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Abstract. In this paper, we aim to present the improved version of
the reverse Hölder type inequalities by taking (k, s)−Riemann-Liouville
fractional integrals. Furthermore, we also discuss some applications of
Theorem 1 using some types of fractional integrals.
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1 Introduction

Fractional integral inequalities involving (k, s)− type integrals attract the atten-
tions of many researchers due their diverse applications see, for examples, [1–4].
In [5], Farid et al. an integral inequality obtained by Mitrinovic and Pecaric was
generalized to measure space as follows.

Theorem 1. Let (Ω1, Σ1, μ1),(Ω2, Σ2, μ2) be measure spaces with σ−finite mea-
sures and let fi : Ω2 → R, i = 1, 2, 3, 4 be non-negative functions. Let g be the
function having representation

g(x) =
∫

Ω1

k(x, t)f(t)dμ1(t),
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where k : Ω2 × Ω1 → R is a general non-negative kernel and f : Ω1 → R is
real-valued function, and μ2 is a non-decreasing function. If p, q are two real
numbers such that 1

p + 1
q = 1, p > 1, then

∫
Ω2

f1(x)f2(x)g(x)dμ2(x) (1)

≤ C

(∫
Ω2

f3(x)g(x)dμ2(x)
) 1

p
(∫

Ω2

f4(x)g(x)dμ2(x)
) 1

q

,

where

C = sup
t∈Ω1

{(∫ b

a

k(x, t)f1(x)f2(x)dμ2(x)

)
(2)

(∫ b

a

k(x, t)f3(x)dμ2(x)

)−1
p

(∫ b

a

k(x, t)f4(x)dμ2(x)

)−1
q

}
.

The following definitions and results are also required.

2 Preliminaries

Recently fractional integral inequalities are considered to be an important tool
of applied mathematics and their many applications described by a number
of researchers. As well as, the theory of fractional calculus is used in solving
differential, integral and integro-differential equations and also in various other
problems involving special functions [6–8].

We begin by recalling the well-known results.

1. The Pochhammer k-symbol (x)n,k and the k-gamma function Γk are defined
as follows (see [9]):

(x)n,k := x(x + k)(x + 2k) · · · (x + (n − 1)k) (n ∈ N; k > 0) (3)

and

Γk(x) := lim
n→∞

n! kn (nk)
x
k −1

(x)n,k

(
k > 0; x ∈ C\kZ−

0

)
, (4)

where kZ−
0 :=

{
kn : n ∈ Z

−
0

}
. It is noted that the case k = 1 of equation

((3)) and equation ((4)) reduces to the familiar Pochhammer symbol (x)n and
the gamma function Γ . The function Γk is given by the following integral:

Γk(x) =
∫ ∞

0

tx−1 e− tk

k dt (�(x) > 0). (5)
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The function Γk defined on R
+ is characterized by the following three prop-

erties: (i) Γk(x + k) = x Γk(x); (ii) Γk(k) = 1; (iii) Γk(x) is logarithmically
convex. It is easy to see that

Γk(x) = k
x
k −1 Γ

(x

k

)
(�(x) > 0; k > 0) . (6)

2. Mubeen and Habibullah [10] introduced k-fractional integral of the Riemann-
Liouville type of order α as follows:

kJα
a [f (t)] =

1
Γk(α)

∫ t

a

(t − τ)
α
k −1

f (τ) dτ, (α > 0, x > 0, k > 0) , (7)

which, upon setting k = 1, is seen to yield the classical Riemann-Liouville
fractional integral of order α:

Jα
a {f(t)} := 1J

α
a {f(t)} =

1
Γ (α)

∫ t

a

(t− τ)α−1f(τ) dτ (α > 0; t > a) . (8)

3. Sarikaya et al. [11] presented (k, s)-fractional integral of the Riemann-
Liouville type of order α, which is a generalization of the k-fractional integral
(7), defined as follows:

s
kJα

a [f (t)] :=
(s + 1)1− α

k

kΓk (α)

∫ t

a

(
ts+1 − τ s+1

)α
k −1

τsf (τ) dτ, τ ∈ [a, b] , (9)

where k > 0, s ∈ R\ {−1} and which, upon setting s = 0, immediately reduces
to the k-integral (7).

4. In [11], the following results have been obtained. For f be continuous on
[a, b], k > 0 and s ∈ R\{−1}. Then,

s
kJα

a

[
s
kJβ

a f (t)
]

= s
kJα+β

a f (t) = s
kJβ

a [skJα
a f (t)] , (10)

and

s
kJα

a

[(
xs+1 − as+1

) β
k −1

]
=

Γk(β)

(s + 1)
α
k Γk(α + β)

(
xs+1 − as+1

)α+β
k −1

,

for all α, β > 0, x ∈ [a, b] and Γk denotes the k−gamma function.
5. Also, in [12], Akkurt et al. introduced (k,H)−fractional integral. Let (a, b) be

a finite interval of the real line R and �(α) > 0. Also let h(x) be an increasing
and positive monotone function on (a, b], having a continuous derivative h′(x)
on (a, b). The left- and right-sided fractional integrals of a function f with
respect to another function h on [a, b] are defined by

(
kJα

a+,hf
)

(x) (11)

:=
1

kΓk(α)

∫ x

a

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,�(α) > 0
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(
kJα

b−,hf
)

(x) (12)

:=
1

kΓk(α)

∫ b

x

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,�(α) > 0.

Recently, Tomar and Agarwal [13] obtained following results for
(k, s)−fractional integrals.

Theorem 2 (Hölder Inequality for (k, s)-fractional integrals). Let f, g :
[a, b] → R be continuous functions and p, q > 0 with 1

p + 1
q = 1. Then, for all

t > 0, k > 0, α > 0, s ∈ R − {−1},

s
kJα

a | fg (t)| ≤ [skJα
a |f (t)|p] 1

p [skJα
a |g (t)|q] 1

q . (13)

Lemma 1. Let f, g : [a, b] → R be two positive functions and 1
p + 1

q = 1, α, k > 0
and s ∈ R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ f(τ)
g(τ)

≤ M < ∞, τ ∈ [a, b], (14)

then the inequality

[skJα
a f(t)]

1
p [skJα

a g(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a

[
f

1
p (t)g

1
q (t)

]
(15)

holds.

Lemma 2. Let f, g : [a, b] → R be two positive functions α, k > 0 and s ∈
R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ fp(τ)
gq(τ)

≤ M < ∞, τ ∈ [a, b], (16)

then we have

[skJα
a fp(t)]

1
p [skJα

a gq(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a (f(t)g(t)) , (17)

where p > 1 and 1
p + 1

q = 1.

Motivated by this work, we establish in this paper some new extensions of the
reverse Hölder type inequalities by taking (k, s)−Riemann-Liouville fractional
integrals.
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3 Reverse Hölder Type Inequalites

In this section we prove our main results (Theorems 3 and 4).

Theorem 3. Let f(x) and g(x) be integrable functions and let 0 < p < 1,
1
p + 1

q = 1. Then, the following inequality holds

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q . (18)

Proof. Set c = 1
p , q = −pd. Then we have d = c

c−1 . By the Hölder inequality for
(k, s)−fractional integrals, we have

s
kJα

a |fp(t)| = s
kJα

a |fg(t)|p ∣∣g−p(t)
∣∣

≤ [skJα
a |fg(t)|pc]

1
c

[
s
kJα

a |g(t)|−pd
] 1

d

= [skJα
a |fg(t)|] 1

c [skJα
a |g(t)|q]1−p

. (19)

In equation (19), multiplying both sides by (s
kJα

a |gq(t)|)p−1, we obtain

s
kJα

a |fp(t)| (s
kJα

a |gq(t)|)p−1

≤ [skJα
a |fg(t)|]p . (20)

Inequality (20) implies inequality

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q (21)

which completes this theorem.

Theorem 4. Suppose p, q, l > 0 and 1
p + 1

q + 1
l = 1. If f, g and h are positive

functions such that

i.) 0 < m ≤ f
p
s

g
g
s

≤ M < ∞ for some l > 0 such that 1
p + 1

q = 1
s ,

ii.) 0 < m ≤ (fg)s

hr ≤ M < ∞,

then

(s
kJα

a fp(t))
1
p (s

kJα
a fq(t))

1
q (s

kJα
a fr(t))

1
r

≤
(

M

m

) 1
sr +

pq

s3
s
kJα

a (fgh)(t). (22)

Proof. Let 1
p + 1

q = 1
s for some s > 0. Thus, s

p + s
q = 1 and 1

s + 1
r = 1. If we use

ii and Lemma 2 for H = fg and h, then we get

(s
kJα

a Hs(t))
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (Hh)(t)) (23)
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which is equivalent to

(s
kJα

a [fs(t)gs(t)])
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (fgh)(t)) . (24)

Now, using i and the fact that s
p + s

q = 1, and applying Lemma 2 to fs and gs,
we also have

(s
kJα

a fp(t))
s
p (s

kJα
a gq(t))

s
q ≤

(
M

m

) pq

s2

(s
kJα

a fs(t)gs(t)) (25)

which is equivalent to

(s
kJα

a fp(t))
1
p (s

kJα
a gq(t))

1
q ≤

(
M

m

) pq

s3

(s
kJα

a fs(t)gs(t))
1
s . (26)

Combining equations (24) and (26), we obtain desired inequality equation (22),
which is complete the proof.

4 Applications for Some Types Fractional Integrals

Here in this section, we discuss some applications of Theorem 1 in the terms of
Theorems 5-7 and Corollary 1-5.

Theorem 5. Let p, q be two real numbers such that 1
p + 1

q = 1, p > 1 and let
f be continuous on [a, b], k > 0 and s ∈ R\{−1} . Then

∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (27)

≤ C

(∫ b

a

f3(x)s
kJα

a f(x)dx

) 1
p

(∫ b

a

f4(x)s
kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{ (∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(28)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

f3(x)dx

)−1
p

(∫ b

a

(
xs+1 − ts+1

)α
k −1

f4(x)dx

)−1
q

}
.

Proof. In Theorem 1, if we take Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx and
the kernel

k(x, t) =

⎧⎨
⎩

(s+1)1− α
k (ts+1−τs+1)

α
k

−1
τs

kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes s
kJα

a f(t) and so we get desired inequality (27). This completes
the proof of Theorem 5.
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Corollary 1. In Theorem 5, if we take s = 0, then we get
∫ b

a

f1(x)f2(x)kJα
a f(x)dx (29)

≤ C

(∫ b

a

f3(x)kJα
a f(x)dx

) 1
p

(∫ b

a

f4(x)kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(30)

(∫ b

a

(x − t)
α
k −1

f3(x)dx

)−1
p

(∫ b

a

(x − t)
α
k −1

f4(x)dx

)−1
q

}
.

Remark 1. In Corollary 1, α = k = 1, Theorem 1 reduces to Theorem 3.1 in [5].

Corollary 2. In Theorem 5, if we take f3(x) = fp
1 (x) and f4(x) = fq

2 (x), then
we get

∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (31)

≤ C

(∫ b

a

fp
1 (x)s

kJα
a f(x)dx

) 1
p

(∫ b

a

fq
2 (x)s

kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(32)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

fp
1 (x)dx

)−1
p

(∫ b

a

(
xs+1 − ts+1

)α
k −1

fq
2 (x)dx

)−1
q

}
.

Corollary 3. In Corollary 2, if we take s = 0, then we get
∫ b

a

f1(x)f2(x)kJα
a f(x)dx (33)

≤ C

(∫ b

a

fp
1 (x)kJα

a f(x)dx

) 1
p

(∫ b

a

fq
2 (x)kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{ (∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(34)

(∫ b

a

(x − t)
α
k −1

fp
1 (x)dx

)−1
p

(∫ b

a

(x − t)
α
k −1

fq
2 (x)dx

)−1
q

}
.
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Remark 2. In Corollary 3, α = k = 1, Corollary 3 reduces to Corollary 3.2 in [5].

Theorem 6. Let (a, b) be a finite interval of the real line R and �(α) > 0.
Let h(x) be an increasing and positive monotone function on (a, b], having a
continuous derivative h′(x) on (a, b). Also, let p, q be two real numbers such that
1
p + 1

q = 1, p > 1 and let f be continuous on [a, b], k > 0 and s ∈ R\{−1} .
Then

∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (35)

≤ C

(∫ b

a

f3(x)
(

kJα
a+,hf

)
(x)dx

) 1
p

(∫ b

a

f4(x)
(

kJα
a+,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (36)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx
and the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes
(

kJα
a+,hf

)
(x) and so we get desired inequality (35). This

completes the proof of Theorem 6.

Corollary 4. In Theorem 6, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (37)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

a+,hf
)

(x)dx

) 1
p

(∫ b

a

fq
2 (x)

(
kJα

a+,hf
)

(x)dx

) 1
q

,
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where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (38)

Theorem 7. Under the assumptions of Theorem 6, we have

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (39)

≤ C

(∫ b

a

f3(x)
(

kJα
b−,hf

)
(x)dx

) 1
p

(∫ b

a

f4(x)
(

kJα
b−,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (40)

Proof. In contrast to Theorem 6, if we take the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if x ≤ t ≤ b

0 if a < t ≤ x,

we obtain desired inequality.

Corollary 5. In Theorem 7, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (41)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

b−,hf
)

(x)dx

) 1
p

(∫ b

a

fq
2 (x)

(
kJα

b−,hf
)

(x)dx

) 1
q

,



Some Reverse Hölder Type Inequalities . . . 311

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (42)
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