
Chapter 9
Controlling Biological Time: Nonlinear
Model Predictive Control for Populations
of Circadian Oscillators

John H. Abel, Ankush Chakrabarty and Francis J. Doyle III

Abstract In mammals, circadian regulation of gene expression is accomplished
within each cell through a transcriptional oscillator commonly modeled by a limit
cycle. There has been recent interest in regulating this oscillator by delivering doses
of pharmaceuticals or light in a systematic manner. Generally, controller design for
circadian manipulation has been formulated by considering the dynamics of a sin-
gle oscillator representing the average dynamics of the population. We illustrate
in this paper that such an approximation can result in desynchronization of circa-
dian oscillators even if the mean dynamics attain desired behavior, due to the range
of dynamic responses elicited among oscillators in a population with nonidentical
phases. To address this issue, we present herein nonlinear MPC for control of phase
and synchrony within a population of uncoupled circadian oscillators, by explicitly
predicting the evolution of the phase probability density function. We then demon-
strate in silico phase shifting of an example oscillator population while maintaining
a high degree of synchrony. The MPC strategy formulated herein is a step toward
a detailed, systems approach integrating population effects, pharmacokinetics and
pharmacodynamics, and interactions between different oscillator populations.
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9.1 Introduction

Disruption to the circadian clock, such as misaligned light or feeding, or extended
night shift work, has been associatedwith awide range of disorders such as decreased
cognitive function [6, 13, 15]. Circadian rhythms are endogenous oscillatory pro-
cesses involved in biological timekeeping and temporal regulation of biological func-
tion in nearly all forms of life [7]. Although the mechanism driving these oscilla-
tions varies between organisms, circadian rhythms share the characteristics of being
endogenously generated, entrainable to environmental rhythms, and maintain a near-
24h periodicity. In mammals, a transcriptional–translational oscillator present in
nearly every cell type regulates transcriptional architecture, and along with further
posttranscriptional regulation, intricately coordinates cellular and tissue function
[23]. These cell-autonomous oscillators regulate gene expression within local tis-
sue and, in turn, are coordinated by signals from the hypothalamic suprachiasmatic
nucleus (SCN) which responds to light cues to entrain to the environment [26]. The
sleep-wake cycle is the most immediately recognizable feature of circadian regula-
tion, however, it is estimated that 5–20% of all transcripts within anymammalian cell
type oscillate with a circadian frequency [28], and circadian regulation is broadly
integrated with metabolic function [6, 16].

Low-amplitude circadian oscillation within tissue may result from perturbations
to the oscillator driving lower amplitudes within individual cells, or driving desyn-
chronization of the oscillators comprising the tissue population [22, 25]. Meanwhile,
high-amplitude circadian oscillations are associatedwith goodmetabolic health [17].
Thus, there is a need to develop therapies to mitigate the effects of disruption to the
circadian clock, to rapidly realign circadian phase with the environment following
jet lag or shift work to avoid cognitive difficulty, and to promote high-amplitude cir-
cadian oscillation. Light, and more recently, small-molecule pharmaceuticals [10]
provide possible two paths toward control of the clock. Since circadian rhythms
are highly complex phenomena, phase and amplitude control of the clock may be
achieved by a control theoretic approach to timing the delivery of drugs or light [5,
18, 27].

Control strategies devised for the manipulation of mammalian circadian rhythms
may analogously be applied to other oscillatory biological systems, provided they are
well described by limit cycle oscillators. Circadian oscillators in other species such
as the KaiABC system in the cyanobacterium Synechococcus [12], or the Period-
Timeless oscillator inDrosophila [8] have been modeled as limit cycle oscillators for
more than a decade. More generally, genetic or phosphorylation-driven oscillators
are a ubiquitous biological motif involved in the metabolic processes of numerous
organisms from prokaryotes to mammals [9, 11], and the development of strategies
for manipulating these systems is broadly desirable.

Several previous studies have examined the phase control of circadian rhythms.
Several recent studies have focused on the application of light to drive phase shifts
in the Drosophila [19, 20] or mammalian [18, 27] clock using an optimal control
approach. However, solving the resulting optimal control problem is computationally
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prohibitive due to the inherent nonlinearity of the model, and the computed optimal
control trajectory is susceptible to modeling errors and disturbances. Iteratively solv-
ing finite-horizon optimal control problems (as in model predictive control (MPC))
has provided demonstrably superior control performance. For example, MPC was
used for shifting of the Drosophila clock [4, 5] or the mammalian clock [2]. This
work uses nonlinear MPC as in [2] as a starting point for developing control of
an oscillator population. These studies of the control of biological oscillators have
focused on control of a single oscillator despite notable mismatch between single-
cell and population dynamics [14]. Additionally, these studies have primarily focused
on the application of light to the clock. Recently, pharmaceuticals have presented
advantages for control of the clock, as they are much less invasive than strict control
of an individual’s light environment, and may be delivered at any time of day. A
more detailed approach to control of circadian dynamics would integrate tissue or
population-scale effects, pharmacokinetics and pharmacodynamics, and interactions
between different oscillator populations.

Herein, we begin to approach this detailed formulation by presenting a MPC
framework for manipulating phase and synchrony within populations of uncoupled
biological oscillators using a pharmaceutical agent, and demonstrate the efficacy of
such an approach by in silico simulations of phase shifting in the mammalian clock.
We do so by describing the population of oscillators as a phase probability density
function (PDF), as in [22], and using the parametric infinitesimal phase response
curve (PRC) to calculate how the phase PDF evolves in response to control input.
By using a predictor that accounts explicitly for the variability in phase within a
synchronized population, we are able to maintain synchrony of oscillators while
performing a phase shift, unlike the single-oscillator case.

Chapter Overview

In this chapter, we present a framework for the control of a population of biolog-
ical oscillators, motivated by the example of the mammalian circadian clock. In
Sect. 9.2.1, we present an established model of the mammalian circadian oscilla-
tor and its response to the small molecule KL001, an early [10, 21]. In Sect. 9.2.2,
we motivate and formulate the phase shifting control problem. We use a previously
derived simplification of oscillator dynamics using the parametric phase response to
a control input to reduce the dynamical model to a phase-only representation [2]: this
is advantageous in reducing the dimensionality of theMPC problem, thereby curbing
computational effort. In Sect. 9.2.3, we describe a controller for the case for a sin-
gle oscillator, and demonstrate its function in silico in Sect. 9.2.4. In Sect. 9.3.1, we
demonstrate that although this formulation may successfully control a single oscilla-
tor, applying this controller to manipulate mean phase of a population of oscillators
may effect a desynchronization detrimental to biological function. We then modify
the MPC problem in Sect. 9.3.2 using a probability density function of population
phase in conjunction with the simplified dynamics to exert simultaneous control over
phase and synchrony within an oscillator population. We demonstrate in Sect. 9.3.3
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the in silico efficacy of this approach in maintaining synchrony throughout a phase
realignment. Finally in Sect. 9.4, we discuss limitations of this approach, and chal-
lenges to its implementation in vivo and in vitro.

9.2 Control of a Single Circadian Oscillator

A standard approximation in the control of the circadian oscillator is describing the
targeted circadian system (i.e., the population of cells comprising clocks in brain or
peripheral tissues such as the liver) as a single limit cycle oscillator [2, 4, 5, 18–20,
27].We begin our treatment of applying control to phase shift the circadian oscillator
by exploiting this approximation, as in our previous work [2], to illustrate where it
fails to capture population-scale phenomena.

9.2.1 Modeling the Circadian Oscillator

The mammalian circadian oscillator within an individual cell is comprised of inter-
locked transcriptional–translational feedback loops. The core negative feedback
loop involves isoforms of the genes Period (Per) and Cryptochrome (Cry), which
form PER-CRY heterodimers and enter the nucleus to bind to BMAL1-CLOCK E-
box activators to repress their own transcription. As these repressors are degraded,
BMAL1-CLOCK dimers activate transcription of Pers and Crys, resulting in a self-
sustained oscillation. Downstream of the circadian feedback loops, clock compo-
nents regulate transcriptional architecture through D-box, E-box, and ROR-binding
elements. For an excellent review of the genetic components of the mammalian
oscillator, see [23].

Numerousdynamicalmodels of the circadianoscillator havebeenproposed. In this
work,we selected themodel from [10, 21], as itwas created to identify the effect of the
small-moleculeKL001 on themammalian oscillator. Thismodel consists of 8 nonlin-
ear coupledODEs and21kinetic parameters, fully described in the supplement to [21]
and not reproduced here due to space considerations. Because KL001 was found to
stabilize nuclear PER-CRY transcription factors, control is implemented in themodel
by modifying the ODEs describing the degradation of PER-CRY dimers as follows:

dC1P

dt
= va,CPP · C1 − vd,CPC1P − (vdCn − u(t))C1P

kdeg,Cn + C1P + C2P
(9.1a)

dC2P

dt
= va,CPP · C2 − vd,CPC2P − (vdCn − u(t))mC2NC2P

kdeg,Cn + C2P + C1P
, (9.1b)

where u(t) ∈ [0, ū] is control input at time t , which reduces degradation rate vdCn.
Generally ū should not be greater than vdCn, as a degradation reaction cannot be
reversed so far as to synthesize new PER-CRY. Throughout, we set this value to 0.08.
The states present in this model, and the effect of KL001, are shown in the schematic
in Fig. 9.1a.
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Fig. 9.1 Schematic of mammalian circadian oscillator and effect of KL001. a Diagram of the
core negative feedback loop driving mammalian circadian rhythms. All states and reactions shown
are included explicitly in the model [21]. b Parametric infinitesimal PRC describing response to
KL001 (reduction in parameter vdCn). Note that this is double plotted to allow visualization. c
Synchrony of a population is affected by timing of KL001 application. Two example probability
density functions (PDFs) of phase are plotted before (solid) and after (dashed) application of KL001
in silico at the phases shown. In regions of positive slope (blue), the phase PDF is dispersed, whereas
in regions of negative slope (red), the PDF is condensed, even though the mean phase is unchanged

9.2.2 Model Reduction and the Phase Control Problem

Control of the circadian clock is primarily focused on shifting the phase of the
circadian oscillator. A unique phase φ ∈ [0, 2π) may be assigned to each unique
point on the limit cycle. An unperturbed oscillator on the limit cycle will advance
in phase at a constant rate. Thus, points in state space that are not on the limit cycle
may be assigned the phase of the point on the limit cycle to which they converge
asymptotically in time [2].

The 8-ODE oscillator may be reduced to a single-ODE describing phase [24]:

dφ

dt
= 2π

τ
− u(t)

d

dt

dφ

d(vdCn)

∣
∣
∣
xγ

, (9.2)
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where τ is the period of oscillation (set to 24h here), u(t) is the control input, and
− d

dt
dφ

d(vdCn)

∣
∣
xγ is the parametric infinitesimal phase response curve (PRC), the first-

order Taylor approximation of the phase responsewith respect to changing parameter
vdCn, evaluated on the limit cycle trajectory xγ . The negative sign here is included
in the PRC to reflect that u(t) is defined to have a positive value. Importantly, the
PRC is itself a function of phase, resulting in a nonlinear ODE. This function may
be calculated numerically in advance from the 8-ODE model by previously defined
methods [2, 24]. The PRC is plotted in Fig. 9.1b. One may consider the control input
to be either “speeding up” or “slowing down” the oscillation depending on the sign
of the PRC. We opted to set the reference φ = 0 where the concentration of Per
mRNA is at a maximum.

As in [2], we are aiming to align the phase of the circadian oscillator (φ) with
an external tracking phase (denoted φe), for example, the phase of the environment
before and after a plane flight through multiple time zones or before and after begin-
ning a shift work cycle. This externally imposed phase may be captured by a single
ODE as well:

dφe

dt
= 2π

τe
+ Δφ δ(tshi f t ), (9.3)

where τe is the period of the environment (set to 24h), andΔφ ∈ [−π, π) is the phase
shift of the environment that occurs at time tshi f t , for example, when disembarking
from the flight or starting a period of shift work. We are searching for a control
trajectory that will drive the oscillator φ to external phase φe and maintain it at φe

for all subsequent time. That is:

lim
t→∞ ‖φ(t, u) − φe(t)‖ = 0.

9.2.3 Control of Single-Oscillator Phase

While light may be applied or removed instantaneously, pharmaceutical perturbation
of the clock is constrained bypharmacokinetics. To alleviate numerical complications
arising due to unidentified (and likely nonlinear) pharmacokinetics, we selected a
piecewise constant parameterization of the control:

u(t) = u(tk) ∀ tk ≤ t < tk+1, (9.4)

and denote the sampling time tk+1 − tk as τu . For a predictive horizon of Np steps of
duration τu , we define

U �
[

u(tk) u(tk + τu) · · · u (

tk + (Np − 1)τu
)]�

(9.5)
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as the knots of the control trajectory defined at each of the Np steps. To estimate the
phase at the end of each step, the phase dynamics in (9.2) may be integrated over
each of the � ∈ [

1 · · · Np
]

steps to yield:

φ̂(ti + �τu) = φ(ti ) + 2π�τu

τ
−

�−1
∑

k=0

∫ tk+1+i

tk+i

u(tk)
d

dt

dφ

d(vdCn)

∣
∣
∣
xγ
dt, (9.6)

where φ̂ is the predicted phase, ti is the current time, φ(ti ) is measured, and the
PRC is a function of φ̂. We define the phase error to be the magnitude of the phase
difference between the predicted phase and the environmental phase:

eφ(·) �
∣
∣
∣∠

(

exp(iφ̂(·) − iφe(·))
)∣
∣
∣ , (9.7a)

where i = √−1. Computationally, driving phase error to 0 is numerically unstable,
so we relax the terminal constraint by ignoring phase error below a constant δφ :

gφ(·) �
{

0 if eφ(·) < δφ

eφ(·) otherwise
(9.7b)

so that numerical imprecisions do not result in controller action. Thus, the finite-
horizon optimal control problem at each time t j may be solved for the optimal
trajectory u	:

u	 = argmin
U

Np
∑

�=1

wφ

� g
2
φ(ti + �τu) + wu

�−1u
2(ti + (� − 1)τu)

subject to:

φ̂(ti + �τu) = φ(ti ) + 2π�τu

τ
−

�−1
∑

k=0

∫ tk+1+i

tk+i

u(tk)
d

dt

dφ

d(vdCn)

∣
∣
∣
xγ
dt, (9.8)

0 ≤ u�−1 ≤ ū,

for all � = 1, · · · , Np, where w
φ

� and wu
�−1 are positive weighting scalars evaluated

at the end of the time step and start of the time step, respectively, as phase error
is calculated after the control is applied for that step. After identifying the optimal
piecewise control trajectory u	, we applied u	(ti ) to the full 8-state ODE model for
t ∈ (ti , ti + τu] as is standard in model predictive control.

For this MPC formulation, wφ , wu , Np, and τu are design parameters which may
vary. We have selected:

wφ

� = �,

wu
�−1 = 1,
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for � = 1, · · · , Np. We have elsewhere investigated optimal selection of design vari-
ables Np and τu for this exact formulation of MPC [1]. Based on these findings, we
set Np = 3 (and Nu = Np where Nu is the number of length of the control horizon)
and τu = 2h, and instead studied the how phase control of a single oscillator differs
from an oscillator population.

9.2.4 Case Study #1: Nonlinear MPC for a Single Oscillator

To demonstrate the behavior of this controller, we applied it for the phase shifting
control problem where a phase delay of 6h occurs at 12h (a phase delay of π/4 at
a phase of π ). The environmental phase for this example was given by (9.3), where
Δφ = −π/2, and tshi f t = 12h. We used the Python language to solve the MPC
problem, specifically, we used CasADi [3] and SciPy for formulation, and PySwarm
to solve the nonlinear programming optimization problem. Here, the numerical error
in calculating phase was O(10−2) and so design variable δφ = 0.1.

The results of this simulation are shown in Fig. 9.2. Briefly, the controller began
its action at t = 12h to achieve a phase delay. The full 6h phase delay could not
be achieved within the initial negative region, and so the remainder of the shift was
accomplished when the PRC returned to a negative value near 30h. A decrease in
amplitude occurred near t = 30h due to transient deviation from the limit cycle, and
the full amplitude returned for the following peak.

Fig. 9.2 Application of the
controller detailed in
Sect. 9.2.3 for a phase delay
of 6h (Δφ = −π/2) with
tshi f t = 12h. The controller
acts immediately beginning
at t = 12h, and completes
the phase delay to align with
the desired reference
trajectory after the PRC
returns to a negative value.
Note that the initial negative
region of the PRC is
elongated due to control
slowing the advance of phase
and maintaining the
oscillator in a phase with a
negative PRC for longer
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9.3 Control of Population Phase and Synchrony

The circadian oscillator is cell-autonomous, and each tissue is comprised of many
thousands of individual oscillators. While the SCN master pacemaker maintains
its synchrony through intercellular communication, other tissues such as the liver
that lack paracrine signaling are kept synchronized through a variety of identified
and as-yet unidentified means, as guided by the SCN [26]. The application of a
pharmaceutical to any of these populations will affect this synchrony, and thus the
amplitude of oscillation [22, 25].

While transient deviations from the limit cycle eventually return to the limit cycle
amplitude, reduction in amplitude due to desynchrony will persist in the absence of
signaling, making populations with weak coupling susceptible to long-term desyn-
chrony from mistimed control. The change in synchrony in response to perturbation
may be calculated from the PRC [22]. In Fig. 9.1c, we show how this may be intu-
itively understood based on the slope of the PRC: oscillator populations that lie on
regions of positive slope result in the cells which are ahead in phase advancing fur-
ther (or being delayed less) than oscillators which lag to begin with, broadening the
probability density function (PDF) of phase. Inversely, populations lying on a region
of negative slope are condensed in phase by a similar argument.

Here, we first apply the previously described controller to a population of uncou-
pled oscillators to demonstrate the deleterious effect of a population-agnostic non-
linear MPC on synchrony. We then modify the MPC controller to explicitly penalize
population desynchronization and demonstrate the ability to simultaneously control
phase and synchrony of a population.

9.3.1 Case Study #2: Limitation of Single-Oscillator
Assumption

We first applied the controller from Sect. 9.2.3 to a population of oscillators, with
slight modification for tracking the mean phase of the population. We modified the
predictor in (9.6) to use the mean phase of the population φ̄ rather than the phase of
an individual oscillator:

φ̂(ti + �τu) = φ̄(ti ) + 2π�τu

τ
−

�−1
∑

k=0

∫ tk+1+i

tk+i

u(tk)
d

dt

dφ

d(vdCn)

∣
∣
∣
xγ
dt. (9.9)

Here, we calculated φ̄(ti ) from the phases of each oscillator φn in the population by
the parameter z ∈ C describing the population:

z = ρ exp(iφ̄) = 1

N

N
∑

n=1

exp(iφn), (9.10)
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Fig. 9.3 Application of the
controller from Sect. 9.2.3
for a phase delay of 6h
(Δφ = −π/2) with
tshi f t = 12, for shifting
mean phase of a population
of 200 circadian oscillators
(individual trajectories
plotted in gray). While
control is applied in nearly
the same regions as Fig. 9.1
and a −6h shift was attained,
this resulted in a dispersion
of phase, a decrease in
synchrony index, and a
reduction in mean oscillatory
amplitude

where ρ is the Kuramoto order parameter, or colloquially, the synchrony index. We
emphasize that the controller did not observe any information about the popula-
tion aside from its mean phase, and as such, the predictor (9.6) used in the finite
horizon optimal control problem was imprecise due to slight differences between
single-cell and population mean phase response [22]. The controller was otherwise
parameterized identically to that in Sect. 9.2.3.

Figure9.3 shows the result of applying this controller to a population of 200
identical uncoupled oscillators with initial phases sampled from the PDF:

p(φ) = fW N (φ;φ0, σ ), (9.11)

where fW N indicates a wrapped normal distribution with mean φ0 (set to 0, to match
the mean with the single oscillator case), and standard deviation σ (set to π/12,
approximately capturing the distribution of phases observed) [22]. As in the single-
cell case, control was applied immediately starting at t = 12h to begin correcting
for the 6h phase delay. In the population case, this corresponds to a region of pos-
itive slope of the PRC, and intuitively resulted in a desynchronization of phase as
evidenced by the decline in synchrony index for the duration of the KL001 pulse.
Despite the amplitudes of the individual oscillators (gray) returning after a tran-
sient to their pre-pulse levels, the population mean [PER] amplitude was reduced by
approximately one-third due to desynchronization of the population. Because there
was no intercellular or external communication driving synchrony, the amplitude of
the mean remained diminished for the duration of the simulation.
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9.3.2 Population MPC Algorithm for Phase Coherence

A more sophisticated approach to control of an oscillator population involves pre-
dicting the evolution of the PDF itself rather than only mean phase. Methods have
been developed previously to compute the change in PDF directly in response to
stimulation [22]. A change in variables allows the numerical computation of the new
phase PDF:

p̂(φ, t)dh(φ) = p(φ, t)dφ, (9.12)

where p̂(φ, t) is the predicted PDF at time t for phases φ, and h(φ) = φ + Δφ,
called the phase transition curve (PTC), is the total response to perturbation. We
may therefore revise the prediction model to explicitly involve calculation of the
phase PDF at each step of the predictive horizon. The PTC for each step within the
predictive horizon may be calculated in a similar fashion to the predictor for the
single-oscillator case:

hk(φ) = φ + 2πτu

τ
− u(tk)

∫ tk+1

tk

d

dt

dφ

d(vdCn)

∣
∣
∣
xγ
dt, (9.13)

where u is piecewise constant and the integrand is a function ofφ whichmay be calcu-
lated numerically in advance as previously defined. This function may be calculated
numerically for each step, and used to calculate the evolution of the PDF:

p̂(φ, tk+1)dhk(φ) = p̂(φ, tk)dφ. (9.14)

To calculate the first step, p̂(φ, t) = p(φ, t) is measured from the population under
control. The population predicted mean phase φ̂ and synchrony index ρ̂ may then be
calculated from the predicted PDF:

ρ̂(tk) exp(iφ̂(tk)) =
∫ 2π

0
p̂(θ, tk) exp(iθ)dθ, (9.15)

where θ is a dummy variable of phase. The phase error term gφ may remain as defined
in (9.7), and we define a similar error term penalizing desynchrony

gρ(·) �
{

0 if ρ > δρ

(1 − ρ(·)) otherwise
(9.16)

which reduces to 0 for a satisfactorily synchronized population.
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Thus, the population control problem is:

u	 = argmin
U

J

subject to:

J =
Np
∑

�=1

wφ
�
g2φ(ti + �τu) + wρ

�
g2ρ(ti + �τu) + wu

�−1u
2(ti + (� − 1)τu),

hk(φ) = 2πτu

τ
− u(tk)

∫ tk+1

tk

d

dt

dφ

d(vdCn)

∣
∣
∣
xγ

dt,

p̂(φ, tk+1)dhk(φ) = p̂(φ, tk)dφ (9.17)

ρ̂(tk) exp(iφ̂(tk)) =
∫ 2π

0
p̂(θ, tk) exp(iθ)dθ

0 ≤ u�−1 ≤ ū,

where phase error and synchrony are calculated at the end of each step within the
predictive horizon.

9.3.3 Case Study #3: Implementation of Population
Nonlinear MPC Controller

As before, wφ , wu , wρ , Np and τu are design parameters. These parameters were set
as in Sect. 9.2.3, with the exception of the new weighting of synchrony:

wρ = 10(� + 1),

which was set such that the synchrony term is of the same order of magnitude as the
phase term, and increases to allowflexibility of synchrony early in the horizon.Tuning
this parameter will adjust the sensitivity of the controller to temporary desynchrony.
Aswρ → ∞, the controllerwill take no actionunless it results in no loss of synchrony,
i.e., the population lies completely on a region of negative slope of the PRC. For lower
but nonzerowρ , as in the case here, some flexibility is permitted, in that the controller
may apply action that desynchronizes the population if it results in a large reduction
in phase error. Correspondingly, the controller will later resynchronize the population
to account for this early desynchrony. For wρ = 0, the controller will behave as the
population-agnostic case. After calculating the finite-horizon optimal control u	, we
apply the first step u	(t j ) to all oscillators within the population for t ∈ [t j , t j + τu),
and repeat this process.

We applied the controller described in Sect. 9.3.2 to the same phase shifting prob-
lem as the previous controllers: tshi f t = 12h, Δφ = −6h. The initial phase of the
200 uncoupled oscillators comprising the population was sampled from the PDF:



9 Controlling Biological Time: Nonlinear Model Predictive Control … 135

Fig. 9.4 Application of the controller from Sect. 9.3.2 for a phase delay of 6h (Δφ = −π/2)
at tshi f t = 12 for a population of 200 oscillators (individual trajectories plotted in gray). This
controller explicitly accounted for synchrony of the population. After a brief input to begin the
shift, the controller delayed the majority of its input to find a region where population synchrony
would be maintained. Indeed, synchrony is slightly improved by the control action, and a phase
delay of 6h was achieved

p(φ) = fW N (φ;φ0, σ ), (9.18)

where fW N indicates a wrapped normal distribution with mean φ0 = 0 and standard
deviation σ = π/12.

Results from this simulation are shown in Fig. 9.4. The controller first applied
input briefly in a slight desynchronizing region of the PRC, then paused for the
remainder of the first negative PRC region due to the likelihood of further desyn-
chronizing the population. Once the population PDF returned to a region of negative
PRC and a negative first derivative of the PRC, the controller resumed input driving
the population to its 6h phase delay and restoring full synchrony. Strikingly, chang-
ing the time of input resulted in a slight increase in the synchrony of the population
in comparison to its original state, evidenced by an increase in the synchrony index.
Visually, this is evident from the clear alignment of individual oscillators within
the population (plotted in gray) in comparison to the dispersion in phase evident in
Fig. 9.3 where synchrony was ignored.
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9.4 Conclusion

We have presented a modification of nonlinear MPC for phase manipulation of cir-
cadian oscillator populations, in which a PDF of phase is used in solving the finite-
horizon optimal control problem, allowing mean phase and population synchrony to
be regulated simultaneously. For many PRCs that have been calculated, there exists
a region where the PRC or first derivative of the PRC is zero [7], it is therefore possi-
ble to manipulate phase and synchrony independently for a population of circadian
oscillators through a single control input. In reality, the ability to target these regions
is limited by precision of the measurements of the PRC and population phase PDF.

One significant challenge in implementing this control algorithm in vitro or in vivo
is the construction of an observer with sufficient accuracy to accurately reconstruct
the phase PDF. Current methods of assessing the phase of circadian oscillators rely
on either noisy single-cell bioluminescent markers in vitro or system level metrics
in vivo such as melatonin, activity, or body temperature. However, even a simplistic
assumption such as a wrapped normal PDF with an arbitrary estimate of standard
deviation of phase could help avoid delivering control inputs where the slope of the
PRC is expected to be positive, and thus help avoid desynchrony. In this case, a long
predictive horizon would quickly become inaccurate, however, necessitating careful
selection of design variables τu and Np.

Another challenge toward implementing such an algorithm is incorporating the as-
yet uncharacterized pharmacokinetics and pharmacodynamics (PK/PD) for a small
molecule such as KL001. This could potentially be achieved by including these terms
directly in the prediction step of the MPC. Uncertainty and individual variability
in PK/PD measurements may reduce the accuracy of such an approach, however,
further study is necessary to determine the extent of this variability, and how these
inaccuracies affect controller performance.

It is our hope that these and similar control theoretic methods will inform the
discovery of circadian therapies, and enable novel experimental design toward better
understanding the dynamics of cellular populations and communication.
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