Clustering XML Documents Using Frequent Edge-Sets

Zhiyuan J in®, Le Wang, and Yanfen Chang

College of Computer Science, Dahongying University, Ningbo 315175, China
lanborokk@l63.com

Abstract. Clustering of XML documents is a useful technique for knowledge
discovery in XML databases. However, the process of clustering XML documents
is always time-consuming due to the semi-structured characteristics of the docu-
ments. In this paper, we present an efficient clustering algorithm called Frequent
Edge-based XML Clustering (FEXC) to cluster XML documents using frequent
edge sets. First, we represent XML documents using edge sets, and then discover
the frequent edge sets for each document employing a traditional frequent pattern
mining approach. Second, for each frequent edge set, we find all the documents
containing it, and then compute a measure called entropy overlap, which indicates
the document relevance (overlap) with the ones containing all other frequent edge
sets. Clustering is then performed using the entropy overlap measure. Third, we
perform a merging process which removes redundant clusters, therefore reducing
the number of clusters. Experimental results show that our proposed method
outperforms the traditional distance-based XML clustering algorithm in terms of
efficiency without compromising the quality of clustering.

Keywords: XML - Clustering - Frequent edge set - Semi-structured data

1 Introduction

In recent years, XML data have become ubiquitous with the rapid upsoaring in both
number and scale of applications such as XML database systems, business transactions,
XML middleware systems, and so on. Discovering knowledge from XML structural
data has become more significant with the exponential growing of XML documents
available on the Web. Among various approaches, XML document clustering is one of
the useful mining approaches for knowledge discovery. The objective of XML document
clustering is to group XML documents with similar characteristics together, which can
be used in broad applications including web mining, information retrieval, querying,
storage compression.

In this paper, we introduce a novel clustering approach, Frequent Edge-based XML
Clustering (FEXC), which exploits discovery of edge set frequently occurring in XML
documents in order to cluster documents. A frequent edge set is a set of edges occurring
together and whose occurrence number is no less than a specified threshold in the XML
document set. The intuition of our clustering criterion is that documents within same
clusters share more frequent edge sets while documents belonging to different clusters
share fewer frequent edge sets.

© Springer International Publishing AG 2018

J. Abawajy et al. (eds.), International Conference on Applications and Techniques

in Cyber Security and Intelligence, Advances in Intelligent Systems and Computing 580,
DOI 10.1007/978-3-319-67071-3_50

Clustering XML Documents Using Frequent Edge-Sets 427

2 Clustering Algorithm

The cluster generation process using frequent edge sets and present the approach to
disjointing clusters based on the concept of entropy overlap of clusters. We give the high
level process of clustering algorithm including cluster construction and cluster merging.
First, we mine frequent edge sets from the XML document sets. Then we generate clus-
ters based on the discovered edge sets. Finally, to remove redundant clusters and reduce
the number of clusters, we construct tree-like clusters and merge the similar clusters.

2.1 Constructing Disjoint Clusters

In Fig. 1 we present the algorithm for generating disjoint clusters adopting a method
similar to the algorithm FTC. In each step, we select a frequent edge set with minimum
entropy overlap until there not exist any frequent edge sets in the remaining sets or each
document has been assigned to a cluster. Documents containing the selected edge set
will constitute a new cluster. If an edge set has been chosen as a target cluster, we will
remove all documents containing the selected edge set from the sets in the remaining
sets. In case that two edge sets have the same overlap, we will consider the edge set with
more edges as the selected one. Because more edges in the edge set means more infor-
mation and we can describe the cluster more specifically.

Algorithm ConstructClusters (FES, doccount)

Input: Frequent Edge Sets

Output: Selected frequent edge sets

1 SelectedSets = @;

2 n=0;

3 RemainFES = FES;

4 while RemainFES #dand n < doccount do

5 for each ES € RemainFES do

6 Calculate Entropy Cluster of Cluster for frequent edge set ES;
7 TargetES = the ES with minimum EOC and maximum |ES|;
8 SelectedSets = SelectedSets U { TargetES };

9 RemainFES = RemainFES — {TargetES};

10 n =n + |[doc(TargetES)|;

11 for each document d in doc(TargetES) do

12 for each ES € RemainFES do

13 ifd € doc(ES)

14 doc(ES) = doc(ES) — d;

15 return SelectedSets

Fig. 1. Clusters construction

428 Z.Jin et al.

2.2 Merging Clusters

In the previous section, we present the approach to forming non-overlapping clusters.
However, it is likely to generate too many clusters using frequent edge sets. In some
circumstances users may specify the number of final clusters which may be a small one.
Therefore a merging process is demanded to produce less clusters through merging the
similar clusters into a large one.

Due to the monotonicity property, documents containing frequent edge sets also
contain the frequent sub edge sets. According to our clusters generated principle, docu-
ments in the cluster represented by the super edge set can also be represented by the sub
edge set. Given two non-overlapping clusters labeled with A and B respectively, where
A and B are two frequent edge sets. If the edge set A is a subset of the edge set B, cluster
A is consider as a super-cluster of cluster B and cluster B is a sub-cluster of cluster A.
This relationship of clusters can be exploited to construct the clusters using a tree-like
diagram. If a cluster has more than one super-clusters, then the cluster with the most
number of edges will be selected as the parent node in the tree-like clusters. In Fig. 2
we show an instance of tree-like clusters. The label for each cluster represents a frequent
edge set. The label NULL of the root node represents an empty edge set which is a subset
of all edge set. Clusters Al, A2, A3 are 3 sub-clusters of the cluster A, while clusters
B1, B2 are 2 sub-clusters of the cluster B.

Fig. 2. Tree-like clusters

Clusters are merged into a new one through removing sub-clusters, i.e., documents
in both super-clusters and sub-clusters are merged together. Now we discuss the criterion
for merging similar clusters. Basically, we merge similar clusters by the goodness which
describe the similarities between clusters. We define the cluster similarity as follows:

l{e € (AN B)}|

goodness(A, B) = m- (€))

We measure the cluster similarity based on the number of the same edges in both of
the frequent edge sets. That is, the more overlap in their frequent edges, the closer the
two clusters.

A bottom-up sub-clusters pruning process is adopted to merge similar clusters. We
remove the most redundant sub-clusters level by level from bottom to top. We present
the algorithm for pruning sub-clusters in the tree-like clusters. First of all, we compute
the goodness of each sub-cluster with its super-cluster at one level. Then we sort the

Clustering XML Documents Using Frequent Edge-Sets 429

goodness of clusters in descending order and remove the clusters with larger goodness.
We perform this process level by level until we reach the top of the tree or the count of
the remaining clusters is equal to user’s specified count.

3 Experiments

In this section, we present experimental results of our FEXC clustering algorithm compared
to previous distance-based algorithms both on the clustering performance and clustering
quality. We implemented both FEXC algorithm and tree distance-based algorithm in Java
language (JDK1.5) and carried out all experiments on an Intel Xeon 2GHz computer with
2 GB of RAM running operating system RedHat Linux 9.0. For the tree distance-based
XML clustering algorithm we adopt the computing method of tree distance similar to the
algorithm presented by Dalamagas. In our frequent edge-based clustering algorithm, we
adopt an idea the same as Eclat to generate the frequent edge sets.

Clustering Quality. We used the XML document generator to generate documents with
varying document numbers from 400 to 20000. And for each DTD, we generate the same
number of documents. The support threshold for mining frequent edge sets in FEXC algo-
rithm is 20%. In Table 1(a) and (b) we present the number of generated clusters adopting
two clustering algorithms for various document numbers and different parameters, where
TDXC stands for the tree distance-based XML clustering algorithm and FEXC stands for
frequent edge-based XML clustering algorithm. From Table 1, we can find that FEXC
generates fewer clusters compared to TDXC, and XML documents are more centralized
using FEXC algorithm. However, TDXC makes documents scatter in more clusters, which
results in a poor clustering quality especially when employing cluster merging.

Table 1. Cluster count

Document count TDXC cluster count FEXC cluster count
(a) MaxRepeats = 4, NumberLevels = 7

400 15 7
2000 20 10
4000 24 9
8000 31 9
12000 29 8
16000 43 9
20000 52 12
(b) MaxRepeats = 7, NumberLevels = 10

400 18 8
2000 25 6
4000 31 9
8000 44 9
12000 37 7
16000 51 10
20000 66 15

430 Z.Jin et al.

Cluster Merging Quality. In some circumstances, the count of generated clusters is
more than the user’s expected result. A cluster merging process is demanded to reduce
the cluster count. In our experiments, documents are generated from four DTDs. As a
result, we specify 4 as the final cluster count. In Table 2 we show the precisions of the
two algorithms respectively, which are computed as follows:

Y entry(j,)
J=1

precision =

@)

=

J

> entry(j, k)
1 k=1

where j and k represent the type of clusters, entry(j, k) denotes that the document
belonging to the cluster k is assigned to cluster j. The equality between j and k means
the right cluster result of the document. A better cluster merging quality can be seen in
Table 2 employing FEXC. From Table 1, we know that TDXC makes documents more
decentralized, and thus it is more likely to merge clusters by mistake. On the contrary,
fewer clusters are produced using FEXC. Therefore, when merging similar clusters

using the tree-like clusters, a higher precision can be obtained. In some cases, it even
can reach 100%.

Table 2. Cluster precision

Document count ‘ TDXC cluster precision (%) ‘ FEXC cluster precision (%)
(a) Cluster precision for Table 1(a)

400 99.33 100
2000 98.71 100
4000 98.41 100
8000 98.27 99.01
12000 98.58 99.33
16000 96.32 98.51
20000 93.23 98.12
(b) Cluster precision for Table 1(b)

400 99.13 100
2000 99.21 100
4000 98.51 99.42
8000 97.39 100
12000 98.04 100
16000 94.25 99.23
20000 92.67 98.21

3.1 Clustering Performance

In Fig. 3 we present the performance of the two algorithms with various sizes of datasets
from 400 to 20000 on different parameters for document generation. From the figure we
can find the algorithm FEXC is faster than TDXC for clustering XML documents, and

Clustering XML Documents Using Frequent Edge-Sets 431

the improvement of performance using FEXC is more obviously for the dataset with
large size. Since the time consumed by the algorithm FEXC mainly depends on the
mining process, and many existed efficient mining algorithms relate to the dataset size
linearly. While in the algorithm TDXC, computations of tree distance play the most
important part and spend the most of time. For a dataset with n documents, TDXC needs
n * (n — 1)/2 times of comparisons between documents, which lead to an inefficient
clustering process and a low scalability. When the dataset is on increase, the running
time spent on TDXC increase drastically.

40000
35000 | (a)Clustering Per:ro‘rmzmce
MaxRepeats=4
~ 30000 NumberLevels=7
T 25000 | & IDXC
o — —#— — FEXC
= 20000 +
oo
2 15000 ¢
=
=1
2 10000 F
5000 | "
_ =
0 - — 7 L
400 2000 4000 8000 12000 16000 20000
#Documents
120000
100000 (b)Clustering Performance
MaxRepeats=7
\% 80000 F NumberLevels=10
£ —— TDXC
= 60000 [| = = —FEXC
z
S 40000
=
~a
20000 - -
g
=
0 » T o — W \
400 2000 4000 8000 12000 16000 20000
#Documents

Fig. 3. Performance comparison

3.2 Clustering Scalability

In Fig. 4, the experiments show that our algorithm present good scalability. When the
dataset is on increase, the running time doesn’t rise fast. As mentioned earlier, the time
consumed by our algorithm is determined by the mining process which is proportional
to the size of dataset. Therefore, good scalability can be obtained using FEXC compared
to TDXC.

432 Z.Jin et al.

70000 r
(a) FEXC Scalability
60000 MaxRepeats=4
_ NumberLevels=7
~ 50000
2 40000 | [—e—FEXC
.
2 30000
=
£ 20000 f
10000
0
6 12 18 24 30 36 42 48 54 60
#Documents (in thousands)
100000 (b)FEXC Scalability
90000 MaxRepeats=7
80000 F NumberLevels=10
= 70000 f
£ 60000 f
50000 f
oo
540000
=
5 30000 r
~
20000 f
10000
0 .
6 12 18 24 30 36 42 48 54 60
#Documents (in thousands)

Fig. 4. Scalability of FEXC

3.3 Cluster Description

FEXC can automatically produce a description for each cluster. In Table 3 we show the
cluster result of 4000 documents adopting FEXC. Descriptions of cluster are shown in
the left of the table and the names of DTDs are presented in the right of the table. The
description of each cluster (cluster label) contains all the edges in the frequent edge sets
which represent the cluster.

Table 3. Cluster description

Cluster label DTD
HomePage — volumes HomePage.dtd
OrdinarylssuePage — notes OrdinarylssuePage.dtd

OrdinarylssuePage — sections
note — otherSources

ProceedingsPage — date ProceedingsPage.dtd
ProceedingsPage — confYear
article — title

SigmodRecord — issues SigmodRecord.dtd

4

Clustering XML Documents Using Frequent Edge-Sets 433

Conclusion

In this paper, we present an efficient clustering algorithm called FEXC to cluster XML
documents using frequent edge sets. The intuition of our clustering criterion is that
documents within same clusters share common frequent edge sets while documents
belonging to different clusters share few frequent edge sets. We discover frequent edge
sets from the large set of documents and measure entropy overlap of each frequent edge
set in order to construct clusters. To remove redundant clusters and reduce the count of
clusters a cluster merging process is employed. Our experimental results show that
FEXC outperforms tree distance-based clustering algorithm in terms of efficiency, but
still presents the good quality of clustering.

References

10.

11.
12.

. Thakur, R.S., Jain, R.C., Pardasani, K.R.: Mining level-crossing association rules from large

databases. J. Comput. Sci. 2(1) (2006)

. Koltsidas, H., Miiller, H., Viglas, S.D.: Sorting hierarchical data in external memory. Proc.

V1db Endow. 1(1), 1205-1216 (2008)

. Beil, F., Ester, M., Xu X.W.: Frequent term-based text clustering. In: KDD, pp. 436-442

(2002)

. Wong, K.F,, Yu,J.X., Tang, N.: Answering XML queries using path-based indexes: a survey.

World Wide Web 9(3), 277-299 (2006)

. Costa, G., Manco, G., Ortale, R., Tagarelli, A.: A tree-based approach to clustering XML

documents by structure. In: PKDD, pp. 137-148 (2004)

. Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.K.: Clustering XML documents by structure.

In: SETN, pp. 112-121 (2004)

. Nayak, R., Iryadi, W.: XML schema clustering with semantic and hierarchical similarity

measures. Knowl. Based Syst. 20(4), 336-349 (2007)

. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: clustering XML schemas for effective

integration. In: CIKM, pp. 292-299 (2002)

. Leung, H., Chung, K.F.L, Chan, S.C., Luk, R.W.P: XML document clustering using common

XPath. In: WIRI, pp. 91-96 (2005)

Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:
WebDB, pp. 61-66 (2002)

Tagarelli, A., Greco, S.: Toward semantic XML clustering. In: SDM, pp. 188-199 (2006)
Wang, L., Cheung, D.W., Mamoulis, N., Yiu, S.M.: An efficient and scalable algorithm for
clustering XML documents by structure. IEEE Trans. Knowl. Data Eng. 16(1), 82-96 (2004)

	Clustering XML Documents Using Frequent Edge-Sets
	Abstract
	1 Introduction
	2 Clustering Algorithm
	2.1 Constructing Disjoint Clusters
	2.2 Merging Clusters

	3 Experiments
	3.1 Clustering Performance
	3.2 Clustering Scalability
	3.3 Cluster Description

	4 Conclusion
	References

