
Chapter 1
Passivity-Based Ensemble Control
for Cell Cycle Synchronization

Karsten Kuritz, Wolfgang Halter and Frank Allgöwer

Abstract We investigate the problemof synchronizing a population of cellular oscil-
lators in their cell cycle. Restrictions on the observability and controllability of the
population imposed by the nature of cell biology give rise to an ensemble control
problem specified by finding a broadcast input based on the distribution of the popu-
lation. We solve the problem by a passivity-based control law, which we derive from
the reduced phase model representation of the population and the aim of sending the
norm of the first circular moment to one. Furthermore, we present conditions on the
phase response curve and circular moments of the population which are sufficient
for synchronizing a population of cellular oscillators.

1.1 Introduction

The cell cycle is central to life. Every living organism relies on the cell division cycle
for reproduction, tissue growth, and renewal. Malfunction in this highly controlled
cell cycle machinery is linked to various diseases, including Alzheimer’s disease
and cancer [10, 26]. Cause and cure of these diseases are two sides of the same
coin, and thus understanding of the cell cycle machinery and approaches to control
it are subjects of ongoing research [20]. Mathematically, the cell cycle machinery
can be described as dynamical system which obeys limit cycle behavior [3, 7] with
dynamics of the general form

ẋ = f (x, u) . (1.1)

Therein, the states x represent different molecular species in the cell which can be
indirectly affected by external inputs u such as growth conditions, drugs, and other
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environmental factors. Another control approach can be realized by directly regulat-
ing the expression levels of specific proteins, e.g., by optogenetics [14]. Besides the
agent-based description, with each agent beeing a cellular oscillator with dynamics
(1.1), proliferating cell populations are often represented by structured population
models [2, 9]. The resulting dynamics are governed by partial differential equations,
belonging to the Liouville equations [1] of the general form

∂tρ(x, t) = −〈∂x , f (x, u)ρ(x, t)〉 . (1.2)

The concept of reduced phase models connects the nonlinear dynamics in (1.1) with
age-structured population models, thereby facilitating control approaches based on
the phase distribution of nonlinear oscillators [12, 18]. Control of these oscillators
is studied intensively, e.g., by the authors of [19, 22, 23].

In this article, we address the following control problem: Find a control input u for
a population of identical cellular oscillators such that the agents are synchronized in
their cell cycle. Several constraints imposed by the nature of cell biology complicate
the task. (1) Experimental observation of the cell cycle state of individual agents
over time is barely possible. A more realistic experimental observation is composed
of representative samples drawn from the population from which the distribution of
cells in the cell cycle must be reconstructed [13, 25]. (2) Two new agents arise by
division at the end of the cell cycle, resulting in exponential growth of the number
of controlled agents and non-smooth boundary conditions of the PDE. (3) Only
broadcast input signals can be realized, giving rise to an ensemble control problem.

Our approach to solve the above stated control problem is organized as follows.
Section1.2 introduces the theoretic foundation of our control approach, compromis-
ing the classical input-output framework for passivity-based controller design and
reduced phase models for the representation of weakly coupled oscillators. The con-
trol methodology is developed in Sect. 1.3. Section1.4 examines the control method-
ology applied to a nonlinear ODE model of the mammalian cell cycle. Section1.5
contains concluding comments.

1.2 Theoretical Foundation

As mentioned above, we are interested in controlling a population of many iden-
tical uncoupled dynamical systems (1.1). The dynamics of the population follows
the aforementioned Liouville equation (1.2), so for a given input u(t) and initial
distribution ρ(x, 0) = ρ0(x) we may find the solution of the PDE

ρ(·, t) = Υ (u, ρ0, t) , t > 0 . (1.3)

An observable feature may for instance be the moments of (1.3), and the output of
the system may be any function of these moments. More general, we consider any
function which maps the solution of the PDE to a scalar value as a possible output
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function
y(t) = h(ρ(·, t)) , y(t) ∈ R . (1.4)

We will develop our control methodology on the fundamentals of classical
input-output frameworks and the concept of reduced phase models, reviewed below.

1.2.1 Input/Output Mapping and Control Approach

With output (1.4) given, we note that the system can now be recast as an input-output
mapping of an input signal u to an output signal y. Following the formal framework
treated in [4], let x : R+ → R be a scalar function of time and

xT =
{
x(t), t ≤ T

0, t > T
(1.5)

the T -truncated signal. Given the L2 inner product

〈x, y〉 =
∫ ∞

0
x(t)y(t)dt , (1.6)

we let
Le �

{
x : ∀T ∈ R

+ , 〈xT , xT 〉 < ∞}
(1.7)

be the space of signals x with the property that all truncations have finite L2-norm
and

L � {x : 〈x, x〉 < ∞} (1.8)

the space of signals for which this holds for the complete signal.
We now define the mapping

H1 : Le → Le , (1.9)

u 	→ y

which takes an arbitrary input signal u ∈ Le and returns the output signal y ∈ Le,
depending on the initial distribution ρ0(x) and its evolution dynamics (1.2).

Given this approach, the passivity of such a system can be studied using the clas-
sical input-output framework treated in [4], avoiding the difficulties of formulating a
proper state space for defining a storage function. Such a state space may for instance
be found by taking the circular moments as state variables, however, moment clo-
sure might not be given. With the mapping H1 defined, we want to apply an output
feedback approach as depicted in Fig. 1.1.



4 K. Kuritz et al.

ur −
u

H1

H2

y

uc

Fig. 1.1 The output is chosen such that it is connected to our goal of synchronizing (or balancing)
the population of agents. If the mapping H1 is passive and the controller H2 is strictly passive one
concludes that y ∈ L

1.2.2 Reduced Phase Models

In the following, we review the basic concept of reduced phase models and phase
response curves briefly and refer the interested reader to the excellent book [11] and
references therein. The notion of reduced phase models greatly simplifies the system
to be controlled. The main statement of the concept of reduced phase models is the
following: Consider a family of dynamical systems of the form

ξ̇ (t) = f (ξ(t)) , ξ(t) ∈ R
n (1.10)

having an exponentially stable limit cycle γ ⊂ R
n with period Td . Then

θ̇ (t) = ω , θ(t) ∈ S1 (1.11)

is a local canonical model for such oscillators, where θ(t) is called the phase of the
oscillator with frequency ω = 2π

Td
. This statement is based on the notion of isochrons

introduced by Winfree [24] and its basic idea, illustrated in Fig. 1.2, is to find a
neighborhood W of γ and a function ψ : W → S1, such that θ(t) = ψ(ξ(t)) is a
solution of (1.11). Winfree called the set of all initial conditions z(0) ∈ R

n of which
the solution z(t) approaches the solution ξ(t), with ξ(0) ∈ γ an isochron of ξ(0)

Mξ(0) = {z(0) ∈ W : ‖ξ(t) − z(t)‖ → 0 as t → ∞} . (1.12)

Furthermore, Guckenheimer [8] showed, that there always exists a neighborhood W
of a limit cycle that is invariantly foliated by the isochronsMξ , ξ ∈ γ in the sense that
the flow maps isochrons to isochrons. Consider the function ψ2 : W → γ , sending
a point in the neighborhood z ∈ Mξ ⊂ W to the generator of its isochron ξ ∈ γ .
Additionally, the periodic orbit of an oscillator is homeomorphic to the unit circle.
One can, therefore, define the function ψ1 : γ → S1 which maps the solution ξ(t)
with ξ(0) ∈ γ to the solution of (1.11). The function ψ : W → S1 is a composition
of ψ1 and ψ2, ψ = ψ1 ◦ ψ2, mapping ξ(t) ∈ W uniquely to its corresponding phase
θ(t) of the reduced phase model (Fig. 1.2).
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Fig. 1.2 A neighborhoodW of the limit cycle γ of an oscillator is invariantly foliated by isochrons
Mξ . The flow maps isochrons to isochrons. The function ψ = ψ1 ◦ψ2 maps an oscillator ξ(t) ∈ W
uniquely to its phase on the unit circle θ(t) = ψ(ξ(t))

Applying the theory of reduced phase models to a weakly forced oscillator

ξ̇ (t) = f (ξ(t)) + u(t) , ξ(0) = ξ0 ∈ W (1.13)

where the term u(t) = εv(t) denotes an exogenous input, one obtains the reduced
phase model of the form

θ̇ (t) = ω + Z(θ(t)) u(t) . (1.14)

Here, weakly forced is in the sense that ε is sufficiently small such that ξ(t) stays
inside the neighborhood W for all t > 0. The function Z is called phase response
curve (PRC) and describes the magnitude of phase changes after perturbing an oscil-
latory system. Based on Malkins Theorem [15, 16], the PRC is the solution of the
adjoint problem dZ(t)/dt = − (D f (ξ(t)))
 Z(t), with the normalization condition
Z(t) f (ξ(t)) = 1 for any t , where D f is the Jacobian matrix which is evaluated
along the periodic orbit, ξ(t) ∈ γ .

1.2.3 From Reduced Phase Model to Age-Structured
Population Models

To simplify the notation, we replace the phase variable θ in the remainder by the
variable x ∈ S1. Given a family of weakly coupled identical oscillators in its reduced
phase representation (1.14), the corresponding Liouville equation for the time evo-
lution of the number density n(x, t) of oscillators on the unit circle reads

∂t n(x, t) + ∂x (κ(x, u)n(x, t)) = 0 . (1.15)
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The vector field equals the reduced phase model κ(x, u) = ω + Z(x)u. In case of
a cell population, a division of a mother cell into two daughter cells results in the
boundary condition

n(0, t) = 2 n(2π, t) . (1.16)

The model (1.15) and (1.16), with u(t) = 0, belongs to the model class of age-
structured population models, based on the well-known von Foerster–McKendrick
models [6, 17], which are widely used to study cell cycle-related processes. The
distribution of cells q(x, t) = n(x, t)/N (t), obtained by normalizing the number
density with the total cell number N (t) = ∫ 2π

0 n(x, t)dx admits a time-invariant
distribution

q̄(x) = 2γ e−γ x , (1.17)

where γ = log 2
Td

is the growth rate of the population [21].
We further define the k-th circular moment of some distribution ρ as

mk(ρ(·, t)) =
∫ 2π

0
eikxρ(x, t)dx . (1.18)

By omitting the argument in (1.18), we refer to the complex numbermk = reikφ , r ∈
[0, 1],φ ∈ S1, obtained by evaluatingmk(ρ(·, t))with some specified distribution. In
a synchronized population corresponding to a Dirac delta distribution, the length of
the first circularmoment |m1| = r is equal to one. The control problem to synchronize
(or balance) the agents in the population can now be stated as:

Problem 1.1 Given the system defined by (1.15) and (1.16), find a control input u,
such that |m1(q(·, t))| → 1(or 0).

1.3 Results

We will first elaborate how to choose an output function h such that it is connected
to our goal of synchronizing (or balancing) the population of agents. At the same
time, the mapping H1 is passive under this choice of output and by applying a strictly
passive controller H2 in the control approach of Fig. 1.1, we conclude that y ∈ L .We
will then study invariance properties and conditions of our system under the proposed
control law. An interpretation of this result along with some further considerations
indicate that the control law indeed synchronizes (or balances) the population of
agents, thereby solving Problem 1.1.
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1.3.1 Enabling Passivity-Based Controller Design

The controller design based on the theory of passive systems benefits from a sys-
tem model for which the control objective remains constant whenever u = 0. This
property is not met by the model (1.15). In the following section, we propose state
transformations n(x, t) → p(x, t) such that |m1(p(·, t))| remains constant when-
ever u = 0. The first transformation employing (1.17) eliminates the discontinuity
at the boundary by defining ñ(x, t) = n(x, t)/q̄(x), resulting in

∂t ñ(x, t)+ ∂x (κ(x, u)ñ(x, t)) = γ κ(x, u)ñ(x, t) , ñ(0, t) = ñ(2π, t) . (1.19)

Next, we define p(x, t) = ñ(x, t)/
∫ 2π
0 ñ(x, t)dx which is a proper probability dis-

tribution with PDE

∂t p(x, t) + ∂x (κ(x, u)p(x, t)) = uγ p(x, t)

(
Z(x) −

∫ 2π

0
Z(x)p(x, t)dx

)
,

p(0, t) = p(2π, t) .

(1.20)

The system (1.20) has now the favorable properties that facilitate the feedback
approach for synchronization of the population: (1) p(x, t) is a proper probability
distribution, (2) p(x, t) is smooth over the boundary, and (3) the length of the first
circular moment |m1(p(·, t))| remains constant whenever u = 0. Furthermore, if
|m1| = 1, then the agents are synchronized.

1.3.2 Synchronization of the Population

With the model (1.20) given, it remains to define an appropriate output and a suitable
output feedback control lawwhich synchronizes the population. Thiswill be achieved
by choosing the output y = h(p(·, t)) such that: (1) y = 0 whenever the population
is synchronized, and (2) the map H1 : u 	→ y is passive. As synchrony is equivalent
to |m1| = 1, we first study the time derivative of |m1(p(·, t))| evolving under (1.20),
viz.

d

dt
|m1(p(·, t))| =

(
(γ + i)m−1

∫ 2π

0
eix Z(x)p(x, t)dx

− 2γm1m−1

∫ 2π

0
Z(x)p(x, t)dx + (γ − i)m1

∫ 2π

0
e−ix Z(x)p(x, t)dx

)
u .

(1.21)
In the following, we define d p(x) = d(p(·, t), x) with
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d(p(·, t), x) =
1∑

l=−1

dl e
ilx ,

d−1 = (γ − i)m1 , d0 = −2γm1m−1 , d1 = (γ + i)m−1 .

(1.22)

This leads to a more practical representation of (1.21) in terms of the inner product

d

dt
|m1(p(·, t))| = 〈Z , d p p(·, t)〉 u , (1.23)

which is zero whenever u = 0. Thus, by choosing the output as

h(p(·, t)) = 〈Z , d p p(·, t)〉 , (1.24)

we arrive at the following observations.

Lemma 1.1 The system H1 given by (1.9) with output (1.24) and internal dynamics
(1.20) is passive.

Proof Following the definition of [4], the system is passive if 〈y, u〉T ≥ β, ∀u ∈ Le,
∀T ∈ R

+. We constructed y such that

〈y, u〉T =
∫ T

0
y(t)u(t)dt =

∫ T

0

d

dt
|m1(p(·, t))| dt = |m1(p(·, T ))|−|m1(p(·, 0))|

and as the norm of the first circular moment of a probability distribution is upper
bounded by 1, we can choose β = −1. �

Theorem 1.1 If the output feedback u(t) = −y(t) is chosen for system H1 and the
output y(t) is given by (1.24), y(t) converges to zero.

Proof The result follows directly from the basic passivity theorem given in [4],
namely that the output of a passive system H1 lies in L if the output is fed back
through a strictly passive system H2. By Lemma 1.1, H1 is a passive system. Further,
we chose H2 as the identity function H2x = x , which indeed is strictly passive, and
y ∈ L . With y being uniform continuous we know from Barbalat’s Lemma, that
y(t) → 0, thereby concluding the proof. �

Next, we study the invariance properties of our system having zero output. Our study
is based on the properties of Fourier series and the Fourier coefficients of Z , d p, and
p(·, t) in (1.24). The Fourier series of a function F : x 	→ F(x) in any 2π -interval is
F(x) = ∑∞

k=−∞ akeikx with Fourier coefficients ak = 1
2π

∫ 2π
0 e−ikx F(x) dx . To keep

the notation in accordance with the definition of the circular moments in (1.18), we
introduce a modified series representation with F(x) = ∑∞

k=−∞
bk
2π e

−ikx and altered

coefficients bk = ∫ 2π
0 eikx F(x)dx . A distribution p(·, t) is contained in a forward

invariant set in E = {p : h(p) = 0} if and only if h(p(·, t + τ)) = 0, ∀τ ≥ 0. The
modified series representation leads to the following lemma:
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Lemma 1.2 Let ck , dk , and mk be the coefficients of Z, d p and p(·, t), respectively.
Then E is invariant if and only if

kckνk = 0 , ∀k ∈ Z , (1.25)

with νk = ∑1
l=−1 dlmk−l .

Proof Due to the periodicity of the cell cycle we know that E is in an invariant set if
and only if h(p(·, t + τ)) = 0, ∀τ ∈ [0, T ], which is due to the constant propagation
(u = 0) of p(x, t) with dx

dt = ω equal to h(pωτ (·, t)) = h(pσ (·, t)) = 0, ∀σ ∈
[0, 2π ], where we define pσ (x, t) = p(x −σ, t). We will use this notation to denote
a shift in x also for Z later on. If h(pσ (·, t)) = 0, then this is also true for its derivative
d
dt h(pσ (·, t)) resulting in the following condition for invariance

d

dt
〈Z , d pσ pσ (·, t)〉 = 0 , ∀σ ∈ [0, 2π ] . (1.26)

The derivative is obtained by employing the identity from the PDE (1.20) with u = 0:
∂t p(x, t) = −ω∂x p(x, t) and subsequently integrating by parts. Furthermore, the
shift in x is transferred to the PRC by a change of variables x = ξ + σ , changing
(1.26) to

〈 d

dx
Z−σ , d p p(·, t)〉 = 0 , ∀σ ∈ [0, 2π ] . (1.27)

The last steps of the proof are: (1) substituting p(·, t) and Z−σ with its modified
Fourier series and (2) employing Parseval’s theorem. With (ck)k being the coeffi-
cients of Z , the coefficients of the argument shifted derivative dZ−σ /dx in (1.27)
are

(−ike−ikσ ck
)
k . The function d

p has Fourier coefficients d−1, d0, d1, and all other
coefficients equal zero. The product d p p(·, t) has modified coefficients (νk)k . By
Parseval’s theorem, the inner product in (1.27) equals the sum of its coefficients

〈 d

dx
Z−σ , d p p(·, t)〉 = −i

(2π)2

∞∑
k=−∞

e−ikσ kckνk (1.28)

which can be written as inner product, and therefore the condition for invariance is

〈(e−ikσ )k, (kckνk)k〉 = 0 , σ ∈ [0, 2π ] , k ∈ Z . (1.29)

The series
(
e−ikσ

)
k are basis functions of a complete orthogonal basis, hence the

inner product (1.29) is zero if and only if kckνk = 0, ∀k ∈ Z. This equals (1.25),
thereby concluding the proof of Lemma 1.2. �
With Lemma 1.2 at hand, we can identify conditions on the phase response curve Z ,
such that the synchronized and balanced population are the only invariant ones.

Theorem 1.2 If the the output feedback u(t) = −y(t) is chosen for system H1 and
the output y(t) is given by (1.24), then
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M0 = {p : |m1(p)| = 0} ,

M1 = {p : |m1(p)| = 1}

are invariant sets in E. Furthermore, if the first moment of Z is not equal to zero,
i.e., c1 �= 0, then no other invariant set exists.

Proof By Lemma 1.2, invariance of E requires Eq. (1.25) to be fulfilled. Invariance
of M0 and M1 is then verified by showing that νk = 0, ∀k ∈ Z. As |m1| = 0
implies m1 = m−1 = 0, (1.25) is trivially met, and M0 is invariant. If |m1| = 1,
then all moments have length one and mk = eikφ . All terms in νk cancel out, hence
M1 is invariant. To conclude the proof of Theorem 1.2 we verify that c1 = 0 is
a necessary condition for (1.25) by showing that ν1 �= 0 whenever |m1| /∈ {0, 1}.
m1 and m−1 are again represented as complex numbers. Furthermore p(·, t) is a
probability distribution with m0 = 1 by definition and we get

ν1 = r
(
e−iφ (γ + i) + eiφ ((γ − i)m2 − 2γ r)

)
. (1.30)

From |m1| = r �= 0, e−iφ and eiφ are orthogonal and γ > 0 by definition, it follows
that ν1 �= 0. Hence, M0 and M1 are the only invariant sets in E if c1 �= 0. �

We will now discuss some aspects regarding the convergence to a synchronized
(or balanced) population, given that the first moment of the phase response is not
equal to zero. If the output is given by (1.24) and the output feedback u(t) = −ε y(t),
ε > 0, is chosen for system H1, then

d

dt
|m1(p(·, t))| = −ε h(p(·, t))2 ≤ 0 , ∀t ≥ 0 , (1.31)

and |m1(p(·, t))| decreases monotonically. Furthermore, the average of (1.31) over
one period is strictly monotonically decreasing whenever |m1| /∈ {0, 1}. These obser-
vations suggest that |m1(p(·, t))| approaches M0 from almost all initial conditions
and the population is balanced. Synchronization of the population is achieved by sign
reversal of the output function y(t) = −h(p(·, t)) and the sameoutput feedback. Sign
reversal of the output preserves passivity of the system and by d

dt |m1(p(·, t))| ≥ 0,
p approaches M1 and a synchronized distribution is achieved.

Remark 1.1 Theorems 1.1 and 1.2 and the fact that an attractive set becomes a
repelling set by sign reversal, strongly suggest that the population with output (1.24)
and control input u(t) = ε y(t) converges to a Dirac delta distribution. However, due
to topological reasons, analysis of convergence of p(·, t) is difficult and beyond the
scope of the present study.
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1.4 Example

We conclude by demonstrating the developed control methodology on the reduced
phase model (1.20). The underlying ODE model is a 5-state skeleton model of a
mammalian cell cycle [7].Weextended themodel by an additive input to the dynamics
of Cyclin A

ẋCycA = fCycA(x) + 1.6 (α − xCycA)

0.1 + α − xCycA
u(t) . (1.32)

The input can be thought of, for e.g., an optogenetic signal causing a direct induction
of Cyclin A expression with the total amount of Cyclin A being upper bounded
by α. The phase response curve Z was obtained by solving the appropriate adjoint
equation using the dynamic modeling program XPPAUT [5]. We take u according
to Theorem 1.1 and simulated both the synchronizing and balancing scenario with
h as defined in (1.24). The results are depicted in Fig. 1.3. In the synchronizing
scenario, one observes how the first moment approaches the unit circle, indicating
that the distribution of cells indeed converges to the Dirac distribution. This can also
be observed in the simulation snapshots. By sign reversal of the output and starting
with an imbalanced cell density, we further see that this process is reversed and the
population approaches a uniform distribution.
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Fig. 1.3 Simulation of (1.20) derived from a 5-state cell cycle model with both a synchronizing
(top) and a balancing (bottom) controller. On the left: temporal evolution of the first circularmoment
m1 in the complex plane. On the right: snapshots of the cell density over the cell cycle position
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1.5 Conclusion and Outlook

We studied the ensemble control problem of synchronizing a cell population in their
cell cycle with restriction of the observation to representative samples of the pop-
ulation. Starting with a single cell as oscillator on a limit cycle, we developed a
reduced phase model of the population with a broadcast input acting via the phase
response curve. We then proposed state transformations for the age-structured pop-
ulation type model which enable controller design in the input-output framework
for passive systems. Formulating the control problem in terms of the first circular
moment of the population led to the desired output feedback which synchronizes the
population. Finally, we derived sufficient conditions on the phase response curve for
the synchronization of the population. We concluded by illustrating the controller
action on a model of the mammalian cell cycle.

The present study solves the ensemble control problem of cell cycle synchroniza-
tion by sending the first circular moment to one. However, we believe, that the here
presented approach might be suitable to achieve any desired moment-determinate
distribution by steering the circular moments of the population to the corresponding
values of the target distribution.
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