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Grid Integration of Renewable Electricity
and Distributed Control

Pratyush Chakraborty, Enrique Baeyens and Pramod P. Khargonekar

Abstract Motivated by climate change and sustainability, and the resulting need to
decarbonize the electricity sector, there is a major global movement toward large-
scale integration of renewable energy, i.e., wind and solar, into the existing power
grid. The inherent variability of wind and solar energy production poses a major
challenge in achieving these goals. The problem becomes more challenging as we
consider issues of competitive markets, low cost and high reliability. In the last few
years, we have been working on new systems and control problems that arise from
these considerations. In this paper, we will present some highlights of our work on
developing demand response methods using distributed control and bounding the
loss of efficiency in these methods.

15.1 Introduction

Carbon emissions leading to climate change and sustainability are some of the major
reasons motivating adoption of renewable energy sources such as wind and solar into
the electric energy system. Large-scale integration of wind and solar electric energy
poses significant technological challenges. These energy sources are inherently un-
certain (power generation not known in advance), intermittent (large fluctuations and
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ramps) and non-dispatchable (unable to follow a command). The term variability is
used to represent these three characteristics [17] and is a significant hurdle in the
large-scale integration of renewables. A promising solution to address the variability
is to deploy demand side management (DSM) or demand response (DR) programs
that adjust the consumption to match the predicted generation.

A paradigm shift in the power system operations is underway where consumers
will be incentivized to manage their demand by leveraging the flexibility of their
loads such as electric vehicles (EV), air conditioning, heat pumps, water heaters, etc.
[2, 18]. DSM or DR programs in power systems operations exploit this flexibility
in power consumption loads. Distributed control has been used as a major tool to
solve problems where a central authority sends a control signal, e.g., price of elec-
tricity, and consumers decide their consumption schedules according to some private
utility function [13]. A strategy for assigning quantities in a distributed price-based
framework is the proportional allocation mechanismwhere the central authority cal-
culates a price for all the consumers in such a way that the assigned quantity to each
agent is proportional to the monetary value that the agent is willing to pay [12]. This
mechanism has been used to formulate EV charging problems [10, 22]. However, it
has not been examined in broader smart grid settings.

Consumer behavior plays a critical role in the implementation of demand response
programs in distributed mode and the assumption of price-taking consumers might
not always be true. Selfish behavior of agents in a non-cooperative game leads to in-
efficiency with respect to the solution that maximizes system welfare. Consequently,
it is crucial to design distributed control systems in such a way that the efficiency
loss due to selfish behavior is bounded. The term price of anarchy (PoA) has been
coined as a measure of efficiency of distributed control as compared with centralized
optimal solution. Bounds on the PoA for various cost-sharing games, congestion
games and payoff maximization games have been derived in [11, 16, 20].

In the smart grid scenario, non-cooperative game theoretic methods have been
used to model problems [14, 15, 23], however the loss of efficiency by selfish be-
havior has not been widely investigated. The Nash equilibrium has been shown to
be efficient in an infinite population game when the charging rates of all the EVs are
equal [14] and in a DR problem with different consumers [15], however in the first
case the assumptions are rather impractical and in the second one, the consumers’
utility functions were ignored. Regardingwind variability, a game has been formulat-
ed among various power consumers in [23] where the PoA bound has been calculated
for an example case.

During the last few years, we have been addressing various challenging problems
involving both technical and economic issues of smart grid [3–9]. We present here
a few salient results on two demand response methods. In the first one, the available
power is limited and the control authority designs a price signal aiming to maximize
social welfare subject to supply-demand balancing. We show that if proportional
allocation is used to design the price signal, then the lower bound of the price of
anarchy is 75%. We also develop some strategies for improving efficiency further.
In the second case, we consider a demand response problem where the available
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power is not limited and the price signal is set by the load consumption. Under some
conditions of the utility functions of the consumers with respect to the price, we
obtain a robust lower bound of the price of anarchy of 50%.

15.2 A Demand Response Program Using Proportional
Allocation Mechanism with Tight PoA Bound

In this section, we develop a distributed method for controlling the consumers’ flex-
ible demand with intra-day supply forecasts. Flexible consumers are modeled as
individually rational agents that maximize their net utilities in presence of load con-
sumption constraints. The consumers bid the monetary value they are willing to pay
for each time interval and the central authority obtains a price signal based on a
proportional allocation mechanism. Two scenarios are considered, price taking and
price anticipating consumers. In the first case, the proportional allocation method
provides a competitive equilibrium that maximizes the system welfare. In the second
case, the consumers’ selfish behavior is modeled using a non-cooperative game. A
Nash equilibrium always exists for this game but it is not efficient. We are able to
obtain a lower bound on the PoA of 75% and we develop some strategies to improve
the game efficiency.

15.2.1 Problem Formulation

Let us consider a residential area where electric power is supplied by thermal and
renewable generators. The power consumption in the area is controlled by a central
control authority. Two types of residential consumers are considered: fixed con-
sumers and flexible consumers. Only flexible consumers are willing to adjust their
consumption schedules in response to some signal from the authority.

Let us consider a set N := {1, 2, . . . , N } of flexible consumers. Each flexible
consumer possesses a smart energy scheduling device with two-way communication
capability. We assume that the supply is initially scheduled in a traditional day ahead
market, based on demand predictions. The time interval of interest [t0, t f ], corre-
sponding to the intra-day horizon, is divided into T slots of lengthΔt = (t f − t0)/T .
The set of time slots isT := {1, 2, . . . , T }, and we consider the following variables
at time slot t ∈ T : qi (t) ∈ R+ is the power consumption of all the flexible loads
of the i-th flexible consumer (no power transfer from the consumers to the grid is
allowed), c(t) ∈ R+ is the total scheduled power generation of all the thermal pow-
er plants, ŵ(t) ∈ R+ is the estimate of the power generation of all the renewable
sources, n̂(t) ∈ R+ is the estimate of the total power consumption of all fixed loads
of both fixed and flexible consumers. Let v(t) denote the estimated net generation
available for flexible demand at time slot t ∈ T , i.e., v(t) := c(t) + ŵ(t) − n̂(t).



208 P. Chakraborty et al.

The control authority obtains a forecast of renewable generation and balances the
estimated demand with supply for each time slot of the operating day, i.e.,

v(t) =
∑

i∈N
qi (t), t ∈ T . (15.1)

Assuming that net power supply is always sufficient to meet the fixed loads’ demand,
i.e., v(t) > 0 for any t ∈ T , the supply-demand balancing is accomplished by ad-
justing the power consumption of the flexible loads. There is always an inevitable
mismatch between the estimated power generation and consumptions and their real-
ized values. Ancillary services are implemented to handle this real-time mismatch.
However, the use of the intra-day flexible load control mechanism proposed here will
reduce the need for ancillary services whilemaking large-scale renewable integration
less burdensome.

Letqi , v ∈ R
T+ denote vectors of dimension T that collect the consumption of flex-

ible consumer i ∈ N and the net power generation available for flexible consumers,
respectively, for every time slot t ∈ T . The output of flexible consumption i ∈ N is
represented in monetary units by the utility function Ui (qi ) : RT → R, which is as-
sumed to be non-negative, concave and continuously differentiable. In addition, it is
also assumed to be a strictly increasing, i.e., ∇Ui (qi ) > 0, where ∇Ui : RT → R

T

denotes the gradient of Ui . The operational constraints of the flexible consumers
depending upon the type of loads can be expressed by a set of linear inequalities:

Hiqi ≤ bi , i ∈ N , (15.2)

where Hi ∈ R
M×T , bi ∈ R

M and M is the number of constraints. Let Qi :=
{

q ∈ R
T : bi − Hiq ≥ 0

}

denote the set of consumption vectors satisfying the oper-
ational constraints for i ∈ N andS := {

qi ∈ Qi : v − ∑

i∈N qi = 0, i ∈ N
}

the
feasibility set of the consumption vectors satisfying both the supply-demand power
balance constraint and the operational constraints. We assume that the feasibility set
S is nonempty.

15.2.2 Centralized Control

In this idealized scenario, the central control authority dictates how much power is
assigned to each flexible consumer bymaximizing the social welfare. The centralized
control problem is

max
qi

{

∑

i∈N
Ui (qi ) : qi ∈ S

}

(15.3)
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The existence of a maximum is guaranteed because the objective function is
concave and the search space is a nonempty compact convex set. A solution of (15.3)
maximizes the social welfare and is referred to as the centralized optimal solution.
But the consumers may want to control their loads on their own and the central
authority may not have computational capability to solve the optimization problem
for a large number of residential consumers. A feasible alternative is a distributed
control approach.

15.2.3 Distributed Control with Price-Taking Consumers

In a distributed control model, the behavior of the consumers is an important aspect
to consider. We begin by considering individually rational flexible consumers that
behave as price takers. Let ki ∈ R+ denote the amount of money the consumer
i ∈ N is willing to pay for the energy qi . The consumers bid the monetary values or
expenditures ki to the control authority. In this scenario, the control authority obtains
the value of the available net supply v(t) for every t ∈ T and computes a system
price p(t) according to the following proportional allocation mechanism.

Definition 15.1 (The proportional allocation mechanism) The proportional alloca-
tion of the energy consumption at time slot t ∈ T is given by:

qi (t) = ki (t)

p(t)
, i ∈ N , (15.4)

where p(t) > 0 is the price of electricity at time t ∈ T , obtained by

p(t) =
∑

i∈N ki (t)

v(t)
, t ∈ T . (15.5)

Since v(t) is always positive, the system price p(t) is well defined for every time
slot t ∈ T and guarantees v(t) = ∑

i∈N qi (t) for all t . Each consumer (flexible or
fixed) is charged at the system price. Let the net utility of a consumer be defined as the
total utility minus the expenditure. The flexible consumers maximize their own net
utility function by a suitable selection of their consumptions qi . Let p ∈ R

T denote
the vector that collects the system prices for every time slot t ∈ T . The distributed
control problem for price takers is formulated as follows:

max
qi

{

Ui (qi ) − p�qi : qi ∈ S pt
i

}

, i ∈ N , (15.6)

where the set of feasible power consumptions is S pt
i := {qi : bi − Hiqi ≥ 0} .

The solution concept for the distributed control problemwith price taking flexible
consumers is the competitive equilibrium.
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Definition 15.2 The set {(qE
i ,pE ) : i ∈ N } is a competitive equilibrium if each

consumer selects its consumption vector qE
i by solving the optimization problem

(15.6) and the control authority obtains the price vector pE using the proportional
allocation mechanism (15.4)–(15.5).

The competitive equilibrium always exists if the feasibility set S is nonempty.
Moreover, in such a case a competitive equilibrium is equivalent to a solution of the
centralized control problem and maximizes the social welfare.

Theorem 15.1 The set {(qE
i ,pE ) : i ∈ N } is a competitive equilibrium if and only if

the set of consumptions {qE
i : i ∈ N } is a solution to the centralized control problem.

15.2.4 Distributed Control with Price Anticipating
Consumers

If the consumers can predict the mechanism that the control authority uses to set
the price vector p, they adjust their consumption decisions according to their im-
pact on the price, and we say that they behave as price anticipators. By using as
decision variables the monetary value vectors ki , where ki (t) = p(t)q(t) for t ∈ T ,
the consumers can obtain the price vector p as a function of

∑

i∈N ki , because we
assume they know that p is decided by the formula p(t) = ∑

i∈N ki (t)/v(t). Each
consumer’s monetary value depends on the sum of all the consumers’ expenditures
and the consumption assignment can be modeled as a non-cooperative game where
the players are the flexible consumers.

The problem can be formulated in terms of the monetary expenditures by e-
liminating the price and the consumptions variables. Let k−i = {k j : j ∈ N \ {i}}
denote the collection of monetary value vectors of all flexible consumers other than
the consumer i . Note that p and qi can be expressed as functions of ki as p(ki ;k−i ) =
D−1(v)

∑

j∈N k j and qi (ki ;k−i ) = D−1(p(ki ;k−i ))ki = D−1(
∑

i∈N ki )D(v)ki
where D(x) denotes a diagonal square matrix whose main diagonal has the compo-
nents of vector x. Considering S pa

i (k−i ) := {

ki : bi − HiD−1 } {(∑i∈N ki )D(v)
ki ≥ 0}, the distributed control problem for price anticipators is given by

max
ki

{

Ui (D−1(
∑

j∈N k j )D(v)ki ) − 1�ki : ki ∈ S pa
i (k−i )

}

, i ∈ N . (15.7)

Each consumer will try to maximize her own net utility, assuming that all other
consumers’ expenditures are fixed. This is called the best response strategy and
the solution is called a Nash equilibrium. In a Nash equilibrium, no player has an
incentive to deviate unilaterally of the equilibrium [20]. The Nash equilibrium for
the distributed control problem with price anticipators is the set of expenditures
{kG

i : i ∈ N } such that
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Ui (qi (kG
i ,kG

−i )) − 1�kG
i ≥ Ui (qi (ki ,kG

−i )) − 1�ki , ki ∈ S pa
i (kG

−1), i ∈ N .

(15.8)

It can be proved that a Nash equilibrium always exists if the feasibility set S is
nonempty.

Theorem 15.2 (Existence of Nash equilibrium) The non-cooperative game de-
scribed by Eq. (15.8) has a Nash equilibrium if the space S is nonempty.

15.2.5 Price of Anarchy and Efficiency Improvement

The selfish behavior of agents in a non-cooperative game theoretic setting renders
lower performance as compared to the optimal centralized control. Price of anarchy
(PoA) is a measure to quantify the loss of efficiency in using game theoretic control
over centralized control. PoA is defined as the worst-case ratio of the objective func-
tion value of a Nash equilibrium of a game and that of a centralized optimal solution
[20]. The quantity 1 − PoA is a worst-case estimate of the loss of performance due
to price anticipating behavior of agents.

In our energy assignment problem for flexible consumers, {qC
i : i ∈ N } denotes

a solution of the centralized problem (15.3) and {qG
i : i ∈ N } denotes a Nash equi-

librium for the distributed control problem with price anticipating consumers. The
PoA is defined as follows:

PoA :=
∑

i∈N Ui (qG
i )

∑

i∈N Ui (qC
i )

. (15.9)

Theorem 15.3 The tight lower bound of PoA of the Nash equilibrium solution for
the distributed consumption assignment with flexible consumers that behave as price
anticipators is 0.75.

The worst-case loss of efficiency corresponds to the case where one agent con-
sumes half of the total power consumed by all the agents at each time slot. Thus, the
market power of a consumer plays a key role in the efficiency of the game. The theo-
retical worst case could only be attained under a particular setting. We are interested
in developing strategies to improve efficiency. The following corollaries show two
different ways to improve efficiency.

Corollary 15.1 If all the consumers have same utility function, i.e., Ui = U, there
is no efficiency loss at Nash equilibrium solution, i.e., PoA is 1.

Corollary 15.2 Suppose {qi = 0 : i ∈ N } belongs to the set of load operational
constraints, then the PoA approaches 1 as the number N of flexible consumers goes
to infinity.
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Efficiency can be improved by recruiting consumers with similar utility functions,
or by classifying them into groups of similar utility and designing specific programs
for each group. The distributed control approach will have better efficiency if con-
sumers share their utility functions with the central control authority. Another option
is to reduce individual market power by increasing the number of consumers.

15.3 A Demand Response Program with Robust PoA
Bound

In this section, we consider a different model for demand response. Unlike in Sec-
t. 15.2, the price here is decided by desired energy consumption. Here, we formulate
a decentralized control model assuming that the consumers are price anticipators and
quantify that, in the worst case loss of efficiency of this problem is never greater than
50%.

We introduce some additional notation in this section. Let {qi ∈ R
T : i ∈ N }

denote the set of power demand vectors for each consumer in the system. The vector
of aggregated power demand in the system is qN = ∑

i∈N qi where the entry t is
denoted by qN (t) and corresponds to the aggregated consumption at time slot t ∈ T .
The price of electricity in the system at time t ∈ T is a function of the aggregated
consumption at that time and is denoted by p(t) = p(qN (t)). We assume that the
price function is a convex, continuously differentiable and monotonically increasing
function.

15.3.1 Centralized Control

Weassume that the authority has full information about the supply function p(qN (t))
for that system. Let p(qN ) ∈ R

T denote the vector of system prices for all time slots
t ∈ T . The authority aims to maximize the consumer’s aggregated net utility subject
to their operational constraints. For any feasible set of consumptions {qi ∈ Qi : i ∈
N }, the objective is

max

{

N
∑

i=1

Ui (qi ) − p�(qN )qN : qi ∈ Qi , i ∈ N

}

. (15.10)

Since the objective function is concave, the non-emptiness of the convex sets {Qi :
i ∈ N } defined by the operational constraints ensure that a global maxima always
exist [1]. But if the consumerswant to control the power consumption of their loads on
their ownwith the help of available informationon their smartmeters, then centralized
control will not work. If consumers are price takers, like the earlier problem, it is easy
to show that the distributed control has a competitive equilibrium where the solution
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is same as the centralized solution. We are more interested in the price anticipatory
case. Thus we model this scenario as a game problem in the next subsection.

15.3.2 Decentralized Control with Price Anticipating
Consumers

The consumers know the price function and they optimize their consumption sched-
ules accordingly. As the price is a function of power consumption of all the con-
sumers, we model the resulting situation as a non-cooperative game.

Definition 15.3 (Demand response game) The demand response game is defined
by the triple (N ,E , V ) where N is the set of players, E = ∪i∈N Qi is the set
of feasible strategies, and V : 2N × E → R is the welfare function for a subset of
players S ∈ 2N and a strategy set {qi : i ∈ N } ∈ E .

Each consumer is individually rational and maximizes her individual welfare,
assuming that the remaining players’ strategies are fixed. Denoting the strategies of
other players by q−i = {q j : j ∈ N \ {i}}, the individual welfare of player i ∈ N
is V ({i}, {qi , i ∈ N }) and can be expressed as a function of the strategy of the player
i and the strategies of the other players as follows:

Li (qi ,q−i ) := V ({i}, {qi , i ∈ N }) = Ui (qi ) − p�(qi ,q−i )qi (15.11)

The Nash equilibrium for the demand response game is the set of all players’ s-
trategies such that no player has an incentive to deviate unilaterally. Mathematically,
Nash equilibrium is defined by the set of strategies {q∗

i ∈ Qi : i ∈ N } such that
Li (q∗

i ,q
∗
−i ) ≥ Li (qi ,q∗

−i ) for all qi ∈ Qi , i ∈ N . Since each consumer’s objective
function is concave and the strategies set is convex and compact, a Nash equilibrium
solution exists according to Rosen’s theorem [19].

The demand response game as defined by Definition15.3 belongs to the class of
valid monotone utility games and this will allow us to bound its efficiency. Let us
begin by characterizing this class of games. Consider a payoff maximization game
given by the triple (N ,E , V ) where N is the set of players, E = ∪i∈N Ei is the
set of feasible strategies for each player and V : 2N × E → R is a function that
provides the welfare associated with a subset of players for a given strategy.

Definition 15.4 (ValidUtilityGame [21])Thepayoffmaximizationgame (N ,E , V )

is a valid utility game if it satisfies the following three properties:

(i) V is submodular, i.e., for any S ⊆ S ′ ⊆ N and any player i ∈ N \ S ′

V (S ∪ {i}, e) − V (S , e) ≥ V (S ′ ∪ {i}, e) − V (S ′, e), ∀e ∈ E (15.12)

(ii) The welfare of a player is never less than the value added to the social welfare,
i.e., for any S ⊆ N and any i ∈ S ,
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V ({i}, e) ≥ V (S , e) − V (S \ {i}, e), ∀e ∈ E (15.13)

(iii) The aggregated value of the individual welfare of a group of players is never
greater than the social welfare of the group, i.e., for any S ⊆ N

∑

i∈S
V ({i}, e) ≤ V (S , e),∀e ∈ E (15.14)

Definition 15.5 (Monotone Game [21]) The payoff maximization game (N ,E , V )

is a monotone game if for any S ⊆ S ′ ⊆ N , V (S , e) ≤ V (S ′, e).

Definition 15.6 (Valid Monotone Utility Game) The payoff maximization game
(N ,E , V ) is a valid monotone utility game if it is simultaneously a valid utility
and a monotone game.

For the demand response gameofDefinition15.3,we assume that each consumer’s
utility function satisfies the following condition.

Assumption 15.1 The utility function of any consumer i ∈ N is such that

Ui (qi ) ≥
T

∑

t=1

p(q̃−i + qi (t))(q̃−i + qi (t)) − p(q̃−i )q̃−i

where q̃−i = ∑

j∈N \{i} q
max
j .

The above condition implies that the value of the utility function of a consumer
i ∈ N for any feasible demand qi will be greater than the increase in the maximum
cost of power consumption in the system due to the addition of that demand qi . The
central authority can broadcast this requirement to all the consumers as a prerequisite
for participation in the demand response program. We also assume that the authority
have an estimate of the upper-bound of

∑

i∈N qmax
i which it also broadcasts to all the

consumers. Under Assumption15.1, the demand response game is a valid monotone
utility game.

Theorem 15.4 The demand response game as defined by Definition15.3 is a valid
monotone utility game if Assumption15.1 is satisfied.

15.3.3 Price of Anarchy

A payoff maximization game which satisfies (15.14) for any solution set e ∈ E is
said to be a (λ, μ) smooth game if it satisfy

∑

i∈N
V ({i}, e∗) ≥ λV ({N }, e′) − μV ({N }, e∗) (15.15)
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where e∗, e′ ∈ E are any two solution strategies of the game.
The (1, 1)-smooth games have the property that a lower bound for its price of

anarchy is 0.5. Since any valid monotone game is (1, 1)-smooth [20], we have the
following result.

Corollary 15.3 The demand response game as defined by Definition15.3 is a (1,
1)-smooth game. Moreover, the lower bound of the price of anarchy of any pure
Nash equilibrium is at least 0.5.

We have shown that Nash equilibrium for our game exists, but there can be a
number of reasons for which the players may not reach an equilibrium [20]. So, we
can consider a weaker notion of equilibria i.e., coarse correlated equilibria for a game
for which Nash equilibria does not exist or exists but can not be reached. Since the
demand response game is a (1, 1) smooth game, the bound derived via smoothness
argument extends automatically, with no quantitative degradation to other weaker
equilibria notions [20]. This is called intrinsic robustness property of the price of
anarchy. So, lower bound of price of anarchy is 0.5 even in case of coarse correlated
equilibrium solution.

15.4 Conclusions

Variability of renewable resources can be accommodated by shaping demand. Ef-
fective solutions to this problem will necessarily require distributed control. In this
paper, we have discussed our initial research on bounding loss of efficiency by using
distributed control. These ideas can be applied to other distributed control problems
like supply side market with deep renewable penetration, energy resource aggrega-
tion, and scheduling, energy trading between microgrids, etc.
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