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Abstract. A method for the study of periodic solutions of autonomous
dynamic systems described by ordinary differential equations with phase
and integral constraints is supposed. General problem of periodic solu-
tion is formulated in the form of the boundary value problem with con-
straints. The boundary problem is reduced to the controllability problem
of dynamic systems with phase and integral constraints by introducing
a fictitious control. Solution of the controllability problem is reduced to
a Fredholm integral equation of the first kind. The necessary and suffi-
cient conditions for existence of the periodic solution are obtained and
an algorithm for constructing periodic solution to the limit points of
minimizing sequences is developed. Scientific novelty of the results con-
sists in a completely new approach to the study of periodic solutions for
linear systems focused on the use of modern information technologies is
offered. The existence of periodic solution and its construction are solved
together.
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1 Problem Statement

We consider a linear autonomous system

ẋ = Ax, t ∈ (−∞,+∞), (1)

where A is a constant matrix of n × n order. The problems are set:

Problem 1. Find necessary and sufficiently conditions for existence of T∗ periodic
solution of system (1).

Problem 2. Find T∗ periodic solution of system (1)
Solving these problems is of interest for system (1) of (n > 4) higher order.
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We assume, that system (1) has a periodic solution x∗(t) = x∗(t+T), t ∈ I =
(−∞,+∞), where T∗ is period. Let x∗(0) = x0 be a value. Then x∗(T∗) = x0.

Since the periodic solution is defined by values of the phase coordinates in the
period limits, then for constructing of periodic solution it should be considered
the value t ∈ I∗ = [0, T∗].

We represent the matrix A = A1 + B1P , where A1, B, P are matrixes of
n × n, n × m, m × n orders, accordingly. Then the boundary value problem (1)
is written in the form

ẋ = A1x + B1Px, t ∈ I∗ = [0, T∗], x(0) = x(T∗) = x0. (2)

Linear controllable system corresponding to system (2) has the form (2)

ẏ = A1y + B1u(t), t ∈ I∗ = [0, T∗], (3)

y(0) = y(T∗) = x(0) = x(T∗) = x0, u(·) ∈ L2(I,Rm), (4)

where T∗ is period, a unknown value. We note, if u(t) = Px(t), t ∈ I∗, then
system (3), (4) coincides to the origin (2).

2 Solution of a Linear Controllable System

We assume that the matrixes A1, B1 such that the matrix

W∗(0, T∗) =
∫ T∗

0

e−A1tB1B
∗
1e−A∗

1tdt (5)

of n × n order is positively defined.
In the case, when the matrix A1 = 0, P = In, the matrix B1 = A, relation

(5) is written as W∗(0, T∗) =
∫ T∗
0

AA∗dt. We note, that the matrix W∗(0, T∗) > 0
is equivalent to the fact, that the rank of the matrix

∥∥B1, A1B1, . . . , A
n−1
1 B1

∥∥
is equal to n.

Theorem 1. Let W∗(0, T∗) > 0 be a matrix. Then control u(·) ∈ L2(I,Rm)
transfers the trajectory of system (3) from any initial point y(0) = x0 ∈ Rn to
any finite state y(T∗) = x0 if and only if, when

u(t) ∈ U = {u(·) ∈ L2(I,Rm)/u(t) = v(t) + λ1(t, x0, x0)+
+N1(t)z(T∗, v),∀v, v(·) ∈ L2(I,Rm)},

(6)

where
λ1(t1, x0, x0) = B∗

1e−A∗
1tW−1

∗ (0, T∗)a, a = e−A1T∗x0 − x0,

N1(t) = −B∗
1e−A∗

1tW−1
∗ (0, T∗)e−A1T∗ , t ∈ I∗,

the function z(t, v∗), t ∈ I∗ is a solution of the differential equation

ż = A1z + B1v, z(0) = 0, v(·) ∈ L2(I,Rm). (7)
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The solution of the differential equation (3) corresponding to control u(t) ∈ U is
defined by formula

y(t) = z(t, v) + λ2(t, x0, x0) + N2(t)z(T∗, v), t ∈ I∗, (8)

where

λ2(t, x0, x1) = eA1tW∗(t, T∗)W−1
∗ (0, T∗)x0 + eA1tW∗(0, t)W−1

∗ (0, T∗)e−A1T∗x0,

N2(t) = −eA1tW∗(0, t)W−1
∗ (0, T∗)e−A1T∗ ,W∗(0, T∗) =

∫ t

0

e−A1τB1B
∗
1e−A∗

1τ ,

W∗(t, T∗) = W∗(0, T∗) − W∗(0, t), t ∈ I∗.

Lemma 1. Let W∗(0, T∗) > 0 be a matrix. The boundary value problem (2) is
equivalent to the problem

v(t) + T (t)x0 + N1(t)z(T∗, v) = Py(t), t ∈ I∗, x0 ∈ Rn, (9)

ż = A1z + B1v(t), z(0) = 0, t ∈ I∗, v(·) ∈ L2(I,Rm), (10)

where
T (t) = B1e

−A∗
1tW−1

∗ (0, T∗)[e−A1T∗ − In],

y(t) = z(t, v) + C(t)x0 + N2(t)z(T∗, v), t ∈ I, (11)

C(t) = eA1t[W∗(t, T∗)W−1
∗ (0, T∗) + W∗(0, t)W−1

∗ (0, T∗)e−A1T∗ ].

Proof of the Lemma follows from relations (6)-(10), at u(t) ∈ U , u(t) = Py(t),
t ∈ I∗.

3 Necessary and Sufficient Condition for Existence of a
Solution of the Boundary Value Problem

Theorem 2. Let W∗(0, T∗) > 0 be a matrix. In order the boundary value
problem (2) to have a solution, it is necessary and sufficient that the value
I(v∗, x0∗) = 0, where (v∗, x0∗) ∈ H = L2(I,Rm) × Rn is a solution of opti-
mization problem

I(v, x0) =
∫ T∗

0

|v(t) + T (t)x0 + N1(t)z(T∗, v) − Py(t)| → inf (12)

under conditions
ż = A1z + B1v(t), z(0) = 0, t ∈ I∗, (13)

v(·) ∈ L2(I∗, Rm), x0 ∈ Rn. (14)

Proof of the Theorem follows from Theorem 1, Lemma 1 and relations
(9)-(11).
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Lemma 2. Suppose W∗(0, T∗) > 0 is a matrix, the function

F∗(q, t) = v + T (t)x0 + N1(t)z(T∗, v) − Py,

where y = z + C(t)x0 + N2(t)z(T∗, v), q = (v, x0, z, z(T∗)) ∈ Rm × Rn

× Rn × Rn.
Then the partial derivatives

F∗v(q, t) = 2[v + T (t)x0 + N1(t)z(T∗, v) − Py],
F∗x0(q, t) = [2T ∗(t) + 2C∗(t)P ∗][v + T (t)x0 + N1(t)z(T∗) − Py],

F∗z(q, t) = −2P ∗(t)[v + T (t)x0 + N1(t)z(T∗) − Py],
F∗z(T∗)(q, t) = [2N∗

1 (t) − 2N∗
2 (t)P ∗][v + T (t)x0 + N1(t)z(T∗) − Py].

(15)

Lemma 3. Let W∗(0, T∗) > 0 be a matrix. Then:
1) functional (12) under conditions (13), (14) is convex
2) derivative F∗q(q, t) = (F∗v, F∗x0 , F∗z, F∗z(T∗)) satisfies to the Lipshitz condi-
tion

‖F∗q(q + Δq, t) − F∗q(q, t)‖ ≤ M ‖Δq‖ ,∀q, q + Δq ∈ Rm+4n.

Theorem 3. Let W∗(0, T∗) > 0 be a matrix. Then functional (12), under con-
ditions (13), (14) continuously differentiable by Freshet, gradient of functional

I ′(v, x0) = (I ′
v(v, x0), I ′

x0
(v, x0)) ∈ H = L2(I∗, Rm) × Rn

in any point (v, x0) ∈ H is computed by the formula

I ′
v(v, x0) = F∗v(q(t), t) − B∗

1ψ(t) ∈ L2(I∗, Rm),
I ′
x0

(v, x0) =
∫ T∗
0

F∗x0(q(t), t)dt ∈ Rn,
(16)

where partial derivatives are defined by formula (15), q(t) = (v(t), x0, z(t, v),
z(T∗, v)), the function z(t), t ∈ I is a solution of the differential equation (12),
for v = v(t), t ∈ I, and function ψ(t), t ∈ I∗ is a solution of the adjoint system

ψ̇ = F∗z(q(t), t) − A∗
1ψ,ψ(t1) = −

∫ T∗

0

F∗z(T∗)(q(t), t)dt. (17)

Moreover, the gradient I ′(v, x0), (v, x0) ∈ H satisfies the Lipshitz condition
∥∥I ′(v1, x1

0) − I ′(v2, x2
0)

∥∥ ≤ K∗(
∥∥v1 − v2

∥∥2
+

∣∣x1
0 − x2

0

∣∣2)1/2, (18)

where K∗ = const > 0 is a Lipshitz constant.

It should be noted, that for a linear system with constant coefficients (3) the
following statements are valid:
1) rank of the matrix

∥∥B1, A1B1, . . . , A
n−1
1 B1

∥∥ is equal to n;
2) for any T > 0, the matrix

W∗(0, T ) =
∫ T

0

e−A1tB1B
∗
1e−A∗

1tdt
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is positively defined.
Consequently, for any sequence {Ti} ⊂ R1, 0 < T1 < T2 < . . . < Tk < . . .,

the matrix W∗(0, Tk) > 0.
Let {Tk} ⊂ R1, 0 < T1 < T2 < . . . < Tk < be a sequence. We construct the

sequences

vk
n+1(t) = vk

n(t) − αnI ′
v(v

k
n, xk

0n), xk
0n+1

(t) = xk
0(t) − αnI ′

x0
(vk

n, xk
0n),

n = 0, 1, 2, . . . 0 < ε0 ≤ αn ≤ 2
K∗+2ε1

, ε1 > 0,
(19)

on the base of formulas (6)-(8), where t ∈ [0, Tk], I ′
v(v

k, xk
0),I

′
x0

(vk, xk
0) are defined

by formula (16) by substituting W∗(0, T∗), T∗ on W∗(0, Tk), Tk, accordingly.
In other words, we fix a value Tk > 0 from sequence {Ti} ⊂ R1, 0 < T1 < T2 <

. . . < Tk < . . . and compute the Freshet derivative for functional (12), under the
conditions (12), (13) by formulas (16)-(18), by substituting T∗, W∗(0, T∗) on Tk,
W∗(0, Tk), accordingly. The result is the sequences (19).

Theorem 4. Let W∗(0, Tk) > 0 be a matrix, {Tk} ⊂ R1, 0 < T1 < T2 < . . . <
Tk < . . ., the sequences {vk

n}, {xk
0n} are defined by formula (19), the set

Λk = {(v, x0) ∈ H/Ik(v, x0) ≤ Ik(v0, x00)}

is bounded, where functional is defined by

Ik(v, x0) =
∫ Tk

0

|v(t) + T (t)x0 + N1(t)z(Tk, v) − Py(t)|dt.

Then for any fixed Tk > 0 statements are valid:
3) The sequence {vk

n, xkn
0 } is minimizing, i.e.

lim
n→∞ Ik(vk

n, xkn
0 ) = Ik(vk

∗ , xk∗
0 ) = inf

(v,x0)∈Λk

Ik(v, x0);

4) The sequences {vk
n}, {xkn

0 } are weakly converged to the points vk
n

A;−→ vk
∗ ,

xk
0n

A;−→ xk
0∗ at n → ∞, (vk

∗ , xk∗
0 ) ∈ X∗

k ;
5) The estimation of the convergence rate is valid

0 < Ik(vk
n, xk

0n) − I(vk
∗ , xk

0∗) ≤ Ck

n , ck = const > 0, n = 1, 2, . . . ;

6) For system (2) to have a periodic solution it is necessary and sufficient, that
for some Tk = T∗ there exists the value Ik(vk

∗ , xk
0∗) = 0.

7) Periodic solution of system (12) is defined by the formula

x∗(t) = y∗(t) = z(t, vk
∗) + C(t)xk

0∗ + N2(t)z(Tk, vk
∗), t ∈ [0, Tk = T∗],

where Tk = T∗ is a period, Ik(vk
∗ , xk

0∗) = 0.
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4 Algorithm for Constructing a Periodic Solution

We can formulate the following algorithm for constructing periodic solution of
system (1) based on Theorems 1-4, Lemmas 1-3.

1. We present the matrix A as the sum A = A1 + B1P such that the matrix

W∗(0, Tk) =
∫ Tk

0

e−A1tB1B
∗
1e−A∗

1tdt

will be positively defined, where Tk > 0 is a number. We note, that in order
to W∗(0, Tk) > 0 necessary and sufficiently, that the rank of the matrix∥∥B1, A1B1, . . . , A

n−1
1 B1

∥∥ is equal to n.
2. We choose the sequence {Tk} ⊂ R1, 0 < T1 < T2 < . . . < Tk < . . .. We note,

if the rank
∥∥B1, A1B1, . . . , A

n−1
1 B1

∥∥ = n, then for any Tk > 0 the matrix
W∗(0, Tk) > 0.

3. We solve the optimization problem: minimize the functional

Ik(v, x0) =
∫ Tk

0

|v(t) + T (t)x0 + N1(t)z(Tk, v) − Py(t)|2 dt → inf (20)

under conditions

ż = A1z + B1v(t), z(0) = 0, t ∈ [0, Tk] = I, (21)

v(·) ∈ L2(I,Rm), x0 ∈ Rn. (22)

We note, that: 1) the value Ik(v, x0) ≥ 0, consequently, functional is bounded
from below; 2) functional (20) under conditions (21), (22) is convex; 3) to
solve optimization problem (20) – (22) we construct the sequences (19). As a
result, we find the solution of optimization problem (20)-(22): (vk

∗ , xk
0∗) ∈ Λk,

Ik(vk
∗ , xk

0∗) at fixed Tk.
4. We repeat items 1 - 3. Finally, the values Ik(vk

∗ , xk
0∗), k = 1, 2, . . .. are known.

If for value Tk∗ the value Ik∗(vk∗∗ , xk∗
0∗) = 0, then Tk∗ = T∗ is a period of the

origin periodic solution, and periodic solution

x∗(t) = z(t, vk∗∗ ) + C(t)xk∗
0∗ + N2(t)z(Tk∗ , vk∗∗ ), t ∈ [0, Tk∗ ] = [0, T∗].

5. If the value Ik(vk
∗ , xk

0∗) > 0 for any sequences {Tk} ⊂ R1,0 < T1 << T2 <
. . . < Tk < . . ., then the origin system (2) has no any periodic solution.

The results obtained above can be applied for construction of periodic solutions
in non-autonomous systems.

We consider a linear non-autonomous system

ẋ = A(t)x + μ(t), t ∈ (−∞,+∞), (23)

where elements of the matrix A(t) and vector function μ(t) are periodic functions
with period T∗ i.e. A(t) = A(t + T∗), μ(t) = μ(t + T∗), ∀t, t ∈ (−∞,+∞), T∗ is
the known function.
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The questions arise: Does the system (23) have periodic solution with a period
equal to T∗? Find periodic solution of (23) with a period T∗.

Let x∗(t) be a periodic solution of system (23) with a period T∗ i.e. x∗(t) =
x(t + T∗), ∀t, t ∈ (−∞,+∞). Then

A(t)x∗(t) = A(t + T∗)x∗(t + T∗), μ(t) = μ(t + T∗), t ∈ (−∞,+∞).

For constructing a periodic solution it is enough to consider a solution of
system (23) for values t ∈ [0, T∗] in view of the invariance of solution by any
displacement on t. Let x∗(0) = x∗(T∗) = x0.

By applying the results above, we get:

1) the matrix A(t) = A1(t) + B1(t)P , where W1(0, T∗) =
∫ T∗
0

Φ(0, t)B1

(t)B∗
1(t)Φ∗(0, t)dt > 0;

2) linear controllable system has the form

ẏ = A1(t)y + B1(t)u(t) + μ(t), t ∈ I∗ = [0, T∗],

y(0) = y(T∗) = x∗(0) = x∗(T ) = x0, u(·) ∈ L2(I,Rm);

3) optimization problem is written: minimize the functional

I(v, x0) =
∫ T∗

0

|v(t) + T (t)x0 + μ̄(t) + N1(t)z(T∗, v) − Py(t)|2 dt → inf

under conditions

ż = A1(t)z + B1(t)v(t), z(0) = 0, t ∈ [0, T∗] = I∗,

v(·) ∈ L2(I∗, Rm), x0 ∈ Rn.

4) Necessary and sufficient conditions for existence of a periodic solution of sys-
tem (23) with period T∗ is defined by equality I(v∗, x0∗) = 0, where (v∗, x0∗)
is a solution of the optimization problem.

5) Optimal solution (v∗, x0∗) is defined by constructing the minimizing
sequences.

5 Conclusion

A more general problem of periodic solution of the boundary value problem
of ordinary differential equations with phase and integral constraints is formu-
lated on the base of a review of scientific research on the periodic solutions of
autonomous dynamical systems [1]-[4].

The boundary value problem is reduced to the problem of controllability of
dynamic systems with phase and integral constraints by introducing a fictitious
boundary control [5]. Solution of the controllability problem is reduced to a Fred-
holm integral equation of the first kind. The necessary and sufficient conditions
for the solvability of the Fredholm integral equation of the first kind are obtained
and the general solution of the integral equation is found.
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The results of fundamental research on the controllability theory of dynamic
systems, as well as new results on the solvability and construction the solution
of the Fredholm integral equation of the first kind enable to reduce solutions of
the general problem of periodic solution to the special initial problem of optimal
control.

The necessary and sufficient condition for the existence of periodic solution
of autonomous dynamic system in the form of requirements on a non-negative
functional values is obtained.

The algorithm for constructing periodic solution to the limit points of
minimizing sequences is developed. The estimation of the convergence rate is
obtained.

Scientific novelty of the results consists in a completely new approach to the
study of periodic solutions of autonomous dynamical systems, focused on the use
of modern information technologies is offered. The existence of periodic solution
and its construction are solved together.

A distinctive feature of the proposed method from the known methods of
investigation of periodic solutions is that: firstly, the properties of analytic right-
hand sides, the differential equations are not required; secondly, there is no need
for small parameter system.
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