
Chapter 3
Control and Optimization Problems
in Hyperpolarized Carbon-13 MRI

John Maidens and Murat Arcak

Abstract Hyperpolarized carbon-13 magnetic resonance imaging (MRI) is an
emerging technology for probing metabolic activity in living subjects, which promises
to provide clinicians new insights into diseases such as cancer and heart failure. These
experiments involve an injection of a hyperpolarized substrate, often pyruvate labeled
with carbon-13, which is imaged over time as it spreads throughout the subject’s body
and is transformed into various metabolic products. Designing these dynamic experi-
ments and processing the resulting data requires the integration of noisy information
across temporal, spatial, and chemical dimensions, and thus provides a wealth of
interesting problems from an optimization and control perspective. In this work, we
provide an introduction to the field of hyperpolarized carbon-13 MRI targeted toward
researchers in control and optimization theory. We then describe three challenge prob-
lems that arise in metabolic imaging with hyperpolarized substrates: the design of
optimal substrate injection profiles, the design of optimal flip angle sequences, and
the constrained estimation of metabolism maps from experimental data. We describe
the current state of research on each of these problems, and comment on aspects
that remain open. We hope that these challenge problems will serve to direct future
research in control.

3.1 Introduction

Carbon is arguably the most important element in biochemistry. It forms the basis
of all organic molecules that make up the human body, yet only recently have we
begun to be able to quickly image carbon in vivo using magnetic resonance imaging
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(MRI). The emerging technology that makes this possible is known as hyperpolar-
ized carbon-13 MRI, and it has enabled in vivo imaging with spatial, temporal and
chemical specificity for the first time. This development is leading to new insights
into the spatial distribution of metabolic activity through the analysis of dynamic
image sequences.

The processes that are imaged in hyperpolarized carbon-13 MRI are inherently
dynamic, resulting from blood flow, tissue perfusion, metabolic conversion, and
polarization decay. Thus there is an opportunity for control researchers to improve the
dynamic models, excitation inputs and estimation algorithms used in hyperpolarized
carbon-13 MRI.

The remainder of this paper is organized as follows. In Sect. 3.2 we present the
basics of hyperpolarized carbon-13 MRI. In Sect. 3.3 we present a dynamic model
of metabolic flux and discuss methods of estimating model parameters from experi-
mental MRI data. In Sect. 3.4 we discuss formulations of optimal design for dynamic
experiments. Finally, in Sect. 3.5 we present three control and optimization prob-
lems that arise in metabolic MRI using hyperpolarized carbon-13 and discuss open
questions.

3.2 Hyperpolarized Carbon-13 MRI for Imaging
Metabolism

The measurable signal in MRI arises from radio-frequency electromagnetic waves
generated by oscillating atomic nuclei. Nuclei containing an odd number of protons
and/or neutrons possess a nuclear spin angular momentum, each giving rise to a small
magnetic moment. Thus nuclei such as carbon (12C) and oxygen (16O) are invisible
to MRI, while hydrogen (1H) and the carbon-13 isotope (13C) exhibit magnetic res-
onance (MR). Hydrogen MR, sometimes known as proton MR, is currently the most
commonly-used in clinical settings due to the high abundance of hydrogen atoms
in the human body (largely in the form of H2O) and its high sensitivity [16]. Con-
ventional hydrogen MRI is pervasive for noninvasive imaging of anatomic structure,
but provides little functional information. In this work, we focus on carbon-13 MR,
which can be used to provide information about metabolic function.

3.2.1 Chemical Shift

The unique aspect of hyperpolarized carbon-13 MRI, when compared to competing
metabolic imaging technologies such as positron emission tomography (PET), is
that it is the only technique that provides chemical specificity. It is possible to infer
chemical information from MRI data due to a phenomenon known as chemical shift.

Chemical shift results in a small change in the resonant frequency of spins. This
change is caused by shielding of the nuclei from the main magnetic field B0 due to
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nearby electron orbitals [16]. The resulting frequency shift can be exploited to selec-
tively excite specific metabolites [10], or distinguish between metabolites produced.
This gives hyperpolarized carbon-13 MRI the unique ability to quantify metabolic
flux in specific pathways.

3.2.2 Hyperpolarization Using DNP

Hyperpolarized carbon-13 MRI has been enabled by new technologies for hyper-
polarizing carbon-13-containing substrates in liquid state, leading to a greater than
10000× increase in signal-to-noise ratio (SNR) when imaging carbon-13. This tech-
nology relies on dissolution dynamic nuclear polarization (D-DNP) to achieve sig-
nificant polarization gains [1].

Dynamic nuclear polarization relies on transferring polarization to carbon-13
nuclei from electrons using microwave radiation. In this procedure, a sample is doped
with a small quantity of stable electron radical. The sample is then cooled to cryogenic
temperature and placed in a strong magnet. At this temperature and magnetic field
strength, electrons become nearly 100% polarized. Then by irradiating the sample
with microwaves, polarization is transferred from the electrons to the carbon-13
nuclei in a biochemical substrate of interest. To prepare the sample for injection and
in vivo imaging, it is then rapidly dissolved in warm water, neutralized to a safe pH
and the electron radical is removed before injection [15].

3.2.3 Polarization Decay in Hyperpolarized Substrates

Upon warming and removal from the magnet, the magnetization induced by hyper-
polarization begins to decay over time toward the thermal equilibrium magnetization
due to a phenomenon known as T1 relaxation. The dynamics of the magnetization
vector are governed by a system of state equations know as the rotating frame Bloch
equations:
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with initial condition M(0) = (0, 0, Mz(0)). Here, the evolution of the state M is
dependent on a sequence of control inputs u1 and u2 corresponding to the amplitude
and frequency of the applied radio-frequency (RF) electromagnetic excitation pulse
(known as the B1 field) that rotates the vector M about the origin, and T1 and T2

parameters that govern the relaxation time in the longitudinal (z) and transverse
(x, y) directions respectively.
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When the sample is hyperpolarized we have Mz(0) � M0, therefore the contri-
bution of the affine term in (3.1) is negligible. Thus in the absence of RF excitation,
the longitudinal magnetization exhibits exponential the decay

Mz(t) = Mz(0)e−t/T1 .

In addition to T1 relaxation, magnetization also decays due to repeated RF exci-
tation. Throughout this paper we will assume that the RF pulse occurs on a time
scale much faster than T1 and T2, therefore it can be modeled as an instantaneous
state reset that rotates M to some angle α away from the z axis, known as the flip
angle. We also assume that a spoiled gradient echo pulse sequence [2] is used, thus
between RF pulses a strong magnetic field gradient is applied to dephase the trans-
verse magnetization ensuring that Mx = My = 0. Thus at a time t+ immediately
after an RF pulse, the magnetization is given in terms of the magnetization at time
t− immediately before the RF pulse as

Mz(t
+) = cos(α)Mz(t

−)

Mxy(t
+) :=

√
Mx (t+)2 + My(t+)2 = sin(α)Mz(t

−).

It now follows that at a time t following a sequence of RF pulses with flip angles
α0, . . . , αN−1 the longitudinal magnetization remaining has decayed to

Mz(t) = Mz(0)e−t/T1

N−1∏
k=0

cos(αk).

3.3 Quantifying Metabolic Flux

Hyperpolarized carbon-13 MRI enables dynamic experiments that show metabolic
activity with spatial, temporal and chemical specificity. This enables quantifying the
spatial distribution of the activity of specific metabolic pathways. In this section,
we discuss model-based methods of fusing this information into spatial maps of
metabolic activity. This is done by estimating kinetic parameters in a model describ-
ing the evolution of the MR signal observed in each spatial volume element (voxel).

3.3.1 Kinetic Models of Hyperpolarized MRI Signal
in a Single Voxel

Hyperpolarized carbon-13 MRI researchers commonly rely on linear compartmen-
tal models for describing the evolution of signal in a voxel [4, 8, 9]. These models
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describe the magnetization exchange from the pool of injected hyperpolarized sub-
strate to pools corresponding to various metabolic products. In its simplest form,
this amounts to the irreversible metabolic conversion of the substrate S to a single
product P performed at a characteristic kinetic rate kSP :

S
kSP
⇀ P.

Throughout this article, we will focus on extremely simple pathways of this form,
though extension to multiple products or bidirectional conversion is straightforward.

In the absence of external RF excitation, magnetization in a particular voxel i
evolves via T1 decay and label exchange according to the differential equations

d

dt

[
Mz,i,S(t)

Mz,i,P(t)

]
=

[
−R1,i,S − kSP,i 0

kSP,i −R1,i,P

][
Mz,i,S(t)

Mz,i,P(t)

]
+

[
kT RANS,i

0

]
u(t)

(3.2)

where the states Mz,i,S and Mz,i,P represent the longitudinal magnetization in voxel i
in the substrate and product compartments respectively, the input u models an arterial
input function (AIF) describing the arrival of substrate from the circulatory system,
and the parameters kSP,i , R1,i,S , R1,i,P , and kT RANS describe the metabolic rate, T1

decay rate in the substrate pool, and T1 decay rate in the product pool, and perfusion
rate respectively.

When a constant flip angle excitation sequence and repetition time is used for
imaging, decay due to RF excitation can be modeled by replacing R1,i,X by an
effective decay rate

R1,i,X,effective = R1,i,X − log(cos α)

TR

where α is the flip angle and TR is the repetition time, and X denotes an arbitrary
compound (either S or P) [18]. However, when a variable flip angle sequence is used,
signal decay due to RF excitation must be accounted for as in Sect. 3.2.3. This leads to
a discrete time model for the transverse and longitudinal magnetization immediately
preceding excitation k given by

[
Mz,i,S[k + 1]
Mz,i,P [k + 1]

]
= Ad

[
cos αS[k] 0

0 cos αP [k]

] [
Mz,i,S[k]
Mz,i,P [k]

]
+ Bdu[k] (3.3)

where Ad and Bd are computed by discretizing (3.2) assuming a zero order hold with
sampling time TR . A model for the transverse magnetization immediately following
excitation k given by

Mxy,i,X [k] = sin αX [k]Mz,i,X [k]. (3.4)
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Fig. 3.1 Simulated trajectories for a pyruvate to lactate conversion model using a constant flip
angle sequence with αS[k] = αP [k] = 15◦. (Adapted from J. Maidens, J.W. Gordon, M. Arcak,
P.E.Z. Larson, IEEE Trans Med Imaging. 2016 Nov; 35(11): 2403–2412.) [13]

This transverse magnetization leads to the observable signal which we measure as
an output from voxel i at time k. In the case of normally-distributed measurements,
we model the generated data as

Yi,X [k] ∼ Mxy,i,X [k] + εi,X [k]

where ε is independent identically distributed gaussian noise with a known variance
σ 2. Simulated trajectories of this model are shown in Fig. 3.1.

3.3.2 Estimation of Unknown Model Parameters

Estimating metabolic rate parameters θi from experimental data collected from voxel
i involves minimizing a statistical loss function L(θi |Yi ) that describes how well a
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signal model fits the observed data Yi . Using the model Eqs. (3.3)–(3.4) as the basis
of a signal model describing the predicted measurement

yi (θi ) = [[Mxy,i,S[1] Mxy,i,P [1] . . . Mxy,i,S[N ] Mxy,i,P [N ]]

in terms of the vector model parameters θi . Loss functions include:

• the least squares loss
L(θi |Yi ) = ‖Yi − yi (θ)‖2

which corresponds to a nonlinear least squares estimation problem and
• the negative log likelihood loss

L(θi |Yi ) = − log pθi (Yi )

which corresponds to a maximum likelihood estimation problem. Unlike the least
squares loss function, this loss requires a that a probability density function describ-
ing the joint distribution ofYi be specified. Common choices areYi ∼ yi + ε where
ε is independent, identically distributed (iid) Gaussian noise or independent Rician
noise with location parameters given by yi [7].

3.4 Optimal Design of Dynamic Experiments

Two of the three problems we will discuss in this paper address the design of opti-
mized experiments for estimating the value of unknown parameters in a mathematical
model of a dynamical system from noisy output data. Thus, in this section we provide
background on optimal experiment design.

In dynamical systems with noisy outputs, the reliability of the parameter estimates
depends on the choice of input used to excite the system, as some inputs provide
much greater information about the parameters than others. Much work has been
done on the optimal experiment design problem in the last 50 years [5, 6, 11, 17,
19]. Historically, a great deal of work on this problem has taken a frequency domain
approach, where the input to the system is designed based on its power spectrum.
Here, we will approach this problem in the time domain, to be able to perform
experiment design for systems with nonlinear dynamics.

3.4.1 Problem Description

We consider a discrete-time dynamical system with noisy observations

xt+1 = f (t, xt , ut , θ)

Yt ∼ Pxt
(3.5)
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where xt ∈ R
n denotes the system’s state, ut ∈ R

m is a sequence of inputs to be
designed and θ ∈ R

p is a vector of unknown parameters that we wish to estimate.
Observations are drawn independently from a known distribution that is parametrized
by the system state xt . We assume that for all xt ∈ R

n the probability distribution
Pxt is absolutely continuous with respect to some measure μ and we denote its
density with respect to μ by pxt (yt ). We consider this system over a finite horizon
0 ≤ t ≤ N . Our goal is to design a sequence u that provides a maximal amount of
information about the unknown parameter vector θ . This problem can be addressed
by maximizing the Fisher information about θ .

3.4.2 Fisher Information

An important notion in frequentist statistics is the Fisher information matrix for the
vector of model parameters θ . The Fisher information is fundamental in the analysis
of numerous statistical estimators from unbiased estimation to maximum likelihood
estimation. We begin with a definition.

Definition 1 Let P = {Pθ : θ ∈ Ω} be a family of probability distributions
parametrized by θ in an open set Ω ⊆ R

p and dominated by some measure μ.
Denote the probability densities with respect to μ by pθ and assume that the densi-
ties are differentiable with respect to θ . We define the Fisher information matrix as
the p × p matrix I (θ) with (i, j)-th entry defined as

I (θ)i, j = E

[
∂ log pθ (Y )

∂θi

∂ log pθ (Y )

∂θ j

]

where Y ∼ Pθ .

3.5 Control and Optimization Problems in Hyperpolarized
Carbon-13 MRI

We now present three optimization problems that arise in the design of hyperpolarized
carbon-13 MRI experiments and the subsequent data analysis. The first involves
the design of substrate injection inputs to generate maximally informative data, a
problem in which the control input enters linearly. The second involves the design
of optimized flip angle sequences, again for generating maximally informative data.
In contrast with Problem 1, this problem involves a nonlinear control system model,
which is significantly more difficult to analyze globally. The third problem involves
estimating the spatial distribution of metabolic flux parameters from the acquired
data. Problem 3 completes the experimental sequence from experimental design to
data acquisition to data analysis.
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Problem 1: Substrate Injection Design

Data collected in MRI experiments is typically noisy due to thermal movement of
electrons in the receiver coil and the object being imaged. This makes it challenging
to estimate model parameters from dynamic data sets when the signal-to-noise ratio
is small. This challenge can be addressed by designing experimental parameters with
the goal of maximizing the information about unknown parameters contained in the
data collected.

The first problem we consider is the optimal design of the injection input subject
to constraints on the maximum injection rate and volume. This results in a dynamic
optimal experiment design problem of the form discussed in Sect. 3.4. More formally,
we consider the dynamic model defined in Eq. (3.3) with an output defined in Eq. (3.4)
which is corrupted by iid additive Gaussian noise. Problem 1 is to design an injection
input u[k] to maximize the Fisher information about the parameter of interest kSP
contained in the data generated from a finite number of samples under this model.
The input is constrained such that both the maximum injection rate ‖u‖∞ and the
maximum injection volume ‖u‖1 are upper bounded by some positive constant.

We first formulated this problem in [12], where we showed that this problem
can be reformulated as a nonconvex quadratic program (QP). We then developed
a procedure for approximating the global solution of the QP using a semidefinite
programming relaxation. This method allowed us to compute approximate solutions
to particular instances of this problem as well as bounds on the global solution.
In particular, for an instance with realistic values for model parameters, we found
that the optimal input consists of a bolus applied at the beginning of the experiment
injected at the maximum rate until the volume budget is reached (Fig. 3.2). Based
on the semidefinite relaxation, we then show that this input achieves an objective
function value at least 98.7% of the global optimum, for these particular values of
the model parameters.

We conjecture that all optimal solutions are of the form shown in Fig. 3.2: an
injection at the maximum rate until the volume budget is reached. We expect this

Fig. 3.2 Conjectured
solution to a particular
instance of Problem 1. The
optimal input sequence u[k]
applies a bolus injection at
the maximum allowable rate
until the total input budget is
reached
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Fig. 3.3 Optimized input
sequence for the flip angle
sequence design problem.
Reproduced with permission
from John Maidens, et al.
IEEE Trans Med
Imaging;35(11):2403–2412
[13]
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to hold independent of the choice of model parameters, as well as in more complex
metabolic networks. However, this conjecture remains unproven.

Problem 2: Flip Angle Sequence Design

Similarly to the first problem, the second problem we consider involves designing
experimental parameters to maximize the Fisher information about unknown rates
in the model. Here we consider the problem of designing optimal RF flip angle
excitation sequences.

Again we use the model defined in Eq. (3.3) with an output defined in Eq. (3.4)
corrupted by iid noise. In Problem 2, we wish to select a sequence of flip angles
αS[k] and αP [k] used to excite each of the chemical species. Here the choice of
αS[k] and αP [k] at each time is unconstrained. Since the flip angles enter the model
in a nonlinear fashion, the resulting optimization problem is no longer a QP, so other
optimization techniques must be used.

This problem is solved to local optimality under additional smoothness constraints
in [13] using a nonlinear programming approach. The resulting optimized flip angle
sequence is shown in Fig. 3.3. This flip angle sequence results in a 20% decrease in
the uncertainty of metabolic rate estimates, when compared against the best existing
sequences.

These results demonstrate that optimal experiment design can help to improve
the quality of parameter estimates in dynamic MRI experiments. But they could be
further improved by the development of techniques for computing global solutions
to this optimization problem.

Problem 3: Constrained Parameter Mapping

The third problem involves computing maps of metabolic activity from the exper-
imental data collected. Here we assume that we are given a statistical model for
the data as well as a loss function, as described in Sect. 3.3.2. The challenge is to
summarize the spatial, temporal and chemical information contained in the dynamic
experimental data into a single spatial map of metabolic activity. We do so by esti-
mating a value for the metabolic rate parameter θi = kSP,i for each voxel i in space.
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Since the objects imaged often contain spatial structure, this structure can be
exploited to improve the quality of the estimated parameter maps. This can be
achieved by adding regularization to the objective function that is optimized. For-
mally, we solve an optimization problem of the form

minimize
∑
i

L(θi |Yi ) + λr(θ)

where L is a loss function that depends on the data Yi collected in each voxel i , and r
is a regularization term that couples nearby voxels thereby enforcing spatial structure
in the estimated maps. Possible choices of regularization used to enforce smooth-
ness, sparsity and edge preservation include 
2, 
1 and total variation penalties. By
including such penalties to exploit spatial correlations in the data, we have shown
that better image quality can be achieved compared with independently fitting each
voxel [14].

Both choices of loss function described in Sect. 3.3.2 are nonconvex. However,
we have observed that despite the nonconvexity of the problem satisfactory solutions
can be found using convex optimization algorithms such as ADMM [3]. Problem 3
is to better understand the convergence of this algorithm for estimating parameters in
spatially-distributed dynamical system models. Why does this algorithm successfully
converge to the same optimum for various initial conditions? And can we provide
any formal guarantees of global convergence?
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