
19© Springer International Publishing AG, part of Springer Nature 2018 
A. Kelly et al. (eds.), Evidence-Based Emergency Imaging, Evidence-Based Imaging,  
https://doi.org/10.1007/978-3-319-67066-9_2

Critically Assessing the Literature 
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and Kimberly E. Applegate

Evidence-based imaging (EBI) requires the criti-
cal assessment and application of the best avail-
able evidence to patient imaging. Unfortunately, 
the published studies that comprise the available 
evidence are often limited by bias, small sample 
size, and methodological inadequacy. Further, 
the information provided in published reports 
may be insufficient to allow estimation of the 
quality of the research. Initiatives by journal edi-
tors to improve the reporting of research studies, 
including the CONSORT [1], STARD [2], 
SQUIRE [3], and others, provide useful guides 
but are incompletely implemented.

The objective of this chapter is to summarize 
the common sources of error and bias in the 
imaging literature to guide the critical assessment 
required for EBI.

�What Are Error and Bias?

Errors in the medical literature can be divided 
into two main types. The first is random error 
that occurs due to chance variation causing a 
sample to be different from the underlying popu-
lation. Random error will tend to be more impor-
tant when sample size is small. Systematic error, 
or bias, is an incorrect study result due to nonran-
dom distortion of the data. Systematic error is not 
affected by sample size but rather is a function of 
flaws in the study design, data collection, or anal-
ysis. A second way to think about random and 
systematic error is in terms of precision and accu-
racy [4]. Random error affects the precision of a 
result. Using the bull’s eye analogy, precision is 
how close the measurements are to each other 
(Fig.  2.1). Higher precision indicates relatively 
less random error and more likelihood that two 
samples from truly different populations will be 
differentiated from each other. Systematic error 
on the other hand is a distortion in the accuracy of 
an estimate. Regardless of precision, the underly-
ing estimate is flawed by some aspect of the 
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research procedure. Using the bull’s eye analogy, 
in systematic error regardless of the sample size, 
the bias would not allow the researcher to hit the 
center of the target (Fig. 2.1).

�What Is Random Error?

Random error is divided into two main types: 
Type I, or alpha error, is when the investigator 
concludes that an effect or difference is present 
when in fact there is no true difference, and Type 
II or beta error occurs when an investigator con-
cludes that there is no effect or no difference 
when in the underlying population, a true differ-
ence exists [4].

�Type I Error

Quantification of the likelihood of alpha error is 
provided by the familiar p-value. A p-value of 
less than 0.05 indicates that there is a less than 
5% chance that the observed difference in a sam-
ple would be seen if there was in fact no true dif-
ference in the population. In fact, the difference 

observed in a sample is due to chance variation 
rather than a true underlying difference in the 
population. It is important to remember that at a 
p-value of 0.05, we will still draw incorrect con-
clusions (make Type I errors) in 5 of 100 cases.

A second limitation of the ubiquitous p-value is 
that p-values are a function of both sample size 
and magnitude of effect. In other words, there 
could be a very large difference between two 
groups under study, but the p-value might not be 
significant if the sample sizes are small. Conversely, 
there could be a very small, clinically unimportant 
difference between two groups of subjects or 
between two imaging tests, but with a large enough 
sample size, even this clinically unimportant result 
would be statistically significant. Because of these 
limitations, many journals are underemphasizing 
use of p-values and encouraging research results to 
be reported by way of confidence intervals [5].

�Confidence Intervals

Confidence intervals are preferred because they 
provide much more information than p-values. 
Confidence intervals provide information about 

Fig. 2.1  Random and systemic error. Using the bull’s-eye 
analogy, the larger the sample size, the less the random 
error and the larger the chance of hitting the center of the 
target. In systemic error, regardless of the sample size, the 
bias would not allow the researcher to hit the center of the 
target. Left: High random error and low sample size leads 
to low precision. Middle: Low random error and high 
sample size leads to high precision. Right: High precision 

can be accompanied by low accuracy if systematic error 
(bias) is present. (Reprinted with kind permission of 
Springer Science + Business Media from Blackmore CC, 
Medina LS, Ravenel JG, Silvestri GA. Critically Assessing 
the Literature: Understanding Error and Bias. In Medina 
LS, Blackmore DD (eds): Evidence-Based Imaging: 
Optimizing Imaging in Patient Care. New York: Springer 
Science + Business Media, 2006.)
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the precision of an estimate (how wide are the 
confidence intervals), the size of any effect (mag-
nitude of the confidence intervals), and the statis-
tical significance of an estimate (whether the 
intervals include the null) [6].

In general, you can be 95% certain that the 
confidence interval (CI) includes the true popula-
tion mean. More precisely, if you generate many 
95% CI from many data sets, you can expect that 
the CI will include the true population mean in 
95% of the cases and not include the true mean 
value in the other 5% [5]. Therefore, if the 95% 
CI interval does not include the null, then the 
results will be statistically significant at the 0.05 
level [7]. Whereas the p-value is only interpreted 
as being either statistically significant or not, the 
CI has the advantage of providing the range of 
probable values and allows the reader to under-
stand not just the statistical significance but also 
the magnitude of any effect [7, 8]. CIs shift the 
interpretation from a qualitative judgment about 
the role of chance to a quantitative estimation of 
the biologic measure of effect [5, 7, 8].

Confidence intervals can be constructed for 
any desired level of confidence. There is nothing 
magical about the 95% that is traditionally used, 
except that it is consistent with the traditional 
p  <  0.05 threshold. If greater confidence is 
needed, then the intervals can be wider (i.e., 
99%) or narrower (i.e., 90%) if less confidence 
is  sufficient. The trade-off is that wider CIs 
are  associated with greater confidence but less 
precision [5].

As an example, two hypothetical transcranial 
circle of Willis vascular ultrasound studies in 
patients with sickle-cell disease describe mean 
peak systolic velocities of 200  cm/s associated 
with 70% of vascular diameter stenosis and 
higher risk of stroke. Both articles reported the 
same standard deviation (SD) of 50 cm/s. At first 
glance, both articles appear to provide similar 
information. However, the size of the confidence 
interval is a function of the sample size, with 
narrower confidence intervals for the larger 
study reflecting greater precision. In the smaller 
series, the 95% CI was 186–214 cm/s, while in 
the larger series, the 95% CI was narrower, at 
196–204 cm/s [5].

�Type II Error

The familiar p-value does not provide informa-
tion as to the probability of a Type II or beta error. 
A p-value greater than 0.05 does not necessarily 
mean that there is no difference in the underlying 
population. The size of the sample studied may 
be too small to detect an important difference 
even if such a difference does exist. The ability of 
a study to detect an important difference, if that 
difference does in fact exist in the underlying 
population, is called the power of a study. Power 
analysis can be performed in advance of a 
research investigation to avoid Type II error.

�Power Analysis

Power analysis plays an important role in deter-
mining what an adequate sample size is, so that 
meaningful results can be obtained [9]. Power 
analysis is the probability of observing an effect 
in a sample of patients if the specified effect size, 
or greater, is found in the population [4]. 
Mathematically, power is defined as 1 minus β 
(beta), where β is the probability of having a Type 
II error. Type II errors are commonly referred to 
as false negatives in a study population. The other 
type of error is Type I or α (alpha), also known as 
false positives in a study population [7]. For 
example, if β is set at 0.10, then the researchers 
acknowledge they are willing to accept a 10% 
chance of missing a correlation between abnor-
mal CT angiographic finding and the diagnosis of 
carotid artery disease. This represents a power of 
1 minus 0.10, or 0.90, which represents a 90% 
probability of finding a correlation of this 
magnitude.

Ideally, the power should be 100% by setting 
β at 0. In addition, ideally, α should also be 0. By 
accomplishing this, false-negative and 
false-positive results are eliminated, respectively. 
In practice, however, powers near 100% are 
rarely achievable, so, at best, a study should 
reduce the false negatives β and false positives α 
to a minimum [4, 10]. Achieving an acceptable 
reduction of false negatives and false positives 
requires a large subject sample size. Optimal 
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power, α and β, settings are based on a balance 
between scientific rigorousness, and the issues of 
feasibility and cost. For example, assuming an α 
error of 0.10, your sample size increases from 96 
to 118 subjects per study arm (carotid and non-
carotid artery disease arms) if you change your 
desired power from 85% to 90%, respectively 
[11]. Studies with more complete reporting and 
better study design will often report the power of 
the study, for example, by stating that the study 
has 90% power to detect a difference in sensitiv-
ity of 10% between CT angiography and Doppler 
ultrasound in carotid artery disease. Unfortunately, 
power calculations are often lacking, and it is left 
to the reader to determine if a study has sufficient 
power to interpret if a high p-value is actually an 
indication that a difference does not exist.

�What Is Bias?

The risk of an error from bias decreases as the 
rigorousness of the study design and analysis 
increases. Randomized controlled trials are con-
sidered the best design for minimizing the risk of 
bias because patients are randomly allocated. 
This random allocation allows for unbiased dis-
tribution of both known and unknown confound-
ing variables between the study groups. However, 
as described below, even randomized clinical tri-
als are susceptible to some forms of bias. In non-
randomized studies, appropriate study design and 
statistical analysis can only control for known or 
measurable bias.

Detection of and correction for bias or system-
atic error in research is a vexing challenge for 
both researchers and users of the medical litera-
ture alike. Maclure and Schneeweiss have identi-
fied 10 different levels at which biases can distort 
the relationship between published study results 
and truth [12]. Unfortunately, bias is common in 
published reports [13], and reports with identifi-
able biases often overestimate the accuracy of 
diagnostic tests [14]. It is not uncommon for the 
initial reports on an imaging test to be enthusias-
tic in the results, but biased in the methods. 
Subsequent, more rigorous investigation will 
often refute, or at least diminish the purported 
effectiveness of a procedure. Careful surveillance 

for each type of bias is critical but may be a chal-
lenge. Well-reported studies will often include a 
section on limitations of the work, spelling out 
the potential sources of bias that the investigator 
acknowledges from a study as well as the likely 
direction of the bias and steps that may have been 
taken to overcome this. However, the final deter-
mination of whether a research study is suffi-
ciently distorted by bias to be unusable is left to 
the discretion of the user of the imaging litera-
ture. The imaging practitioner must determine if 
results of a particular study are true, are relevant 
to a given clinical question, and are sufficient as a 
basis to change practice [15].

A common type of bias encountered in imag-
ing research is that of selection bias [15]. Because 
a research study cannot include all individuals in 
the world who have a particular clinical situation, 
research is conducted on samples. Selection bias 
can arise if the sample is not a true representation 
of the relevant underlying clinical population 
(Fig. 2.2). Numerous subtypes of selection bias 
have been identified, and it is a challenge to the 
researcher to avoid all of these biases when per-
forming a study. One particularly severe form of 
selection bias occurs if the diagnostic test is 
applied to subjects with a spectrum of disease 
that differs from the clinically relevant group. 
The extreme form of this spectrum bias occurs 
when the diagnostic test is evaluated on subjects 
with severe disease who are then compared to 
normal controls. In an evaluation of the effect of 
bias on study results, Lijmer found the greatest 
overestimation of test accuracy with this type of 
spectrum bias [14]. Selection bias is a particular 
challenge in nonrandomized studies.

A second frequently encountered bias in 
imaging literature is that of observer bias [16, 
17], also called test-review bias and diagnostic-
review bias [18]. Imaging tests are often 
subjective. The radiologist interpreting an imag-
ing study forms an impression based on the 
appearance of the image, not based on an objec-
tive number or measurement. This subjective 
impression can be biased by numerous factors 
including the radiologist’s experience; the con-
text of the interpretation (clinical vs. research set-
ting); the information about the patient’s history 
that is known by the radiologist; the incentives 
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that the radiologist may have, both monetary and 
otherwise, to produce a particular report; and the 
memory of a recent experience. But because of 
all these factors, it is critical that the interpreting 
physician be blinded to the outcome or gold stan-
dard when a diagnostic test or intervention is 
being assessed. Important distortions in research 
results have been shown and observers are 
blinded vs. not blinded. For example, Schulz 
showed a 17% greater risk reduction in studies 
with unblinded assessment of outcomes versus 
those with blinded assessment [19]. In order to 
obtain objective scientific assessment of an imag-
ing test, all readers should be blinded to other 
diagnostic tests and final diagnosis, and all 
patient-identifying marks on the test should be 
masked. Basically, the research setting should 
replicate clinical practice as closely as possible. 
Since the diagnosis is not known when an imag-
ing test is interpreted in clinical practice, it should 
not be known in the research setting. Observer 
bias is important for both randomized and non-
randomized studies.

Bias can also be introduced by the reference 
standard used to confirm the final diagnosis, 
called verification bias. First, the interpretation of 

the reference standard must be made without 
knowledge of the test results. Reference stan-
dards, like the diagnostic tests themselves, may 
have a subjective component and therefore may 
be affected by knowledge of the results of the 
diagnostic test. In addition, it is critical that all 
subjects undergo the same reference standard. 
The use of different reference standards (called 
differential reference standard bias) for subjects 
with different diagnostic test results may falsely 
elevate both sensitivity and specificity [14, 17]. 
Of course, sometimes it is not possible or ethical 
to perform the same reference standard proce-
dure on all subjects. For example, in a meta-
analysis of imaging for appendicitis, Terasawa 
found that all of the identified studies used a dif-
ferent reference standard for subjects with 
positive imaging (appendectomy and pathologi-
cal evaluation) than for those with negative imag-
ing (clinical follow-up). It simply wouldn’t be 
ethical to perform appendectomy on all subjects. 
Likely, the sensitivity and specificity of imaging 
for appendicitis was overestimated as a result 
[20]. Verification bias and differential reference 
standard bias are important in both randomized 
and nonrandomized studies.

Fig. 2.2  Population and sample. The target population 
represents the universe of subjects who are at risk for a 
particular disease or condition. In this example, all sub-
jects with abdominal pain are at risk for appendicitis. The 
sample population is the group of eligible subjects avail-
able to the investigators. These may be at a single center 
or group of centers. The sample is the group of subjects 
who are actually studied. Selection bias occurs when the 
sample is not truly representative of the study population. 
How closely the study population reflects the target popu-

lation determines the generalizability of the research. 
Finally, statistics are used to determine what inference 
about the target population can be drawn from the sample 
data. (Reprinted with kind permission of Springer 
Science + Business Media from Blackmore CC, Medina 
LS, Ravenel JG, Silvestri GA.  Critically Assessing the 
Literature: Understanding Error and Bias. In Medina LS, 
Blackmore DD (eds): Evidence-Based Imaging: 
Optimizing Imaging in Patient Care. New York: Springer 
Science + Business Media, 2006.)

2  Critically Assessing the Literature for Evidence-Based Imaging: Understanding Error and Bias



24

�What Are the Inherent Biases 
in Screening?

Investigations of screening tests are susceptible to 
an additional set of biases. Screening trials are 
vulnerable to healthy volunteer bias. For exam-
ple, in the Prostate, Lung, Colorectal, and Ovarian 
Screening Trial, the individuals who volunteered 
to undergo screening were generally healthier and 
had lower mortality than the general population, 
even before the screening began. Hence, compar-
ing only those who actually undergo screening to 
those randomized not to be invited to be screened 
will cause falsely elevated estimates of screening 
effectiveness. This bias can be avoided by includ-
ing all of those invited to be screened, not just 
those who actually undergo screening [21]. Case-
control studies are particularly problematic for 
screening, as screening is a choice in these stud-
ies, and people who present for elective screening 

tend to have better health habits [22]. In assessing 
the exposure history of cases, including the test on 
which the diagnosis is made, regardless of whether 
it is truly screen or symptom detected, can lead to 
an odds ratio greater than 1 even in the absence of 
benefit [23]. Similarly, excluding the test on 
which the diagnosis is made may underestimate 
screening effectiveness. The magnitude of bias is 
further reflected in the disease preclinical phase; 
the longer the preclinical phase, the greater the 
magnitude of the bias.

Prospective nonrandomized screening trials 
perform an intervention on subjects, such as screen-
ing for lung cancer, and follow them for many 
years. These studies can give information of the 
stage distribution and survival from diagnosis of a 
screened population; however, these measures do 
not allow an accurate comparison to an unscreened 
group due to lead time, length time, and overdiag-
nosis bias [24] (Fig.  2.3). Lead time bias results 

Fig. 2.3  Screening biases. For this figure, cancers are 
assumed to grow at a continuous rate until they reach a 
size at which death of the subject occurs. At a small size, 
the cancers may be evident on screening but not yet evi-
dent clinically. This is the preclinical screen detectable 
phase. Screening is potentially helpful if it detects cancer 
in this phase. After further growth, the cancer will be clin-
ically evident. Even if the growth and outcome of the can-
cer is unaffected by screening, merely detecting the cancer 
earlier will increase apparent survival. This is the screen-
ing lead time. In addition, slower growing cancers (such 

as C) will exist in the preclinical screen detectable phase 
for longer than faster growing cancers (such as B). 
Therefore, screening is more likely to detect more indo-
lent cancers, a phenomenon known as length bias. 
(Reprinted with kind permission of Springer 
Science + Business Media from Blackmore CC, Medina 
LS, Ravenel JG, Silvestri GA.  Critically Assessing the 
Literature: Understanding Error and Bias. In Medina LS, 
Blackmore DD (eds): Evidence-Based Imaging: 
Optimizing Imaging in Patient Care. New York: Springer 
Science + Business Media, 2006.)
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from the earlier detection of the disease which 
leads to longer time from diagnosis and an appar-
ent survival advantage but does not truly impact the 
date of death. In effect, individuals live longer with 
the disease as diagnosis is made earlier, but still die 
at the same age. Length time bias relates to the 
virulence of tumors. More indolent or slowly grow-
ing tumors will persist longer at a size that can be 
detected by screening but is not yet clinically evi-
dent (referred to as the preclinical screen detectable 
phase) longer than faster-growing tumors that are 
more likely to be detected by symptoms. Thus, 
screen-detected tumors will tend to be less aggres-
sive even at the same size, when compared to clini-
cally detected tumors. This disproportionally 
assigns more indolent disease to the intervention 
group in screening trials and results in the appear-
ance of a benefit. Overdiagnosis is the most extreme 
form of length time bias in which a disease is 
detected and “cured” but is so indolent it would 
never have caused symptoms during life and there-
fore, in the absence of screening, would never have 
been diagnosed. Thus, survival from diagnosis 
alone is not an appropriate measure of the effec-
tiveness of screening [25].

For this reason, a randomized control trial 
(RCT) with disease-specific mortality as an end-
point is the preferred methodology. Randomization 
should even out the selection process in both 
arms, eliminating the bias of case-control studies 
and allow direct comparison of groups who were 
invited to undergo the intervention and those who 
were not, to see if the intervention lowers deaths 
due to the target disease. The disadvantage of the 
RCT is that it takes many years and is expensive 
to perform. There are two additional biases that 
can occur in RCTs and are important to under-
stand: sticky diagnosis and slippery linkage [26]. 
Because the target disease is more likely to be 
detected in a screened population, it is more likely 
to be listed as a cause of death, even if not the true 
cause. As such, the diagnosis “sticks” and tends to 
underestimate the true value of the test. On the 
other hand, screening may set into motion a series 
of events in order to diagnose and treat the illness. 
If these procedures remotely lead to mortality, say 
a myocardial infarction during surgery with death 
several months later, the linkage of the cause of 
death to the screening may no longer be obvious 
(slippery linkage). Because the death is not appro-

priately assigned to the target disease, the value of 
screening may be overestimated. For this reason, 
in addition to disease-specific mortality, all-cause 
mortality should also be evaluated in the context 
of screening trials [26].

Because of these biases in screening trials, it 
important not to focus on irrelevant metrics, 
including survival, test sensitivity, disease preva-
lence, and detection of early stage disease. All of 
these are susceptible to bias that may make an 
ineffective screening test appear effective. Only 
disease-specific and all-cause mortality reduction 
(from invitation to screen or intention to treat 
analysis) are valid as measures of the effective-
ness of screening trials [27].

�Qualitative Literature Summary

The potential for error and bias makes the pro-
cess of critically assessing a journal article com-
plex and challenging, and no investigation is 
perfect. Producing an overall summation of the 
quality of a research report is difficult. However, 
there are grading schemes that provide a useful 
estimation of the value of a research report for 
guiding clinical practice. The method used in this 
textbook is derived from that of Kent [28] and is 
shown in Table 2.1. Use of such a grading scheme 
is by nature an oversimplification. However, such 
simple guidelines can provide a useful quick 
overview of the quality of a research report.

Table 2.1  Evidence classification for evaluation of a 
study

Level 1—Strong evidence:
Studies with broad generalizability to most patients 
suspected of having the disease of concern: a 
prospective, blinded comparison of a diagnostic test 
result with a well-defined final diagnosis in an 
unbiased sample when assessing diagnostic accuracy 
or blinded randomized control trials when assessing 
therapeutic impact or patient outcomes. Well-designed 
meta-analysis based on level 1 or 2 studies.

Level 2—Moderate evidence:
Prospective or retrospective studies with narrower 
spectrum of generalizability, with only a few flaws that 
are well described so their impact can be assessed but 
still requiring a blinded study of diagnostic accuracy 
on an unbiased sample. This includes well-designed 
cohort or case-control studies and randomized trials 
for therapeutic effects or patient outcomes.

(continued)
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�Conclusion

In summary, critical analysis of a research publi-
cation can be a challenging task. The reader must 
consider the potential for Type I and Type II ran-
dom error as well as systematic error introduced 
by biases including selection bias, observer bias, 
and reference standard bias. Screening includes 
an additional set of challenges related to the 
healthy volunteer effect, lead time, length bias, 
and overdiagnosis.
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