
Chapter 7
Feedback Control for Distributed Massive
MIMO Communication

S. Dasgupta, R. Mudumbai and A. Kumar

Abstract We present a distributed nullforming algorithmwhere a set of transmitters
transmit at full power to minimize the received power at a designated receiver. Each
transmitter adjusts the phase and frequency of its transmitted RF signal in a purely
distributed fashion as it uses only an estimate of its own channel gain to the receiver,
and a feedback signal from the receiver, that is common across all the transmitters.
This assures its scalability; in contrast any noniterative approach to the nullforming
problem requires that each transmitter know every other transmitter’s channel gain.
We prove that the algorithm practically, globally converges to a null at the designated
receiver. By practical convergence we mean that the algorithm always converges to a
stationary trajectory, and though some of these trajectories may not correspond to a
minimum, those that do not are locally unstable, while those that do are locally stable.
Unlike its predecessors the paper does not assume prior frequency synchronization
among the transmitters, but asymptotically secures frequency consensus.

7.1 Introduction

Multiple Input Multiple Output (MIMO) techniques [1–4] have played an important
part in the remarkable explosion of wireless communication systems in the past two
decades, and MIMO is now an integral component of all recent WiFi and cellular
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standards e.g. 802.11ac [2] and 5G [3]. Specifically, MIMO communication involves
transceivers equipped with multiple antennae. This allows directional transmission,
permitting control of the interference produced by wireless transmitters, and orders
of magnitude increases in energy and spectral efficiency.

Yet the applicability of MIMO is in practice severely limited by constraints such
as form factors, and the size and the number of antennae that can be realistically
supported. An attractive alternative, springing from the pioneering work of [5], is
distributed MIMO (DMIMO), [6] where instead of deploying centralized antenna
systems, groups of single antennae transceivers collaborate to form a virtual anten-
nae system that mimics the functionality of a centralized multi-antennae system.
Studied extensively by theoreticians, until recently, this concept has been dismissed
by practioners as being beyond the realm of practicality for several reasons. Among
these are issues engendered by uncertain geometries and the fact that unlike central-
ized systems, by its very definition, each constituent of a DMIMO system carries its
own clock and oscillator. These suffer significant and rapid drift modeled as a second-
order stochastic process, [7] that induces DMIMO units to migrate from synchrony
to complete incoherence within mere hundreds of milliseconds.

Over the last decade several authors, [8–22], have sought to realize this decades-old
concept, by addressing two salient components of DMIMO: distributed beamform-
ing, [8–16] and distributed nullforming, [17–22]. In the former, groups of trans-
mitters, collaborate to form a beam of maximum possible power using constructive
interference at a receiver. In the latter their transmissions cancel each other at the des-
ignated receiver. On the other hand [21] simultaneously forms nulls at some receivers
and beams at others. Physical implementations of both beam and nullforming algo-
rithms on software defined radio (SDR) platforms, are described in [12, 13, 20].
Apart from being important constituents of the overall DMIMO architecture, beam-
forming is key to power efficient communication, just as nullforming has applications
in interference avoidance for increased spatial spectrum reuse [23], cognitive radio
[24] and cyber security [25].

This brings us to the role of feedback control in these schemes. Ultimately in all
these applications all transmissions must arrive at their target receiver synchronized
in frequency and with precise phase, and for nullforming, amplitude relationships.
Uncertain geometries and mobility, make it impossible for the transmitters to deter-
mine the phases, and amplitudes of their transmission at the receiver. Thus all the
references cited above rely on some receiver cooperation. This takes the form of
feedback from the receiver to the transmitters, and possibly between the transmit-
ters, using which the transmitters must adjust the phase, amplitude and frequency of
their transmissions to achieve synchronization at the receiver. A key issue, of course,
is what type of feedback is needed, the minimum information exchange required to
achieve one’s objective.

In this light, among the DMIMO papers we have cited here, barring [11, 19], all
assume, prior frequency synchronization, presumably through information exchange
among the transmitters. The earliest among the DMIMO papers, [8], assumes
prior frequency synchronization, and requires that the receiver feed back to each
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transmitter a separate feedback signal throughout its operation. Such an algorithm
is thus not scalable.

A breakthrough idea introduced in [9], and used in several subsequent papers, is
the notion of common aggregate feedback. This involves the receiver broadcasting
to all the transmitters either the complex baseband version of its total received signal
or some attribute there of. In either case the burden of repeatedly feeding back a
separate signal to each transmitter is alleviated. To wit [9], assumes prior frequency
synchronization among the nodes and executes a 1-bit feedback algorithm to achieve
beamforming. The algorithm itself is in the mold of randomized ascent. Each trans-
mitter updates its phase according to a preselected distribution. The 1-bit feedback
is whether or not the net received power declines as a result of these updates. If the
power declines, the updates are discarded. Else they are retained.Undermild assump-
tions on the distribution from which the phase updates are chosen, this algorithm is
provably convergent.

In this paper we consider distributed nullforming without prior frequency syn-
chronization with only phase and frequency updates. The algorithm we formulate is
akin to Lyapunov redesign in the controls and adaptive systems literature, [26, 27].
We observe that distributed nullforming algorithms can be found in [17–22]. Each of
these, however assumes prior frequency synchronization at the outset of operation,
presumably through information exchange among transmitters. While this is reason-
able, oscillator frequencies also undergo drift modeled as Brownian motion, albeit
at orders of magnitude slower rates than oscillator phases. On the other hand drift
in oscillator frequencies has a more dramatic impact on performance than has phase
drift. Furthermore Doppler shift occurs at receivers, thus receiver feedback should
be used to guide the adjustment of frequencies at transmitters.

Nullforming is fundamentally more difficult than is beamforming, [22], for two
reasons. First, it is much more sensitive to phase drift. Because of this, a 1-bit algo-
rithm like in [9] is unable to adjust quickly enough to achieve a decent null. Second,
while beamforming only requires frequency and phase alignment at the receiver,
nullforming requires the precise control of the amplitude and phase of the radio-
frequency signal transmitted by each cooperating transmitter to ensure that they
cancel each other. Accordingly, [17, 18], requires that in addition to the common
aggregate feedback of the total baseband received signal, each transmitter must also
learn the channel state information of every transmitter to the receiver. This latter
requirement is substantially relaxed in [22], where each channel, at the point of
setup requires only the knowledge of its channel to the receiver. Simulations in [22]
show that the gradient descent algorithm it employs is robust to substantial channel
estimation errors, while capable of tracking significant oscillator drift.

This paper extends [22] to the case where the transmitters even if initially fre-
quency synchronized undergo small frequency drifts. These frequency drifts even if
small, can destroy a good null very quickly. As in [22], we assume that each user
knows its complex channel gain to the receiver. Unlike [17, 18] it does not have the
CSI seen by the other transmitters. Like [22], the receiver feeds back the net base-
band signal. In [22] this feedback is used by each transmitter to perform a distributed
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gradient descent minimization of the total received power. The minimization is
distributed, as each transmitter can perform it using only the aggregate feedback
and its own complex channel gain to the receiver. Similarly, in this paper each trans-
mitter adjusts its phase and frequency knowing only its CSI to the receiver and the
aggregate feedback signal, to asymptotically drive the received signal to zero. How-
ever, we show that the lack of frequency synchronization precludes the use of gradient
descent. Instead a Lyapunov redesign is needed.

We observe that [11, 19] also eschew the assumption of prior frequency syn-
chronization. Among these, [11] uses a 1-bit type algorithm to beamform. We have
however, discovered a conceptual error in the algorithm. On the other hand the pre-
liminary paper, without proofs, [19], has the important difference that it critically
assumes that each transmitter equalizes its complex channel gain. In this paper we
equalize only the phase and not the magnitude of the channel. This is in the vein of
[22] and permits a key application of distributed nullforming: Namely, permitting
transmission at full power, thus maximizing incoherent power pooling gains, while
protecting the null target. As explained in [22] this opens up the prospect of both
Space Division Multiple Access (SDMA) and cyber security.

Section7.2 provides the algorithm. Section7.3 has some preliminary analysis.
Section7.4 presents a stability analysis. Received power which must be minimized
is a nonconvex function of the transmitter phases and frequencies. Unsurprisingly
our Lyapunov redesign yields a distributed algorithm that has multiple stationery
points/trajectories thatmaynot correspond to aminimum.Yetwe show that only those
stationary points are locally stable that do correspond to global minima. Section7.5
is the conclusion.

7.2 The Algorithm

We now describe a scalable gradient descent algorithm for distributed nullforming
in a node. As in [22] and unlike [17, 18], we assume that at the beginning of a
nullforming epoch, each transmitter has access only to its own complex channel
gain to the receiver, usingwhich it equalizes the phase rather than also the magnitude
of the channel to the receiver. Assume there are N transmitter nodes.

Denote θi (t) to be the equalized phase of the i-th transmitter and ri > 0 is the
magnitude of the received signal. Assume that ωi (t), is a frequency offset of the
i-th transmitter, from a nominal frequency to which each transmitter should ide-
ally have been synchronized, but oscillator drift prevents the maintenance of such
synchronization.

Then the complex baseband signal received at the cooperating receiver is:

s(t) = R(t) + j I (t) (7.1)
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where

R(t) =
N∑

i=1

ri cos(ωi (t)t + θi (t)) (7.2)

and

I (t) =
N∑

i=1

ri sin(ωi (t)t + θi (t)). (7.3)

As in [22], the transmission process is thus, equivalent to each transmitter trans-
mitting, the phase equalized complex baseband signal, e j ((ωi (t)t+θi (t)). The baseband
signal the receiver sees is

s(t) =
N∑

i=1

ri e
j ((ωi (t)t+θi (t)) (7.4)

see (7.1). Indeed it is s(t) that the receiver broadcasts to all transmitters, which they
must use to adjust their frequency and phase. Define θ(t) = [θ1(t), · · · , θN (t)]� and
ω(t) = [ω1(t), · · · , ωN (t)]�.We note the key difference with [19], which apart from
not providing any proofs, assumes that all ri = 1. The received power is:

J (θ, ω, t) = I 2(t) + R2(t). (7.5)

The receiver feeds back s(t). The i-th transmitter uses s(t) to adjust its θi (t) and
ωi (t) to asymptotically force J (θ, ω, t) to zero. In reality both the adjustment and
feedback will be discrete time. However, should the continuous time algorithm be
uniformly asymptotically stable (u.a.s), then averaging theory, [28] ensures that for
high enough feedback rates, and small enough gains, an obvious discretized version
will also be u.a.s.

As noted above, [22] where ω = 0, uses a gradient descent algorithm. The result-
ing J is autonomous in [22]. The frequency offsets here make the cost function
nonautonomous, as it may change its value even if the phases and frequencies are
not adjusted. To amplify this point observe that a pure gradient descent algorithm
would take the form:

θ̇ (t) = −∂ J (θ, ω, t)

∂θ
; ω̇(t) = −∂ J (θ, ω, t)

∂ω
. (7.6)

Now observe that under (7.6)

J̇ = ∂ J

∂t
+ ∂ J

∂θ
θ̇ + ∂ J

∂ω
ω̇

= ∂ J

∂t
−

∥∥∥∥
∂ J

∂θ

∥∥∥∥
2

−
∥∥∥∥
∂ J

∂ω

∥∥∥∥
2

.
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Should
∂ J

∂t
be zero, as is the case is in [22], this guarantees a nonincreasing J (θ, ω, t).

However, with ωi potentially nonzero under (7.2),
∂ J

∂t
need not be zero, preventing

guaranteed decrescence of J (θ, ω, t). Thus a Lyapunov redesign of the nullforming
algorithm is needed.

In Sect. 7.3 we present a Lyapunov function, and show that its decrescence is
guaranteed by the following algorithm.

θ̇ = −∂ J

∂θ
− ω

2
(7.7)

ω̇ = −1

2

∂ J

∂θ
. (7.8)

Thus the i-th node can implement these as long as it has access to its frequency,
phase, CSI to the receiver and the common feedback signals I (t) and R(t) permitting
a totally distributed implementation, as

∂ J

∂θi
= −2R(t)ri sin(ωi (t)t + θi (t)) + 2I (t)ri cos(ωi (t)t + θi (t)), (7.9)

and
∂ J

∂ω
= t

∂ J

∂θ
. (7.10)

Also observe that unlike (7.6) there is an additional corrective term ω
2 in (7.7),

that accounts for the frequency offsets. In keeping with our mandate for phase and
frequency only updates the gains ri are not updated.

7.3 Preliminaries of the Stability Analysis

In this section, we present certain preliminary results that among other things show
the uniform convergence of the gradient of J with respect to θ , and explore the
properties of the stationary points of (7.7, 7.8).

But first, a result used in [29].

Lemma 7.1 Suppose on a closed interval I ⊂ R of length T , a signal w : I → R

is twice differentiable and for some ε and M ′

|w(t)| ≤ ε1 and |ẅ(t)| ≤ M ′ ∀ t ∈ I .

Then for some M independent of ε1, I and M ′, and M ′′ = max(M ′, 2ε1T −2) one
has:

|ẇ(t)| ≤ M(M ′′ε1)1/2 ∀ t ∈ I .
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We begin by deriving a preliminary relation.

∂ J

∂t
= −2R(t)

N∑

i=1

ωi (t)ri sin(ωi (t)t + θi (t)) + 2I (t)
N∑

i=1

riωi (t) cos(ωi (t)t + θi (t)),

= ω�(t)
∂ J

∂θ
. (7.11)

We now show that under (7.7, 7.8) there is a Lyapunov function that is nonin-
creasing and the gradient of J with respect to θ converges uniformly to zero.

Lemma 7.2 Consider (7.7, 7.8) with (7.2–7.5) initial time t0 ≥ 0. Then the following
hold:

(a) For all t ≥ t0,

V (t) = J (t) + ‖ω(t)‖2
2

(7.12)

is nonincreasing.
(b) The following occurs uniformly in t0.

lim
t→∞

∂ J

∂θ
(t) = 0. (7.13)

Proof Because of (7.5), (7.9–7.10) and (7.7, 7.8), there holds:

J̇ + d

dt

{
ω�ω

2

}
= ∂ J

∂t
+ θ̇� ∂ J

∂θ
+ ω̇� ∂ J

∂ω
+ ω�ω̇

= ω� ∂ J

∂θ
−

∥∥∥∥
∂ J

∂θ

∥∥∥∥
2

− ω�

2

∂ J

∂θ

−ω�

2

∂ J

∂θ
− t

2

∥∥∥∥
∂ J

∂θ

∥∥∥∥
2

= −
(
1 + t

2

) ∥∥∥∥
∂ J

∂θ

∥∥∥∥
2

(7.14)

Consequently (a) holds. Further, ω is uniformly bounded. Consequently from (7.9)
there is an M1, independent of t0, such that for all t ≥ t0

∥∥∥∥
d

dt

{
∂ J

∂θ
(t)

}∥∥∥∥ ≤ M1.
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Equally, there exists an M2, also independent of t0, such that for all t ≥ t0,

∥∥∥∥
∂ J

∂θ
(t)

∥∥∥∥ ≤ M2.

Further, since the initial time t0 ≥ 0, from (7.14) and V (t) is nonnegative, one obtains
that for all t ≥ t0:

∫ t

t0

∥∥∥∥
∂ J

∂θ
(s)

∥∥∥∥
2

ds ≤
∫ t

t0

(
1 + s

2

) ∥∥∥∥
∂ J

∂θ
(s)

∥∥∥∥
2

ds

≤ V (t0).

Thus, for every ε > 0, there exists a T independent of t0 such that for all t ≥ T + t0,

∫ t

T +t0

∥∥∥∥
∂ J

∂θ
(s)

∥∥∥∥
2

ds ≤ ε.

Then from Lemma7.1, there is a K independent of t0 such that for all ε > 0, there
exists a T independent of t0 such that for all t ≥ T + t0,

∥∥∥∥
∂ J

∂θ
(s)

∥∥∥∥
2

≤ ε, ∀s ≥ T + t0.

Thus indeed (b) holds uniformly in t0.

Thus, (7.7, 7.8) converges uniformly to a trajectory where:

∂ J

∂θ
= 0. (7.15)

Because of (7.2, 7.3), (7.9) there holds:

1

2

∂ J

∂θi
= −R(t)

N∑

i=1

ri sin(ωi (t)t + θi (t)) + I (t)
N∑

i=1

ri cos(ωi (t)t + θi (t))

=
N∑

i=1

N∑

l=1

rirl {cos(ωi (t)t + θi (t)) sin(ωl(t)t + θl(t))

− sin(ωi (t)t + θi (t)) cos(ωl(t)t + θl(t))}

=
N∑

i=1

N∑

l=1

rirl sin((ωl(t) − ωi (t))t + θl(t) − θi (t)). (7.16)
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Thus (7.15) also implies that for some constantω∗ on this trajectory the frequency
offsets

ωi = ω∗, ∀i ∈ {1, · · · , N }. (7.17)

Observe from (7.5), (7.2) and (7.3),

J (θ, ω, t) =
(

N∑

i=1

ri cos(ωi (t)t + θi (t))

)2

+
(

N∑

i=1

ri sin(ωi (t)t + θi (t))

)2

=
N∑

i=1

r2i + 2
N∑

i=1

N∑

l=1
l =i

ri rl cos((ωl(t) − ωi (t))t + θl(t) − θi (t)) (7.18)

This shows that these are in fact manifolds rather than points.
We now turn to a major nontrivial consequence of having potentially nonunity ri ,

a problem absent in [19] where all ri are 1. There are sets of positive ri for which
a null may not be possible. It is thus useful to first characterize conditions on the ri

that ensure that a null is possible. The theorem below provides this characterization.
We note it is similar to a result in [22] where the ωi are all fixed to zero. The theorem
also characterizes the global minimum value

J ∗ = max
t≥0

min
θ,ω

J (θ, ω, t). (7.19)

Theorem 7.1 Consider J (θ, ω, t) defined in (7.2, 7.3, 7.5) and J ∗ as in (7.19), with
all ri > 0. Without loss of generality label ri , so that ri ≥ ri+1. Then the following
hold:

(i) J ∗ = 0 iff

r1 ≤
N∑

i=2

ri . (7.20)

(ii) If (7.20) is violated

J ∗ =
(

r1 −
N∑

i=2

ri

)2

. (7.21)

Proof Observe J (θ, ω, t) = |s(t)|2, with s(t) defined in (7.4). Suppose (7.20) is
violated. Clearly, under (7.4), as ri > 0,

J (θ, ω, t) ≥
(

r1 −
N∑

i=2

ri

)2

.
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Thus J ∗ > 0. Further this minimum is attained by choosing ωi = ωl , for all i, l,
θ1 = 0 and θi = π, ∀ i > 1. This proves (ii) and the “only if” part of (i).

To prove the “if” part of (i), set allωi to zero and assume that (7.20) holds. We use
induction. Consider N = 2. Then r1 = r2. Thus with θ1 = 0, θ2 = π , J (θ, 0, t) =
|r1 − r2|2 = 0, ∀t . Now suppose the result holds for some N = n ≥ 2. Consider
N = n + 1.

Observe with

J (0, 0, t) =
n+1∑

i=1

ri > 0. (7.22)

Consider two cases.

Case I: r2 >
∑n+1

i=3 ri : In this case, by hypothesis 0 < r2 − ∑n+1
i=3 ri < r1. Thus,

J (π [1, 0, [1, · · · , 1]]T , 0, t) = −r1 + r2 −
n+1∑

i=3

ri < 0.

As for every t , J (θ, 0, t) is continuous in θ , and (7.22) holds, there exist a θ for
which J (θ, 0, t) = 0, ∀t . Thus J ∗ = 0.

Case II: r2 ≤ ∑n+1
i=3 ri : From the induction hypothesis, there exist θ̂2, · · · , θ̂n+1

such that
∑n+1

i=2 ri e j θ̂i = 0 < r1. Moreover, by assumption
∑n+1

i=2 ri ≥ r1. Since∣∣∣
∑n+1

i=2 ri e jθi

∣∣∣ is continuous in θ , moving continuously between [θ2, · · · , θn+1]
between 0 and [θ̂2, · · · , θ̂n+1] one can find a set of phases [θ∗

2 , · · · , θ∗
n+1] such

that
∣∣∣
∑n+1

i=2 ri e jθ∗
i

∣∣∣ = r1. Thus, for some δ,
∑n+1

i=2 ri e jθ∗
i = r1e jδ . Then J ([π +

δ, θ∗
2 , · · · , θ∗

n+1]T , 0, t) = 0, completing the proof.

Returning to the stationary trajectories, given by (7.15) and (7.17), some of these
correspond to the desired null, or in their absence (7.19). Others do not, and will be
called false stationary points. We show below that the latter are locally unstable and
are thus, rarely attained, and even if attained cannot be practicallymaintained as noise
would drive the trajectories away from them. Thus, by showing the local stability of
the global minimum, we will demonstrate the practical uniform convergence of the
algorithm to the global minimum.

In the stationary trajectory, (7.15) and (7.17) are not nulls, i.e., s(t) = 0, then
from (7.9) for all i, l, and t > 0, tan(ω∗t + θi ) = tan(ω∗t + θl). Consequently on
stationary trajectories that are not nulls,

θi − θl = kilπ, ∀{i, l} ⊂ {1, · · · , N } (7.23)

where kil are integers.
The local analysis of these stationary trajectories, will require the examination

of the Hessian with respect to θ on these trajectories. Consider again (7.16). Due to
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(7.17), along (7.15) and (7.17) the il-th element of the Hessian along the stationary
trajectory is given by:

[H(θ)]il |ωi =ωl
= ∂2 J (θ)

∂θi∂θl
=

{−2
∑

i =l ri rl cos(θi − θl) i = l

2ril cos(θi − θl) i = l
(7.24)

7.4 Stability Analysis

Armed with the preliminary results in Sect. 7.3 we now complete our stability analy-
sis. Lemma7.2 shows that uniform convergence to a stationary trajectory is guaran-
teed. Some of these trajectories correspond to a null. Other do not. In this section, we
show that only those that correspond to a null are locally stable. The others are not.
Consequently, one is assured of practical uniform convergence in the sense that sta-
tionary trajectories that do not correspond to the desired nulls if at all attained, cannot
be practically maintained. Thus for all practical purposes, the algorithm defined in
(7.7, 7.8) achieves a desired null.

First we demonstrate the local instability of spurious stationary trajectories. To
this end we present need the following lemma.

Lemma 7.3 The linear system below with scalar a > 0 is unstable:

η̇ =
[

a ta + 1
2

a
2

at
2

]
η (7.25)

Proof Consider the initial condition η(0) = [0, 1]�. Then it is evident that both
elements of the state are nonegative for all t > 0. Then the first element of the state
vector is

η1(t) ≥ eat .

Thus the system is unstable.

Consider next the Hessian with respect to θ at a critical trajectory. As given in
(7.24) this is identical to the Hessian studied in [22]. From [22] we have the following
lemma.

Lemma 7.4 Assume all ri > 0. Consider a false stationary manifold i.e., a station-
ary manifold on which J = 0 and J = J ∗. Then H(θ)|∀i,ωi =ω∗ has at least one
negative eigenvalue.

We now prove that a false stationary trajectory is unstable.

Theorem 7.2 Assume all ri > 0. Consider (7.7, 7.8), and a stationary manifold
defined by (7.15), (7.17) such that along this trajectory J = 0 and J = J ∗. Then
this trajectory is unstable.
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Proof Observe, that for all i, l

∂2 J (θ)

∂θi∂ωl
= t

∂2 J (θ)

∂θi∂θl

(7.7, 7.8), linearized around (7.15), (7.17) is given by:

ẋ =
[−H(θ) −t H(θ) + I

2

− H(θ)

2 − t
2 H(θ)

]
x . (7.26)

In view of Lemma7.4 and the symmetry of H(θ), there is an orthogonal matrix Ω

and real λi , with λ1 > 0, such that with

Λ = diag {−λ1, · · · , λN },

H(θ) = ΩΛΩT

Define β = diag {Ω,Ω}x . Then the linearized systems is equivalent to:

β̇ =
[
−Λ −tΛ + I

2

−Λ
2 − t

2Λ

]
β.

Then instability follows from Lemma7.3.

Thus indeed false stationary manifolds are unstable. To complete the result, it
suffices to show that the global minima, nulls or otherwise, are locally stable. As the
Hessian is indefinite this is a nonhyperbolic system and a linearization approach will
be inconclusive. Thus we use a more direct approach to proving local stability.

Because of (7.18) and (7.23) at false stationary points the cost function takes the
values

N∑

i=1

r2i + 2
N∑

i=1

N∑

l=1
l =i

ri rlμil , μil ∈ {−1, 1}. (7.27)

Assume again ri ≥ ri+1 > 0. With r = [r1 · · · , rN ]T , define:

f (r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩

N∑
i=1

r2i + 2
N∑

i=1

N∑
l=1
l =i

ri rlμil |μil ∈ {−1, 1}

⎫
⎪⎬

⎪⎭
\ {0}

⎫
⎪⎬

⎪⎭
if r1 ≤

N∑
i=2

ri

min

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩

N∑
i=1

r2i + 2
N∑

i=1

N∑
l=1
l =i

ri rlμil |μil ∈ {−1, 1}

⎫
⎪⎬

⎪⎭
\ {r1 −

N∑
i=2

ri }

⎫
⎪⎬

⎪⎭
else

(7.28)

In other words f (r) is the smallest value that J can take at a false stationary point.
We can now prove local stability of the null manifold.

Theorem 7.3 Suppose ri ≥ ri+1 > 0 and with f (r) defined in (7.28). Then with pos-
itive initial time t0, (7.7, 7.8) uniformly converges to a global minimum of J (θ, ω, t)
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if V (t0) < f (r). Further for a constant ω∗ and all i ∈ {1, · · · , N },

lim
t→∞ ωi (t) = ω∗ (7.29)

Proof Item (b) of Lemma7.2 holds uniformly in t0. Further for all t ≥ t0

J (θ(t), ω(t), t) ≤ V (t) ≤ V (t0) < f (r).

As Lemma7.2 guarantees convergence to a stationary manifold, and only stationary
manifold atwhich J (θ(t), ω(t), t) < f (r), convergenceoccurs to a globalminimum.
Finally, (7.29) follows from (7.15) and (7.8).

As convergence to a stationary manifold is guaranteed, and all false stationary
points are locally unstable, this thus proves practical uniform convergence to a global
minimum. Observe in addition the transmitters attain frequency consensus.

In principle the phases need not converge to a fixed point. However, there is a
subtlety. On a stationary trajectory, (7.7) and (7.8) reduces to, (7.17) and for each i ,

θ̇i (t) = −ω∗

2
.

Thus for suitable αi the i-th transmitted signal becomes

e j ( ω∗
2 t+αi ).

thus effectively, the attained phases are constants, and de facto frequency synchro-
nization obtains.

7.5 Conclusion

We have provided a new distributed nullforming algorithm that is guaranteed to
achieve a null, through phase and frequency adapatation. Unlike [22] this paper does
not assume prior frequency synchronization. Its effect though is the achievement
of frequency synchronization. That all this can be achieved with no cooperation
between the transmitters, a feedback of the aggregate received signal by the receiver,
and the knowledge to each transmitter of only its CSI is in our opinion an intriguing
fact. Also intriguing is the fact that an otherwise nonconvex cost function has the
attractive property that all its local minima are global minima. Further studies that
delineate the minimum information needed to achieve distributed nullforming are
warranted.
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