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Abstract In this study, we address the multi-document summarization challenge.
We proposed a summarizer application that implements three well-known
multi-document summarization techniques; Topic-word summarizer, LexPageRank
summarizer and Centroid summarizer. The contribution in this study is demonstrated
by proposing a fourth summarization technique that is built on the previous acquired
knowledge and experiments performed on the previously mentioned summarization
techniques. Evaluating the system-generated summaries is performed using ROUGE
[1], results showed that the new summarizer outperforms the other summarization
techniques, and it takes a relatively short time to generate summaries comparing to
other summarizers. However, LexPageRank summarizer evaluation performed better
than the new summarizer evaluation, the cost of achieving a better evaluation
using this technique was the time needed to generate the summaries, LexPageRank
summarizer needs a long time to generate summaries comparing to other summa-
rizers. In this study, DUC04 is used as a corpus in testing and implementing the
proposed application.

1 Introduction

The massive size of textual data that exits online, and the huge number of docu-
ments that are available offline within various bodies of organizations raised the
need to find effective techniques to extract the important information out of this
enormous number of online and offline documents.
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IR systems usually retrieve several number of documents that are related to the
user query input, some other systems contain a document relevancy-assessment
sub- system that retrieves several documents that are related to a user query. It is
usual that the result of a query is hundreds of related documents. If we want to
extract the informative text out of these documents, we will need an automatic
summarizer. If we use a single document summarizer then it will most likely
generate very similar summaries from the retrieved documents since most of them
contain similar textual information. Here comes the benefit of using a
multi-document summarizer, which will use the shared information that exist in the
similar documents only once and then it will focus on the unique information that is
spread in the cluster of the summarized documents.

2 Background

What is text summarization?
Text Summarization is generating a short text from a source longer text, while

maintaining the main informative sentences of the source text or document. Text
summarization methods can be classified into two types; abstractive summary and
extractive summary.

2.1 Abstractive Summary

Abstractive summary is generating a summary depending on understanding the
main concepts and information that exists in the source text. Abstract summa-
rization uses Linguistics tools to examine and understand the text, these tools are
used also to search for new expressions and concepts related to the information
content in the source text, these expressions and concepts will be used to generate a
short summary [2, 4]. In other words, Abstractive summary is about understanding
the original text and generate a shorter version of it using other words.

The main problem in Abstractive summaries involves in the representation of the
information that lies beneath the source text. The main concept of the abstractive
summary is to understand the source text and then re-phrase it using new concepts
and expressions. This task depends on the representation of the source text, which
reflects the system understanding of the text content, the capability of generating a
descent summary depends on the system’s ability to capture the representation of
the source text. It is known that until now, there are no systems that have an
acceptable ability to understand natural language. Thus, abstractive summaries
development is directly affected by improving the technology of intelligent
under-standing of natural language [5].
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2.2 Extractive Summary

This type of summaries depends on extracting key words or sentences from the
original text using statistical methods to determine key text segments [6]. Extractive
systems usually perform analysis for different surface level features such as term
frequency, inverse document frequency, word location in the text, and indicators
that point to the text segments that should be extracted [5, 6].

Extractive summary systems identify the most important text segments (word,
sentence or paragraph) using two approaches: (1) by identifying the most frequent
segment in the source text or (2) by being located in the most preferable position in
the source text [6]. These approaches guarantee the simplicity of the extractive
summary systems compared to the abstractive summary systems in both imple-
mentation and conceptual prospective [5].

Generating extractive summary includes two major stages [7]: (1) the prepro-
cessing stage, and (2) the processing stage.

In the preprocessing stage, text is examined and analyzed by applying the
following steps: firstly, the sentences boundary is identified. Different languages
have different sentences boundaries, in English language, for example, the sentence
boundary is identified by the dot at the end of the sentence. Secondly, removing
stop-words that exist in the source text and removing any word with no semantics
or words that do not represent relative information to the summary targeted content.
Finally, stemming the words in the text; generating stems will insures the validation
of the words semantics [7].

In the processing stage, features that determine the relevancy of sentences are
chosen and computed, and then they are weighted using specific weight methods
and equations. The sentences are given scores; the highest scored sentences will be
added to the final summary [5].

Extractive text summaries have some drawbacks [8, 9]: (1) Extractive text
summaries generally extract long sentences, which includes unnecessary or extra
parts, this usually shrinks the available space allocated to more informative text
segments which includes words or sentences. (2) Informative contents generally
spread between sentences across the original text, this sparse of sentences makes it
hard to capture the targeted content if the summary length is not long enough to
capture and process these sentences. (3) Extractive summaries are weak in com-
bining conflict information when generating the final summary. (4) Overall integrity
in the final summary has some frequent problems, for example, sentences that
contain pronouns; these pronouns usually lose their referents whenever they are
extracted from their context. Another problem that faces the extractive summaries is
in joining the sentences that are from different context, this will generate a faulty
and inaccurate interpretation of the original text. Temporal expressions also lose
their meaning when they are extracted from their context.
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3 Multi-document Extractive Summarization

This approach uses a cluster of text documents that shares the same topic to gen-
erate a summary using extractive summarization techniques. The main goal of the
multi-document summarization is to allow professionals and individuals to have an
over-view about the topics and important information that exist in clusters of large
number of documents within relatively a short time [5].

Single document summarization gives the reader a short compact summary
about the contents of one summarized document. This type of summarization is
limited by one source of information that is limited by one document. However,
multi-document summarization generates a comprehensive summary from multiple
sources; this type of summarization is considered more challengeable because of its
variation of information sources. In 2003, Single document summarization track
was removed from the Document Understanding Conference (DUC03), since that
time the quantity of researches about single document summarization is remarkably
shrinking [10]. Researches in the last decade proposed many multi-document
summarization techniques, these techniques were heavily experimented and stud-
ied; in the following section, an implementation of a multi-document techniques
will be discussed.

4 Implemented Summarization Techniques

In the proposed application three extractive summarization techniques were
implemented and studied, in the next section, a theoretical review is presented to
show the major parts of the summarization techniques that are crucial for the
success of the proposed application.

4.1 Topic-Word Summary

Topic-Words Summarization is one approach of the Topic representation several
approaches [11]. This type of summarization depends on identifying the most
descriptive words in the input text, [12] used in his work a frequency threshold to
determine the most descriptive words in the document in order to be selected for
summarization. [12] ignored in his approach the most frequent words because it is
most likely to be prepositions or determines. Also, he did not consider the words
which appeared a few times in the document as these words represent the least
important words in the text [11]. [13] proposed an enhanced statistical approach
built on Luhun’s approach, [13] used log-likelihood ratio test to determine the most
descriptive words in the text, these words were called topic signatures as proposed
in [14].
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Topic signatures played a major rule in identifying the most important news
content in multi document summarization as detailed in [15, 16]. The most
important contribution in [13] approach that it determines a threshold that classifies
the words in the input into two classes: descriptive and none descriptive. The
classification process is accomplished by determining the statistical significance for
the words in the input; the statistical significance will eliminate the need to use
arbitrary thresholds in the proposed approach.

In order to determine the topic signature words, it is necessary to have a suffi-
cient static information about the background corpus; this is mainly achieved by
computing the frequency of mentioning the words in the background corpus. The
likelihood of an input A and background corpus is calculated by assuming two
cases: (1) The first case (H1) is when the probability of a word in the input text is
equal to the probability of this word in the background corpus (B). (2) The second
case (H2) is when a word in the input text has a different probability than the
probability of the same word in the background corpus, usually this means that the
probability of a word in the input text is higher than the probability of the same
word in the background corpus [11]. The following is an arithmetic representation
for the two cases [11]:

H1: PðwjAÞ=PðwjBÞ=p ðw is not descriptive)

H2: PðwjAÞ=pI and PðwjBÞ=pB and pI > pB ðw is descriptiveÞ.

To compute the likelihood of a text with reference to a descriptive word, the
automatic summarizer uses binomial distribution. The input text and the back-
ground corpus are represented as a series of words wi: w1, w2, wn. The frequency of
occurrences for each word is identified by Bernoulli trial with a success probabil-
ity = p, the success is occurring only when wi = w, the following distribution
represents the over-all probability of observing the word w occurring k times in
N trials [11].

bðk,N, pÞ= N
k

� �
pkð1− pÞN − k ð1Þ

In H1, p is computed from the input text and the background corpus together,
while in H2, p1 is computed from the input text only, and p2 is computed from the
back-ground corpus. Now all the elements are ready to compute the likelihood ratio
using the following equation:

λ=
bðk,N, pÞ

b kI ,NI , pIð Þ ⋅ b kB,NB, pBð Þ ð2Þ

where the terms with subscript I is calculated from the input text, and the terms with
index B are calculated from the background corpus [11].
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Using Eq. 2, we can represent −2log λ by the statistical distribution X2, this will
make it possible to identify the words that are considered as topic signatures [11].
Regarding the term topic signatures, we can determine the importance of a sentence
in the summarizer input by calculating the number of topic signatures that exists in
the sentence or by identifying the part of the sentence that is occupied by topic
signatures [11]. These two ways of identifying the importance of a sentence are
forming the scoring functions that are used to weight the sentences in the sum-
marization process. It is noted that [12] approach gives a higher score for long
sentences, while [13] approach gives higher score to sentences that have a higher
density of topic signatures [11].

4.2 Centroid Summary

A centroid is a collection of words that are considered descriptive and important for
a cluster of documents. Centroids main benefit is that they can determine whether a
document in a cluster is relevant or irrelevant, also Centroids can identify the salient
sentences in a cluster of documents [17].

Normally, documents main subjects are describing different topics in a
sequential manner, a topic after another. This arrangement of topics is also
implemented when generating a summary for any collection of documents. In order
to build a meaningful summary; documents are grouped in clusters depending on
their topic, so that every cluster of documents is addressing a relevant topic [5].
Documents in these clusters are represented as Term-Frequency-Inverse Document
frequency (TF-IDF) vectors [18]. Term Frequency (TF) is representing the average
of times a term occurs in each document in the cluster while Inverse Document
Frequency (IDF) is calculated using the documents in all the clusters that make the
corpus. Each cluster of documents in the corpus is considered a separate theme, and
these clusters are representing the required input for the automatic summarizer that
is under study. The theme that is derived from the cluster consists the words that
have the highest TF-IDF scores in that specified cluster.

In Centroid summary, there are three main factors that determine whether sen-
tences will be selected to be added to the final summary or not [5]; the first factor is
computing the similarity of the sentences with the theme of the cluster (Ci). The
second factor is the location of the sentence in the original input text (Li). Different
contexts of documents have different weights for sentence location importance in
the body of the text, for example, in the news context, the sentences that are closer
to the beginning of the text gain higher scores as they have higher importance.
These sentences will likely have more chances to be added to the final summary.
The third factor that determine the score that is assigned to a sentence is the
similarity between this sentence and the first sentence of the document that contains
both sentences (Fi) [5]. The following equation calculates the overall score ðSiÞ of
the sentence (i) [5]:
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Si =W1 *Ci +W2 *Fi +W3 * Li ð3Þ

Ci, Li and Fi are the scores that are described in the previous paragraph, while
W1, W2 and W3 are the weights for the linear combination of the Ci, Li, Fi scores.

In centroid summary each document in the cluster is identified as a weighted
TF-IDF vector, then a centroid is created using the first document in the cluster,
after that the TF-IDF for each other documents that will be processed by the
summarizer will be compared with the centroid generated from the first document
of the cluster. If the similarity measure between a document and the centroid is
within a specified threshold then the document under process will be added to the
cluster for further processing, otherwise the document will be ignored. The fol-
lowing equation is used to calculate the similarity between the centroid and the
processed document [19]:

simðD,CÞ= ∑k dk * ck * idf ðkÞð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k dkð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k ckð Þ2

q ð4Þ

4.3 LexPageRank Summary

In this type of summaries, the selection of sentences that build up the summary is
based on selecting the most central sentences in the cluster of documents that
contains the most informative words. This approach of selecting the sentences is the
same in principle of the selection procedure in centroid summary. The difference
between LexPageRank summary and centroid summary is in the way of measuring
the sentence centrality. LexPageRank summary is using Prestige principle to
determine the most central sentences in a cluster of documents.

In LexPageRank summary, the sentences of a document are represented as a
graph of TF-IDF vectors [2, 3] and a cluster of documents is represented as a
network graph of sentences. Some of these sentences are similar to each other, and
some other sentences have a small degree of similarity between them, which means
that these sentences share a little amount of information between each other [2, 3].
Prestigious sentences are the sentences that are similar to many other sentences in
the cluster; these sentences are considered as the most central sentences with ref-
erence to the topic [2, 3]. In order to identify the most prestigious sentences,
similarity metric is used to define centrality degree for a sentence; formally, cosine
similarity is used to achieve this goal. A cluster of documents can be represented by
a cosine similarity matrix, where each element in the matrix represents a cosine
similarity value between a sentence and its corresponding sentence. There are two
methods to compute sentence prestige using the cosine similarity matrix: 1—
Degree centrality. 2—Eigenvector centrality and LexPageRank [2, 3].

Multi-document Summarizer 467



Degree Centrality.
It is most likely to observe relevancy between sentences in the related documents in
a certain cluster, this means that cosine similarity values will be mostly more than
zero in the cosine similarity matrix. A threshold value is determined in order to
ignore the low values of cosine similarity in the matrix; this threshold will guarantee
considering the significant cosine similarity values for sentences, these sentences
contain the information that will most likely be considered for adding in the final
summary. After deleting the low values of cosine similarity, the cluster can be
implemented as an undirected graph where the sentences are represented as nodes,
and these nodes have connections between each other, these connections represent
the significant similarity between the connected sentences. Now degree centrality of
a sentence can be identified as the degree of each node in the similarity graph [2, 3].
The value of cosine similarity threshold has a direct effect on the generated sum-
mary. If this threshold is too small then weak and less informative sentences can
appear in the produced summary, while choosing a high value of cosine similarity
will cause losing informative and important sentences that should be added to the
summary.

Eigenvector Centrality and LexPageRank.
In computing the degree centrality in a cluster of documents, each edge is con-
sidered as a vote, a node is considered a prestigious one when it has high number of
votes. The voting approach has one important drawback, this drawback appears
when there is a cluster of related documents; and this cluster contains one document
which is not related to the main topic of the cluster. When using voting approach
within the document, some of the sentences in this document will get high voting
degree and will be considered prestigious, this voting degree will qualify these
sentences to be added to the final summary. This means that the produced summary
will contain some unrelated sentences, which should not be considered in this
summary. This drawback can be avoided by considering the prestigious degree of
the node that did the voting, and considering the node prestige in weighting other
nodes [2, 3].

PageRank is an important well-known implementation of the prestige principle
[20]. PageRank is the tool for assigning a prestige score for each webpage in the
web, the score in the PageRank is calculated by counting the number of pages that
link to that page and the individual scores of the linking pages [2, 3]. The PageRank
of page A is calculated as follows:

PRðAÞ= ð1− dÞ+ dðPR T1ð Þ
C T1ð Þ +⋯+

PRðTnÞ
CðTnÞ Þ ð5Þ

whereT1 … Tn are pages that link to page A, C(Ti) is the number of the outbound
links from page Ti, d is the damping factor which ranges from 0 to 1 [2, 3]. To
calculate the value of PageRank, a binary adjunct matrix M is constructed, where M
(u, v) = 1 when there is a link from page u to page v, then the matrix is normalized
so that the summation of each row is equal 1, after that the principal eigenvector of
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the matrix is calculated. Thus, PageRank of i-th page equal to the i-th element in the
eigenvector [2, 3].

The previous procedure can be implemented on the cosine similarity matrix to
identify the most prestigious sentences in the document. PageRank is used to
estimate the weight for each vote by considering the prestige degree of a sentence,
the more a sentence is prestigious the higher weight its vote will gain. Since cosine
similarity is symmetric then the graph that represent the sentences is undirected
graph, this will have no influence on the way of calculating the principal eigen-
vector [2, 3]. Principal Eigenvector is computed using a simple iterative power
method [2, 3].

5 The Proposed Summarizer Application

In Sect. 4, three well-known automatic summarization techniques—Centroid
summary, Topic-word summary and LexPageRank summary—were reviewed. In
our project, these three techniques will be implemented in addition to a fourth
summarization technique that is designed by the authors depending on the
knowledge acquired from studying several summarization techniques, the following
section will describe the implementation of these techniques.

5.1 Centroid Summarizer

Centroid summarizer is based on identifying the most similar sentences to the
original document, for this purpose, the following equation is used in our project:

Centrality=
1
N
∑y≠ x simðx, yÞ ð6Þ

where x and y are vectors that represent each sentence in the input. Words in the
input represents features, the value of the feature is equal to the weight of this word
in the vector. Weights are calculated using Term Frequency (TF) or (TF-IDF) or by
using binary representation in which the value will be 1 if the term appears in the
sentences or 0 if the term does not exist in the sentences. To correctly implement
any summary technique in the proposed project, it is necessary to determine the
following parameters and methods: (1) Vector feature representation. (2) Similarity
approach. (3) Sentence length limitation. (4) Redundancy mitigating method.

In implementing the centroid summarizer, Binary representation is used to
represent vector feature weights, because it is simple to compute and it showed
strong results in the testing phase. In this summarizer, cosine similarity metric is
used to identify the similarity between the vectors. The sentence length in this
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summarizer is ranged between 15 and 50 words with a total summary length no
more than 200 words maximum; these words were tokenized using NLTK.

To decrease the redundancy of sentences, any sentence has a cosine similarity
more than 0.75 with a sentence in the summary is rejected. The values of these
parameters were chosen carefully after performing several trials on the proposed
application.

After calculating the centrality score, the program will select the sentences that
will form the centroid summary, for this purpose the program will use a greedy
algorithm that will choose the sentences that have the highest score then the second
highest, and so on until the formed summary reaches the words count number
limitation. The following pseudo code describes the greedy algorithm that is used to
generate the final summary. This algorithm is also used in the other summarization
techniques that are implemented in this application [21].

Greedy (Sentences, threshold), Begin
Centrality = [Sim (Sen, Doc) for Sen in Sentences]
Build the Sentence + Centrality Dictionary Diction
(we call it Diction)
Sort Diction according to Centrality in decreasing order.
Current_Summary = []; length = 0;
while((len < threshold)and(i <= Diction.size())

{if (Valid(Diction[i], Current_Summary))
{Current_Summary.append(Diction[i].Sentence)
length += len(Diction[i].Sentence)
}

i += 1
}
print(CurrentSummary) End

5.2 Topic-Word Summarizer

In this summarizer, the importance of sentences is computed by counting the topic
words in each sentence, this will determine the weights for words. To score the
sentences with respect to topic signatures, several equations can be used:

TWeights ðSÞ=# of topic words in sentence x ð7Þ

TWeights ðSÞ= # of topic words in sentence
# of words in sentence x

ð8Þ
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In this project, the following equation is used to represent the sentence vector
Weights:

TWeights ðSÞ= # of topic words in sentence x
# of nonstopwords in sentence x

ð9Þ

The reason for selecting Eq. 9 as a representation method in this summarizer is
that it avoids the negative effect of counting stop words in calculating the weights.
Also, this equation will maximize the productive use of the allowed number of
words in the generated summary.

A topic tool algorithm is used to determine the topic words in the input text, this
tool is developed by [21], and it is implemented in the topics.py file. This tool uses a
cut off parameter for Topic words, the default value for this parameter is 0.1, this
value was tested and showed better results than other values like 0.2 and 0.3.

The generated summary will include no more than 200 words with sentences’
lengths between 15 and 50 words maximum, any sentence with cosine similarity
more than 0.75 will be ignored.

5.3 LexPageRank Summarizer

Every sentence in this type of summarizers is represented as a node. The similarity
between two nodes is represented by an edge if this similarity is exceeding a
predetermined threshold, otherwise, there will be no edge between these two nodes.

In the proposed project the LexPageRank summarizer uses TF-IDF to represent
the vectors, this generates more accurate vectors and relatively better results in the
evaluation phase using ROUGE [1]. The similarity threshold used in this sum-
marizer is equal to 0.2, this value showed good results when used in the experiment
performed in [2, 3], another reason for using this threshold is that building
LexPageRank summary is a time-consuming process, it is too slow, so that it was
difficult to try several similarity thresholds.

The ending condition in the LexPageRank summarizer is that the iteration will
end only if all values become less than 0.001 between iterations. This value showed
that it is a reasonable value that creates a balance between performance and good
results. It is noted that the quality of results did not noticeably changed when
decreasing the threshold.

The sentence length in this summarizer is ranged between 15 and 50 words; the
words were tokenized using NLTK. To decrease the redundancy of sentences, any
sentence has a cosine similarity more than 0.75 with a sentence in the summary was
rejected, and the generated summary is limited to maximum 200 words.
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5.4 The Proposed Summarizer

After studying several techniques about automatic multi-documents summarizers,
an idea about an additional summarization technique is formed, the proposed
summarization technique uses the first and the last sentences of each input docu-
ment as a reference to build the final summary. The proposed summarizer weights
and scores sentences using the same technique in Centroid Summarizer, also the
proposed summarizer is using topic-words approach to determine which words are
considered topic signatures, it uses the same technique in Topic-words summarizer.
The binary representation is the method that is used for representing sentences in
this summarizer, and Eq. (9) is used to weight the sentences exactly the same way
performed in the topic-words summary.

In this summarizer, the similarity measurement and the scoring processes are
performed with regard to the entire cluster not only the selected subset of sentences
that was collected at the beginning of the summarization operation.

After representing the sentences and scoring them, the sentences validity is
verified by counting the number of words that exists in each sentence, which should
be between 15 and 50 words, any sentence has a number of words that is not within
this limitation will be ignored, also, any sentence with Cosine similarity value more
than 0.75 will be ignored. Since the main idea behind this project is to implement
extractive summarizers, it was a good idea to add some aspects of the other type of
summarization methods, which is the abstractive summarization technique. This
idea was achieved by replacing the least frequent nouns and verbs with their
synonyms, by doing this; the final summary will have an extra benefit especially in
readability and quality. It is meant to keep the frequent verbs and nouns unchanged
because these words have a strong effect on the final summary, changing these
words maybe changes the meaning or context of the sentences which can mislead
the summarizer to generate an inaccurate summary with wrong meanings and
context.

The following steps describe the proposed summarizer’s operation:

1. Remove the stop words from the input text.
2. Tokenize sentences, and then extract the first and last sentence of the input

document.
3. Load topic-words from *.ts, these files are generated using topic identifying

tool called TopicS which is implemented in the file Topics.py [21].
4. Represent the sentences as vectors.
5. Get the Cosine similarity between the extracted vectors and the rest of the

sentences in the entire cluster.
6. Scoring the sentences using the Cosine similarity metric.
7. Weighting and scoring the sentences using Eq. 9.
8. Combine both metrics results in one value that represents the overall score.
9. Sort the scored sentences descending.
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10. Greedily select the sentences with the highest score then the second highest and
so on until the generated summary reaches the words allowed limit which is
200 words. Also, all sentences with Cosine similarity more than 0.75 will be
ignored.

11. Replace the least frequent nouns and verbs with their synonyms.
12. Generate the final summary.

6 Running the Application

To run the application, the user has to choose which type of summarizer he wants to
use; this can be done by activating the desired instruction by deleting the hash sign
(#) from the code line in the file project.py.

The following code lines exist at the end of the file project.py:

# summary = centrality_sum(path)
#summary = topic_word_sum(path, topicFile)
# summary = lex_rank_sum(path)
# summary = custom_summarizer(path, topicFile)

The system-generated summaries will be saved automatically in a folder called
summaries; this folder exists in the parent folder that contains the file project.py.

7 Software, Dataset, and Tools Used in the Project

In the following sections, the main software and tools used in the project are
generally reviewed, in addition to a description of the corpus used in implementing
the summarizer application.

7.1 Python 2.7.6

Python is one of the most flexible programming languages that is known with the
following aspects and specifications:

1. Python is an open source language that is free for everyone; also, it is an
object-oriented language.

2. Python is an interpreted language that can be easily understood, it is also a
dynamic language that can represent and manipulate massive types of variables
and elements.

Python is usually competing with other languages like PERL, Java or TCL.
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Python is very flexible language, because it has dynamic data types that are
accompanied by dynamic typing scheme. In addition, Python can use Modules that
are created by other languages like C++ [22].

Python most valuable aspects are: (1) it is readable. (2) It is clear and a powerful
language. (3) It is used in a lot of different domains like web applications, system
administration, desktop applications, windows applications and scientific research
[23].

7.2 Natural Language Toolkit (NLTK)

NLTK is a premier platform for developing applications and systems that process
human natural language data. NLTK contains more than 50 corpora and lexical
resources. NLTK contains a large number of text-processing libraries for semantic
reasoning, tokenization, and stemming. It also has many other libraries and func-
tions that manipulate natural language data [24].

NLTK is a free text-processing platform that can be used by different operating
systems like Windows, Mac, and Linux [24].

7.3 Dataset Used in the Project

DUC04 stands for Document Understanding Conference. This is one of the most
famous conferences for researches about summarization related topics, it is held
annually by the National Institute of Standards and Technology (NIST) [25]. In the
proposed project DUC04 corpus is used to test the application functionality; it is
also used to evaluate the quality of the generated summary by the four summa-
rization techniques that are implemented in the project [26].

DUC04 corpus contains 50 clusters of news text documents; the documents in
each cluster mainly discuss the same topic. Every cluster contains an average of
10-text documents. DUC04 also contains Model summaries that are made by
human summarizers; these models are used for evaluating the quality of the
system-generated summaries.

7.4 Rouge

In this research, ROUGE is used to perform the evaluation for the summaries
generated using the proposed summarizer [1].

ROUGE is the abbreviation for (Recall Oriented Understudy for Gist Evalua-
tion), it is the official scoring technique for Document Understanding Conference
(DUC) 2004 [1].
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ROUGE is used for English Multi-document Summarization. In ROUGE the
accuracy of the system-generated summaries are measured by comparing the
overlap between the Model summaries that are written by professional human
summarizers and the system-generated summaries [1].

ROUGE uses different measures, ROUGE-N uses N-Grams to measure the
overlap, ROUGE-L uses Longest Common Subsequence, and ROUGE-W uses
Weighted Longest Common Subsequence [1].

8 Summarizer Performance

The quality of the automatic generated summary is identified by comparing this
summary with the human-made summaries that share the same input documents.

ROUGE is used to evaluate the performance of the application. ROUGE uses
several parameters to evaluate the summarizer performance. The same parameters
will be used for all of the summarizing techniques implemented in this project.
Previous researches used ROUGE for evaluating summarizers showed that the best
settings for ROUGE in evaluating summaries are ROUGE-2 Average-R score
(Recall), with words stemming and without removing the stop words [27]. This
setting is implemented using the following instruction in ROUGE:

/ROUGE-1.5.5.pl –c 95 –r 1000 –n 2 –m –a -1 100 –x config.xml

The evaluation of the application performance was executed using two stages,
the first stage was testing the summarizers using one folder of DUC04 corpus, the
benefit of this stage is to get an overview about how well the system summarizers
are performing. Evaluating one folder gives us quick results, while performing the
evaluation on the entire corpus will take at least 6 hours, which is a non-practical
process in our case; because an evaluation using ROUGE should be done everytime
after changing the parameters in the summarizers in the sake of improving the
quality of the system-generated summaries.

The results of the tests that were performed using ROUGE on a single folder
from DUC04 corpus are shown in Table 1, Higher scores means a higher similarity
to model summaries which are prepared by human judges, therefore, higher scores
mean a better summary quality.

The results of the tests that were performed using ROUGE on the entire corpus
(DUC04) are shown in Table 2:

Table 1 ROUGE results
based on testing one folder
from the corpus

Technique ROUGE-2 recall ROUGE-1 recall

Centroid tech 0.11414 0.44226
Topic-word tech 0.10670 0.43735
LexPageRank 0.11911 0.43243
New technique 0.04963 0.32896

Baseline summaries 0.04963 0.41278
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The results of the trials showed that testing the entire corpus gave better results
than the trials performed on a single directory. The proposed summarizer outper-
forms all other techniques presented in this project except for LexPageRank sum-
marizer which showed better results than the new summarization technique.
However, testing using LexPageRank summarizer took more than 4 hours to test
only 14 folders out of 50 folders, the same applies for generating summaries using
Centroid summarization technique. Therefore, it is clear that there is a penalty for
producing high quality summaries; this penalty is consuming a long time to
generate the summary.

9 Conclusion

In this project, we implemented three famous summarization techniques
Topic-word summarizer, LexPageRank Summarizer and Centroid summarizer.
Then a new fourth summarization technique is proposed and implemented. The
evaluation of the system-generated summaries using the four summarization
techniques-shown in Tables 1 and 2—clearly indicated an excellent ROUGE score
when compared to the baseline summaries which are made by human summarizers.
Also, it is noted that evaluating the summarizers’ performance using a single folder
instead of the entire corpus showed a less quality than performing the same eval-
uation using the entire corpus. This means that the overlap between the
system-generated summaries and the model summaries is increased after we extend
the size of the summarized documents to include the entire corpus; this is because
of the use of the unique information that is spread between the documents in the
entire corpus.

ROUGE evaluation results also showed that LexPageRank summarizer achieved
the best score between the other three summarizers, however LexPageRank sum-
marizer also showed that it needs a long time to generate the summaries from the
corpus that is used in the project, it took more than 6 hours to generate the summaries.
In the other hand, the new proposed summarizer and the topic-word summarizer took
less than 10 min to generate the summaries out of the entire (DUC04) corpus. Cen-
troid summarizer also needs a long time-relatively-than Topic-word summarizer and
the new proposed summarizer to build its summaries.

Table 2 ROUGE results
based on testing the entire
corpus

Technique ROUGE-2 recall ROUGE-1 recall

Centroid tech 0.04409 0.30884
Topic-word tech 0.03547 0.2916
LexPageRank 0.6987 0.34126
New technique 0.05882 0.32896

476 H. Bakkar et al.



10 Future Work

The summarizer project has many aspects that can be modified and extended. The
proposed project summarizes only English language text documents, as a future
work the proposed application can be modified to summarize Arabic text docu-
ments as a first step, then it can be extended to summarize other languages texts.
Another addition that is considered crucial for the summarizer project is to develop
a graphical user interface; this will make the use of the application easier for end
users. If the proposed application is equipped with a graphical user interface, then it
will be easy to put it online and make it available for public to use and test.

Evaluating the system-generated summaries is very important to determine the
quality of these summaries, so it will be helpful if the application can make an
automatic summary evaluation, so that the user can estimate which technique can
give better results for summarizing his cluster of documents.
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