
Research on Performance Optimization
of Several Frequently-Used Genetic Algorithm

Selection Operators

Qili Xiao(&), Jiqiu Li, and Changfan Xiao

Business School, Ningbo College of Vocational Technology,
Ningbo, China

843848135@qq.com

Abstract. Genetic Algorithm is an intelligent algorithm for simulation of
biological evolution, is widely applied to solve all kinds of problems. In this
paper, several Frequently-used selection operators of Genetic Algorithm are
programmed by C language, and are tested in an optimization problem.

Keywords: Genetic algorithm � Selection operator � Sierpinski carpet �
Hausdorff measure

1 Introduction

Genetic Algorithm (GA) is a tool for computer engineers to simulate biological evo-
lution. It is a probability search algorithm proposed by Professor John Holland of
Michigan University. It makes use of the simple coding mechanism and the genetic
mechanism of the natural organism to represent the complex phenomenon, so as to
solve the difficult problem. GA has strong robustness and a wide range of applications.
When we use GA to solve problems, it is not restricted by the restrictive assumption of
the search space and it is not necessary to assume such as continuity, derivative
existence and unimodal [1]. Using GA to solve practical problems, there are three main
steps, namely encoding and decoding, the calculation of individual fitness, genetic
operations. Genetic operations include selection operation, crossover operation and
mutation operations. From the viewpoint of GA, the evolution of solution is completed
by depending mainly on the selection mechanism and the crossover strategy. And the
mutation is the repair and supplement of some genetic genes that may be lost in the
process of the selection and crossover. For the overall situation of GA, mutation only is
a basic operation. The crossover operation is based on the result of the selection
operation, namely the object of the cross operation is the result of the selection
operation. It can be seen that, in the process of using GA to solve practical problems,
the selection operation occupies an important position and it is also a major factor in
determining the convergence of GA. C language has many functions, such as rich
functions, strong expression ability, flexible use, wide application and good portability.
In this paper, the functions on several Frequently-used operator selection are pro-
grammed by C language and are tested in an optimization problem.

© Springer International Publishing AG 2018
J. Abawajy et al. (eds.), International Conference on Applications and Techniques
in Cyber Security and Intelligence, Advances in Intelligent Systems and Computing 580,
DOI 10.1007/978-3-319-67071-3_14

Frequently-used selection operations of GA mainly are the proportion choice, the
strategy of preservation of the best individual, deterministic sampling and so on. In the
following selection operator functions, the input parameters are pop and popfitness. The
parameter pop is a two-dimensional array, which is used to represent the population.
Each row of the parameter pop represents an individual coded by binary. The parameter
popfitness is a one-dimensional array that is used to represent the fitness of each
individual in the population. In this paper, the symbolic constant popsize is assumed to
be the number of individuals in a group. And the symbolic constant chromlength is
assumed to be the encoding length of the individual.

2 Proportional Selection

The method of proportional selection is also called the roulette wheel selection method.
In this method, the being selected probability of each individual and the fitness of each
individual is proportional. The individual fitness is higher, the greater the probability of
being selected. Because the method is simple and easy to implement, it is the most
frequently-used selection method of GA. The method of proportional selection that is
programmed with C is as follows.

void SelectOperator()

{sum= 0;

//Calculate Relative fitness

for(i= 0; i< popsize;i++){sum= sum+ popfitness[i];}

for(i= 0; i< popsize;i++){relative_profit[i]= popfitness[i]/ sum;}

for(i= 1; i< popsize;i++) //Calculate cumulative probability

relative_profit[i]= relative_profit[i- 1] + relative_profit[i];

for(i= 0; i< popsize;i++) //Create a new group newpop

{ p= rand()%1000/1000.0;

k= 0;

while(p> relative_profit[k]) {k++ ;}

for(j= 0; j< chromlength;j++) {newpop[i][j]= pop[k][j];}

}

}

In the above function, relative_profit expresses the relative fitness of individuals, and
newpop expresses a new generation groups.

Research on Performance Optimization 91

3 Save the Best Individual Strategy

In the process of using GA to solve problems, more and more excellent individuals will
be produced with the evolutionary process of population. But because of randomness
of genetic operations, such as selection, crossover, mutation and so on, the best indi-
vidual in the current population is likely to be destroyed, so as to reduce the population
average fitness and influence GA’s operating efficiency and convergence speed. We
also often retain the individual with the best fitness to the next generation, namely in
the current population, the individual with the highest fitness, is not involved in the
crossover operation and mutation operation. The individual with the highest fitness,
will replace the individual with the lowest fitness. The steps are as follows.

(1) Find the individual with the highest fitness and the individual with the lowest
fitness in the current population.

(2) If the fitness of the best individual in the current population is higher than that of
the best individuals so far, the best individual in the current population is the best
person to date.

(3) Replace the worst individuals in the current group with the best individuals so far.

The specific implementations of each of the above steps are as follows.

(1) Find out the best and worst of all

void findbestandworstindividual()

{for(j= 0;j< chromlength;j++)

{bestchrom[j]= pop[0][j]; worstchrom[j]= pop[0][j];}

bestfitness= popfitness[0]; worstfitness= popfitness[0]; bestflag= 0; worstflag= 0;

for(i= 1;i< popsize;i++)

{ if(popfitness[i]> bestfitness)

{bestfitness= popfitness[i]; bestflag= i;}

else if(popfitness[i]< worstfitness)

{worstfitness= popfitness[i]; worstflag= i;}

}

for(j= 0;j< chromlength;j++)

{bestchrom[j]= pop[bestflag][j]; worstchrom[j]= pop[worstflag][j];}

}

92 Q. Xiao et al.

(2) Find out the best individual so far

void findcurrentbestindividual()

{ if(gen== 0) //gen is the number of evolution

{ currentbestfitness= bestfitness;

for(j= 0 ; j< chromlength ; j+ +) currentbestchrom[j]= bestchrom[j];

}

else

{ if(bestfitness> currentbestfitness)

{ currentbestfitness= bestfitness;

for(j= 0 ; j< chromlength ; j+ +) currentbestchrom[j]= bestchrom[j];

}

}

}

(3) Replace the worst individual with the best individual

void performevolution(void)

{for(j= 0;j< chromlength;j++)

{pop[worstflag][j]= currentbestchrom[j];

popfitness[worstflag]= currentbestfitness;

}

}

In the above function, the variables bestchrom and worstchrom respectively express the
best individual and the worst individual. The variables bestfitness and worstfitness
respectively express the fitness of the best individual and the fitness of the worst
individual. The variables bestflag and worstflag respectively express the index of the
best and the worst individual. The variable currentbestfitness expresses the fitness of
best individual so far.

In fact, saving the best individual strategy is generally regarded as a part of the
selection operation. And it is often with other methods to achieve the selection oper-
ation. The research shows that, the standard GA using proportion selection is not
convergent. And the GA, with saving the best individual strategy, will converge to the
global optimum solution [2].

Research on Performance Optimization 93

4 Deterministic Sampling Selection

Using the above two methods to select individuals, the random of selection operation is
very strong, and do not depend on one’s will to change. Deterministic sampling selection
method can artificially control the selection operation of the individual, and its basic idea
is to select according to a definite way. The specific operation process is as follow.

(1) Calculate the survival number of each individual that will be in the next gener-
ation Ni.

(2) the survival number of each individual in the next generation is determined by the
integral part of the Ni.

P
i=1
M [Ni] of the next generation is determined by this step,

where M is the number of individuals in the population.
(3) the individuals will be descending sorted according to the decimal part of the Ni.

And the first (M −
P

i=1
M [Ni]) individuals will be put into the next generation.

Specific coding is as follows.

94 Q. Xiao et al.

void SelectOperator()

{ sum= 0;

//Calculate the parameter savenum[i] that is the expected survival number of each individual in
the next generation.

for(i= 0; i< popsize;i+ +){sum= sum+ popfitness[i];}

for(i= 0; i< popsize;i+ +){savenum[i]= popsize*popfitness[i]/sum;}

//generate the next generation

k= - 1;

for(i= 0; i< popsize;i++)

{ p=(int)savenum[i] ;

if(p> 0)

{ for(j= 1;j< = p;j++)

{

k++ ;

for(r= 0;r< chromlength;r++)newpop[k][r]=pop[i][r];

}

}

}

for(i= 0; i< popsize;i++)

{ savenum[i]= savenum[i]-(int)savenum[i]; index[i]= i; }

for(i= 0; i< popsize- 1;i++)

for(j= i+ 1; j< popsize;j++)

{ if(savenum[i]> savenum[j])

{ temp= savenum[i]; savenum[i]= savenum[j];savenum[j]= temp;

p= index[i]; index[i]= index[j]; index[j]= p;

}

}

j= k+ 1;

for(i= 0; i< popsize- j;i++)

{ k++ ; for(r= 0;r< chromlength;r++) newpop[k][r]= pop[index[i]][r]; }

}

Research on Performance Optimization 95

In the above function, the parament savenum is the expected survival number of
individuals in the next generation. The parament newpop is the new group.

5 Application

Take a unit square in the Euclidean place R2 and denote it by F0. Dividing each side of
F0 into four equal parts, sixteen equal small squares are got with length 1/4. Removing
the interior of all small squares expect for the four ones lying on the vertexes of, we get
a set denoted by F1. If the above procedure is repeated for each small square in F1, the
set F2 is obtained. Repeating the above procedure infinitely (such as Fig. 1), we have

F0 � F1 � ��� � Fk � ���. The non-empty set F ¼ T1

k¼U
Fk is called the Sierpinski

carpet yielded by F0. The Sierpinski carpet is the result that the following four func-
tions are applied on a unit square F0.

S1 ¼ x=4; S2 ¼ x=4þð3=4; 0Þ; S3 ¼ x=4þð3=4; 3=4Þ;
S4 ¼ x=4þð0; 3=4Þ

And Fi1i2...im ¼ Si1 � Si2 � � � � � SimðF0Þ, Fm′ = {U|U is a union of some small squares
Fi1i2���im in the m-th structure}.

For the Sierpinski carpet, the Hausdorff measure of the Sierpinski carpet

HðFÞ ¼ lim
m!1 inf

U2F0
m

jUj
lðUÞ. The Hausdorff measure of the Sierpinski carpet is the value of

inf
U2F0

m

jUj
lðUÞ when m ! ∞ [3]. In fact, for a fixed finite m, if the exhaustive method is

used, the calculation workload of inf
U2F0

m

jUj
lðUÞ is 2

4m . In order to avoid large-scale math-

ematical calculation, GA can be used to solve the approximate Hausdorff measure
value of Sierpinski carpet. In the experiment, we use the above three kinds of selection
operator to solve the approximate Hausdorff measure of Sierpinski carpet. Experi-
mental results show that three kinds of GA all can be used to calculate the exact value
when m < 6. But GA based on deterministic sampling method needs the shortest time,
and the standard GA has the longest running time.

Fig. 1. The structure of the Sierpinski carpet

96 Q. Xiao et al.

References

1. Wang, X., Cao, L.: Genetic Algorithm - Theory, Application and Software Implementation.
Jiao Tong University Press, Xi’an (2002)

2. Chen, G., Wang, X., et al.: Genetic Algorithm and Its Application. People’s Posts and
Telecommunications Press, Beijing (1996)

3. Lifeng, X., Zhongdi, C.: Some frontier problems of fractal geometry-calculation of fractal
measure. J. Zhejiang Wanli Univ. 1, 1–3142 (2001)

Research on Performance Optimization 97

	Research on Performance Optimization of Several Frequently-Used Genetic Algorithm Selection Operators
	Abstract
	1 Introduction
	2 Proportional Selection
	3 Save the Best Individual Strategy
	4 Deterministic Sampling Selection
	5 Application
	References

