
Chapter 10
Wasserstein Geometry of Quantum States
and Optimal Transport of Matrix-Valued
Measures

Yongxin Chen, Tryphon T. Georgiou and Allen Tannenbaum

Abstract Weoverview recent results on generalizations of theWasserstein 2-metric,
originally defined on the space of scalar probability densities, to the space of Hermi-
tian matrices and of matrix-valued distributions, as well as some extensions of the
theory to vector-valued distributions and discrete spaces (weighted graphs).

10.1 Introduction

Optimal mass transport (OMT) is currently a very active area of research with appli-
cations to areas both applied and theoretical including control, transportation, econo-
metrics, fluid dynamics, probability theory, statistical physics, shape optimization,
expert systems, and meteorology; see [25, 30] for extensive lists of references. The
original problem was first formulated by the civil engineer Gaspar Monge in 1781,
and concerned finding the optimal way, in the sense of minimal transportation cost,
of moving a pile of soil from one site to another. Much later the problem was exten-
sively analyzed by Kantorovich [18], and is now known as the Monge–Kantorovich
(MK) or optimal mass transport (OMT) problem.
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In this paper, we present certain generalizations of OMT to matrix and vector-
valued transportation.Our originalmotivation for this rather nontraditional viewpoint
was provided by problems in Signal Analysis, more specifically, the need of a weakly
continuous metric to compare (matrix-valued) power spectra of multivariate time
series (see [24]). Soon afterward it became apparentQuantumMechanicswas another
field that would stand to benefit from such an unusual extension of OMT. In fact,
it was this latter subject that provided some of the clues of how to properly set up
noncommutative OMT.

The basis of the new theory is a suitable extension of the Liouville (continuity)
equation that allows flows in matrix or other spaces. To this end, in [8], we first pro-
posed such a continuity equation and a noncommutative counterpart of OMT where
probability distributions are replaced by density matrices (i.e., Hermitian positive-
definite matrices with unit trace). The appropriate Wasserstein metric now corre-
sponds to the minimal value of an action integral evaluated on flows connecting
end-point density matrices. The key insight, to use such a dynamic formulation in
seeking the needed generalitywas provided by the seminal approach of Benamou and
Brenier [3]. Indeed, the Benamou–Brenier formulation recasts OMT as a stochastic
control problem. The work we are reporting herein takes this idea along several dif-
ferent directions, and in particular to OMT between matrices, matricial distribution
and vectorial distributions [8, 10]. Extensions of these results to distributions that
have end-point distributions of unequal overall mass (unbalanced) are reported in
[11] (and not included in the current survey).

We note that at about the same time as [8] was originally reported, closely related
approaches were formulated independently and simultaneously in [6, 20]. In fact,
in our work, we greatly benefited from earlier work by Carlen and Maas [7] on a
fermionic Fokker–Planck equation.

10.2 Quantum Continuity Equation

The three papers [6, 8, 20] all begin with the Lindblad equation that describes the
evolution of open quantum systems.Open quantum systems are thought of as coupled
to a larger system (referred to as the environment or the ancilla) and, thereby, cannot,
in general, be described by the Schrödinger equation [17]. In this case, the evolution
of density operators ρ [17] is given by the Lindblad equation

ρ̇ = −i[H, ρ] (10.1)

+
N∑

k=1

(LkρL
∗
k − 1

2
ρL∗

k Lk − 1

2
L∗
k Lkρ),

where ∗ denotes conjugate transpose, and throughout, we assume that � = 1. The first
term on the right-hand side describes the evolution of the state under the effect of the
Hamiltonian H (Schrödinger unitary evolution). The other terms on the right-hand
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side model diffusion and, thereby, capture the dissipation of energy–they constitute
the quantum analogue of Laplace’s operator Δ and are referred to as the Lindblad
terms.

Our approach [8, 9] relies on a suitable continuity equation in the space of Hermi-
tian matrices H (of a given dimension). To this end, we invoke suitable definitions
for the gradient ∇L and divergence ∇∗

L operators on spaces of matrices that are
explained below and express the continuity equation in the familiar form

ρ̇ = ∇∗
L J, (10.2)

where J is a matricial flux, in complete analogy with the continuity equation on
scalar densities.

Throughout,ρ(t) ∈ H is a positive-semidefinitematrix of trace one, i.e., adensity
matrix of quantum mechanics. Regarding notation, we let H+ and H++ denote the
cones of nonnegative and positive-definite matrices, respectively,

D+ := {ρ ∈ H++ | tr(ρ) = 1}

the space of density matrices, and S the space of skew-Hermitian matrices (of the
same dimension asH ). The flux J is taken inS N , i.e., a vector with matrix entries.
Flux typically arises in the form

J = ρ ◦ v or in the form J = ∇Lρ.

The symbol ρ ◦ v denotes one of several possible choices of noncommutative multi-
plication. We have considered specifically the following two choices, referred to as
the anticommutator multiplication (i) and Kubo-Mori product (ii), respectively:

(i) ρ ◦ v = 1

2
(ρv + vρ) and (ii) ρ ◦ v =

∫ 1

0
ρsvρ1−sds,

where, for ρ ∈ H and v ∈ S N ,

vρ :=
⎡

⎢⎣
v1ρ
...

vNρ

⎤

⎥⎦ , and ρv :=
⎡

⎢⎣
ρv1
...

ρvN

⎤

⎥⎦ .

On the other hand, we define the gradient operator with respect to L ∈ H N to be

∇L : H → S N , X �→
⎡

⎢⎣
L1X − XL1

...

LN X − XLN

⎤

⎥⎦ .
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With respect to the standard Hilbert–Schmidt inner product 〈X,Y 〉 = tr(X∗Y )

(and, for the case when X,Y are in H N or S N , the inner product 〈X,Y 〉 =∑N
k=1 tr(X

∗
k Yk)), the divergence operator turns out to be

∇∗
L : S N → H , Y =

⎡

⎢⎣
Y1
...

YN

⎤

⎥⎦ �→
N∑

k

LkYk − YkLk,

and this is what is used in (10.2). We note that for technical reasons, the definition
of gradient and divergence require that Lk = L∗

k , i.e., L ∈ H N , as above. Also, one
can easily verify that ∇L is a derivation, in that,1

∇L(XY + Y X) = (∇L X)Y + X (∇LY )

+ (∇LY )X + Y (∇L X), ∀X,Y ∈ H .

With these definitions in place, we define the (matricial) Laplacian as

ΔL X := −∇∗
L∇L X

=
N∑

k=1

(2Lk XLk − XLkLk − LkLk X), X ∈ H ,

which is exactly (after scaling by 1/2) the diffusion term in the Lindblad equation2

(10.1). Hence, Lindblad’s equation can be rewritten as

ρ̇ = −∇∗
H (ρi) + 1

2
∇∗

L(∇Lρ)

= −∇H (ρi) + 1

2
ΔLρ.

10.3 Matricial Wasserstein 2-Metric

From here on we consider the continuity equation,

ρ̇ = ∇∗
L(ρ ◦ v), (10.3)

without the diffusion term, but for a general velocityfieldv ∈ S N .A tacit assumption
throughout is that the identity matrix I spans the null space or∇L ; this can be ensured

1The domain of ∇L is H , hence the identity requires XY + Y X , instead of simply XY .
2The Lindblad term is in the so-called symmetric form since the coefficients are Hermitian.
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if one chooses L1, . . . , LN to form a basis of H (which is a sufficient, but not a
necessary condition).

A Wasserstein distance between two density matrices can now be defined as the
least action (minimum control problem) to steer one density matrix to another,

W2,a(ρ0, ρ1)
2 := min

ρ,v

∫ 1

0
〈v, ρ ◦ v〉dt, (10.4a)

ρ̇ = 1

2
∇∗

L(ρ ◦ v), (10.4b)

ρ(0) = ρ0, ρ(1) = ρ1. (10.4c)

In this, ρ0 and ρ1 inD+ and the optimization is over ρ(·) ∈ D+ and v ∈ S N . In fact,
for v ∈ S N , (10.3) already preserves positive definiteness and trace of ρ(·).

The choice of the anticommutator product ρ ◦ v = 1
2 (ρv + vρ) is especially ap-

pealing since, in this case, the matricial Wasserstein metric (10.4) is readily com-
putable. Indeed, (10.4) can be cast as a convex optimization problem in a manner
analogous to that in the scalar case [3]. To see this, let u := ρv = [u∗

1, . . . , u
∗
N ]∗ and

u∗ := [u1, . . . , uN ]∗, and observe that

tr(ρv∗v) =
N∑

k=1

tr(ρv∗
kvk)

=
N∑

k=1

tr((ρvk)
∗ρ−1ρvk) = tr(u∗ρ−1u).

Thus, (10.4) can be equivalently expressed as

W2(ρ0, ρ1)
2 = min

ρ,u

∫ 1

0
tr(u∗ρ−1u)dt, (10.5a)

ρ̇ = 1

2
∇∗

L(u − u∗), (10.5b)

ρ(0) = ρ0, ρ(1) = ρ1. (10.5c)

In this, it turns out that although we do not require any structural constraint on u, the
optimal u satisfies u = ρv for some v ∈ S N .

The choice of the Kubo-Mori product, on the other hand, provides a matricial
version of the Wasserstein metric for which the gradient flow of the von Neuman
entropy tr(ρ log(ρ)) is the Lindblad equation [6, 8, 20]. Thus, it generalizes to the
noncommutative setting, the famous result by Jordan, Kinderlehrer, and Otto [16] for
the ordinaryWasserstein-2 metric on probability densities where the heat equation is
the gradient flow of the entropy. However, it is interesting to note that computation of
the Wasserstein metric for the Kubo-Mori product appears challenging as compared
to the one based on the anticommutator product above.
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To characterize the form of minimizer one can proceed to consider the dual
problem, which for the case of the anticommutator product goes as follows. With
λ(·) ∈ H a smooth Lagrangian multiplier for the constraints we construct the La-
grangian

L (ρ, v, λ) =
∫ 1

0

{
1

2
tr(ρv∗v) − tr(λ(ρ̇ − 1

2
∇∗
L (ρv + vρ)))

}
dt

=
∫ 1

0

{
1

2
tr(ρv∗v) + 1

2
tr((∇Lλ)∗(ρv + vρ)) + tr(λ̇ρ)

}
dt − tr(λ(1)ρ1) + tr(λ(0)ρ0).

Point-wise minimization over v yields

vopt (t) = −∇Lλ(t)

and the expression for the corresponding minimum

∫ 1

0

{
−1

2
tr(ρ(∇Lλ)∗(∇Lλ)) + tr(λ̇ρ)

}
dt

−tr(λ(1)ρ1) + tr(λ(0)ρ0),

from which we conclude the following sufficient condition for optimality: Suppose
there exists λ(·) ∈ H satisfying

λ̇ = 1

2
(∇Lλ)∗(∇Lλ) = 1

2

N∑

k=1

(∇Lλ)∗k(∇Lλ)k (10.6a)

such that the solution of

ρ̇ = −1

2
∇∗

L(ρ∇Lλ + ∇Lλρ) (10.6b)

matches the marginals ρ(0) = ρ0, ρ(1) = ρ1. Then the pair (ρ, v) with v = −∇Lλ

solves (10.4).
The Wasserstein metric induces a Riemannian structure

〈δ1, δ2〉ρ = 1

2
tr(ρ∇λ∗

1∇λ2 + ρ∇λ∗
2∇λ1)

on the tangent space of Hermitian matrices with a specified trace,

Tρ = {δ ∈ H | tr(δ) = 0}.
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Here λ j , j = 1, 2 is the solution to the Poisson equation

δ j = −1

2
∇∗

L(ρ∇Lλ j + ∇Lλ jρ). (10.7)

The proof of existence and uniqueness of the solution of (10.7) follows exactly along
the same lines as in [7]; details are given in [9]. In fact, given a tangent direction δ,
−∇Lλ is the unique minimizer of tr(ρv∗v) over all v ∈ S N satisfying

δ = 1

2
∇∗

L(ρv + vρ).

With the above definition of inner product,W2(·, ·) indeed defines a metric onD+
for which D+ is a geodesic space, i.e., the distance between two given ρ0, ρ1 ∈ D+
can be rewritten as

W2,a(ρ0, ρ1) = min
ρ

∫ 1

0

√〈ρ̇(t), ρ̇(t)〉ρ(t)dt,

where the minimum is taken over all piecewise smooth paths on the manifold D+.
We finally note that, more generally, OMT can be formulated on the space of

matrix-valued distributions. In this case, the mass constraint becomes
∫
trρ(x)dx =

1, where x represents a vector of spatial coordinates and dx the volume element.
Transport along spatial coordinates, e.g., with x ∈ R

m , is effected by a term ∇x ·
(ρ ◦ w) in the continuity equation, with w ∈ H m , i.e.,

ρ̇ = ∇∗
L(ρ ◦ v) − ∇x · (ρ ◦ w).

Likewise, the cost of transport is duly penalized in a corresponding problem to
minimize a suitable action integral; see [8] for details.

10.4 Vector-Valued Transport on R
N

A vector-valued density ρ = [ρ1, ρ2, · · · , ρ�]T , on R
N or on a discrete space, may

represent power reflected off a surface at different frequencies/colors. The “mass”
of these components may transfer between different entries of the density vector
(e.g., due to different angles of reflection) along time flows of the vectorial density.
Thus, while the total power may be invariant (under some lighting conditions), the
proportion of power at different frequencies or polarization may smoothly vary with
viewing angle. As another example consider the case where the entries of ρ represent
densities of different species, or particles, and allow for the possibility that mass
transfers from one species to another (“mutate”), i.e., between entries of ρ. Thus, in
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general, we postulate that transport of vector-valued quantities captures flow across
space as well as between entries of the density vector.

In this context, anOMT-inspired geometry is aimed to express a suitable continuity
and to quantify transport cost for such vectorial distributions. We highlight some of
the key elements in [10] for such a theory. It follows a line which is analogous to
development of quantum transport that was discussed above.

We begin by considering a vector-valued density ρ on R
N , i.e., a map from R

N

to R
�+ such that

�∑

i=1

∫

RN

ρi (x)dx = 1,

and consider the entries of ρ as representing density or mass of species/particles that
can mutate between one another while maintaining total mass. We denote the set of
all vector-valued densities and its interior byD andD+, respectively. The dynamics
are described by the following continuity equation:

∂ρi

∂t
+ ∇x · (ρivi ) −

∑

j �=i

(ρ jw ji − ρiwi j ) = 0, ∀i = 1, . . . , �. (10.8)

Here vi is the velocity field of particles i and wi j ≥ 0 is the transfer rate from i to
j . Equation (10.8) allows for the possibility to mutate between each pair of entries.
More generally, mass transfer may only be permissible between specific types of
particles and can be modeled by a graph G = (V ,E ) (where the entries denote
nodes and edges, respectively), in which case, for a subset of indices, the transfer
rates wji may be restricted to be zero.

Given μ, ν ∈ D+, we formulate the optimal mass transport

W2(μ, ν)2 := inf
ρ,v,w

∫ 1

0

∫

RN

⎧
⎨

⎩

�∑

i=1

ρi (t, x)‖vi (t, x)‖2 + γ

�∑

i, j=1

ρi w
2
i j (t, x)

⎫
⎬

⎭ dxdt (10.9)

∂ρi

∂t
+ ∇x · (ρivi ) −

∑

j �=i

(ρ j w ji − ρi wi j ) = 0, ∀i = 1, . . . , �

wi j (t, x) ≥ 0, ∀i, j, t, x
ρ(0, ·) = μ(·), ρ(1, ·) = ν(·).

The coefficient γ > 0 specifies the relative cost between transporting mass in
space and trading mass between different types of particles. When γ is large, the
solution reduces to independent OMT problems for the different entries to the degree
possible. In general, W2 is a quasi-metric in that it satisfies the triangle inequality
and positivity, but may not be symmetric.
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Setting pi j = ρiwi j ≥ 0 and ui = ρivi , we have ρiw2
i j = ρ−1

i p2i j , and ρi‖vi‖2 =
ρ−1
i ‖ui‖2. It follows that

W2(μ, ν)2= inf
ρ,u,p

∫ 1

0

∫

RN

⎧
⎨

⎩

�∑

i=1

ρi (t, x)
−1‖ui (t, x)‖2 + γ

�∑

i, j=1

ρ−1
i p2i j (t, x)

⎫
⎬

⎭ dxdt

∂ρi

∂t
+ ∇x · ui −

∑

j �=i

(p ji − pi j ) = 0, ∀i = 1, . . . , �

pi j (t, x) ≥ 0, ∀i, j, t, x
ρ(0, ·) = μ(·), ρ(1, ·) = ν(·) which is a convex problem.

Finally, a Riemannian-like metric on D+ can be obtained by symmetrizing the
above expression [10]. This is,

W2,sym(μ, ν)2 = inf
ρ,u,p

∫ 1

0

∫

RN

{
�∑

i=1

ρi (t, x)
−1‖ui (t, x)‖2 (10.10)

+γ

2

�∑

i, j=1

(ρ−1
i + ρ−1

j )p2i j (t, x)

⎫
⎬

⎭ dxdt

under the same constraints. This vector-valued OMT structure is further explored
and developed in [10].

10.5 Vector-Valued Transport on Graphs

We conclude by highlighting elements of an OMT theory solely on graphs, cast in
the setting of vector-valued densities [10]. As explained earlier, such densities may
represent the distribution of multiple species/resources that are allowed to mutate
between each other as they transition from node to node. The theory is aimed to
capture cost of transport in such a setting.

A vector-valued mass distribution on the graph G = (V ,E ) (with n nodes and m
edges) is a �-tuple ρ = (ρ1, · · · , ρ�) with each ρi = (ρi,1, · · · , ρi,n)

T being a vector
in R

n+ such that
�∑

i=1

n∑

k=1

ρi,k = 1.

That is, each entry ρi , for i ∈ {1, . . . , �}, is a vector with nonnegative n-entries
representing, e.g., color intensity for the i-th color, at the node corresponding to the
respective entry.Wedenote the set of all nonnegative vector-valuedmass distributions
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with D and its interior with D+. Equation (10.8) is now replaced by the following
continuity equation:

ρ̇i − ∇∗
G ((DT

2 ρi ) ◦ vi − (DT
1 ρi ) ◦ v̄i ) −

∑

j �=i

(ρ j ◦ wji − ρi ◦ wi j ) = 0, ∀i = 1, . . . , �,

(10.11)
since the spatial domain is now also discrete (i.e., it is G instead of R

N ). Here,
D = D1 − D2 is the incident matrix of the graph, with D1, D2 are matrices with
positive entries reflecting the position of sources (D1) and sinks (D2) by a entry
equal to 1 in the corresponding place. Thus, the vector DT

1 ρ represents density at the
sources of an edge and, likewise, DT

2 ρ represents density at the sinks. Then, also,
∇G represents differencing between neighboring nodes and ∇∗

G represents its dual
(i.e., negative divergence) [10]. Finally, ◦ represents entry-wise multiplication (Shur)
between two vectors.

Now following the Benamou–Brenier [3] philosophy once again, given two
marginal densities μ, ν ∈ D+, we define their Wasserstein distance as

W2(μ, ν)2 := inf
ρ,v,w

∫ 1

0

⎧
⎨

⎩

�∑

i=1

[vTi ((DT
2 ρ) ◦ vi ) + v̄Ti ((DT

1 ρ) ◦ v̄i )] + γ

�∑

i, j=1

n∑

k=1

ρi,kw
2
i j,k

⎫
⎬

⎭ dt

subject to (10.11) as well as wi j ≥ 0, vi ≥ 0, v̄i ≥ 0 for all (or a subset) of (i, j)’s
and ρ(0) = μ, ρ(1) = ν.

We should note that the problem of transporting vector-valued mass on a graph
is quite simpler than in the case where the underlined space is continuous, since it
reduces essentially to a scalar mass situation on a suitably larger graph. Indeed, we
can view the vector-valued mass as a scalar mass distribution on � identical layers
of the graph G where the same nodes at different layers are connected through a
complete graph. The two velocity fields v,w represent mass transfer within the same
layer and between different layers, respectively.

Once again, the computation of the metric has a convex formulation by changing
optimization variable from (ρ, vi , v̄i ,wi j, k) to momenta “mass” ρ and momenta
ui = ρivi and pi j = ρiwi j , instead.

10.6 Conclusion

The basic fluid dynamical formulation of OMT can be generalized to flows on the
space of matrices or vectors, that belong to a simplex of a suitable positive cone.
A Wasserstein metric in these spaces can then be defined as a minimal quadratic
cost for transferring between two end points. Such metrics appear natural as, in
particular, for the space of quantum density matrices, render the Lindblad equation
as the gradient flow of the vonNeumann entropy. Our interest stems fromproblems in
signal analysis and, more specifically, spectral and image analysis. In both of these
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application areas, the relevance of weakly continuous metric that can be used to
quantify distances between, e.g., matrix-valued power spectra or multicolor images,
is self-evident. In particular, geodesics in such spaces naturally model flows and
allow morphing between spectra and images, respectively.

References

1. Ambrosio, L.: Euro Summer School Mathematical Aspects of Evolving Interfaces. Lecture
Notes onOptimalTransportTheory.CIMESeries of SpringerLectureNotes.Madeira, Portugal,
Springer-Verlag, New York (2000)

2. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge-Kantorovich prob-
lem. SIAM J. Math. Anal. 35, 61–97 (2003)

3. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik 84, 375–393 (2000)

4. Benamou, J.-D.: Numerical resolution of an unbalanced mass transport problem. ESAIM.
Math. Model. Numer. Anal. 37(5), 851–868 (2010)

5. Carlier, G., Salomon, J.: A monotonic algorithm for the optimal control of the Fokker-Planck
equation. In: IEEE Conference on Decision and Control (2008)

6. Carlen, E., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups
with detailed balance (2016). https://arxiv.org/abs/1609.01254

7. Carlen, E., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability
under which the fermionic Fokker-Planck equation is gradient flow for the entropy. Commun.
Math. Phys. 331, 887–926 (2014)

8. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Matrix optimal mass transport: a quantummechan-
ical approach (2016). https://arxiv.org/abs/1610.03041

9. Chen, Y., Gangbo, W., Georgiou, T.T., Tannenbaum, A.: On the matrix Monge-Kantorovich
problem. https://arxiv.org/abs/1701.02826

10. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Transport distance on graphs and vector-valued
optimal mass transport (2016). https://arxiv.org/pdf/1611.09946v1.pdf

11. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Interpolation of density matrices and matrix-valued
measures: the unbalanced case (2017). https://arxiv.org/abs/1612.05914

12. Chen, Y., Georgiou, T.T., Pavon,M.: On the relation between optimal transport and Schrödinger
bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016)

13. Chen, Y., Georgiou, T.T., Pavon, M., Tannenbaum, A.: Robust transport over networks. IEEE
Trans. Autom. Control (2016). https://doi.org/10.1109/TAC.2016.2626796

14. Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational
approach using the Hilbert metric. SIAM J. Appl. Math. 76(6), 2375–2396 (2016)

15. Evans, L.C.: Partial Differential Equations and Monge-Kantorovich Mass Transfer, in Current
Developments in Mathematics, pp. 65–126. International Press, Boston, MA (1999)

16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equa-
tion. SIAM J. Math. Anal. 29, 1–17 (1998)

17. Gustafson, S., Sigal, I.M.:Mathematical Concepts of QuantumMechanics. Springer, NewYork
(2011)

18. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)
19. Kumar, A., Tannenbaum, A., Balas, G.: Optical flow: a curve evolution approach. IEEE Trans.

Image Process. 5, 598–611 (1996)
20. Mittnenzweig, M., Mielke, A.: An entropic gradient structure for Lindblad equations and

GENERIC for quantum systems coupled to macroscopic models (2016). https://arxiv.org/abs/
1609.05765

21. Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct.
Anal. 262, 1879–1920 (2012)

https://arxiv.org/abs/1609.01254
https://arxiv.org/abs/1610.03041
https://arxiv.org/abs/1701.02826
https://arxiv.org/pdf/1611.09946v1.pdf
https://arxiv.org/abs/1612.05914
https://doi.org/10.1109/TAC.2016.2626796
https://arxiv.org/abs/1609.05765
https://arxiv.org/abs/1609.05765


150 Y. Chen et al.

22. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–
2292 (2011)

23. McCann, R.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J.
80, 309–323 (1995)

24. Ning, L., Georgiou, T., Tannenbaum, A.: On matrix-valued Monge-Kantorovich optimal mass
transport. IEEE Trans. Autom. Control 60(2), 373–382 (2015)

25. Rachev, S., Rüschendorf, L.: Mass Transportation Problems, vol. I. Springer-Verlag, NewYork
(1998) (Probab. Appl.)

26. Sandhu, R., Georgiou, T., Reznik, E., Zhu, L., Kolesov, I., Senbabaoglu, Y., Tannenbaum, A.:
Graph curvature for differentiating cancer networks. Sci. Rep. (Nat.), 5, 12323 (2015). https://
doi.org/10.1038/srep12323

27. Sandhu, R., Georgiou, T., Tannenbaum, A.: Ricci curvature: an economic indicator for market
fragility and systemic risk. Sci. Adv. 2 (2016). https://doi.org/10.1126/sciadv.1501495

28. Tannenbaum, E., Georgiou, T., Tannenbaum, A.: Optimal mass transport for problems in con-
trol, statistical estimation, and image processing. In: Dym, H., de Oliveira, M.C., Putinar, M.
(eds.) Mathematical Methods in Systems, Optimization, and Control. Birkhauser, Basel (2012)

29. Tannenbaum, E., Georgiou, T., Tannenbaum, A.: Signals and control aspects of optimal mass
transport and the Boltzmann entropy. In: 49th IEEE Conference on Decision and Control, pp.
1885–1890 (2010)

30. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. AMS,
Providence, RI (2003)

31. Villani, C.: Trend to equilibirum for dissipative equations, functional inequalities and mass
transportation. In: de Carvalho, M., Rodrigues, J-F. (eds.) Contemporary Mathematics: Recent
Advances in the Theory and Applications of Mass Transport. American Mathematical Society
Publications (2004)

32. Villani, C.: Optimal Transport, Old and New. Springer, New York (2008)
33. Wang, C., Jonckheere, E., Banirazi, R.: Wireless network capacity versus Ollivier-Ricci cur-

vature under Heat Diffusion (HD) protocol. In: Proceedings of ACC (2013)
34. Yamamoto, K., Chen, Y., Ning, L., Georgiou, T., Tannenbaum, A.: Regularization and inter-

polation of positive matrices (2016). https://arxiv.org/abs/1611.07945

https://doi.org/10.1038/srep12323
https://doi.org/10.1038/srep12323
https://doi.org/10.1126/sciadv.1501495
https://arxiv.org/abs/1611.07945

	10 Wasserstein Geometry of Quantum States and Optimal Transport of Matrix-Valued Measures
	10.1 Introduction
	10.2 Quantum Continuity Equation
	10.3 Matricial Wasserstein 2-Metric
	10.4 Vector-Valued Transport on mathbbRN
	10.5 Vector-Valued Transport on Graphs
	10.6 Conclusion
	References


