are given by μZ(z) = supz=x+y (min(μX(x), μY (y))); μV (v) =
supv=xy (min(μX(x), μY (y))).

Carlsson and Fullér (2001) defined the possibilistic expected value E(X̃) and
variance Var(X̃) of the fuzzy number X̃ as follows:

E(X̃) =
∫ 1

0

1
2

(x(λ) + x(λ)) dλ (2)

Var(X̃) =
∫ 1

0

1
4

(x(λ) − x(λ))2 dλ. (3)

If X̃ is a triangular fuzzy number X̃ = (m,α, β), the possibilistic expected
value and the possibilistic variance are given by

E(X̃) = m +
β − α

4
(4)

Var(X̃) =
(α + β)2

12
. (5)

The possibilistic expected value has the following properties, see Carlsson
and Fullér (2001):

E(aX̃) = aE(X̃), (6)
E(X̃ + Ỹ ) = E(X̃) + E(Ỹ ), (7)

where a is a real number.

2 Truncated Interval Fuzzy Number

We now introduce the concept of a truncated interval fuzzy number and the
possibilistic expected value of such a number.

Definition 1. The interval fuzzy number X̃S is called the truncation of the fuzzy
number X̃ ([X̃]λ, where λ ∈ [0, 1]) on the crisp, closed (or semi-infinite) set
S ∈ R, if the corresponding λ-levels are given by [X̃S ]λ = [x(λ), x(λ)] ∩ S =[
xS(λ), xS(λ)

]
.
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Definition 2. The possibilistic expected value of a truncated fuzzy number X̃S

is given by

E(X̃S) = E(X̃/X̃ ∈ S) =
1

λmax

∫ λmax

0

xS(λ) + xS(λ)
2

dλ (8)

where λmax = maxλ{λ : [X̃S ]λ 
= φ}.
For the triangular fuzzy number (m,α, β) truncated on the set S = (−∞, x0],

where x0 ≤ m and μ(x0) = x0−(m−α)
α :

E(X̃/X̃ ∈ (−∞, x0]) =
1
2
(m + x0)μ(x0) +

α

4
(
μ2(x0) − 2μ(x0)

)
.

For the triangular fuzzy number (m,α, β) truncated on the set S = [x0,∞),
where x0 ≥ m and μ(x0) = (m+β)−x0

β :

E(X̃/X̃ ∈ [x0,∞)) =
1
2
(m + x0)μ(x0) − β

4
(
μ2(x0) − 2μ(x0)

)
.

For the triangular fuzzy number (m,α, β) truncated on the set S = [x0,∞),
where x0 ≤ m and μ(x0) = x0−(m−α)

α :

E(X̃/X̃ ∈ [x0, ∞)) =
1

2
[m(3−2μ(x0))+x0]+

β − α

4
(2μ

2
(x0)−4μ(x0)+1)− β

4

(
μ
2
(x0) − 2μ(x0)

)
.

For the triangular fuzzy number (m,α, β) truncated on the set S = (−∞, x0],
where x0 ≥ m and μ(x0) = (m+β)−x0

β :

E(X̃/X̃ ∈ (−∞, x0]) =
1

2
[m(3−2μ(x0))+x0]+

β − α

4
(2μ

2
(x0)−4μ(x0)+1)+

α

4
(μ

2
(x0)−2μ(x0)).

3 Transportation Problem

The classical transportation problem involves transporting a uniform good from
m suppliers to n customers. In a unit of time, supplier i can produce ai units of
the good and customer j demands bj units. The unit cost of transporting a unit
from supplier i to customer j is cij . The parameters of this problem (the capac-
ities ai, demands bj and transportation costs cij) are all known constants. The
objective is to select the transportation plan which minimizes the transportation
costs while satisfying the demand of the customers, i.e.

min
m∑

i=1

n∑

j=1

cijxij , (9)
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subject to the constraints

n∑

j=1

xij ≤ ai, for i = 1, 2, . . . m

m∑

i=i

xij ≥ bj , for j = 1, 2, . . . n (10)

xij ≥ 0, for i = 1, 2, . . . m, j = 1, 2, . . . n

The transportation problem given by (9)–(10) is a linear programming prob-
lem. When the capacities and demands are all integers, the algorithm proposed
by Dantzig (1951) can be applied to find a solution where all the decision vari-
ables, the xij , are integers.

In reality, it is often the case that the parameters of the transportation prob-
lem (capacities, demands and transportation costs) are not known precisely.
Applying the concept of probability theory or fuzzy logic is an approach to
modeling uncertainty. Such an approach was used in many works. Probabilistic
transportation problems are NP-hard problems, see Chaudhuri et al. (2013). The
fuzzy models proposed in this article are linear and quadratic models.

Chanas and Kuchta (1996) assumed that the unit costs of transportation
are fuzzy numbers, while supply and demand are given by crisp numbers. The
object is to minimize the total transportation cost. In the optimal solution,
the amounts to be transported along each route are crisp numbers, while the
total transportation cost is a fuzzy number. This article proposes a two criterion
approach based on minimizing both the possibilistic expected total transport cost
and the variance of this cost. Consequently the total cost of optimal solution has
a small diversity, see Model I.

Chanas and Kuchta (1988), Gupta and Kumar (2012) assumed that supply
and demand are given by fuzzy numbers. The solution is given by the set of
real numbers which determine how many units of the good are transported from
each supplier to each customer. However, assuming that the capacities or the
demands are not precisely known leads to the possibility that the realized values
of the capacities and demands are such that the decision maker cannot find an
appropriate solution, since e.g. there is not enough supply to satisfy the actual
demand.

Pandian and Natarajan (2010), Narayanamoorthy et al. (2013), Salajapan
and Jayaraman (2014), Hussain and Jayaraman (2014) assumed that the unit
costs of transportation as well as supply and demand are given by fuzzy numbers.
In the optimal solution the amounts of transportation, together with the total
transportation cost, are also fuzzy numbers. Rita and Vimatka (2009) assumed
that transport costs are crisp, while supply and demand are given by fuzzy
numbers. The loads to be transported along each route are also fuzzy numbers.
In this case, it is not clear to the decision maker what the specific loads should
be, thus this approach is impractical. In fact, these loads can even takes negative
values. This article proposes a model which considers the costs incurred due to
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shortages when the supply and demand are given by fuzzy numbers, see Model
II.

In this article, we propose two models of the fuzzy transportation problem:

• Model I. Uncertainty regarding the transportation costs is modeled using
fuzzy numbers and the decision is based on two criteria. The capacities and
demands are known constants. The decision is based on two criteria (i) min-
imizing the possibilistic expected value of the total transportation costs and
(ii) minimizing the possibilistic variance of these costs, since variance is a
measure of risk (Sect. 4).

• Model II. Uncertainty regarding all the parameters (transportation costs,
capacities and demands) is modeled using fuzzy numbers. The decision is
based on two criteria: (i) minimizing the possibilistic expected value of
the total transportation costs and (ii) minimizing the possibilistic expected
costs of the shortages. We interpret both excess production (i.e. insufficient
demand) and unsatisfied demand as shortages. These shortages are deter-
mined by the concrete realizations of the supply and the demand (Sect. 5).

In both models transportation costs are not known precisely. The first model
can be applied when the supply and demand are deterministic. The second model
we could be applied when supply and demand not known precisely. The solutions
of both models are given by the set of real numbers which determine how many
units of the good are transported from each supplier to each customer. Such
structure of solutions is useful for decision maker.

4 Transportation Problem with Fuzzy Costs

Define the unit transportation cost on the route from the i-th supplier to the j-th
customer in the transportation problem given by (9)–(10) to be the triangular
fuzzy number C̃ij = (cij , αij , βij). According to Zadeh’s extension principle, it
follows that the total transportation cost is given by the following fuzzy number:

C̃ =
m∑

i=1

n∑

j=1

C̃ijxij = (
m∑

i=1

n∑

j=1

cijxij ,
m∑

i=1

n∑

j=1

αijxij ,
m∑

i=1

n∑

j=1

βijxij). (11)

Consider a transportation problem with the following objective functions:

• Minimization of the possibilistic expected value of the total costs of transport
F1 : min E(C̃).

• Minimization of the possibilistic variance of the total costs of transport F2 :
min Var(C̃).

Using Eqs. (4) and (11), we can write criterion F1 in the following form:

F1 : min E(C̃) = min
m∑

i=1

n∑

j=1

E(C̃ij)xij = min
m∑

i=1

n∑

j=1

(

cij +
βij − αij

4

)

xij .

(12)
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It can be seen that the transportation problem based on the single optimality
criterion F1 with the constraints given by (10) is a linear programming prob-
lem. Hence, in order to solve it, we can use the simplex algorithm or Dantzig’s
algorithm (1951).

Now consider the problem in which the optimality criterion is the minimiza-
tion of the variance of the total transportation costs. From Eqs. (5) and (11), we
can write criterion F2 in the following form:

F2 : min Var(C̃) = min
1
12

(
m∑

i=1

n∑

j=1

(αij + βij)xij)2 (13)

In this case, the objective function is quadratic. Hence, the transportation prob-
lem with objective function (13) and set of constraints given by (10) can be
solved by quadratic programming.

Now consider the transportation problem with constraints given by (10) in
which both F1 and F2 are used as optimality criteria. In order to solve such a
problem, we can use e.g. the trade-off method. Assume that the decision maker
wishes to find a transportation plan which minimizes the possibilistic variance
of the total transportation costs while ensuring that the possibilistic expected
costs of transportation are not greater than C. The measure of risk is defined
to be the possibilistic variance of the total transportation costs. It follows that
the appropriate transportation plan is the solution of the following optimization
problem:

min
1
12

(
m∑

i=1

n∑

j=1

(αij + βij)xij)2 (14)

subject to the constraints

∑m
i=1

∑n
j=1

(
cij + βij−αij

4

)
xij ≤ C

∑n
j=1 xij ≤ ai, for i = 1, 2, . . . m (15)

∑m
i=i xij ≥ bj , for j = 1, 2, . . . n

xij ≥ 0, for i = 1, 2, . . . m, j = 1, 2, . . . n

A transportation problem formulated in this way has a quadratic objective
function and a set of linear constraints.

Example 1. Consider the transportation problem with three suppliers and four
customers defined by Liang et al. (2005). This problem was also analyzed in
Kaur and Kumar (2011). In both of the articles, the authors assumed that the
goal was to minimize the total transportation costs. The firm Dali, based in
Taiwan, produces soft drinks and frozen foods. The firm wishes to extend its
activities into the Chinese market. It plans to distribute its range of teas to four
destinations: Taichung, Chiayi, Kaohsiung and Taipei. The production units are
located in Changhua, Touliu and Hsinchu. The firm estimates the capacities of
these units, together with the level of demand from the four destinations and
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Table 1. Unit transportation costs, supply and demand for Example 1

Supplier Customer Supply (thou.
of 12-packs)

Taichung Chiayi Kaohsiung Taipei

Changhua (10, 2, 0.8) (20, 1.6, 2) (c) (20, 1.2, 2) 8

Touliu (15, 1, 1) (20, 1.8, 2) (12, 2, 1) (8, 2, 0.6) 14

Hsinchu (20, 1.6, 1) (12, 2.4, 1) (10, 2.2, 0.8) (15, 1, 1) 12

Demand
(thousands of
12-packs)

7 10 8 9

the transportation costs (see Table 1). The transportation costs are given in the
form of triangular fuzzy numbers, since they are not known precisely. There are
a number of factors which determine these transportation costs, such as weather,
road and technical conditions. In the original paper (Liang et al. 2005), supply
and demand were given in the form of fuzzy numbers. Here, they are given as
constants, which are assumed to be the most likely values.

The possibilistic expected value and variance of the unit transportation costs
can be derived from Eqs. (4) and (5).

The optimal transportation plans based on each objective individually: min-
imize the possibilistic expected value of the total transportation costs (F1) and
minimize the possibilistic variance of the total transportation costs (F2) are given
in Table 2. The only parts of these solutions which coincide are the use of two
transportation routes, between Changhua and Kaoshiung and between Hsinchu
and Chiayi.

Table 2. Optimal solutions to the transportation problems based on the criteria F1

and F2 and the associated costs

In the case of minimizing the expected value of the transportation costs,
the total transportation costs are given by the triangular fuzzy number (352,
72.4, 30) [in thousands of $] with expected value $ 341.4 thou. and dispersion
$ 29.6 thou. This is the same solution as the one obtained using the algorithms
proposed by Kaur and Kumar (2011) and Liang et al. (2005). In the case of
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minimizing the variance of the transportation costs, the total transportation
costs are given by the triangular fuzzy number (496, 51.8, 37.8) [in thousands of
$] with expected value $ 492.5 thou. and dispersion $ 25.9 thou. The variance of
the costs are somewhat smaller. However, the expected costs are $ 148.73 thou.
greater. One advantage of this transportation plan lies in the fact that only five
routes are used.

Now we consider the model of the transportation problem with objective
functions (14) and set of constraints given by (15). Assume that the decision
maker is interested in a transportation plan which minimizes the variance of the
transportation costs given that the expected value of the total transportation
costs is less than $ 360 thou. The optimal transportation plan for this problem is
described in Table 2. The total transportation costs are given by the triangular
fuzzy number (364, 68.4, 29.2) [in thousands of $], which has expected value
$ 354.2 thou. and dispersion $ 28.67 thou.

5 Transportation Problem with Fuzzy Costs, Demand
and Supply

Consider a fuzzy transportation problem in which all the parameters (the unit
transportation costs, supply and demand) are all given by fuzzy numbers. Such
problems are common in practice, especially in the case of goods which have sea-
sonal demand (which commonly depends on the weather). Similarly, supply can
also be uncertain. Given such a model, we consider the following objective func-
tions: minimization of the possibilistic expected value of the total transportation
costs, minimization of the sum of the possibilistic expected value of the total costs
associated with shortages. The unit transportation costs are given by triangular
fuzzy numbers of the form C̃ij = (cij , αij , βij). In addition, let the capacities
and demands be given by the set of triangular fuzzy numbers Ãi = (ai, γi, δi)
for i = 1, 2, . . . ,m and B̃j = (bj , εj , θj) for j = 1, 2, . . . , n. Let the unit cost of
purchasing (producing) the good at the last moment at the i-th point of supply
be PAi, i = 1, 2, . . . ,m and the unit penalty for not delivering a product to the
j-th customer be PBj , j = 1, 2, . . . , n. In the case when PAi = PBj for all i
and j, the objective is to minimize the possibilistic expected value of the sum of
the shortage in supply and the shortage in demand. The appropriate model of a
multicriteria fuzzy transportation problem is given by

F1 :min E(C̃) = min
m∑

i=1

n∑

j=1

E(C̃ij)xij (16)

F2 :min

⎡

⎣
m∑

i=1

PAi ·
⎡

⎣
n∑

j=1

xij − E

⎛

⎝Ãi/Ãi ∈ (−∞,

n∑

j=1

xij ]

⎞

⎠

⎤

⎦ + (17)

+
n∑

j=1

PBj ·
[

E

(

B̃j/B̃j ∈ [
m∑

i=1

xij ,∞)

)

−
m∑

i=1

xij

]⎤

⎦
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subject to the conditions

ai − γi ≤
n∑

j=1

xij ≤ ai + δ, for i = 1, 2, . . . m

bj − εj ≤
m∑

i=i

xij ≤ bj + θj , for j = 1, 2, . . . n (18)

xij ≥ 0, for i = 1, 2, . . . m, j = 1, 2, . . . n.

Example 2. We return to the transportation problem considered in Example
1. However, supply and demand are assumed to be given by the following trian-
gular fuzzy numbers: Ã1 = (8, 0.8, 0.8), Ã2 = (14, 2, 2), Ã3 = (12, 1.8, 1.8), B̃1 =
(7, 0.8, 0.8), B̃2 = (10, 1.4, 1.4), B̃3 = (8, 1.5, 1.5), B̃4 = (9, 1.2, 1.2), see Liang et
al. (2005). The optimality function is taken to be combination (sum) of the two
functions defined above, F = F1 + F2, where PAi = PBj = 10000. This means
that the F2 criterion is to minimize the possibilistic expected shortage (in supply
or demand). Optimal solution is:

x11 = 4, x13 = 3, x21 = 2, x23 = 2, x24 = 8, x31 = 1, x32 = 9, x33 = 2

The expected shortage is 3.73 thousand 12-packs, the transportation cost
is the triangular fuzzy number (336, 63.6, 27) [in thou. $] and the possibilistic
expected value of the transport costs are $ 326.85 thou. Lets now compare our
solution with the solutions of this problem obtained by other methods: the gen-
eralized fuzzy methods (GFNWCM, GFLCM, GFVAM) proposed by Kaur and
Kumar (2011) and the method proposed by Liang et al. (2005). The optimal solu-
tion obtained by each of this method is the same as our solution in the example 1
when the criterion function is minimization of the possibilistic expected value of
transportation costs. The optimal transportation plan and fuzzy transportation
cost are given in Table 2 in column 2. The possibilistic expected value of the
transportation costs are $ 341.4 thou. the expected shortage is 2.375 thousand
12-packs. So the expected transport cost in the solution proposed by our method
is smaller and the expected shortage is greater.

6 Conclusion

This article has presented two models of a multicriteria transportation prob-
lem. Under the first model, it is assumed that the unit transportation costs are
fuzzy numbers. The two optimality criteria considered were: (a) minimization
of the possibilistic expected value of the total transportation costs and (b) min-
imization of the possibilistic variance of the total transportation costs. Under
the second model, all of the parameters of the problem are fuzzy numbers. The
two optimality criteria considered here were: (a) minimization of the possibilis-
tic expected value of the total transportation costs and (b) minimization of the
expected costs resulting from shortages in supply and demand. The first model
enables the derivation of transportation plans which achieve “stable” (minimum
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variance) costs. Applying the second model, we take into account both trans-
portation costs as well as losses resulting from unsatisfied demand or excessive
production. This approach uses the concept of truncated fuzzy numbers, as pro-
posed in this article, as well as the possibilistic expected value. Two illustrative
examples were given.
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