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Preface

Nowadays, by functional analysis one usually understands the branch of
analysis devoted to studying infinite dimensional topological spaces and
mappings between them. Historically, the main examples of such spaces were
spaces of functions, thus confirming the term of “functional” analysis.

Probably for the first time, the term “functional” was used by Hadamard
in his 1910 book devoted to the calculus of variations. As such, the French
mathematician Jacques Salomon Hadamard founded the modern school of
linear functional analysis further developed by the Hungarian mathematician
Frigyes Riesz and the Polish mathematician Stefan Banach.

By the beginning of the XXI century the functional analysis has grown so
much penetrating various branches of mathematics that it is now difficult to
define precisely the subject of this discipline. At the same time the functional
analysis was enriched by numerous more specialised branches based on topics
of the more classical analysis. For example, in Wikipedia, it is defined1 as
follows: “Functional analysis is a branch of mathematical analysis, the core of
which is formed by the study of vector spaces endowed with some kind of
limit-related structure (e.g. inner product, norm, topology, etc.) and the
linear functions defined on these spaces and respecting these structures in a
suitable sense. The historical roots of functional analysis lie in the study of
spaces of functions and the formulation of properties of transformations of
functions such as the Fourier transform as transformations defining contin-
uous, unitary etc. operators between function spaces. This point of view
turned out to be particularly useful for the study of differential and integral
equations”.

The functional analysis nowadays finds its applications in many theoret-
ical and applied branches of mathematics. Many theoretical constructions,
important for the development of mathematics, are described in the language
of the functional analysis. Its applications are encountered in numerous areas

1https://en.wikipedia.org/wiki/Functionalanalysis
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such as the theories of differential and integral equations, mathematical and
theoretical physics, control and optimisation theories, probability theory and
mathematical statistics. The Fourier analysis combined with techniques of
functional analysis led to the development of the theory of distributions and
the theory of pseudo-differential operators.

Motivated by their large applicability for real life problems, applications of
functional analysis have been the purpose of an intensive research effort in the
last decades, yielding significant progress in the theory of functions and
functional spaces, in differential equations and boundary value problems, in
differential and integral operators and spectral theory, and in mathematical
methods in physical sciences.

The present volume is devoted to these investigations. The publication of
this collection of papers is based on the materials of the conference
“Functional analysis in interdisciplinary applications” organised in the
framework of the VI Congress of the Turkic World Mathematical Society
(2–5 October, 2017, Astana, Kazakhstan). The aim of the conference is to
unite mathematicians working in the areas of functional analysis and its
interdisciplinary applications to share new trends of applications of the
functional analysis. This conference is also dedicated to the 75th anniversary
of the outstanding expert in differential operators and spectral problems
Prof. Mukhtarbay Otelbaev, doctor of physical and mathematical sciences,
professor of the Gumilyov Eurasian National University, the vice-director
of the Kazakhstan branch of the Lomonosov Moscow State University, the
chief researcher of the Institute of Mathematics and Mathematical Modelling,
the laureate of the State Prize of the Republic of Kazakhstan, an academician
of the National Academy of Sciences of the Republic of Kazakhstan. Professor
Mukhtarbay Otelbaev is deservedly considered the founder of research on
functional analysis in Kazakhstan.

The present volume contains a citation for Mukhtarbay Otelbaev devoted
to his 75th anniversary. Moreover, the volume also contains a citation for
Professor Erlan Nursultanov, doctor of physical and mathematical sciences,
the Head of Department of Mathematics and Computer Science of the
Kazakhstan Branch of the Lomonosov Moscow State University, for his 60th
anniversary. He is a specialist in the areas of Fourier series, quadrature
formulae, interpolation of function spaces, and stochastic processes. The
44 articles collected in the present volume are selected from the talks by
conference participants. In fact, they are the outgrowth and further devel-
opment of the talks presented at the conference by participants from different
countries, including Germany, India, Iraq, Kazakhstan, Russia, Serbia,
Tajikistan, Turkey, United Kingdom and Uzbekistan. All of them contain
new results and went thorough a refereeing process. The volume reflects the
latest developments in the area of functional analysis and its interdisciplinary
applications.

This volume contains four different chapters. The first chapter contains
the contributed papers focusing on various aspects of the theory of functions
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and functional spaces, including problems of approximation of function
classes, conditions for boundedness and compactness for operators in different
function spaces, results on multipliers of Fourier series for various spaces,
results concerning the evolution of invariant Riemannian metrics on gener-
alised Wallach spaces, results of almost null and almost convergent double
sequence spaces. The second chapter is devoted to the research on differential
equations and boundary value problems. Correct and ill-posed problems for
linear and nonlinear partial differential equations, construction problems and
properties of their solutions are considered. The third chapter contains the
results of studies on differential and integral operators and on the spectral
theory. Various questions for ordinary differential operators, for second-order
and high-order partial differential operators, volume potential for elliptic
differential equations, correct restrictions and extensions of linear operators,
properties for root functions of various differential operators, spectral
geometry issues are considered. The fourth chapter is focused on the simu-
lation of problems arising in real-world applications of physical sciences, such
as electromagnetic fields, continuum mechanics and complex flows. Direct
and inverse problems are considered as well as the Stefan problem for para-
bolic and pseudo-parabolic equations, dynamic problems, problems of a
program of basic control systems. The volume editors thank the authors for
their high-quality contributions.

The editors want to sincerely thank Gulnara Igissinova and Sholpan
Balgimbayeva from the Institute of Mathematics and Mathematical
Modeling, who have contributed greatly to the editing and technical design of
this volume.

Almaty, Kazakstan Tynysbek Sh. Kalmenov
Astana, Kazakhstan Erlan D. Nursultanov
London, UK Michael V. Ruzhansky
Almaty, Kazakhstan Makhmud A. Sadybekov
June 2017
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Professor Mukhtarbay Otelbaev: Citation
for His 75th Birthday

Mukhtarbay Otelbaev is the professor of the Department of Fundamental
and Applied Mathematics of L.N. Gumilyov Eurasian National University,
the director of the Eurasian Mathematical Institute at the Eurasian National
University, the deputy director of the Kazakhstan branch of M.V.
Lomonosov Moscow State University, the Chief Researcher of the Institute of
Mathematics and Mathematical Modelling, the Laureate of the State Prize
of the Republic of Kazakhstan, Doctor of Sciences in physics and mathe-
matics, the academician of the National Academy of Sciences of the Republic
of Kazakhstan. He was born on October 3, 1942 in the village Karakemer
of the Kordai district of the Zhambyl region, Kazakhstan.

He started his working life as a tractor-driver in his native village. After
graduating from the evening school in 1962 in the village Karakonyz (now
Masanchi), he entered the Kyrgyz State University in Frunze (now Bishkek).
In 1962–1965, he served in the Soviet Army. In 1965–1966 he worked as a
teacher of mathematics at Chapaev evening school in the village Karakemer
of the Kordai district of the Zhambyl region.

After that he continued his studies at the Faculty of Mechanics and
Mathematics of the Moscow State University which he graduated in 1969.
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In the same year he entered postgraduate studies at the same faculty under
supervision of the famous scientists, Profs. B.M. Levitan and A.G.
Kostyuchenko. In 1972 he defended the Ph.D. thesis titled “About the
spectrum of some differential operators”.

Since 1973 M. Otelbaev was in Alma-Ata, where he worked as a junior
researcher, a senior researcher, and then as the head of a laboratory at the
Institute of Mathematics and Mechanics of the Academy of Sciences of the
Kazakh SSR.

In 1978, he brilliantly defended the Doctor of Sciences thesis titled
“Estimates of the spectrum of elliptic operators and related embedding the-
orems” at the Dissertation Council number 1 of the Faculty of Mechanics and
Mathematics of the Moscow State University headed by Prof. A.N.
Kolmogorov, a prominent mathematician, the academician of the Academy
of Sciences of the USSR.

In 1989, M. Otelbaev was elected a corresponding member of the Academy
of Sciences of the Kazakh SSR, and in 2004 he became a real member of the
National Academy of Sciences of the Republic of Kazakhstan.

Professor M. Otelbaev is an expert in the field of functional analysis and its
applications, the author of 3 monographs and over 200 scientific papers and
inventions widely recognized both in Kazakhstan and abroad. More than 70
of his works were published in rated international scientific journals (with the
impact-factor Journal Citation Reports Web of Science or included in the
SCOPUS database).

His main works are grouped around the following fields:

• Spectral theory of differential operators;
• Embedding theory and approximation theory;
• Separability and coercive estimates for differential operators;
• General theory of boundary value problems;
• Theory of generalized analytic functions;
• Computational mathematics;
• Nonlinear evolutional equations;
• Theoretical physics;
• Other fields of mathematics.

Let us briefly recapture the main results of Prof. M. Otelbaev.

Spectral Theory of Differential Operators

M. Otelbaev developed new methods for studying the spectral properties of
differential operators, which are the result of consistent and skilled imple-
mentation of the general idea of the localization of the considered problems.
In particular, he invented a construction of averaging coefficients well
describing those features of their behaviour which influence the spectral
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properties of a differential operator. This construction, known under the
notation q�, made it possible to answer many of the hitherto open questions
of the spectral theory of the Schr€odinger operator and its generalisations.

The function q� and its different variants have a number of remarkable
properties, which allow applying this function to a wide range of problems.
Here we note some problems solved byM. Otelbaev by using the function q� on
the basis of sophisticated analysis of the properties of differential operators.

(1) A criterion for the membership of the resolvent of the Schr€odinger type
operator with a non-negative potential in the class rp; ð1� p�1Þ was
found (previously only a criterion for the membership in r1 was known),
and two-sided estimates for the eigenvalues of this operator were obtained
under the minimal assumptions of the smoothness of the coefficients.

(2) The general localization principle was proved for the problems of
selfadjointness and of the maximal dissipativity (simultaneously with the
American mathematician P. Chernov) which provided significant pro-
gress in this area.

(3) Examples were given showing that the classical Carleman-Titchmarsh
formula for the distribution function NðkÞ of the eigenvalues of the
Sturm-Liouville operator is not always correct even in the class of
monotonic potentials and a new formula was found valid for all mono-
tonic potentials.

(4) The following result of M. Otelbaev is principally important: for NðkÞ
there is no universal asymptotic formula.

(5) From the time of Carleman, who found the asymptotics for NðkÞ and, by
using it, the asymptotics of the eigenvalues themselves, many mathe-
maticians worked on finding the asymptotics for NðkÞ, but as a result they
could not get rid of the so-called Tauberian conditions. M. Otelbaev was
the first one, when looking for the asymptotics of the eigenvalues, who
omitted the interim step of finding the asymptotics for NðkÞ, which
allowed getting rid of all unessential conditions for the problem including
Tauberian conditions.

(6) The two-sided asymptotics for NðkÞ for the Dirac operator showed for the
first time that N�ðkÞ and Nþ ðkÞ may be not equivalent. The results of M.
Otelbaev on the spectral theory were included as separate chapters in the
monographs of B.M. Levitan and I.S. Sargsyan “Sturm-Liouville and
Dirac operators” (Moscow: Nauka, 1985), and of A.G. Kostyuchenko and
I.S. Sargsyan “Distribution of eigenvalues” (Moscow: Nauka, 1979),
which became classical books on the subject.

Recently, M. Otelbaev, jointly with Prof. V. I. Burenkov, described a wide
class of non-selfadjoint elliptic operators of order 2l with general boundary
conditions, whose singular numbers have the same asymptotics as the
eigenvalues of the lth power of the Laplace operators with the Dirichlet
boundary conditions.
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Embedding Theory and Approximation Theory

This field of mathematics has developed as a separate branch in the works of
S.L. Sobolev in 1930s. Beginning with the works of L.D. Kudryavtsev (around
1960) a new era of weighted function spaces used in the theory of differential
operators with variable coefficients arises.

M. Otelbaev began research in this field already being a mature mathe-
matician and managed to create a new method of proving embedding theo-
rem which is, in form and essence, a local approach to such problems. In the
theory of weighted Sobolev spaces, the most used weighted function spaces,
M. Otelbaev obtained the following fundamental results.

(1) A criterion for an embedding and for the compactness of an embedding.
(2) Two-sided estimates for the norm of an embedding operator.
(3) Two-sided estimates for Kolmogorov’s width and for the approximation

numbers of an embedding operator, and a criterion for the membership
for an embedding operator in the classes rp; ð1� p�1Þ. It turned out
that one of the variants of the function q� is an adequate tool for
description of the exact conditions ensuring an embedding. For applica-
tions it is particularly important that all the estimates were given in
terms of weight functions thus allowing taking into account the charac-
teristics of their local behaviour.

Separability and Coercive Estimates for Differential
Operators

The term “separability” was suggested by the famous English mathemati-
cians Everitt and Geertz around 1970s, who investigated the smoothness of
solutions to the Sturm-Liouville equation.

Soon after that, M. Otelbaev was involved in the research on this topic. He
developed a method for studying the separability of more general,
multi-dimensional operators and variable type operators, as well for the
smoothness of solutions to nonlinear equations. In particular, by using this
method one can study the separability of general differential operators in
weighted, not necessarily Hilbert, spaces. With his interest in solving prob-
lems in the most general setting, M. Otelbaev obtained

(1) weighted estimates not only of the derivatives of solutions of the highest
order, but also of intermediate derivatives for a wide class of linear and
nonlinear equations;

(2) estimates of the approximation numbers of separable operators exact in a
certain class of coefficients.
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General Theory of Boundary Problems

The classical formulation of the boundary value problem is as follows: given
an equation and boundary conditions, to investigate the solvability of this
problem and the properties of the solution, if it exists (in the sense of being in
a certain space). Beginning with M.I. Vishik (1951), there is another, more
general approach: given an equation and a space to which the right-hand side
and the solution should belong, to describe all boundary conditions for which
the problem is correctly solvable in this space.

In this problem as well, despite the numerous previous studies, M.
Otelbaev has obtained new results remarkable in depth and transparency.
The rich mathematical intuition, the depth of thinking and extensive
knowledge, coupled with rejection of traditional constraints on the considered
operators and spaces, allowed him to develop an abstract theory of extension
and restriction of not necessarily linear operators in linear topological spaces.

Using this theory, M. Otelbaev and his students were the first to describe
all correct boundary value problems for such “pathological” operators as the
Bitsadze-Samarskii operator, the ultrahyperbolic operator, the pseu-
doparabolic operator, the Cauchy-Riemann operator and others (For some
of them previously no correct boundary value problems were known!).
Moreover, considerations were carried out in non-Hilbert spaces Lp and C.
This theory also allowed describing the structural properties of the spectrums
of correct restrictions of a given differential operator.

Theory of Generalized Analytic Functions

In the theory of generalized analytic functions, developed by the well-known
scientist I.N. Vekua, a member of the Academy of Sciences of the USSR, the
main facts are:

(a) a theorem on the representation of a solution;
(b) a theorem on the continuity of a solution;
(c) a theorem on the Fredholm property.

All other facts of the theory are deduced from (a), (b), and (c). Various
authors have gradually widened the class of spaces in which the Vekua theory
was valid.

M. Otelbaev found the widest space among the spaces close to the so-called
ideal spaces, to which the coefficients and the right-hand side should belong,
so that the facts (a), (b) and (c) remain valid.
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Computational Mathematics

M. Otelbaev proposed a new numerical method for solving boundary value
problems (as well as general operator equations). By using the embedding
and extension theorems, he reduced the considered boundary value problem
to the problem of minimising a functional. The boundary conditions and also
nonlinearities are “hidden” in the integral expressions. Moreover, by this
method the problem of “the choice of a basis” was solved, in which many
prominent mathematicians have been interested for a long time.

The method of M. Otelbaev can be easily algorithmised and allows finding
the solution with the required accuracy. Moreover, the procedure of finding a
numerical solution is stable. Computer calculations conducted by his stu-
dents and students of Prof. Sh. Smagulov showed the effectiveness of the
method.

M. Otelbaev developed a method of approximate calculation of eigenval-
ues and eigenvectors of non-selfadjoint matrices, based on a variational
principle. The method reduces the problem to the analogous problem for
self-adjoint matrices, for which there is a well-developed theory. Unlike other
methods, for example, the maximum gradient method, this method

(1) provides global convergence,
(2) is convenient for calculating the initial approximation,
(3) allows calculating the eigenvalues with the smallest real part,
(4) can be used in the general case of a compact non-self adjoint operator.

M. Otelbaev obtained a two-sided estimate for the smallest eigenvalue of a
difference operator which is important for computational mathematics. Due
to the need for cumbersome calculations, methods for the parallelization are
actively developed in the world. M. Otelbaev offered an effective algorithm of
parallelization for approximate solutions of boundary value problems and the
Cauchy problem for various classes of differential equations.

In addition, Prof. M. Otelbaev gave a new approximate method for solving
a linear algebraic system with a poorly conditioned matrix and parallelizing
the solution process.

Nonlinear Evolution Equations

In hydrodynamics for describing a laminar flow of an incompressible fluid, as
well as a turbulent flow the system of the Navier-Stokes equations is used.
However, mathematically, the existence of a global solution has not been
proved yet. Therefore, there are some uncertainties concerning using this
system as an understood mathematical model.
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M. Otelbaev managed to reduce the existence problem of a global solution
to the Navier-Stokes equation to other equivalent problems, in particular, to
the problem of the existence of the so-called “dividing function”. He obtained
a criterion for strong solvability of nonlinear evolution equations, similar to
the Navier-Stokes equation, and also constructed examples of equations not
globally strongly solvable to which the system of Navier-Stokes type equa-
tions reduce.

The paper of Prof. M. Otelbaev in which he published a full proof of the
Clay Navier-Stokes Millennium Problem obtained a high resonance: first, the
paper was published in the Kazakhstan scientific journal “Mathematical
Journal” (No. 4, 2013) in Russian language. However, in the process of
analysing his proof a mistake in calculations was found, which was
acknowledged by M. Otelbaev. Notwithstanding that the proof was incorrect,
it is generally recognised that the work of M. Otelbaev has brought a new
push in the progress of research on the Navier-Stokes equation. In particular,
after the publication of this work, a change has been made to the statement
of the problem by the Clay Institute: an additional condition of pressure
periodicity has been added. Also based on the incorrect solution of the
problem by M. Otelbaev, Terence Tao published a substantial work devoted
to disproving the fact that the Navier-Stokes problem can be solved in an
abstract form.

Theoretical Physics

M. Otelbaev obtained a number of interesting mathematical results in this
area. He

(a) found explicit formulae for the n-particle motion in the space (in the
framework of Einstein’s relativity theory);

(b) derived an integral formula of the matter motion;
(c) proposed a new transformation of the type of the well-known Lorentz

transformation which works both for m\c and for m[ c. If m\c the
Otelbaev transformation coincides with the Lorentz transformation;

(d) proved mathematically that one can obtain the results of physics arising
from the special Einstein’s relativity theory staying within the classical
wave theory.
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Other Fields of Mathematics

The research interests of M. Otelbaev are extremely diverse. The following
topics complete their partial description.

(1) M. Otelbaev chose a certain nonlinear integral operator, for which he
proved a criterion of continuity. This operator turned out to be an
important model in the theory of nonlinear integral operators, based on
which one can develop and test new methods. Consequently, M. Otelbaev
together with Professor R. Oinarov obtained a necessary and sufficient
condition ensuring the Lipschitz property (contractibility) of the Uryson
operator in the spaces of summable and continuous functions.

(2) He investigated spectral characteristics and smoothness of solutions to
equations of mixed type. A criterion of coinciding of the generalised
Neumann and Dirichlet problems for degenerate elliptic equations was
found.

(3) In the recent years, the problem of oscillatory and non-oscillatory solu-
tions to differential equations has become a fashionable topic in mathe-
matics. Already in the late 80s, M. Otelbaev obtained a sufficient
condition ensuring the non-oscillation property of solutions to the
Sturm-Liouville problem, close to a necessary one.

(4) M. Otelbaev studied the problem of controlling a laser heat source. He
showed that under the usual formulation, it does not even have a gen-
eralized solution. Consequently, he proposed a new formulation of the
problem in terms of “order” and “admittance precision” for surface
treatment. He proved the solvability of this problem in such formulation,
and solved some optimization problems without using the known meth-
ods of optimal control. In addition, jointly with Prof. A. Hasanoglu, he
solved an inverse identification problem of an unknown time source, on
the basis of the measured output data, when the boundary conditions are
given in the Dirichlet or Neumann form, as well as in the form of the final
overdetermination.

Summing up the review of the scientific creativity of M. Otelbaev, one
should note as characteristics features of his work the diversity of his scien-
tific interests, the fundamentality of research, the interest in solving problems
in the most general formulation and obtaining solutions of the level of a
criterion.

A large number of publications of M. Otelbaev characterise his high effi-
ciency, diligence, and research productivity. He was a participant of
numerous international scientific conferences, which took place in
Kazakhstan, Russia, Ukraine, Poland, Czechoslovakia, Germany, Morocco,
Turkey, Greece, and Japan.

M. Otelbaev has carried out great work in preparing highly qualified
researchers and university teachers. Over 35 years he was giving lectures for
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students of various universities of the Republic of Kazakhstan, organised a
series of seminars and study groups for graduate students, interns, Master
and Ph.D. students. The courses “Extensions and restrictions of differential
operators”, “The theory of divisibility”, “Embedding theorems”, “Modern
numerical methods”, and many others developed by M. Otelbaev, are well
known.

He has created a large mathematical school in Kazakhstan: 70 postgrad-
uate students have defended Ph.D. thesa under his supervision, 9 of them
later defended Doctor of Sciences theses.

M. Otelbaev made a significant contribution to the organisation and
development of science and education in Kazakhstan. In 1985–1986, he was
the rector of the Zhambul Pedagogical Institute, from 1991 to 1993 he
organised and worked as the director of the new Institute of Applied
Mathematics of the Academy of Sciences and the Ministry of Education and
Science of the Republic of Kazakhstan in Karaganda, in 1994–1995 he was the
head of the Department at Aerospace Agency of the Republic of Kazakhstan.

Since 2001 he is the deputy director of the Kazakhstan branch of the
Moscow State University, and simultaneously the director of the Eurasian
Mathematical Institute at the L.N. Gumilyov Eurasian National University.

For a number of years, M. Otelbaev is a member of the editorial board
of the Kazakhstan scientific journal “Mathematical Journal”, published by
the Institute of Mathematics and Mathematical Modelling, of the
“Proceedings of the Academy of Sciences of the Republic of Kazakhstan,
series in Physics and Mathematics” and of the international scientific journal
“Applied and Computational Mathematics” of the National Academy of
Sciences of the Republic of Azerbaijan. Since 2010 he is an editor-in-chief,
together with academician V.A. Sadovnichy and Prof. V.I. Burenkov, of the
“Eurasian Mathematical Journal” (Included in the Scopus database), which
is published in English language by the Gumilyov Eurasian National
University, together with the Moscow State University, the Peoples’
Friendship University of Russia, and the University of Padua.

He was the chairman of the international scientific conference “Modern
Problems of Mathematics”, held at Gumilyov Eurasian National University
in 2002, and was a member of program committees of 10 international sci-
entific conferences devoted to problems of mathematics and computer science
held at the Kazakh National University, Karaganda State University, the
Institute of Mathematics of the Ministry of Education and Sciences of the
Republic of Kazakhstan, Pavlodar State University, and Semei University. In
2007, he was elected the Vice-President of the Turkic World Mathematical
society.

In 2004, Prof. M. Otelbaev became a Laureate of the Economic
Cooperation Organization in the category “Science and technology”. In 2006
and 2011, he was awarded the state grant “The best university teacher”.
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In 2007, Prof. M. Otelbaev was awarded the State Prize of the Republic of
Kazakhstan in the field of science and technology.

Almaty, Kazakhstan Tynysbek Sh. Kalmenov
Astana, Kazakhstan Erlan D. Nursultanov
London, UK Michael V. Ruzhansky
Almaty, Kazakhstan Makhmud A. Sadybekov
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Professor Erlan Nursultanov: Citation
for His 60th Birthday

Professor Erlan Nursultanov is a well-known mathematician whose research
achievements and contributions to the mathematical community are very
valuable. Specialists in the field of function theory are well aware of works of
E. Nursultanov, where he not only solved several important problems, but
also created new research methods that are actively used nowadays in the
literature. Among his most important achievements one can mention the
theory of net spaces. On its basis, he developed a method for obtaining lower
bounds for the norms of integral operators, which provides several applica-
tions. In particular, E. Nursultanov has significantly extended classical
results such as the Hardy-Littlewood theorem on the Fourier coefficients, the
H€ormander theorem on Fourier multipliers and O’Neill’s theorem on the
convolution operator in the multidimensional case.

E. Nursultanov introduced and developed a method of multiparametric
interpolation, generalising the real interpolation method of Lyons and Peetre.
This method allows solving the problem of reiteration of the real method. He
also constructed an interpolation theory for anisotropic function spaces. In
particular, the problem of obtaining a Marcinkiewicz-type interpolation
theorem for Lebesgue spaces with a mixed metric was solved in this way.

Moreover, E. Nursultanov and A.G. Kostuchenko developed a new theory
studying integral operators based on analysis of the singularities of kernels.
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This theory provides a new approach for dealing with optimal control of
resonance problems.

Professor Nursultanov studied the problem of multipliers of Fourier series,
namely, he found a sufficient condition that depends essentially on the
parameter p for the multipliers of trigonometric Fourier series in the
Lebesgue spaces Lp. He also solved the problem of constructing the optimal
recovery operator for classes of functions with dominating mixed derivatives.

Erlan Nursultanov has published more than 150 scientific papers. In 2016,
he received the Top Author award from Springer Nature. Moreover, 2 doc-
toral dissertations, 4 Ph.D. thesa, and 9 Candidate’s thesa have been
defended under his supervision.

Erlan Nursultanov was born on May 25, 1957, in Karaganda. He graduated
from the Faculty of Mathematics of Karaganda State University in 1979. In
1979–1982 he studied at the graduate school of the Moscow State University.
In 1983, E. Nursultanov defended his thesis for the degree of the Candidate of
Physical and Mathematical Sciences at the Moscow State University. In
1999, he defended his Doctor of Science’ thesis at V.A. Steklov Mathematical
Institute.

During the period of 1983–1989 Prof. Nursultanov worked at the
Department of Mathematical Analysis at the Karaganda State University
under E.A. Buketov first as an assistant, then as a senior lecturer, and finally
as a docent. He continued working at the department as an adjunct professor
until 1999. In the period 1992–1999 he worked as the head of the laboratory
“Applied functional analysis” at the Institute of Applied Mathematics. In
1999–2001 he was the Chair of the Department of Mathematics and Methods
of Modelling at the Karaganda State University. Since 2001, Prof.
Nursultanov has been working at the Head of the Department of
Mathematics and Informatics at the Kazakhstan branch of the Moscow State
University.

In addition to his valuable contributions to the research, Prof.
Nursultanov also contributes to the mathematical community in several
other ways. These include organising and participating in the conferences,
serving as a member in expert commissions and as an Editorial board
member in several mathematical journals. He also participates actively in
joint research projects and international collaborations, gives lectures at
different international universities and supervises young researchers.

Almaty, Kazakhstan Tynysbek Sh. Kalmenov
London, UK Michael V. Ruzhansky
Almaty, Kazakhstan Makhmud A. Sadybekov
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Abstract. The aim of this paper is to discuss some results of [2,3]
relating to the study of the evolution of invariant Riemannian met-
rics on generalized Wallach spaces with a1 = a2 = a3 = a, where
a ∈ (0, 1/2). We proved that for the Wallach spaces SU(3)/Tmax,
Sp(3)/Sp(1) × Sp(1) × Sp(1), and F4/Spin(8), the normalized Ricci
flow evolves all generic invariant Riemannian metrics with positive sec-
tional curvature into metrics with mixed sectional curvature. Moreover,
we obtained general results concerning the evolution of invariant Rie-
mannian metrics on generalized Wallach spaces with a ∈ (0, 1/2) \ {1/4}
under the normalized Ricci flow. The very special case a = 1/4 is also
considered.

Keywords: Wallach space · Generalized Wallach space · Riemannian
metric · Normalized Ricci flow · Sectional curvature · Ricci curvature ·
Scalar curvature · Panar dynamical system · Singular point ·
Bifurcation value

Introduction and the Main Results
The study of evolution of a 1-parameter family of Riemannian metrics g(t) in
a Riemannian manifold M n under the normalized Ricci flow equation

∂

∂t
g(t) = −2Ricg +2g(t)

Sg

n
, (1)

where Ricg and Sg are the Ricci tensor and the scalar curvature of the Rie-
mannian metric g, respectively, was initiated by R. Hamilton in [17], and since
then it has been continuing successfully in the case of homogeneous spaces,
where one of the important problems is to investigate whether or not the posi-
tiveness of the sectional curvature or positiveness of the Ricci curvature of Rie-
mannian metrics is preserved under the (normalized) Ricci flow [9,17]. A recent
survey on the evolution of positively curved Riemannian metrics under the Ricci
flow could be found in [23]. Interesting results on the evolution of invariant

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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Riemannian metrics could also be found in the papers [10–12,18,20,21,27,29]
and the references therein.

Similar questions were considered in [2,3] with respect to the Wallach spaces

W6 := SU(3)/Tmax,
W12 := Sp(3)/Sp(1) × Sp(1) × Sp(1),
W24 := F4/Spin(8)

(2)

that admit invariant Riemannian metrics of positive sectional curvature [29]
and generalized Wallach spaces (or three-locally-symmetric spaces) which are
characterized as compact homogeneous spaces G/H whose isotropy representa-
tion decomposes into a direct sum p = p1 ⊕ p2 ⊕ p3 of three Ad(H)-invariant
irreducible modules satisfying [pi, pi] ⊂ h, i ∈ {1, 2, 3} (see the original papers
[22,24,26] for definitions and details). Every generalized Wallach space can be
characterized by a triple of real numbers ai := A/di ∈ [0, 1/2], i = 1, 2, 3, where
A is a non negative number, di := dim (pi). Note that a1 = a2 = a3 =: a and
dim(p1) = dim(p2) = dim(p3) =: d for the Wallach spaces W6, W12, and W24.
Moreover, for these spaces, a is equal to 1/6, 1/8, 1/9 and d is equal to 2, 4, 8,
respectively. It should also be noted that the classification of generalized Wallach
spaces is obtained recently (independently) in the papers [13,25]. Moreover, the
classification suggested by [25] is complete, whereas [13] assumes simpleness of
the Lie group G.

For a fixed bi-invariant inner product 〈·, ·〉 on the Lie algebra g of the Lie
group G, any G-invariant Riemannian metric g on G/H is determined by an
Ad(H)-invariant inner product

(·, ·) = x1〈·, ·〉|p1 + x2〈·, ·〉|p2 + x3〈·, ·〉|p3 , (3)

where x1, x2, x3 are positive real numbers. Therefore, the space of such metrics
is 2-dimensional up to a scale factor. Any metric with x1 = x2 = x3 is called
normal, whereas the metric with x1 = x2 = x3 = 1 is called standard or Killing.
The subspace of invariant metrics satisfying xi = xj for some i �= j, is invariant
under the normalized Ricci flow, because these special metrics have a larger
connected isometry group. Indeed, such a metric (x1, x2, x3) admits additional
isometries generated by the right action of the group K ⊂ G with the Lie algebra
k := h ⊕ pk, {i, j, k} = {1, 2, 3}, see details in [25]. All such metrics are related
to the above mentioned submersions of the form K/H → G/H → G/K, coming
from inclusions H ⊂ K ⊂ G, see e. g. [9, Chapter 9]. In what follows we call these
metrics exceptional or submersion metrics. These metrics constitute three one-
parameter families up to a homothety. All other metrics we call generic or non-
exceptional. Note that the Wallach spaces (2) are the total spaces of the following
submersions: S2 → W6 → CP

2, S4 → W12 → HP
2, S8 → W24 → CaP2. The

first main result obtained in [3] is the following

Theorem 1. On the Wallach spaces W6, W12, and W24, the normalized Ricci
flow evolves all generic metrics with positive sectional curvature into metrics
with mixed sectional curvature.
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Moreover, the normalized Ricci flow removes every generic metric from the
set of metrics with positive sectional curvature in a finite time and does not
return it back to this set. This finite time depends of the initial points and could
be as long as we want, see details in Section 2.1.

Theorem 1 easily implies the following result obtained in [14]: on the Wallach
spaces W6, W12, and W24, the normalized Ricci flow evolves some metrics with
positive sectional curvature into metrics with mixed sectional curvature.

The second main result of [3] is related to the evolution of metrics with
positive Ricci curvature.

Theorem 2. On the Wallach spaces W12 and W24, the normalized Ricci flow
evolves all generic metrics with positive Ricci curvature into metrics with mixed
Ricci curvature.

Moreover, the normalized Ricci flow removes every generic metric from the
set of metrics with positive Ricci curvature in a finite time and does not return it
back to this set. This finite time depends of the initial points and could be as long
as we want. Note also that the normalized Ricci flow can evolve some metrics
with mixed Ricci curvature to metrics with positive Ricci curvature. Moreover,
there is a non-extendable integral curve of the normalized Ricci flow with exactly
one metric of non-negative Ricci curvature, see details in Section 2.2.

In the paper [11], C. Böhm and B. Wilking studied (in particular) some prop-
erties of the (normalized) Ricci flow on the Wallach space W12. They proved that
the (normalized) Ricci flow on W12 evolves certain positively curved metrics into
metrics with mixed Ricci curvature, see [11, Theorem 3.1]. The same assertion
for the space W24 obtained by M. W. Cheung and N. R. Wallach in [14, Theo-
rem 3]. On the other hand, it was proved in [14, Theorem 8] that every invariant
metric with positive sectional curvature on the space W6 retains positive Ricci
curvature under the Ricci flow. Hence, Theorem 2 fails for W6. Note also that
for some invariant metrics with positive Ricci curvature on W6, the Ricci flow
can evolve them to metrics with mixed Ricci curvature, see [14, Theorem 3] or
Remark 6 below. The principal difference between W6 and two other Wallach
spaces is explained in Lemma 5 and Remark 4. We emphasize that the special
status of W6 follows from Proposition 1 and the description of the boundary of
R, the set of metrics with positive Ricci curvature (19). In [3] the following the-
orem was also proved demonstrating that Theorem 2 can be extended to some
other generalized Wallach spaces.

Theorem 3. Let G/H be a generalized Wallach space with a1 = a2 = a3 =: a,
where a ∈ (0, 1/4)∪(1/4, 1/2). If a < 1/6, then the normalized Ricci flow evolves
all generic metrics with positive Ricci curvature into metrics with mixed Ricci
curvature. If a ∈ (1/6, 1/4) ∪ (1/4, 1/2), then the normalized Ricci flow evolves
all generic metrics into metrics with positive Ricci curvature.

For instance, the spaces Sp(3k)/Sp(k) × Sp(k) × Sp(k) correspond to the
case a = k

6k+2 < 1/6, whereas the spaces SO(3k)/SO(k) × SO(k) × SO(k),
k > 2, correspond to the case 1/6 < a = k

6k−4 < 1/4. Note also that SO(3)
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correspond to a = 1/2, the maximal possible value for a = a1 = a2 = a3, see
details in [4,5]. It is interesting also that 1/9 is the minimal possible value for
a = a1 = a2 = a3 among non-symmetric generalized Wallach spaces, see [25].
It should also be noted that there are many generalized Wallach spaces with
a = 1/6, for example, the spaces SU(3k)/S(U(k) × U(k) × U(k)). All these
spaces are Kähler C-spaces, see [25]. The following result was obtained in [3],
that generalizes Theorem 8 in [14].

Theorem 4. Let G/H be a generalized Wallach space with a1 = a2 = a3 = 1/6.
Suppose that it is supplied with the invariant Riemannian metric (3) such that
xk < xi + xj for all indices with {i, j, k} = {1, 2, 3}, then the normalized Ricci
flow on G/H with this metric as the initial point, preserves the positivity of the
Ricci curvature.

It should be noted that xk = xi + xj is just the unstable manifold of the
Kähler – Einstein metric for all generalized Wallach spaces with a = 1/6.

And, finally, the very special case of generalized Wallach spaces was studied
in [2] corresponding to a = 1/4. In [2] the following theorem was proved

Theorem 5. Let G/H be a generalized Wallach space with a1 = a2 = a3 = 1/4.
Then the normalized Ricci flow evolves all generic metrics into metrics with
positive Ricci curvature.

According to [25, Theorem 1] infinitely many generalized Wallach spaces
correspond to a1 = a2 = a3 := a = 1/4, more precisely if G = F × F × F × F
and H = diag(F ) ⊂ G for some connected and simply connected compact simple
Lie group F , then G/H is a generalized Wallach space corresponding to the
value a = 1/4 and having the following description on the Lie algebra level
(g, h) =

(
f ⊕ f ⊕ f ⊕ f, diag(f) = {(X,X,X,X) | X ∈ f}), where f is the Lie

algebra of F and (up to permutation) p1 =
{
(X,X,−X,−X) | X ∈ f

}
, p2 ={

(X,−X,X,−X) | X ∈ f
}
, p3 =

{
(X,−X,−X,X) | X ∈ f

}
. Other example of

a generalized Wallach space with a = 1/4 is SO(6)/SO(2) × SO(2) × SO(2).
The paper is organized as follows: In Sect. 1 we reduce the normalized Ricci

flow equation (1) to the system of ODE’s (ordinary differential equations) (10).
In Sect. 2 we demonstrate the main idea of proving Theorems 1–4 based on the
detailed description of metrics admitting positive sectional or positive Ricci cur-
vature and the analysis of asymptotical behavior of solutions of the system (10).
The visual illustrations of results will also be given. In Sect. 3 we discuss the
special case a = 1/4 and expose proof of Theorem 5 briefly.

1 Preliminaries

1.1 Some Basic Facts from the Theory of ODE’s

Consider a dynamical system

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (4)
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where P and Q are real polynomials of degree ≤ m. A point (x0, y0) ∈ R
2 is

said to be a singular point of the system (4), if P (x0, y0) = Q(x0, y0) = 0. Such
(x0, y0) is called degenerate, if the Jacobian matrix J = J(x0, y0) of the system
(4) evaluated at (x0, y0) has at least one zero eigenvalue. The singular point
(x0, y0) is called linearly zero if J = 0, see [16].

A differentiable function ϕ : R2 → R is said to be an invariant of (4), if there
exist a polynomial k(x, y) of degree ≤ (m − 1) such that

P (x, y)
∂ϕ(x, y)

∂x
+ Q(x, y)

∂ϕ(x, y)
∂y

= k(x, y)ϕ(x, y).

The polynomial k is called a co-factor of the invariant ϕ. A curve defined by
ϕ(x, y) = 0 is called an invariant curve of (4). If k ≡ 0, then ϕ is a first integral
of the system (4). Curves, defined by P (x, y) = 0 and Q(x, y) = 0, are called the
main isoclines of the system (4).

1.2 Reduction of the Normalized Ricci Flow Equation
to a System of ODE’s

For the Ricci operator Ric and the scalar curvature S of the metric (3) the
following expressions are known in the case of generalized Wallach spaces

Ric = r1 Id|p1 + r2 Id|p2 + r3 Id|p3 ,

S = d1r1 + d2r2 + d3r3,

where the principal Ricci curvatures r1, r2 and r3 can be evaluated by the
formulas

ri =
1

2xi
+

ai

2

(
xi

xjxk
− xk

xixj
− xj

xixk

)
, {i, j, k} = {1, 2, 3}, (5)

obtained in Lemma 2 of [24].
By using the above equalities and taking into account the equality n =

d1 + d2 + d3, the (volume) normalized Ricci flow equation (1) can be reduced to
a system of ODE’s of the following form

dxi

dt
= Fi := −2xi

(
ri − S

n

)
, i = 1, 2, 3. (6)

Observe that singular points of the system (6) are identical to invariant Ein-
stein metrics of the space under consideration. Indeed, if (x1, x2, x3) is a singular
point of (6), then r1 = r2 = r3. The converse is obvious.

It suffices to consider only invariant metrics with

Vol := x
1/a1
1 x

1/a2
2 x

1/a3
3 ≡ 1,

because the metric (3) has the same volume as the standard metric if and only
if Vol ≡ 1. Indeed, the case of general volume is reduced to this one by a
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suitable homothety. This observation is the main argument to apply the (volume)
normalized Ricci flow instead of the non-normalized Ricci flow in the case of the
Wallach spaces, as far as in the case of generalized Wallach spaces (see details
e. g. on pp. 259–260 of [17] and in [4,5]).

It is easy to show that the function Vol := x
1/a1
1 x

1/a2
2 x

1/a3
3 is a first integral

of (6). Therefore, we can reduce (6) to the following system of two differential
equations on the surface Vol ≡ 1, see details in [4,5]:

dx1

dt
= F1

(
x1, x2, ϕ(x1, x2)

)
,

dx2

dt
= F2

(
x1, x2, ϕ(x1, x2)

)
, (7)

where ϕ(x1, x2) := x
− a3

a1
1 x

− a3
a2

2 .
Assume further that a1 = a2 = a3 := a. Then (7) takes the form

dx1
dt = x1x

−1
2 + x2x

2
1 − 2 − 2ax1

(
2x2

1 − x2
2 − x−2

1 x−2
2

)
,

dx2
dt = x2x

−1
1 + x1x

2
2 − 2 − 2ax2

(
2x2

2 − x2
1 − x−2

1 x−2
2

)
.

(8)

For our goals we need also a system of ODE’s obtaining in scale invariant
variables

w1 :=
x3

x1
, w2 :=

x3

x2
. (9)

Observing that

1
wi

dwi

dt
=

1
x3

dx3

dt
− 1

xi

dxi

dt
= −2(r3 − ri), i = 1, 2,

the system (6) can be reduced to the following system for w1 > 0 and w2 > 0:

dw1
dt = x−1

3 (w1 − 1)(w1 − 2aw1w2 − 2aw2),
dw2
dt = x−1

3 (w2 − 1)(w2 − 2aw1w2 − 2aw1).

Since the preceding system is autonomous we can introduce the new time-
parameter t := t/x3 not changing integral curves and their orientation (x3 > 0).
Then we get

dw1
dt = f(w1,w2) := (w1 − 1)(w1 − 2aw1w2 − 2aw2),
dw2
dt = g(w1,w2) := (w2 − 1)(w2 − 2aw1w2 − 2aw1).

(10)

Since the result of reducing of the system (10) does not depend on the con-
crete value of x3, we can put x3 = x−1

1 x−1
2 according to Vol ≡ 1. This assumption

and (9) imply that there exist the following homeomorphism between the coor-
dinate systems (x1, x2) and (w1,w2)

(x1, x2) �→ (w1,w2) :=
(
x−2
1 x−1

2 , x−1
1 x−2

2

)
, (11)

which provides the topological equivalence of phase portraits of the systems (8)
and (10) at every fixed value of the parameter a.
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1.2.1 Invariant Curves and Main Isoclines of the System (10)

The following straight lines c1, c2 and c3 determined by the equations

w1 = 1, w2 = 1, w2 = w1,

respectively, are invariant for the system (10). Indeed, it suffices to note that the
polynomial −2aw1w2 − 2a+w1 +w2 − 1 is a co-factor for w2 = w1. Co-factors of
the other lines are obvious. Note that the curves c1, c2 and c3 have the common
point E0 = (1, 1) and separate the domain (0,∞)2 into 6 connected invariant
components (see Fig. 1).

The study of normalized Ricci flow in each pair of these components are
equivalent due to the following property of the Wallach spaces: there is a finite
group of isometries fixing the isotropy and permuting the modules p1, p2, and
p3. Therefore, it suffices to study solutions of (10) with initial points given only
in the following set

Ω :=
{
(w1,w2) ∈ R

2 | w2 > w1 > 1
}

. (12)

It follows directly from (11) that on the plane (x1, x2) the curves

x2 = x−2
1 , x1 = x−2

2 , x2 = x1

correspond to c1, c2 and c3 being the invariant sets of the system (8). Clearly,
these curves have the common point F := (1, 1) and separate the domain{
(x1, x2) | xi > 0

}
into 6 connected invariant components.

A simple analysis of the right hand sides of the system (10) provides elemen-
tary tools for studying the behavior of its integral curves. For instance, we can

Fig. 1. The case a = 1/8: The singular points E0, E1, E2, E3, the isoclines ω, λ and the
phase portrait of the system (10)
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predict the slope of integral curves of (10) in Ω and interpret them geometri-
cally. According to this observations, let us consider the main isoclines (10) (see
Fig. 1)

ω :=
{
(w1,w2) ∈ R

2
+ | y1 := w1 − 2aw1w2 − 2aw2 = 0

}
,

λ :=
{
(w1,w2) ∈ R

2
+ | y2 := w2 − 2aw1w2 − 2aw1 = 0

}
,

where R+ means the set of positive real numbers.
Let (w1(t),w2(t)) be any integral curve of (10) given in Ω. Then w′

1 < 0
(respectively w′

1 > 0) over (respectively under) ω and w′
2 > 0 (respectively

w′
2 < 0) over (respectively under) λ. Clearly, w′

1 = 0 on ω and w′
2 = 0 on λ.

1.2.2 Singular Points of the System (10) at a �= 1/4

The following lemma can be easily proved by direct calculations (see the left
panel of Figure 1)

Lemma 1. Let a �= 1/4. Then the system (10) has exactly four singular points
E0 = (1, 1), E1 = (q, 1), E2 = (1, q), E3 =

(
q−1, q−1

)
, which are non degenerate,

where q := 2a(1 − 2a)−1. Moreover, E1, E2 and E3 are saddles and E0 is an
unstable node.

1.2.3 Asymptotic Behavior of Solutions of the System (10)

Now we should study integral curves of (10) in Ω estimating their “curvature”
as w1 → 1 + 0 and w2 → +∞ more precisely. Since f �= 0 in Ω, any solution
(w1(t),w2(t)) of the system (10) represents some differentiable function w2 =
φ(w1) being the unique solution of the following initial value problem

dw2

dw1
=

g
f

=
(w2 − 1)(w2 − 2aw1w2 − 2aw1)
(w1 − 1)(w1 − 2aw1w2 − 2aw2)

, w2|w1=w0
1

= w0
2, (13)

where g
f

→ −∞ as w1 → 1 + 0 and w2 → +∞.

We are going to reformulate revised versions of two important statements
formulated and proved in [3].

Lemma 2. Let w2 = φ(w1) be a solution of (13), where (w1,w2) ∈ Ω. Then for
any small ε > 0 there exist constants C1, C2 > 0 such that

C1(w1 − 1)− (1−ε)(1−2a)
4a ≤ φ(w1) ≤ C2(w1 − 1)− (1+ε)(1−2a)

4a

for w1 sufficiently close to 1 and w1 > 1.
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Proof. An easy analysis shows that

lim
w1→1+0
w2→+∞

4a

2a − 1
w1 − 1
w2

g
f

= 1.

Therefore, by definition of the limit for any sufficiently small ε > 0 there exists
δ > 0 such that

1 − ε ≤ 4a

2a − 1
w1 − 1
w2

dw2

dw1
≤ 1 + ε

for all 1 < w1 < 1 + δ and w2 > 1
δ . Taking w′

1 and w′′
1 close to 1 (assuming

1 < w′
1 < w′′

1 < 1 + δ) and integrating the preceding inequalities on the segment
[w′

1,w
′′
1 ], we get

(1 − ε)

w′′
1∫

w′
1

dw1

w1 − 1
≤ 4a

2a − 1

φ(w′′
1 )∫

φ(w′
1)

dw2

w2
≤ (1 + ε)

w′′
1∫

w′
1

dw1

w1 − 1

which is equivalent to

(
w′′
1 − 1

w′
1 − 1

)1−ε

≤
(
w′′
2

w′
2

) 4a
2a−1

≤
(
w′′
1 − 1

w′
1 − 1

)1+ε

.

This means that for any small ε > 0 there exist constants C1, C2 > 0 such that

C1(w1 − 1)−(1−ε) ≤ w
4a

1−2a

2 ≤ C2(w1 − 1)−(1+ε)

for w1 sufficiently close to 1 (at fixed w′′
1 and w′

1 := w1). �

Proposition 1. Suppose that a curve γ determined in Ω by an equation w2 :=
ψ(w1) satisfies the asymptotic equality

ψ(w1) ∼ (w1 − 1)−α as w1 → 1 + 0,

where α > 0. Then the following assertion holds: if 1−2a
4a < α (respectively,

1−2a
4a > α), then every integral curve w2 = φ(w1) of (13) in Ω lies under (respec-

tively, over) γ for sufficiently large t.

Proof. Recall that w1 → 1+0 and w2 → +∞ as t → +∞ on every integral curve
of (10) originated in Ω. Let us introduce the function

Φ(t) :=
φ(w1(t))
ψ(w1(t))

.

Note that Φ is continuous for all t. In Lemma 2 we may take ε > 0 such that
ε <

∣
∣
∣1 − 4aα

1−2a

∣
∣
∣.
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If 1−2a
4a < α, then (1+ε)(1−2a)

4a < α. This means that

lim
t→+∞ Φ(t) = lim

w1→1+0

φ(w1)
ψ(w1)

= lim
w1→1+0

φ(w1)
(w1 − 1)−α

≤ C2 lim
w1→1+0

(w1 − 1)− (1+ε)(1−2a)
4a

(w1 − 1)−α
= 0.

Since Φ(t) > 0 for all t ≥ 0, it follows that limt→+∞ Φ(t) = 0. By definition of
the limit there exists sufficiently large Δ > 0 such that Φ(t) < 1 whenever t > Δ.
The case when the initial point (w0

1,w
0
2) of the trajectory lies under γ is obvious.

Suppose that (w0
1,w

0
2) lies over γ. Then Φ(0) > 1, hence by the intermediate

value theorem there exists t = T ∈ (0,Δ] such that Φ(T ) = 1 and Φ(t) < 1 for
all t > T . In other words, for any integral curve w2 = φ(w1) initiated from Ω \R
there exists a finite time t = T such that w2 = φ(w1) intersects the curve γ from
up to down and lies under γ for all t > T (for all w1 sufficiently close to 1 and
w1 > 1).

Assume now 1−2a
4a > α. Then (1−ε)(1−2a)

4a > α. Similarly, this means that

+∞ = C1 lim
w1→1+0

(w1 − 1)− (1−ε)(1−2a)
4a

(w1 − 1)−α
≤ lim

w1→1+0

φ(w1)
(w1 − 1)−α

and the integral curve lies over the curve γ for all w1 sufficiently close to 1 and
w1 > 1. �

1.3 The set D of Invariant Metrics with Positive Sectional
Curvature

A detailed description of invariant metrics of positive sectional curvature on the
Wallach spaces (2) was given by F. M. Valiev in [28]. We reformulate his results
in our notation. Let us fix a Wallach space G/H (i. e. consider a = 1/6, a = 1/8,
or a = 1/9). Recall that we deal with only positive xi. Let us consider the
functions

γi = γi(x1, x2, x3) := (xj − xk)2 + 2xi(xj + xk) − 3x2
i ,

where {i, j, k} = {1, 2, 3}. Note that under the restrictions xi > 0, the equations
γi = 0, i = 1, 2, 3, determine cones congruent each to other under the permu-
tation i → j → k → i. Note also that these cones have the empty intersections
pairwise.

According to results of [28] and the symmetry in γ1, γ2, and γ3 under permu-
tations of x1, x2, and x3, the set of metrics with non-negative sectional curvature
is the following:

{
(x1, x2, x3) ∈ R

3
+ | γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0

}
. (14)

By Theorem 3 in [28] and the above mentioned symmetry, the set of metrics
with positive sectional curvature is the following:

{
(x1, x2, x3) ∈ R

3
+ | γ1 > 0, γ2 > 0, γ3 > 0

} \ {
(t, t, t) ∈ R

3 | t > 0
}

. (15)
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Fig. 2. The curves s1, s2, s3 corresponding to the system (10)

Let us describe the domain D in the coordinates (w1,w2). Denote by si curves
on the plane (w1,w2) determined by the equations γi

(
1
w1

, 1
w2

, 1
)

= 0 (see Fig. 2).
For w1 > 0 and w2 > 0, these equations are respectively equivalent to

l1 := w2
1w

2
2 − 2w2

1w2 + 2w1w2
2 + w2

1 + 2w1w2 − 3w2
2 = 0,

l2 := w2
1w

2
2 + 2w2

1w2 − 2w1w2
2 − 3w2

1 + 2w1w2 + w2
2 = 0,

l3 := −3w2
1w

2
2 + 2w2

1w2 + 2w1w2
2 + w2

1 − 2w1w2 + w2
2 = 0.

(16)

It is easy to check that (14) is a connected set with a boundary consisting of
the union of the cones γ1 = 0, γ2 = 0 and γ3 = 0. Therefore, solving the system
of inequalities γi

(
1
w1

, 1
w2

, 1
)

> 0, i = 1, 2, 3, we get a connected domain on the
plane (w1,w2) bounded by the curves s1, s2 and s3. Let us denote it by D. We
also observe that si ∩ sj = ∅ for w1 > 0 and w2 > 0, where i �= j.

Remark 1. Taking into account homotheties, it suffices to prove Theorem 1 for
invariant metrics

(
1
w1

, 1
w2

, 1
)

with (w1,w2) ∈ D \ {(1, 1)} in the coordinates
(w1,w2).

1.4 The Set R of Invariant Metrics with Positive Ricci Curvature

Let us describe the set R of invariant metrics with positive Ricci curvature on the
given generalized Wallach space. Using the expressions (5) for the principal Ricci
curvatures ri, we introduce the functions ki := xjxk + a(x2

i − x2
j − x2

k), where
xi > 0, i �= j �= k �= i, i, j, k ∈ {1, 2, 3}. Then clearly the sets of invariant metrics
with non-negative and positive Ricci curvature are respectively the following:

{
(x1, x2, x3) ∈ R

3
+ | k1 ≥ 0, k2 ≥ 0, k3 ≥ 0

}
, (17)

{
(x1, x2, x3) ∈ R

3
+ | k1 > 0, k2 > 0, k3 > 0

}
. (18)
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Fig. 3. The curves r1, r2, r3 and the points P1, P2, P3 corresponding to the system (10)
at a = 1/8

Now, we will describe the domain R in the coordinates (w1,w2). Denote by ri

curves determined by the equations ki

(
1
w1

, 1
w2

, 1
)

= 0, respectively (see Fig. 3).
For w1 > 0 and w2 > 0, these equations are respectively equivalent to

ρ1 := −aw2
1w

2
2 − aw2

1 + aw2
2 + w2

1w2 = 0,

ρ2 := −aw2
1w

2
2 + aw2

1 − aw2
2 + w1w2

2 = 0,

ρ3 := aw2
1w

2
2 − aw2

1 − aw2
2 + w1w2 = 0.

(19)

Since the set (17) is connected and its boundary is a part of the union of the
cones k1 = 0, k2 = 0 and k3 = 0, we easily get on the plane (w1,w2) a connected
domain R bounded by the curves r1, r2 and r3 solving the system of inequalities
ki

(
1
w1

, 1
w2

, 1
)

> 0, i = 1, 2, 3.
Below we reveal some useful properties of the curves ri. It is clear that each

of the curves ri, i = 1, 2, 3, consists of two disjoint connected components. In
general we will use the description of ri’s given by ki

(
1
w1

, 1
w2

, 1
)

= 0, but we will
concretize the component of ri in cases when it is necessary.

Let us show that ri ∩ sj = ∅ for i, j ∈ {1, 2, 3} and w1 > 0, w2 > 0. By
symmetry, we will confirm the equality r1 ∩ s3 = ∅ only. In fact, eliminating w2

from the system of the equations ρ1 = 0 and l3 = 0, we get the quadratic
equation (10a+3)(2a−1)w2

1 − (2a−1)2w1 −16a2 = 0 which has no real solution
since its discriminant is negative at a ∈ [19 , 1

2 ): (18a − 1)(2a − 1)(1 + 6a)2 < 0.
Next, easy calculations show that c1 ∩ r2 ∩ r3 = {P1}, c2 ∩ r1 ∩ r3 = {P2}

and c3 ∩ r1 ∩ r2 = {P3} (see Fig. 3), where

P1 := (a, 1), P2 := (1, a), P3 :=
(
a−1, a−1

)
. (20)

It is easy to see that c3 is tangent to the curves r1 and r2 at the point (0, 0),
whereas the pairs (r1, r3) and (r2, r3) have the asymptotes c2 and c1, respectively.
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Remark 2. By analogy with the case of the sectional curvature, it suffices to
prove Theorems 2, 3, and 4 only for invariant metrics

(
1
w1

, 1
w2

, 1
)

with (w1,w2) ∈
R in the coordinates (w1,w2).

2 Proof of Theorems 1–4

2.1 Evolution of Invariant Metrics with Positive Sectional
Curvature at a ∈ {1/9, 1/8, 1/6}

Lemma 3. If a ∈ (0, 1/4), then every trajectory of the system (10) originated
in D \ (c1 ∪ c2 ∪ c3) reaches the boundary s1 ∪ s2 ∪ s3 of D in finite time and
leaves D. This finite time could be as long as we want.

The corresponding picture is depicted in Fig. 4.

Proof. Without loss of generality consider only the part D ∩ Ω of D, where
Ω is given by (12). Consider any trajectory

(
w1(t),w2(t)

)
of (10) initiated at

(w0
1,w

0
2) ∈ D ∩ Ω. The equation of s3 has an unique positive solution, see (16)

w2 ∼ 1
2
(w1 − 1)−1/2 as w1 → 1 + 0.

Therefore, we have α = 1/2 in Proposition 1. Since 1−2a
4a > α = 1/2 whenever

0 < a < 1/4 the trajectory
(
w1(t),w2(t)

)
lies over the curve s3 for w1 → 1 + 0

(corresponding to t → +∞). By continuity there exists a point on the curve
s3 ∩ Ω at which

(
w1(t),w2(t)

)
intersects s3 ∩ Ω and leaves the set D. �

Let us consider the vector field V := (f, g), associated with the system (10),
and the gradient ∇li ≡

(
∂li
∂w1

, ∂li
∂w2

)
, that is, the normal vector of the curve si

(see (16)), i = 1, 2, 3.

Fig. 4. The domains D, R and the phase portrait of the system (10) at a = 1/8
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Lemma 4. No trajectory of the system (10), a ∈ {1/9, 1/8, 1/6} could return
back to the domain D leaving D once.

Proof. Consider points (w1,w2) ∈ ∂(D) ∩ Ω without loss of generality. It is
required to prove that the inequality (V,∇l3) < 0 holds at every point of the
part s3∩Ω of the curve s3 (in fact the mentioned inequality holds at every point
of s3 as we will see below). Here, (V,∇l3) means the usual inner product of the
vectors V and ∇l3 in the plane (w1,w2). By direct calculations we get

(V,∇l3) = 2(w1 − 1)(w2 − 1)W,

where W := 12aw2
1w

2
2 − 3(w1 + w2)w1w2(1 − 2a) − (w1 − w2)2(1 + 2a).

Substituting the expression 3w2
1w

2
2 = 2(w1 + w2)w1w2 + (w1 − w2)2 which is

equivalent to l3 = 0 into W yields

W = (14a − 3)(w1 + w2)w1w2 − (w1 − w2)2(1 − 2a) < 0.

To complete the proof of the lemma note that the normal vector ∇l3 of the
curve s3 is inner for the set D since

∂l3
∂w2

= −2(w1 − 1)(3w1w2 + (w2 − w1)) < 0

on the curve s3 (the curve s3 has no singularities). �

Remark 3. Actually, we have proved a more strong assertion in the proof of
Lemma 4: No one integral curve of the system (10) initiated outside D, could
reach the set D (see Fig. 4). In particular, the normalized Ricci flow could not
evolve metrics with mixed sectional curvature to metrics with positive sectional
curvature.

Proof of Theorem 1 According to (9), we can consider the set D \ {(1, 1)}
in the plane (w1,w2) instead of the set (15) of invariant metrics with positive
sectional curvature as it was noted in Remark 1. Now, it suffices to apply Lemmas
3 and 4 to complete the proof of the theorem and additional assertions just after
Theorem 1.

2.2 Evolution of Invariant Metrics with Positive Ricci Curvature at
a ∈ (0, 1/2) \ {1/4}

Lemma 5. If a ∈ (0, 1/6), then every integral curve of the system (10), initiated
in R \ (c1 ∪ c2 ∪ c3), reaches the boundary r1 ∪ r2 ∪ r3 of R in finite time and
leaves R. This finite time could be as long as we want.

The corresponding phase portraits are depicted in Fig. 4.

Proof. It is sufficient to consider only the set R ∩ Ω, where Ω is given by (12).
Consider any trajectory

(
w1(t),w2(t)

)
of the system (10) initiated at an arbitrary
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point (w0
1,w

0
2) ∈ R ∩ Ω. The equation ρ1 = 0 for the curve r1 (see (19)) has the

solution
w2 ∼ 1

2a
(w1 − 1)−1 as w1 → 1 + 0 ,

corresponding to the “upper” part γ := r1∩Ω of the curve r1 (see the right-hand
panel of Fig. 3). Note that 1−2a

4a > 1 for all 0 < a < 1/6. Then according to
Proposition 1 the trajectory

(
w1(t),w2(t)

)
lies over γ for w1 → 1 + 0 (corre-

sponding to t → +∞). Hence by continuity there exists a point on γ at which(
w1(t),w2(t)

)
must intersect γ and leave R. Finally, we see that for initial points

close to the point of the type (w1,w2) ∈ ci, i = 1, 2, 3, the time for leaving the
set of metrics with positive Ricci curvature could be as long as we want. �

Remark 4. Note that for a = 1/6 we get the equality 1−2a
4a = 1. Hence, the

arguments in the above proof do not work for the space W6. Moreover, we know
that Lemma 5 is failed for this space, see Theorem 8 of [14].

Remark 5. The equation of r1 (see (19)) has also an another solution w2 =
a+O(w1−1) corresponding to the “lower” part of the curve r1 (see the left-hand
panel of Figure 3). Note that in this case we have exactly the point P2 = (1, a)
(see (20)) as w1 → 1.

Lemma 6. No trajectory of the system (10), a ∈ {1/6, 1/8, 1/9} could return
back to the domain R leaving R once.

Proof of Lemma 6 is too long, so we will omit it here. Readers can find it in
[3].

Remark 6. Actually, we have proved a more strong assertion in the proof of
Lemma 6: Some integral curves of the system (10), initiated outside the domain
R, could reach R (e. g. through the part of the curve r1 between the points P3

and Q, intersecting r1 ⊂ ∂(R) from up to down), see the right-hand panel of
Fig. 4. But later these trajectories will leave R irrevocably, if will reach ∂(R)
(e. g. in R ∩ Ω, this could happen about the part of r1 situated from the left of
the point Q). Note that this effect follows also from Lemma 5 for a = 1/8 and
a = 1/9. Hence, in particular, the normalized Ricci flow can evolve some metrics
with mixed Ricci curvature to metrics with positive Ricci curvature.

Proof of Theorem 2 According to (9), we can consider the set R instead of
the set (18) of invariant metrics with positive Ricci curvature as it was noted in
Remark 2. Now, it suffices to apply Lemmas 5 and 6 to complete the proof of
the theorem and additional assertions just after Theorem 2.

Proof of Theorem 3 It is sufficient to work with the set Ω given by (12). The
equation ρ1 = 0 for the curve r1 (see (19)) has the solution

w2 ∼ 1
2a

(w1 − 1)−1 as w1 → 1 + 0 ,

corresponding to the “upper” part γ of the curve r1, which is the “upper” part
of the boundary of R ∩ Ω, the set of metric with positive Ricci curvature in Ω
(see the right-hand panel of Fig. 3).
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Consider the case a ∈ (0, 1/6) and any trajectory
(
w1(t),w2(t)

)
of the sys-

tem (10) initiated at a point of R ∩ Ω. Note that 1−2a
4a > 1 for all 0 < a < 1/6.

Then according to Proposition 1 the trajectory
(
w1(t),w2(t)

)
lies over γ for

w1 → 1 + 0 (corresponding to t → +∞).
Now, consider the case a ∈ (1/6, 1/4) ∪ (1/4, 1/2). Clearly, 1−2a

4a < 1 for all
a ∈ (1/6, 1/2). Proposition 1 implies that the normalized Ricci flow evolves every
initial metric in Ω into metrics with positive Ricci curvature. This proves the
theorem.

Proof of Theorem 4 First, note that the set of metrics with the property
xi = xj + xk is an invariant set of the system (6) with right hand sides Fi :=
−2xi(t)

(
ri − S

n

)
for a = 1/6. Indeed, if we consider any metric with x3 = x1+x2,

then direct calculations show that F1 + F2 − F3 ≡ 0 for a = 1/6. Note also that
every non-normal Einstein metric on the space under consideration is such that
xi = xj + xk for suitable indices.

Hence, in the scale invariant coordinates (w1,w2) we have an invariant curve
w−1
1 + w−1

2 = 1 of the system (10) passing through the point E3 = (2, 2). Since
E3 is a saddle of the system (10), the curve w−1

1 + w−1
2 = 1 is necessarily one

of the separatrices (more exactly, the unstable manifold) of this point E3 by
uniqueness of a solution of the initial value problem (obviously the line w2 = w1

is the second separatrix).
For submersion metrics the proof is easy and follows from the discussion

in Introduction. Let us consider the case of generic metrics. Without loss of
generality we may suppose that the initial metric is in Ω. By the above discus-
sion, the set

{
(w1,w2) |w2 < w1

w1−1

}
∩ Ω is an invariant set of the system (10).

Simple calculations show that the curve
{

(w1,w2) |w2 = w1
w1−1

}
∩ Ω lies under

the curve r1 ∩ Ω ⊂ ∂(R). Hence, every trajectory of (10) initiated in the set{
(w1,w2) |w2 < w1

w1−1

}
∩ Ω remains in the domain R ∩ Ω, that proves the theo-

rem.

Remark 7. For W6, the metrics (3) with xi = xj + xk constitute the set of
Kähler invariant metrics, see e. g. [9, Chapter 8]. The general result that the set
of Kähler metrics is invariant under the Ricci flow on every manifold is obtained
in [7].

Remark 8. Note that conditions of Theorem 4 are valid for metrics from D, the
set of metrics with positive sectional curvature on the space W6. Hence, we get
the generalization of Theorem 8 in [14].

Finally, we reproduce additional illustrations suggested us by Wolfgang Ziller.
We reproduce in Fig. 5 the domains of positive sectional, positive Ricci, and
positive scalar curvatures (denoted by D, R, and S, respectively) of the system
(6) in the plane x1 + x2 + x3 = 1 for a = 1/6, because the space W6 admits
Kähler invariant metrics, that constitute a small triangle in Fig. 5. Note also
that three non-normal Einstein metrics in this case are Kähler – Einstein and
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Fig. 5. The case a = 1/6: The domains of positive sectional, positive Ricci, and positive
scalar curvatures, Kähler metrics, the phase portrait of the system (6) in the plane
x1 + x2 + x3 = 1

one can easily get main properties of the Kähler – Ricci flow on the space W6

using this picture. Note that Riemannian metrics constitute a triangle and the
set S is bounded by a circle.

3 Proof of Theorem 5

3.1 The System (10) at a = 1/4

3.1.1 The Unique Singular Point of the System (10)

Lemma 7. Let a = 1/4. Then the system (10) has a unique singular point
E = (1, 1), which is a linearly zero saddle. Moreover, the lines w1 = 1, w2 = 1
and w2 = w1 are separatrices of this saddle.

Proof. Using results of [19] it has been proved in [4, Theorem 2] that in the case
a = 1/4 the system (8) has a unique singular point F = (1, 1), which is a linearly
zero saddle with six hyperbolic sectors around it. By homeomorphism (11), a
unique singular point E = (1, 1) (see Fig. 6) of the system (10), corresponding
to a = 1/4, is also a saddle of the same type as F . Since the invariant lines
(solutions) w1 = 1, w2 = 1 and w2 = w1 of the system (10) pass through the
point E, they are separatrices of the saddle E at a = 1/4. �

Remark 9. The value a = 1/4 is a bifurcation value for the system (10) causing
a qualitative reorganization of its phase portrait: four isolated non degenerate
(simple) singular points of (10) shown in Lemma 1 merge as a → 1/4 into the
unique degenerate (complicated) singular point (1, 1), described in Lemma 7.

The value a = 1/4 is also interesting from the point of view of algebraic
geometry: the point (1/4, 1/4, 1/4) is an elliptic umbilic (in the sense of Dar-
boux [15]) or a point of the type D−

4 (in the terminology of [6]) of a specific
surface

Ω := {(a1, a2, a3) ∈ R
3 | Q(a1, a2, a3) = 0} ⊂ R

3
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introduced in [4], where Q(a1, a2, a3) is a symmetric polynomial in the variables
a1, a2, a3 of degree 12:

Q(a1, a2, a3) = (2s1 + 4s3 − 1)(64s51 − 64s41 + 8s31 + 12s21 − 6s1 + 1
+240s3s

2
1 − 240s3s1 − 1536s23s1 − 4096s33 + 60s3 + 768s23)

−8s1(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)s2
−16s21(13 − 52s1 + 640s3s1 + 1024s23 − 320s3 + 52s21)s

2
2

+64(2s1 − 1)(2s1 − 32s3 − 1)s32 + 2048s1(2s1 − 1)s42,

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

The importance of Ω is due to the need to develop a special apparatus for
studying general properties of degenerate singular points of Ricci flows initiated
in [4,5], so according to these works Ω includes the following set
{
(a1, a2, a3) ∈ (0, 1/2]3 | system (7) has at least one degenerate singular point

}
.

As shown in [1] the set (0, 1/2]3∩Ω is connected and the set (0, 1/2]3 \Ω consists
of three connected components with respect to the standard topology of R3. It
should also be noted that a more detailed description of the surface Ω was
obtained in [8].

3.1.2 Attracting and Repelling Manifolds of the Saddle (1, 1) of (10)

According to Lemma 7 integral curves of (10) are determined by influences of
the saddle (1, 1) and its separatrices c1, c2, c3 only. Our purpose is to detect
orientations of these integral curves. To answer the question it is enough to
establish what parts of c1, c2 and c3 may be stable or unstable manifolds for E.
Since we are restricted by integral curves of (10) belonging to Ω, it suffices to
consider the sets {w1 = 1,w2 ≥ 1} and {w2 = w1 ≥ 1} which bound the set Ω.

Lemma 8. Let a = 1/4. Then for every integral curve of (10), initiated in Ω,
the sets {w2 = w1 ≥ 1} and {w1 = 1,w2 ≥ 1} are respectively an attracting and
a repelling manifolds of the saddle (1, 1).

Proof. Consider the main isoclines ω and λ of (10). Let (w1(t),w2(t)) be any
trajectory of (10) with any initial point from Ω. It is clear that ω and λ separate
R

2
+ into four disjoint domains (see Fig. 6), in every of which each of the functions

y1 and y2 preserve its sign by continuity. For example, at the point (w1,w2) =
(1, 2) we observe that y1 < 0 and y2 > 0. Hence, w′

1 < 0 in Ω (in Ω trajectories
are oriented from right to left). Analyzing the second equation in (10) we get
w′
2 > 0 (< 0) over (under) the curve λ ∩ Ω. Therefore, trajectories are directed

to up (down) at points in Ω, situated over (under) λ. �
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Fig. 6. The case a = 1/4: The main isoclines ω, λ, the domain R and the phase portrait
of (10)

3.2 Evolution of Invariant Metrics with Positive Ricci Curvature at
a = 1/4

Lemma 9. At a = 1/4 every integral curve of the system (10), initiated in Ω\R,
attains R ∩ Ω in finite time and remains in R ∩ Ω. This finite time could be as
long as we want.

Lemma 9 can be proved by the same way as Lemma 5 using Proposition 1.
Since the intermediate value theorem mentioned in Proposition 1 can not

guarantee the uniqueness of the intersection point of an integral curve with the
boundary γ of the domain R ∩ Ω, Lemma 9 does not answer the question could
integral curves intersect or touch γ several time. The following lemma refutes
such a possibility.

Lemma 10. At a = 1/4 every integral curve of the system (10), initiated in Ω,
can admit at most one common point with the boundary γ of the domain R ∩Ω.

Proof of Lemma 10 can be found in [2].

Remark 10. Lemma 10 fails in general. For example, at a = 1/8 or a = 1/9
the system (10) admits integral curves which intersect the curve γ twice (see
Remark 6 above).

Proof of Theorem 5 According to our agreements consider invariant Rie-
mannian metrics

(
w−1
1 ,w−1

2 , 1
)

only, satisfying (w1,w2) ∈ Ω. Now it suffices to
apply Lemmas 9 and 10.
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Abstract. In this paper we obtain estimates sharp in order hyperbolic
cross approximation w.r.t. d−multiple wavelet system with compact sup-
ports ψ(d) of the Nikol’skii – Besov and Lizorkin – Triebel type classes
associated with this system in the space Lq([0, 1]d) for a number of rela-
tions between the parameters of the classes and the space.

Keywords: Hyperbolic cross · The Nikol’skii – Besov type space · The
Lizorkin – Triebel type space · Wavelet system with compact supports

1 Introduction

Let Lq = Lq([0, 1]d) (1 ≤ q ≤ ∞, 2 ≤ d ∈ N) be the space of all (equivalence
classes of) measurable functions f : [0, 1]d → C that are q power integrable
(essentially bounded for q = ∞ ) on [0, 1]d, endowed with the standard norm

‖ f | Lq ‖ = ‖ f | Lq([0, 1]d) ‖ =
(∫

[0,1]d
| f(x) |qdx

)1/q

(1 ≤ q < ∞),

‖ f | L∞ ‖ = ‖ f | L∞([0, 1]d) ‖ = ess sup {| f(x) | : x ∈ [0, 1]d }.

Let Φ = {φı | ı ∈ J} be a countable collection of functions in L∞ which are
orthonormal in L2 and let {J(u) ⊂ J |u ∈ N} be such that J(u) ⊂ J(u + 1) and
#J(u) < ∞ for all u ∈ N, ∪u∈NJ(u) = J.

For f ∈ L1, we consider Fourier sums w. r. t. system Φ of the form

SΦ
u (f, x) =

∑
ı∈J(u)

〈f, φı〉φı(x),

where 〈f, g〉 =
∫
[0,1]d

f(x)g(x)dx (z is the number complex conjugate to z ∈ C).

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_2
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For a set F ∈ Lq, we denote

Eu(F, Φ, Lq) = sup{‖f − SΦ
u (f, x) |Lq‖ | f ∈ F}. (1)

In the present paper, we study quantities (1) in the special case of d−multiple
wavelet system ψ(d) with compact supports and so called hyperbolic crosses
used as Φ and J(u), respectively (for definitions see below). Main goal is to give
estimates (sharp in order) for hyperbolic cross approximation w. r. t. system
ψ(d) of the Nikol’skii – Besov and Lizorkin – Triebel type classes associated with
that system (for definition see sect. 2) in the space Lq([0, 1]d) for a number of
relations between the parameters of the classes and the space.

First we introduce some notations. Let d ∈ N, zd = {1, . . . , d}, N0 = N∪{0},
R+ = (0,+∞).

Let k ∈ N : k ≤ d. Fix a multi-index d = (d1, . . . , dk) ∈ N
k such that

d1 + · · ·+ dk = d (thus, d = d if k = 1, while if k = d, then d =
−→
1 = (1, . . . , 1) ∈

N
d) and representation of x = (x1, . . . , xd) ∈ R

d in the form x = (x1, . . . , xk),
where xκ ∈ R

nκ , κ ∈ zk.
Denote

ed = ed(0) = {0 , 1}d, ed(1) = ed \ {(0 , . . . , 0 )};

Λ(d, j) = Z
d ∩ [0, 2j − 1]d, j ∈ N0.

Let univariate scaling function ψ(0) and the associated wavelet ψ(1) be com-
pactly supported:

supp ψ(0) ∪ supp ψ(1) ⊂ [0, 2N − 1] for some N > 0;

ψ(0), ψ(1) ∈ Cr(R).
Further, d−multiple wavelet system is defined as follows:

ψ(d) = {ψι
αλ(x) | ι ∈ ed(α), λ ∈ Λ(d, α), α ∈ N

k
0},

where

ψι
αλ(x) =

k∏
κ=1

ψικ

ακλκ(xκ), ψικ

jλκ(xκ) = 2
jdκ
2 ψικ

(2jxκ − λκ);

ψικ

(xκ) =
∏

ν∈kκ

ψ(ιν)(xν);

here
ed(α) = ed1(sign(α1)) ⊗ · · · ⊗ edk(sign(αk)),

Λ(d, α) = Λ(d1, α1) × . . . × Λ(dk, αk).

It is clear that the system ψ(d) is orthonormal in L2([0, 1]d). Furthermore,
the system ψ(d) is an unconditional basis in Lq([0, 1]d) with 1 < q < ∞ : in
the case k = 1 this fact is proved in [8, ch. 8], general case 1 ≤ k ≤ d follows
from here because the system ψ(d) (w.r.t. variable x) is a tensor product of the
systems ψ(dκ) (w.r.t. variables xκ), κ ∈ zk.
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Define operators Δψ
α (α ∈ N

k
0) as follows: for f ∈ L1, let

Δψ
α(f, x) =

∑
ι∈ed(α)

∑
λ∈Λ(d,α)

f ι
αλψι

αλ(x)

be its dyadic packet, where

f ι
αλ =

∫
[0,1]d

f(x)ψι
αλ(x) dx.

Furthermore, for f ∈ L1, we define its so called hyperbolic cross Fourier sum w.
r. t. system ψ(d) (with fixed γ = (γ1, . . . , γk) ∈ R

k
+) by the formula

Sψ,γ
u (f, x) =

∑
αγ≤u

Δψ
α(f, x) (u ∈ N)

(here αγ := α1γ1 + · · · + αkγk). In the sequel, we will denote quantity (1) with
Sψ,γ

u instead of SΦ
u simply as Eγ

u(F, Lq).

2 Function Classes

Let 1 ≤ p, θ ≤ ∞ and let �θ ≡ �θ(Nk
0) be a space of complex number sequences

(cα) = (cα |α ∈ N
k
0) with the finite norm

‖(cα) | �θ ‖ =
( ∑

α∈Nk
0

| cα |θ
)1/θ

(1 ≤ θ < ∞), ‖(cα) | �∞ ‖ = sup
α∈Nk

0

| cα |;

let �θ(Lp) ≡ �θ(Lp([0, 1]d)) (respectively Lp(�θ) ≡ Lp([0, 1]d; �θ)) be a space of
function sequences (gα(x)) = (gα(x) |α ∈ N

k
0) (x ∈ [0, 1]d) with the finite norm

‖ (gα(x)) | �θ(Lp) ‖ = ‖ ( ‖ gα |Lp ‖) | �θ ‖
(respectively

‖ (gα(x)) |Lp(�θ) ‖ = ‖ ‖ (gα(·)) | �θ ‖ |Lp ‖).
Now we are in position to introduce function spaces (as well as classes) under

consideration.

Definition 1. Let s = (s1, . . . , sk) ∈ R
k
+, 1 ≤ p, θ ≤ ∞. Then

i) the Nikol’skii – Besov type space ψBs d
p θ ≡ ψBs d

p θ([0, 1]d) associated with
the system ψ(d) consists of all functions f ∈ Lp for which the norm

‖ f |ψBs d
p θ ‖ = ‖(2αsΔψ

α(f, x)) | �θ(Lp)‖ (2)

is finite;
ii) the Lizorkin – Triebel type space ψLs d

p θ ≡ ψLs d
p θ([0, 1]d) associated with

the system ψ(d) consists of all functions f ∈ Lp for which the norm

‖ f |ψLs d
p θ ‖ = ‖(2αsΔψ

α(f, x)) |Lp( �θ)‖ (3)

is finite.
Unit balls ψBs d

p θ ≡ ψBs d
p θ([0, 1]d) and ψLs d

p θ ≡ ψLs d
p θ([0, 1]d) of these spaces

will be called the Nikol’skii – Besov and Lizorkin – Triebel classes associated
with the system ψ(d), respectively.
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3 Main Result

Put p∗ = min{p, 2}, ςκ = sκ

dκ
; without loss of generality, we assume that ς ≡

min { ςκ | κ ∈ zk } = ς1 = . . . = ςω < ςκ, κ ∈ zk \ zω for certain ω ∈ zk. Take a
vector ς ′ = (ς ′

1, . . . , ς
′
k) such that ς = ς ′

1 = . . . = ς ′
ω < ς ′

κ < ςκ, κ = ω + 1, . . . , k,
and put s′ = (s′

1, . . . , s
′
k) with s′

κ = ς ′
κdκ (κ ∈ zk) and γ = 1

ς s′.
Below, we will use the symbols � and � to show relations between the

orders of quantities : for functions F : R+ → R+ and H : R+ → R+ we write
F (u) � H(u) as u → ∞, if there exists a constant C = C(F,H) > 0 such
that the inequality F (u) ≤ CH(u) holds for u ≥ u0 > 0, and F (u) � H(u), if
F (u) � H(u) and H(u) � F (u), simultaneously.

For a number a ∈ R set a+ = max{a, 0}; below, log is logarithm to the
base 2.

Theorem 1. Let 1 < q ≤ p < ∞, 1 ≤ θ ≤ ∞ and s ∈ R
k
+. Then

Eγ
u(ψBs d

p θ, Lq ) � 2−ςuu(ω−1)( 1
p∗ − 1

θ )+ ;

Eγ
u(ψLs d

p θ, Lq ) � 2−ςuu(ω−1)( 1
2− 1

θ )+ .

Remark 1. If s < r then we have classes analogues to the classical Nikol’skii –
Besov and Lizorkin – Triebel classes and this theorem is analog of the theorem
from [6]. If sj > rj for some j ∈ {1, . . . , d} then we have another classes and
this theorem is analog of Theorem 4.1 from [2] and analog of Theorem 1 from
[3] for the Nikol’skii – Besov and Lizorkin – Triebel type classes associated with
system ψ(d).

4 Preliminaries

In this section, we collect known facts that are important for further considera-
tion.

First we formulate the Littlewood – Paley – type theorem related to the
system ψ(d) and its corollary.

Theorem 2. Let 1 < p < ∞. Then there exists a constant C = C(d, p) > 0
such that

C−1 ‖ f |Lp ‖ ≤ ‖ (Δψ
α(f, x)) |Lp([0, 1]d; �2) ‖ ≤ C ‖ f |Lp ‖,

C−1 ‖ f |Lp ‖ ≤

‖
( ∑

α

∑
ι

∑
λ

|〈f, ψι
αλ〉ψι

αλ|2
)1/2

|Lp([0, 1]d) ‖ ≤

C ‖ f |Lp ‖.

for all functions f ∈ Lp.
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Since the system ψ(d) is an unconditional basis in Lp, Theorem 4 can easily be
proved by arguments involving the classical Khinchin inequality for Rademacher
functions (see, for instance, [8, ch. 8], where the case k = 1 is analyzed).

Corollary 1. Let 1 < p < ∞, p∗ = min(p, 2). Then, for any function f ∈ Lp

‖ f |Lp ‖ ≤ C(v,m, p) ‖ (Δψ
α(f, x)) | �p∗(Lp([0, 1]d)) ‖.

Below, when proving upper bounds from Theorem 1 and estimating the
dimensions of the corresponding subspaces, we will systematically use the fol-
lowing lemma from [2] (for proof see [6]).

Lemma 1. Let β, γ ∈ R
d
+ be such that βν = γν for ν ∈ zω and βν > γν for

ν ∈ zn \ zω, and let L > 0. Then the following relations are valid:

Iβ,γ
L (u) ≡

∑
α∈Nd

0 :αγ>u

2−Lαβ � 2−Luuω−1 as u → +∞; (4)

Jγ,β
L (u) ≡

∑
α∈Nd

0 :αβ≤u

2Lαγ � 2Luuω−1 as u → +∞. (5)

5 Proof of Upper Bounds in Theorem 1

B. We begin with upper estimates for the classes ψBs d
p θ.

a) Let, first, p = q = 1. Then for f ∈ ψBs d
p θ, we have

‖ f − Sψ, γ
u (f) |L1 ‖ = ‖

∑
αs′>uς

Δψ
α(f) |L1 ‖ ≤

≤ ‖ (Δψ
α(f))αs′>uς | �1(L1) ‖ = ‖ (2−αs2αsΔψ

α(f))αs′>uς | �1(L1) ‖ ≡ �1(u).

By the definition (2) of the norm in space ψBs d
p θ, for θ = 1, we obviously have

(αs ≥ αs′ > uς)

�1(u) ≤ 2−ςu‖ (2αsΔψ
α(f))αs′>uς | �1(L1) ‖ � 2−ςu ‖ f |ψBs m

1 1 ‖ ≤ 2−ςu.

For 1 < θ < ∞, successively applying the Hölder inequality for series(‖ (cjdj) | �1(J) ‖ ≤ ‖ (cj) | �a(J) ‖ · ‖ (dj) | �b(J) ‖ with 1 ≤ a ≤ ∞, 1
a + 1

b = 1
)

(c a = θ) and relation (4) and taking into account the definition (2) of the norm
in ψBs d

p θ, we obtain

�1(u) ≤
( ∑

αs′>uς

2−αsθ′
)1/θ′

‖ (2αsΔψ
α(f))αs′>uς | �θ(L1) ‖ �

� (2−ςuθ′
uω−1)1/θ′ ‖ f |ψBs d

1 θ ‖ ≤ 2−ςuu(ω−1)(1− 1
θ ).
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Finally, if θ = ∞, then, using again (4) and (2), we find

�1(u) ≤
( ∑

αs′>uς

2−αs

)
‖ (2αsΔψ

α(f))αs′>uς | �∞(L1) ‖ �

� 2−ςuu(ω−1) ‖ f |ψBs d
1 θ ‖ ≤ 2−ςuu(ω−1).

The required upper estimate is proved.
b) Now, let 1 < p < ∞ and 1 ≤ q ≤ p. By Corollary 1, for f(x) ∈ ψBs d

p θ we
have

‖ f − Sψ, γ
u (f) |Lq ‖ = ‖

∑
αs′>uς

Δψ
α(f) |Lq ‖ ≤

≤ ‖
∑

αs′>uς

Δψ
α(f) |Lp ‖ ≤ ‖ (Δψ

α(f))αs′>uς | �p∗(Lp) ‖ ≡ �2(u).

For 1 ≤ θ ≤ p∗, using Jensen’s inequality for series
( ‖ (cj) | �a(J) ‖ ≤ ‖ (cj)

| �b(J) ‖ for 0 < b ≤ a ≤ ∞ )
and the definition (2) of the norm in ψBs d

p θ, we
obtain

�2(u) ≤ ‖ (Δψ
α(f))αs′>uς | �θ(Lp) ‖ ≤ ‖ (2−αs2αsΔψ

α(f))αs′>uς | �θ(Lp) ‖
� 2−ςu‖ (2αsΔψ

α(f))αs′>uς | �θ(Lp) ‖ � 2−ςu ‖ f |ψBs d
p θ ‖ ≤ 2−ςu.

For p∗ < θ < ∞, applying the Hölder inequality for series with exponents a = θ
p∗

and b = θ
θ−p∗

and relation (4) and taking into account (2), we find

�2(u) = ‖ (2−αs2αsΔψ
α(f))αs′>uς | �p∗(Lp) ‖ ≤

( ∑
αs′>uς

2−αs θp∗
θ−p∗

) θ−p∗
θp∗ ×

×‖ (2αsΔψ
α(f))αs′>uς | �θ(Lp) ‖ � 2−ςuu(ω−1)( 1

p∗ − 1
θ ) ‖ f |ψBs d

p θ ‖ ≤
≤ 2−ςuu(ω−1)( 1

p∗ − 1
θ ).

If θ = ∞, then (4) and (2) obviously imply

�2(u) = ‖ (2−αs2αsΔψ
α(f))αs′>uς | �p∗(Lp) ‖ ≤

≤
( ∑

αs′>uς

2−αsp∗

)1/p∗

× ‖ (2αsΔψ
α(f))αs′>uς | �∞(Lp) ‖ �

� 2−ςuu(ω−1) 1
p∗ ‖ f |ψBs d

p ∞ ‖ ≤ 2−ςuu(ω−1) 1
p∗ .

Thus, the upper estimate is proved.
c) Let 1 ≤ q < p = ∞. In this case p∗ = 2. We also denote q∗ = max(q, 2).

Since ‖ · |Lq ‖ ≤ ‖ · |Lq∗ ‖ ≤ ‖ · |L∞ ‖, we have the elementary embedding
ψBs d

∞ θ ⊂ ψBs d
q∗ θ, 1 ≤ θ ≤ ∞, and the inequality

Eγ
u(ψBs d

∞ θ, Lq) ≤ Eγ
u(ψBs d

q∗ θ, Lq∗).
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Therefore, it follows from what has been proved in item b) that (min(q∗, 2) = 2)

Eγ
u(ψBs d

∞ θ, Lq) � 2−ςuu(ω−1)( 1
2− 1

θ )+ ;

i.e., the required upper estimate is proved.
Thus, all the upper estimates of the theorem for the classes ψBs d

p θ are estab-
lished.

L. Now, we obtain upper estimates for the classes ψLs d
p θ.

a) Let, first, p = q = 1. For θ = 1, the upper estimate is already obtained,
because ψLs d

1 1 = ψBs d
1 1, (see the estimates above for the classes ψBs d

1 1).
Consider the case 1 < θ ≤ ∞. Let f ∈ ψLs d

1 θ. Then

‖ f − Sψ, γ
u (f) |L1 ‖ = ‖

∑
αs′>uς

Δψ
α(f) |L1 ‖ ≤

≤ ‖ (2−αs2αsΔψ
α(f))αs′>uς |L1(�1) ‖ ≡ �3(u).

For 1 < θ < ∞, applying the Hölder inequality for series, relation (4) and the
definition (3) of the norm in ψLs d

p θ, we obtain

�3(u) ≤
( ∑

αs′>uς

2−αsθ′
)1/θ′

‖ (2αsΔψ
α(f))αs′>uς |L1(�θ) ‖ �

� 2−ςuu(ω−1)(1− 1
θ )‖ f |ψLs d

1 θ ‖ ≤ 2−ςuu(ω−1)(1− 1
θ ).

If θ = ∞, then in a similar way we arrive at

�3(u) ≤
∑

αs′>uς

2−αs‖ (2αsΔψ
α(f))αs′>uς |L1(�∞) ‖ �

� 2−ςuu(ω−1)‖ f |ψLs d
1 ∞ ‖ ≤ 2−ςuu(ω−1).

Thus, the required upper estimate

Eγ
u(ψLs,d

1θ , L1) � 2−ςuu(ω−1)(1− 1
θ )

is established for 1 ≤ θ ≤ ∞.
b) Now, let 1 < p < ∞ and 1 ≤ q ≤ p. For f ∈ ψLs d

p θ, by Theorem 4 we find

‖ f − Sψ, γ
u (f) |Lq ‖ = ‖

∑
αs′>uς

Δψ
α(f) |Lq ‖ ≤

≤ ‖
∑

αs′>uς

Δψ
α(f) |Lp ‖ � ‖ (2−αs2αsΔψ

α(f))αs′>uς |Lp(�2) ‖ ≡ �4(u).

For 1 ≤ q ≤ 2, applying Jensen’s inequality for series and taking into account
(3), we obtain (αs ≥ αs′ > uς)

�4(u) ≤ ‖ (2−αs2αsΔψ
α(f))αs′>uς |Lp(�θ) ‖ ≤



30 S.A. Balgimbayeva

≤ 2−ςu‖ (2αsΔψ
α(f))αs′>uς |Lp(�θ) ‖ � 2−ςu‖ f |ψLs d

p θ ‖ ≤ 2−ςu.

If 2 < θ < ∞, then, successively applying the Hölder inequality for series with
exponents a = θ

θ−2 and b = θ
2 , relation (4) and (3), we obtain

�4(u) ≤
( ∑

αs′>uς

2−αs 2θ
θ−2

) θ−2
2θ

‖ (2αsΔψ
α(f))αs′>uς |Lp(�θ) ‖

� 2−ςuu(ω−1)( 1
2− 1

θ )‖ f |ψLs d
p θ ‖ � 2−ςuu(ω−1)( 1

2− 1
θ ).

If q = ∞, then, as above, relation (4) combined with (3) yields

�4(u) ≤
( ∑

αs′>uς

2−2αs

)1/2

‖ (2αsΔψ
α(f))αs′>uς |Lp(�∞) ‖ �

� 2−ςuu(ω−1) 1
2 ‖ f |ψLs d

p ∞ ‖ ≤ 2−ςuu(ω−1) 1
2 ,

i.e., the required upper estimate is established.
Thus, all the upper estimates in the theorem for the classes ψLs m

p θ are also
proved.

6 Proof of Lower Bounds in Theorem 1

To obtain lower bounds in Theorem 1 we need the notion of Fourier width. Recall
that N−th Fourier width (or, which is the same, orthowidth) of a set F ⊂ Lq is
defined as

ϕN (F, Lq) = inf
{gj}N

j=1

sup
f∈F

‖f −
N∑

j=1

〈f, gj〉gj | Lq ‖,

where the infimum is taken over all orthonormal (in L2) systems {gj}N
j=1 ⊂ L∞.

Notion of Fourier width was invented by V.N. Temlyakov [6] in 1982. Remark
that extensive literature has been devoted to the estimates sharp in order for
Fourier widths of various classes of smooth functions in one and several variables;
here we only refer to monographs [7,8] and articles [1,3,4,6], where one can also
find detailed history of the problem and comprehensive references.

By virtue of (5) (with L = 1), the dimension ψ(γ, u) of the linear span of the
set {ψι

αλ | ι ∈ ed(α), λ ∈ Λ(d, α), α ∈ N
k
0 : αγ ≤ u} is of order 2uuω−1. Hence,

choosing N ≥ ψ(γ, u), we get the inequality

Eγ
u(F, Lq) ≥ ϕN (F, Lq). (6)

Under the hypotheses of Theorem 1 we have:

ϕN (ψBs d
p θ, Lq) �

(
logω−1 N

N

)σ

(logω−1 N)(
1

p∗ − 1
θ )+
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and

ϕN (ψLs d
p θ, Lq) �

(
logω−1 N

N

)σ

(logω−1 N)(
1
2− 1

θ )+ .

This theorem is full analog of the theorem from [3] for the the Nikolskii –
Besov and Lizorkin – Triebel type classes associated with system ψ(d).

Note that in [3] was obtained the estimates of Fourier widths for the Nikolskii
– Besov and Lizorkin – Triebel type classes w.r.t. n−multiple system of Haar
wavelets.

These estimates with N ≥ ψ(γ, u) such that N � ψ(γ, u) combined with
the inequality (6) easily imply lower bounds for Eγ

u(ψFs d
p θ, Lq) (F ∈ {B,L}) in

Theorem 1.
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Abstract. In this paper we obtain estimates (sharp in order) for hyper-
bolic cross approximation w.r.t. multiple (n−fold) Haar system χ(n) of
the Nikol’skii – Besov and Lizorkin – Triebel type classes associated
with this Haar system in the space Lr([0, 1]

n) for a number of relations
between the parameters of the classes and the space.

Keywords: Approximation · Hyperbolic cross · Multiple Haar
system · The Nikol’skii – Besov and the Lizorkin – Triebel spaces
associated with the multiple Haar system

1 Introduction

As usual, let Lr = Lr([0, 1]n) (1 ≤ r ≤ ∞, 2 ≤ n ∈ N) be the space of all
(equivalence classes of) measurable functions f : [0, 1]n → C that are r power
integrable (essentially bounded for r = ∞ ) on [0, 1]n, endowed with the standard
norm

‖ f | Lr ‖ = ‖ f | Lr([0, 1]n) ‖ =
(∫

[0,1]n
| f(x) |rdx

)1/r

(1 ≤ r < ∞),

‖ f | L∞ ‖ = ‖ f | L∞([0, 1]n) ‖ = ess sup {| f(x) | : x ∈ [0, 1]n }.

Let Ψ = {ψi | i ∈ I } be a countable collection of functions in L∞ which are
orthonormal in L2 and let {J(u) ⊂ I |u ∈ N} be such that J(u) ⊂ J(u+1) and
#J(u) < ∞ for all u ∈ N, ∪u∈NJ(u) = I .

For f ∈ L1, we consider Fourier sums w. r. t. system Ψ of the form

SΨ
u (f, x) =

∑
i∈J(u)

〈f, ψi〉ψi(x),

where 〈f, g〉 =
∫
[0,1]n

f(x)g(x)dx (z is the number complex conjugate to z ∈ C).

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_3
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For a set F ∈ Lr, we denote

Eu(F, Ψ, Lr) = sup{‖f − SΨ
u (f, x) |Lr‖ | f ∈ F}. (1)

In the present paper, we study quantities (1) in the special case of n−fold
Haar system χ(n) and so called hyperbolic crosses used as Ψ and J(u), respec-
tively (for definitions see below). Main goal is to give estimates (sharp in order)
for hyperbolic cross approximation w. r. t. system χ(n) of the Nikol’skii – Besov
and Lizorkin – Triebel type classes associated with that system (for definition see
sect. 2) in the space Lr([0, 1]n) for a number of relations between the parameters
of the classes and the space in the style of theorem 4.1 from [2].

First we introduce some notations. Let n ∈ N, zn = {1, . . . , n}, N0 = N∪{0},
R+ = (0,+∞).

Let k ∈ N : k ≤ n. Fix a multi-index n = (n1, . . . , nk) ∈ N
k such that

n1+ · · ·+nk = n (thus, n = n if k = 1, while if k = n, then n =
−→
1 = (1, . . . , 1) ∈

N
n) and representation of x = (x1, . . . , xn) ∈ R

n in the form x = (x1, . . . , xk),
where xκ ∈ R

nκ , κ ∈ zk.
Denote

en = en(0) = {0 , 1}n, en(1) = en \ {(0 , . . . , 0 )};

Λ(n, j) = Z
n ∩ [0, 2j − 1]n, j ∈ N0.

and define

χ(0)(t) =
{

1, t ∈ [0, 1);
0, t ∈ R \ [0, 1),

and

χ(1)(t) =

⎧⎨
⎩

1
2 , t ∈ [0, 1

2 );
− 1

2 , t ∈ [ 12 , 1);
0, t ∈ R \ [0, 1);

further, multiple (n−fold) Haar system is defined as follows:

χ(n) = {χι
αλ(x) | ι ∈ en(α), λ ∈ Λ(n, α), α ∈ N

k
0},

where

χι
αλ(x) =

k∏
κ=1

χικ

ακλκ(xκ),

and
χικ

jλκ(xκ) = 2
jnκ
2 χικ

(2jxκ − λκ), χικ

(xκ) =
∏

ν∈kκ

χ(ιν)(xν);

here
en(α) = en1(sign(α1)) ⊗ · · · ⊗ enk(sign(αk)),

Λ(n, α) = Λ(n1, α1) × . . . × Λ(nk, αk).

It is clear that the system χ(n) is orthonormal in L2([0, 1]n). Furthermore,
the system χ(n) is unconditional basis in Lr([0, 1]n) with 1 < r < ∞ : in the
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case k = 1 this fact is proved in [13, ch. 8], general case 1 ≤ k ≤ n follows from
here because the system χ(n) (w.r.t. variable x) is tensor product of the systems
χ(nκ) (w.r.t. variables xκ), κ ∈ zk.

Define operators Δχ
α (α ∈ N

k
0) as follows: for f ∈ L1, let

Δχ
α(f, x) =

∑
ι∈en(α)

∑
λ∈Λ(n,α)

f ι
αλχι

αλ(x)

be its dyadic packet, where

f ι
αλ =

∫
[0,1]n

f(x)χι
αλ(x) dx.

Furthermore, for f ∈ L1, we define its so called hyperbolic cross Fourier sum
w. r. t. system χ(n) (with fixed γ = (γ1, . . . , γk) ∈ R

k
+) by the formula

Sχ,γ
u (f, x) =

∑
αγ≤u

Δχ
α(f, x) (u ∈ N)

(here αγ := α1γ1 + · · · + αkγk). In the sequel, we will denote quantity (1) with
Sχ,γ

u instead of SΨ
u simply as Eγ

u(F, Lr).
Finally, we define the Nikol’skii – Besov and Lizorkin – Triebel type function

spaces (and classes) associated with system χ(n) whose approximation properties
w.r.t. that system χ(n) will be studied in the next sections.

Let 1 ≤ p, q ≤ ∞ and let �q ≡ �q(Nk
0) be the space of complex number

sequences (cα) = (cα |α ∈ N
k
0) with the finite norm

‖(cα) | �q ‖ =
( ∑

α∈Nk
0

| cα |q
)1/q

(1 ≤ q < ∞), ‖(cα) | �∞ ‖ = sup
α∈Nk

0

| cα |;

let �q(Lp) ≡ �q(Lp([0, 1]n)) (respectively Lp(�q) ≡ Lp([0, 1]n; �q)) be the space of
function sequences (gα(x)) = (gα(x) |α ∈ N

k
0) (x ∈ [0, 1]n) with the finite norm

‖ (gα(x)) | �q(Lp) ‖ = ‖ ( ‖ gα |Lp ‖) | �q ‖

(respectively
‖ (gα(x)) |Lp(�q) ‖ = ‖ ‖ (gα(·)) | �q ‖ |Lp ‖).

Now we are in position to introduce function spaces (as well as classes) under
consideration.

Definition 1. Let s = (s1, . . . , sk) ∈ R
k
+, 1 ≤ p, q ≤ ∞. Then

i) the Nikol’skii – Besov type space χBs n
p q ≡ χBs n

p q([0, 1]n) associated with
the system χ(n) consists of all functions f ∈ Lp for which the norm

‖ f |χBs n
p q ‖ = ‖(2αsΔχ

α(f, x)) | �q(Lp)‖ (2)

is finite;
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ii) the Lizorkin – Triebel type space χLs n
p q ≡ χLs n

p q([0, 1]n) associated with
the system χ(n) consists of all functions f ∈ Lp for which the norm

‖ f |χLs n
p q ‖ = ‖(2αsΔχ

α(f, x)) |Lp( �q)‖ (3)

is finite.
Unit balls χBs n

p q ≡ χBs n
p q([0, 1]n) and χLs n

p q ≡ χLs n
p q([0, 1]n) of these spaces

will be called the Nikol’skii – Besov and Lizorkin – Triebel classes associated
with the system χ(n), respectively.

Remark 1. Note that the approximation properties of the system χ(n) with n ≥ 2
(particularly, nonlinear approximation properties: best N−term approximations,
different Greedy type constructive algorithms etc.) have been studied intensively
in last two decades for two special cases: i) n−dimensional case where n = n, i.e.
k = 1; ii) (pure) multiple case where n = (1, . . . , 1), i.e. k = n (see, for example,
recent monograph [12]).

2 Main Results

For s = (s1, . . . , sk) ∈ R
k
+ and 1 ≤ p, r ≤ ∞ such that s̄κ ≡ sκ − nκ( 1p − 1

r )+ >

0, κ ∈ zk, define the following vectors and numbers (here a+ = max{a, 0} for a
number a ∈ R).

Put s̄ = s − n( 1p − 1
r )+, ςκ = sκ

nκ
, ς̄κ = s̄κ

nκ
, κ ∈ zk; without loss of generality,

assume that ς ≡ min { ςκ | κ ∈ zk } = ς1 = . . . = ςω < ςκ, κ ∈ zk \ zω for
certain ω ∈ zk; ς̄ = ς − ( 1p − 1

r )+. Take a vector ς̃ = (ς̃1, . . . , ς̃k) such that
ς̄ = ς̃1 = . . . = ς̃ω < ς̃κ < ς̄κ, κ = ω + 1, . . . , k, and put s̃ = (s̃1, . . . , s̃k) with
s̃κ = ς̃κnκ (κ ∈ zk) and γ = 1

ς̄ s̃.
We will use the symbols � and � to show relations between the orders

of quantities : for functions F : R+ → R+ and H : R+ → R+ we write
F (u) � H(u) as u → ∞, if there exists a constant C = C(F,H) > 0 such that
the inequality F (u) ≤ CH(u) holds true for u ≥ u0 > 0, and F (u) � H(u), if
F (u) � H(u) and H(u) � F (u), simultaneously.

Below, for 1 ≤ p ≤ ∞ put p∗ = min{p, 2}.

Theorem 1. Let 1 ≤ r ≤ p ≤ ∞, r < ∞, 1 ≤ q ≤ ∞ and s ∈ R
k
+. Then

Eγ
u(χBs n

p q, Lr ) � 2−ςuu(ω−1)( 1
p∗ − 1

q )+ .

If, in addition, 1 < p < ∞, then

Eγ
u(χLs n

p q, Lr ) � 2−ςuu(ω−1)( 1
2− 1

q )+ .

Moreover,
Eγ

u(χLs n
1 q, L1 ) � 2−ςuu(ω−1)(1− 1

q )+ .



36 D.B. Bazarkhanov

Theorem 2. Let 1 ≤ p < r < ∞, 1 ≤ q ≤ ∞ and let s ∈ R
k
+ be such that

ς > 1
p − 1

r . Then

Eγ
u(χBs n

p q, Lr ) � 2−(ς− 1
p+ 1

r )uu(ω−1)( 1
r − 1

q )+ ;

Eγ
u(χLs n

p q, Lr ) � 2−(ς− 1
p+ 1

r )u.

Theorem 3. Let 1 ≤ p, q ≤ ∞ and let s ∈ R
k
+ be such that ς > 1

p . Then

Eγ
u(χBs n

p q, L∞ ) � 2−(ς− 1
p )uu(ω−1)(1− 1

q )+ .

If, in addition, p < ∞, then

Eγ
u(χLs n

p q, L∞ ) � 2−(ς− 1
p )uu(ω−1)(1− 1

p ).

Remark 2. i) These theorems are analogs of theorem 4.1 from [2] for the
Nikol’skii – Besov and Lizorkin – Triebel type classes associated with system
χ(n) and hyperbolic cross approximation w.r.t. that system.

ii) Note that the estimates in Theorems 1 and 2 for quantities Eγ
u(χBs n

p q, Lr)
in special case ω = n = k, ( 1p − 1

r )+ < ς < 1, are proved in theorem 1 from [1]
(q = ∞) and in theorem 1 from [7] (1 ≤ q < ∞).

Below, when proving upper bounds from Theorem 1–3 and estimating the
dimensions of the corresponding subspaces, we will systematically making use
the following lemma from [2] (for proof see also [3]).

Lemma 1. Let β, γ ∈ R
k
+ be such that βν = γν for ν ∈ zω and βν > γν for

ν ∈ zk \ zω, and let L > 0. Then the following relations are valid:

I β,γ
L (u) ≡

∑
α∈Nn

0 :αγ>u

2−Lαβ � 2−Luuω−1 as u → +∞; (4)

J γ,β
L (u) ≡

∑
α∈Nn

0 :αβ≤u

2Lαγ � 2Luuω−1 as u → +∞. (5)

3 Proof of Upper Bounds in Theorem 1

First we formulate the Littlewood – Paley – type theorem related to the system
χ(n) and its corollary.

Theorem 4. Let 1 < p < ∞. Then there exists a constant C = C(n, p) > 0
such that

C−1 ‖ f |Lp ‖ ≤ ‖ (Δχ
α(f, x)) |Lp([0, 1]n; �2) ‖ ≤ C ‖ f |Lp ‖,

for all functions f ∈ Lp.
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Since the system χ(n) is an unconditional basis in Lp, Theorem 4 can easily be
proved by arguments involving the classical Khinchin inequality for Rademacher
functions (see, for instance, [13, ch. 8], where the case k = 1 is analyzed).

Corollary 1. Let 1 < p < ∞, p∗ = min(p, 2). Then, for any function f ∈ Lp

‖ f |Lp ‖ ≤ C(n, p) ‖ (Δχ
α(f, x)) | �p∗(Lp([0, 1]n)) ‖.

B. We begin with upper estimates for the classes χBs n
p q.

a) Let, first, p = r = 1. Then for f ∈ χBs n
p q, we have

‖ f − Sχ, γ
u (f) |L1 ‖ = ‖

∑
αs′>uς

Δχ
α(f) |L1 ‖ ≤

‖ (Δχ
α(f))αs′>uς | �1(L1) ‖ = ‖ (2−αs2αsΔχ

α(f))αs′>uς | �1(L1) ‖ ≡ �1(u).

By the definition (2) of the norm in space χBs n
p q, for q = 1, we obviously have

(αs ≥ αs′ > uς)

�1(u) ≤ 2−ςu‖ (2αsΔχ
α(f))αs′>uς | �1(L1) ‖ � 2−ςu ‖ f |χBs m

1 1 ‖ ≤ 2−ςu.

For 1 < q < ∞, successively applying the Hölder inequality for series
(‖ (cjdj)

| �1(J) ‖ ≤ ‖ (cj) | �a(J) ‖ · ‖ (dj) | �b(J) ‖ with 1 ≤ a ≤ ∞, 1
a + 1

b = 1
)

(c a = q) and relation (4) and taking into account the definition (2) of the
norm in χBs n

p q, we obtain (here and below, q′ = q
q−1 )

�1(u) ≤
( ∑

αs′>uς

2−αsq′
)1/q′

‖ (2αsΔχ
α(f))αs′>uς | �q(L1) ‖ �

� (2−ςuq′
uω−1)1/q′ ‖ f |χBs n

1 q ‖ ≤ 2−ςuu(ω−1)(1− 1
q ).

Finally, if q = ∞, then, using again (4) and (2), we find

�1(u) ≤
( ∑

αs′>uς

2−αs

)
‖ (2αsΔχ

α(f))αs′>uς | �∞(L1) ‖ �

� 2−ςuu(ω−1) ‖ f |χBs n
1 q ‖ ≤ 2−ςuu(ω−1).

The required upper estimate is proved.
b) Now, let 1 < p < ∞ and 1 ≤ r ≤ p. By Corollary 1, for f(x) ∈ χBs n

p q we
have

‖ f − Sχ, γ
u (f) |Lr ‖ = ‖

∑
αs′>uς

Δχ
α(f) |Lr ‖ ≤

≤ ‖
∑

αs′>uς

Δχ
α(f) |Lp ‖ ≤ ‖ (Δχ

α(f))αs′>uς | �p∗(Lp) ‖ ≡ �2(u).
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For 1 ≤ q ≤ p∗, using Jensen’s inequality for series
( ‖ (cj) | �a(J) ‖ ≤ ‖ (cj) |

�b(J) ‖ for 0 < b ≤ a ≤ ∞ )
and the definition (2) of the norm in χBs n

p q, we
obtain

�2(u) ≤ ‖ (Δχ
α(f))αs′>uς | �q(Lp) ‖ ≤ ‖ (2−αs2αsΔχ

α(f))αs′>uς | �q(Lp) ‖

� 2−ςu‖ (2αsΔχ
α(f))αs′>uς | �q(Lp) ‖ � 2−ςu ‖ f |χBs n

p q ‖ ≤ 2−ςu.

For p∗ < q < ∞, applying the Hölder inequality for series with exponents a = q
p∗

and b = q
q−p∗

and relation (4) and taking into account (2), we find

�2(u) = ‖ (2−αs2αsΔχ
α(f))αs′>uς | �p∗(Lp) ‖ ≤

( ∑
αs′>uς

2−αs qp∗
q−p∗

) q−p∗
qp∗

×‖ (2αsΔχ
α(f))αs′>uς | �q(Lp) ‖ � 2−ςuu(ω−1)( 1

p∗ − 1
q ) ‖ f |χBs n

p q ‖ ≤
≤ 2−ςuu(ω−1)( 1

p∗ − 1
q ).

If q = ∞, then (4) and (2) obviously imply

�2(u) = ‖ (2−αs2αsΔχ
α(f))αs′>uς | �p∗(Lp) ‖ ≤

≤
( ∑

αs′>uς

2−αsp∗

)1/p∗

× ‖ (2αsΔχ
α(f))αs′>uς | �∞(Lp) ‖ �

� 2−ςuu(ω−1) 1
p∗ ‖ f |χBs n

p ∞ ‖ ≤ 2−ςuu(ω−1) 1
p∗ .

Thus, the upper estimate is proved.
c) Let 1 ≤ r < p = ∞. In this case p∗ = 2. We also denote r∗ = max(r, 2).

Since ‖ · |Lr ‖ ≤ ‖ · |Lr∗ ‖ ≤ ‖ · |L∞ ‖, we have the elementary embedding
χBs n

∞ q ⊂ χBs n
r∗ q, 1 ≤ q ≤ ∞, and the inequality

Eγ
u(χBs n

∞ q, Lr) ≤ Eγ
u(χBs n

r∗ q, Lr∗).

Therefore, it follows from what has been proved in item b) that (min(r∗, 2) = 2)

Eγ
u(χBs n

∞ q, Lr) � 2−ςuu(ω−1)( 1
2− 1

q )+ ;

i.e., the required upper estimate is proved.
Thus, all the upper estimates of the theorem for the classes χBs n

p q are estab-
lished.

L. Now, we obtain upper estimates for the classes χLs n
p q.

a) Let, first, p = r = 1. For q = 1, the upper estimate is already obtained,
because χLs n

1 1 = χBs n
1 1, (see the estimates above for the classes χBs n

1 1).
Consider the case 1 < q ≤ ∞. Let f ∈ χLs n

1 q. Then

‖ f − Sχ, γ
u (f) |L1 ‖ = ‖

∑
αs′>uς

Δχ
α(f) |L1 ‖ ≤
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≤ ‖ (2−αs2αsΔχ
α(f))αs′>uς |L1(�1) ‖ ≡ �3(u).

For 1 < q < ∞, applying the Hölder inequality for series, relation (4) and the
definition (3) of the norm in χLs n

p q, we obtain

�3(u) ≤
( ∑

αs′>uς

2−αsq′
)1/q′

‖ (2αsΔχ
α(f))αs′>uς |L1(�q) ‖ �

� 2−ςuu(ω−1)(1− 1
q )‖ f |χLs n

1 q ‖ ≤ 2−ςuu(ω−1)(1− 1
q ).

If q = ∞, then in a similar way we arrive at

�3(u) ≤
∑

αs′>uς

2−αs‖ (2αsΔχ
α(f))αs′>uς |L1(�∞) ‖ �

� 2−ςuu(ω−1)‖ f |χLs n
1∞ ‖ ≤ 2−ςuu(ω−1).

Thus, the required upper estimate

Eγ
u(χLs n

1q , L1) � 2−ςuu(ω−1)(1− 1
q )

is established for 1 ≤ q ≤ ∞.
b) Now, let 1 < p < ∞ and 1 ≤ r ≤ p. For f ∈ χLs n

p q, by Theorem 4 we find

‖ f − Sχ, γ
u (f) |Lr ‖ = ‖

∑
αs′>uς

Δχ
α(f) |Lr ‖ ≤

≤ ‖
∑

αs′>uς

Δχ
α(f) |Lp ‖ � ‖ (2−αs2αsΔχ

α(f))αs′>uς |Lp(�2) ‖ ≡ �4(u).

For 1 ≤ q ≤ 2, applying Jensen’s inequality for series and taking into account
(3), we obtain (αs ≥ αs′ > uς)

�4(u) ≤ ‖ (2−αs2αsΔχ
α(f))αs′>uς |Lp(�q) ‖ ≤

≤ 2−ςu‖ (2αsΔχ
α(f))αs′>uς |Lp(�q) ‖ � 2−ςu‖ f |χLs n

p q ‖ ≤ 2−ςu.

If 2 < q < ∞, then, successively applying the Hölder inequality for series with
exponents a = q

q−2 and b = q
2 , relation (4), and (3), we obtain

�4(u) ≤
( ∑

αs′>uς

2−αs 2q
q−2

) q−2
2q

‖ (2αsΔχ
α(f))αs′>uς |Lp(�q) ‖

� 2−ςuu(ω−1)( 1
2− 1

q )‖ f |χLs n
p q ‖ � 2−ςuu(ω−1)( 1

2− 1
q ).

If q = ∞, then, as above, relation (4) combined with (3) yields

�4(u) ≤
( ∑

αs′>uς

2−2αs

)1/2

‖ (2αsΔχ
α(f))αs′>uς |Lp(�∞) ‖ �

� 2−ςuu(ω−1) 1
2 ‖ f |χLs n

p ∞ ‖ ≤ 2−ςuu(ω−1) 1
2 ,

i.e., the required upper estimate is established.
Thus, all the upper estimates in Theorem 1 for the classes χLs n

p q are also
proved.
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4 Proof of Upper Bounds in Theorems 2 and 3

Recall that for s = (s1, . . . , sk) ∈ R
k
+ and 1 ≤ p < r ≤ ∞, s̄ = s − n( 1p − 1

r ), i.e.
s̄κ = sκ − 1

p + 1
r , κ ∈ zk.

Below we shall use the following three embeddings:
Let 1 ≤ p < r ≤ ∞, 1 ≤ q ≤ ∞; s ∈ R

k
+ s. t. s̄ ∈ R

k
+. Then

χBs n
p q ↪→ χBs̄ n

r q . (6)

Let 1 ≤ p < r < ∞, 1 ≤ q ≤ ∞; s ∈ R
k
+ s. t. s̄ ∈ R

k
+. Then

χLs n
p q ↪→ χLs̄ n

r 1. (7)

Let 1 ≤ p < r = ∞, 1 ≤ q ≤ ∞; s ∈ R
k
+ s. t. s̄ ∈ R

k
+. Then

χLs n
p q ↪→ χBs̄ n

∞ p. (8)

For proof of these embeddings see [5] and Remark 5.1 in [2].
I. We begin with proof of the upper estimates in Theorem 3.
(B) First, consider the class χBs n

p q. In view of the embedding (6), it suffices
to derive an upper estimate for Eγ

u(χBs,n
∞q, L∞).

Let f ∈ χBs,n
∞q. Then, as above, by the Holder inequality for series and by

(4), we obtain

‖ f − Sχ, γ
u (f) |L∞ ‖ ≤

∑
αs̃>uς̄

2−αs̄2αs̄‖Δχ
α(f) |L∞ ‖ ≤

≤ ‖ (2−αs̄)αs̃>uς̄ | �q′ ‖‖ (2αs̄Δχ
α(f) | �q(L∞) ‖

� 2−(ς− 1
p )uu(ω−1)(1− 1

q )‖ f |χBs,n
∞q ‖ ≤ 2−(ς− 1

p )uu(ω−1)(1− 1
q ).

Thus, the upper estimate is established.
(L) Consider the class χLs n

p q. According to the embedding (8) and previous
estimate (with p instead of q), we get

Eγ
u(χLs n

pq , L∞) � Eγ
u(χBs̄ n

∞p, L∞) � 2−(ς− 1
p )uu(ω−1)(1− 1

p );

i.e., the upper estimate is proved. Hence, proof of both upper estimates in
Theorem 3 is completed.

II. Let us proceed to upper estimates in Theorem 2. We have 1 ≤ p < r <
∞, 1 ≤ q ≤ ∞, s, s̄ ∈ R

k
+.

(B) First, we obtain upper estimates for class χBs n
p q. In view of embedding

(6) we get
Eγ

u(χBs n
pq , Lr) � Eγ

u(χBs̄ n
rq , Lr).

Therefore, we can use the upper estimates for the right-hand side of this inequal-
ity from Theorem 3. It is easily seen that these estimates provide the required
order if either 1 < r ≤ 2 and 1 ≤ q ≤ ∞ or 1 ≤ q ≤ 2 < r.
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For r > 2 and q > 2, these estimates turn out to be rouhger than required.
To obtain upper estimates (sharp in order) in that case, we need the following

Theorem 5. Let 1 ≤ p < r < ∞. Then there exists a constant C(p, r, n) > 0
such that, for f ∈ Lp, the following inequality holds:

‖ f |Lr ‖ ≤ C(p, r, n)‖ (2αn( 1
p − 1

r )Δχ
α(f)) | �r(Lp) ‖.

The proof of Theorem 5 in the case k = n is given in [11]; it remains valid in
slightly more general case 1 ≤ k ≤ n.

Let f ∈ χBs n
pq . Then, by Theorem 5, we have

‖ f − Sχ,γ
u (f) |Lr ‖ � ‖ (2αn( 1

p − 1
r )Δχ

α(f))αs̃>uς̄ | �r(Lp) ‖

= ‖ (2−αs̄2αsΔχ
α(f))αs̃>uς̄ | �r(Lp) ‖ ≡ �5(u).

If r < q < ∞, applying the Holder inequality for series, relation (4), we obtain

�5(u) ≤
( ∑

αs̃>uς̄

2−αs̄ rq
q−r

) 1
r − 1

q

‖ (2αsΔχ
α(f))αs̃>uς̄ | �q(Lp) ‖

� 2−(ς− 1
p+ 1

r )uu(ω−1)( 1
r − 1

q )‖ f |χBs,n
pq ‖ ≤ 2−(ς− 1

p+ 1
r )uu(ω−1)( 1

r − 1
q ).

If 2 < q ≤ r, using Jensen’s inequality for series and taking into account that
αs̄ ≥ αs̃ > uς̄, we get

�5(u) ≤ 2−ς̄u‖ (2αsΔχ
α(f))αs̃>uς̄ | �r(Lp) ‖

≤ 2−ς̄u‖ (2αsΔχ
α(f)) | �q(Lp) ‖ ≤ 2−(ς− 1

p+ 1
r ).

If q = ∞, then again by (4), we have

�5(u) ≤
( ∑

αs̃>uς̄

2−αs̄r

) 1
r

‖ (2αsΔχ
α(f))αs̃>uς̄ | �∞(Lp) ‖

� 2−ς̄uu(ω−1) 1
r ‖ f |χBs,n

p∞ ‖ ≤ 2−(ς− 1
p+ 1

r )uu(ω−1) 1
r .

Thus, all the required upper estimates in Theorem 2 for the class χBs,n
p∞ are

found.
(L) Finally, let us obtain the upper estimate for the class χLs,n

p∞. According
to the embedding (7) and the upper estimate from Theorem 1, it follows that

Eγ
u(χLs n

pq , Lr) � Eγ
u(χLs̄ n

r1 , Lr) � 2−(ς− 1
p+ 1

r )u,

i.e., the required upper estimate is established.
Thus, proof of both upper estimates in Theorem 2 is completed.
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5 Proof of Lower Bounds in Theorems 1 – 3

To obtain lower bounds in Theorems 1 – 3 we need the notion of Fourier width.
Recall that N−th Fourier width (or, which is the same, orthowidth) of a set
F ⊂ Lr is defined as

ϕN (F, Lr) = inf
{gj}N

j=1

sup
f∈F

‖f −
N∑

j=1

〈f, gj〉gj | Lr ‖,

where the infimum is taken over all orthonormal (in L2) systems {gj}N
j=1 ⊂ L∞.

By virtue of (5) (with L = 1), the dimension δ(γ, u) of the linear span of the
set {χι

αλ | ι ∈ en(α), λ ∈ Λ(n, α), α ∈ N
k
0 : αγ ≤ u} is of order 2uuω−1. Hence,

choosing N ≥ δ(γ, u), we get the inequality

Eγ
u(F, Lr) ≥ ϕN (F, Lr). (9)

In [4], we obtained the estimates for Fourier widths of the classes under
consideration. Under the hypotheses of Theorem 1 we have

ϕN (χBs n
p q, Lr) �

(
logω−1 N

N

)ς

(logω−1 N)(
1

p∗ − 1
q )+ ,

ϕN (χLs n
p q, Lr) �

(
logω−1 N

N

)ς

(logω−1 N)(
1
2− 1

q )+ (p > 1),

ϕN (χLs n
1 q, L1) �

(
logω−1 N

N

)ς

(logω−1 N)(1− 1
q )+ .

Further, under the hypotheses of Theorem 2 we have

ϕN (χBs n
p q, Lr) �

(
logω−1 N

N

)ς− 1
p+ 1

r

(logω−1 N)(
1
r − 1

q )+ ,

ϕN (χLs n
p q, Lr) �

(
logω−1 N

N

)ς− 1
p+ 1

r

.

Finally, under the hypotheses of Theorem 3 we have

ϕN (χBs n
p q, L∞) �

(
logω−1 N

N

)ς− 1
p

(logω−1 N)1− 1
q ,

ϕN (χLs n
p q, L∞) �

(
logω−1 N

N

)ς− 1
p

(logω−1 N)1− 1
p .

(Here log ≡ log2.) These estimates with N ≥ δ(γ, u) such that N � δ(γ, u)
combined with the inequality (9) easily imply lower bounds for Eγ

u(χFs n
p q, Lr)

(F ∈ {B,L}) in Theorems 1 – 3 matching the upper bounds obtained in the
previous sections.



Hyperbolic Cross Approximation of Some Function Classes . . . 43

Remark 3. Notion of Fourier width was invented by V.N. Temlyakov [8] in 1982.
Remark that extensive literature has been devoted to the estimates sharp in
order for Fourier widths of various classes of smooth functions in one and several
variables; here we only refer to monographs [9,10] and articles [3,6], where one
can also find detailed history of the problem and comprehensive references.

Acknowledgements. This publication is supported by the target program
0085/PTSF-14 from the Ministry of Science and Education of the Republic of Kaza-
khstan.
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Abstract. This paper is dedicated to a sufficient condition for com-
pactness of Commutators for singular integrals [b, T ] in the generalized
Morrey space Mw

p .

Keywords: Morrey space · Compactness · Commutators · Singular
integrals · Generalized Morrey space · Pre-compactness

First we give some definitions.
Let 1 ≤ p ≤ ∞, w be a measurable non-negative function on (0,∞). The

generalized Morrey space Mw
p ≡ Mw

p (Rn) is defined as a set of all functions
f ∈ Lloc

p (Rn) with finite quasi-norm

‖f‖Mw
p

≡ sup
x∈Rn

∥
∥
∥w(r) ‖f‖Lp(B(x,r))

∥
∥
∥

L∞(0,∞)
,

where B(t, r) is a ball with center at the point t and of radius r.
The space Mw

p coincides with the known Morrey space Mλ
p at w(r) = r−λ,

where 0 ≤ λ ≤ n
p , which, in turn, for λ = 0 coincides with the space Lp(Rn).

Following the notation of [1,2], we denote by Ωp∞ the set of all functions
which are non-negative, measurable on (0,∞), not equivalent to 0 and such that
for some t > 0

‖w(r)r
n
p ‖L∞(0,t) < ∞, ‖w(r)‖L∞(t,∞) < ∞.

Note that the space Mw
p is non-trivial, that is, consists not only of functions

equivalent to 0 on Rn, if and only if w ∈ Ωp∞.
In this paper we consider a singular integral in the following form

Tf(x) =
∫

Rn

|x − y|−nf(y)dy,

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_4
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It is well-known that the Calderon–Zygmund operator

Kf(x) =
∫

Rn

k(x, y)f(y)dy,

with a certain kernel k(x, y) satisfies the condition, where

|K(x, y)| ≤
∫

Rn

f(y)
|x − y|n dy,

(see [3,11]).
The singular integral T plays an important role in the harmonic analysis and

theory of operators.
For a function b ∈ Lloc(Rn) by Mb denote multiplier operator Mbf = bf ,

where f is a measurable function. Then a commutator between T and Mb is
defined by

[b, T ] = MbT − TMb =
∫

Rn

[b(x) − b(y)] f(y)
|x − y|n dy.

The commutators for singular integrals were investigated [4–6].
It is said that the function b(x) ∈ L∞(Rn) belongs to the space BMO(Rn),

if
‖b‖∗ = sup

Q⊂Rn

1
|Q|

∫

Q

|b(x) − bQ| dx = sup
Q∈Rn

M(b,Q) < ∞,

where Q is a cube Rn and bQ = 1
|Q|

∫

Rn

f(y)dy.

By V MO(Rn) we denote the BMO-closure C∞
0 (Rn), where C∞

0 (Rn) is the
set of all functions from C∞(Rn) with compact support. By χ(A) denote the
characteristic function of the set B ⊂ Rn, and by cA denote the complement
of A.

The main purpose of this work is to find sufficient conditions for the compact-
ness of commutators operators [b, T ] on the generalized Morrey space Mw

p (Rn).
We note that in the case of the Morrey space this question was investigated in

[4]. The following well-known theorem gives necessary and sufficient conditions
for the boundedness and compactness for [b, T ] on the generalized Morrey spaces
Mw

p (Rn).

Theorem A. (see. [6]) Let 1 < p < ∞, b ∈ BMO(Rn), let (w1,w2) satisfy the
following condition

∞∫

r

ess inf
t<s<∞w1(s)dt

t
≤ Cw2(r), (1)

where C does not depend on x and r. Let the operator T be bounded on Lp(Rn).
Then the operator T is bounded from Mw1

p (Rn) to Mw2
p (Rn).
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The following statement is a consequence of Theorem 3.7 of [6].

Theorem B. (see. [6]) Let 1 < p < ∞, b ∈ BMO(Rn), let (w1,w2) satisfy the
condition ∞∫

r

ln

(

e +
t

r

) ess inf
t<s<∞w1(s)dt

t
≤ Cw2(r). (2)

where C does not depend on x and r. Let the operator [b, T ] be bounded on
Lp(Rn). Moreover, let

‖[b, T ]‖Lp(Rn) ≤ ‖b‖∗ ‖f‖Lp(Rn) . (3)

Then [b, T ] is bounded from Mw1
p (Rn) to Mw2

p (Rn). Moreover, we have

‖[b, T ]‖M
w2
p (Rn) ≤ ‖b‖∗ ‖f‖M

w1
p (Rn) . (4)

It is well known that the boundedness of such operators on Morrey space
Mλ

p (R) was considered in [4,5].
The following theorem on sufficient conditions for the precompactness of sets

on generalized Morrey spaces was proved in [7,8].

Theorem C. (see. [7,8]) Suppose that 1 ≤ p ≤ ∞ and w ∈ Ωp∞. Suppose that
a subset S of Mw

p satisfies the following conditions:

sup
f∈S

‖f‖Mw
p

< ∞, (5)

lim
u→0

sup
f∈S

‖f(· + u) − f(·)‖Mw
p

= 0, (6)

lim
r→∞ sup

f∈S

∥
∥fχcB(0,r)

∥
∥

Mw
p

= 0. (7)

Then S is a pre-compact set in Mw
p (R).

Note that for the case of Morrey space Mλ
p (0 < λ < 1) (i.e., if w(r) = r−λ)

this assertion was proved earlier in [3], and in the case of λ = 0 it is the known
Frechet-Kolmogorov theorem [10]. We note that the pre-compactness of some
sets in Banach function spaces were investigated in [9].

Now we give theorem about the compactness of the operators [b, T ] on gen-
eralized Morrey space Mw

p (Rn).

Theorem 1. Let 1 < p < ∞, b ∈ V MO(Rn), let functions w1,w2 ∈ Ωp,∞
satisfy the conditions (2) and (3). Then the commutator [b, T ] is a compact
operator from Mw1

p to Mw2
p .

To prove this theorem we need the following auxiliary assertions.

Lemma 1. Let n ∈ N, 1 < p ≤ ∞, 1 < q < ∞, 0 < n
(

1 − 1
q

)

, β > 0. Then
there exists C > 0 depending only on n, p, q such that for some f ∈ Lp(B(0, β))
satisfying the condition suppf ⊂ B(0, β), and for some γ ≥ 2β, t ∈ Rn, r > 0

∥
∥(Tf)χcB(0,γ)

∥
∥

Lq(B(t,r))
≤ Cγ−n (min{γ, r})

n
q ‖f‖LpB(0,β) . (8)
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Proof. From the definition of the operator T , we have

I =
∥
∥
∥(Tf) χc

B(0,γ)

∥
∥
∥

Lq(B(t,r))

=

⎛

⎜
⎝

∫

B(t,r)∩cB(0,γ)

∣
∣
∣
∣
∣
∣

∫

Rn

f(y)
|x − y|n dy

∣
∣
∣
∣
∣
∣

q

dx

⎞

⎟
⎠

1
q

≤

⎛

⎜
⎝

∫

B(t,r)∩cB(0,γ)

∣
∣
∣
∣
∣
∣
∣

∫

B(0,β)

f(y)
|x − y|n dy

∣
∣
∣
∣
∣
∣
∣

q

dx

⎞

⎟
⎠

1
q

. (9)

From the fact that β ≤ γ
2 for x ∈c B(0, γ), y ∈ B(0, β) we have

|x − y| ≥ |x| − |y| ≥ |x| − β =
|x|
2

+
|x|
2

− β ≥ |x|
2

. (10)

From this it follows that

I ≤ 2n

⎛

⎜
⎝

∫

cB(0,γ)

dx

|x|nq

⎞

⎟
⎠

1
q

∫

B(0,β)

|f(y)|dy

≤ 2n

⎛

⎝

∞∫

γ

ρnq−2dρ

⎞

⎠

1
q

(υnβn)1− 1
p ‖f‖Lp(B(0,β))

≤ 2n
(

δnρnq+n−1
) 1

q (υnβn)1− 1
p ‖f‖Lp(B(0,β))

= 2n

(
δn

nq + n

) 1
q

υ
1− 1

p
n βn(1− 1

p )γ−n(1− 1
q ) ‖f‖Lp(B(0,β))

≡ C1γ
−n(1− 1

q ) ‖f‖Lp(B(0,β)) . (11)

Next, we consider

I ≤ 2nγ−n

⎛

⎜
⎝

∫

B(t,r)

dx

⎞

⎟
⎠

1
q

∫

B(0,β)

|f(y)|dy

≤ 2nγ−n (υnrn)
1
q (υnβn)1− 1

p ‖f‖Lp(B(0,β))

= C2γ
−nr

n
q ‖f‖Lp(B(0,β)) . (12)

From inequality (11) and (12) it follows (8), where C = max{C1, C2}
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Lemma 2. Let n ∈ N, 1 < p < ∞, 1 < q < ∞, 0 < n
(

1 − 1
q

)

, β > 0. Then
there exists C > 0 depending only on n, p, q such that for some f ∈ Lp(B(0, β)),
b ∈ L∞(Rn), satisfying the condition supp b ⊂ B(0, β), and for some γ ≥ 2β,
t ∈ Rn, r > 0

∥
∥([b, T ]f)χcB(0,γ)

∥
∥

Lq(B(t,r))
≤ Cγ−n (min{γ, r})

n
q ‖b‖L∞(Rn) ‖f‖LpB(0,β) .

(13)

Proof. Let γ > β, supp b ⊂ B(0, β) for x ∈c B(0, γ), b(x) = 0. Then
∥
∥
∥[b, T ] fχc

B(0,γ)

∥
∥
∥

Lq(B(t,r))

=

⎛

⎜
⎝

∫

B(t,r)∩cB(0,γ)

∣
∣
∣
∣
∣
∣

∫

Rn

(b(x) − b(y))f(y)
|x − y|n dy

∣
∣
∣
∣
∣
∣

q

dx

⎞

⎟
⎠

1
q

≤

⎛
⎜⎝

∫

B(t,r)∩cB(0,γ)

∣∣∣∣∣∣

∫

Rn

b(y)f(y)

|x − y|n dy

∣∣∣∣∣∣

q

dx

⎞
⎟⎠

1
q

≤

⎛
⎜⎝

∫

B(t,r)∩cB(0,γ)

∣∣∣∣∣∣∣

∫

B(0,β)

|b(y)| · |f(y)|
|x − y|n dy

∣∣∣∣∣∣∣

q

dx

⎞
⎟⎠

1
q

≤

⎛

⎜
⎝

∫

B(t,r)∩cB(0,γ)

∣
∣
∣
∣
∣
∣
∣

∫

B(0,β)

|f(y)|
|x − y|n dy

∣
∣
∣
∣
∣
∣
∣

q

dx

⎞

⎟
⎠

1
q

‖b‖L∞(Rn)

≤

⎛
⎜⎝

∫

B(t,r)∩cB(0,γ)

∣∣∣∣∣∣

∫

Rn

|f(y)|
|x − y|n dy

∣∣∣∣∣∣

q

dx

⎞
⎟⎠

1
q

‖b‖L∞(Rn) =
∥∥∥(Tf)χc

B(0,γ)

∥∥∥
Lq(B(t,r))

‖b‖L∞(Rn)

From this and from Lemma 1 we obtain the inequality (13).

Proof of theorem. To prove Theorem 1 it is sufficient to show that the con-
ditions (5)-(7) of Theorem C hold.

Let F be an arbitrary bounded subset of Mw1
p . Since C∞

c (Rn) is dense in
V MO(Rn), we only need to prove that the set G = {[b, T ]f : f ∈ F, b ∈ C∞

c } is
pre-compact in Mw2

p . By Theorem C, we only need to verify that the conditions
(5), (6) and (7) hold uniformly F for {b ∈ C∞

c }.
Suppose that

‖f‖M
w1
p

≤ D.

Applying Theorem B, we have

‖[b, T ]f‖M
w2
p

≤ C · ‖b‖∗ sup
f∈F

‖f‖M
w1
p

≤ C · D‖b‖∗ < ∞.

this implies that the condition (5) of Theorem C holds.
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Now we prove that condition (7) of Theorem C also holds, i. e.

lim
γ→∞

∥
∥
∥([b, T ] f)χc

B(0,γ)

∥
∥
∥

M
w2
p

= 0.

It follows from Lemma 2. Indeed
∥
∥
∥([b, T ] f)χc

B(0,γ)

∥
∥
∥

M
w2
p

=

sup
r>0,

x∈Rn

∥
∥
∥
∥
w(r)

∥
∥
∥([b, T ] f)χc

B(0,γ)

∥
∥
∥

Lp(B(x,r))

∥
∥
∥
∥

L∞(0,∞)

≤ Cγ−n ‖b‖L∞(Rn) ‖f‖LpB(0,β) sup
r>0,

x∈Rn

∥
∥
∥w2(r) (min{γ, r})

n
p

∥
∥
∥

L∞(0,∞)

When r < l<γ we have (min{γ, r})
n
p =r

n
p . By condition

∥
∥
∥w2(r)r

n
p

∥
∥
∥

L∞(l,∞)
<∞.

When γ < t < r we have (min{γ, r})
n
p = γ

n
p . By condition ‖w2(r)‖L∞(0,t)

< ∞.
Therefore

lim
γ→∞

∥
∥
∥([b, T ] f)χc

B(0,γ)

∥
∥
∥

M
w2
p

= 0.

This implies the required condition (7).
Now we prove that condition (6) of Theorem C for the set [b, T ](f), f ∈ F

holds, i.e., we show that for any 0 < ε < 1
2 and if |z| is sufficiently small

depending only on ε, then for every f ∈ F .

‖[(b, Tf)(· + z)] − [b, T ] f(·)‖M
w2
p

≤ C · ε.

Let ε be an arbitrary number such that 0 < ε < 1
2 . For |z| ∈ Rn we have

that

[f, T ]f(x + z) − [b, T ]f(x) =

∫

Rn

[b(x + z) − b(y)]f(y)

|x + z − y|n dy −
∫

Rn

[b(x) − b(y)]f(y)

|x − y|n dy

=
∫

|x−y|≤ |z|
ε

[b(x + z) − b(y)]f(y)
|x + z − y|n dy +

∫

|x−y|> |z|
ε

[b(x + z) − b(y)]f(y)
|x + z − y|n dy

−
∫

|x−y|≤ |z|
ε

[b(x) − b(y)]f(y)
|x − y|n dy −

∫

|x−y|> |z|
ε

[b(x) − b(y)]f(y)
|x − y|n dy

= −
∫

|x−y|> |z|
ε

[b(x) − b(y) + b(x + z) − b(x + z)]f(y)

|x − y|n dy +

∫

|x−y|> |z|
ε

[b(x + z) − b(y)]f(y)

|x + z − y|n dy
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+
∫

|x−y|≤ |z|
ε

[b(y) − b(x)]f(y)
|x − y|n dy −

∫

|x−y|≤ |z|
ε

[b(y) − b(x + z)]f(y)
|x + z − y|n dy

=

∫

|x−y|> |z|
ε

[b(x + z) − b(x)]f(y)

|x − y|n dy+

∫

|x−y|> |z|
ε

(
1

|x − y|n − 1

|x + z − y|n
)

([b(x+z)−b(y)]f(y))dy

+
∫

|x−y|≤ |z|
ε

[b(y) − b(x)]f(y)
|x − y|n dy −

∫

|x−y|≤ |z|
ε

[b(y) − b(x + z)]f(y)
|x + z − y|n dy

= J1 + J2 + J3 − J4 (14)

Since b ∈ Cn
0 (Rn), we have

|b(x) − b(x + z)| ≤ |∇f(x)| · |z| ≤ C|z|.
Then

|J1| ≤ C|z|T (|f |)(x).

By Theorem A

||J1||Mw2
p

≤ C|z| ‖ T (f) ‖M
w2
p

≤ C|z| ‖ f ‖Mw
p
≤ CD|z|. (15)

For J2 we have that

(b(x + z) − b(y)) ≤ 2 ‖ b ‖∞≤ C.

Therefore

|J2| ≤ C|z|
∫

|x−y|> |z|
ε

f(y)
|x − y|n dy ≤ CεT (|f |)(x).

Again by the of Theorem A we get

‖ J2 ‖M
w2
p

≤ cε ‖ T (f) ‖M
w1
p

≤ cε ‖ f ‖Mw
p
≤ C · D · ε.

Consequently,

|J3| ≤ C

∫

|x−y|≤z−ε−1

f(y)

|x − y|n dy ≤ Cε−1|z|
∫

|x−y|≤ε−1|z|

f(y)

|x − y|n dy ≤ C · ε−1|z|T (|f |)(x).

Thus, we have

‖ J3 ‖M
w2
p

≤ C · ε−1|z| ‖ T (f) ‖M
w2
p

≤ C · ε−1|z| ‖ f ‖M
w1
p

≤ ε−1|z|. (16)

Similarly, using the estimate

|b(x + z) − b(y)| ≤ C|x + z − y|,
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finally we have

|J4| ≤ C

∫

|x−y|≤ε−1(y)

|x + z − y|−n+1|b(y)|dy ≤ C(ε−1|z| + |z|)T (|f |)(x + z).

Therefore

‖ J4 ‖M
w2
q

≤ C · (ε−1|z| + |z|) ‖ f ‖M
w1
p

≤ C · D · (ε−1|z| + |z|). (17)

Here C does not depend on z and ε. Finally from (14) - (17), taking |z| small
enough, we have

‖[b, T (f)(· + z)] − [b, T ] f(·)‖
M

w2
p

≤ ‖J1‖
M

w2
p

+ ‖J2‖
M

w2
p

+ ‖J3‖
M

w2
p

+ ‖J4‖
M

w2
p

≤ C · D · ε

i.e., the set [b, T ](f), f ∈ F satisfies the condition (6) of Theorem C. Then
by Theorem C, the set [b, T ](f), f ∈ F is precompact in the Mw2

p . This fact
completes the proof of the theorem.
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Abstract. The aim of the paper is to obtain descriptions of multipliers
acting from weighted Sobolev spaces W l

p,ρ to Lq,ω. The space W l
p,ρ is

defined as the completion of the set C∞
0 in the following finite norm

‖u; W l
p,ρ‖ = ‖ρ|∇lu|‖p + ‖u‖p, where ρ is a weight on Rn; Lq,ω denotes

the Lebesgue space.

Keywords: Description of pointwise multiplier · Weighted Sobolev
space · Lebesgue space

1 Preliminaries and Notation

Let Rn be the n-dimensional Euclidian space with the norm |x| =
(

n∑
i=1

x2
i

)1/2

.

Below Lp,ω, 1 ≤ p < ∞, is the space of all real valued functions with the finite
weighted Lebesgue norm

‖u‖Lp,ω
=

(∫
|u|pω(x) dx

) 1
p

.

Note that Lp(Rn) = Lp,ω(Rn), if ω = 1, ‖ · ‖p = ‖ · ‖Lp
.

We denote by L+
loc the space of all a.e. positive and locally integrable functions

in Rn. A function v of L+
loc is called a weight.

Let Ω be a bounded domain in Rn. By C∞(Ω), C∞
0 (Ω) we denote the space

of all infinitely differentiable functions in Ω and the space of functions of C∞(Ω)
with compact support suppf in Ω, respectively. When the domain is not indi-
cated in the notation of a space or a norm, then it is assumed to be Rn.

By In we denote the family of all cubes Q in the following form

Q = Qh = Qh(x) =
{

y ∈ Rn : |yi − xi| <
h

2
, i = 1, . . . , n

}
.

We set λQ = Qλh(x).

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_5
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By definition Wm
p (Ω) is the completion of the linear manifold [1]

C∞W m
p (Ω) = {u ∈ C∞(Ω) : ‖u; W m

p (Ω)‖ = ‖∇mu; Lp(Ω)‖ + ‖u; Lp(Ω)‖ < ∞}.

Let k,m be integers, 0 ≤ k < m, 1 ≤ p ≤ q < ∞. If p > 1, p(m − k) > n or
p = 1, m − k ≥ n, then

Wm
p (Q1) ↪→ Ck(Q1),

i.e., u ∈ Wm
p (Q1) has, up to equivalence, continuous derivatives Dαu of order

|α| = k, and
sup
Q1

|∇ku| ≤ c ‖u‖W m
p (Q1). (1)

Let Qh = Qh(x). By changing variables y = x + hξ, ξ ∈ Q1(0) in inequality
(1) for p > 1, p(m − k) > n or p = 1, m − k ≥ n, |α| = k, we have

sup
Qh

|Dαu| ≤ c hm−k−n/p
(‖∇mu‖Lp(Qh) + h−m‖u‖Lp(Qh)

)
. (2)

Let h(·) be a positive locally bounded function in Rn. B = {Q(x)} denotes
the family of cubes Q(x) = Qh(x)(x), x ∈ Rn \ e, where e is a set with measure
0.

Definition 1. A weight ρ satisfies the slow variation condition with respect to
the family B = {Q(x)}, if there exist b > 1 such that for a.a. x

b−1ρ(x) ≤ ρ(y) ≤ b ρ(x)

for a.a. y ∈ Q(x).

Example 1. Let Γ be a compact set in Rn, which has no interior points. We
set |x − y|∞ = max

1≤j≤n
|xj − yj | (x, y ∈ Rn). The function ρ(x) = inf

y∈Γ
|x − y|∞

satisfies the slow variation condition with respect to the family {(1−τ)Qρ(x)(x)},
0 < τ < 1. Since ρ is a continuous function, then ρ(x) = min

y∈Γ
|x − y|∞ = 0

for x ∈ Γ and ρ ∈ L+
loc. Let h = ρ(x) > 0, 0 < ε < 1. Let us prove that

Γ
⋂

εQ(x) = ∅. If y ∈ Γ
⋂

εQ(x) 
= ∅, then

0 < ρ(x) ≤ |x − y|∞ + inf
z∈Γ

|y − z|∞ = |x − y|∞ < ερ(x)/2,

which is impossible. Thus, Q(x) =
⋃

0<ε<1
εQ(x) ⊂ Rn \ Γ. Let y ∈ (1 − τ)Q(x).

Then |z − x|∞ ≥ ρ(x) for z ∈ Γ, and |y − x|∞ = max
1≤j≤n

|yj − xj | ≤ (1 − τ)ρ(x)/2,

which imply that |z − y|∞ ≥ ||z − x|∞ − |x − y|∞| ≥ ρ(x)/2. Hence, ρ(y) =
inf
z∈Γ

|z − y| ≥ ρ(x)/2. Since |z − y|∞ ≤ |z − x|∞ + |x − y|∞, then ρ(y) ≤ 2ρ(x)

for y ∈ (1 − τ)Q(x). By taking τ = 1/2, we get

1
2
ρ(x) ≤ ρ(y) ≤ 2ρ(x),

if y ∈ 1
2Q(x).
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Example 2. It is easy to show that ρ(x) = (1 + |x|)s, s > 0 satisfies the slow
variation condition on cubes Q(x) = Qh(x)(x), h(x) = (1 + |x|)−s/lp.

By c we denote constants depending only on the assigned numerical parame-
ters, for example, c = c(l, p, n), etc.

2 Main Results

Let X, Y be Banach spaces of functions u : Rn → R. We say that a function
γ : Rn → R is a (pointwise) multiplier acting from X to Y, if

Tu = γu ∈ Y

for all u ∈ X. We denote by M(X → Y ) the space of all multipliers for which
the operator T is bounded from X to Y. We introduce the norm by

‖γ; M(X → Y )‖ = ‖T ; X → Y ‖
for γ ∈ M(X → Y ).

Theorem 1. Let 1 < p ≤ q < ∞, lp > n. Let ρ satisfy the slow variation
condition on cubes Q(x) = Qh(x)(x), where h(x) = ρ(x)μ/l, μ > 0. Assume that

C = ess sup
x

ρ(x)−μn/lp

(∫
Q(x)

|γ|qω
)1/q

< ∞.

Then γ ∈ M(W l
p,ρμ → Lq,ω). And,

c ess sup
x

ρ(x)−μn/lp

(∫
1
2Q(x)

|γ|qω
)1/q

≤ ‖γ;M(W l
p,ρμ → Lq,ω)‖ ≤ cC.

Let Γ be a compact manifold in Rn with dimension ≤ n − 1. Let α be a
measure on Γ, α(Γ ) < ∞. Let Lq,α(Γ ) be the space of all continuous functions
in Γ with the norm

‖u;Lq,α(Γ )‖ =
(∫

Γ

|u|q dα

)1/q

< ∞.

Theorem 2. Let 1 < p ≤ q < ∞, lp > n. Let γ ∈ C(Rn). Let ρ satisfy the slow
variation condition on cubes Q(x) = Qh(x)(x), where h(x) = ρ(x)μ/l, μ > 0. If

C = ess sup
x

ρ(x)−μn/lp

(∫
Q(x)

⋂
Γ

|γ|q dα

)1/q

< ∞,

then γ ∈ M(W l
p,ρμ → Lq,α(Γ )). The norm satisfies the following inequality

‖γ;M(W l
p,ρμ → Lq,α(Γ ))‖ ≤ cC.
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Let σ(x) = inf
y∈Γ

|y − x|∞. The function σ(x) satisfies the slow variation

condition with respect to the family B = {Q(x) = Qh(x)(x), x ∈ E}, where
E = Rn \ Γ, h(x) = 2−1σ(x). Let ρ̃(x) = σ(x), if 0 < σ(x) ≤ 1 and ρ̃(x) = 1, if
σ(x) > 1.

The function ρ̃ satisfies the slow variation condition with respect to the family
B̃ = {Q̃(x) = Qh̃(x)(x), x ∈ E}, h̃(x) = ρ̃(x) :

2−1ρ̃(x) ≤ ρ̃(y) ≤ 2ρ̃(x), (3)

if y ∈ E ∩ Q̃(x).
Let us prove (3). We have

2−1σ(x) ≤ σ(y) ≤ 2σ(x), (4)

if y ∈ Q(x).
Let y ∈ E ∩ Q̃(x) ⊂ E ∩ Q(x), x ∈ E. Then

1. 0 < σ(x), σ(y) ≤ 1 ⇒ ρ̃(x) = σ(x), ρ̃(y) = σ(y) ⇒ (4);
2. 0 < σ(x) ≤ 1, σ(y) > 1 ⇒ ρ̃(x) = σ(x) ≥ 2−1σ(y) > 2−1 ⇒

2−1ρ̃(x) = 2−1σ(x) < 1 = ρ̃(y) = 21
2 ≤ 2ρ̃(x) ⇒ (4);

3. 0 < σ(y) ≤ 1 < σ(x) ⇒ ρ̃(x) = 1,
2−1ρ̃(x) = 2−1 < 2−1σ(x) < σ(y) = ρ̃(y) ≤ 1 = ρ̃(x) ⇒ (4);

4. 1 < σ(x), σ(y) ⇒ ρ̃(x) = ρ̃(y) = 1 ⇒ (4).

Corollary 1. Let 1 < p ≤ q < ∞, lp > n. Let γ ∈ C(Rn) and

C = ess sup
x

ρ̃(x)−n/p

(∫
Q̃(x)

⋂
Γ

|γ|q dα

)1/q

< ∞.

Then γ ∈ M(W l
p,ρ̃l → Lq,α(Γ )). Here the norm satisfies the following inequality

‖γ;M(W l
p,ρ̃l → Lq,α(Γ ))‖ ≤ cC.

To prove the main results we will apply the method of local estimates on
cubes Q(x) ∈ B, the essence of which is as following: let f, g be finite functions,
g ∈ Lq, f ∈ Lp (1 ≤ p, q < ∞) with bounded supp g = supp f = E. There exists
a positive function S(x), x ∈ E, such that

∫
Q(x)

|g|q ≤ c (S(x))q

(∫
Q(x)

|f |p
)q/p

(5)

a.e. in E.
Let {Qj , j ∈ J} be a finite-multiple and finite-separable Besicovitch covering

extracted from the family of cubes {Q(x), x ∈ E}, Qj = Q(xj). Since the set of
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indices J (⊂ N) can be represented as a disjoint union J =
⋃

1≤i≤κ2

Ji, where Qj

of Ji is pairwise disjoint, then by using (5), we obtain

|g|q =
E

|g|q ≤ κ2 max
1≤i≤κ2

j∈Ji
Qj

|g|q ≤ κ2 max
1≤i≤κ2

j∈Ji

(S(xj))q

Qj

|f |p
q/p

.

(6)
Next, we use well known inequalities for sums (aj , bj ≥ 0, r ≥ 1) :

∑
j

ar
j ≤

⎛
⎝∑

j

aj

⎞
⎠

r

. (7)

Then (6), (7) imply that

∫
|g|q ≤ κ2

(
ess sup

x∈E
S(x)

)q (∫
|f |p

)q/p

(1 ≤ p ≤ q < ∞). (8)

Proof of Theorem 1. Let suppu = E. By using the embedding inequality (2) for
each cube Q(x), we have

Q(x)
|γu|qω(y) dy ≤ sup

Q(x)
|u|q

Q(x)
|γ|qω(y) dy ≤

≤ c h(x)l−n/pρ(x)−μ

Q(x)
|γ|qω(y) dy

1/q q

Q(x)
|ρμ∇lu| + |u| p

dy

q/p

.

By taking |f |p = (|ρμ∇lu| + |u|)p, (S(x))q = ρ(x)−μnq/lp
∫

Q(x)
|γ|qω, |g|q =

|γu|qω in (5), and by using (8), we get the upper estimate of ‖γ;M(W l
p,ρμ →

Lq,ω)‖.
Next step is to show that

‖γ;M(W l
p,ρμ → Lq,ω)‖ ≥ c ess sup

x
ρ(x)−μn/lp

(∫
1
2Q(x)

|γ|qω
)1/q

.

We take the function η ∈ C∞
0 (Q1), 0 ≤ η ≤ 1, η = 1 in 1

2Q1. Let u0(y) =
η

(
h(x)−1(y − x)

)
. Then

‖γ;M(W l
p,ρμ → Lq,ω)‖ ≥

(∫
1
2Q(x)

|γu0|qω
)1/q

(∫
Q(x)

(|ρμ∇lu0|p + |u0|p) dy
)1/p

≥

≥ c ρ(x)−nμ/lp

(∫
1
2Q(x)

|γ|qω
)1/q

.
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Proof of Theorem 2. Let α̃ be a measure in Rn, defined by α̃(e) = α(e∩Γ ). Let
u ∈ C∞

0 . In each Q(x) we have
∫

Q(x)
⋂

Γ

|γu|q dα =
∫

Q(x)

|γu|q dα̃ ≤ c sup
Q̄(x)

|u|q
∫

Q(x)
⋂

Γ

|γ|q dα.

Next we follow the lines of the proof of Theorem 1.
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Abstract. This paper is devoted to the study of Fourier series and
Fourier transform multipliers and contains introduction, which put some
new results into a general frame. In the following Sections several further
examples and results are presented and discussed. In Section 2 we present
some important results (including the most early papers we know) con-
cerning Fourier series multipliers of particular interest for the investiga-
tions. The corresponding result for Fourier transform multipliers can be
found in Section 3. In Section 4 we give some applications and in Section
5 we describe shortly the main results: A generalization and sharpening of
the Lizorkin theorem concerning Fourier transform multipliers between
Lp and Lq. The Fourier series multipliers in the case with a regular
system, which is rather general. A generalization and sharpening of the
Lizorkin type theorem concerning Fourier series multipliers between Lp

and Lq in this general case. A generalization of the Hörmander multi-
plier theorem for two dimensional Fourier series to the case with a general
regular system.

Keywords: Multiplier of Fourier series · Trigonometric polynomial ·
Fourier transform multipliers · Lizorkin theorem · Hormander
theorem · General regular system

1 Definitions and Some Examples of Fourier Multipliers

The problem about Fourier multipliers for Fourier series can be formulated as
follows:

Let 1 ≤ p ≤ q ≤ ∞. It is said that the sequence of complex numbers λ =
{λk}k∈Z is a trigonometrical Fourier series multiplier from Lp[0, 1] to Lq[0, 1],if
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for every function f ∈ Lp[0, 1] with Fourier series
∑

k∈Z

f̂(k)e2πikx there exists

a function fλ ∈ Lq[0, 1] with a Fourier series which coincides with the series
∑

k∈Z

λkf̂(k)e2πikx and an operator Tλ, Tλf = fλ, which is a bounded operator

from Lp[0, 1] to Lq[0, 1].
In other words, we consider the multiplier transformation Tλ defined by a

sequence of numbers λ = {λk}k∈Z using the formal expansions:

iff ≈
∑

k∈Z

f̂(k)e2πikx, then Tλf ≈
∑

k∈Z

λkf̂(k)e2πikx

and ask under which assumptions on λ the operator Tλ is bounded from Lp[0, 1]
to Lq[0, 1].

For p = 2 such a characterization is that λ ∈ l∞, and for p = 1 is characterized
as being of Fourier coefficients of some finite measure (see e.g. [85], p. 129).

The set mq
p of all Fourier series multipliers is a normed space with the norm

‖λ‖mq
p

= ‖Tλ‖Lp→Lq
.

In the case p = q, we just write shortly mp instead of mp
p.

We can define the space of multipliers mp for 1 ≤ p ≤ ∞, as the space of all
sequences {λk}k∈ Z such that

‖
∑

λkf̂(k)e2πikx‖p ≤ c‖f‖p

for any trigonometric polynomial f with a constant c > 0 independent of f . The
infimum over all such c defines a norm and the space mp becomes a Banach
space and in 1965 A. Figà-Talamanca [16] even proved that this is a dual space
for 1 < p ≤ 2 and was even able to find its predual.

The following statements hold:
1. m2 = l∞,mp = mp′ , where 1

p + 1
p′ = 1;

2. mp ⊂ mq ⊂ l∞ if 1 ≤ p ≤ q ≤ 2.
We can also define multipliers for Fourier transform. Let 1 ≤ p ≤ q ≤ ∞. It is

said that the function ϕ is a Fourier transform multiplier from Lp = Lp( Rn) to
Lq = Lq( Rn), briefly ϕ ∈ Mq

p , if there exists c > 0 such that, for every function
f in the Schwartz space S, the following inequality holds

‖Tϕ(f)‖Lq
≤ c ‖f‖Lp

, (1)

where Tϕ(f) = F−1ϕFf with F and F−1 which are the direct and the inverse
Fourier transforms, respectively.

The smallest constant c is the norm of this operator and it is denoted by the
symbol ‖Tϕ‖p→q.

In the case p = q, we just write shortly Mp instead of Mp
p .

Note that ‖Tϕ‖2→2 = ‖ϕ‖∞ and if ϕ is a Lp− multiplier, 1 < p < ∞, then
it is also a Lp′ − multiplier and ‖Tϕ‖p′ →p′ = ‖Tϕ‖p→p , where 1

p + 1
p′ = 1.
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One of the first results related to multipliers of Fourier series in Lebesgue
spaces was a result of M. Riesz in 1927 [65], p. 230, (c.f. also [91], p. 266). He
proved the boundedness of the partial sum operator Sn: If 1 < p < ∞, then

‖Sn(f)‖p ≤ c‖f‖p,

i.e. the characteristic functions of the segment A = [−n, n]
⋂

Z are multipli-
ers in the Lp space. Here the norms of the multipliers are bounded, and the
constant c depends only on the parameter p. If A is an arbitrary set, then the
constant c depends on the geometric properties of the set, the dimension n and
the parameter p.

Some important examples of Fourier multipliers are the functions

mδ(x) =

{(
1 − |x|2

)δ

, |x| ≤ 1,

0, |x| > 1.

In the case δ > 0 the quantities Tmδ
(f) are called the Bochner-Riesz means, and

for δ = 0 the operator Tm0 is the spherical summation operator, since in this
case mδ = χB , where B ⊂ Rn is the unit disk. These terms are justified by
their close connection with the periodic case, see e.g. [1].

The well-known Carleson-Sjölin theorem [7] from 1972 claims that mδ ∈ Mp,
4/3 ≤ p ≤ 4, for all δ > 0. This justifies the appearance of the disk conjecture
that in the limit case δ = 0 it holds that m0 ∈ Mp for all 4/3 < p < 4 (see,
for instance, [74]). Nevertheless, it turned out that m0 /∈ Lp for p �= 2. This
unexpected result was established by C. Fefferman in 1971 [15] for n ≥ 2. His
method of proof is rather universal and applies to arbitrary domains whose
boundary has a smooth curved segment. Moreover, V.D. Stepanov [79] (c.f. also
[78,80]) gave an example of a periodic multiplier having an analogous property
in the one-dimensional case:

γ(x) =
∞∑

n=2

eicn lnn

n1/2(ln n)β
e2πinx, β > 1, c > 0.

We note that the characteristic function of a polygon is a Lp - multiplier for
1 < p < ∞ (see e.g. [9,82]). Moreover, in 1981 M. de Guzman [11] posed the
following question: for a domain intermediate in a sense between a disk and an
ordinary polygon is its characteristic function a multiplier for some p, 1 < p <
∞? A.M. Stokolos [81] (see also [82]) examined this question for domains Pθ

bounded by a polygon inscribed in a disk and having vertices at the points Ak =(
cos θ−1

k , sin θ−1
k

)
. In particular, he showed how the curvature of the boundary

influences boundedness of the multiplier operator and pointed out how such
results can be used in various fields of analysis.

For the case when A is a polygon in Zn, the constants c in the definition of
multipliers were studied, e.g., in works by A. Cordoba [10] and by A.A. Yudin
and V.A. Yudin [89].

Moreover, multipliers which are characteristic functions were studied by
G. Diestel and L. Grafakos [12] and by L. Grafakos and X. Li [20] (see also [21]).
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An important subclass of multipliers Mp is the class of idempotent multipli-
ers, having the form χE , where E ⊂ Rn is measurable. In particular, V. Lebedev
and A. Olevskii [37] showed that a necessary condition for χE ∈ Mp is that E is
equivalent to an open set.

The problem to study multipliers of multiple Fourier series is closely related
with estimates of the Dirichlet kernels norms. Some important results in this
direction were obtained by A.A. Yudin and V.A. Yudin [89].

As concrete examples of multipliers λ = {λnm}n,m∈ Z Marcinkiewicz [45]
presented already in 1939 the following ones:

m2

n2 + m2
,

n2

n2 + m2
,

|mn|
n2 + m2

,

and informed that in this way a problem posed by Schauder is solved.
In 1975 M. Zafran [90] studied multipliers of “weak type (p, p)”. By definition,

a complex function ϕ on Z is a weak type (p, p) if and only if it is multiplier
from Lp space to Lp,∞ space, and has a strong type (p, p) if and only if it is
multiplier from Lp space to Lp space. One of the achievements of M. Zafran [90]
is the proof that for every p such that 1 < p < 2, there exists a multiplier ϕ of
the weak type (p, p), which is not the strong type (p, p). He proved the following
theorem:

Theorem 1. Let 1 < p < 2 and 1/p + 1/p
′

= 1. Choose δ > 0 such that
1/p

′
< δ < 1/p and consider a function

ϕ =
∞∑

n=2

ein log n

n1/p(log n)δ
einx.

a) Then ϕ ∈ m (lp( Z), lp,∞( Z)) , but ϕ /∈ m (lp( Z));
b) Extend ϕ on R periodically (with period 2π). Then
ϕ ∈ M (Lp( R), Lp,∞( R)) , but ϕ /∈ M (Lp( R));
c) Let us consider ϕ as a function on group Rd ( R with the discrete topol-

ogy). Then ϕ ∈ M
(
Lp( R̄), Lp,∞( R̄)

)
, but ϕ /∈ M

(
Lp( R̄)

)
.

2 Fourier Series Multipliers

Already in 1916 H. Steinhaus [76] discussed some questions which can be
regarded as a pertaining to be the problem concerning Fourier multipliers (see
also [77]).

Relations between various classes of Fourier multipliers in an orthogonal sys-
tem were given and inclusions of certain classes of sequences were discussed by
W. Orlicz in 1929 [55] (see also [56–58]).

Moreover, already in 1933 S. Kaczmarz [28] (c.f. also [29]) proved some prop-
erties of a class of Fourier multipliers in an orthonormal system {ϕi(t)}.

We note further that S. Kaczmarz and J. Marcinkiewicz [30] in 1938 gave
conditions under which the sequence of numbers λ = {λk} is a Lp − Lq- mul-
tiplier, and where the expansions are with respect to any uniformly bounded
orthonormal system on [0, 1] which is complete in L1[0, 1].
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Theorem 2. If ϕi(t) are bounded and {ϕi} is complete in L, then the condition
{λn} ∈ (Lp, Lq), 1 ≤ p < ∞, 1 ≤ q ≤ ∞ is equivalent to the following set of
conditions

a) H(x, t) ∼= ∑
λnϕn(t)

∫ x

0
ϕn(u)du ∈ Lq for each fixed x;

b) for each n and each set of numbers ε0, ..., εn−1 such that
∑n−1

0 |εi|p = 1
we have

{∫ 1

0

∣
∣
∣
∣
∣

n−1∑

0

εi [H ((i + 1)/n, t) − H (i/n, t)]

∣
∣
∣
∣
∣

q

dt

}1/q

≤ Mn−1/p,

where M does not depend on {εi} and n.

Another early important result from 1939 in the theory of Fourier series is
the following one proved by J. Marcinkiewicz [45]:

Theorem 3. Let 1 < p < ∞. If a sequence λ = {λm}m∈ Z is bounded and the
sums of differences over dyadic blocks are bounded, that is

F0(λ) = sup
m∈ N

⎛

⎝
2m+1
∑

k=2m

|λk − λk+1| + |λ−k − λ−k−1|
⎞

⎠ + sup
m∈ Z

|λm| < ∞, (2)

then λ is a Fourier multiplier in Lp and

‖λ‖mp
≤ cF0(λ).

This theorem means that if a sequence λ = {λm}m∈ Z satisfies (2), then it
belongs to mp.

The corresponding Marcinkiewicz theorem for multiple Fourier series is also
known. For simplicity, let us write it in the two-dimensional case. Consider the
multiplier transformation Tλ given by a double sequence λ = {λnm}n,m∈ N with
the formula

Tλf ∼
∑

λnmcnmei(nx+my)

and, where
f ∼

∑
cnmei(nx+my).

Moreover, we define the dyadic intervals

Ik = {i ∈ Z : 2k−1 ≤ |i| < 2k}, Jl = {j ∈ Z : 2l−1 ≤ |j| < 2l},

and denote

Δ1λnm = λn+1,m − λn,m, Δ2λnm = λn,m+1 − λn,m, Δ1,2 = Δ1 · Δ2.

In the paper [45] J. Marcinkiewicz also proved the following corresponding
two-dimensional result (see also [44]):
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Theorem 4. Let 1 < p < ∞. If for the double sequence λ = {λnm}n,m∈ Z the
following constants are finite

A = sup
n,m

|λn,m|, B1 = sup
k,m

∑

n∈Ik

|Δ1λn,m|, B2 = sup
m,l

∑

m∈Jl

|Δ2λn,m|

and
B1,2 = sup

k,l

∑

n∈Ik

∑

m∈Jl

|Δ1Δ2λn,m|,

then the operator Tλ is bounded in the space Lp([0, 2π]2) and

‖Tλf‖p ≤ c(A + B1 + B2 + B1,2)‖f‖p,∀f ∈ Lp.

The Hörmander [23] multiplier theorem from 1960 (see also our Theorem 16)
was in 1982 proved and applied also for the case with (one-dimensional) Fourier
series multipliers by R.E. Edwards [13].

Theorem 5. Let 1 ≤ p ≤ q ≤ ∞ and let 1/s = 1/p − 1/q. Then the following
hold:

1. If s ≤ 2, then ls( Z) ⊂ mq
p and ‖λ‖mq

p
≤ ‖λ‖s for λ ∈ ls( Z);

2. If 1 < p ≤ 2 ≤ q < ∞, and if λ is a complex-valued function on Z such
that

M ≡ sup
n∈ Z

(1 + |n|)1/s|λn| < ∞, (3)

then λ ∈ mq
p and

‖λ‖mq
p

≤ cpq′ M. (4)

Remark 1. In paper [68] we generalize this (Hörmander - Edwards) Theorem5
to the case with two-dimensional multipliers in a general regular system and also
derive a lower estimate in (4).

We say that an orthonormal system Φ = {ϕk}k∈ N of functions defined on
[0,1] is a regular system, if there exists a constant B > 0 such that

1) for every closed interval e from [0, 1] and for k ∈ N we have that
∣
∣
∣
∣

∫

e

ϕk(x)dx

∣
∣
∣
∣ ≤ B min(me, 1/k),

2) for every closed interval w from N (finite arithmetical sequence with step
1) and t ∈ (0, 1] it yields that

(
∑

k∈w

ϕk(·)
)∗

(t) ≤ B min(|w|, 1/t), (5)

where
(∑

k∈w ϕk(·))∗ (t) is the non-increasing rearrangement of the function∑
k∈w ϕk(x) and |w| is the number of elements in w. This definition was intro-

duced in [49].
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Here and in the sequel {a∗
r} the sign ∗ denotes the non-increasing rearrange-

ment of the sequence {an} (see e.g. [22]).
Let 1 ≤ p ≤ q ≤ ∞, let Φ = {ϕk}k∈ N be a regular system, let f ∈ Lp[0, 1]

with Fourier series
∑

k∈ N

f̂(k)ϕk(x). Let λ = {λk}k∈ N be a sequence of complex

numbers. Let us define the sequence of partial sums Sn(f, λ, x) as follows:

Sn(f, λ, x) =
n∑

k=1

λkf̂(k)ϕk(x), n ∈ N.

We say that λ = {λk}k∈ N is a Fourier series multiplier in the regular system
Φ, from Lp[0, 1] to Lq[0, 1], i.e. λ ∈ mq

p if

‖λ‖mq
p

:= sup
n∈ N

sup
f �=0

‖Sn(f, λ, x)‖Lq

‖f‖Lp

< ∞.

Let us formulate an one-dimensional generalization of Edwards Theorem 5
for multipliers in a general regular system.

Theorem 6. Let 1 < p ≤ 2 ≤ q < ∞, 1/s = 1/p−1/q. Then, for some constants
c1, c2 > 0,

c1 sup
m∈ N

1
m1−1/s

∣
∣
∣
∣
∣

m∑

k=1

λk

∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤ c2 sup

m∈ N

1
m1−1/s

m∑

r=1

λ∗
r .

Corollary 1. Let 1 < p ≤ 2 ≤ q < ∞, 1/s = 1/p − 1/q,M0 be the set of all
finite subsets from N . If

sup
Q∈M0

1

|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
< ∞,

then
λ = {λk}k∈ N ∈ mq

p

and

c1 sup
m∈ N

1
m1−1/s

∣
∣
∣
∣
∣

m∑

k=1

λk

∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤ c2 sup

Q∈M0

1

|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

k∈Q

λk

∣
∣
∣
∣
∣
∣
. (6)

Remark 2. Note that supremum of the right hand side of inequality (6) less than
M (see (3)) so Corollary 1 is a sharpening of Edwards Theorem (Theorem 5).

As we see the assumptions in the Marcinkiewicz theorem (Theorem 3) do
not depend on p. The problem to find sufficient conditions which are essentially
depending on p for multipliers to belong to some mp was solved by E.D. Nursul-
tanov [48] in 1998. The corresponding problem for Fourier transform multipliers
seems still not to be solved (see e.g. [74], p. 130).
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Theorem 7. Let 1 < p < ∞, λ = {λm}m∈ Zn be a sequence of real numbers. If

F 1
p (λ) = sup

k

|Qk|∑

r=1

(
λ∗

r − λ∗
r+1

) (
[Ar] (ln [Ar] + 1)4

)
∣
∣
∣1/p−1/p

′ ∣∣
∣

+
∣
∣
∣λ∗

|Qk|
∣
∣
∣ < ∞,

where
Qk = {m ∈ Zn : 0 ≤ |mj | ≤ k, j = 1, ..., n} ,

{λ∗
r}|Qk|

r=1 is the nonincreasing rearrangement (taking into account the sign) of
the sequence {λm}m∈Qk

and

Ar = {m ∈ Qk : λm > λ∗
r} ,

then λ ∈ mp and ‖λ‖mp
≤ cpF

1
p (λ).

In 1999 E.D. Nursultanov and N.T. Tleukhanova [52,54] derived lower and
upper estimates of the norms of a sequence λ = {λk}k∈ Z from class of trigono-
metrical Fourier series multipliers mq

p, essentially depending of the parameters, in
cases when the parameters p and q are separated by the number 2. In particular,
they proved the next two theorems (Theorems 8 and 9).

Theorem 8. Let 1 < p ≤ 2 ≤ q < ∞, 1/s = 1/p − 1/q, M0 be the set of all
harmonic intervals in Zn. Then

c1 sup
Q∈M0

1
|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤

≤ c2 sup
k∈ Nn

1
(k1 · · · kn)1−1/s

k1∑

r1=1

. . .

kn∑

rn=1

λ∗1...∗n
r1...rn

,

where |Q| denotes the quantity of elements in the set Q.

Let us formulate the definition of harmonic intervals in Zn (see [52]): Let
B = {m0,m0 + 1, ...,m0 + l} be an interval in Z, and let d ∈ N, d > l. A set of
the form I =

⋃N
k=0[B + kd] =

⋃N
k=0{m + kd : m ∈ B} will be called a harmonic

interval in Z. Accordingly, a set of the form I = I1 × ... × In, where Ii are
harmonic intervals in Z, will be called a harmonic interval in Zn.

Moreover, the sequence
{
λ∗1...∗n

r1...rn

}
denotes the “repeatedly nonincreasing

rearrangement” of the sequence {λs1...sn
} as defined e.g. in ([51], p.341).

In particular, we have the following result:

Corollary 2. Let 1 < p ≤ 2 ≤ q < ∞, 1/s = 1/p− 1/q, E be the set of all finite
subsets from Zn and let M0 be the set of all harmonic intervals in Zn. If

sup
e∈E

1

|e|1−1/s

∣
∣
∣
∣
∣

∑

m∈e

λm

∣
∣
∣
∣
∣
< ∞,
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then
λ = {λk}k∈ Zn ∈ mq

p

and

c1 sup
Q∈M0

1
|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤ c2 sup

e∈E

1

|e|1−1/s

∣
∣
∣
∣
∣

∑

m∈e

λm

∣
∣
∣
∣
∣
. (7)

Remark 3. Note that it is easy to see that the right hand side of inequality (7)
is equivalent to condition (4). Hence, Corollary 2 is a generalization of Edwards’
Theorem (Theorem 5).

Next we give an example showing that Theorem 8 is strictly better than the
statement in Corollary 2.

Example 1. Let us consider the sequence λ = {λm}m∈ Z2 , where

λm =
{

(m1 · m2)−(1/p−1/q) for m ∈ N2;
0 for m /∈ N2.

Some straightforward calculation shows that this sequence does not satisfy (7)
but satisfies the assumptions in Theorem 8.

Let us consider a Shapiro sequence {εk}∞
k=1, which is defined by ε0 = 1, ε2k =

εk, ε2k+1 = (−1)kεk, k ∈ N (see [70] and also [5,52]).
The corresponding multiple Shapiro type sequence is defined by: ε =

{εk}k∈ Nn , where εk = εk1 · εk2 . . . εkn
.

Theorem 9. Let 1 < p ≤ q ≤ 2 or 2 ≤ p ≤ q < ∞, ε = {εk}k∈ Nn be a Shapiro
type sequence, and

1
r

=
{

1/2 + 1/q for 2 ≤ p ≤ q < ∞;
1/p

′
+ 1/2 for 1 < p ≤ q ≤ 2.

Then

c1 sup
s∈ Zn

m∈ Nn

1
(m1...mn)1/r

∣
∣
∣
∣
∣
∣

∑

1≤k≤m

εkλks

∣
∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤

≤ c2 sup
m∈ Nn

1
(m1...mn)1/r

∑

1≤k≤m

λ∗1...∗n

k1...kn
. (8)

The upper and lower bounds in Theorem 9 do not depend on the parameter
p for 2 ≤ p ≤ q < ∞ and only on the parameter q for 1 < p ≤ q ≤ 2. This means
that if these parameters are varied, then the class mq

p varies with preservation
of relation (8).

This assertion solves the problem of finding sufficient conditions for λ to
belong to the space of multipliers mp = mq

p essentially depending on the para-
meter p.

The following complementary results were also proved in [52]:
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Theorem 10. Let 1 < p ≤ 2 ≤ q < ∞, p′ = p/(p − 1). Suppose that λ =
{λk}k∈ Zn is a monotone sequence in the extended sense. Then a necessary and
sufficient condition for the relation λ ∈ mq

p to hold is that

F (λ) = sup
m∈ Nn

1
(m1 · · · mn)1/p′+1/q

∣
∣
∣
∣
∣

m1∑

k1=−m1

...

mn∑

kn=−mn

λk1...kn

∣
∣
∣
∣
∣
< ∞.

In this case, ‖λ‖mq
p

∼ F (λ).

By a monotone sequence in the extended sense we mean that there exists a
number c > 0 such that

|λk| ≤ c

|Qk|

∣
∣
∣
∣
∣
∣

∑

r∈Qk

λr

∣
∣
∣
∣
∣
∣

for every k ∈ Zn, where Qk = {r ∈ Zn : 0 ≤ |rj | ≤ |kj |, j = 1, ..., n} (see [52]).

Theorem 11. Let ε = {εk}k∈ Nn be the Shapiro type sequence. Suppose that
either 1 < p ≤ q ≤ 2 or 2 ≤ p ≤ q < ∞. If the sequence {εkλk}k∈ Nn is
monotone in the extended sense, then the relation {λk}k∈ Nn ∈ mq

p is equivalent
to the inequality

sup
m∈ Nn

1
(m1...mn)1/r

m1∑

k1=1

...

mn∑

kn=1

|λk1...kn
| < ∞,

where the number 1/r is defined in Theorem 9.

In 2007 L. Sarybekova and N. Tleukhanova [66] proved the following theorems
on Fourier series multiplier:

Theorem 12. Let 2 < p ≤ q < +∞ and let Φ = {ϕk(x)}+∞
k=1 be a regular

system. If λ = {λk}k∈ Z satisfies the following conditions
(

+∞∑

k=1

(k|λk − λk+1| · k 1
p − 1

q )p′

k

) 1
p′

≤ B,

sup
k∈ N

|λk|k 1
p − 1

q ≤ B,

then λ ∈ mq
p and ‖λ‖mq

p
≤ cB.

Theorem 13. Let 1 < p < ∞, 1 ≤ q1 < q0 < +∞ and let Φ = {ϕk(x)}+∞
k=1 be

regular system. If λ = {λk}k∈ Z satisfies the following inequalities
(

+∞∑

k=2

(k|λk − λk+1| · (ln k)1+
1

q1
− 1

q0 )q
′
0

k ln k

) 1
q0′

≤ B,

sup
k∈ N

|λk|(ln k)
1

q1
− 1

q0 ≤ B,

then λ ∈ mp,q1
p,q0 and ‖λ‖mp,q1

p,q0
≤ cB.
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Remark 4. The estimation in Theorem 13 is sharp because in [66] it was proved
that: Let 1 < p < ∞, 1 ≤ q1 < q0 < +∞. Then, for every ε > 0 there exists
sequence λ = {λk}+∞

k=2 ∈ mp,q1
p,q0 , such that

+∞∑

k=2

[
k|λk − λk+1| · (ln k)1+

1
q1

− 1
q0

]q
′
0−ε

k ln k
= ∞.

3 Fourier Transform Multipliers

The Marcinkiewicz multiplier theorem from 1939 for the Fourier transform has
the following form (let us formulate for simplicity only the one-dimensional case),
see [44]:

Theorem 14. Let ϕ : R → R be a bounded function of class C1 on each
dyadic set (−2k+1,−2k) ∪ (2k, 2k+1) for k ∈ Z. Assume that the derivative ϕ

′

of the function ϕ satisfies the condition

sup
k∈ Z

(∫ −2k

−2k+1
|ϕ′

(t)|dt +
∫ 2k+1

2k

|ϕ′
(t)|dt

)

≤ A < ∞. (9)

Then ϕ is Lp−multiplier for all 1 < p < ∞ and

‖Tϕ‖p ≤ cmax
(

p,
1

p − 1

)6

(‖ϕ‖∞ + A) .

An important analogue of the Marcinkiewicz theorem for Fourier transform
multipliers was proved in 1956 by S. Mikhlin [46] in the following form:

Theorem 15. Let ϕ(x) be a bounded function in Rn and assume that

|x||α| |Dαϕ(x)| ≤ A, (|α| ≤ L)

for some integer L > 1. Then ϕ ∈ Mp, 1 < p < ∞, and

‖ϕ‖Mp
≤ cA,

where the constant c depends only on p.

For the classes Mq
p when p and q are separated by the number 2, there is the

following well-known theorem by L. Hörmander [23] from 1960 :

Theorem 16. If 1 < p ≤ 2 ≤ q < ∞, 1/s = 1/p − 1/q, then

Ls∞ ↪→ Mq
p ,

where Ls,∞ denotes the Marcinkiewicz space equipped with the usual supremum
norm.
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In this paper L. Hörmander gave a detailed description of the properties
of the spaces Mq

p . Moreover, in his paper from 1960 L. Hörmander also gave
a further generalization of the result and a simplification of the proof of the
Mikhlin theorem (Theorem 15). This result is sometimes called the Hörmander-
Mikhlin multiplier theorem, which in the simplest one-dimensional case has the
following form:

Theorem 17. Let ϕ : R → C be a bounded function on R \ {0} and satisfy
either the Mikhlin condition

|xϕ
′
(x)| ≤ A (10)

or the weaker Hörmander condition

sup
R>0

R

∫

R<|x|<2R

|ϕ′
(x)|2dx ≤ A2 < ∞. (11)

Then ϕ is a Lp− multiplier for all p ∈ (1,∞) and

‖Tϕ‖p ≤ cmax
(

p,
1

p − 1

)

(‖ϕ‖∞ + A) .

Moreover, Tϕ is of weak type (1, 1).

This theorem was generalized by W. Littman [41] in 1965 and by J. Peetre
[60] in 1966. They weakened the smoothness parameter of the function to an
arbitrary number strictly greater than n/2 in terms of “fractional derivatives”
in the conditions of the theorem.

In 1981 P. Sjögren and P. Sjölin [71] proved that the Mikhlin-Hörmander
property (10)–(11) and Littlewood - Paley property are equivalent. Here, the
Littlewood - Paley property means that there exists constant c such that
c−1‖f‖p ≤ ‖ (∑ |Skf |2)1/2 ‖p ≤ c‖f‖p for all f ∈ Lp.

In 1986 O. Besov [4] made a great improvement of these results and weak-
ened the smoothness condition to the limit value n/2. This was done by using
what is later on called Besov spaces, which measure fractional smoothness in
a perfect way. Moreover, the conditions on the function were put in more gen-
eral anisotropic terms and the degree of summability replaced 2 to an arbitrary
number q ∈ (1, 2]. Concerning definition of the spaces at hand see e.g. in [2].

Theorem 18. Let 1 < q ≤ 2, ε > 0, si ∈ N, ki ∈ N0, N0 = N ∪ {0}

si >
|λ|
λiq

> ki ≥ 0 (i = 1, ..., n).

Δm(y)ϕ(x) =
m∑

j=0

(−1)m−jCj
mϕ(x + jy), y ∈ Rn,m ∈ N0, Ω ⊂ Rn

Δm(y,Ω)ϕ(x) = Δm(y)ϕ(x) for [x, x + my] ⊂ Ω,
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Δm(y,Ω)ϕ(x) = 0 for [x, x + my] �⊂ Ω,

Δm
i (h)ϕ(x) = Δm(hei)ϕ(x),Δm

i (h,Ω)ϕ(x) = Δm(hei, Ω)ϕ(x), h ∈ R1.

Let, for the measurable function ϕ : Rn → C, which has on Rn \ 0 generalized
Sobolev derivatives Dki

i ϕ(i = 1, ..., n), the following inequalities hold

|ϕ(x)| ≤ K < ∞, x ∈ Rn,

∫ ε2jλi

0

‖Δsi−ki
i (t, Rn \ Πj)Dki

i ϕ‖qt
−1− |λ|

λiq +kidt ≤ K, j ∈ Z, i = 1, ..., n.

Then ϕ ∈ Mp for every p ∈ (1,∞).

In 1986 P.I. Lizorkin [40] reformulated the multiplier theorem of Hörmander-
Mikhlin in the following form, which was suitable for his further investigations:

Theorem 19. Let ϕ ∈ W l
2(Q1) for any integer l > n/2, where y > 0, Q1 = {t :

t ∈ Rn, y/2 < maxj=1,,n |tj | < y} and, moreover,

‖ϕ(t, ·)‖W l
2(Q1) ≤ B.

Then ϕ ∈ Mp, p ∈ (1,∞) and

‖ϕ‖Mp
≤ cB.

In the same paper P.I. Lizorkin proved the following theorem concerning
Fourier transform multipliers:

Theorem 20. Let ϕm ∈ Br
2,1( Rn), r > n/2, for every m ∈ Z and

‖ϕm(2m, ·)‖Br
2,1( Rn) ≤ B,

uniformly on m. Then ϕ ∈ Mp, p ∈ (1,∞) and

‖ϕ‖Mp
≤ cB.

Moreover, he derived a “fractional variant” of the Hörmander-Mikhlin theo-
rem (Theorem 17) as a consequence of this result.

Theorem 21. Let ϕm ∈ Lr
2( Rn), r > n/2, for every m ∈ Z and

‖ϕm(2m, ·)‖Lr
2( Rn) ≤ B,

uniformly on m. Then ϕ ∈ Mp, p ∈ (1,∞) and

‖ϕ‖Mp
≤ cB.

Remark 5. Here, Lr
2 denotes the Sobolev-Liouville space of functions f with

finite norm
‖f‖Lr

p(R
n) = ‖F [(1 + |x|2)r/2F−1f ]‖Lp( Rn).

It is known that for integers r = l, this space coincides with the Sobolev space
W l

p, and if p = 2, it coincides with the Besov space Br
2,2 = Br

2 .
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Also in this paper Lizorkin constructed a “semilocalization” ∗Br
q,θ of the

Besov spaces Br
q,θ. He proved the following theorem:

Theorem 22. If ϕ ∈ ∗Bq/n
q,1 , 1 ≤ q ≤ 2, then ϕ is a multiplier from Lp into Lp

for every p, 1 < p < ∞.

Moreover, in the same paper Lizorkin also conjectured that if ϕ ∈ ∗Bn/q
q,1 , 2 <

q < ∞, then ϕ is a multiplier from Lp into Lp, where |1/p − 1/2| < 1/q.
Observe that in the one-dimensional case Marcinkiewicz Theorem 14 is

stronger than the Hörmander-Mikhlin theorem (Theorem 17), i.e., from the con-
dition (11) follows the condition (9). But if you write these statement in higher
dimensions, then the criteria of being multiplier in Marcinkiewicz theorem and
Hörmander-Mikhlin theorem are not comparable (see e.g. [19], pp. 361–370). In
addition, the assumption in the Marcinkiewicz theorem does not guarantee the
weak type (1,1) of the mapping Tϕ (see [33], p. 161).

Let E = {ε = (ε1, ..., εn) : εi = 0 or εi = 1, i = 1, ..., n} be the set of corners
in the unit cube in Rn.

In 1967 P.I. Lizorkin [38] studied the case 1 < p ≤ q < ∞ and, in particular,
proved the following theorem:

Theorem 23. Let 1 < p ≤ q < ∞, A > 0, β = 1
p − 1

q , ε ∈ E, |ε| =
∑n

i=1 εi

and let ϕ be a continuously differentiable function on Rn \ {0} satisfying the
following condition: ∣

∣
∣
∣
∣

n∏

i=1

yεi+β
i

∂|ε|ϕ
∂yε1

1 ...∂yεn
n

∣
∣
∣
∣
∣
≤ A.

Then ϕ ∈ Mq
p and

‖ϕ‖Mq
p

≤ cA,

where c > 0 depends only on p and q.

Finally, we mention that the book of N. Jacob [27] from 2001 contains the
following variant of the Mikhlin - Hörmander theorem:

Theorem 24. Let m be a bounded measurable function defined on Rn, and
define the operator Tm as the Fourier multiplier Tm = F−1mFu, where Fu is
the Fourier transform of u. Suppose that, for some k > 1

2n, the expressions

sup
μ>0

μ−n

∫ ∣
∣
∣
∣m(x)Dαϕ

(
x

μ

)∣
∣
∣
∣

2

are finite for all C∞-functions ϕ with compact support in Rn \ {0}, and for all
α ∈ Nn for which |α| ≤ k. Then Tm is a mapping from Lp( Rn), 1 < p < ∞,
to itself.

The proof is based on the Calderón-Zygmund decomposition theorem for
L1-functions.
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Moreover, H. Triebel [87] (see also [86] and [88]), P.I. Lizorkin [39], E. Lan-
conelli [35], D.G. Orlovski [59], E.E. Berniyazov and E.D. Nursultanov [3], Duvan
Cardona and Michael Ruzhansky [6] considered Fourier multiplier in the Triebel-
Lizorkin F s

pq spaces and Besov Bs
pq space, −∞ < s < ∞, 0 < p ≤ ∞, 0 < q ≤ ∞.

Note that these two scales of spaces of tempered distribution contain a lot of
well-known classical spaces as special cases. Some of them are the following:
Hölder-Zygmund, Bessel, Sobolev, Besov and Hardy spaces.

4 Applications

There are a huge number of applications involving Fourier multiplier in the
literature and we can only briefly mention a few of them. In our opinion the
most important applications are that such multipliers have been crucial for the
development of important part of the following areas in mathematics:

A. Harmonic Analysis;
B. Theory of Function spaces;
C. Interpolation Theory;
D. Partial Differential Equations;
E. Numerical Analysis.
The theory of Fourier multipliers is one of the important directions of Har-

monic Analysis, see e.g. the books [74,75] and the references given there. Such
results are of great importance for several other areas of pure and applied math-
ematics and there are many challenging still open problems in this direction. We
here just mention that Fourier multipliers are operators such as the operator of
convolution, the operator of differentiation, the operator of fractional differenti-
ation, the operator of fractional integration, pseudo-differential operators with
constant coefficients and many others (see e.g. [85]).

Research concerning Fourier multipliers in the Theory of Function Spaces
was initiated very early, e.g. by H. Steinhaus in 1916 [76] , by W. Orlicz [55]
in 1929 (see also [56,57]), by S. Kaczmarz in 1933 [28] (see also [30]) and by
J. Marcinkiewicz in 1939 [45].

After that many interesting results and applications have been obtained by
several authors, see e.g. the books [13,14,34,86] and the references given there.

There are various other aspects of the fascinating theory of Fourier multipliers
not mentioned so far, see e.g. the books of E.M. Stein [74], H. Triebel [86] and
R. Larsen [36]. The close relation between the theory of function spaces and
Fourier multipliers has been crucial also for the development of real Interpolation
Theory, see e.g. the book of J. Bergh and J. Löfström [2] and the references given
there. We just mention a few other papers related to interpolation theory by
J. Peetre (with coauthors) [61], W. Littman (with coauthors) [41] (see also [42]),
J. Löfström [43] and M. Carro [8]. We just discuss shortly this investigation of
M. Carro:

Let m be a measurable bounded function and let us assume that there exists a
bounded functions S so that m(ξ)Sit−1(ξ) is a Fourier multiplier on Lp uniformly
in t ∈ R1. Then, using the analytic interpolation theorem of Stein, one can show
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that necessarily m is a Lp multiplier. M. Carro [8] showed that under the above
conditions, it holds that, for every k ∈ N, m (log S)k ∈ Mp. The technique is
based on the Schechter’s interpolation method.

Multiplier methods can in particular be used for developing of Partial Dif-
ferential Equations theory, see e.g. the books [24,25] by L. Hörmander and the
references given there (c.f. also [26]) and the very new book by E.J. Straube [83]
(c.f. also [84]).

Concerning the important role of Fourier multipliers in Numerical Analysis
we refer to the book of S.L. Sobolev [72] (c.f. also [53]) and to paper of L.V.
Kantorovich [31].

We can not mention all details in the applications mentioned above and
just finish this Section by illustrating the fact that new applications of Fourier
multipliers are still found by shortly discussing some fairly new papers.

In 2005 G. Garello and A. Morando [17] proved continuity for a class of
pseudodifferential operators with symbols a(x, ξ) which are smooth in the ξ
variable and which are in the weighted Sobolev spaces in the space variable.
They use mainly the Lizorkin-Marcinckiewicz theorem on continuity of Fourier
multipliers to prove this result.

Moreover, by means of a Lizorkin-Marcinkiewicz theorem on the Lp-
continuity of Fourier multipliers, the same authors in 2003 introduced a family of
Lp-bounded pseudodifferential operators with symbols in the Hörmander classes
(see [18]).

In 2003 V. Keyantuo and C. Lizama [32] studied the system
⎧
⎨

⎩

u
′′
(t) − aAu(t) − αAu

′
(t) = f(t), t ∈ (0, 2π),

u(0) = u(2π),
u

′
(0) = u

′
(2π)

on a Banach space X. The operator A is a closed linear operator on X, a, α ∈ R
and f ∈ Lp

2π ( R; X) or f ∈ Cs
2π ( R, X) with 0 < s < 1. The authors gave

necessary and sufficient conditions in order to obtain existence and uniqueness
of periodic solutions in the spaces Lp

2π ( R; X) and f ∈ Cs
2π ( R, X) with 0 <

s < 1. They established maximal regularity results for strong solutions. They
also studied mild solutions. The techniques involved operator-valued Fourier
multiplier theorems.

In 2007 V. Poblete [64] studied some existence and uniqueness results for
a second-order integro-differential equation with infinite delay in spaces of 2π
-periodic vector-valued functions (Besov spaces). The technique of Fourier multi-
pliers was applied to obtain a characterization of maximal regularity for the prob-
lem by introducing the notion of a strong solution in the Besov space Bs

pq( T ; X),
where T denotes the one-dimensional torus R/ Z and X is a Banach space.
Compatibility conditions that ensure the existence of a strong Bs

pq-periodic solu-
tion of the equation are obtained in a resonance case.

In 2007 Y. Morimoto and Ch-J. Xu [47] proved the smoothness of solutions
for a non-standard class of the linear

Pu := ∂tu + x · ∇yu + σ
(
−Δ̃x

)α

u = f,
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and the semi-linear
Pu = F (u)

pseudodifferential equations, where
(
−Δ̃x

)α

=
∣
∣
∣D̃x

∣
∣
∣
2α

is a Fourier multiplier with the symbol |ξ|2α
χ(ξ)+|ξ|2 (1 − χ(ξ)) . An interesting

hypoelliptic estimate proved for the linear equation states that there is a gain

in smoothness of order 1
4

(
α − 1

3

)
with respect to the weight 〈x〉 =

(
1 + |x|2

) 1
2

.

5 The Main Results

In paper [67] a generalization of the Lizorkin Theorem23 on Fourier multipliers
is proved.

Theorem 25. Let 1 < p < q ≤ ∞, 0 ≤ α < 1 − 1
p + 1

q , β = α + 1
p − 1

q . If a
function ϕ ∈ ACloc ( R \ {0}) satisfies the following conditions

sup
y∈ R

|y| 1
p − 1

q |ϕ(y)| ≤ A

and
sup
t>0

t1−α
(
yβϕ

′
(y)

)∗
(t) ≤ A,

then ϕ ∈ Mq
p and

‖ϕ‖Mq
p

≤ cA,

where c > 0 depends only on p, q and α.

Remark 6. In paper [67] also an example is given of a Fourier multiplier which
satisfies the assumptions of the generalized theorem but does not satisfy the
assumptions of the Lizorkin Theorem 23.

In paper [62] we prove a generalization and sharpening of the Lizorkin
Theorem 23 concerning Fourier multipliers between Lp and Lq spaces.

Let E = {ε = (ε1, ε2) : εi = 0 or εi = 1, i = 1, 2} be the set of corners in
the unit cube in R2. The measure of Q is denoted by |Q|.
Theorem 26. Let p = (p1, p2), q = (q1, q2), α = (α1, α2), β = (β1, β2), 1 < pi

< qi < ∞, 0 ≤ αi < 1− 1
pi

+ 1
qi

and βi = αi + 1
pi

− 1
qi

, i = 1, 2. If the continuously
differentiable function ϕ on R2 \ {0} satisfies the following condition:

sup
yi∈ R+

2∏

i=1

y
εi+(1−εi)βi−αi

i

⎛

⎝
2∏

j=1

t
εjβj

j

∂|ε|ϕ
∂tε1

1 ∂tε2
2

⎞

⎠

∗ε1 ,∗ε2

(y1, y2) ≤ A,∀ε ∈ E,

then ϕ ∈ Mq
p and

‖ϕ‖Mq
p

≤ cA

where c > 0 depends only on pi, qi and αi, |ε| = ε1 + ε2.
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Remark 7. Theorem 26 is a strict generalization of (the Lizorkin) Theorem 23.
In fact, in paper B it is also proved that the assumptions in Theorem 26 are
strictly weaker than those in Theorem 23, since

sup
yi∈ R+

2∏

i=1

y
εi+(1−εi)βi−αi

i

⎛

⎝
2∏

j=1

t
εjβj

j

∂|ε|ϕ
∂tε1

1 ∂tε2
2

⎞

⎠

∗ε1 ,∗ε2

(y1, y2) ≤

≤
2∏

i=1

2εi+(1−εi)βi−αi sup
yi∈ R

∣
∣
∣
∣
∣

2∏

i=1

yεi+β
i

∂|ε|ϕ
∂yε1

1 ∂yε2
2

∣
∣
∣
∣
∣
,

and there exists a function ϕ satisfying the assumptions of Theorem 26, but not
satisfying the assumptions in Theorem 23, i.e.

sup
yi∈ R+

2∏

i=1

yβi−αi

i ϕ(y1, y2) < ∞,

sup
yi∈ R+

yβ1−α1
1 y1−α2

2

(
tβ2
2 ϕ

′
t2(t1, t2)

)∗2

(y2) < ∞,

sup
yi∈ R+

y1−α1
1 yβ2−α2

2

(
tβ1
1 ϕ

′
t1(t1, t2)

)∗1

(y1) < ∞,

sup
yi∈ R+

2∏

i=1

y1−αi
i

(
tβ1
1 tβ2

2 ϕ
′′
t1,t2(t1, t2)

)∗1∗2

(y1, y2) < ∞,

but

sup
yi∈ R

∣
∣
∣
∣
∣

2∏

i=1

y
1+ 1

pi
− 1

qi
i ϕ

′′
y1y2

∣
∣
∣
∣
∣
= ∞.

Some multidimensional Lorentz spaces and an interpolation technique (see
[50,51,73]) are used as crucial tools in the proofs. The obtained results are
discussed in the light of other generalizations of the Lizorkin theorem and some
open questions are raised.

Paper [63] deals with the Fourier series multipliers in the more general case
with strong regular system. This system is rather general. For example, all
trigonometrical systems, the Walsh system and all multiplicative systems with
bounded elements are strong regular. A generalization and sharpening of the
Lizorkin type theorem concerning Fourier series multipliers between the spaces
Lp and Lq is proved.

Theorem 27. Let 1 < p < q < ∞, 0 ≤ α < 1 − 1
p + 1

q , and β = α + 1
p − 1

q . Let
the sequence of complex numbers λ = {λk}k∈ N satisfy the following conditions:

sup
k∈ N

k
1
p − 1

q |λk| ≤ A,

sup
k∈ N

k1−α
(
mβ(λm − λm+1)

)∗
(k) ≤ A.



76 E. Nursultanov et al.

Then λ ∈ mq
p for each strong regular system, and

‖λ‖mq
p

≤ cA,

where c > 0 depends only on p, q and α.

The following corollary is a genuine generalization of (the Lizorkin)
Theorem 23:

Corollary 3. Let 1 < p < q < ∞, A > 0. If a sequence of complex numbers
λ = {λk}k∈ N satisfies the following conditions:

sup
k∈ N

k
1
p − 1

q |λk| ≤ A,

sup
k∈ N

k1+ 1
p − 1

q |λk − λk+1| ≤ A,

then λ ∈ mq
p for each strong regular system, and

‖λ‖mq
p

≤ cA,

where c > 0 depends on p, q and α.

Remark 8. In paper [63] we have also proved that there exists a sequence λ
satisfying the assumptions of Theorem 27, but not satisfying the assumptions in
Corollary 3, i.e. there exists a sequence λ such that

sup
k∈ N

k
1
p − 1

q |λk| < ∞, (12)

sup
k∈ N

k1−α
(
mβ(λm − λm+1)

)∗
(k) < ∞, (13)

but

sup
k∈ N

k1+ 1
p − 1

q |λk − λk+1| = ∞. (14)

In paper [68] we obtain upper and lower estimates of the norm of Fourier
series multipliers in regular systems thus improving the Edwards Theorem 5.

Theorem 28. Let 1 < p ≤ 2 ≤ q < ∞, 1
s = 1

p − 1
q and i = 1, 2. Then, for some

constants c1, c2 > 0,

c1 sup
mi∈ N

1
(m1m2)1−1/s

∣
∣
∣
∣
∣

m1∑

k1=1

m2∑

k2=1

λk1k2

∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤

≤ c2 sup
mi∈ N

1
(m1m2)1−1/s

m1∑

r1=1

m2∑

r2=1

λ∗1∗2
r1r2

. (15)
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Note, that the right hand side inequality in (15) of Theorem 28 for the
trigonometrical system is more exact than the statement in the Edwards
Theorem 5:

Corollary 4. Let 1 < p ≤ 2 ≤ q < ∞, 1
s = 1

p − 1
q ,M0 be the set of all finite

subsets from N2. If

sup
Q∈M0

1

|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
< ∞,

then
λ = {λk}k∈ N2 ∈ mq

p

and

c1 sup
mi∈ N

1
(m1m2)1−1/s

∣
∣
∣
∣
∣

m1∑

k1=1

m2∑

k2=1

λk1k2

∣
∣
∣
∣
∣
≤ ‖λ‖mq

p
≤ c2 sup

Q∈M0

1

|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
.

Next we note that the inverse statement is not true, i.e. Corollary 4 does not
follow from the Edwards Theorem 5.

Example 2. Let consider the sequence λ =
{
(m1m2)−1/s

}
mi∈ N

, i = 1, 2. Then

sup
Q∈M0

1

|Q|1−1/s

∣
∣
∣
∣
∣
∣

∑

m∈Q

λm

∣
∣
∣
∣
∣
∣
= ∞.

but

sup
mi∈ N

1
(m1m2)1−1/s

m1∑

r1=1

m2∑

r2=1

λ∗1∗2
r1r2

< ∞.

By using the obtained results it is possible to assign the classes of the sequence
which satisfy condition of criterion of belonging to mq

p space.

Theorem 29. Let 1 < p ≤ 2 ≤ q < ∞ and 1/s = 1/p − 1/q. If the sequence
{λk1k2}ki∈ N is generalized-monotonous, then λ ∈ mq

p if and only if

F (λ) = sup
mi∈ N

1
(m1m2)1−1/s

∣
∣
∣
∣
∣

m1∑

k1=1

m2∑

k2=1

λk1k2

∣
∣
∣
∣
∣
< ∞.

Moreover, ‖λ‖mq
p

≈ F (λ).

In paper [69] we study the multipliers of multiple Fourier series for a regular
system on anisotropic Lorentz spaces.

Let E = {ε = (ε1, ..., εm) : εi = 0 or εi = 1, i = 1, ...,m}.
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Theorem 30. Let 1 < p = (p1, ..., pm) < q = (q1, ..., qm) < ∞, 0 < r = (r1, ...,
rm) ≤ ∞, 0 < α < 1 − 1

p + 1
q and β = α + 1

p − 1
q . If the sequence of complex

numbers λ = {λk}k∈ Nm satisfies the following properties for every ε ∈ E

sup
ki∈ N

m∏

i=1

kεi−αi
i

⎛

⎝
m∏

j=1

s
βj

j |Δελs|
⎞

⎠

∗ε

(k1, ..., km) ≤ μ, (16)

where Δελs = Δε1 ...Δεm
λs1,...,sm

, f∗ε = f∗ε1
1 ,...,∗εm

m , then λ ∈ mq,r
p,r and

‖λ‖mq,r
p,r

≤ cμ,

here constant c > 0 depends only on p,q, r and α.
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EMS, Zürich (2010)

84. Straube, E.J.: A sufficient condition for global regularity of the ∂̄-Neumann oper-
ator. Adv. Math. 217(3), 1072–1095 (2008)

85. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press,
Orlando (1986)

86. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)
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Abstract. Tuǧ and Başar [3] have recently studied the concept of four
dimensional generalized difference matrix B(r, s, t, u) and its matrix
domain in some double sequence spaces. In this present paper, as a
natural continuation of [3], we introduce new almost null and almost
convergent double sequence spaces B(Cf ) and B(Cf0) as the domain of
four-dimensional generalized difference matrix B(r, s, t, u) in the spaces
Cf and Cf0 , respectively. Firstly, we prove that the spaces B(Cf ) and
B(Cf0) of double sequences are Banach spaces under some certain con-
ditions. We give some inclusion relations with some topological prop-
erties. Moreover, we determine the α−dual, β(bp)−dual and γ−dual of
the spaces B(Cf ). Finally, we characterize the classes of four dimensional
matrix mappings defined on the spaces B(Cf ) of double sequences.

Keywords: Four-dimensional generalized difference matrix · Matrix
domain · Almost convergent double sequence space · Alpha-dual ·
Beta-dual · Gamma-dual · Matrix transformations

1 Introduction

We denote the set of all complex valued double sequence by Ω which is a vector
space with coordinatewise addition and scalar multiplication. Any subspace of Ω
is called a double sequence space. A double sequence x = (xmn) of complex num-
bers is called bounded if ‖x‖∞ = supm,n∈N |xmn| < ∞, where N = {0, 1, 2, . . .}.
The space of all bounded double sequences is denoted by Mu which is a Banach
space with the norm ‖ · ‖∞. Consider the double sequence x = (xmn) ∈ Ω. If
for every ε > 0 there exists a natural number n0 = n0(ε) and l ∈ C such that
|xmn−l| < ε for all m,n > n0, then the double sequence x is called convergent in
the Pringsheim’s sense to the limit point l and we write p − limm,n→∞ xmn = l;
where C denotes the complex field. The space of all convergent double sequences
in Pringsheim’s sense is denoted by Cp. Unlike single sequences there are such
double sequences which are convergent in Pringsheim’s sense but unbounded.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_7
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That is, the set Cp − Mu is not empty. Actually, following Boos [4, p. 16], if we
define the sequence x = (xmn) by

xmn =
{

n , m = 0, n ∈ N ;
0 , m ≥ 1, n ∈ N,

then it is obvious that p− limm,n→∞ xmn = 0 but ‖x‖∞ = supm,n∈N |xmn| = ∞,
so x ∈ Cp−Mu. Then, we can consider the set Cbp of double sequences which are
both convergent in Pringsheim’s sense and bounded, i.e., Cbp = Cp ∩Mu. Hardy
[6] showed that a sequence in the space Cp is said to be regular convergent if it
is a single convergent sequence with respect to each index and denote the space
of all such sequences by Cr. Moreover, by Cbp0 and Cr0 we denote the spaces
of all double sequences converging to 0 contained in the sequence spaces Cbp

and Cr, respectively. Móricz [8] proved that Cbp, Cbp0, Cr and Cr0 are Banach
spaces with the norm ‖·‖∞. By Lq we denote the space of absolutely q-summable
double sequences corresponding to the space �q of q-summable single sequences,
that is,

Lq :=

⎧⎨
⎩x = (xkl) ∈ Ω :

∑
k,l

|xkl|q < ∞
⎫⎬
⎭ , (1 ≤ q < ∞)

which is a Banach space with the norm ‖ · ‖q defined by Başar and Sever [2].
Zeltser [10] introduced the space Lu as a special case of the space Lq with
q = 1. Let λ be a double sequence space, converging with respect to some linear
convergence rule ϑ − lim : λ → C. The sum of a double series

∑
i,j xij with

respect to this rule is defined by ϑ − ∑
i,j xij = ϑ − limm,n→∞

∑m,n
i,j=0 xij . For

short, throughout the text the summations without limits run from 0 to ∞, for
instance

∑
i,j xij means that

∑∞
i,j=0 xij .

Here and after, unless stated otherwise we assume that ϑ denotes any of the
symbols p, bp or r.

The α−dual λα, the β(ϑ)−dual λβ(ϑ) with respect to the ϑ−convergence and
the γ−dual λγ of double sequence space λ are respectively defined by

λα :=

⎧⎨
⎩a = (akl) ∈ Ω :

∑
k,l

|aklxkl| < ∞ for all x = (xkl) ∈ λ

⎫⎬
⎭ ,

λβ(ϑ) :=

⎧⎨
⎩a = (akl) ∈ Ω : ϑ −

∑
k,l

aklxkl exists for all x = (xkl) ∈ λ

⎫⎬
⎭ ,

λγ :=

⎧⎨
⎩a = (akl) ∈ Ω : sup

m,n∈N

∣∣∣∣∣∣
m,n∑

k,l=0

aklxkl

∣∣∣∣∣∣ < ∞ for all x = (xkl) ∈ λ

⎫⎬
⎭ .

It is easy to see for any two spaces λ and μ of double sequences that μα ⊂ λα

whenever λ ⊂ μ and λα ⊂ λγ . Additionally, it is known that the inclusion
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λα ⊂ λβ(ϑ) holds while the inclusion λβ(ϑ) ⊂ λγ does not hold, since the
ϑ−convergence of the double sequence of partial sums of a double series does
not imply its boundedness.

Let λ and μ be two double sequence spaces, and let A = (amnkl) be any
four-dimensional complex infinite matrix. Then, we say that A defines a matrix
mapping from λ into μ and we write A : λ → μ, if for every sequence x = (xkl) ∈
λ the A−transform Ax = {(Ax)mn}m,n∈N of x exists and it is in μ; where

(Ax)mn = ϑ −
∑
k,l

amnklxkl for each m,n ∈ N. (1)

We define ϑ−summability domain λ
(ϑ)
A of A in a space λ of double sequences by

λ
(ϑ)
A =

⎧⎨
⎩x = (xkl) ∈ Ω : Ax =

⎛
⎝ϑ −

∑
k,l

amnklxkl

⎞
⎠

m,n∈N

exists and is in λ

⎫⎬
⎭ .

We say with the notation (1) that A maps the space λ into the space μ if λ ⊂ μ
(ϑ)
A

and we denote the set of all four-dimensional matrices, transforming the space
λ into the space μ, by (λ : μ). Thus, A = (amnkl) ∈ (λ : μ) if and only if
the double series on the right side of (1) converges in the sense of ϑ for each
m,n ∈ N , i.e, Amn ∈ λβ(ϑ) for all m,n ∈ N and every x ∈ λ, and we have
Ax ∈ μ for all x ∈ λ; where Amn = (amnkl)k,l∈N for all m,n ∈ N . We say
that a four-dimensional matrix A is Cϑ − conservative if Cϑ ⊂ (Cϑ)A, and is
Cϑ − regular if it is Cϑ − conservative and

ϑ − lim Ax = ϑ − lim
m,n→∞(Ax)mn = ϑ − lim

m,n→∞ xmn, where x = (xmn) ∈ Cϑ.

Adams [1] defined that the four-dimensional infinite matrix A = (amnkl) is
called a triangular matrix if amnkl = 0 for k > m or l > n or both. We also say
by [1] that a triangular matrix A = (amnkl) is said to be a triangle if amnmn 
= 0
for all m,n ∈ N . Moreover, by referring Cooke [5, Remark (a), p. 22] we can say
that every triangle matrix has a unique inverse which is also a triangle.

Let r, s, t, u ∈ R\{0}. Then, the four dimensional generalized difference
matrix B(r, s, t, u) = {bmnkl(r, s, t, u)} is defined by

bmnkl(r, s, t, u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

su , (k, l) = (m − 1, n − 1),
st , (k, l) = (m − 1, n),
ru , (k, l) = (m,n − 1),
rt , (k, l) = (m,n)
0 , otherwise

for all m,n, k, l ∈ N . Therefore, the B(r, s, t, u)−transform of a double sequence
x = (xmn) is given by

ymn := {B(r, s, t, u)x}mn =
∑
k,l

bmnkl(r, s, t, u)xkl (2)

= suxm−1,n−1 + stxm−1,n + ruxm,n−1 + rtxmn (3)
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for all m,n ∈ N . Thus, we have the inverse B−1(r, s, t, u) = F (r, s, t, u)
= {fmnkl(r, s, t, u)}, as follows:

fmnkl(r, s, t, u) :=

{
(−s/r)m−k(−u/t)n−l

rt , 0 ≤ k ≤ m, 0 ≤ l ≤ n,
0 , otherwise

for all m,n, k, l ∈ N . Therefore, we can obtain x = (xmn) by applying the inverse
matrix F (r, s, t, u) to (2) that

xmn =
1
rt

m,n∑
k,l=0

(−s

r

)m−k (−u

t

)n−l

ykl for all m,n ∈ N. (4)

Throughout the paper, we suppose that the terms of double sequence
x = (xmn) and y = (ymn) are connected with the relation (2). If p −
lim{B(r, s, t, u)x}mn = l, then the sequence x = (xmn) is said to be B(r, s, t, u)
convergent to l. Note that in the case r = t = 1 and s = u = −1 for all m,n ∈ N ,
the four dimensional generalized difference matrix B(r, s, t, u) is reduced to the
four dimensional difference matrix Δ = B(1,−1, 1,−1).

Lorentz [7] introduced the concept of almost convergence for single sequence
and Móricz and Rhoades [9] extended and studied this concept for double
sequence. A double sequence x = (xmn) of complex numbers is said to be almost
convergent to a generalized limit L if

p − lim
q,q′→∞

sup
m,n>0

∣∣∣∣∣∣
1

(q + 1)(q′ + 1)

m+q∑
k=m

n+q′∑
l=n

xkl − L

∣∣∣∣∣∣ = 0.

In this case, L is called the f2−limit of the double sequence x. Throughout the
paper, Cf denotes the space of all almost convergent double sequences. It is
known that a convergent double sequence needs not be almost convergent. But
it is well known that every bounded convergent double sequence is also almost
convergent and every almost convergent double sequence is bounded. That is,
the inclusion Cbp ⊂ Cf ⊂ Mu holds, and each inclusion is proper. Moreover,
Móricz and Rhoades [9] considered that four-dimensional matrices transforming
every almost convergent double sequence into a bp−convergent double sequence
with the same limit.

2 Some New Spaces of Double Sequences

In this section, we define new double sequence spaces B(Cf ) and B(Cf0) derived
by the domain of four-dimensional generalized difference matrix B(r, s, t, u) in
the double sequence spaces Cf and Cf0 , respectively. Then we give some topo-
logical properties and inclusion relations of those new double sequence spaces.

B(Cf ) := {x = (xmn) ∈ Ω : ∃L ∈ C � p−
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lim
q,q′→∞

sup
m,n>0

∣∣∣∣∣∣
1

(q + 1)(q′ + 1)

m+q∑
k=m

n+q′∑
l=n

{B(r, s, t, u)x}kl − L

∣∣∣∣∣∣ = 0

⎫⎬
⎭ .

B(Cf0) := {x = (xmn) ∈ Ω : p−

lim
q,q′→∞

sup
m,n>0

∣∣∣∣∣∣
1

(q + 1)(q′ + 1)

m+q∑
k=m

n+q′∑
l=n

{B(r, s, t, u)x}kl

∣∣∣∣∣∣ = 0

⎫⎬
⎭ .

Theorem 1. The double sequence spaces B(Cf ) and B(Cf0) are Banach spaces
with coordinatewise addition and scalar multiplication, and are linearly norm
isomorphic to the spaces Cf and Cf0 , respectively, with the norm

‖x‖B(Cf ) = sup
q,q′,m,n∈N

∣∣∣∣∣∣
1

(q + 1)(q′ + 1)

m+q∑
k=m

n+q′∑
l=n

{B(r, s, t, u)x}kl

∣∣∣∣∣∣ . (5)

Theorem 2. Let s = −r, t = −u. The inclusions Cf ⊂ B(Cf ) and Cf0 ⊂
B(Cf0) strictly hold.
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Abstract. This paper is devoted to the study of Fourier series multi-
pliers. An analog of the Marcinkiewicz theorem on multipliers of Fourier
series in weighted Lebesgue spaces is obtained.

Keywords: Multiplier of Fourier series · Weighted Lebesgue spaces ·
Net spaces · Average of the function

1 Introduction

Let f(x) be a function on Lp[0, 1] with Fourier series
∑

k∈Z

f̂(k)e2πikx by trigono-

metric system {e2πikx}k∈Z .
It is said that the sequence of complex numbers λ = {λk}k∈Z is a Fourier

series multiplier from Lp[0, 1] to Lq[0, 1], i.e. λ ∈ Mq
p , if for every function f ∈

Lp[0, 1] with Fourier series
∑

k∈Z

f̂(k)e2πikx there exists a function fλ ∈ Lq[0, 1]

with a Fourier series which coincides with the series
∑

k∈Z

λkf̂(k)e2πikx and an

operator Tλf = fλ, which is a bounded operator from Lp[0, 1] to Lq[0, 1].
The set Mq

p = M (Lp → Lq) of all Fourier series multipliers is a linear normed
space with the norm

‖λ‖Mq
p

= ‖Tλ‖Lp→Lq
.

One of the first result related to multipliers of Fourier series was a result
of Zygmund [16], where he proved that the characteristic function χI of the
segment I from Z is multiplier from Mp = M (Lp → Lp), moreover

‖χI‖Mp
≤ c,

here c does not depend on the choice of a segment I from Z.
Another early important result from 1939 in the theory of Fourier series is

the following one proved by J. Marcinkiewicz [3] (see also [4]):

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_8
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Theorem A. Let 1 < p < ∞, λ = {λm}m∈Z be a sequence of complex numbers
such that

F0(λ) = sup
m∈N

(2m+1∑

k=2m

|λk − λk+1| + |λ−k − λ−k−1|
)

+ sup
m∈Z

|λm| < ∞, (1)

then λ ∈ Mp and
‖λ‖Mp

≤ c(p + p′)F0(λ), (2)

where the constant c does not depend on λ and p.

In paper [8] sufficient conditions which are essentially depending on p for
multipliers to belong to class Mp was received. The case when 1 < p ≤ 2 ≤ q < ∞
was studied in [2,6,7], and the case when 1 < p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞ can
be found in [9,10,12–15].

Let μ(x) be a locally integrable function with positive values. The weighted
Lebesgue space Lp(μ) is defined by quasinorm:

‖f‖Lp(μ) =
(∫ 1

0

|f(x)μ(x)|pdx

) 1
p

for 0 < p < ∞,

‖f‖L∞(μ) = sup
x∈[0,1]

|f(x)μ(x)|

for p = ∞.
In this work our aim is to find conditions for the weights μ and ν such that

the Marcinkiewicz theorem for the multipliers space M (Lp(μ) → Lp(ν)) holds.
Let 1 ≤ p ≤ ∞, μ−1 ∈ Lp′ [0, 1], then for f ∈ Lp(μ) its Fourier coefficients by

the trigonometric system are defined by the following formula

f̂(k) =
∫ 1

0

f(x)e−2πikxdx, k ∈ Z.

It is said that the sequence of complex numbers {λk}k∈Z is a Fourier series
multiplier from Lp(μ) to Lp(ν) if for an arbitrary n ∈ N and every function
f ∈ Lp(μ) the following inequality holds

∥∥∥∥∥

n∑

k=−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp(ν)

≤ c‖f‖Lp(μ),

where the constant c does not depend on function f ∈ Lp(μ) and parameter n.
The set M(Lp(μ) → Lp(ν)) is a normed space with the norm

‖λ‖M(Lp(μ)→Lp(ν)) = sup
n∈N

sup
‖f‖Lp(μ)=1

∥∥∥∥∥

n∑

k=−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp(ν)

.
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Note that, in the case μ(x) = ν(x) = 1 we just write shortly Mp instead of
M(Lp(μ) → Lp(ν)).

Let u, v be positive functions defined on (0,∞). We can define the functional

G1(u, v; p) = sup
f↓

(∫ 1

0

(
u(t) 1t

∫ t

0
v(s)(1 + ln t

s )f(s)ds
)p

dt
) 1

p

(∫ 1

0
fp(t)dt

) 1
p

, (3)

G2(u, v; p) = sup
f↓

(∫ 1

0

(
u(t)

∫ 1

t
v(s)(1 + ln s

t )f(s)ds
s

)p

dt
) 1

p

(∫∞
0

fp(t)dt
) 1

p

, (4)

here the supremum is taken over all nonincreasing nonnegative functions.
The characterization of functionals in terms of weight functions can be

obtained as corollaries from the papers of R. Oinarov [1,11].
The main result of this paper is the following theorem.

Theorem 1. Let 0 < p < ∞, let μ(x) and v(x) satisfy the following conditions

G1(ν∗, (μ−1)∗, p) < ∞,

G2(ν∗, (μ−1)∗, p) < ∞.

If the sequence of real numbers λ = {λk}k∈Z satisfies the conditions (1), then
λ ∈ M (Lp(μ) → Lp(ν)) and

‖f‖M(Lp(μ)→Lp(ν)) ≤ cF0(λ) (G1 + G2) .

2 Auxilary Results

Let f be a linear Lebesgue measurable function. The distribution function of f
is defined by

m(f, σ) = μ{x ∈ X : |f(x)| ≥ α}.

The function
f∗(t) = inf{σ : m(f, σ) < t}

is the non-increasing rearrangement of f.
We also define

f∗∗(x) =
1
x

∫ x

0

f∗(t)dt.

Let M∗ be the set of all measurable subsets of [0, 1] with positive measure.
A fixed subset M of the set M∗ will be called a net.

Let the net M be given. For a function f(x), defined and integrable on each
e from M , we define a function

f̄(t,M) = sup
e∈M
|e|>t

1
|e|

∣∣∣∣∣∣

∫

e

f(x)dμ

∣∣∣∣∣∣
,
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here the supremum is taken over all sets e ∈ M such that |e|def=
μe > t, t ∈ (0,∞). Here and below |e| := μe. The function f̄(t,M) is called
the average of the function f over the net M .

Lemma 1. Let f be a measurable and integrable on the elements of the net M∗.
Then we have

f̄(t,M∗) ≤ f∗∗(t) ≤ 4f̄(t/3,M∗), t > 0. (5)

Proof. Let t ∈ (0,∞), then for an arbitrary set e ∈ M with measure equals to t
and a function f(x) we can define the sets

ω1 = {x ∈ e : f(x) ≥ 0} and ω2 = {x ∈ e : f(x) < 0}.

Then

∫

e

|f(x)|dx =
∫

ω1

f(x)dx −
∫

ω2

f(x)dx ≤ 2max

⎧
⎨

⎩

∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
,

∣∣∣∣∣∣

∫

ω2

f(x)dx

∣∣∣∣∣∣

⎫
⎬

⎭ .

For definiteness let us assume that
∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
≥
∣∣∣∣∣∣

∫

ω2

f(x)dx

∣∣∣∣∣∣
.

There are two possible cases. 1) |ω1| ≥ 1
2 |ω2|; 2) |ω1| < 1

2 |ω2|.
In the first case

|ω1| ≥ 1
2
|ω2| ≥ |e|

3
=

t

3
and

1
|e|

∫

e

|f(x)|dx ≤

≤ 2
1
|e|

∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
≤ 2

1
|ω1|

∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
≤ 2f̄(

t

3
,M). (6)

In the second case |ω1| < 1
2 |ω2|, i.e. |ω2| > 2|e|

3 = 2
3 t. Then there exist ω1

2 and
ω2
2 from M such that |ω1

2

⋂
ω2
2 | = 0, ω1

2

⋃
ω2
2 = ω2, |ωi

2| = |ω2|
2 > t

3 .
Taking into account the sign-definite nature of the function f on ω2, we

obtain ∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
≥
∣∣∣∣∣∣

∫

ω2

f(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

ω1
2

f(x)dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

ω2
2

f(x)dx

∣∣∣∣∣∣∣
≥

≥ 2min

⎛

⎜⎝

∣∣∣∣∣∣∣

∫

ω1
2

f(x)dx

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣

∫

ω2
2

f(x)dx

∣∣∣∣∣∣∣

⎞

⎟⎠ = 2

∣∣∣∣∣∣∣

∫

ω
i0
2

f(x)dx

∣∣∣∣∣∣∣
.
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Here ωi0
2 are the sets, where the minimum is reached.

Now let ω = ω1

⋃
ωi0
2 , then |ω| > |e|

3 and

∣∣∣∣∣∣

∫

ω

f(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

ω1

f(x)dx +
∫

ω
i0
2

f(x)dx

∣∣∣∣∣∣∣
≥

≥
∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

∫

ω
i0
2

f(x)dx

∣∣∣∣∣∣∣
≥ 1/2

∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
.

Consequently,

1
|e|

∫

e

|f(x)|dx ≤ 2
1
|e|

∣∣∣∣∣∣

∫

ω1

f(x)dx

∣∣∣∣∣∣
≤ 4

1
|ω|

∣∣∣∣∣∣

∫

ω

f(x)dx

∣∣∣∣∣∣
≤ 4f̄(t/3,M).

Then, according to (6) the proof of the right-hand inequality (5) is complete.
Let us prove the right-hand inequality of (5).

f̄(t,M) = sup
|e|≥t

1
|e|

∣∣∣∣∣∣

∫

e

f(x)dx

∣∣∣∣∣∣
≤ sup

|e|≥t

1
|e|

∫

e

|f(x)|dx =

= sup
|e|≥t

1
|e|

|e|∫

0

f∗(s)ds = sup
|e|≥t

1
|e|

⎛

⎜⎝
t∫

0

f∗(s)ds +

|e|∫

t

f∗(s)ds

⎞

⎟⎠ ≤

≤ sup
|e|≥t

1
|e|

⎛

⎝
t∫

0

f∗(s)ds + (|e| − t)
1
t

t∫

0

f∗(s)ds

⎞

⎠ =
1
t

t∫

0

f∗(s)ds =

= sup
|e|=t

1
|e|

∫

e

|f(x)|dx = f∗∗(t).

Let 0 < p ≤ ∞ and 0 < q ≤ ∞. We say that a function f belongs to the
Lorentz space Lp,q[0, 1], if f is measurable on [0, 1] and for 0 < q < ∞

‖f‖Lp,q
=
(∫ 1

0

(t1/pf∗(t))q dt

t

)1/q

< ∞,

and for q = ∞
‖f‖Lp,∞ = sup

0<t≤1
t1/pf∗(t) < ∞.
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Lemma 2. Let μ(x), ν(x) be positively locally integrable functions. Then

(∫ 1

0

∣∣∣∣ν(y)
∫ 1

0
μ(x)K(x − y)f(x)dx

∣∣∣∣
q

dy

) 1
q

≤ c

⎛
⎝

1∫
0

⎛
⎝ν∗(s)

1∫
0

μ∗(t)Φ(t, s)f∗(t)dt

⎞
⎠

q

ds

⎞
⎠

1
q

,

where

Φ(s, t) = sup
|e|≥s,|ω|≥t

1
|e|

1
|ω|

∣∣∣∣∣∣

∫

e

∫

ω

K(x − y)dxdy

∣∣∣∣∣∣
.

Proof. Following ideas from [5], by the Hardy-Littlewood rearrangement inequal-
ity, we have

(∫ 1

0

∣∣∣∣ν(y)
∫ 1

0

μ(x)K(x − y)f(x)f(x)dx

∣∣∣∣
p

dy

)1/p

≤
(∫ 1

0

(
ν∗(s)

(∫ 1

0

μ(x)K(x − ·)f(x)dx

)∗
(s)

)p

ds

)1/p

≤
(∫ 1

0

(
ν∗(s)

(∫ 1

0

μ(x)K(x − ·)f(x)dx

)∗∗
(s)

)p

ds

)1/p

=

(∫ 1

0

(
ν∗(s) sup

|η1|=s

1
|η1|

∫

η1

∣∣∣∣
∫ 1

0

μ(x)K(x − y)f(x)dx

∣∣∣∣ dy

)p

ds

)1/p

≤ c

(∫ 1

0

(
ν∗(s) sup

|η1|≥s/3

( 1
|η1|

∣∣∣
∫ 1

0

μ(x)
∫

η1

K(x − y)dyf(x)dx
∣∣∣
))p

ds

)1/p

≤ c

(∫ 1

0

(
ν∗(s) sup

|η1|≥s

∣∣∣
∫ 1

0

μ(x)
1

|η1|
∫

η1

K(x − y)dyf(x)dx
∣∣∣

)p

ds

)1/p

,

where in the last estimate we used Lemma 1.
We use similar estimates for the inner integral to get

(∫ 1

0

∣∣∣∣ν(y)
∫ 1

0

μ(x)K(x − y)f(x)f(x)dx

∣∣∣∣
p

dy

)1/p

≤ c

(∫ 1

0

(
ν∗(s) sup

|η1|≥s

∫ 1

0
μ∗(t)f∗(t) sup

|η2|≥t/3

1

|η1|
2

|η2|
∣∣∣
∫

η2

∫
η1

K(x − y)dydx
∣∣∣dt

)p

ds

)1/p

≤ c

(∫ 1

0

(
ν∗(s)

∫ 1

0
μ∗(t)f∗(t) sup

|η1|≥s
sup

|η2|≥t

1

|η1|
1

|η2|
∣∣∣
∫

η2

∫
η1

K(x − y)dydx
∣∣∣dt

)p

ds

)1/p

.
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Lemma 3. Let 1 < p < ∞, λ = {λk}k∈N be a sequence of real numbers satisfy-
ing the condition (1), then

sup
n

sup
|ω|>0
|e|>0

1

|e| 1
p′

1

|ω| 1
p

∣∣∣∣∣

∫

e

∫

ω

n∑

k=−n

λke2πik(x−y)dxdy

∣∣∣∣∣ ≤ c(p′ + p)F0(λ),

where the constant c does not depend on λ and p.

Proof. Let n ∈ N. Let us define ηn = {ηn
k }k∈Z

ηn
k =

{
λk, |k| ≤ n,
0, |k| > n,

then F0(ηn) ≤ 2F0(λ). Therefore, from Theorem A we get

2c(p + p′)F (λ) ≥ ‖ηn‖Mp
= ‖Tηn‖Lp→Lp

=

= sup
‖f‖Lp=1

∥∥∥∥∥

n∑

k=−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp

=

= sup
‖f‖Lp=1

∥∥∥∥∥

∫ 1

0

f(y)
n∑

k=−n

λe2πik(x−y)dy

∥∥∥∥∥
Lp

.

Let ω and e be arbitrary compacts. Let us assume

f(x) = χω(x)|ω|− 1
p .

Applying Hölder inequality, we obtain

2c(p + p′)F (λ) ≥
∥∥∥∥∥

1

|ω| 1
p

∫

ω

n∑

k=−n

λe2πik(x−y)dy

∥∥∥∥∥
Lp

≥

≥ 1

|e| 1
p′

1

|ω| 1
p

∣∣∣∣∣

∫

e

∫

ω

n∑

k=−n

λe2πik(x−y)dydx

∣∣∣∣∣ .

Taking into account the arbitrariness of the choice of n, e and ω, we obtain the
required statement.

3 The Proof of Theorem

Let n ∈ N. ∥∥∥∥∥

n∑

−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp(ν)

=
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=

∥∥∥∥∥

∫ 1

0

f(y)
n∑

k=−n

λke2πik(x−y)dy

∥∥∥∥∥
Lp(ν)

=

=

(∫ 1

0

(
ν(x)

∫ 1

0

f(y)μ(y)μ−1(y)Kn(x − y)dy

)p

dx

) 1
p

.

Applying Lemma 2, we have
∥∥∥∥∥

n∑

k=−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp(ν)

≤ c (7)

≤ c

(∫ 1

0

(
ν∗(t)

∫ 1

0

(fμ)∗(s)(μ−1)∗(s)Φ(s, t)ds

)p

dt

) 1
p

,

where

Φ(s, t) = sup
|e|=t

|ω|=s

1
|e||ω|

∣∣∣∣∣

∫

e

∫

ω

n∑

k=−n

λke2πik(x−y)dydx

∣∣∣∣∣ .

Let t > s. Let us assume τ = (2 + ln t
s ).

Using Lemma 3, we receive

Φ(s, t) ≤ c(τ + τ ′)F0(λ)
1

t
1
τ s

1
τ′

=

= c(τ + τ ′)F0(λ)

(
t
s

) 1
τ

t
≤ 4c

(
1 + (ln

t

s
)
)

e

t
≤

≤ 24c
(1 + ln ts)

t
F0(λ).

Similarly, for s ≥ t we have

Φ(s, t) ≤ c1
1 + ln s

t

s
F0(λ),

here constant c1 does not depend on parameters t and s. Substituting these
estimates into the inequality (7), we obtain

∥∥∥∥∥

n∑

k=−n

λkf̂(k)e2πikx

∥∥∥∥∥
Lp(ν)

≤

≤ cF0(λ)

(∫ 1

0

(
ν∗(s)

1
t

∫ t

0

(fμ)∗(s)(1 + ln
t

s
)(μ−1)∗(s)ds

)p

dt

) 1
p

+

+
(∫ 1

0

(
ν∗(s)

∫ ∞

t

(fμ)∗(s)μ−1∗(s)(1 + ln
s

t
)
ds

s

)p

dt

) 1
p

≤

≤ cF0(λ)
(
G1(ν∗, μ−1∗, p) + G2(ν∗, (μ−1)∗, p)

) ‖f‖Lp(μ).
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Part II

Differential Equations and Boundary
Value Problems



Periodic Solution of Linear Autonomous
Dynamic System

Serikbai A. Aisagaliev(B) and Zhanat Kh. Zhunussova

Al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty 050040,
Kazakhstan

Serikbai.Aisagaliev@kaznu.kz, zhanat.zhunusova@kaznu.kz

Abstract. A method for the study of periodic solutions of autonomous
dynamic systems described by ordinary differential equations with phase
and integral constraints is supposed. General problem of periodic solu-
tion is formulated in the form of the boundary value problem with con-
straints. The boundary problem is reduced to the controllability problem
of dynamic systems with phase and integral constraints by introducing
a fictitious control. Solution of the controllability problem is reduced to
a Fredholm integral equation of the first kind. The necessary and suffi-
cient conditions for existence of the periodic solution are obtained and
an algorithm for constructing periodic solution to the limit points of
minimizing sequences is developed. Scientific novelty of the results con-
sists in a completely new approach to the study of periodic solutions for
linear systems focused on the use of modern information technologies is
offered. The existence of periodic solution and its construction are solved
together.

Keywords: Linear autonomous system · Dynamic system · Periodic
solution · Ordinary differential equation · Boundary value problem ·
Controllability problem · Controllable system

1 Problem Statement

We consider a linear autonomous system

ẋ = Ax, t ∈ (−∞,+∞), (1)

where A is a constant matrix of n × n order. The problems are set:

Problem 1. Find necessary and sufficiently conditions for existence of T∗ periodic
solution of system (1).

Problem 2. Find T∗ periodic solution of system (1)
Solving these problems is of interest for system (1) of (n > 4) higher order.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_9
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We assume, that system (1) has a periodic solution x∗(t) = x∗(t+T), t ∈ I =
(−∞,+∞), where T∗ is period. Let x∗(0) = x0 be a value. Then x∗(T∗) = x0.

Since the periodic solution is defined by values of the phase coordinates in the
period limits, then for constructing of periodic solution it should be considered
the value t ∈ I∗ = [0, T∗].

We represent the matrix A = A1 + B1P , where A1, B, P are matrixes of
n × n, n × m, m × n orders, accordingly. Then the boundary value problem (1)
is written in the form

ẋ = A1x + B1Px, t ∈ I∗ = [0, T∗], x(0) = x(T∗) = x0. (2)

Linear controllable system corresponding to system (2) has the form (2)

ẏ = A1y + B1u(t), t ∈ I∗ = [0, T∗], (3)

y(0) = y(T∗) = x(0) = x(T∗) = x0, u(·) ∈ L2(I,Rm), (4)

where T∗ is period, a unknown value. We note, if u(t) = Px(t), t ∈ I∗, then
system (3), (4) coincides to the origin (2).

2 Solution of a Linear Controllable System

We assume that the matrixes A1, B1 such that the matrix

W∗(0, T∗) =
∫ T∗

0

e−A1tB1B
∗
1e−A∗

1tdt (5)

of n × n order is positively defined.
In the case, when the matrix A1 = 0, P = In, the matrix B1 = A, relation

(5) is written as W∗(0, T∗) =
∫ T∗
0

AA∗dt. We note, that the matrix W∗(0, T∗) > 0
is equivalent to the fact, that the rank of the matrix

∥∥B1, A1B1, . . . , A
n−1
1 B1

∥∥
is equal to n.

Theorem 1. Let W∗(0, T∗) > 0 be a matrix. Then control u(·) ∈ L2(I,Rm)
transfers the trajectory of system (3) from any initial point y(0) = x0 ∈ Rn to
any finite state y(T∗) = x0 if and only if, when

u(t) ∈ U = {u(·) ∈ L2(I,Rm)/u(t) = v(t) + λ1(t, x0, x0)+
+N1(t)z(T∗, v),∀v, v(·) ∈ L2(I,Rm)},

(6)

where
λ1(t1, x0, x0) = B∗

1e−A∗
1tW−1

∗ (0, T∗)a, a = e−A1T∗x0 − x0,

N1(t) = −B∗
1e−A∗

1tW−1
∗ (0, T∗)e−A1T∗ , t ∈ I∗,

the function z(t, v∗), t ∈ I∗ is a solution of the differential equation

ż = A1z + B1v, z(0) = 0, v(·) ∈ L2(I,Rm). (7)
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The solution of the differential equation (3) corresponding to control u(t) ∈ U is
defined by formula

y(t) = z(t, v) + λ2(t, x0, x0) + N2(t)z(T∗, v), t ∈ I∗, (8)

where

λ2(t, x0, x1) = eA1tW∗(t, T∗)W−1
∗ (0, T∗)x0 + eA1tW∗(0, t)W−1

∗ (0, T∗)e−A1T∗x0,

N2(t) = −eA1tW∗(0, t)W−1
∗ (0, T∗)e−A1T∗ ,W∗(0, T∗) =

∫ t

0

e−A1τB1B
∗
1e−A∗

1τ ,

W∗(t, T∗) = W∗(0, T∗) − W∗(0, t), t ∈ I∗.

Lemma 1. Let W∗(0, T∗) > 0 be a matrix. The boundary value problem (2) is
equivalent to the problem

v(t) + T (t)x0 + N1(t)z(T∗, v) = Py(t), t ∈ I∗, x0 ∈ Rn, (9)

ż = A1z + B1v(t), z(0) = 0, t ∈ I∗, v(·) ∈ L2(I,Rm), (10)

where
T (t) = B1e

−A∗
1tW−1

∗ (0, T∗)[e−A1T∗ − In],

y(t) = z(t, v) + C(t)x0 + N2(t)z(T∗, v), t ∈ I, (11)

C(t) = eA1t[W∗(t, T∗)W−1
∗ (0, T∗) + W∗(0, t)W−1

∗ (0, T∗)e−A1T∗ ].

Proof of the Lemma follows from relations (6)-(10), at u(t) ∈ U , u(t) = Py(t),
t ∈ I∗.

3 Necessary and Sufficient Condition for Existence of a
Solution of the Boundary Value Problem

Theorem 2. Let W∗(0, T∗) > 0 be a matrix. In order the boundary value
problem (2) to have a solution, it is necessary and sufficient that the value
I(v∗, x0∗) = 0, where (v∗, x0∗) ∈ H = L2(I,Rm) × Rn is a solution of opti-
mization problem

I(v, x0) =
∫ T∗

0

|v(t) + T (t)x0 + N1(t)z(T∗, v) − Py(t)| → inf (12)

under conditions
ż = A1z + B1v(t), z(0) = 0, t ∈ I∗, (13)

v(·) ∈ L2(I∗, Rm), x0 ∈ Rn. (14)

Proof of the Theorem follows from Theorem 1, Lemma 1 and relations
(9)-(11).
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Lemma 2. Suppose W∗(0, T∗) > 0 is a matrix, the function

F∗(q, t) = v + T (t)x0 + N1(t)z(T∗, v) − Py,

where y = z + C(t)x0 + N2(t)z(T∗, v), q = (v, x0, z, z(T∗)) ∈ Rm × Rn

× Rn × Rn.
Then the partial derivatives

F∗v(q, t) = 2[v + T (t)x0 + N1(t)z(T∗, v) − Py],
F∗x0(q, t) = [2T ∗(t) + 2C∗(t)P ∗][v + T (t)x0 + N1(t)z(T∗) − Py],

F∗z(q, t) = −2P ∗(t)[v + T (t)x0 + N1(t)z(T∗) − Py],
F∗z(T∗)(q, t) = [2N∗

1 (t) − 2N∗
2 (t)P ∗][v + T (t)x0 + N1(t)z(T∗) − Py].

(15)

Lemma 3. Let W∗(0, T∗) > 0 be a matrix. Then:
1) functional (12) under conditions (13), (14) is convex
2) derivative F∗q(q, t) = (F∗v, F∗x0 , F∗z, F∗z(T∗)) satisfies to the Lipshitz condi-
tion

‖F∗q(q + Δq, t) − F∗q(q, t)‖ ≤ M ‖Δq‖ ,∀q, q + Δq ∈ Rm+4n.

Theorem 3. Let W∗(0, T∗) > 0 be a matrix. Then functional (12), under con-
ditions (13), (14) continuously differentiable by Freshet, gradient of functional

I ′(v, x0) = (I ′
v(v, x0), I ′

x0
(v, x0)) ∈ H = L2(I∗, Rm) × Rn

in any point (v, x0) ∈ H is computed by the formula

I ′
v(v, x0) = F∗v(q(t), t) − B∗

1ψ(t) ∈ L2(I∗, Rm),
I ′
x0

(v, x0) =
∫ T∗
0

F∗x0(q(t), t)dt ∈ Rn,
(16)

where partial derivatives are defined by formula (15), q(t) = (v(t), x0, z(t, v),
z(T∗, v)), the function z(t), t ∈ I is a solution of the differential equation (12),
for v = v(t), t ∈ I, and function ψ(t), t ∈ I∗ is a solution of the adjoint system

ψ̇ = F∗z(q(t), t) − A∗
1ψ,ψ(t1) = −

∫ T∗

0

F∗z(T∗)(q(t), t)dt. (17)

Moreover, the gradient I ′(v, x0), (v, x0) ∈ H satisfies the Lipshitz condition
∥∥I ′(v1, x1

0) − I ′(v2, x2
0)

∥∥ ≤ K∗(
∥∥v1 − v2

∥∥2
+

∣∣x1
0 − x2

0

∣∣2)1/2, (18)

where K∗ = const > 0 is a Lipshitz constant.

It should be noted, that for a linear system with constant coefficients (3) the
following statements are valid:
1) rank of the matrix

∥∥B1, A1B1, . . . , A
n−1
1 B1

∥∥ is equal to n;
2) for any T > 0, the matrix

W∗(0, T ) =
∫ T

0

e−A1tB1B
∗
1e−A∗

1tdt
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is positively defined.
Consequently, for any sequence {Ti} ⊂ R1, 0 < T1 < T2 < . . . < Tk < . . .,

the matrix W∗(0, Tk) > 0.
Let {Tk} ⊂ R1, 0 < T1 < T2 < . . . < Tk < be a sequence. We construct the

sequences

vk
n+1(t) = vk

n(t) − αnI ′
v(v

k
n, xk

0n), xk
0n+1

(t) = xk
0(t) − αnI ′

x0
(vk

n, xk
0n),

n = 0, 1, 2, . . . 0 < ε0 ≤ αn ≤ 2
K∗+2ε1

, ε1 > 0,
(19)

on the base of formulas (6)-(8), where t ∈ [0, Tk], I ′
v(v

k, xk
0),I

′
x0

(vk, xk
0) are defined

by formula (16) by substituting W∗(0, T∗), T∗ on W∗(0, Tk), Tk, accordingly.
In other words, we fix a value Tk > 0 from sequence {Ti} ⊂ R1, 0 < T1 < T2 <

. . . < Tk < . . . and compute the Freshet derivative for functional (12), under the
conditions (12), (13) by formulas (16)-(18), by substituting T∗, W∗(0, T∗) on Tk,
W∗(0, Tk), accordingly. The result is the sequences (19).

Theorem 4. Let W∗(0, Tk) > 0 be a matrix, {Tk} ⊂ R1, 0 < T1 < T2 < . . . <
Tk < . . ., the sequences {vk

n}, {xk
0n} are defined by formula (19), the set

Λk = {(v, x0) ∈ H/Ik(v, x0) ≤ Ik(v0, x00)}

is bounded, where functional is defined by

Ik(v, x0) =
∫ Tk

0

|v(t) + T (t)x0 + N1(t)z(Tk, v) − Py(t)|dt.

Then for any fixed Tk > 0 statements are valid:
3) The sequence {vk

n, xkn
0 } is minimizing, i.e.

lim
n→∞ Ik(vk

n, xkn
0 ) = Ik(vk

∗ , xk∗
0 ) = inf

(v,x0)∈Λk

Ik(v, x0);

4) The sequences {vk
n}, {xkn

0 } are weakly converged to the points vk
n

A;−→ vk
∗ ,

xk
0n

A;−→ xk
0∗ at n → ∞, (vk

∗ , xk∗
0 ) ∈ X∗

k ;
5) The estimation of the convergence rate is valid

0 < Ik(vk
n, xk

0n) − I(vk
∗ , xk

0∗) ≤ Ck

n , ck = const > 0, n = 1, 2, . . . ;

6) For system (2) to have a periodic solution it is necessary and sufficient, that
for some Tk = T∗ there exists the value Ik(vk

∗ , xk
0∗) = 0.

7) Periodic solution of system (12) is defined by the formula

x∗(t) = y∗(t) = z(t, vk
∗) + C(t)xk

0∗ + N2(t)z(Tk, vk
∗), t ∈ [0, Tk = T∗],

where Tk = T∗ is a period, Ik(vk
∗ , xk

0∗) = 0.
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4 Algorithm for Constructing a Periodic Solution

We can formulate the following algorithm for constructing periodic solution of
system (1) based on Theorems 1-4, Lemmas 1-3.

1. We present the matrix A as the sum A = A1 + B1P such that the matrix

W∗(0, Tk) =
∫ Tk

0

e−A1tB1B
∗
1e−A∗

1tdt

will be positively defined, where Tk > 0 is a number. We note, that in order
to W∗(0, Tk) > 0 necessary and sufficiently, that the rank of the matrix∥∥B1, A1B1, . . . , A

n−1
1 B1

∥∥ is equal to n.
2. We choose the sequence {Tk} ⊂ R1, 0 < T1 < T2 < . . . < Tk < . . .. We note,

if the rank
∥∥B1, A1B1, . . . , A

n−1
1 B1

∥∥ = n, then for any Tk > 0 the matrix
W∗(0, Tk) > 0.

3. We solve the optimization problem: minimize the functional

Ik(v, x0) =
∫ Tk

0

|v(t) + T (t)x0 + N1(t)z(Tk, v) − Py(t)|2 dt → inf (20)

under conditions

ż = A1z + B1v(t), z(0) = 0, t ∈ [0, Tk] = I, (21)

v(·) ∈ L2(I,Rm), x0 ∈ Rn. (22)

We note, that: 1) the value Ik(v, x0) ≥ 0, consequently, functional is bounded
from below; 2) functional (20) under conditions (21), (22) is convex; 3) to
solve optimization problem (20) – (22) we construct the sequences (19). As a
result, we find the solution of optimization problem (20)-(22): (vk

∗ , xk
0∗) ∈ Λk,

Ik(vk
∗ , xk

0∗) at fixed Tk.
4. We repeat items 1 - 3. Finally, the values Ik(vk

∗ , xk
0∗), k = 1, 2, . . .. are known.

If for value Tk∗ the value Ik∗(vk∗∗ , xk∗
0∗) = 0, then Tk∗ = T∗ is a period of the

origin periodic solution, and periodic solution

x∗(t) = z(t, vk∗∗ ) + C(t)xk∗
0∗ + N2(t)z(Tk∗ , vk∗∗ ), t ∈ [0, Tk∗ ] = [0, T∗].

5. If the value Ik(vk
∗ , xk

0∗) > 0 for any sequences {Tk} ⊂ R1,0 < T1 << T2 <
. . . < Tk < . . ., then the origin system (2) has no any periodic solution.

The results obtained above can be applied for construction of periodic solutions
in non-autonomous systems.

We consider a linear non-autonomous system

ẋ = A(t)x + μ(t), t ∈ (−∞,+∞), (23)

where elements of the matrix A(t) and vector function μ(t) are periodic functions
with period T∗ i.e. A(t) = A(t + T∗), μ(t) = μ(t + T∗), ∀t, t ∈ (−∞,+∞), T∗ is
the known function.
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The questions arise: Does the system (23) have periodic solution with a period
equal to T∗? Find periodic solution of (23) with a period T∗.

Let x∗(t) be a periodic solution of system (23) with a period T∗ i.e. x∗(t) =
x(t + T∗), ∀t, t ∈ (−∞,+∞). Then

A(t)x∗(t) = A(t + T∗)x∗(t + T∗), μ(t) = μ(t + T∗), t ∈ (−∞,+∞).

For constructing a periodic solution it is enough to consider a solution of
system (23) for values t ∈ [0, T∗] in view of the invariance of solution by any
displacement on t. Let x∗(0) = x∗(T∗) = x0.

By applying the results above, we get:

1) the matrix A(t) = A1(t) + B1(t)P , where W1(0, T∗) =
∫ T∗
0

Φ(0, t)B1

(t)B∗
1(t)Φ∗(0, t)dt > 0;

2) linear controllable system has the form

ẏ = A1(t)y + B1(t)u(t) + μ(t), t ∈ I∗ = [0, T∗],

y(0) = y(T∗) = x∗(0) = x∗(T ) = x0, u(·) ∈ L2(I,Rm);

3) optimization problem is written: minimize the functional

I(v, x0) =
∫ T∗

0

|v(t) + T (t)x0 + μ̄(t) + N1(t)z(T∗, v) − Py(t)|2 dt → inf

under conditions

ż = A1(t)z + B1(t)v(t), z(0) = 0, t ∈ [0, T∗] = I∗,

v(·) ∈ L2(I∗, Rm), x0 ∈ Rn.

4) Necessary and sufficient conditions for existence of a periodic solution of sys-
tem (23) with period T∗ is defined by equality I(v∗, x0∗) = 0, where (v∗, x0∗)
is a solution of the optimization problem.

5) Optimal solution (v∗, x0∗) is defined by constructing the minimizing
sequences.

5 Conclusion

A more general problem of periodic solution of the boundary value problem
of ordinary differential equations with phase and integral constraints is formu-
lated on the base of a review of scientific research on the periodic solutions of
autonomous dynamical systems [1]-[4].

The boundary value problem is reduced to the problem of controllability of
dynamic systems with phase and integral constraints by introducing a fictitious
boundary control [5]. Solution of the controllability problem is reduced to a Fred-
holm integral equation of the first kind. The necessary and sufficient conditions
for the solvability of the Fredholm integral equation of the first kind are obtained
and the general solution of the integral equation is found.
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The results of fundamental research on the controllability theory of dynamic
systems, as well as new results on the solvability and construction the solution
of the Fredholm integral equation of the first kind enable to reduce solutions of
the general problem of periodic solution to the special initial problem of optimal
control.

The necessary and sufficient condition for the existence of periodic solution
of autonomous dynamic system in the form of requirements on a non-negative
functional values is obtained.

The algorithm for constructing periodic solution to the limit points of
minimizing sequences is developed. The estimation of the convergence rate is
obtained.

Scientific novelty of the results consists in a completely new approach to the
study of periodic solutions of autonomous dynamical systems, focused on the use
of modern information technologies is offered. The existence of periodic solution
and its construction are solved together.

A distinctive feature of the proposed method from the known methods of
investigation of periodic solutions is that: firstly, the properties of analytic right-
hand sides, the differential equations are not required; secondly, there is no need
for small parameter system.
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1 Introduction and Main Results

In this paper we consider questions of the existence and uniqueness of solutions
of equation

(L + λE) y ≡ −p1(x) (p2(x)y′′)′ + [q(x) + ir(x) + λ]y = f(x), (1)

where λ ≥ 0 is a constant, and q and r are given functions, f ∈ Lp. For solution
y of (1) we study conditions providing the following estimate:

∥
∥
∥p1(x) (p2(x)y′′)′∥∥

∥

p

p
+ ‖(q(x) + ir(x) + λ)y‖p

p ≤ c ‖f(x)‖p
p . (2)

The separation of differential expressions was early studied by W.N. Everitt
and M. Giertz [6], and they proved some fundamental results. Later on a number
of results concerning the property referred to as separation of differential expres-
sions have been obtained by K.Kh. Boimatov [5], M. Otelbaev [9], A. Zettl [10]
and A.S. Mohamed [7]. Some very recent results in this direction were presented
and proved in [8] and [1]. In this paper we give the solvability results for (1) with
unbounded coefficients p1 and p2. With respect to other operators the seperation
results have been obtained in [2–4].

c© Springer International Publishing AG 2017
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Let 1 < p < +∞. By Lp ≡ Lp(R), R = (−∞,+∞) we denote the space of
functions with finite norm

‖ϕ‖p =

⎛

⎝

∫

R

|ϕ(x)|pdx

⎞

⎠

1
p

.

Definition 1. A function y(x) ∈ Lp(R) is called a solution of (1), if there is
a sequence of three times continuously differentiable functions with compact
support {yn}∞

n=1 such that ‖yn − y‖p → 0 and ‖(L + λE)yn − f‖p → 0 as
n → ∞.

By C
(k)
b (R) (k = 1, 2, ...) we denote the set of all k times continuously

differentiable functions ϕ(x) such that
k∑

j=0

sup
x∈R

|ϕ(j)(x)| is finite. Let Wλ(x) =

|q(x) + λ + ir(x)|
p1(x)p2(x)

.

Our main results in this paper are the following Theorems 1 and 2.

Theorem 1. Assume, that the functions p1(x), q(x) and r(x) are continuous,
p2 ∈ C

(1)
loc (R) and satisfy the conditions

p1(x) ≥ 1, p2(x) ≥ 1,
q(x)

p21(x)p22(x)
≥ 1, r(x) ≥ 1, (3)

c−1
0 ≤ pj(x)

pj(η)
,
q(x)
q(η)

,
r(x)
r(η)

≤ c0, j = 1, 2, x, η ∈ R, |x − η| ≤ 1, (4)

|p′
2(x)| ≤ c1p2(x), x ∈ R, (5)

sup
x,η∈R:|x−η|≤1

|Wλ(x) − Wλ(η)|
|Wλ(x)|α|x − η|β < +∞, 0 < α <

β

3
+1, β ∈ (0, 1], λ ≥ 0. (6)

Then there exists a number λ0 ≥ 0, such that the equation (1) for all λ ≥ λ0 has
a solution y.

In (4), (5) and elsewhere, cn (n = 0, 1) denotes a fixed constant which, in
general, may be different in the various places it is used.

Theorem 2. Let the functions q(x), r(x) be continuous, p1 ∈ C
(3)
loc (R), p2 ∈

C
(2)
loc (R) and satisfy conditions (3), (4), (6) and

|p(l)1 (x)| ≤ clp1(x) (j = 1, 3), |p(k)2 (x)| ≤ cp2(x) (k = 1, 2), x ∈ R. (7)

Then the solution of the equation (1) is unique and the estimate (2) holds.
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2 Auxiliary Statements

Below we suppose that conditions of Theorem 1 are fulfilled.
Let ξs = ξl(x) (s = 0, 1, 2) be roots of the equation

p1(x)p2(x)ξ3 − r(x) + i(q(x) + λ) = 0.

From the conditions of Theorem 1 it follows that 0 < arg ξ0 < π and π <
arg ξj < 2π, j = 1, 2.

We introduce the following kernels:

M0(x, η, λ) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
3p1(x)p2(x)

ei(x−η)ξ0

ξ2
0

, −∞ < η < x

1
3p1(x)p2(x)

2∑

l=1

ei(x−η)ξl

ξ2
l

, x < η < +∞,

(8)

M1(x, η, λ) = p1(η)p2(η)
[

q(η)+ir(η)+λ
p1(η)p2(η)

− q(x)+ir(x)+λ
p1(x)p2(x)

]

M0(x, η, λ)ω(η − x),

M2(x, η, λ) = − p1(η)p′
2(η)ω(η − x) + 3p1(η)p2(η)ω′

η(η − x) M ′′
0ηη(x, η, λ)−

− 2p1(η)p′
2(η)ω′

η(η − x) + 3p1(η)p2(η)ω′′
ηη(η − x) M ′

0η(x, η, λ)−
− p1(η)p′

2(η)ω′′
ηη(η − x) + p1(η)p2(η)ω′′′

ηηη(η − x) M0(x, η, λ),

and
M3(x, η, λ) = M0(x, η, λ)ω(η − x),

where the function ω(η) ∈ C∞
0 (−1, 1) is such that

ω(η) =

{

1, |η| ≤ 1/2
0, |η| ≥ 1.

It is easy to get the following equalities:

∂jM0(x, η, λ)
∂ηj

∣
∣
∣
∣
x=η−0

=
∂jM0(x, η, λ)

∂ηj

∣
∣
∣
∣
x=η+0

, j = 0, 1, (9)

∂2M0(x, η, λ)
∂η2

∣
∣
∣
∣
x=η−0

− ∂2M0(x, η, λ)
∂η2

∣
∣
∣
∣
x=η+0

= − 1
p1(x)p2(x)

, (10)

− p1(x)
(

p2(x)
∂2M0(x, η, λ)

∂η2

)′

η

+ [q(x) + ir(x) + λ]M0(x, η, λ) = 0. (11)

We define the operators Mj(λ), (j = 1, 3) by means of the following equali-
ties:

(Mj(λ)f) (η) =
∫

R

Mj(x, η, λ)f(x)dx (j = 1, 3).

The following statement is well-known (see [8]).
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Lemma 1. Let 1 < p < +∞ and let k(x, η) be continuous function and

(Kν) (η) =
∫

R

k(x, η)ν(x)dx.

Then
‖K‖Lp→Lp

≤ sup
η∈R

∫

R

[|k(x, η)| + |k(η, x)|] dx.

Lemma 2. Let all of the conditions of Theorem 1 be satisfied. Then the opera-
tors Mj(λ), j = 1, 3, are continuous in the space Lp and the following estimates
hold (λ ≥ 0):

‖M1(λ)‖Lp→Lp
≤ c

bβ+3−3α
λ (η)

, β ∈ (0, 1], 0 < α <
β

3
+ 1, (12)

‖M2(λ)‖Lp→Lp
≤ c

bλ(η)
, (13)

‖M3(λ)‖Lp→Lp
≤ c

p1(η)p2(η)b3λ(η)
, (14)

where bλ(x) = 3
√

Wλ(x).

Proof. Under the assumptions of Theorem 1 for the functions q(x), r(x) and
pj(x) (j = 1, 2) there exists a constant σ > 0 such that Im ξ1 ≥ σ and Im ξl ≤
−σ (l = 1, 2). Then from (8) we can derive that

|M0(x, η, λ)| ≤

⎧

⎪⎪⎨

⎪⎪⎩

1
3p1(x)p2(x)

e−σ(x−η)bλ(x)

b2λ(x)
, −∞ < η < x,

2
3p1(x)p2(x)

eσ(x−η)bλ(x)

b2λ(x)
, x < η < +∞

(15)

and
∣
∣
∣
∣

∂jM0(x, η, λ)
∂ηj

∣
∣
∣
∣
≤

⎧

⎪⎪⎨

⎪⎪⎩

1
3p1(x)p2(x)

e−σ(x−η)bλ(x)

b2−j
λ (x)

, −∞ < η < x,

2
3p1(x)p2(x)

eσ(x−η)bλ(x)

b2−j
λ (x)

, x < η < +∞,

(16)

where j = 1, 2. According to our choice, Mj(x, η, λ) = 0 at |x−η| > 1. Taking into
account conditions (3), (4), (5) and (6) of Theorem 1 and (15), (16) for functions
Mj(x, η, λ) (j = 0, 1, 2) at |x − η| ≤ 1, we obtain the following estimates:

|M1(x, η, λ)| ≤

⎧

⎪⎨

⎪⎩

cp1(η)p2(η)|x − η|βb3α−2
λ (x) e−σ(x−η)bλ(x)

p1(x)p2(x)
, −∞ < η < x,

cp1(η)p2(η)|x − η|βb3α−2
λ (x) eσ(x−η)bλ(x)

p1(x)p2(x)
, x < η < +∞,

(17)
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|M2(x, η, λ)| ≤

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1(η)p2(η)
p1(x)p2(x)

2∑

k=0

c̃k
e−σ(x−η)bλ(x)

bk
λ(x)

, −∞ < η < x,

p1(η)p2(η)
p1(x)p2(x)

2∑

k=0

c̃k
eσ(x−η)bλ(x)

bk
λ(x)

, x < η < +∞,

(18)

and

|M3(x, η, λ)| ≤

⎧

⎪⎪⎨

⎪⎪⎩

1
3p1(x)p2(x)

e−σ(x−η)bλ(x)

b2λ(x)
, −∞ < η < x,

2
3p1(x)p2(x)

eσ(x−η)bλ(x)

b2λ(x)
, x < η < +∞.

(19)

We will estimate the norms ‖Mj(λ)‖Lp→Lp
(j = 1, 3) of the operators Mj(λ)

using Lemma 1 and inequalities (17), (18), (19) and the conditions (3), (4) and

(6). Then making the change of variable η − x =
1

σbλ(η)
z, we obtain

‖M1(λ)‖Lp→Lp
≤

c
∣
∣
∣
q(η)+λ+ir(η)

p1(η)p2(η)

∣
∣
∣

α

(cbλ(η))β+3
+

c
∣
∣
∣
q(η)+λ+ir(η)

p1(η)p2(η)

∣
∣
∣

α

(bλ(η))β+3
=

c
(

|q(η)+λ+ir(η)|
p1(η)p2(η)

) β
3 +1−α

.

(3) implies
|q(η) + λ + ir(η)|

p1(η)p2(η)
≥ √

1 + λ. Therefore, from the previous inequality

we obtain (12). Inequalities (13) and (14) are proved similarly. The lemma is
proved.

Using the definitions of Mj(λ) (j = 1, 2, 3) and equalities (9), (10) and (11),
we prove the following Lemma.

Lemma 3. Let the conditions of Theorem 1 be satisfied. Then the following
equality holds:

(L + λE) [M3(λ)f ] (η) = f(η) + [M1(λ)f ] (η) + [M2(λ)f ] (η). (20)

3 Proofs of the Main Results

Proof of Theorem 1. By estimates (12) and (13), there exists a number λ0 > 0,
such that ‖M1(λ)‖Lp→Lp

+ ‖M2(λ)‖Lp→Lp
≤ 1/2 for any λ ≥ λ0. Then the

operator G(λ) = E + M1(λ) + M2(λ) has a bounded inverse G−1(λ) in Lp. Let
h = [E + M1(λ) + M2(λ)] f . By (20), we obtain (L + λE) [M3(λ)G−1(λ)h](η) =
h. So, for all λ: λ ≥ λ0 the function y = M3(λ)G−1(λ)f is a solution to equation
(1). The proof is complete.

Let the functions pi, (i = 1, 2), q, r satisfy the conditions of Theorem 2,

and a number p′ is such that
1
p

+
1
p′ = 1. We denote by (L + λE)′ an operator

acting in the space Lp′(R) and such that ((L + λE) y, z) =
(

y, (L + λE)′
z
)

,
y ∈ D(L + λE), z ∈ D ((L + λE)′). It is clear, that

(L + λE)′z ≡ (

p2(x) (p1(x)z)′)′′
+ (q(x) + λ − ir(x)) z.
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We consider the following differential equation:

(L + λE)′z ≡ (

p2(x) (p1(x)z)′)′′
+ (q(x) + λ − ir(x)) z = g(x), (21)

where pj(x) ≥ 1 j = 1, 2 are continuous together with derivatives up to third
and second order, respectively, and q(x) and r(x) are continuous real-valued
functions, λ ≥ 0, g(x) ∈ Lp′(R).

The following lemma is proved similarly to Theorem 1.

Lemma 4. Let the continuous functions q(x), r(x) and the functions p1 ∈
C

(3)
loc (R), p2 ∈ C

(2)
loc (R) satisfy the conditions (3), (4), (6) and (7). Then there

exists a number λ1 ≥ 0, such that for all λ ≥ λ1 the equation (21) has a solution.

Proof of Theorem 2. Lemma 4 implies that the operator (L+λE)′ at λ ≥ λ1 has
a right inverse defined on the whole Lp′(R). So ker ((L + λE)′)∗ = {0}, where
((L + λE)′)∗ is an adjoint operator to (L + λE)′. It is clear that ((L + λE)′)∗

is an extension of the operator L + λE, hence we have ker(L + λE) = {0},
∀λ ≥ λ̃ = max(λ0, λ1). Thus, the operator L + λE is a boundedly invertible in
the space Lp′(R) and by proof of the Theorem 1,

(L + λE)−1 = M3(λ)G−1(λ), λ ≥ λ̃ = max(λ0, λ1) (22)

Let y be a solution of equation (1), where λ ≥ λ̃ = max(λ0, λ1). We shall
prove the estimate (2). By (22), Lemma 1 and the conditions (3), (4), (5) and
(6), we have

∥
∥(q + λ + ir)(L + λE)−1

∥
∥

Lp→Lp
=

∥
∥(q + λ + ir)M3(λ)G−1(λ)

∥
∥

Lp→Lp
≤

≤ c sup
η∈R

η+1∫

η−1

b3λ(η)b−2
λ (x) exp[−σ|x − η|bλ(x)]dx ≤

≤ c1 sup
η∈R

bλ(η)

η+1∫

η−1

exp[−σ|x − η|bλ(x)]dx < ∞.

By (1), we get
∥
∥p1(x) (p2(x)y′′)′∥∥

p
≤ c

(

‖f‖p + ‖y‖p

)

. Combining the last two
estimates, we obtain (2). The theorem is proved.
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Abstract. A multipoint-integral boundary value problem for a third
order differential equation with variable coefficients is considered. The
questions of the existence of a unique solution of the considered problem
and ways of its construction are investigated. The multipoint-integral
boundary value problem for the differential equation of third order
with variable coefficients is reduced to a multipoint-integral boundary
value problem for a system of three differential equations by introduc-
ing new functions. To solve the resulting multipoint-integral boundary
value problem, a parametrization method is applied. Algorithms of find-
ing the approximate solution to the multipoint-integral boundary value
problem for the system of three differential equations are constructed
and their convergence is proved. The conditions of the unique solvabil-
ity of the multipoint-integral boundary value problem for the system of
three differential equations are established in the terms of initial data.
The results are also formulated relative to the original of the multipoint-
integral boundary value problem for the differential equation of third
order with variable coefficients. The obtained results are applied to a
two-point boundary value problem for the third order ordinary differen-
tial equation.
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1 Statement of Problem

We consider a third-order ordinary differential equation
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d3z

dt3
= A1(t)

d2z

dt2
+ A2(t)

dz

dt
+ A3(t)z + f(t), t ∈ (0, T ), (1)

with multipoint and integral conditions
m∑

i=0

{
αi1

d2z(ti)
dt2

+ βi1
dz(ti)

dt
+ γi1z(ti)

}
+

+

T∫

0

{
K11(τ)

d2z(τ)
dτ2

+ K12(τ)
dz(τ)
dτ

+ K13(τ)z(τ)
}

dτ = d1, (2)

m∑

i=0

{
αi2

d2z(ti)
dt2

+ βi2
dz(ti)

dt
+ γi2z(ti)

}
+

+

T∫

0

{
K21(τ)

d2z(τ)
dτ2

+ K22(τ)
dz(τ)
dτ

+ K23(τ)z(τ)
}

dτ = d2, (3)

m∑

i=0

{
αi3

d2z(ti)
dt2

+ βi3
dz(ti)

dt
+ γi3z(ti)

}
+

+

T∫

0

{
K31(τ)

d2z(τ)
dτ2

+ K32(τ)
dz(τ)
dτ

+ K33(τ)z(τ)
}

dτ = d3. (4)

Here z(t) is unknown function, the functions Ak(t), f(t) are continuous on [0, T ],
k = 1, 2, 3, αij , βij , γij , dj are constants, the functions Kj(t) are continuous on
[0, T ], i = 0,m, j = 1, 2, 3, 0 = t0 < t1 < t2 < ... < tm−1 < tm = T .

Let C([0, T ], R) be a space of continuous functions z : [0, T ] → R on [0, T ]
with norm ||u||0 = max

t∈[0,T ]
|z(t)|.

The function z(t) ∈ C([0, T ], R), that has derivatives dz(t)
dt ∈ C([0, T ], R),

d2z(t)
dt2 ∈ C([0, T ], R), d3z(t)

dt3 ∈ C([0, T ], R) is called a solution to problem (1)–(4)
if it satisfies the third-order differential equation (1) for all t ∈ (0, T ) and meets
the boundary conditions (2), (3) and (4).

Mathematical modeling of various processes in physics, chemistry, biology,
technology, ecology, economics and others are leaded to multipoint-integral
boundary value problems for differential equations of higher orders with vari-
able coefficients [5,6,15,16,23,24]. The problems of solvability of multipoint-
integral boundary value problems remain important for applications because
they are directly connected with the theory of splines and interpolations and
are used in the theory of multisupport beams. Despite the presence of numerous
works, general statements of multipoint-integral problems for ordinary differen-
tial equations remain poorly studied up to now. The method of Green’s functions
proves to be the main method for the investigation and solution of multipoint-
integral boundary value problems. This method reflects the specific features of
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the analyzed boundary value problems. However, the problem of construction
of the Green’s function is quite complicated due to the complex nature of the
investigated object and the absence of the required information about its prop-
erties.

One of possible ways of overcoming these difficulties is connected with the
development of constructive methods aimed at the investigation and solving
multipoint-integral boundary value problems for higher order differential equa-
tions without using the fundamental matrix and the Green’s function. Thus, in
[11], a parametrization method was proposed for the investigation and solving
two-point boundary value problems for ordinary differential equations. Parallel
with construction of the coefficient criteria for the unique solvability of the inves-
tigated problem, parametrization method enables one to propose algorithms for
finding the solution of this problem. In [12,13], the parametrization method was
applied to multipoint boundary value problem for ordinary differential equa-
tions. A family of multipoint boundary value problems for system of differential
equations and multipoint nonlocal problem for system of hyperbolic equations
were considered in [2,3].

In the present paper we study a questions of the existence and uniqueness of
solutions to multipoint-integral boundary value problem for the third-order dif-
ferential equation (1)–(4) and the methods of finding its approximate solutions.
For these purposes, we apply the parameterizations method to solve the prob-
lem (1)–(4). Algorithms of finding the approximate solution to the multipoint-
integral boundary value problem for the system of three differential equations
are constructed and their convergence is proved. The conditions of the unique
solvability of the multipoint-integral boundary value problem for the system of
three differential equations are established in the terms of initial data. The results
are also formulated relative to the original of the multipoint-integral boundary
value problem for the differential equation of third order with variable coeffi-
cients. The obtained results are applied to a two-point boundary value problem
for the third order ordinary differential equation. The efficiency of the proposed
approach for solve of the two-point boundary value problems for the third order
differential equations can be used in applications. The results can also be used in
the study and solving a nonlinear multipoint-integral boundary value problems
for the third order differential equations. Some types of problems (1)–(4) were
studied in [1,5–10,14–29]. For Kij(t) = 0, i = 1, 3, j = 1, 3, the problem (1)–(4)
was considered in [4].

2 Scheme of the Method

We introduce the following notations

A(t) =

⎛

⎝
0 1 0
0 0 1

A3(t) A2(t) A1(t)

⎞

⎠ , F (t) =

⎛

⎝
0
0

f(t)

⎞

⎠ ,
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Mi =

⎛

⎝
γi1 βi1 αi1

γi2 βi2 αi2

γi3 βi3 αi3

⎞

⎠ , K(t) =

⎛

⎝
K13(t) K12(t) K11(t)
K23(t) K22(t) K21(t)
K33(t) K32(t) K31(t)

⎞

⎠ , d =

⎛

⎝
d1
d2
d3

⎞

⎠ ,

I is identity matrix of dimension 3.
Problem (1)–(4) can be written in the vector-matrix form

du

dt
= A(t)u + F (t), (5)

m∑

i=0

Miu(ti) +

T∫

0

K(τ)u(τ)dτ = d, (6)

where u = (u1, u2, u3)′, u1(t) = z(t), u2(t) = dz(t)
dt , u3(t) = d2z(t)

dt2 .
A continuously differentiable function u : [0, T ] → R3 is called a solution of

the multipoint-integral boundary value problem (5), (6) if it satisfies system (5)
for all t ∈ [0, T ] and condition (6).

By μ we denote the value of the function u(t) for t = t0. We perform the
change u(t) = ũ(t) + μ in problem (5), (6).

Then problem (5), (6) is reduced to the following equivalent problem with a
unknown parameter μ:

dũ

dt
= A(t)ũ + A(t)μ + F (t), (7)

ũ(t0) = 0, (8)

M0μ +
m∑

i=1

Miũ(ti) +
m∑

i=1

Miμ +

T∫

0

K(τ)ũ(τ)dτ +

T∫

0

K(τ)dτμ = d. (9)

A pair (ũ(t), μ) is called a solution to problem with parameter (7)–(9) if the
function ũ(t) is continuously differentiable on [0, T ] and satisfies the system (7),
the initial condition (8) and the multipoint-integral condition (8).

Problems (5)-(6) and (7)-(9) are equivalent. If a vector function u(t) is a
solution to the multipoint-integral problem (5), (6), then a pair (ũ(t), μ), where
ũ(t) = u(t) − u(t0), μ = u(t0), is a solution to problem with parameter (7)-(9).
And conversely, if a pair (ũ∗(t), μ∗) is a solution to problem with parameter
(7)-(9), then a vector function u∗(t) = ũ∗(t) + μ∗ is a solution to the original
multipoint-integral problem (5), (6). At fixed μ the problem (7), (8) is a Cauchy
problem for system of three differential equations and the relation (9) connects
values of function ũ(t) with the unknown parameter μ.

A solution of Cauchy problem (7), (8) is equivalent to a Volterra integral
equation of the second kind

ũ(t) =

t∫

0

A(τ)ũ(τ)dτ +

t∫

0

A(τ)dτμ +

t∫

0

F (τ)dτ. (10)
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Substituting the right-hand side of the integral equation (10) instead of the
function ũ(τ) at t = τ , and repeating the process ν - time (ν = 1, 2, 3, ...), we
get

ũ(t) = Dν(t)μ + Gν(t, ũ) + F̃ν(t), (11)

where

Dν(t) =

t∫

0

A(τ)dτ +

t∫

0

A(τ)

τ∫

0

A(τ1)dτ1dτ + ...+

+

t∫

0

A(τ)

τ∫

0

A(τ1)...

τν−1∫

0

A(τν)dτνdτν−1...dτ1dτ,

Gν(t, ũ) =

t∫

0

A(τ)

τ∫

0

A(τ1)...

τν−1∫

0

A(τν)ũ(τν)dτνdτν−1...dτ1dτ,

F̃ν(t) =

t∫

0

F (τ)dτ +

t∫

0

A(τ)

τ∫

0

F (τ1)dτ1dτ + ...+

+

t∫

0

A(τ)

τ∫

0

A(τ1)...

τν−1∫

0

F (τν)dτνdτν−1...dτ1dτ.

From the representation (11) we determine the values of function ũ(t) for
t = ti, i = 1,m, t = τ , and substitute them into the appropriate expression (9).
Then, we obtain

[
M0 +

m∑

i=1

Mi[I + Dν(ti)] +

T∫

0

K(τ)[I + Dν(τ)]dτ

]
μ = d −

m∑

i=1

MiF̃ν(ti)−

−
T∫

0

K(τ)F̃ν(τ)dτ −
m∑

i=1

MiGν(ti, ũ) −
T∫

0

K(τ)Gν(τ, ũ)dτ. (12)

The relation (12) is a linear system of three algebraic equations with respect to
the parameter μ.

If the (3 × 3) matrix Qν(T ) = M0 +
m∑

i=1

Mi[I + Dν(ti)] +
T∫
0

K(τ)[I +

Dν(τ)]dτ is invertible for some ν ∈ N, then at fixed values ũ the parameter
μ is uniquely determined from system (12). So, for finding a solution to problem
(7)-(9) we have a closed system of equations (10) and (12).

3 Algorithm and Main Result

If the function ũ(t) is known, then the parameter μ can be found from the
system of algebraic equations (12). Conversely, if the parameter μ is known,
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then function ũ(t) can be found from the Cauchy problem for system of the
differential equations (7), (8). Since neither ũ(t), nor μ are known, we use the
iterative method and find the solution of problem with parameter (7)-(9) in the
form of a pair (ũ∗(t), μ∗) as the limit of a sequence (ũ(k)(t), μ(k)), k = 0, 1, 2, ...,
determined according to the following algorithm:

Step 0. Assume that, for chosen ν ∈ N the matrix Qν(T ) : R3 → R3 is
invertible. We use the initial condition (8). We determine the initial approxi-
mation in the parameter μ(0) from the system of algebraic equations Qν(T )μ =

d −
m∑

i=1

MiF̃ν(ti).

We solve the Cauchy problem (7), (8) for μ = μ(0) and find a function ũ(0)(t)
for all t ∈ [0, T ].

Step 1. Substituting the obtained function ũ(0)(t) for ũ(t), from the system of
algebraic equations (12), we obtain μ(1). Further, we solve the Cauchy problem
(7), (8) for μ = μ(1) and find a function ũ(1)(t) for all t ∈ [0, T ].

And so on.

Step k. Substituting the obtained function ũ(k−1)(t) for ũ(t), from the system
of algebraic equations (12), we get μ(k). Solving the Cauchy problem (7), (8) for
μ = μ(1), we find ũ(k)(t) for all t ∈ [0, T ], k = 0, 1, 2, ....

Introduce notations

a = max
t∈[0,T ]

||A(t)|| = max
(
1, max

t∈[0,T ]
{|A1(t)| + |A2(t)| + |A3(t)|}

)
,

κ = max
t∈[0,T ]

||K(t)|| = max
t∈[0,T ]

max
i=1,3

{|Ki1(t)| + |Ki2(t)| + |Ki3(t)|}.

The following theorem establishes sufficient conditions for the applicability
and convergence of the algorithm proposed above, which also guarantee the
unique solvability of problem (5), (6).

Theorem 1. Let the matrix Qν(T ) : R3 → R3 is invertible for some ν ∈ N and
let the following inequalities be true:

a) ||[Qν(T )]−1|| ≤ ην(T ), where ην(T ) is a positive constant;

b) qν(T ) = ην(T ) ·
( m∑

i=1

||Mi|| + κT
)

max
i=1,m

[
eati − 1 −

ν∑
j=1

[ati]
j

j!

]
< 1.

Then the multipoint-integral boundary value problem (5), (6) has a unique
solution.

The proof of Theorem 1 is similar to the proof of Theorem 1 in [3].
By using the parametrization method, we split the procedure of determina-

tion of unknown functions into two part:
1) determination of the unknown function ũ(t) from the Cauchy problem for

system of three differential equations (7), (8);
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2) determination of the introduced parameter μ from the system of algebraic
equations (12).

Taking into account the notations and the equivalent transition to problem
(5), (6), we have

Theorem 2. Let the matrix Qν(T ) : R3 → R3 is invertible for some ν ∈ N and
let the inequalities a), b) of Theorem 1 be true.

Then the multipoint-integral boundary value problem for the third-order dif-
ferential equation (1)–(4) has a unique solution.

4 Example

We consider the boundary value problem [27]:

d3z

dt3
= p(t)z + f(t) + r, t ∈ (a, b), (13)

z(a) = α, (14)
dz(a)

dt
= β1, (15)

dz(b)
dt

= β2. (16)

Assume that the functions f(t) and p(t) are given, and p(t) = 0 for t ∈ [a, c) ∪
(d, b], a < c < d < b, the parameter r, α, β1, and β2 are constants.

For this problem

A(t) =

⎛

⎝
0 1 0
0 0 1
0 0 p(t)

⎞

⎠ , F (t) =

⎛

⎝
0
0

f(t) + r

⎞

⎠ ,

M0 =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ , M1 =

⎛

⎝
0 0 0
0 0 0
0 1 0

⎞

⎠ , K(t) =

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ , d̃ =

⎛

⎝
α
β1

β2

⎞

⎠ ,

D̃ν(a, t) =

t∫

a

A(τ)dτ +

t∫

a

A(τ)

τ∫

a

A(τ1)dτ1dτ + ...+

+

t∫

a

A(τ)

τ∫

a

A(τ1)...

τν−1∫

a

A(τν)dτνdτν−1...dτ1dτ, ν = 1, 2, ...,

δ = max
(
1, max

t∈[a,b]
|p(t)|

)
.
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Theorem 3. Let the (3×3 matrix Qν(a, b) = M0+M1[I+D̃ν(a, b)] is invertible
for some ν ∈ N and let the following inequalities be true:

a) ||[Q̃ν(a, b)]−1|| ≤ η̃ν(a, b), where η̃ν(a, b) is a positive constant;

b) q̃ν(a, b) = η̃ν(a, b) ·
[
eδ(b−a) − 1 −

ν∑
j=1

[δ(b−a)]j

j!

]
< 1.

Then two-point boundary value problem for the third-order differential equa-
tion (13)-(16) has a unique solution.

Note, that in the repeated integrals of D̃ν(a, t) the element of the matrix
A(t) is function p(t) which are calculated on the interval [c, d].

Let p(t) = 1 for t ∈ [c, d], p(t) = 0 for t ∈ [a, c) ∪ (d, b]. In this case, the
conditions of Theorem 3 will be formulated only in the terms of numbers a, b,
c, d.

We have

Theorem 4. Let the (3×3 matrix Q1(a, b) =

⎛

⎝
1 b − a 0
0 1 + b − a 0
0 1 d − c

⎞

⎠ is invertible

and let the following inequalities be true:

a) ||[Q̃1(a, b)]−1|| ≤ max
(

1
d−c , 1

)
+ max

(
b − a, 1, 1

d−c

)
1

1+b−a ;
b) q̃ν(a, b) =

=
[
max

(
1

d−c , 1
)

+ max
(
b − a, 1, 1

d−c

)
1

1+b−a

]
·
[
e(b−a) − 1 − (b − a)

]
< 1.

Then the two-point boundary value problem for the third-order differential
equation (13)-(16) has a unique solution.
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Abstract. In this paper we consider the questions of solvability of the
nonhomogeneous boundary value problem for the Burgers equation in
infinite angular domain. It is reduced to the study of the solvability of a
system consisting of two homogeneous integral equations. We prove some
lemmas which establish properties of integral operators in weighted space
of essentially bounded functions and prove the existence and properties
of non-trivial solutions to the system of homogeneous integral equations.
On the basis of Lemmas the solvability theorems of the nonhomoge-
neous boundary value problem for the Burgers equation in infinite angu-
lar domain are established.

Keywords: Burgers equation · Boundary value problem · Solvability ·
Non-trivial solution · Angular domain · Integral equation · Weighted
space of essentially bounded functions

Introduction
Researches of Burgers equation has a long history, some of which are given in
work [4] and in the books [5] and [9]. In work [4] in the Sobolev classes it is estab-
lished the existence, uniqueness and regularity of the solution to the Burgers
equation in non-cylindrical (non-degenerating) domain that can be transformed
into a rectangular domain by the regular replacement of the independent vari-
ables. The authors indicate that the development of their results from the work
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[4] for the case of degenerating domain will be considered by them in further.
In this paper we study the solvability of a nonhomogeneous boundary value

problem for the Burgers equation in an infinite angular domain. The work con-
sists of five sections. In section 1 it is given preliminary provisions of the transfor-
mation in angular domain of the nonhomogeneous boundary value problem for
the Burgers equation to the homogeneous boundary value problem for the heat
equation. Section 2 is devoted to reducing the homogeneous boundary value
problem of heat conduction to a system of two integral equations. The main
results on the research of questions of solvability of integral equations are given
in section 3 (the case of constant coefficients w0 and w1) and in section 5 (in a
special case of variable coefficients w0(t) and w1(t)). Finally, in section 4 it is
given theorems on the solvability of the nonhomogeneous boundary value prob-
lem for the Burgers equation in the infinite angular domain.

1 Preliminary Provisions and Statement of the Problem

For Burgers equation:

wt + bwwx − a2wxx = f(t), b > 0,

in which, without limiting the generality, we assume b = 1, f(t) ≡ 0, and con-
sider in the domain G = {x, t : 0 < x < t, t > 0} the boundary value problem

{
wt + wwx − a2wxx = 0, {x, t} ∈ G,
w
∣∣
x=0

= w0(t), w
∣∣
x=t

= w1(t),
(1)

where w0(t), w1(t) are some given on (0,∞) functions.
Using the Hopf-Cole transformation

w(x, t) = −2a2 · ux(x, t)
u(x, t)

, (2)

boundary value problem (1) is reduced to the following auxiliary homogeneous
boundary value problem

⎧⎪⎨
⎪⎩

ut − a2uxx = 0, {x, t} ∈ G,
ux(0, t) + 1

2a2w0(t)u(0, t) = 0,

ux(t, t) + 1
2a2w1(t)u(t, t) = 0.

(3)

Indeed, substituting function (2) into equation (1), we get

∂

∂ x

[
ut(x, t) − a2uxx(x, t)

u(x, t)

]
= 0, {x, t} ∈ G, (4)

i.e.
ut(x, t) − a2uxx(x, t) = c(t)u(x, t), (5)
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where c(t) is an arbitrary function and without loss of generality we can take
c(t) ≡ 0.

The inverse transformation to (2) is the following transformation

u(x, t) = exp

⎧⎨
⎩− 1

2a2

x∫
0

w(ξ, t)d ξ + d(t)

⎫⎬
⎭ , 0 < x < t, t > 0, (6)

from which it follows

ux(x, t) = −w(x, t)
2a2

exp

⎧⎨
⎩− 1

2a2

x∫
0

w(ξ, t)d ξ + d(t)

⎫⎬
⎭ , 0 < x < t, t > 0, (7)

where d(t) is an arbitrary bounded function on (0,∞). From formulas (2), (4)–
(7), we obtain that boundary value problem (3) follows from (1).

Thus we obtain that one solution of the Burgers equation from (1) corre-
sponds to each solution of the equation

ut(x, t) − a2uxx(x, t) = 0; (8)

conversely, to any solution of the Burgers equation from (1) there is a family of
solutions to equation (5), determined by arbitrary functions d(t). Obviously, the
elements of this family differ from each other by the exponential factor exp{d(t}.

We are interested in the question: whether the boundary value problem (1)
has solution? This question is directly related to the existence of a nontrivial
solution to the homogeneous boundary value problem (3), the study of which
is reduced to the investigation of the solvability of system consisting of two
homogeneous integral equations. As our work shows these integral equations
have the properties of singular integral equations.

2 Reducing Problem (3) to the Integral Equation

We are looking for solution of the problem (3) as the sum of the simple-layer
potentials ([13], 476–479):

u(x, t) =
1

2a
√

π

t∫
0

1
(t − τ)1/2

[
exp

{
− x2

4a2(t − τ)

}
ν(τ)

+ exp
{

− (x − τ)2

4a2(t − τ)

}
ϕ(τ)

]
dτ, (9)

which satisfies equation (3) for all functions ν(t) and ϕ(t), are not yet known
and should be defined.
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We satisfy solution (9) to the boundary conditions from (3). For this, by
calculating the derivative with respect to x from (9):

∂u(x, t)
∂x

= − 1
4a3

√
π

t∫
0

x

(t − τ)3/2
exp

{
− x2

4a2(t − τ)

}
ν(τ)d τ

− 1
4a3

√
π

t∫
0

x − τ

(t − τ)3/2
exp

{
− (x − τ)2

4a2(t − τ)

}
ϕ(τ)d τ, (10)

we obtain as a result:

ν(t) − w0(t)
2a

√
π

t∫
0

ν(τ)d τ

(t − τ)1/2
= (Nw0(t)ϕ1) (t), (11)

ϕ1(t) − 1 − w1(t)
2a

√
π

t∫
0

ϕ1(τ)d τ

(t − τ)1/2
= (Φw1(t)ν) (t), (12)

where

(Nw0(t)ϕ1) (t) =
1

2a
√

π

t∫
0

[
τ

(t − τ)3/2
+

w0(t)
(t − τ)1/2

]
E(t, τ)ϕ1(τ)d τ, (13)

(Φw1(t)ν) (t) =
1

2a
√

π

t∫
0

[
τ

(t − τ)3/2
+

1 − w1(t)
(t − τ)1/2

]
E(t, τ)ν(τ)d τ, (14)

E(t, τ) = exp
{

− tτ

4a2(t − τ)

}
, ϕ1(t) = ϕ(t) exp

{
t

4a2

}
. (15)

Thus, the homogeneous boundary problem (3) is reduced to the problem on
the solvability for the system of integral equations (11) and (12).

Below we consider various special cases of problem (11)–(15).

3 Solving the System of Integral Equations (11)–(12).
The Case of Constant Coefficients w0 and w1

In this section we establish some lemmas related to the solvability of integral
equations (11) and (12) in various special cases.
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3.1 Homogeneous Case of Problem (1)

The following lemma is valid.

Lemma 1. Let w0(t) ≡ 0 and w1(t) ≡ 0. Then the system of equations (11) and
(12) has only one pair of non-trivial solutions {ν(t), ϕ1(t)} up to a common
constant factor

ν(t) =
1

2a
√

π

t∫
0

τ

(t − τ)3/2
E(t, τ)ϕ1(τ)d τ, (16)

ϕ1(t) =
1√
t

+
√

π

4a
exp

{
t

4a2

}[
1 + erf

(√
t

2a

)]
.

Proof. If w0(t) ≡ 0 w1(t) ≡ 0, then from (11) and (12) we get:

ϕ1(t) − 1
2a

√
π

t∫
0

ϕ1(τ)d τ

(t − τ)1/2
=

1
2a

√
π

t∫
0

t

(t − τ)3/2
E(t, τ)ν(τ)d τ, (17)

and equality (16). Substituting (16) into (17) and following the work [3], we
obtain the integral equation

ϕ1(t) − 1
2a

√
π

t∫
0

ϕ1(τ)d τ

(t − τ)1/2
=

1
2a

√
π

t∫
0

t + τ

(t − τ)3/2
E(t, τ)ϕ1(τ)d τ. (18)

In work [3] it was shown that equation (18) has only one nontrivial solution up
to a constant factor. From this the assertion of Lemma 1 follows. �

3.2 Nonhomogeneous Case of Problem (1): w0(t) ≡ w1(t) ≡ 1.

The following lemma is valid.

Lemma 2. Let w0(t) ≡ 1 and w1(t) ≡ 1. Then the system of equations (11) and
(12) has only one pair of non-trivial solutions {ν(t), ϕ1(t)} up to a common
constant factor

ϕ1(t) =
1

2a
√

π

t∫
0

τ

(t − τ)3/2
E(t, τ)ν(τ)d τ, (19)

ν(t) =
1√
t

+
√

π

4a
exp

{
t

4a2

}[
1 + erf

(√
t

2a

)]
.
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Proof. If w0(t) ≡ 1 and w1(t) ≡ 1, then from (11) and (12) we obtain:

ν(t) − 1
2a

√
π

t∫
0

ν(τ)d τ

(t − τ)1/2
=

1
2a

√
π

t∫
0

t

(t − τ)3/2
E(t, τ)ϕ1(τ)d τ, (20)

and equality (19). Substituting (19) into (20) and following the work [3], we get
the integral equation

ν(t) − 1
2a

√
π

t∫
0

ν(τ)d τ

(t − τ)1/2
=

1
2a

√
π

t∫
0

t + τ

(t − τ)3/2
E(t, τ)ν(τ)d τ, (21)

which coincides with equation (18). From this the validity of the assertion of
Lemma 2 follows. �

3.3 Nonhomogeneous Case of Problem (1): w0(t) ≡ w1(t) ≡ λ ≡ 1/2.

The following lemma is valid.

Lemma 3. Let λ = 1/2. Then the system of equations (11) and (12) has solu-
tions of the form

ν(t) = C1

[
1√
t
exp

{
t

4a2

}
+

√
π

2a

(
1 + erf

(√
t

2a

))]

+
C2

a
√

π

∞∑
n=0

(2n + 1) exp
{

− (2n + 1)2

4a2
t
}

, 0 < t < ∞, (22)

ϕ1(t) = C1

[
1√
t
exp

{
t

4a2

}
+

√
π

2a

(
1 + erf

(√
t

2a

))]

− C2

a
√

π

∞∑
n=0

(2n + 1) exp
{

− (2n + 1)2

4a2
t
}

, 0 < t < ∞. (23)

up to constant factors C1 and C2, and

ν(t), ϕ1(t) ∈ L∞

(
R+; t1/2 exp

{
− t

4a2

})
.

Proof. We introduce the notations

ω+(t) = ν(t) + ϕ1(t), ω−(t) = ν(t) − ϕ1(t),

and from equations (11) and (12) we obtain the following equations concerning
the functions ω+(t) and ω−(t) :

ω+(t) − 1
4a

√
π

t∫
0

ω+(τ)dτ

(t − τ)1/2
=

1
4a

√
π

t∫
0

t + τ

(t − τ)3/2
E(t, τ)ω+(τ)dτ, (24)

ω−(t) − 1
4a

√
π

t∫
0

ω−(τ)dτ

(t − τ)1/2
= − 1

4a
√

π

t∫
0

t + τ

(t − τ)3/2
E(t, τ)ω−(τ)dτ, (25)
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where we remind

E(t, τ) = exp
{

− tτ

4a2(t − τ)

}
.

Equation (24) has been solved by us earlier [1,2,6–8,11] and this solution is
equal to:

ω+(t) =
C1√

t
exp

{
t

4a2

}
+

√
π

2a

[
1 + erf

(√
t

2a

)]
, t > 0, C1 = const. (26)

It remains to us to solve equation (25). For this purpose, in equation (25) we
hold the following replacements of the independent variables:

t = 1/y, τ = 1/x, dτ = −d x/(x2), t < τ < ∞, y < x < ∞,

as a result we get (for y > 0):

ω−(1/y) +
1

2a
√

π

∞∫
y

y1/2

(x − y)3/2x1/2
· exp

{
− 1

4a2(x − y)

}
ω−(1/x)d x

− 1
4a

√
π

∞∫
y

y1/2

(x − y)1/2x3/2

[
1 + exp

{
− 1

4a2(x − y)

}]
ω−(1/x)d x = 0.

Hence, for a new unknown function ψ(y) = y−3/2ω−(1/y) we obtain:

y · ψ(y) − 1
4a

√
π

y∫
0

1
(y − x)1/2

[
1 + exp

{
− 1

4a2(y − x)

}]
ψ(x)d x

+
1

2a
√

π

y∫
0

1
(y − x)3/2

exp
{

− 1
4a2(y − x)

}
x ψ(x)d x = 0, 0 < y < ∞. (27)

Applying the Laplace transform to equation (27), we get

−d Ψ(p)
d p

− 1
2a

√
p

(
1 + exp

(
− 2

√
p

a

))
Ψ(p) + exp

(
−2

√
p

a

)
dΨ(p)

dp
= 0,

i.e., we have:

d Ψ(p)
d p

+
1

2a
√

p
·
ch

√
p

a

sh
√

p

a

Ψ(p) = 0. (28)

The general solution of the differential equation (28) is determined by the
following formula:

Ψ(p) =
C2

sh
√

p

a

, C2 = const. (29)
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To find the original of function (29), we rewrite it as a series:

Ψ(p) = 2C2

∞∑
n=0

exp
{

− (2n + 1)
√

p

a

}
. (30)

Applying the inverse Laplace transform to (30), we will have:

ψ(y) =
C2

a
√

π
· 1
y3/2

∞∑
n=0

(2n + 1) exp
{

− (2n + 1)2

4a2 y

}
, 0 < y < ∞. (31)

Returning to the original variables, from equation (31) we obtain the solution
of equation (25):

ω−(t) =
C2

a
√

π

∞∑
n=0

(2n + 1) exp
{

− (2n + 1)2

4a2
t
}

, 0 < t < ∞. (32)

It is obvious that the solutions (26) and (32) belong to the space

ω+(t), ω−(t) ∈ L∞

(
R+; t1/2 exp

{
− t

4a2

})
,

and from here the assertion of lemma 3 follows. �

3.4 Nonhomogeneous Case of Problem (1): w0(t) ≡ w1(t) ≡ λ ∈ R,
λ �= 1/2}

The following lemma is valid.

Lemma 4. Let the boundary functions w0(t) and w1(t) be given as follows:
w0(t) ≡ w1(t) ≡ λ, where λ ∈ R \ {1/2}. Then for the solutions of equations
(11) and (12) the following representations take place

ν(t) =
λ
√

π

a
exp

{
λ2t

4a2

}
+

∞∫
t

d

d τ

⎡
⎣ λ

2a
√

π

τ∫
0

(Nλ(θ)ϕ1) (θ)√
τ − θ

dθ

+ (Nλ(τ)ϕ1) (τ)

⎤
⎦ exp

{
−λ2(τ − t)

4a2

}
dτ, (33)

ϕ1(t) =
(1 − λ)

√
π

a
exp

{
(1 − λ)2t

4a2

}
+

∞∫
t

d

d τ

⎡
⎣ 1 − λ

2a
√

π

τ∫
0

(Φλ(θ)ν) (θ)√
τ − θ

dθ

+ (Φλ(τ)ν) (τ)

⎤
⎦ exp

{
− (1 − λ)2(τ − t)

4a2

}
dτ. (34)
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Proof. Let λ be a finite real number which is not equal to the number 1/2. Then
from (11) and (12) we have:

ν(t) − λ

2a
√

π

t∫
0

ν(τ)d τ

(t − τ)1/2
= (Nλ(t)ϕ1) (t), (35)

ϕ1(t) − 1 − λ

2a
√

π

t∫
0

ϕ1(τ)d τ

(t − τ)1/2
= (Φλ(t)ν) (t), (36)

where

(Nλ(t)ϕ1) (t) =
1

2a
√

π

t∫
0

λt + (1 − λ)τ
(t − τ)3/2

E(t, τ)ϕ1(τ)d τ, (37)

(Φλ(t)ν) (t) =
1

2a
√

π

t∫
0

(1 − λ) t + λτ

(t − τ)3/2
E(t, τ)ν(τ)d τ. (38)

We rewrite equation (35) in the form:

λ

2a

(
I
1/2
0+ ν

)
(t) ≡ λ

2a
√

π

t∫
0

ν(τ)√
t − τ

dτ = ν(t) − (Nλ(t)ϕ1) (t), t > 0, (39)

where the left expression is written by using the operator I
1/2
0+ of Riemann-

Liouville fractional integration of the order 1/2 ([12], 38–39, 41–43, 84–86). Con-
sidering the right side of (39) temporarily known and applying the operator D1/2

0+

Riemann-Liouville fractional differentiation of the order 1/2 [12]:

(D1/2
0+ ψ)(t) =

1√
π

d

dt

t∫
0

ψ(τ)dτ√
t − τ

,

we find as a solution to Abel equation of the first kind (39) ([12], 38–39, 50, 96,
105):

λ

2a
ν(t) =

1√
π

d

dt

t∫
0

ν(τ)dτ√
t − τ

− 1√
π

d

dt

t∫
0

(Nλ(t)ϕ1) (t)√
t − τ

dτ. (40)

Further, differentiating equation (35) once with respect to t, we obtain:

λ

2a
√

π

d

dt

t∫
0

ν(τ)√
t − τ

dτ = ν ′(t) − d

dt
(Nλ(t)ϕ1) (t), t > 0. (41)
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Now multiplying equation (40) by λ/(2a) and adding obtained left and right
hand parts of equations (40) and (41), we obtain the differential equation:

ν ′(t) − λ2

4a2
ν(t) =

d

dt

⎡
⎣ λ

2a
√

π

t∫
0

(Nλ(τ)ϕ1) (τ)√
t − τ

dτ + (Nλ(t)ϕ1) (t)

⎤
⎦ , (42)

with the finite condition:

lim
t→∞ ν(t) exp

{
−λ2t

4a2

}
=

λ
√

π

a
. (43)

The solution of the problem (42)–(43) has the form (33).
Similarly, as for equation (35), for integral equation (36) we have (34).
Proof of lemma 4 is completed by this fact. �

3.5 Properties of the Operator Nλ(t) (37)

The following lemma is valid.

Lemma 5. The operator Nλ(t) (37) boundedly acts on the function ϕ1(t) = 1√
t

with a value in the space L∞(R+; t1/2).

Proof. Let ϕ1(t) = 1√
t
. To solve equation (20), we at first calculate its right-hand

side (Nλ(t)ϕ1) (t). We get

(Nλ(t)ϕ1) (t) =
1

2a
√

π

t

0

λt + (1 − λ)τ

τ1/2(t − τ)3/2
exp − tτ

4a2(t − τ)
d τ

= z =
t√

t − τ
, τ =

t(z2 − t)

z2
, t − τ =

t2

z2
, dτ =

2t2dz

z3

=
1

2a
√

π

∞

√
t

λt + (1 − λ) t(z2−t)

z2 z z32t2

t1/2(z2 − t)1/2t3z3
exp − t t(z2−t)

z2 z2

4a2t2
dz

=
1

a
√

πt

∞

√
t

z2 − t + λt

z(z2 − t)1/2
exp −z2 − t

4a2
d z

=
1

a
√

π

∞

√
t

z√
t

2

− 1 + λ

z√
t

2 exp −t

z√
t

2

− 1

4a2
d

z√
t

2

− 1

1/2

= ζ2 =
z√
t

2

− 1, y =

√
tζ

2a

=
1√
t

2√
π

∞

0

ζ2 + λ

1 + ζ2
exp − tζ2

4a2
d

√
tζ

2a

=
1√
t

1 − (1 − λ)t

2a2
√

π

∞

0

1
t

4a2 + y2
exp −y2 d y .
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From here, using formula

∞∫
0

exp{−μ2x2}
x2 + β2

d x = erfc(βμ)
π

2β
exp{β2μ2}, Re β > 0, |arg μ <

π

4

from ([10], 3.466.1), we obtain

(Nλ(t)ϕ1) (t) =
1√
t

− (1 − λ)
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)
ϕ1(t) =

1√
t
. (44)

Thus, we have

(Nλ(t)ϕ1)(t)‖ϕ1(t)=t−1/2 =

=
1√
t

− (1 − λ)
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)
∈ L∞(R+; t1/2),

i.e.
Nλ(t) ∈ L

(
L∞

(
R+, t1/2

))
.

Lemma 5 is proved. �

From the proof of lemma 5 it follows that when ϕ1(t) = t−1/2 equation (20)
takes the form:

ν(t) − λ

2a
√

π

t∫
0

ν(τ)d τ

(t − τ)1/2
=

1√
t

− (1 − λ)
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)
. (45)

3.6 Properties of the Solution of Equation (45)

For the solution of equation (45) the following lemma is valid.

Lemma 6. The solution of equation (45) can be represented in the form ν(t) =
ν1(t) + ν2(t), and,

ν1(t) ∈ L∞

(
R+; t1/2 exp

{
− (λ2 + ε)t

4a2

})
, ε > 0, (46)

ν2(t) ∈ L∞

(
R+; exp

{
−λ2t

4a2

})
, (47)

ν(t) ∈ L∞

(
R+; t1/2 exp

{
− (λ2 + ε)t

4a2

})
⊕ L∞

(
R+; exp

{
−λ2t

4a2

})
. (48)

Proof. We will look for the solution of equation (45) as a sum ν(t) = ν1(t)+ν2(t),
where
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if λ > 0, λ �= 1/2, then

ν1(t) =
1√
t

+
λ
√

π

4a
exp

{
λ2 t

4a2

}[
1 + erf

(
λ
√

t

2a

)]
, (49)

ν2(t) =
λ
√

π

2a
exp

{
λ2t

4a2

}
+

λ

2a
√

π

t∫
0

g(τ)dτ

(t − τ)1/2
+ g(t)

− λ2

4a2

∞∫
t

exp
{

−λ2(τ − t)
4a2

}⎡
⎣ λ

2a
√

π

τ∫
0

g(τ1)dτ1
(τ − τ1)1/2

+ g(τ)

⎤
⎦ d τ ; (50)

if λ < 0, then

ν1(t) =
1√
t

− −λ
√

π

4a
exp

{
λ2 t

4a2

}
erf

(−λ
√

t

2a

)
, (51)

ν2(t) = −−λ
√

π

a
exp

{
λ2t

4a2

}
− −λ

2a
√

π

t∫
0

g(τ)dτ

(t − τ)1/2
+ g(t)

− λ2

4a2

∞∫
t

exp
{

−λ2(τ − t)
4a2

}⎡
⎣− −λ

2a
√

π

τ∫
0

g(τ1)dτ1
(τ − τ1)1/2

+ g(τ)

⎤
⎦ d τ ; (52)

are solutions of the following two integral equations:

ν1(t) − λ

2a
√

π

t∫
0

ν1(τ)d τ

(t − τ)1/2
=

1√
t
, (53)

ν2(t) − λ

2a
√

π

t∫
0

ν2(τ)d τ

(t − τ)1/2
= g(t), (54)

where

g(t) ≡ − (1 − λ)
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)
. (55)

If λ = 0, then from (45) we obtain the solution ν(t):

ν(t) =
1√
t

−
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)
, (56)

which belongs to the class L∞
(
R+; t1/2

)
.

Upon receipt of solutions (49), (51) and (50), (52) of equations (53) and (54),
respectively, we use the formula (33), and we apply the formula (43) in the form:

lim
t→+∞ νj(t) exp

{
−λ2t

4a2

}
=

λ
√

π

2a
, j = 1, 2, λ > 0, λ �= 1/2;
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lim
t→+∞ ν1(t) exp

{
−λ2t

4a2

}
= 0, lim

t→+∞ ν2(t) exp
{

−λ2t

4a2

}
=

λ
√

π

a
, λ < 0;

i.e.

lim
t→+∞ ν(t) exp

{
−λ2t

4a2

}
= lim

t→+∞[ν1(t) + ν2(t)] exp
{

−λ2t

4a2

}
=

λ
√

π

a
. (57)

Let us remind that we have considered the case λ = 1/2 separately.
Now we consider solution ν2(t) (50) and show that the following difference

ν2(t) − λ
√

π

2a
exp

{
λ2t

4a2

}
= I1(t) − I2(t)

is a bounded and continuous function on the semiaxis (0,∞).
For this purpose, we carry out further calculations of the integrals in formula

(50) for the solution ν2(t). We have

I1(t) =
λ

2a
√

π

t∫
0

g(τ)dτ

(t − τ)1/2

=
λ(λ − 1)
2a2

√
π

t∫
0

exp
{

τ
4a2

}
(t − τ)1/2

∞∫
√

τ/(2a)

exp
{−z2

}
d z d τ

=
λ(λ − 1)
8a3

√
π

t∫
0

exp
{

τ
4a2

}
(t − τ)1/2

∞∫
τ

exp
{− θ

4a2

}
d θ√

θ
dτ = I11(t) + I12(t),

where

I11(t) =
λ(λ − 1)
8a3

√
π

t∫
0

exp
{− θ

4a2

}
√

θ

θ∫
0

exp
{

τ
4a2

}
dτ

(t − τ)1/2
dθ,

I12(t) =
λ(λ − 1)
8a3

√
π

∞∫
t

exp
{− θ

4a2

}
√

θ

t∫
0

exp
{

τ
4a2

}
dτ

(t − τ)1/2
dθ.

Further, for I11(t) we have

I11(t) =
λ(λ − 1)
2a2

√
π

exp
{

t

4a2

} t∫
0

exp
{− θ

4a2

}
√

θ

√
t/(2a)∫

√
t−θ/(2a)

exp
{−ζ2

}
d ζ dθ

=
λ(λ − 1)

4a2
exp

{
t

4a2

} t∫
0

exp
{− θ

4a2

}
√

θ

[
erf

(√
t

2a

)
− erf

(√
t − θ

2a

)]
d θ.

Note that I11(t) is a bounded and continuous function on the semiaxis (0,∞).
It is enough to prove this assertion for large values t and t− θ; and also for large
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values t and for small values t − θ. Indeed, since in the first case, the following
relationships are valid:

erf

(√
t

2a

)
− erf

(√
t − θ

2a

)
≈ erfc

(√
t − θ

2a

)

≈ 2a√
π
√

t − θ
exp

{
− t − θ

4a2

}
,

then for I11(t) we get:

I11(t) ≈ λ(λ − 1)
2a

√
π

t∫
0

dθ√
θ(t − θ)

=
λ(λ − 1)

√
π

2a
.

Similarly, it is shown that the above statement is true for large t and small
t − θ.

Due to the fact that the right side of integral equation (54) (see (55)) is a
bounded and continuous function on a semiaxis (0,∞), then the expression

G(t) =
λ

2a
√

π

t∫
0

g(τ)dτ

(t − τ)1/2
+ g(t)

is the bounded and continuous function on a semiaxis (0,∞). Consequently, the
following integral

I2(t) =
λ2

4a2

∞∫
t

exp
{

−λ2(τ − t)
4a2

}⎡
⎣ λ

2a
√

π

τ∫
0

g(τ1)dτ1
(τ − τ1)1/2

+ g(τ)

⎤
⎦ d τ

will also be the bounded and continuous function of t on the semiaxis (0,∞).
Similar calculations are also valid for solution (52).
This completes the proof of lemma 6. �

3.7 Estimation of the Norm for Operator Nλ(t) (37)

We show the the validity of the following lemma.

Lemma 7. The operator Nλ(t) has property of linearity and boundedness in the
space L∞

(
R+; t1/2

)
, i.e.

Nλ(t) ∈ L
(
L∞

(
R+; t1/2

))
.

Proof. We calculate estimation of the norm for the operator Nλ(t) in the space
L∞

(
R+; t1/2

)
. We have

| (Nλ(t)ϕ1) (t)| ≤ C1
1

2a
√

π

t∫
0

|λt + (1 − λ)τ |
τ1/2(t − τ)3/2

E(t, τ)|√τϕ1(τ)|d τ. (58)
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Let ‖ϕ1(t)‖L∞(R+; t1/2) = 1. Then from (58) we obtain

| (Nλ(t)ϕ1) (t)| ≤ 1
2a

√
π

t∫
0

|λt + (1 − λ)τ |
τ1/2(t − τ)3/2

exp
{

− tτ

4a2(t − τ)

}
d τ

∥∥∥∥z =
t√

t − τ
, τ =

t(z2 − t)
z2

, t − τ =
t2

z2
, dτ =

2t2dz

z3

∥∥∥∥

=
1

2a
√

π

∞∫
√

t

∣∣∣λt + (1 − λ) t(z2−t)
z2

∣∣∣ z z32t2

t1/2(z2 − t)1/2t3z3
exp

{
− t t(z2−t)

z2 z2

4a2t2

}
dz

=
1

a
√

πt

∞∫
√

t

|z2 − t + λt|
z(z2 − t)1/2

exp
{

−z2 − t

4a2

}
d z

=
1

a
√

π

∞∫
√

t

∣∣∣∣
(

z√
t

)2
− 1 + λ

∣∣∣∣(
z√
t

)2 exp

⎧⎪⎨
⎪⎩−t

(
z√
t

)2
− 1

4a2

⎫⎪⎬
⎪⎭

× d

[(
z√
t

)2

− 1

]1/2

∥∥∥∥∥ζ2 =
(

z√
t

)2

− 1, y =
√

tζ

2a

∥∥∥∥∥
=

1√
t

2√
π

∞∫
0

∣∣ζ2 + λ
∣∣

1 + ζ2
exp

{
− tζ2

4a2

}
d

(√
tζ

2a

)

=
1√
t

∣∣∣∣∣∣1 +
(λ − 1)t
2a2

√
π

∞∫
0

1
t

4a2 + y2
exp

{−y2
}

d y

∣∣∣∣∣∣ .

From here using the following formula
∞∫
0

exp{−μ2x2}
x2 + β2

d x = erfc(βμ)
π

2β
exp{β2μ2}, Re β > 0, |arg μ <

π

4
.

from ([10], 3.466.1), we get

| (Nλ(t)ϕ1) (t)| ≤
∣∣∣∣ 1√

t
+

(λ − 1)
√

π

2a
exp

{
t

4a2

}
erfc

(√
t

2a

)∣∣∣∣ . (59)

It is obvious that function (59) belongs to the class L∞
(
R+; t1/2

)
, i.e.

Nλ(t) ∈ L
(
L∞

(
R+; t1/2

))
.

Lemma 7 is proved. �
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4 The Main Result

The assertions of lemmas in section 3 allow us to formulate the following theo-
rems.

Theorem 1. Let the conditions of Lemma 1 (or Lemma 2) be satisfied. Then
the boundary value problem (1) for Burgers equation has only one solution.

Proof. According to Lemma 1 (or Lemma 2) the solution to boundary problem
(3) by the formula (9) can be found up to a constant factor. However, this
constant does not affect the solution to problem (1) according to Hopf-Cole
transformation (2). Theorem 1 is proved. �

Theorem 2. Let the conditions of Lemma 3 be satisfied. Then the boundary
value problem (1) for Burgers equation has an infinite number of solutions.

Proof. According to Lemma 3 constants C1 and C2 are given independently
of each other. Therefore, in the general case, the solution to boundary value
problem (3) is defined by two constants C1 and C2, which under transforma-
tions of the Hopf-Cole (2) do not cancel. From this the statement of Theorem 2
follows. �

Theorem 3. Let the conditions of Lemma 4 be satisfied. Then the boundary
value problem (1) for Burgers equation has only one solution.

Proof. According to Lemma 4 the solution to boundary problem (3) by the
formula (9) can be found up to a constant factor. However, this constant does
not affect the solution to problem (1) according to the transformation of the
Hopf-Cole (2). Theorem 3 is proved. �

5 Solving the System of Integral Equations (11)–(12).
The Case of Variable Coefficients w0(t) and w1(t)

We assume that the variable coefficients w0(t) and w1(t) satisfy the following
conditions: √

π t1/2|w0(t)|
2a

< 1, t1/2 |w0(t)| < 1,

√
π t1/2|w1(t) − 1|

2a
< 1, t1/2 |w1(t) − 1| < 1, (60)

w0(t) + w1(t) �≡ 1 ∀t ∈ R+, lim
t→0+

t1/2 w0(t) = lim
t→0+

t1/2 [w1(t) − 1]. (61)

We will look for solutions of the integral equations (11)–(12) in a weight class of
functions:

t1/2 ν(t) ∈ L∞(R+); t1/2 ϕ1 ∈ L∞(R+),

i.e. ν(t), ϕ1(t) ∈ L∞(R+; t1/2). (62)
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We write equations (11)–(12) in the operator form. We have:

(I − A) ν = Nϕ1, (I − B) ϕ1 = Φν, (63)

where I is the identity operator, and the operators A and B act in the space
L∞(R+; t1/2), and, the following lemmas 8 and 9 are valid.

Lemma 8. Let the conditions (60) be satisfied. Then the operators A and B
have the properties of linearity and continuity:

A ∈ L
(
L∞(R+; t1/2)

)
, B ∈ L

(
L∞(R+; t1/2)

)
, (64)

and for their norms the estimates:

‖A‖ < 1, ‖B‖ < 1 (65)

are valid.

Lemma 9. For the right parts of equations (11)–(12) we have the estimates

(N(t)ϕ1)(t) < t−1/2, (Φ(t)ν)(t) < t−1/2

for ϕ1(t), ν(t) ∈ L∞(R+; t1/2). (66)
Moreover, the operators of the right sides N and Φ from (63), as well as the
operators A and B, act in the space L∞(R+, t1/2), and have the properties of
linearity and continuity:

N ∈ L
(
L∞(R+; t1/2)

)
, Φ ∈ L

(
L∞(R+; t1/2)

)
, (67)

also for their norms the estimates:

‖N‖ < 1, ‖Φ‖ < 1 (68)

are valid.

Proof. For this it is sufficient to establish the first estimate from (66). The second
estimate from (66) is established similarly. We have

(N(t)ϕ1)(t) <
1

2a
√

π

t∫
0

[
τ1/2

(t − τ)3/2
+

1√
τ(t − τ)

]
E(t, τ) d τ

=
1

2a
√

π

t∫
0

t√
τ(t − τ)3/2

exp
{

− t τ

4a2(t − τ)

}
d τ =

∥∥∥∥z =
t√

t − τ

∥∥∥∥

=
1

a
√

π

∞∫
√

t

exp

{
− t

4a2

[(
z√
t

)2

− 1

]}
d

[(
z√
t

)2

− 1

]1/2

∥∥∥∥∥ζ2 =
(

z√
t

)2

− 1

∥∥∥∥∥
=

1
a
√

π

∞∫
0

exp
{

− tζ2

4a2

}
dζ =

1√
t
.
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From here assertion (66) as well as assertions (67) and (68) of lemma 9 follow
immediately. �

From assertions of lemmas 8 and 9 the validity of next lemma follows.

Lemma 10. Let the conditions of lemmas 8 and 9 be satisfied. Then the oper-
ators I − A and I − B are continuously invertible, i.e. we have

ν(t) = (I − A)−1(Nϕ1)(t), ϕ1(t) = (I − B)−1(Φν)(t). (69)

The system of the integral equations (11)–(12) is split into the following two
integral equations

ν(t) = (I − A)−1(N(I − B)−1(Φν)(t), (70)

ϕ1(t) = (I − B)−1(Φ(I − A)−1(Nϕ1)(t). (71)

Remark 1. The system of the integral equations (70)–(71) has always the trivial
solution. However, as it is shown above, at some given constant values of the
functions w0(t) and w1(t) this system can have together with the trivial solution
and non-trivial solutions.

Remark 2. The solvability of the system of the integral equations (70)–(71), and,
respectively, and equations (11)–(12) should be investigated further.
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of Semiperiodical Boundary Value
Problem for Systems of Nonlinear

Hyperbolic Equations
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050010, Kazakhstan
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Abstract. In this paper we consider a semi-periodical boundary value
problem for a system of nonlinear hyperbolic equations in a rectangular
domain. An algorithm for finding of approximate solution to the semi-
periodical boundary value problem for the systems of nonlinear hyper-
bolic equation is offered. Conditions for the convergence of the approx-
imate solutions to the exact solution of the semi-periodical boundary
value problem for the system of nonlinear hyperbolic equations are estab-
lished.

Keywords: Systems of nonlinear hyperbolic equation ·
Semi-periodical boundary value problem · Modification of Euler
method · Family of periodic boundary value problems ·
Parametrization method · Approximate solution

1 Introduction

The boundary value problems with nonlocal conditions for hyperbolic equa-
tions are studied by A.M. Nakhushev [16,17], Yu. A. Mitropolsky and L.B.
Urmancheva [15], S.S. Kharibegashivili [13,14], T.I. Kiguradze [8–12], L.S. Pulk-
ina [6] and others. The theory of nonlocal boundary value problems for system
of hyperbolic equations with mixed derivatives are also developed in the works
of D.S. Dzhumabaev, A.T. Asanova and their disciples. A.T. Asanova [1,2] elab-
orated a method of introducing functional parameters for a study of nonlocal
problems for the system of hyperbolic equations with mixed derivatives. This
method is based on the parametrization method proposed by D.S. Dzhumabaev
[3] for investigating and solving of boundary value problems for system of ordi-
nary differential equations.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_13
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In this paper we consider a semi-periodic boundary value problem for systems
of hyperbolic equations. The algorithm for finding of classical solutions to the
semi-periodical boundary value problem for the system of hyperbolic equations
with mixed derivatives is constructed and the coefficient criterions of unique
solvability to considered problem are obtained. The approximate solutions of
semi-periodical boundary value problem for the system of hyperbolic equations
are constructed by the method of Euler’s modification [7] and the method of
functional parametrization [1,2].

2 Formulation of the Problem

At the domain Ω̄ = [0, ω]×[0, T ] we consider the following semi-periodical bound-
ary value problem for the system of hyperbolic equations with two independent
variables

∂2u

∂x∂t
= f(x, t, u,

∂u

∂t
,
∂u

∂x
), (x, t) ∈ Ω, u ∈ Rn, (1)

u(x, 0) = u(x, T ), x ∈ [0, ω] (2)

u(0, t) = ψ(t), t ∈ [0, T ], (3)

where the n vector function f : Ω ×R3n → Rn is continuous on Ω, the n vector
function ψ(t) is continuous differentiable on [0, T ], and they satisfy compatibility
condition: ψ(0) = ψ(T ).

We denote by C(Ω,Rn) the space of functions continuous on Ω u : Ω → R
with the norm ‖u(x, ·)‖1 = max

t∈[0,T ]
||u(x, t)|| = max

t∈[0,T ]
max
i=1,n

|ui(x, t)|.

Definition 1. A function u(x, t) ∈ C(Ω,Rn), having partial derivatives
∂u(x, t)

∂x
∈ ∈ C(Ω,Rn),

∂u(x, t)
∂t

∈ C(Ω,Rn),
∂2u(x, t)

∂x∂t
∈ C(Ω,Rn) is called

a solution to problem (1)-(3) if it satisfies system (1) for all (x, t) ∈ Ω and
boundary conditions (2), (3).

2.1 A Family of Periodic Boundary Value Problems. Method of
Euler’s Modification. Reduction to an Equivalent Problem

We introduce new unknown functions v(x, t) =
∂u(x, t)

∂x
, w(x, t) =

∂u(x, t)
∂t

.

Then we reduce problem (1)-(3) to the equivalent problem:

∂v

∂t
= f(x, t, u(x, t), w(x, t), v), (x, t) ∈ Ω, (4)

v(x, 0) = v(x, T ), x ∈ [0, ω], (5)

u(x, t) = ψ(t) +
∫ x

0

v(ξ, t)dξ, w(x, t) = ψ̇(t) +
∫ x

0

vt(ξ, t)dξ. (6)
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Definition 2. A triple of functions {u(x, t), w(x, t), v(x, t)} continuous in Ω̄ is
called a solution of problem (4)-(6), if the function v(x, t) ∈ C(Ω̄, Rn) is contin-
uously differentiable in Ω̄ with respect to t and satisfies the family of periodical
boundary value problem (4), (5), where functions u(x, t) and w(x, t) are con-

nected with v(x, t),
∂v(x, t)

∂t
by functional relations (6).

The problems (1)-(3) and (4)-(6) are equivalent in that sense: if the func-
tion u(x, t) is the solution of problem (1)-(3), then the triple of functions
{u(x, t), w(x, t),
v(x, t)} is a solution of problem (4)-(6), and vice versa. If triple of functions
{u∗(x, t), w∗(x, t), v∗(x, t)} is the solution of problem (4)-(6), then the function
u∗(x, t) is the solution of problem (1)-(3).

For the problem (4)-(6) we apply the parametrization method [18]. We take
a step h1 > 0 : N1h1 = T, N1 = 1, 2, 3, ..., and make the partition of interval

[0, T ) =
N1⋃
r=1

[(r − 1)h1, rh1). By vr(x, t) denote the restriction of v(x, t) on

[(r − 1)h1, rh1) such that vr : [(r − 1)h1, rh1) → Rn and vr(x, t) = v(x, t) for all
(x, t) ∈ Ωr = [0, ω] × [(r − 1)h1, rh1) and r = 1, N1.

By λr(x) we denote the value of v(x, t) under t = (r − 1)h1, r = 1, N1 and
make replacement ṽr(x, t) = vr(x, t) − λr(x) on each interval [(r − 1)h1, rh1).
Then problem (4), (5) is reduced to equivalent boundary value problem with
parameters

∂ṽr

∂t
= f(x, t, u(x, t), w(x, t), ṽr + λr(x)), (x, t) ∈ Ωr, (7)

ṽr(x, (r − 1)h1) = 0, x ∈ [0, ω] (8)

λ1(x) − lim
t→T−0

ṽN1(x, t) − λN1(x) = 0, (9)

λs(x) + lim
t→sh1−0

ṽs(x, t) − λs+1(x) = 0, s = 1, N1 − 1. (10)

At fixed λr(x) the Cauchy problem (7)-(8) is equivalent to the family of
system of Volterra integral equations of the second kind on intervals of length
h1 > 0

ṽr(x, t) =
∫ t

(r−1)h1

f(x, τ, u(x, τ), w(x, τ), ṽr(x, τ) + λr(x))dτ, (11)

(x, t) ∈ Ωr, r = 1, N1.
Substituting ṽr(x, τ) in the right-hand side (11) and repeating the process ν

times, (ν = 1, 2, ...), we obtain for the function ṽr(x, t) the following expression

ṽr(x, t) =
∫ t

(r−1)h1

f
(
x, τ1, u(x, τ1), w(x, τ1), λr(x) +

∫ τ1

(r−1)h1

f
(
x, τ2, u(x, τ2),

w(x, τ2), λr(x) + ... +
∫ τν−1

(r−1)h1

f(x, τν , u(x, τν), w(x, τν), λr(x)+
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+ṽr(x, τν))dτν

)
...dτ2

)
dτ1, x ∈ [0, ω], t ∈ [(r − 1)h1, rh1), r = 1, N1.

Determining lim
t→rh1−0

ṽr(x, t), r = 1, N1, and substituting their in (10), we

obtain the system of nonlinear equations with respect to unknown functional
parameters λr(x):

λ1(x) − λN1(x) −
N1h1

(N1−1)h1

f x, τ1, u(x, τ1), w(x, τ1), λN1(x) + ...+

+
τν−1

(N1−1)h1

f x, τν , u(x, τν), w(x, τν), λN1(x) + vN1(x, τν) dτν ... dτ1 = 0,

λs(x) +
sh1

(s−1)h1

f x, τ1, u(x, τ1), w(x, τ1), λs(x) + ...+

+
τν−1

(s−1)h1

f x, τν , u(x, τν), w(x, τν), λs(x) + vs(x, τν) dτν ... dτ1 − λs+1(x) = 0,

s = 1, N1 − 1.
Thus we rewrite the equations in the following form

Qν,h1(x, u, w, λ, ṽ) = 0. (12)

Consider a family of periodic boundary value problems

∂v

∂t
= f(x, t, û(x, t), ŵ(x, t), v), (x, t) ∈ Ω, (13)

v(x, 0) = v(x, T ), x ∈ [0, ω], (14)

where the functions û(x, t) and ŵ(x, t) are known and continuous on Ω. For
finding the solution to problem (13), (14) we use parametrization method [5].

We denote by C(Ω, h1, R
nN1) a space of systems of functions ṽ(x, [t]) =

= (ṽ1(x, t), . . . , ṽN1(x, t))′, where the functions ṽr(x, t) are continuous on Ωr and
have the finite left-hand limit lim

t→rh1−0
ṽr(x, t), r = 1, N1, with the norm

‖ṽ(x, [·])‖2 = max
r=1,N1

sup
t∈[(r−1)h1,rh1)

‖ṽr(x, t)‖ and denote by C([0, ω], RnN1) a

space of vector functions λ : [0, ω] → RnN1 continuous on [0, ω] with the norm
‖λ‖0 = max

x∈[0,ω]
‖λ(x)‖ = max

x∈[0,ω]
max

r=1,N1

|λr(x)|.

Assume that the parameter λ(0)(x) = (λ(0)
1 (x), . . . , λ(0)

N1
(x))′ ∈ RnN1 and

system functions ṽ(0)(x, [t]) =
(
ṽ
(0)
1 (x, t), . . . , ṽ(0)

N1
(x, t)

)′
are known.

Let
v(0)(x, t) = λ(0)

r (x) + ṽ(0)
r (x, t), (x, t) ∈ Ωr, r = 1, N1,

v(0)(x, T ) = λ
(0)
N1

(x) + lim
t→T−0

ṽ
(0)
N1

(x, t).
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We take functions ρ(x) > 0, ρ̃(x) > 0, ρ1(x) = ρ(x) + ρ̃(x), continuous on [0, ω]
and construct sets

S
(
λ(0)(x), ρ(x)

)
=

= {λ(x) = (λ1(x), . . . , λN1(x))′ ∈ C([0, ω], RN1) : ‖λ(x) − λ(0)(x)‖ < ρ(x)},

S
(
ṽ(0)(x, [·]), ρ̃(x)

)
=

= {(ṽ1(x, t), . . . , ṽN1(x, t))′ ∈ C(Ω, h1, R
N1) : ‖ṽ(x, [·]) − ṽ(0)(x, [·])‖2 < ρ̃(x)},

S
(
v(0)(t), ρ1(x)

)
= {v(x, t) ∈ C(Ω) : ‖v(x, ·) − v(0)(x, ·)‖1 < ρ1(x)},

G0
1 = {(x, t, u, w, v) : (x, t) ∈ Ω, u = û(x, t), w = ŵ(x, t), ‖v − v(0)(x, ·)‖1 < ρ1(x)}.

Condition A0. The function f(x, t, û(x, t), ŵ(x, t), v) has uniformly continuous
partial derivative with respect to v in G0

1 and |fv(x, t, û(x, t), ŵ(x, t), v)| ≤ L(x),
where L(x) is a function continuous on [0, ω] .

We take a system (λ(0)
r (x), ṽ0

r(x, t)), r = 1, N1, and construct the successive
approximations by the following algorithm
Step 1. (a) From equation(12), where u = û(x, t), w = ŵ(x, t), ṽ = ṽ(0)(x, t),
we define the functional parameter λ(1)(x) = (λ(1)

1 (x), . . . , λ(1)
N1

(x)) ∈ RnN1 .

(b) Solving the Cauchy problem (7), (8) for u = û(x, t), w = ŵ(x, t), λr = λ
(1)
r (x),

we find ṽ
(1)
r (x, t), t ∈ [(r − 1)h1, rh1), r = 1, N1.

Step 2. (a) Substituting ṽ for ṽ(1) and solving the equation (12), where u =
û(x, t),
w = ŵ(x, t), we define λ(2)(x) ∈ RnN1 .

(b) Solving the Cauchy problem (7), (8) for u = û(x, t), w = ŵ(x, t), λr = λ
(2)
r (x),

we find the functions ṽ
(2)
r (x, t), t ∈ [(r − 1)h1, rh1), r = 1, N1. And so on.

Step k. (a) Substituting ṽ for ṽ(k−1) and solving the equation (12), where u =
û(x, t), w = ŵ(x, t), we define λ(k)(x) ∈ RnN1 .
(b) Solving the Cauchy problem (7), (8) for u = û(x, t), w = ŵ(x, t), λr =
λ
(k)
r (x),

we find the functions ṽ
(k)
r (x, t), t ∈ [(r − 1)h1, rh1), r = 1, N1, k = 1, 2, ....

Sufficient conditions for the existence of solutions to boundary value problem
(7)-(10) are established in the following assertion.

Theorem 1. Suppose that for some λ(0)(x), ṽ(0)(x, [t]), ρ(x), ρ̃(x) condition A0

holds and there exists h1 > 0 : N1h1 = T, (N1 = 1, 2, 3, ...), ν ∈ N, such

that the Jacobi’s matrix
∂Qν,h1(x, û, ŵ, λ, ṽ)

∂λ
is invertible for all x ∈ [0, ω],(

λ(x), ṽ(x, t)
)

∈
∈ S

(
λ(0)(x), ρ(x)

)
× S

(
ṽ(0)(x, [t]), ρ̃(x)

)
and the following inequalities hold:

1.
∥∥∥
[∂Qν,h1

(
x, û, ŵ, λ, ṽ

)

∂λ

]−1∥∥∥ ≤ γν(x, h1),
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2. qν(x, h1) = γν(x, h1){eL(x)h1 −
ν∑

i=0

1
i!

(
L(x)h1

)i

} < 1,

3.
γν(x, h1)

1 − qν(x, h1)
1
ν!

(
L(x)h1

)ν

‖ṽ(1)(x, [·]) − ṽ(0)(x, [·])‖2+
+γν(x, h1)‖Qν,h1(x, û(x, ·), ŵ(x, ·), λ(0)(x), ṽ(0)(x, [·]))‖ < ρ(x),

4.
[ γν(x, h1)
1 − qν(x, h1)

1
ν!

(
L(x)h1

)ν(
eL(x)h1 − 1

)
+ 1

]
‖ṽ(1)(x, [·]) − ṽ(0)(x, [·])‖2

< ρ̃(x).

Then sequence of pairs (λ(k)(x), ṽ(k)(x, t)), k = 1, 2, 3, . . . , defined by algorithm,
belongs to S

(
λ(0)(x), ρ(x)

)
× S

(
ṽ(0)(x, [t]), ρ̃(x)

)
, converges to (λ∗(x), ṽ∗(x, t))

as k → ∞, which is the solution of the problem (7)-(10) under u = û(x, t), w =
ŵ(x, t) and the following inequalities hold:

a) ‖λ∗(x) − λ(0)(x)‖ ≤ γν(x, h1)
1 − qν(x, h1)

1
ν!

(
L(x)h1

)ν

‖ṽ(1)(x, [·]) − ṽ(0)(x, [·])‖2+

+γν(x, h1)‖Qν,h1(x, û(x, ·), ŵ(x, ·), λ(0)(x), ṽ(0)(x, [·]))‖,

b) ‖ṽ∗(x, [·]) − ṽ(0)(x, [·])‖2 ≤
[ γν(x, h1)
1 − qν(x, h1)

1
ν!

(
L(x)h1

)ν(
eL(x)h1 − 1

)
+ 1

]
×

×‖ṽ(1)(x, [·]) − ṽ(0)(x, [·])‖2.
Proof. By condition 3) of theorem, operator Qν,h1(x, û(x, ·), ŵ(x, ·), λ(x), ṽ(0)

(x, [·])) satisfies in S
(
λ(0)(x), ρ(x)

)
all the assumptions of theorem 1 of [4]. Then,

for fixed values of x̂ ∈ [0, ω] there exists a number ε0 > 0 satisfying the inequal-
ities
ε0γν(x̂, h1) ≤ 1/2 and

γν(x̂, h1)
1 − ε0γν(x̂, h1)

‖Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(0)(x̂), ṽ(0)(x̂, [·]))‖ < ρ(x̂).

From the uniform continuity of f it follows that the Jacobi’s matrix
∂Qν,h1

(
x̂, û, ŵ, λ, ṽ(0)

)

∂λ
is uniformly continuous in S

(
λ(0)(x̂), ρ(x̂)

)
and for ε0 >

0 δ0(ε0) ∈
(
0,

ρ(x̂)
2

]
such that, for any λ(x̂), λ̃(x̂) ∈ S

(
λ(0)(x̂), ρ(x̂)

)
the inequal-

ity ‖λ(x̂) − λ̃(x̂)‖ < δ0(ε0) holds. Choosing

α ≥ α0 = max(1, γν(x̂, h1)‖Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(0)(x̂), ṽ(0)(x̂, [·]))‖/δ0),

we construct an iterative process:

λ(1,0)(x̂) = λ(0)(x̂),

λ(1,m+1)(x̂) = λ(1,m)(x̂) − 1
α

(∂Qν,h1

(
x̂, û, ŵ, λ(1,m), ṽ(0)

)

∂λ

)−1

×
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× Qν,h1

(
x̂, û, ŵ, λ(1,m), ṽ(0)

)
, x̂ ∈ [0, ω],m = 1, 2, 3, . . . . (15)

By theorem 1 of [4], the iterative process (15) in the norm ‖ · ‖0 converges to
λ(1)(x̂) which is isolated solutions of the equation Qν,h1

(
x̂, û, ŵ, λ, ṽ(0)

)
= 0, in

the set S
(
λ(0)(x̂), ρ(x̂)

)
and the estimate holds:

‖λ(1)(x̂) − λ(0)(x̂)‖ ≤ γν(x̂, h1)‖Qν,h1(x̂, û, ŵ, λ(0), ṽ(0))‖ < ρ(x̂). (16)

By virtue of the arbitrariness of x̂ this estimate is valid for all x ∈ [0, ω]. By
our assumptions function ṽ

(1)
r (x̂, t) is solution of the Cauchy problem (7), (8) for

u(x, t) = û(x̂, t), w(x, t) = ŵ(x̂, t), λr(x) = λ
(1)
r (x̂). From the operator’s structure

Qν,h1

(
x̂, û, ŵ, λ, ṽ

)
and the equality Qν,h1

(
x̂, û, ŵ, λ(1), ṽ(0)

)
= 0 it follows

γν(x̂, h1)‖Qν,h1(x̂, û, ŵ, λ(1), ṽ(1))‖ ≤

≤ γν(x̂, h1)‖Qν,h1(x̂, û, ŵ, λ(1), ṽ(1)) − Qν,h1(x̂, û, ŵ, λ(1), ṽ(0))‖ ≤ γν(x̂, h1)×

× max
r=1,N1

∣∣∣
∫ rh1

(r−1)h1

L(x̂) . . .

∫ τν−1

(r−1)h1

L(x̂)‖v(1)
r (x̂, τν) − ṽ(0)

r (x̂, τν)‖dτν . . . dτ1

∣∣∣ ≤

≤ γν(x̂, h1)
1
ν!

(
L(x̂)h1

)ν‖ṽ(1))(x̂, [·]) − ṽ(0))(x̂, [·])‖2. (17)

If λ(x̂) ∈ S
(
λ(1)(x̂), ρ(1)(x̂)+ ε̂

)
, where ρ(1)(x̂) = ‖Qν,h1(x̂, û, ŵ, λ(1), ṽ(1))‖×

×γν(x̂, h1), the number ε̂ > 0 satisfies the following inequality

γν(x̂, h1)‖Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(0)(x̂), ṽ(0)(x̂, [·]))‖ +
γν(x̂, h1)

1 − qν(x̂, h1)
×

× 1
ν!

(
L(x̂)h1

)ν‖ṽ(1))(x̂, [·]) − ṽ(0))(x̂, [·])‖2 + ε̂ < ρ(x̂)

for all x̂ ∈ [0, ω]; then, by inequalities 3, 4 of theorem and (16), (17), we have

‖λ(x̂) − λ(0)(x̂)‖ ≤ ‖λ(x̂) − λ(1)(x̂)‖ + ‖λ(1)(x̂) − λ(0)(x̂)‖ ≤ ‖λ(1)(x̂) − λ(0)(x̂)‖+

+γν(x̂, h1)‖Qν,h1(x̂, û, ŵ, λ(1), v(1))‖ + ε̂+ ≤ γν(x̂, h1)‖Qν,h1(x̂, û, ŵ, λ(0), v(0))‖+

+ γν(x̂, h1)
1

ν!
L(x̂)h1

ν‖v(1))(x̂, [·]) − v(0))(x̂, [·])‖2 + ε̂ < ρ(x̂), (18)

i.e., S(λ(1)(x̂), ρ(1)(x̂) + ε̂) ⊂ S(λ(0)(x̂), ρ(x̂)). From the conditions of Theorem
it follows that the operator Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(x̂), ṽ(1)(x̂, [·])) in S(λ(1)(x̂),
ρ1(x̂) + ε̂) satisfies all the conditions of Theorem theo1 of [4].

Therefore, the iterative process

λ(2,0)(x̂) = λ(1)(x̂),
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λ(2,m+1)(x̂) = λ(2,m)(x̂) − 1
α

(∂Qν,h1

(
x̂, û, ŵ, λ(2,m), ṽ(1)

)

∂λ

)−1

×

×Qν,h1

(
x̂, û, ŵ, λ(2,m), ṽ(1)

)
, x̂ ∈ [0, ω], m = 1, 2, 3, . . . ,

converges to λ(2)(x̂) by the norm ‖ · ‖0, where λ(2)(x̂) is isolated solu-
tion to the equation Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(x̂), ṽ(1)(x̂, [·])) = 0, in the set
S(λ(1)(x̂), ρ(1)(x̂) + ε̂), x̂ ∈ [0, ω] and

‖λ(2)(x̂) − λ(1)(x̂)‖ ≤ γν(x̂, h1)‖Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(1)(x̂), ṽ(1)(x̂, [·]))‖ ≤

≤ γν(x̂, h1)
1
ν!

(
L(x̂)h1

)ν‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2.

Since ṽ
(2)
r (x̂, t) is the solution to Cauchy problem (7), (8) at u = û, w =

ŵ, λr(x) = λ2
r(x̂), we can evaluate the estimate of difference ṽ

(2)
r (x̂, t)−ṽ

(1)
r (x̂, t) :

‖ṽ(2)
r (x̂, [·]) − ṽ(1)

r (x̂, [·])‖2 ≤ (
eL(x̂)h1 − 1

)‖λ2
r(x̂) − λ1

r(x̂)‖ ≤

≤ (
eL(x̂)h1 − 1

)
γν(x̂, h1)

1
ν!

(
L(x̂)h1

)ν‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2.
From the latest estimates, we have

‖ṽ(2)
r (x̂, [·]) − ṽ(1)

r (x̂, [·])‖2 ≤

≤
(
1 +

(
eL(x̂)h1 − 1

)
γν(x̂, h1)

1
ν!

(
L(x̂)h1

)ν
)
‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2.

Assuming that the pair
(
λ(k−1)(x̂), ṽ(k−1)(x̂, [t])

)
∈ S(λ(0)(x̂), ρ(x̂) ×

S(ṽ(0)(x, [t]), ρ̃(x)) is defined and the following estimates are established

‖λ(k−1)(x̂) − λ(k−2)(x̂)‖ ≤ qν(x̂, h1)‖λ((k−2))(x̂) − λ(k−3)(x̂)‖ ≤

≤ [qν(x̂, h1)]k−3γν(x̂, h1)
1
ν!

(
L(x̂)h1

)ν‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2, (19)

γν(x̂, h1)‖Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(k−1)(x̂), ṽ(k−1)(x̂, [·]))‖ ≤
≤ qν(x̂, h1)‖λ((k−1))(x̂) − λ(k−2)(x̂)‖, (20)

we find k-th approximation by parameter λ(k)(x̂) from the next equation

Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(x̂), ṽ(k−1)(x̂, [·])) = 0.

Using (19), (20) and equality Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(k−1)(x̂), ṽ(k−2)(x̂, [·]))=0,
similarly to (18), we establish the validity of inequality

γν(x̂, h1)‖Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(k−1)(x̂), ṽ(k−1)(x̂, [·]))‖ ≤

≤ [qν(x̂, h1)]k−2γν(x̂, h1)
1
ν!

(
L(x̂)h1

)ν‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2. (21)
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We take ρ(k−1)(x̂) = Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(k−1)(x̂), ṽ(k−1)(x̂, [·])) and show
that S(λ(k−1)(x̂), ρ(k−1)(x̂)+ ε̂) ∈ S(λ(0)(x̂), ρ(x̂)). Indeed, from the inequalities
(19)-(21) and (3) condition of Theorem, we have

‖λ(x̂) − λ(0)(x̂)‖ ≤ ‖λ(x̂) − λ(k−1)(x̂)‖ + ‖λ(k−1))(x̂) − λ(k−2)(x̂)‖+

+ . . . + ‖λ(1)(x̂) − λ(0)(x̂)‖ < ρ(k−1)(x̂) + λ(k−2)(x̂) − λ(k−1)(x̂)‖+

+ . . . + ‖λ((1))(x̂) − λ(0)(x̂)‖ ≤ γν(x̂, h1)
1

ν!
L(x̂)h1

ν‖v(1)(x̂, [·]) − v(0)(x̂, [·])‖2×

× [qν(x̂, h1)]
k−2 + [qν(x̂, h1)]

k−1 + . . . + 1 + γν(x̂, h1)‖Qν,h1(x̂, û(x, ·), ŵ(x, ·),

λ(0)(x̂), v(0)(x̂, [·]))‖ + ε̂ + γν(x̂, h1)
1

ν!
L(x̂)h1

ν‖v(1)(x̂, [·]) − v(0)(x̂, [·])‖2 < ρ(x̂).

Since Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(x̂), ṽ(k−1)(x̂, [·])) satisfies all the conditions of
theorem 1 of [4] in the set S(λ(k−1)(x̂), ρ(k−1)(x̂)+ ε̂), then there exists λ(k)(x̂) ∈
S(λ(k−1)(x̂), ρ(k−1)(x̂) + ε̂) is a solution to the equation

Qν,h1(x̂, û(x, ·), ŵ(x, ·), λ(x̂), ṽ(k−1)(x̂, [·])) = 0

and the following estimate holds

‖λ(k)(x̂) − λ(k−1)(x̂)‖ ≤

≤ γν(x̂, h1)‖Qν,h1(x̂, û(x̂, ·), ŵ(x̂, ·), λ(k−1)(x̂), ṽ(k−1)(x̂, [·]))‖. (22)

In view of the arbitrariness x̂ the estimate (22) is valid for all x ∈ [0, ω].
Taking into account that ṽ

(k)
r (x̂, t) is the solution of Cauchy problem (7), (8)

for u(x, t) = û(x̂, t), w(x, t) = ŵ(x̂, t), λr(x) = λ
(k)
r (x̂) on ∈ [0, ω] × [(r − 1)

h1, h1), r == 1, N1 and using inequalities (19), (22), we set the following estimate

‖λ(k)(x̂) − λ(k−1)(x̂)‖ ≤

≤ qν(x̂, h1)γν(x̂, h1)
1
ν!

(
L(x̂)h1

)ν‖ṽ(1)(x̂, [·]) − ṽ(0)(x̂, [·])‖2, (23)

‖ṽ(k)
r (x̂, [·]) − ṽ(k−1)

r (x̂, [·])‖2 ≤
≤ qν(x̂, h1)‖ṽ(k−1)(x̂, [·]) − ṽ(k−2)(x̂, [·])‖, k = 2, 3, . . . (24)

where(x̂, t) ∈ [0, ω] × [(r − 1)h1, h1), r = 1, N1. From the inequalities (23), (24)
and qν(x̂, h1) < 1 it follows that the sequence of pairs

(
λ(k)(x̂), ṽ(k)(x̂, [t])

)

converges to
(
λ∗(x̂), ṽ∗(x̂, [t])

)
as k → ∞, the solution of the problem (7)-(10),

where u(x, t) = = û(x̂, t), w(x, t) = ŵ(x̂, t). Passing to the limit as k → ∞ in
inequalities (23), (24), we obtain estimates (a) and (b) of Theorem. Theorem 1
is proved.
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3 Application Method of Euler’s Modification
to the System of Nonlinear Hyperbolic Equations

For finding the approximate solution of semi-periodical boundary problem (4)-
(6) we use a method of Euler’s modification. Divide the interval [0, ω] with step
h0 on N0 parts N0h0 = ω.

Vector functions v(0)(t), v̇(0)(t), u(0)(t), w(0)(t) are defined by:

v(0)(t) = 0, v̇(0)(t) = 0, u(0)(t) = ψ(t), w(0)(t) = ψ̇(t), t ∈ [0, T ],

respectively. Solving a system of periodic boundary value problems

dv(1)

dt
= f(0, t, u(0)(t), w(0)(t), v(1)), t ∈ [0, T ], v(1)(0) = v(1)(T ), (25)

we find a vector function v(1)(t). By v(1)(t) and v̇(1)(t) we define the functions:

u(1)(t) = ψ(t) + h0v
(1)(t), w(1)(t) = ψ̇(t) + h0v̇

(1)(t), t ∈ [0, T ].

Assuming that the functions v(i−1)(t), u(i−1)(t), and w(i−1)(t) are known
and solving the boundary value problem

dv(i)

dt
= f((i − 1)h0, t, u

(i−1)(t), w(i−1)(t), v(i)), t ∈ [0, T ], (26)

v(i)(0) = v(i)(T ), i = 2, N0 + 1, (27)

we find the function v(i)(t).
Using v(i)(t) and v̇(i)(t), we define the functions u(i)(t), and w(i)(t) by the

following equals

u(i)(t) = ψ(t) + h0

i−1

j=0

v(j)(t), w(i)(t) = ψ̇(t) + h0

i

j=0

v̇(j)(t), t ∈ [0, T ], i = 1, N0.

Assuming that the considered periodic boundary value problems for systems
of ordinary differential equations (25), (26), (27) have a solution v(i)(t) for all
i = 1, N0 + 1 on the domain Ω, we construct the following functions:

uh0(x, t) = ψ(t) + h0

i−1∑
j=0

v(j)(t) + v(i)(t)(x − (i − 1)h0), (28)

wh0(x, t) = ψ̇(t) + h0

i−1∑
j=0

v̇(j)(t) + v̇(i)(t)(x − (i − 1)h0), (29)

vh0(x, t) = v(i+1)(t)
x − (i − 1)h0

h0
+ v(i)(t)

ih0 − x

h0
, x ∈ [(i − 1)h0, ih0). (30)

We investigate the periodic boundary value problems for systems of ordinary
differential equations (25), (26), (27) by the parametrization method [5]. Take
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a step h1 > 0 : N1h1 = T, N1 = 1, 2, 3, ..., and make a partition [0, T ) =
N1⋃
r=1

[(r − 1)h1, rh1). The restriction of v(i)(t) on r - th interval is denoted by

v
(i)
r (t) : v

(i)
r (t) = v(i)(t),

t ∈ [(r − 1)h1, rh1). By λ
(i)
r we denote the value of the function v(i)(t) at the

point t = (r − 1)h1, r = 1, N1, i = 1, N0, and on each interval [(r − 1)h1, rh1)
make the replacement: ṽ

(i)
r (t) = v

(i)
r (t)−λ

(i)
r , r = 1, N1, i = 1, N0 + 1. We obtain

the following multi-point boundary value problem with a parameter

dṽ
(i)
r

dt
= f((i − 1)h0, t, u

(i−1)(t), w(i−1)(t), ṽ(i)
r + λ(i)

r ),

t ∈ [(r − 1)h1, rh1), r = 1, N1, (31)

ṽ(i)
r [(r − 1)h1] = 0, r = 1, N1, i = 1, N0 + 1, (32)

λ
(i)
1 − lim

t→T−0
ṽ
(i)
N1

(t) − λ
(i)
N1

= 0, i = 1, N0 + 1, (33)

λ(i)
s + lim

t→sh1−0
ṽ(i)

s (t) − λ
(i)
s+1 = 0, s = 1, N1 − 1, i = 1, N0 + 1. (34)

For fixed values of the parameters λ
(i)
r , i = 1, N0 + 1, the Cauchy problem

(31), (32) is equivalent to the nonlinear Volterra integral equations

ṽ(i)
r (t) =

∫ t

(r−1)h1

f((i − 1)h0, τ, u
(i−1)(τ), w(i−1)(τ), ṽ(i)

r (τ) + λ(i)
r )dτ,

t ∈ [(r − 1)h1, rh1), r = 1, N1, i = 1, N0 + 1. (35)

For the problem of (33)-(34) the system of nonlinear equations with respect
to entered parameters (12) has the form:

Qν,h1((i − 1)h0, ψ(·) + h0

i−1∑
j=0

v(j)(·), ψ̇(·) + h0

i−1∑
j=0

v̇(j)(·), λ(i), ṽ(i)[·]) = 0. (36)

Obviously, that if v(i)(t), i = 1, N0 + 1 is a solution to problem (26), (27), then
its corresponding pair

(
λ
(i)
r , ṽ

(i)
r (t)

)
is a solution to problem (31)-(34). Taking

functions ρh0(x) > 0, ρ̃h0(x) > 0, ρ4,h0(x) > 0, and ρ3,h0(x) = ρ̃h0(x) + ρh0(x)
continuous on [0, ω], we construct the sets

S
(
λ
(0)
h0

(x), ρh0 (x)
)
= {λ(x) ∈ C([0, ω], RnN1 ) : ‖λ(x) − λ

(0)
h0

(x)‖0 < ρh0 (x)},

S
(
ṽ
(0)
h0

(x, [t]), ρ̃h0 (x)
)
= {ṽ(x, [t]) ∈ C(Ω, h1, RnN1 ) : ‖ṽ(x, [·]) − ṽ

(0)
h0

(x, [·])‖2 < ρ̃h0 (x)},

S
(
uh0 (x, t), ρ4,h0 (x)

)
= {u(x, t) ∈ C(Ω) : ‖u(x, ·) − uh0 (x, ·)‖1 < ρ4,h0 (x)},

S
(
vh0 (x, t), ρ1,h0 (x)

)
= {v(x, t) ∈ C(Ω) : ‖v(x, ·) − vh0 (x, ·)‖1 < ρ3,h0 (x)}
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S
(
wh0 (x, t), ρ4,h0 (x)

)
= {wh0 (x, t) ∈ C(Ω) : ‖wh0 (x, ·) − wh0 (x, ·)‖1 < ρ4,h0 (x)},

G0
2(h0, ρh0 (x), ρ̃h0 (x), ρ4,h0 (x)) = {(x, t, u, w, v) : (x, t) ∈ Ω, ‖u − uh0 (x, ·)‖1 <

< ρ4,h0 (x), ‖w − wh0 (x, ·)‖1 < ρ4,h0 (x), ‖v − vh0 (x, ·)‖1 < ρ4,h0 (x)}.

Condition B. For some h0 > 0 : N0h0 = ω the periodic boundary value prob-
lems to systems of ordinary differential equations (27)-(29) have solutions
v(1)(t), v(2)(t), . . . , v(N0)(t), v(N0+1)(t) and the function f(x, t, u, w, v) has uni-
formly continuously partial derivatives in u,w, v on the set G0

2(h0, ρh0(x), ρ̃h0(x),
ρ2,h0(x)), satisfying the inequalities |fu(x, t, u, w, v)| ≤ L1(x), |fw(x, t, u, w, v)|
≤ L2(x), ‖fv(x, t, u, w, v)| ≤ L3(x), where Li(x), i = 1, 2, 3 are functions con-
tinuous
on [0, ω]. Taking as an initial approximation of triple {uh0(x, t), wh0(x, t), vh0

(x, t)}, we find the solution to problem (4)-(6) as a limit of the sequence of
triples {u(k)(x, t), w(k)(x, t), v(k)(x, t)}, k = 1, 2, 3... determined by the following
algorithm.
Step 1. (A) We find the function v(1)(x, t) from the boundary value problem
(4),(5) with u(x, t) = u

(0)
h0

(x, t), w(x, t) = w
(0)
h0

(x, t). Let λ
(1,0)
r (x) = λ

(0)
h0,r(x) =

= vh0(x, (r − 1)h1), and let the function ṽ
(1,0)
r (x, t) be a restriction of function

ṽ
(0)
h0

(x, t) to r− th interval t ∈ [(r − 1)h1, rh1), r = 1, N1.
The following approaches are defined by the algorithm:

Step 1.1 a1) Parameter λ(1,1)(x) is determined from the equation (2) with
ṽ = ṽ(1,0).
b1) Solving the Cauchy problem (7), (8) for λr(x) = λ

(1,1)
r (x), we find the func-

tion ṽ
(1,1)
r (x, t).

Step 1.2 a1) Substituting the found function ṽ
(1,1)
r (x, t), r = 1, N1 in the equa-

tion (12), we solve it and find λ(1,2)(x).
b1) For λr(x) = λ

(1,2)
r (x) we solve the Cauchy problem (6), (7) and find

ṽ
(1,2)
r (x, t). And so on.

We obtain system of pairs
(
λ
(1,m)
r (x), ṽ

(1,m)
r (x, t)

)
, r = 1, N1 on m - th step

of the algorithm. Assume that λ(1,m)(x) and ṽ(1,m)(x, [t]) converges to λ(1)(x) ∈
C([0, ω], RnN1), ṽ(1)(x, [t]) ∈ C(Ω, h1, R

nN1) as m → ∞ by the norm ‖ · ‖0 and
‖ · ‖2,0.
Then the function v(1)(x, t) is determined by the equalities

v(1)(x, t) = λ
(1)
r (x) + ṽ

(1)
r (x, t), (x, t) ∈ Ωr, r = 1, N1,

v(1)(x, T ) = λ
(1)
N1

(x) + lim
t→T−0

ṽ
(1)
N1

(x, t).

(B) By v(1)(x, t), v
(1)
t (x, t) we find the first approaches of functions u(x, t),

w(x, t) from the equalities u(1)(x, t) = ψ(t) +
∫ x

0
v(1)(ξ, t)dξ ? w(1)(x, t)

= ψ̇(t) +
∫ x

0
v
(1)
t (ξ, t)dξ.

Step 2. (A) Solving boundary value problem (4),(5) with u(x, t) = u(1)(x, t),
w(x, t) == w(1)(x, t), we find the function v(2)(x, t). We take λ

(2,0)
r (x) = λ

(1)
r (x),
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ṽ
(2,0)
r (x, t) == ṽ

(1)
r (x, t), r = 1, N1 and we find the solution to an equivalent

boundary value problem with parameter from the following algorithm:
Step 2.1 a1) We determine parameter λ(2,1)(x) from the equation (12) for
ṽ = ṽ(2,0).
b1) Solving the Cauchy problem (7), (8) with λr(x) = λ

(2,1)
r (x), we find function

ṽ
(2,1)
r (x, t), r = 1, N1.

Step 2.2 a1) Substituting the found functions ṽ
(2,1)
r (x, t), r = 1, N1 in the equa-

tion (12), we solve it and find λ(2,2)(x).
b1) Solving the Cauchy problem (7), (8) for λr(x) = λ

(2,2)
r (x), we find func-

tion ṽ
(2,2)
r (x, t). So on. We obtain the system of pairs

(
λ
(2,m)
r (x), ṽ(2,m)

r (x, t)
)
,

r = 1, N1, on the m− th step of the algorithm. Assume that λ(2,m)(x) and
ṽ(2,m)(x, [t]) converges to λ(2)(x) ∈ C([0, ω], RnN1), ṽ(2)(x, [t]) ∈ C(Ω, h1, R

nN1)
as m → ∞ by the norm ‖ · ‖0 and ‖ · ‖2,0.
Then the function v(2)(x, t) is determined by the equalities v(2)(x, t) = λ

(2)
r (x)+

+ṽ
(2)
r (x, t), (x, t) ∈ Ωr, r = 1, N1, v

(2)(x, T ) = λ
(2)
N1

(x) + lim
t→T−0

ṽ
(2)
N1

(x, t).

(B) By the function v(2)(x, t) we define u(2)(x, t) = ψ(t) +
∫ x

0
v(2)(ξ, t)dξ and

w(2)(x, t) = ψ̇(t) +
∫ x

0
v
(2)
t (ξ, t)dξ.

Continuing the process, we obtain a system of triples {u(k)(x, t),
w(k)(x, t), v(k)(x, t)}, k = 1, 2, 3, ..., on the k-th step of the algorithm. We intro-
duce the following notations:
a1,i

h0
(x, h1) = [L1(x) + L2(x)]h1 max(‖v(i)(·)‖1, ‖v̇(i)(·)‖1)|x − (i − 1)h0|eL3(x)h1 ,

a2,i
h0

(x, h1) = ‖f(x, ·, ψ(·) + h0

i−1∑
j=0

v(j)(·), ψ̇(·) + h0

i−1∑
j=0

v̇(j)(·), vh0 ((i−1)h0, ·))−

−f((i−1)h0, ·, ψ(·) + h0

i−1∑
j=0

v(j)(·) + h0

i−1∑
j=0

v̇(j)(·), vh0 ((i − 1)h0, ·))‖1eL3(x)h1h1,

a3,i
h0

(x, h1) = a1,i
h0

(x, h1) + a2,i
h0

(x, h1), a4,i
h0

(x, h1) = ‖Qν,h1 (x, ψ(·) + h0

i−1∑
j=0

v(j)(·), ψ̇+

+h0

i−1∑
j=0

v̇(j)(·), λ(0)
h0

((i − 1)h0), ṽ
(0)
h0

((i − 1)h0, [·])) − Qν,h1 ((i − 1)h0, ψ(·) + h0

i−1∑
j=0

v(j)(·),

ψ̇(·) + h0

i−1∑
j=0

v̇(j)(·), λ(0)
h0

((i − 1)h0), ṽ
(0)
h0

((i − 1)h0, [·]))‖, a5,i
h0

(x, h1) = ‖v(i+1)(·)−

−v(i)(·)‖1
∣∣∣x − (i − 1)h0

h0

∣∣∣ + a6,i
h0

(x, h1), a6,i
h0

(x, h1) = max
r=1,N1

‖v(i+1)[(r − 1)h1]−

−v(i)[(r − 1)h1]‖
∣∣∣x − (i − 1)h0

h0

∣∣∣, a7,i
h0

(x, h1) =

ν−1∑
j=0

1

j!
(L3(x)h1)

j

a1,i
h0

(x, h1)+

+a4,i
h0

(x, h1) +
1

ν!
(L3(x)h1)

νa5,i
h0

(x, h1), a
8,i
h0

(x, h1) =
1

ν!
(L3(x)h1)

νa6,i
h0

(x, h1)+

+a7,i
h0

(x, h1), a9,i
h0

(x, h1) =
[
L1(x) + L2(x)

]
max

(
‖v(i)(·)‖1, ‖v̇(i)(·)‖1

)
×

×|x − (i − 1)h0| + ‖f(x, ·, ψ(·) + h0

i−1∑
j=0

v(j)(·), ψ̇(·) + h0

i−1∑
j=0

v̇(j)(·), v(i)(·))−
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−f((i − 1)h0, ·, ψ(·) + h0

i−1∑
j=0

v(j)(·), ψ̇(·) + h0

i−1∑
j=0

v̇(j)(·), v(i)(·))‖1+

+L3(x)a5
h0

(x, h1), x ∈ [(i − 1)h0, ih0), i = 1, N0.

The next theorem establishes the sufficient conditions of existence the triples
{u∗(x, t), w∗(x, t), v∗(x, t)} which is the solution to problem (4)-(6) and estab-
lishes the estimate of the differences ‖u∗ − uh0(x, ·)‖1, ‖w∗ − wh0(x, ·)‖1, ‖v∗ −
vh0(x, ·)‖1.
Theorem 2. Suppose, for some h0 > 0 : N0h0 = ω, h1 > 0 : N1h1 =
T (N1 = 1, 2, 3, ...), ν ∈ N, the condition B holds and the Jacobi matrix
∂Qν,h1(x, u, w, λ, ṽ)

∂λ
is invertible for any (x, u(x, t), w(x, t), λ(x), ṽ(x, [t])) ∈

[0, ω] × S
(
uh0(x, t), ρ2,h0(x)

)
× S

(
wh0(x, t), ρ2,h0(x)

)
× S

(
λ
(0)
h0

(x), ρh0(x)
) ×

S
(
ṽ
(0)
h0

(x, [t]), ρ̃h0(x)
)
, and the following inequalities hold:

1.
∥∥∥
[∂Qν,h1(x, u, w, λ, ṽ)

∂λ

]−1∥∥∥ ≤ γν(x, h1),

2. qν(x, h1) = γν(x, h1){eL3(x)h1 −
ν∑

i=1

1
i!

(
L3(x)h1

)i

} < 1,

3. ah0(x, h1) + c1h0
(x, h1)Bh0(x, h1) exp

( ∫ x

0
ch0(ξ, h1)dξ

)
< ρh0(x),

4. bh0(x, h1) + c1h0
(x, h1)Bh0(x, h1) exp

( ∫ x

0
ch0(ξ, h1)dξ

)(
eL3(x)h1−1

)
<

ρ̃h0(x),
5. Bh0(x, h1) exp

( ∫ x

0
ch0(ξ, h1)dξ

)
< ρ4,h0(x),

where b1h0
(x, h1) = γν(x, h1)a7

h0
(x, h1) + [1 + γν(x, h1)

1
ν!

(
L3(x)h1

)ν

]a6
h0

(x, h1),

b2h0
(x, h1) = 2a3

h0
(x, h1) + eL3(x)h1 − 1)

[
b1h0

(x, h1) + a6
h0

(x, h1)
]
, ah0(x, h1) =

= γν(x, h1)a8
h0

(x, h1) +
γν(x, h1)

1 − qν(x, h1)
1
ν!

(
L3(x)h1

)ν

b2h0
(x, h1), bh0(x, h1) =

= b2h0
(x, h1)

[
1 +

γν(x, h1)
1 − qν(x, h1)

1
ν!

(
L3(x)h1

)ν

(eL3(x)h1 − 1)
]
, d1h0

(x, h1) =

= ah0(x, h1) + bh0(x, h1), d2h0
(x, h1) = a9

h0
(x, h1) + L3(x)dh0(x, h1), c1h0

(x, h1) =

= [L1(x) + L2(x)]h1

[
1 +

γν(x, h1)
1 − qν(x, h1)

1
ν!

(
L3(x)h1

)ν

(eL3(x)h1 − 1)
]
eL3(x)h1×

×
ν−1∑
j=0

1
j!

(
L3(x)h1

)j

γν(x, h1), c2h0
(x, h1) = L1(x) + L2(x) + L3(x)c1h0

(x, h1),
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ch0(x, h1) = max
(
c1h0

(x, h1), c2h0
(x, h1)

)
, Bh0(x, h1) = max

(∫ x

0

d1h0
(ξ, h1)dξ+

+
∫ x

0

d2h0
(ξ, h1)dξ

)
+ 3h0 · max

(
max

i=1,N0+1
‖v(i)(·)‖1, max

i=1,N0+1
‖v̇(i)(·)‖1

)
.

Here as
h0

(x, h1) = as,i
h0

(x, h1), s = 1, 9 at x ∈ [(i − 1)h0, ih0), i = 1, N0.
Then problem (4)-(6) has the isolated solution {u∗(x, t), w∗(x, t), v∗(x, t)} in

S
(
uh0(x, t), ρ2,h0(x)

)
× S

(
wh0(x, t), ρ2,h0(x)

)
× S

(
vh0(x, t), ρ1,h0(x)

)
and the

following estimates are valid:

‖v∗ − vh0(x, ·)‖1 ≤

≤ d1h0
(x, h1) + c1h0

(x, h1)eL(x)h1Bh0(x, h1) exp
( ∫ x

0

ch0(ξ, h1)dξ
)
,

max
(‖u∗ − uh0(x, ·)‖1, ‖w∗ − wh0(x, ·)‖1

) ≤ Bh0(x, h1) exp
( ∫ x

0

ch0(ξ, h1)dξ
)
.
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Abstract. In this paper we consider a nonlinear semi-periodic
boundary-value problem for a partial differential equation. By means
of a replacement, the nonlinear problem is reduced to a linear semi-
periodic boundary-value problem for hyperbolic equations with a mixed
derivative. To solve the obtained problem, partitioning by the first vari-
able is made. Further, in the obtained domains, the parametrization
method proposed in the works of D.S. Dzhumabaev for solving a two-
point boundary value problem for an ordinary differential equation is
applied. A new algorithm for finding the solution to the given problem
is proposed. Sufficient conditions for the unique solvability of a semi-
periodic boundary-value problem with arbitrary functions for a nonlinear
partial differential equation are established.

Keywords: Nonlinear equation · Algorithm · Semi-periodic boundary
value problem · Parametrization method · Systems of hyperbolic
equations · Solvability conditions

1 Introduction

We consider a nonlinear semi-periodic boundary-value problem for a partial dif-
ferential equation. Earlier in work of G.B. Whitham [4] the equations containing
arbitrary parameters of the form

∂2z

∂x∂y
= K · ∂z

∂x
· ∂z

∂y
+ s

∂z

∂x
+ m

∂z

∂y

are considered. Such equations are encountered in some problems of chemical
technology and chromatography. In the paper, by using a replacement, a non-
linear semi-periodic boundary value problem with arbitrary functions is reduced

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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to a linear semi-periodic boundary-value problem for hyperbolic equations with
a mixed derivative. The obtained problem was investigated in [2,3] by the para-
metrization method [1]. In this paper, we propose a new approach to solving a
linear semi-periodic boundary-value problem, where the partition is made both
with respect to the variable y, and the variable x.

2 Formulation of the Problem

On Ω = [0,X] × [0, Y ] we consider the periodic boundary value problem for
nonlinear differential equations with partial derivatives

∂2z

∂x∂y
= k · ∂z

∂x
· ∂z

∂y
+ a(x, y) · ∂z

∂x
+ f(x, y), (1)

z(0, y) = ψ(y), (2)

z(x, 0) = z(x, T ), (3)

where k = const, ψ(y) is given function depending on y, a(x, y), f(x, y) are
arbitrary functions depending on x and y.

To solve the problem (1) - (3) u = ekz we make the replacement, then we
obtain the linear periodic boundary value problem

∂2u

∂x∂y
= a(x, y) · ∂u

∂y
+ k · f(x, y) · u, (4)

u(0, y) = ekψ(y), (5)

u(x, 0) = z(x, Y ), (6)

z(x, y) =
1
k

lnu(x, y). (7)

3 Main Result

We take numbers τ > 0, h > 0 such that Mτ = X, Nh = Y and make a partition

[0,X) =
M⋃

i=1

[(i − 1)τ, iτ), [0, Y ) =
N⋃

j=1

[(j − 1)h, jh), M ≥ 2, N ≥ 2. In

this case, the domain Ω is divided on M × N parts. We denote uij(x, y) as the
restriction of the function u (x, y) to Ωij = [(i−1)τ, iτ)×[(j−1)h, jh), i = 1,M,
j = 1, N.

To find the solution to the problem, we introduce a new unknown function
vij(x, y) = ∂uij(x,y)

∂x , i = 1,M, j = 1, N and we write the problem (4) - (7) in
the form

∂vij

∂y
= A(x, y)vij + k · f(x, y) · uij(x, y), (x, y) ∈ Ωij , (8)

lim
y→sh−0

vis(x, y) = vi,s+1(x, sh), i = 1,M, s = 1, N − 1, (9)
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vi1(x, 0) − lim
t→Y −0

viN (x, y) = 0, i = 1,M,, (10)

u1j(x, y) = ekψ(y) +
∫ x

0

v1j(ξ, y)dξ, y ∈ [(j − 1)h, jh), j = 1, N, (11)

ud+1,j(x, y) = lim
x→dτ−0

udj(x, y) +
∫ x

dτ

vd+1,j(ξ, y)dξ, d = 1,M − 1, (12)

zij(x, y) =
1
k

lnuij(x, y). (13)

We introduce the notation λij(x) = vij(x, (j − 1)h) and make a replacement
ṽij(x, y) = = vij(x, y)−λij(x), i = 1,M, j = 1, N. Then we obtain a bound-
ary value problem with unknown functions λij(x) :

∂ṽij

∂t
= A(x, y)ṽij + A(x, y)λij(x) + k · f(x, y) · uij(x, y), (14)

ṽij(x, (j − 1)h) = 0, (x, y) ∈ Ωij , i = 1,M, j = 1, N, (15)

λi1(x) − λiN (x) − lim
y→Y −0

ṽiN (x, y) = 0, i = 1,M, (16)

λis(x) + lim
y→sh−0

ṽis(x, y) = λi,s+1(x), s = 1, N − 1, (17)

u1j(x, y) = ekψ(y) +
∫ x

0

(ṽ1j(ξ, y) + λ1j(ξ))dξ, y ∈ [(j − 1t)h, jh), j = 1, N, (18)

ud+1,j(x, y) = lim
x→dτ−0

udj(x, y) +
∫ x

dτ

(ṽd+1,j(ξ, y) + λd+1,j(ξ))dξ, (19)

zij(x, y) =
1
k

lnuij(x, y), (20)

where d = 1,M − 1. The last problem is distinguished by the fact that initial
conditions have appeared here, that allow us to define ṽij(x, y) from the integral
equation

ṽij(x, y) =
∫ y

(j−1)h

A(x, η)ṽi j(x, η)dη + λij(x)
∫ y

(j−1)h

A(x, η)dη+

+ k

∫ y

(j−1)h

f(x, η) · uij(x, η)dη, i = 1,M, j = 1, N. (21)

Passing to the limit as y → jh−0 on the right-hand side of (21) and substituting
into (16), (17), we obtain a system of equations with respect to the parameters
λij(x):

Q(x, h)λi(x) = −F (x, h, ui) − G(x, h, ṽi), (22)

where
Q(x, h) =
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=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 . . . 0 −[1 +
y∫

(N−1)h

A(x, η)dη]

1 +
y∫

0

A(x, η)dη −1 . . . 0 0

0 1 +
y∫

h

A(x, η)dη . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 +
y∫

(N−2)h

A(x, η)dη −1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

F (x, h, ui) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k−
y∫

(N−1)h

f(x, η)uiN (x, η)dη

k
y∫

0

f(x, η)ui1(x, η)dη

k
y∫

h

f(x, η)ui2(x, η)dη

... ... ...

k
y∫

(N−2)h

f(x, η)ui,N−1(x, η)dη

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G(x, h, ṽi) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
y∫

(N−1)h

A(x, η)ṽiN (x, η)dη

y∫

0

A(x, η)ṽi1(x, η)dη

y∫

h

A(x, η)ṽi2(x, η)dη

... ... ...
y∫

(N−2)h

A(x, η)ṽi,N−1(x, η)dη

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To find a system of four functions {λij(x), ṽij(x, y), uij(x, y), zij(x, y)}, i = 1,M,
j = 1, N, we have a closed system consisting of equations (22), (21), (18), (19),
(20).

On Ω1j = [0, τ)×[(j−1)h, jh) taking as the initial approximation u
(0)
1j (x, y) =

= ekψ(y), j = 1, N, we find as the limit of the sequence {λ
(k)
1j (x), ṽ(k)1j (x, y)} the

first approximations on λ1j(x), ṽ1j(x, y) determined by the following algorithm:
Step 1. Assuming the reversibility of the matrix Q(x, h) for all x ∈ [0, τ) from

the equation (22), where ṽ(0)1j (x, y) = 0, we find λ
(1)
1 (x) = (λ(1)

11 (x), ..., λ(1)
1N (x))′:

λ
(1)
1 (x) = −[Q(x, h)]−1F (x, h, ψ).

Substituting the found λ
(1)
1j (x), j = 1, N into (21), we get:

ṽ(1)1j (x, y) = λ
(1)
1j (x)

y∫

(j−1)h

A(x, η)dη +

y∫

(j−1)h

(ψ(η) + f(x, η)dη.
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Step 2. From equation (22), where ṽ1j(x, y) = ṽ(1)1j (x, y), we define:

λ
(2)
1 (x) = −[Q(x, h)−1{F (x, h, ψ) + G(x, h, ṽ(1)1 )}.

Again using the expression (21), we find the function ṽ(2)1j (x, y):

ṽ(2)1j (x, y) =
∫ y

(j−1)h

A(x, η)ṽ(1)1j (x, η)dη+

+λ
(2)
1j (x)

∫ y

(j−1)h

A(x, η)dη +
∫ y

(j−1)h

(ψ(η) + f(x, η))dη.

At the k-th step we obtain the system of pairs {λ
(k)
1j (x), ṽ(k)1j (x, y)}, j = 1, N.

We suppose that the solution to problem (14) - (17) being the sequence
of systems of pairs {λ

(k)
1j (x), ṽ(k)1j (x, y)} is defined and converges as k → ∞ to

continuous functions λ∗
1j(x), ṽ∗

1j(x, y) respectively on x ∈ [0, τ), (x, y) ∈ Ω1j .

The functions u∗
1j(x, y), z∗

1j(x, y), j = 1, N are determined from the relations

u∗
1j(x, y) = ψ(y) +

∫ x

0

(ṽ∗
1j(ξ, y) + λ∗

1j(ξ))dξ, z1j(x, y) =
1
k

lnu1j(x, y).

On Ω2j = [τ, 2τ) × [(j − 1)h, jh) taking as the initial approximation u
(0)
2j

(x, y) = = u∗
1j(τ, y), j = 1, N, we find as the limit of the sequence

{λ
(k)
2j (x), ṽ(k)2j (x, y)} the first approximations with respect to λ21j(x), ṽ2j(x, y)

by the algorithm proposed above. And so on.
Sufficient conditions for the unique solvability of a semi-periodic boundary

problem and the conditions for implementability and convergence of the pro-
posed algorithm for finding the solution to problem (14) - (20) the following
theorem is established

Theorem 1. Let for some h > 0 : Nh = Y,N ≥ 2 (Nn × Nn) the matrix
Q(x, h) be invertible for all x ∈ [(i − 1)τ, iτ), i = 1,M,Mτ = X and let the
following inequalities hold:

a) ‖[Q(x, h)]−1‖ ≤ γ(x, h);
b) q(x, h) = [1 + γ(x, h)α(x)h]α(x)h ≤ μ < 1.

Then there exists a unique solution of problem (14) - (20) and the following
estimates hold:

1) max
j=1,N

sup
y∈[(j−1)h,jh)

‖ṽ∗
i+1,j(x, y)− ṽ(m)

i+1,j(x, y)‖+ max
j=1,N

‖λ∗
i+1,j(x)−λ

(m)
i+1,j(x)‖ ≤

≤ θ̃(h)[q̃(h)]m[1 + (τ θ̃(h))i] · max
y∈[0,Y ]

‖ekψ(y)‖,

2) max
j=1,N

sup
y∈[(j−1)h,jh)

‖u∗
i+1,j(x, y) − u

(m)
i+1,j(x, y)‖ ≤
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≤
(i+1)τ∫

iτ

max
j=1,N

sup
y∈[(j−1)h,jh)

‖ṽ∗
i+1,j(ξ, y) − ṽ(m)

i+1,j(ξ, y)‖dξ+

+

(i+1)τ∫

iτ

max
j=1,N

‖λ∗
i+1,j(ξ) − λ

(m)
i+1,j(ξ)‖dξ,

3) max
j=1,N

sup
y∈[(j−1)h,jh)

‖z∗
i+1,j(x, y) − z

(m)
i+1,j(x, y)‖ =

=
1
k

ln max
j=1,N

sup
y∈[(j−1)h,jh)

‖u∗
i+1,j(x, y) − u

(m)
i+1,j(x, y)‖,

where α(x) = max
y∈[0,Y ]

‖A(x, y)‖, q̃(h) = max
x∈[(i−1)τ,iτ)

q(x, h), θ̃(h) =

max
x∈[(i−1)τ,iτ)

θ(x, h), θ(x, h) = [1 + γ(x, h)α(x)h + γ(x, h)q(x, h)] hk
1−q(x,h) max

y∈[0,Y ]

‖f(x, y)‖.

From the equivalence of problems (14) - (20) and (8) - (13) it follows that

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then a semi-periodic
boundary value problem for a non-linear differential equation with arbitrary func-
tions (1) - (3) has a unique solution z∗(x, y).
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Abstract. An analogue of the Schwarz problem for the Moisil–
Teodorescu system is considered in a domain D. It is shown that this
problem has Fredholm property in the Hoelder class Cμ(D). If the
domain D is homeomorphic to a ball, then the problem is investigated
in detail. In particular its index is equal to −1 in this case.

Keywords: Moisil–Teodorescu system · Schwarz problem · Cauchy
type integral · Singular integral equation

Let us consider the Moisil–Teodorescu system [2] in a bounded domain D ⊆
R

3 with smooth boundary Γ for a 4-vector (u1, v), v = (v1, v2, v3) written in the
form

div v = 0, rot v + gradu1 = 0. (1)

It is well known that components u1 and vi are harmonic functions. An analogue
of the Schwarz problem is the following: to find a solution (u1, v) ∈ C(D) of (1)
under boundary value conditions

u+
1 = f1, v+n = f2, (2)

where the sign + points out the boundary value, n = (n1, n2, n3) is the external
unit normal and v+n denotes the inner product.

If the domain D is homeomorphic to a ball, then a general problem of Rie-
mann – Hilbert type is investigated in detail by V.I. Shevchenko [9,10]. Another
approach is based on an integral representation of a special type, and it was
described in [7]. These results we can apply to the problem (1), (2).

Using Gauss– Ostrogradskii formula, it follows from (1), (2) that
∫

Γ

f2(y)dsy = 0. (3)

So this orthogonality condition is necessary for a solvability of the problem.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_15
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Let us introduce a cut as a simply connected smooth surface R ⊆ D with a
smooth boundary ∂R such that R ∩ Γ = ∂R.

Theorem 1. Let Γ = ∂D belong to the class C1,ν , 0 < ν < 1, and there exist
m disjoint cuts R1, . . . , Rm such that the set

DR = D \ R, R = R1 ∪ . . . ∪ Rm, (4)

is a simply connected domain.
Then the dimension of a solution space of the homogeneous problem (1), (2)

is equal to m.

Proof. Let (u1, v) be a solution of homogeneous problem (1), (2). Since the
function u1 is harmonic in the domain D, then u1 = 0 and the second equality
(1) becomes rot v = 0. Hence, in simply connected domain DR the function v
can be defined as gradw of some function w, which is harmonic by virtue of the
first equality of (1). It follows from the second equality of (1) that

∂w+

∂n
= 0. (5)

It follows from (4) that boundary values of w on cuts satisfy the relation

(w+ − w−)
∣∣
Ri

= ci, 1 ≤ i ≤ m, (6)

with some constants ci. Nevertheless equalities c1 = . . . = cm = 0 indicate that
w is univalent function. So it is harmonic in the whole domain D, while in a view
of (5) this is possible only if w is a constant. These arguments prove that the
space of solutions of the homogeneous problem is finite dimensional space and
its dimension doesn’t exceed m.

In fact this dimension is equal to m exactly. Indeed it is sufficiently to prove
that the problem (5), (6) with additional condition

(
∂w
∂n

+

− ∂w
∂n

−)∣∣∣∣
R

= 0, (7)

is always solvable in the domain DR. It is easily to establish with help of the
Dirichlet integral. Let W 1,2(D̂R) denote a space of all functions ϕ such that
for every Lipschitzian subdomain D0 ⊆ DR the restriction ϕ |D0 belongs to
the Sobolev space W 1,2(D0). Obviously there exist one-sided boundary values
ϕ± ∈ L2(R) for elements ϕ of this space. It is proved by usual way [8] that the
minimum of the integral

D(ϕ) =
∫

D

|grad ϕ|2dx

for ϕ ∈ W 1,2(D̂R) satisfying (6) gives a generalized solution of the problem
(5) – (7). In fact this solution is a classical one, it completes the proof.
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Let us consider a question on a Fredholm property of the problem (1), (2).
This question is solved with the help of an integral operator I which is defined
for two vector-valued functions ϕ = (ϕ1, ϕ2) ∈ C(Γ ) by the formula

u1(x) =
1
2π

∫
Γ

(y − x)n(y)
|y − x|3 ϕ1(y)d2y, x ∈ D,

v(x) =
1
2π

∫
Γ

y − x

|y − x|3 ϕ2(y)d2y − 1
2π

∫
Γ

[y − x, n(y)]
|y − x|3 ϕ1(y)d2y,

where d2y is the a surface element and brackets denote a vector product. Note
that the first equality of this formula is the double layer potential for the Laplace
operator.

Lemma 1. The function (u1, v) = Iϕ is a solution of (1), under assumption
Γ ∈ C1,ν the operator I is bounded Cμ(Γ ) → Cμ(D), 0 < μ < ν, and the
following boundary value formula

u+
1 (y0) = ϕ1(y0) +

1

2π Γ

(y − y0)n(y)

|y − y0|3 ϕ1(y)d2y, y0 ∈ Γ,

v+(y0) = ϕ2(y0)n(y0) +
1

2π Γ

y − y0

|y − y0|3 ϕ2(y)d2y − 1

2π Γ

[y − y0, n(y)]

|y − y0|3 ϕ1(y)d2y,

holds, where the integrals of the right-hand side of the second equality are singular
in the sense of the limits of the integrals over Γ ∩ {|y − y0| ≥ ε} as ε → 0 .

Proof. The problem (1), (2) can be written in the form

M

(
∂

∂x

)
u(x) = 0, M(ξ) =

⎛
⎜⎜⎝

0 ξ1 ξ2 ξ3
ξ1 0 −ξ3 ξ2
ξ2 ξ3 0 −ξ1
ξ3 −ξ2 ξ1 0

⎞
⎟⎟⎠ ,

H(y)u+(y) = (f1, f2), H(y) =
(

1 0 0 0
0 n1 n2 n3

)
, (8)

for the 4-vector u(x) = (u1, v1, v2, v3). It is known that the matrix-valued func-
tion M�(x)/|x|3, where 	 is the symbol of matrix transformation is the funda-
mental solution of this system. So for every 4-vector ψ = (ψ1, . . . , ψ4) ∈ C(Γ )
the generalized Cauchy type integral

(I0ψ)(x) =
1
2π

∫
Γ

M�(y − x)
|y − x|3 M [n(y)]ψ(y)d2y, x /∈ Γ, (9)

gives a solution of (8). If ψ satisfies the Hoelder condition and Γ is a surface of
Lyapunov type, then there exists the boundary value

u±(y0) = lim
x→y0,x∈D±

u(x), y0 ∈ Γ,

and the following analogue Plemelj – Sokhotskii formula

u± = ±ψ + u∗ (10)
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is valid, where u∗ = I∗ψ is defined by the singular integral

(I∗ψ)(y0) =
1
2π

∫
Γ

M�(y − y0)
|y − y0|3 M [n(y)]ψ(y)d2y.

These formulas were obtained by A.V. Bitsadze [1]. As it is shown in [6] under
assumption Γ ∈ C1,ν , 0 < ν < 1 the operator I0 is bounded Cμ(Γ ) → Cμ(D),
0 < μ < ν.

Putting ψ = (ϕ1, ϕ2n), we can see that M(n)ψ = (ϕ2, ϕ1n) and
M�(ξ)M(n)ψ = ((ξn)ϕ1, ϕ2ξ − ϕ1[ξ, n]) so we can write

I0(H�ϕ) = Iϕ. (11)

Substituting this expression into (9), (10), we complete the proof.

Theorem 2. Under assumption of Theorem 1 the problem (1), (2) has a Fred-
holm property.

Proof. Denote by S the operator of the boundary value problem (1), (2). By
Lemma 1 the composition of this operator with I gives the formula

(SIϕ)1 = ϕ1 + K11ϕ1, (SIϕ)2 = ϕ2 + K21ϕ1 + +K22ϕ2, (12)

where Kij are the correspondent integral operators on Γ with weak singularities.
As it is proved in [7], these operators are compact in the space Cμ(Γ ), 0 < μ < ν.
By the known Riesz theorem [5] the operator 1+K is Fredholm one and its index
is equal to zero. In particular the image im (1 + K) = im (SI) of this operator
in the space Cμ(Γ ) has a finite codimension. Since imS ⊇ im (SI) the image of
the operator S has the same property. Together with Theorem 1 it follows that
the problem (1), (2) has a Fredholm property.

We can solve the problem of calculating of the index only in the case of the
domain which is homeomorphic to a ball.

Theorem 3. Let the boundary Γ = ∂D be homeomorphic to a sphere and belong
to C2,ν . Then the problem (1), (2) is one-to-one solvable in the class Cμ(D) and
the condition (3) is necessary and sufficient for its solvability.

Proof. By Theorem 1 the homogeneous problem has only trivial solution. It
remains to show that (3) is sufficient for solvability of the problem. First we
establish that the kernel of the operator 1 + K in (12) is a one-dimensional
space. Let ϕ + Kϕ = 0, then considered in D function u = I0(H�ϕ) satisfies
the homogeneous boundary conditions (2) and therefore u = 0.

Let us set w = I0(H�ϕ) in the external domain D1 = R
3 \D. It is obviously

w(x) = O(|x|−2) as |x| → ∞. (13)

According to (10) we have also the relation

− w− = 2H�ϕ. (14)
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Let Γ0 ⊆ Γ be a simply connected domain with a smooth boundary ∂Γ0.
Under assumption Γ ∈ C2,ν there exist linear independent tangent vectors p, q ∈
C1,ν(Γ0). They define 2 × 4 matrix

G =
(

0 p1 p2 p3
0 q1 q2 q3

)
,

such that GH� = 0, where H is defined in (8). From (14) it follows that

Gw− = 0. (15)

The matrix G satisfies the well-known complementary condition which is
guaranteed the Fredholm solvability of the problem. Let gkr be minor defined
by k− and r−th columns of the G. Let us consider the vector s = (s1, s2, s3),
where s1 = g12 + g34, s2 = g13 − g24, s3 = g14 + g23, is not tangent to Γ . Then
the complementary condition is valid if the vector s is not tangent to Γ [10]. In
our case s = [p, q] and this condition is fulfilled.

Let us prove that the function w is continuously differentiable in D1 up
to Γ0 \ ∂Γ0. For this purpose we consider a domain D0 ⊂ D1 with smooth
boundary ∂D0 ∈ C2,ν such that Γ ∩∂D0 = Γ0. Then the matrix-valued function
G can be extended smoothly to Γ0 such that this continuation G0 satisfies the
complimentary condition on ∂D0. The function w0 = w

∣∣
D0

is a solution of the
problem

G0

(
w0

∣∣
∂D0

)
= f0,

where f0 ∈ Cμ(∂D0) and f0 = 0 on Γ0. This function can be considered as a
weak solution and it belongs to C1,+0(D′

0) on the basis of the theorem on a local
smoothness [4], where the subdomain D′

0 ⊆ D0 is such that Γ ′ = ∂D′
0∩∂D0 ⊆ Γ0

and Γ ′ ∩ ∂Γ0 = ∅.
Let us write w = (u1, v), then the boundary condition (15) for the system

(1) takes the form
v−p = v−q = 0 on Γ. (16)

Arguing as above we prove u1 = 0 in D1. In fact by Stokes theorem
∫

Γ0

(rot v)−(x)n(x)dsx =
∫

∂Γ0

v−(y)e(y)dy,

where e(y) is unite tangent vector to ∂Γ0. By virtue of (16) the vector v− is
proportional to n on Γ0 and hence v−e = 0. Taking into account (15) the above
equality takes the form ∫

Γ0

∂u−
1

∂n
dsx = 0.

Since the domain Γ0 ⊆ Γ is arbitrary it follows that

∂u−
1

∂n
= 0.
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The first coordinate u1 of the vector I0(H�ϕ) is a harmonic function and it
vanishes at ∞ so we have u1 = 0. Thus (1) takes the form

div v = 0, rot v = 0.

The domain D1 is not simply connected but by virtue of (13) we can use the same
reasoning and prove that v = gradh with some harmonic function h vanishing
in ∞. Then the boundary condition (16) transforms into

∂h−

∂p
=

∂h−

∂q
= 0,

so the function h− is a constant on Γ . There exists a unique harmonic function
h0 ∈ C2(D1) vanishing at ∞ such that h−

0 = 1 on Γ . Hence h = λh0 with some
λ ∈ R and thus w = (0, λgrad h0). So (15) takes the form

−(0, λgrad h0)− = 2(ϕ1, ϕ2n)

and hence ϕ1 = 0, ϕ2 = λψ, where

ψ = −(grad h0)− n = −∂h−
0

∂n
. (17)

Conversely if ϕ is a function of such a type, then Iϕ = I0(H�ϕ) = 0 and
therefore ϕ + Kϕ = 0.

Since the operator 1 + K has a Fredholm property and ind (1 + K) = 0 the
codimension of its image im (1+K) is equal to 1. In particular the orthogonality
condition (3) is necessary and sufficient for solvability of the equation ϕ+Kϕ = f
and therefore of the original problem (1), (2).
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On an Ill-Posed Problem for the Laplace
Operator with Data on the Whole Boundary

Berikbol T. Torebek(B)
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050010, Kazakhstan
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Abstract. In this paper a nonlocal problem for the Poisson equation
in a rectangular domain is considered. It is shown that this problem is
ill-posed as well as the Cauchy problem for the Laplace equation. The
method of spectral expansion in eigenfunctions of the nonlocal prob-
lem for equations with deviating argument establishes a criterion of the
strong solvability of the considered nonlocal problem. It is shown that the
ill-posedness of the nonlocal problem is equivalent to the existence of an
isolated point of the continuous spectrum for a nonself-adjoint operator
with the deviating argument.

Keywords: Nonlocal problem · Ill-posed problem · Laplace operator ·
Well-posedness · Equation with deviating argument · Spectral
problem · Self-adjoint operator

1 Introduction

As it is known, Hadamard [3] constructed an example showing the insta-
bility of the solutions of the Cauchy problem for the Laplace equation. In
[1,7] and others, this Cauchy problem is reduced to integral equations of the
first kind, and the different methods of regularization of the problem are
shown and its conditional well-posedness is installed. In contrast to the pre-
sented results, in this paper a new criterion of well-posedness (ill-posedness)
of nonlocal boundary value problem for a Poisson equation in rectangu-
lar is proved. The principal difference of our work from the work of other
authors is the application of spectral problems for equations with deviat-
ing argument in the study of ill-posed nonlocal boundary value problems.
The present method was first used in [4] for the solution of the Cauchy
problem for the two-dimensional Laplace equation. Further, this method was
developed in [5,6,9]. Let Ω ⊂ Rn be a bounded domain with smooth boundary
∂Ω and Q = Ω × (0, 1) ⊂ Rn+1 be a cylinder. In Q we consider the following
problem for the Poisson equation

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_16
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L u ≡ −Δx,tu (x, t) = f (x, t) , (x, t) ∈ Q, (1)

with the Dirichlet condition

u (x, t) = 0, t ∈ [0, 1] , x ∈ ∂Ω, (2)

and with nonlocal conditions

u (x, 0) − αu (x, 1) = 0, ut (x, 0) + αut (x, 1) = 0, x ∈ Ω. (3)

Here Δx,t =
n∑

j=1

∂2

∂x2
j

+ ∂2

∂t2 is the Laplace operator and α is a real number.

Definition 1. The function u ∈ L2(Q) will be called a strong solution of the
nonlocal problem (1)-(3), if there exists a sequence of functions un ∈ C2

(
Q

)

satisfying the conditions (2) and (3), such that un and L un converge in the
norm L2 (Q) , respectively to u (x, t) and f (x, t) .

Obviously, when α2 = 1 problem (1)-(3) is not Noetherian. Therefore, every-
where in what follows, we assume that α2 �= 1.

It is known, that Dirichlet-Laplacian eigenvalue problem
⎧
⎨

⎩

−Δxϕ(x) = μϕ(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω,
(4)

is self-adjoint and non-negative definite operator in L2 (Ω) and it has a discrete
spectrum. All eigenvalues of the problem (4) are discrete and non-negative, and
the system of eigenfunctions form a complete orthonormal system in L2 (Ω) .

By μk, k ∈ N we denote all eigenvalues (numbered in decreasing order) and
by ϕk (x) , k ∈ N we denote a complete system of all orthonormal eigenfunctions
of the Dirichlet-Laplacian eigenvalue problem (4) in L2 (Ω) .

We construct an example showing that the stability of the solution of problem
(1)-(3) is disrupted. By direct calculation, it is not difficult to make sure that
the function

uk (x, t) =
sinh kπt + α sinh kπ (1 − t)

(1 − α2) k2
ϕk(x),

if α2 �= 1 is a solution of the Laplace equation with the boundary conditions (2)
and

uk (x, 0) − αuk (x, 1) = 0,
∂uk

∂t
(x, 0) + α

∂uk

∂t
(x, 1) =

ϕk(x)
k

, x ∈ [0, 1] .

It is easy to see that the boundary data tends to zero as k → ∞, but the solution
uk (x, t) does not tend to zero in any norm. Therefore the solution of problem
(1)-(3) is unstable. Therefore, problem (1) - (3) is ill-posed in the Hadamard
sense.
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2 Some Auxiliary Statements

In this section we present some auxiliary results to prove the main results.
In the future, the following eigenvalue problem for an elliptic equation with

deviating argument will play an important role: find numerical values of λ (eigen-
values), under which a problem for the differential equation with a deviating
argument

L u ≡ −Δx,tu (x, t) = λu (x, 1 − t) , (x, t) ∈ Q, (5)

has nonzero solutions (eigenfunctions) satisfying conditions (2) and (3). It is easy
to show that the eigenvalue problem (5), (2), (3) is nonself-adjoint. Obviously,
the equivalent representation of equation (5) has the form

LPu = λu, (t, x) ∈ Q,

where Pu (x, t) = u (x, 1 − t) is a unitary operator.

Theorem 1. If α2 �= 1, then the spectral problem (5), (2), (3) has a system of
eigenvectors forming a Riesz basis

ukm(x, t) = vkm (t) ϕk(x), (6)

where k,m ∈ N, vkm(t) are nonzero solutions of the problem

v′′
km (t) − μkvkm (t) = λkmvkm (1 − t) , 0 < t < 1, (7)

vkm (0) − αvkm (1) = v′
km (0) + αv′

km (1) = 0, (8)

and λkm are eigenvalues of problem (5), (2), (3). In addition, for large k the
smallest eigenvalue λk1 has the asymptotic behavior

λk1 = 4μke−√
μk (1 + o(1)) . (9)

For the other eigenvalues of problem (5), (2), (3) there is a uniform estimate
(separated from zero and goes to infinity).

Lemma 1. Let α2 �= 1. For each fixed value of the index k a system of normal-
ized eigenvectors vkm (t) ,m = 1, 2, ... of eigenvalue problem (7)-(8), correspond-
ing to the eigenvalues λkm, forms a Riesz basis in L2 (0, 1) .
The eigenvalues λkm are roots of the equation

√
μk + λ√
μk − λ

= coth
√

μk + λ

2
coth

√
μk − λ

2
. (10)

For each k the system of eigenvectors of problem (7)-(8) can be obtained from
orthonormal basis via bounded invertible transformation A . Here the operator
A does not depend on the index k.
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Proof. Applying the operator d2

dt2 − μk to both sides of equation (7), taking into
account the nonlocal condition from (8), we obtain a problem for the equation

d4vkm

dt4
(t) − 2μk

d2vkm

dt2
(t) =

(
λ2

km + μ2
k

)
vkm (t) , 0 < t < 1, (11)

with nonlocal conditions
⎧
⎨

⎩

u (0) = αu (1) , u′ (0) = −αu′ (1) ,
u′′ (1) − αu′′ (0) =

(
1 − α2

)
μku (1) ,

u′′′ (1) + αu′′′ (0) =
(
1 − α2

)
μku′ (1) .

(12)

It is easy to verify that for α2 �= 1 the boundary conditions (12) are regular
by Birkhoff, and even strongly regular [8]. Then the system of eigenvectors of
the spectral problem (11)-(12) forms a Riesz basis [2]. It is easy to notice that
the eigenfunctions of problem (11)-(12) are also the eigenfunctions of problem
(7). Therefore the system of eigenvectors of the spectral problem (7)-(8) forms
a Riesz basis in L2(0, 1).

A system of elements is a Riesz basis if and only if, when this system can be
obtained from orthonormal basis via bounded invertible transformation. Further
we need the exact form of this transformation. Let us consider an operator acting
in L2(0, 1) according to the formula

A ϕ(t) = ϕ(t) − αϕ(1 − t).

It is easy to verify that the operator A is bounded and for α �= 1 is bounded
invertible. The inverse operator acts by the formula

A −1ϕ(t) =
1

1 − α2
(ϕ(t) − αϕ(1 − t)) .

Let vkm(t) be eigenvectors of problem (11)-(12). We denote v̂km(t) =
A −1vkm(t). By direct calculation is not difficult to make sure that for each
k the system of functions v̂km(t) are eigenfunctions of an operator defined by
the differential expression

	kv̂ =
d4v̂

dt4
(t) − 2μk

d2v̂

dt2
(t), 0 < t < 1,

and boundary conditions
{

u (0) = 0, u′ (0) = 0,
u′′ (1) = μku (1) , u′′′ (1) = μku′ (1) .

The operator 	k is self-adjoint. Consequently, for each k the system of normalized
eigenvectors of the operator 	k forms an orthonormal basis in L2(0, 1). Thus, for
each k the system of eigenvectors of problem (11)-(12) can be obtained from
orthonormal basis v̂km(t) by bounded invertible transformation A . At the same
time, this operator A does not depend on k.
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It is easy to show that a general solution of equation (7) has the form

v (t) = c1 cosh
√

μk + λ

(

t − 1
2

)

+ c2 sinh
√

μk − λ

(

t − 1
2

)

,

where c1 and c2 are some constants. Using the nonlocal conditions (7), we arrive
at the system of linear homogeneous equations concerning these constants. As we
know, this system has a nontrivial solution if the determinant of system (10) is
zero. Thus, for determining the parameter λ we get (10). The proof is complete.

Let


k (λ) = ln coth
√

μk + λ

2
+ ln coth

√
μk − λ

2
− ln

√
μk + λ

μk − λ
= 0. (13)

Lemma 2. There exists a number λ0 such that for all

0 < λ < λ0 <
μk

4μk + θ
, k ≥ 1, θ ∈ (0, 1) ,

the following statements are true:

1) the function 
′
k (λ) is of a fixed sign;

2) for the function 
′′
k (λ) we have the inequality |λμk
′′

k (λ)| < 1, k > 1.

Proof. By Lemma 1 we have the real eigenvalues of (7) - (8), that is, real roots
λkm of equation (10). It is easy to verify that λkm > 0 . Indeed, let us write the
asymptotic behavior of the smallest eigenvalues λkm at k → ∞.

Assuming |λ| < 1 and taking the logarithm of both sides of (10), we obtain
(13). By calculating the derivative, we get 
′

k (0) = − 1
μk

. Then the required
boundary of monotonicity of 
k(λ) can be determined from the relation


′
k(λ0) = 
′

k(0) + 
′′
k (θλ0) λ0 < 0.

Here 0 < λ0 < 1 and θ ∈ (0, 1) are arbitrary numbers. Thus, for determining λ0,
we have the condition

λ0μk
′′
k (θλ0) < 1. (14)

Then the inequality


′′
k(λ0θ) ≤ 1

(μk − λ0θ)

2 +
(
1 − e−√

μk−λ0θ
)2

(
1 − e−√

μk−λ0θ
)2

is true. Hence


′′
k (λ0θ) <

1
(μk − λ0θ)

3 − 2e−√
μk−λ0θ + e−2

√
μk−λ0θ

(
1 − e−√

μk−λ0θ
)2 (15)

Further, for large values k from (15) we obtain the validity of the inequality

′′

k (λ0θ) ≤ 4
μk−λ0θ . Applying the condition (14) to the last inequality, we obtain

the desired estimate for λ0 : λ0 < μk

4μk+θ , k > 1, 0 < θ < 1. The proof is
complete.
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Consider now the question of an asymptotic behavior of the eigenvalues of
problem (7)-(8) for large k.

Lemma 3. An asymptotic behavior of eigenvalues of problem (7)-(8), not
exceeding λ0, for the large values of k has form (9).

Proof. According to Lemma 2, the monotonic function fk(λ) in the interval
(0, λ0) can have only one zero. By the Taylor formula we have


k (λ) = 
k (0) +

′

k (0)
1!

λ +

′′

k(θλ)
2!

λ2 < 0 , 0 < θ < 1 .

Substituting the calculated values of the function 
k and its derivative 
′
k, we

get


k (λ) = 2 ln
(

coth
√

μk

2

)

− λ

μk
+ 
′′

k (θλ)
λ2

2
.

Then the zero of the linear part of the function

μk
k (λ) = 2μk ln
(

coth
√

μk

2

)

− λ +
μkλ2

2

′′

k (θλ)

will be λk1 = 2μk ln
(

1+e−√
µk

1−e−√
µk

)
.

For sufficiently large values k ∈ N, considering the asymptotic formulas, λk1

can be written as λk1 = 4μke−√
μk (1 + o (1)) .

Taking into account the result of Lemma 2 on a circle |λ| = 4μke−√
μk (1 + ε) ,

where ε is a greatly small positive number, for sufficiently large k ≥ k0(ε) it is
easy to check the validity of the inequality

�′′
k (θλ) μk |λ|=4μke−√

µk (1+ε)
≤ C 2μk ln

1 + e−√
μk

1 − e−√
μk

− λ

|λ|=4μke−√
µk (1+ε)

.

Then, by Rouche’s theorem [10] we have that the quantity of zeros of μk
k (λ)
and its linear part coincide and are inside the circle |λ| = 4μke−√

μk (1 + ε) . Con-
sequently, the function (kπ)2 
k (λ) for 0 < λ < λ0 has one zero, the asymptotic
behavior is given by formula (9). The proof is complete.

Proof. (Theorem 1) The system of eigenfunctions ϕk(x), k ∈ N of the Dirichlet-
Laplacian problem (4) forms a complete orthonormal system in L2 (Ω) . By
Lemma 1 for each fixed value of k and for α2 �= 1 the spectral problem (7)
has the system of eigenvectors vkm (t) ,m = 1, 2, ... forming a Riesz basis in
L2 (0, 1) . Here the system of eigenvectors vkm(t) of the eigenvalue problem (7)-
(8) can be obtained from orthonormal basis v̂km(t) by the bounded invertible
transformation A , which does not depend on the index k. Therefore, the sys-
tem (6) also can be obtained from the orthonormal basis v̂km(t)ϕk(x) via the
bounded invertible transformation A . Consequently, system (6) forms a Riesz
basis in L2 (Q) . The proof is complete.
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3 Main Results

Theorem 2. Let α2 �= 1. A strong solution of the nonlocal problem (1) - (3)
exists if and only if f (x, t) satisfies the inequality

∞∑

k=1

∣
∣
∣
∣
∣

f̃k1

λk1

∣
∣
∣
∣
∣

2

< ∞, (16)

where f̃km = (f(x, 1 − t), wkm(x, t)) , the system wkm(x, t) is orthogonal to
ukm (x, t) . If condition (16) holds, then a solution of (1)-(3) can be written as

u (x, t) =
∞∑

k=1

f̃k1

λk1
vk1 (t) ϕk(x) +

∞∑

k=1

∞∑

m=2

f̃km

λkm
vkm (t)ϕk(x). (17)

Proof. Let u(x, t) ∈ C2 (Q) be a solution of problem (1) - (3). Then, by the
basicity of its eigenfunctions ukm(x, t) of problem (5), (2), (3), the function
u(x, t) in L2 (Q) can be expanded in a series [8]

u(x, t) =
∞∑

k=1

∞∑

m=1

akmukm(x, t), (18)

where akm are Fourier coefficients by the system ukm(x, t). Rewriting equation
(1) in the form

LPu = P (Δxu(x, t) + utt(x, t)) = Pf(x, t), (19)

and substituting the solution of form (18) in equation (19) according to repre-
sentation

PΔx,tukm(x, t) = λkmukm(x, t),

we have akm = f̃km

λkm
with f̃km = (f(x, 1 − t), wkm(x, t)) .

Thus for solutions u(x, t) we obtain the following explicit representation

u(x, t) =
∞∑

k=1

∞∑

m=1

f̃km

λkm
ukm(x, t). (20)

Note that the representation (20) remains true for any strong solution of problem
(1) - (3). We have obtained this representation under the assumption that the
solution of the nonlocal problem (1) - (3) exists.

The question naturally arises, for what subset of the functions f ∈ L2 (Q)
there exists a strong solution? To answer this question, we represent formula
(20) in the form (17) from which, by Hilbert’s and Bessel’s inequality, it follows

a

∞∑

k=1

∣
∣
∣
∣
∣

f̃k1

λk1

∣
∣
∣
∣
∣

2

+a

∞∑

k=1

∞∑

m=2

∣
∣
∣
∣
∣

f̃km

λkm

∣
∣
∣
∣
∣

2

≤ ‖u‖2 ≤ b

∞∑

k=1

∣
∣
∣
∣
∣

f̃k1

λk1

∣
∣
∣
∣
∣

2

+b

∞∑

k=1

∞∑

m=2

∣
∣
∣
∣
∣

f̃km

λkm

∣
∣
∣
∣
∣

2

, (21)

where 0 < a ≤ b < ∞ are given constants. By Lemma 3 we have λkm ≥ 1
4 , m > 1.

Therefore, the right-hand side of equality (21) is bounded only for such f (x, t) ,
when the weighted norm (16) is bounded. This fact completes the proof.
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By L̃2 (Q) we denote a subspace of L2 (Q) , spanned
by the {vk1 (t) ϕk(x)}∞

k=p+1 , p ∈ N and by L̂2 (Q) we denote its orthogonal
complement L2 (Q) = L̃2 (Q) ⊕ L̂2 (Q) .

Theorem 3. Let α2 �= 1. Then for any f ∈ L̂2 (Q) a solution of problem (1)-(3)
exists, is unique and belongs to L̂2 (Q) . This solution is stable and has the form

u (x, t) =
p∑

k=1

f̃k1

λk1
vk1 (t) sin kπx +

∞∑

k=1

∞∑

m=2

f̃km

λkm
vkm (t) sin kπx. (22)

Proof. Obviously, the operator L is invariant in L̂2 (Q) . By Theorem 2 for
any f ∈ L̂2 (Q) there exists a unique solution of problem (1)-(3) and it can be
represented in the form (22). Therefore, determined infinite-dimensional space
L̂2 (Q) is the space of well-posedness of the nonlocal problem (1)-(3). The proof
is complete.
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Abstract. In the paper certain method for constructing exact solutions
of a class of linear differential equations of fractional order is considered.
Algorithms for constructing solutions of the explicit form are developed
for homogeneous and inhomogeneous differential equations of fractional
order. This method is based on construction of normalized systems asso-
ciated with fractional differentiation operator. 0 - normalized and f - nor-
malized systems are built concerning to the pair of operators connected
with the considered equation. Using 0 - normalized systems, linearly inde-
pendent solutions of the homogeneous equation are constructed. Simi-
larly, with the help of f - normalized systems partial solutions of the
inhomogeneous equation are built in the case, where the right side is a
quasi-polynomial, analytic function and an arbitrary function from the
class of continuous functions.

Keywords: Riemann–Liouville integral · Riemann-Liouville derivative
· Differential equations of fractional order · Homogeneous differential
equations · Inhomogeneous differential equations · New method ·
Normalized systems · Operator method · Constructing exact solutions

1 Introduction

One of the priority areas of research in the theory of differential equations of
fractional order is to develop methods for constructing solutions of the explicit
form. To date, there are various methods for constructing explicit solutions and
a solution of the Cauchy problem for differential equations of fractional order.
Such methods include the method of reduction to the integral equation [2,16],
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the method of integral transforms [15], the method of Mikusinski operational
calculus [11–14], Adomayn decomposition method [3]. Detailed description of
these methods is considered in [10].

In constructing an exact solution of differential equations of fractional order
there arise new classes of special functions. In [5,6] properties of the following
functions are studied:

Eα,m,l(z) =
∞∑

i=0

ciz
i, c0 = 1, ci =

i−1∏

k=0

Γ [α(km + l) + 1]
Γ [α(km + l + 1) + 1]

, i ≥ 1. (1)

In [7] on the basis of the composition formula of the Riemann-Liouville fractional
differentiation operator with the function (1), found in [5], algorithm for con-
structing a solution of differential equation of the following form was proposed:

Dαy(t) = λtβy(t) + f(t), 0 < t ≤ d ≤ ∞, (2)

where α > 0, λ �= 0, β ∈ R, Dα is a differentiation operator of α order in
Riemann-Liouville sense, i.e.

Dαy(t) =
dm

dtm
Im−αy(t), m = [α] + 1, Iδy(t) =

1

Γ (δ)

t

0

(t − τ)δ−1y(τ)dτ, δ > 0.

Later in [8,9], this algorithm was used to construct exact solutions of some
differential equations of fractional order. Moreover, the cases, where f(t) = 0
and f(t) is quasi-polynomial, were considered.

In this paper, we propose a new method for constructing a solution of the
equation (2). In this case, unlike the work [7], we construct partial solutions of
the inhomogeneous equation for a more general class of functions f(t). Note that
this method is based on construction of normalized systems with respect to the
pair of operators

(
Dα, λtβ

)
(see Section 2). We also note that this method was

used in [1,17] for constructing solutions of some linear differential equations of
fractional order with constant coefficients.

2 Normalized Systems

In this section we give some information about the normalized systems associated
with linear differential operators.

Let L1 and L2 be linear operators, acting from a functional space X to X,
LkX ⊂ X, k = 1, 2. Let functions from X be defined in a domain Ω ⊂ Rn. Let
us give the definition of normalized systems [4].

Definition 1. A sequence of functions {fi(x)}∞
i=0, fi(x) ∈ X is called

f−normalized with respect to (L1, L2) in Ω, with base f0(x), if on this domain
the equalities L1f0(x) = f(x), L1fi(x) = L2fi−1(x), i ≥ 1 hold.

If L2 = I is a unit operator, then the system of f−normalized functions with
respect to (L1, I) is called f−normalized with respect to the operator L1, i.e.
L1f0(x) = f(x), L1fi(x) = fi−1(x), i ≥ 1.

If f(x) = 0, then the system of functions {fi(x)} is called simple normalized.
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Main properties of f - normalized systems of functions with respect to the
operator (L1, L2) in Ω are given in [4]. Consider the main property of the f -
normalized system.

Proposition 1. If the system of functions {fi(x)}∞
i=0 is f−normalized with

respect to (L1, L2) in Ω, then the functional series y(x) =
∞∑

i=0

fi(x), x ∈ Ω

is a formal solution of the equation:

(L1 − L2)y(x) = f(x), x ∈ Ω. (3)

The following proposition allows us to construct a f−normalized system with
respect to the pair of operators (L1, L2).

Proposition 2. If for L1 there exists a right inverse operator L−1
1 i.e. L1·L−1

1 =
E, where E is a unit operator and L1f0(x) = f(x), then a system of the functions
fi(x) =

(
L−1
1 · L2

)i
f0(x), i ≥ 1 is f−normalized with respect to the pair of

operators (L1, L2) in Ω.

Proof. Since L1 · L−1
1 = E is a unit operator, then for all i = 1, 2, ..., we have:

L1fi(x) = L1

(
L−1
1 · L2

)i
f(x) = L1

(
L−1
1 · L2

) (
L−1
1 · L2

)i−1
f(x)

= L2

(
L−1
1 · L2

)i−1
f(x) = L2fi−1(x).

Consequently, L1fi(x) = L2fi−1(x), and by assumption of the theorem
L1f0(x) = f(x), i.e., the system fi(x) =

(
L−1
1 · L2

)i
f0(x), i ≥ 0 is f−normalized

with respect to the pair of operators (L1, L2).

3 Properties of the Operators Iα and Dα

Let us give some properties of the operators Iα and Dα. Denote

Cδ[0, d] =
{
f(t) : ∃δ ∈ [0, 1), tδf(t) ∈ C[0, d]

}
.

The following proposition is well-known [10].

Lemma 1. Let α > 0. If f(t) ∈ Cδ[0, d], then the equality

Dα [Iα[f ]] (t) = f(t) (4)

holds for all t ∈ (0, d]. When f(t) ∈ C[0, d], then the equality (4) holds for all
t ∈ [0, d].

Lemma 2. Let α > 0,m = [α] + 1 and s ∈ R. Then the following equalities are
true:

Iαts =
Γ (s + 1)

Γ (s + 1 + α)
ts+α, s > −1, (5)

Dαts =
Γ (s + 1)

Γ (s + 1 − α)
ts−α, s > α − 1. (6)

Dαts = 0, s = α − j, j = 1, 2, ...,m, (7)
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Corollary 1. Let α > 0,m = [α]+1. Then the equality Dαy(t) = 0 holds if and

only if y(t) =
m∑

j=1

cjt
α−j, where cj are arbitrary constants.

Lemma 3. Let α > 0,m = [α] + 1, 0 ≤ δ < 1 and f(t) ∈ Cδ[a, b]. Then

1) if α < δ, then Iαf(t) ∈ Cδ−α[a, b] and the following inequality is true:

‖Iαf‖Cδ−α[a,b] ≤ M‖f‖Cδ[a,b],M =
Γ (1 − δ)

Γ (1 + α − δ)
; (8)

2) if α ≥ δ, then Iαf(t) ∈ C[a, b] and the following inequality is true:

‖Iαf‖C[a,b] ≤ M‖f‖Cδ[a,b],M =
(b − a)α−δΓ (1 − δ)

Γ (1 + α − δ)
. (9)

4 Construction of 0− Normalized Systems

In this section we construct 0 - normalized systems with respect to the pair of
operators

(
Dα, λtβ

)
. To do this, from Proposition 2 it yields that it is necessary

to find a solution of the equation Dαy(t) = 0 and the right inverse operator
for the operator Dα. By assumption of Proposition 1 the right inverse operator
to the operator Dα is Iα, and due to (7), linearly independent solutions of the
equation Dαy(t) = 0 are functions tsj , sj = α − j, j = 1, 2, ...,m. Furthermore,
denote L1 = Dα and L2 = λtβ . Then the equation (2) can be represented in the
form (3).

Introduce the following coefficients:

C(α + β, s, i) =
i∏

k=1

Γ (k(α + β) + s + 1)
Γ (k(α + β) + s + 1 + α)

, i ≥ 1, C(α + β, s, 0) = 1, s ∈ R.

We assume that C(α + β, s, i) �= 0. Let sj = α − j, j = 1, 2, ...,m, β > −{α}
and

f0,sj
(t) =

tsj

Γ (sj + 1)
.

Due to (7),
L1f0,sj

(t) = 0, j = 1, 2, ...,m.

Further, consider a system of functions:

fi(t) =
(
Iα · λtβ

)i
f0,sj

(t), i ≥ 1. (10)

Since (Dα)−1 = Iα and Dαf0,sj
(t) = 0, then Proposition 2 implies that the

system (10) is 0 - normalized with respect to the pair of operators
(
Dα, λtβ

)
.

We find an explicit form of the system of fi(t). By definition of the operator
Iα and due to (4), we get:
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f1(t) = Iα[λtβ+sj ] = λ
Γ (β + sj + 1)

Γ (β + sj + 1 + α)
tβ+sj+α.

Similarly,

f2(t) = λ
Γ (β + sj + 1)

Γ (β + sj + 1 + α)
Iα[λt2β+sj+α]

= λ2 Γ (β + sj + 1)
Γ (β + sj + 1 + α)

Γ (2β + sj + α + 1)
Γ (2(α + β) + sj + 1)

t2(α+β)+sj

= λ2Γ ((α + β) + sj + 1 − α)
Γ ((α + β) + sj + 1)

Γ (2(α + β) + sj + 1 − α)
Γ (2(α + β) + sj + 1)

t2(α+β)+sj .

In general, using the mathematical induction method, we can get the follow-
ing equation:

fi(t) = λiC(α + β, sj , i)ti(α+β)+sj , i ≥ 1. (11)

Indeed, for some positive integer i the equality (11) holds. Then for i + 1 we
have:

fi+1(t) =
(
Iα · λtβ

)i+1
f0,sj

(t) =
(
Iα · λtβ

) (
Iα · λtβ

)i
f0.sj

(t) = Iα
[
λtβfi(t)

]

= λiC(α + β, sj , i)Iα
[
λti(α+β)+sj+β

]

= λi+1C(α + β, sj , i)
Γ (i(α + β) + sj + β + 1)

Γ (i(α + β) + sj + β + 1 + α)
ti(α+β)+sj+β+α

= λi+1C(α + β, sj , i)
Γ ((i + 1)(α + β) + sj + 1 − α)

Γ ((i + 1)(α + β) + sj + 1)
t(i+1)(α+β)+sj

= λi+1C(α + β, sj , i + 1)t(i+1)(α+β)+sj .

Therefore, (11) is true and for the case i + 1. Further, since s = α − j, then

C(α + β, α − j, i) =
i∏

k=1

Γ (k(α + β) + 1 − j)
Γ (k(α + β) + 1 − j + α)

, i ≥ 1. (12)

Lemma 4. Let α>0,m = [α] + 1, α /∈ N, sj = α − j, j = 1, 2, ...,m, β > −{α}.
Then for all values j = 1, 2, ...,m the system of functions:

fi(t) = λiC(α + β, sj , i)t(α+β)i+sj

is 0−normalized with respect to the pair of operators
(
Dα, λtβ

)
in the domain

t > 0.

Proof. According to (6), we get L1f0(t) = Dαtsj = 0. Let i ≥ 1. Then

L1fi(t) = λiC(α + β, sj , i)
Γ (i(α + β) + sj + 1)

Γ (i(α + β) + sj + 1 − α)
t(α+β)i+sj−α
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= λtβλi−1C(α + β, sj , i − 1)t(α+β)(i−1)+sj+β = λtβfi−1(t).

Further,
L2fi−1(t) = λtβfi−1(t) = L1fi(t).

Consequently, by the definition of the system of functions fi(t) is 0-normalized
with respect to the pair of operators

(
Dα, λtβ

)
. Lemma is proved.

Using the main property of normalized systems, we obtain the following
statement.

Corollary 2. Let α>0, α /∈ N,m = [α] + 1, sj = α−j, j=1, 2, ...,m, β > −{α},
f(t) = 0. Then for all values j = 1, 2, ...,m functions

yj(t) =
∞∑

i=0

λiC(α + β, sj , i)t(α+β)i+sj

satisfy the homogenous equation (2).

Further, we study the coefficients C(α + β, sj , i). Since

(α + β)k + 1 − j = α

[(
1 +

β

α

)
(k − 1) +

(β − j)
α

+ 1
]

+ 1,

k(α + β) + 1 − j + α = α

[(
1 +

β

α

)
(k − 1) +

β − j

α
+ 2

]
+ 1

replace the index k − 1 to k, then from (12) it yields that

C(α + β, α − j, i) =
i−1∏

k=0

Γ [α ((1 + β/α) k + 1 + (β − j)/α) + 1]
Γ [α ((1 + β/α) k + (β − j)/α + 2) + 1]

, i ≥ 1.

Consequently, denoting 1+ β
α = m, 1+ β−j

α = � for functions yj(t) from (12),
we get the representation by the functions (1) i.e.

yj(t) =
∞∑

i=0

λiC(α + β, α − j, i)t(α+β)i+α−j = tα−jEα,1+β/α,1+(β−j)/α

(
λtα+β

)
,

j = 1, 2, ...,m. The representation coincides with representations received in [7]
(formulas (19) and (21)).

5 Construction of f− Normalized Systems

Now we turn to construction of a solution of an inhomogeneous differential
equation. Let f(t) ∈ C[0, d]. Then by assumption of Lemma 1 for functions
f0(t) = Iαf(t) the following equality is true:

L1f0(t) = DαIαf(t) = f(t).

Consider the system

fi(t) =
(
IαλtβIα

)i−1
f0(t), i = 1, 2, ... (13)
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Lemma 5. Let α > 0, α ∈ N,m = [α] + 1, β > −{α}, f(t) ∈ C[0, d], d < ∞.
Then the system of functions (13) is f(t) - normalized with respect to the pair
of operators

(
Dα, λtβ

)
in the domain t > 0.

Proof. Since f(t) ∈ C[0, d], then f0(t) = Iαf(t) ∈ C[0, d]. Moreover,

|f0(t)| = |Iαf(t)| ≤ 1
Γ (α)

t∫

0

(t − τ)α−1|f(τ)|dτ ≤ ‖f‖C[0,d]
tα

Γ (α + 1)
.

Hence,

‖f0‖C[0,d] ≤ dα

Γ (α + 1)
‖f‖C[0,d].

Further, when i = 1 we obtain

|f1(t)| =
∣∣Iα

(
λtβf0(t)

)∣∣ ≤ |λ|
Γ (α)

t∫

0

(t − τ)α−1τβ |f0(τ)|dτ

≤ |λ|‖f‖C[0,d]

Γ (α)Γ (α + 1)

t∫

0

(t − τ)α−1τβ+αdτ ≤ |λ|‖f‖C[0,d]

Γ (α + 1)
Γ (α + β + 1)

Γ (α + β + 1 + α)
tα+β+α.

This implies that f1(t) ∈ C[0, d] and

‖f1‖C[0,d] ≤ |λ|
Γ (α + 1)

Γ (α + β + 1)
Γ (α + β + 1 + α)

dα+β‖f‖C[0,d].

Analogously, when i = 2 we have that

|f2(t)| =
∣∣Iα

(
λtβf1(t)

)∣∣ ≤ |λ|
Γ (α)

t∫

0

(t − τ)α−1τβ |f1(τ)|dτ

≤ |λ|2
Γ (α)

‖f‖C[0,d]

Γ (α + 1)
Γ (α + β + 1)

Γ (α + β + 1 + α)

t∫

0

(t − τ)α−1τ2(α+β)dτ

=
|λ|2‖f‖C[0,d]

Γ (α + 1)
Γ (α + β + 1)

Γ (α + β + α + 1)
Γ (2(α + β) + 1)

Γ (2(α + β) + α + 1)
t2(α+β)+α.

Moreover,

‖f2‖C[0,d] ≤ |λ|2
Γ (α + 1)

Γ (α + β + 1)
Γ (α + β + α + 1)

Γ (2(α + β) + 1)d2(α+β)+α

Γ (2(α + β) + α + 1)
‖f‖C[0,b].

In general, for all k ≥ 1 we get:

|fk(t)| =
∣∣(Iα · λtβ

)
fk−1(t)

∣∣ ≤ |λ|
Γ (α)

t∫

0

(t − τ)α−1τβ |fk−1(τ)|dτ
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≤ ‖f‖C[0,b]
|λ|k

Γ (α + 1)
Γ ((α + β) + 1)

Γ ((α + β) + α + 1)
Γ (2(α + β) + 1)

Γ (2(α + β) + α + 1)

...
Γ (k(α + β) + 1)

Γ (k(α + β) + α + 1)
tk(α+β)+α,

and for norm the following equality holds:

‖fk‖C[0,d] ≤ |λ|k
Γ (α + 1)

Γ ((α + β) + 1)
Γ ((α + β) + α + 1)

Γ (2(α + β) + 1)
Γ (2(α + β) + α + 1)

...
Γ (k(α + β) + 1)

Γ (k(α + β) + α + 1)
dk(α+β)+α‖f‖C[0,b].

Further, using representation of the coefficients C(α + β, s, i), we obtain

Γ ((α + β) + 1)
Γ ((α + β) + α + 1)

Γ (2(α + β) + 1)
Γ (2(α + β) + α + 1)

...
Γ (i(α + β) + 1)

Γ (i(α + β) + α + 1)
=

i∏

k=1

Γ (k(α + β) + 1)
Γ (k(α + β) + α + 1)

= C(α + β, 0, i).

Then the last estimation can be rewritten in the form:

‖fk‖C[0,d] ≤ ‖f‖C[0,b]

Γ (α + 1)
λkC(α + β, 0, k)dk(α+β)+α. (14)

Thus, if f(t) ∈ C[0, d] and f0(t) = Iαf(t), that at every i = 1, 2, ... the system
of functions (13) belongs to the class C[0, d], and (14) is true. Moreover,

L1f1(t) = DαIαf0(t) = f0(t),

L1fi(t) = Dα
(
Iα · λtβ

)i
f0,sj

(t) = DαIα · λtβ
(
Iα · λtβ

)i−1
f0,sj

(t) = λtβfi−1(t)

= L2fi−1(t), i ≥ 1.

So, in the class of functions X = C[0, d] the following equalities hold:

L1f0(t) = f(t), L1fi(t) = L2fi−1(t), i ≥ 1,

i.e. the system (13) is f− normalized with respect to the pair of operators(
Dα, λtβ

)
. Lemma is proved.

Theorem 1. Let α > 0, α ∈ N,m = [α] + 1, β > −{α}, f(t) ∈ C[0, d], d < ∞.
If the functions fi(t) are defined by the equality (13), then the function

yf (x) =
∞∑

i=0

fi(t) (15)

is a partial solution of (2) from the class C[0, d].
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Proof. Estimate the series (15). Due to (14), we have

‖yf‖C[0,d] ≤
∞

i=0

‖fi(t)‖C[0,d] ≤ ‖f‖C[0,d]d
α

Γ (α + 1)
1 +

∞

i=1

|λ|iC(α + β, 0, i)di(α+β) .

Since

C(α + β, 0, i) =
i∏

k=1

Γ (k(α + β) + 1)
Γ (k(α + β) + α + 1)

=
i∏

k=1

Γ [α(m(k − 1) + �) + 1]
Γ [α(m(k − 1) + �) + 1]

=
i−1∏

k=0

Γ [α(mk + �) + 1]
Γ [α(mk + �) + 1]

,

where m = 1 + β
α , � = 1 + β

α , then for the function yf (t):

|yf (t)| ≤ ‖f‖C[0,d]

Γ (α + 1)
tαEα,1+ β

α ,1+ β
α
(|λ|tα+β),

‖yf‖C[0,d] ≤ ‖f‖C[0,d]

Γ (α + 1)
dαEα,1+ β

α ,1+ β
α
(|λ|dα+β). (16)

Since Eα,m,�(z) is an entire function, then we get convergence of the series
(16) in the class of functions C[0, d]. Theorem is proved.

Now we study representation of functions (14) for some particular cases of
the function f(t).

Lemma 6. Let α > 0, β > −{α}, f(t) = tμ, μ > −1. Then partial solution of
the equation (2) has the form:

yf (t) =
Γ (μ + 1)tα+μ

Γ (μ + 1 + α)

∞∑

k=0

λkC(α + β, μ + α, k)tk(α+β).

Proof. Let f(t) = tμ, μ > −1. Then, according to (4), we obtain

f0(t) = Iαtμ =
Γ (μ + 1)

Γ (μ + 1 + α)
tμ+α.

Further,

f1(t) =
(
Iα · λtβ

)
f0(t) =

λΓ (μ + 1)
Γ (μ + 1 + α)

Iαtμ+α+β

=
λΓ (μ + 1)

Γ (μ + 1 + α)
Γ (μ + α + β + 1)
Γ (μ + β + 2α + 1)

tμ+2α+β ,

f2(t) =
(
Iα · λtβ

)2
f0(t) = λ2 Γ (μ + 1)

Γ (μ + 1 + α)
Γ (μ + α + β + 1)
Γ (μ + β + 2α + 1)

Iαtμ+2α+2β =
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=
λ2Γ (μ + 1)

Γ (μ + 1 + α)

Γ (α + β + μ + 1)

Γ ((α + β) + α + μ + 1)

Γ (2(α + β) + μ + 1)

Γ (2(α + β) + α + μ + 1)
t2(α+β)+α+μ.

In general, for every k ≥ 1 we have

fk(t) = λk Γ (μ + 1)
Γ (μ + 1 + α)

Γ (α + β + μ + 1)
Γ ((α + β) + α + μ + 1)

...
Γ (k(α + β) + μ + 1)

Γ (k(α + β) + α + μ + 1)
tk(α+β)+α+μ.

Consequently,

yf (t) =
∞∑

k=0

fk(t) =
Γ (μ + 1)

Γ (μ + 1 + α)

∞∑

k=0

λkC(α + β, μ + α, k)tk(α+β)+μ+α.

Lemma is proved.

This lemma implies the following statement:

Theorem 2. Let α > 0, β > −{α}, f(t) =
p∑

j=1

λjt
μj , μj > −1. Then a partial

solution of the equation (2) has the form:

yf (t) =
p∑

j=1

λjΓ (μj + 1)tα+μj

Γ (μj + 1 + α)

∞∑

k=0

λkC(α + β, μj + α, k)tk(α+β). (17)

The representation (17) of a partial solution of the equation (2) coincides
with the result of [7] (see Theorem 2, formula (27)).

Now we give an algorithm for construction of partial solutions of the inho-
mogeneous equation (2) in the case when f(t) is an analytical function.

Theorem 3. Let α > 0, β > −{α}, f(t) is an analytical function. Then a partial
solution of the equation (1) has the form:

yf (t) =
∞∑

k=0

f (k)(0)tα+k

Γ (α + k + 1)
yk+α(t),

where yk+α(t) is defined by the equality

yk+α(t) =
∞∑

i=0

λiC(α + β, k + α, i)ti(α+β) ≡ Eα,1+β/α,1+(k+α+β)/α(λtα+β).

Proof. If f(t) is an analytical function, then it can be represented in the form

f(t) =
∞∑

k=0

f (k)(0)
k!

tk.
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Then

f0(t) =
∞

k=0

f (k)(0)

k!
Iαtk =

∞

k=0

f (k)(0)

k!

Γ (k + 1)

Γ (k + 1 + α)
tk+α =

∞

k=0

f (k)(0)

Γ (k + 1 + α)
tk+α,

f1(t) =
(
Iα · λtβ

)
f0(t) =

∞∑

k=0

λf (k)(0)
Γ (α + k + 1)

Iαtk+α+β

=
∞∑

k=0

λf (k)(0)
Γ (α + k + 1)

Γ (α + β + k + 1)
Γ ((α + β) + k + 1 + α)

tk+2α+β ,

f2(t) =
(
Iα · λtβ

)
f1(t) =

∞∑

k=0

λf (k)(0)
Γ (α + k + 1)

Γ (α + β + k + 1)
Γ (2α + β + k + 1 + α)

× Γ (2(α + β) + k + 1)
Γ (2(α + β) + k + 1 + α)

tk+2(α+β)+α.

In general, by mathematical induction method we can prove the equality:

fi(t) =
(
Iα · λtβ

)i
f0(t) =

∞∑

k=0

λif (k)(0)
Γ (α + k + 1)

Γ (α + β + k + 1)
Γ (2α + β + k + 1 + α)

...
Γ (i(α + β) + k + 1)ti(α+β)+k+α

Γ (i(α + β) + k + 1 + α)

∞

k=0

λif (k)(0)

Γ (α + k + 1)
C(α + β, k + α, i)ti(α+β)+k+α.

Therefore,
∞∑

i=0

fi(t) =
∞∑

i=0

∞∑

k=0

λif (k)(0)C(α + β, k + α, i)
Γ (α + k + 1)

ti(α+β)+k+α

=
∞∑

k=0

f (k)(0)tk+α

Γ (α + k + 1)

∞∑

i=0

λiC(α + β, k + α, i)ti(α+β)

=
∞∑

k=0

f (k)(0)
Γ (α + k + 1)

tk+αyk+α(t).

Theorem is proved.

Theorem 4. Let α > 0, β = n, n ≥ 0, f(t) ∈ C[0, b], b < ∞. Then a partial
solution of the equation (2) has the form:

yf (t) =

t∫

0

Gn,α(t − τ, τ, λ)f(τ)dτ, (18)

where Gn,α(u, v, λ) is defined by the equality:

Gn,α(u, v, λ) =
∞∑

i=0

Gn,α,i(u, v, λ),
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Gn,α,i(u, v, λ) =
λi

Γ (α)

n∑

j1=0

· · ·
n∑

ji=0

(
n
j1

)
...

(
n
ji

)
C(α, j1 + ... + ji + α, i)

uiα+j1+...+ji+α−1vkn−j1−...−ji .

Proof. If f0(t) = Iαf(t), then L1f0(t) = Dαf0(t) = f(t). Let i = 1, β = n, n =
0, 1, .... Then

f1(t) = (Iα · λtn) f0(t) =
1

Γ (α)

t∫

0

(t − τ)α−1λτnf0(τ)dτ

=
1

Γ (α)

t∫

0

(t − τ)α−1λτn

τ∫

0

(τ − z)α−1

Γ (α)
f(z)dzdτ =

=
λ

Γ (α)

t∫

0

f(z)
1

Γ (α)

t∫

z

(τ − z)α−1(t − τ)α−1τndτdz.

Study the integral:

In =

t∫

z

(τ − z)α−1(t − τ)α−1τndτ.

After the change of variables τ = z + (t − z)ξ, we have

In =

t

z

(τ − z)α−1(t − τ)α−1τndτ = (t − z)2α−1

1

0

(1 − ξ)α−1ξα−1((t − z)ξ + z)ndξ

= (t − z)2α−1
n∑

j=0

Cj
n(t − z)jzn−j

1∫

0

(1 − ξ)α−1ξj+α−1dξ

=
n∑

j=0

Cj
n

Γ (α)Γ (j + α)
Γ (j + 2α)

(t − z)j+2α−1zn−j .

Consequently,

f1(t) =
λ

Γ (α)

n∑

j1=0

Cj1
n

Γ (j1 + α)
Γ (j1 + 2α)

t∫

0

(t − z)j1+2α−1zn−j1f(z)dz.

Similarly, for f2(t) we obtain

f2(t) = (Iα · λtn) f1(t) =
1

Γ (α)

t∫

0

(t − τ)α−1λτnf1(τ)dτ
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=
λ2

Γ 2(α)

t∫

0

(t − τ)α−1τn
n∑

j1=0

Cj1
n

Γ (j1 + α)
Γ (j1 + 2α)

τ∫

0

(τ − z)j1+2α−1zn−j1f(z)dzdτ

=
λ2

Γ 2
(α)

n∑

j1=0

Cj1
n

Γ (j1 + α)
Γ (j1 + 2α)

t∫

0

zn−j1f(z)

τ∫

0

(t − τ)α−1(τ − z)j1+2α−1τndτdz.

Further,

In,2 =

τ∫

0

(t − τ)α−1(τ − z)j1+2α−1τndτ

= (t − z)3α+j1−1

1∫

0

(1 − ξ)α−1ξj+2α−1((t − z)ξ + z)ndξ =

= (t − z)3α+j1−1
n∑

j2=0

Cj2
n (t − z)j2zn−j2

1∫

0

(1 − ξ)α−1ξj1+j2+2α−1dξ

=
n∑

j2=0

Cj2
n

Γ (α)Γ (2α + j1 + j2)
Γ (3α + j1 + j2)

(t − z)3α+j1+j2−1zn−j2 .

Thus,

f2(t) =
λ2

Γ (α)

n∑

j1=0

n∑

j2=0

Cj1
n Cj2

n

Γ (α + j1)
Γ (2α + j1)

Γ (2α + j1 + j2)
Γ (3α + j1 + j2)

×
t∫

0

(t − z)3α+j1+j2−1z2n−j1−j2f(z)dz.

In general, using the mathematical induction method, we get

fk(t) =
λk

Γ (α)

n∑

j1=0

...

n∑

jk=0

Cj1
n ...Cjk

n

Γ (α + j1)
Γ (2α + j1)

...
Γ (kα + j1 + ... + jk)

Γ (kα + j1 + ... + jk + α)

×
t∫

0

(t − z)kα+j1+...+jk−1z2n−j1−...−jkf(z)dz.

Since

Γ (α + j1)
Γ (2α + j1)

...
Γ (kα + j1 + ... + jk)

Γ (kα + j1 + ... + jk + α)
=

k∏

p=1

Γ (pα + j1 + ... + jp)
Γ (pα + j1 + ... + jp + α)

= C(α, j1 + ... + jp, k),
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denoting

Gn,α,i(u, v, λ) =
λi

Γ (α)

n∑

j1=0

...

n∑

ji=0

Cj1
n ...Cjk

n C(α, j1 + ... + ji, i)

×uiα+j1+...+jk+α−1vkn−j1−...−jk ,

Gn,α(u, v, λ) =
∞∑

i=0

Gn,α,i(u, v, λ),

for the functions (15), when β = n, we obtain (18). Theorem is proved.

Example 1. Let n = 0. Then j1 = j2 = ... = jk = 0 ,

C(α, 0, k) =
k∏

p=1

Γ (pα)
Γ (pα + α)

=
Γ (α)
Γ (2α)

Γ (2α)
Γ (3α)

...
Γ (kα)

Γ (kα + α)
=

Γ (α)
Γ (kα + α)

G0,α,i(u, v, λ) =
λi

Γ (kα + α)
uiα+α−1,

G0,α(u, v, λ) =
∞∑

i=0

λi uiα+α−1

Γ (kα + α)
= tα−1Eα,α(λuα),

where Ea,α(λuα) is Mittag-Leffler type function [10]. In this case

yf (t) =

t∫

0

Gn,α(t − τ, τ, λ)f(τ)dτ =

t∫

0

(t − τ)α−1Eα,α(λ(t − τ)α)f(τ)dτ.

The formula is obtained from [10].
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Abstract. The common form for degenerate boundary conditions for
the operator D4 (Dn) is found. It is shown that the matrix for coeffi-
cients of degenerate boundary conditions has a two diagonal form and
the elements for one of the diagonal are units. Operator D4 whose spec-
trum fills the entire complex plane are studied, too. Earlier, examples of
eigenvalue problems for the differential operator of even order with com-
mon boundary conditions (not containing a spectral parameter) whose
spectrum fills the entire complex plane were given. However, in connec-
tion with this, another question arises whether there are other examples
of such operators. In this paper we show that such examples exist. More-
over, all eigenvalue boundary problems for the operator D4 whose spec-
trum fills the entire complex plane are described. It is proved that the
characteristic determinant is identically equal to zero if and only if the
matrix of coefficients of boundary conditions has a two diagonal form.
The elements of this matrix for one of the diagonal are units, and the
elements of the other diagonal are 1, −1 and an arbitrary constant.

Keywords: Eigenvalue problems · Differential operator of even order ·
Degenerate boundary conditions · Operator · Spectrum ·
Characteristic determinant

1 Introduction

Consider the following problem for operator D4:

y(4)(x) = λ y(x) = s4 y(x), x ∈ [0, 1] (1)

Uj(y) =
n∑

k=0

ajk y(k−1)(0) +
n∑

k=0

aj k+n y(k−1)(1) = 0, j, k = 1, 2, 3, 4 (2)

It is known [12, P. 26] that if the coefficients of an ordinary linear differential
equation are continuous on [0, 1], then for the spectrum of the problem (1), (2)

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_18
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the following two possibilities occur: 1) there exists at most a countable number
of eigenvalues such that do not have limit points in C; 2) every λ ∈ C is an
eigenvalue.

Direct and inverse problems with nonseparated boundary conditions for case
1) have been fairly well studied (see, for example, [14–16]). The degenerate case
2) has been studied little (The boundary conditions are called degenerate if the
characteristic determinant of corresponding eigenvalue problem is constant [11,
p. 29]). It is well known, perhaps, only an example for differential operator of
any even order for which the spectrum fills the entire complex plane [13] (see
also [10]). In this example the boundary conditions (2) have the following form

Uj(y) = y(j−1)(0) + (−1)j−1 y(j−1)(1) = 0, j = 1, 2, 3, 4. (3)

Recently in [1] it is shown that there exist similar differential operators of any
odd order. However, in connection with this, another question arises: are there
other examples of such operators? In the present paper, for the operator D4 we
find other examples of such operators and describe all boundary value problems
for the operator D4 whose spectrum fills the entire complex plane. The form of
degenerate boundary conditions is found, too.

The question of describing all boundary value problems with degenerate
boundary conditions is related to a description of all Volterra problems. The
problem for operator L is called Volterra problem if inverse operator L−1 is
Volterra operator (see [5, p. 208]). In the case of nondegenerate boundary con-
ditions for an arbitrary continuous function q(x), the system of eigen-vectors
of the operator L is complete in L2(0, π) (see [11, p. 29]). Therefore, Volterra
problems are among problems with degenerate boundary conditions.

In [4] it is shown, that all Volterra problems for operator D2 with common
boundary conditions have the form

y(0) ∓ a y(π) = 0, y′(0) ± a y′(π) = 0, (4)

where a �= 1. A similar result is obtained in [3] for Sturm-Liouville problems
with differential equation −y′′ + q(x) y = λ y and symmetric potential
(q(x) = q(π − x)).

In [9] it is described all degenerate boundary conditions for D2. In [2] a similar
result is obtained for Sturm-Liouville problems (see also [17], where there are
given examples, in which it is shown that if the potential q(x) is not symmetric,
then the spectrum can not fill the entire complex plane).

In [9, p. 556] - [10] it is shown that there can not exist example for the
operators D2 and D4 with finite (but not empty) spectrum. In [6] it is shown
that the spectrum of common nth order linear differential operators generated
by regular boundary conditions is either empty or infinite.

We denote the matrix consisting of the coefficients alk in the boundary con-
ditions (2) by A and the minor consisting of the i1th, i2th, i3th and i4th columns
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of this matrix A by Ai1,i2,i3,i4 ,

A =

∥∥∥∥∥∥∥∥

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

∥∥∥∥∥∥∥∥
. (5)

Ai1,i2,i3,i4 =

∣∣∣∣∣∣∣∣

a1,i1 a1,i2 a1,i3 a1,i4

a2,i1 a2,i2 a2,i3 a2,i4

a3,i1 a3,i2 a3,i3 a3,i4

a4,i1 a4,i2 a4,i3 a4,i4

∣∣∣∣∣∣∣∣
. (6)

In what follows, we assume that the rank of the matrix A is equal to 4,

rankA = 4. (7)

The aim of this paper is to prove the following theorems:

Theorem 1. Matrix (5) for coefficients of the degenerate boundary conditions
(2) has the following form:

A1 =

∥∥∥∥∥∥∥∥

1 0 0 0 a1 0 0 0
0 1 0 0 0 a2 0 0
0 0 1 0 0 0 a3 0
0 0 0 1 0 0 0 a4

∥∥∥∥∥∥∥∥
(8)

or

A2 =

∥∥∥∥∥∥∥∥

a1 0 0 0 1 0 0 0
0 a2 0 0 0 1 0 0
0 0 a3 0 0 0 1 0
0 0 0 a4 0 0 0 1

∥∥∥∥∥∥∥∥
, (9)

where ai (i = 1, 2, 3, 4) are some numbers.

Theorem 2. The characteristic determinant of problem (1), (2) is identically
equal to zero if and only if matrix (5) of coefficients of the boundary conditions
(2) has form (8) or (9), where {ai} (i = 1, 2, 3, 4) are one of the following 12
sets:

1. a1 = C1, a2 = −1, a3 = C−1
1 , a4 = 1,

2. a1 = C2, a2 = 1, a3 = C−1
2 , a4 = −1,

3. a1 = C3, a2 = −1, a3 = 1, a4 = −1,
4. a1 = C4, a2 = 1, a3 = −1, a4 = 1,
5. a1 = −1, a2 = C5, a3 = −1, a4 = 1,
6. a1 = −1, a2 = C6, a3 = 1, a4 = C−1

6 ,
7. a1 = 1, a2 = C7, a3 = −1, a4 = C−1

7 ,
8. a1 = 1, a2 = C8, a3 = 1, a4 = −1,
9. a1 = −1, a2 = 1, a3 = C9, a4 = 1,
10. a1 = 1, a2 = −1, a3 = −1, a4 = −1,
11. a1 = −1, a2 = 1, a3 = −1 a4 = C11,
12. a1 = 1, a2 = −1, a3 = 1, a4 = C12,

(10)

where Cj (j = 1, 2, . . . , 12) are arbitrary constants.
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Remark 1. Theorem 1 may be generalized for any order n ≥ 2. If n is an order
of differential equation, then the matrix A for coefficients of the boundary con-
ditions has the following form

A =

∥∥∥∥∥∥∥∥∥

a11 a12 . . . a1n a1n+1 a1n+2 . . . a1 2n

a21 a22 . . . a2n a2n+1 a2n+2 . . . a2 2n

...
...

. . .
...

...
...

. . .
...

an1 an2 . . . ann ann+1 ann+2 . . . an 2n

∥∥∥∥∥∥∥∥∥

, (11)

where rank A = n.
If the matrix A determines degenerate boundary conditions, then it has the

forms:

A1 =

∥∥∥∥∥∥∥∥∥

1 0 . . . 0 a1 0 . . . 0
0 1 . . . 0 0 a2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . an

∥∥∥∥∥∥∥∥∥

(12)

or

A2 =

∥∥∥∥∥∥∥∥∥

a1 0 . . . 0 1 0 . . . 0
0 a2 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . an 0 0 . . . 1

∥∥∥∥∥∥∥∥∥

. (13)

This statement can be proved similarly to Theorem 1.

Remark 2. The example (3) is a special case of only four solutions (1, 3, 8, 10)
from Theorem 2. And the remaining solutions (10) differ from the example (3).
Note that all 12 solutions (10) contain an arbitrary constant.

This paper is organized as follows: In Sect. 2 we prove Theorem 1, in Sect. 3
we prove Theorem 2, and in Sect. 4 we give conclusions.

2 The Form of Degenerate Boundary Conditions

In this section we prove Theorem 1 and show that the matrix for coefficients of
degenerate boundary conditions has a two diagonal form and the elements for
one of the diagonal are units.

Proof. The eigenvalues of the problem (1), (2) are roots of the entire function
[12, P. 26] Δ(λ):

Δ(λ) =

∣∣∣∣∣∣∣∣

U1(y1) U1(y2) U1(y3) U1(y4)
U2(y1) U2(y2) U2(y3) U2(y4)
U3(y1) U3(y2) U3(y3) U3(y4)
U4(y1) U4(y2) U4(y3) U4(y4)

∣∣∣∣∣∣∣∣
, (14)
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where
y1 =

1
4

exp(s x) +
1
4

exp(−s x) +
1
2

cos(s x),

y2 =
1
4 s

exp(s x) − 1
4 s

exp(−s x) +
1
2 s

sin(s x),

y3 =
1

4 s2
exp(s x) +

1
4 s2

exp(−s x) − 1
2 s2

cos(s x),

y4 =
1

4 s3
exp(s x) − 1

4 s3
exp(−s x) − 1

2 s3
sin(s x),

are linearly independent solutions of Eq. (1) satisfying the conditions

y
(r−1)
j (0, λ) =

{
0 for j �= r,
1 for j = r,

j, r = 1, 2, 3, 4. (15)

By B, B1 and B2 denote the following matrixes

B =

∥∥∥∥∥∥∥∥

y1(0) y′
1(0) y′′

1 (0) y′′′
1 (0) y1(1) y′

1(1) y′′
1 (1) y′′′

1 (1)
y2(0) y′

2(0) y′′
2 (0) y′′′

2 (0) y2(1) y′
2(1) y′′

2 (1) y′′′
2 (1)

y3(0) y′
3(0) y′′

3 (0) y′′′
3 (0) y3(1) y′

3(1) y′′
3 (1) y′′′

3 (1)
y4(0) y′

4(0) y′′
4 (0) y′′′

4 (0) y4(1) y′
4(1) y′′

4 (1) y′′′
4 (1)

∥∥∥∥∥∥∥∥
.

B1 =

∥∥∥∥∥∥∥∥

y1(0) y′
1(0) y′′

1 (0) y′′′
1 (0)

y2(0) y′
2(0) y′′

2 (0) y′′′
2 (0)

y3(0) y′
3(0) y′′

3 (0) y′′′
3 (0)

y4(0) y′
4(0) y′′

4 (0) y′′′
4 (0)

∥∥∥∥∥∥∥∥
, B2 =

∥∥∥∥∥∥∥∥

y1(1) y′
1(1) y′′

1 (1) y′′′
1 (1)

y2(1) y′
2(1) y′′

2 (1) y′′′
2 (1)

y3(1) y′
3(1) y′′

3 (1) y′′′
3 (1)

y4(1) y′
4(1) y′′

4 (1) y′′′
4 (1)

∥∥∥∥∥∥∥∥
,

where

y1(1) = 1
4

(
es + e−s + 2 cos(s)

)
, y′

1(1) = 1
4 s

(
es − e−s − 2 sin(s)

)
,

y′′
1 (1) = 1

4 s2
(
es + e−s − 2 cos(s)

)
, y′′′

1 (1) = 1
4 s3

(
es − e−s + 2 sin(s)

)
,

y2(1) = 1
4 s

(
es − e−s + 2 sin(s)

)
, y′

2(1) = 1
4

(
es + e−s + 2 cos(s)

)
,

y′′
2 (1) = 1

4 s
(
es − e−s − 2 sin(s)

)
, y′′′

2 (1) = 1
4 s2

(
es − e−s − 2 cos(s)

)
,

y3(1) = 1
4 s2

(
es − e−s − 2 cos(s)

)
, y′

3(1) = 1
4 s

(
es − e−s + 2 sin(s)

)
,

y′′
3 (1) = 1

4

(
es + e−s + 2 cos(s)

)
, y′′′

3 (1) = 1
4 s

(
es − e−s − 2 sin(s)

)
,

y4(1) = 1
4 s3

(
es − e−s − 2 sin(s)

)
, y′

4(1) = 1
4 s2

(
es + e−s − 2 cos(s)

)
,

y′′
4 (1) = 1

4 s

(
es − e−s + 2 sin(s)

)
, y′′′

4 (1) = 1
4

(
es + e−s + 2 cos(s)

)
,

Note that

y
(k−1)
j−1 (1, λ) ≡ y

(k)
j (1, λ), j = 2, 3, 4, 5 k = 1, 2, 3, 4. (16)
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From (15) and (16) it follows that

B = ‖B1, B2‖ =

∥∥∥∥∥∥∥∥

1 0 0 0 y1(1) y′
1(1) y′′

1 (1) y′′′
1 (1)

0 1 0 0 y2(1) y1(1) y′
1(1) y′′

1 (1)
0 0 1 0 y3(1) y2(1) y1(1) y′

1(1)
0 0 0 1 y4(1) y3(1) y2(1) y1(1)

∥∥∥∥∥∥∥∥
. (17)

Using A and B the determinant (14) represents in the form

Δ(λ) ≡ det(A · BT ).

It follows from Cauchy-Binet formula [8, 1.14] that

Δ(λ) =
∑

1≤i1<i2<i3<i4≤8

Ai1,i2,i3,i4 Bi1,i2,i3,i4 = 0. (18)

Here we denote by Bi1,i2,i3,i4 = Bi1,i2,i3,i4(λ) the minor consisting of the i1th,
i2th, i3th and i4th columns of the matrix B (lines of the matrix BT ).

By P (s) denote P (s) = A1234 B1234 + A5678 B5678. From the Liouville-
Ostrogradsky connecting the Wronskian for the solutions of the differential
equation and the coefficients in this equation it follows that [7, 17.1] B1234 =
det(B1) = W (0) = 1, B5678 = det(B2) = W (1) = 1, and P (s) = A1234+B5678 =
const.

All other functions Bi1,i2,i3,i4 = Bi1,i2,i3,i4(s) (except B1234 and B5678) are
not constants.

So if Δ(λ) ≡ C = const, then Δ(λ) − P (s) ≡ 0 and one of minors A1234 or
A5678 are not equal to zero. Assume the converse. Then all minors Ai1,i2,i3,i4 of
the matrix are equal to zero. This fact contradicts the condition rankA = 4.

Suppose A1234 �= 0. Then the matrix (5) has the following form:

A =

∥∥∥∥∥∥∥∥

1 0 0 0 a15 a16 a17 a18

0 1 0 0 a25 a26 a27 a28

0 0 1 0 a35 a36 a37 a38

0 0 0 1 a45 a46 a47 a48

∥∥∥∥∥∥∥∥
.

(In order not to introduce new notations by aij we denote other coefficients aij

than (5)).
Let us remark that the determinant B2348 = y′′′

1 (1) and any other deter-
minant Bi1,i2,i3,i4 are linear independent. Suppose Δ(λ) ≡ C = const, then
Δ(λ) − P (s) ≡ 0 and A2348 = 0. From this it follows that

A2348 =

∣∣∣∣∣∣∣∣

0 0 0 a18

1 0 0 a28

0 1 0 a38

0 0 1 a48

∣∣∣∣∣∣∣∣
= −a18 = 0. (19)

Let us show that a17 , a28 are equal to zero, too. Indeed, B3478 =
y′
1(1) y′′′

1 (1) − (y′′
1 (1))2 and any other determinant Bi1,i2,i3,i4 are linear inde-

pendent. Suppose Δ(λ) ≡ C = const, then Δ(λ) − P (s) ≡ 0 and A3478 = 0.
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From this it follows that

A3478 =

∣∣∣∣∣∣∣∣

0 0 a17 0
0 0 a27 a28

1 0 a37 a38

0 1 a47 a48

∣∣∣∣∣∣∣∣
= a17 · a28 = 0. (20)

In addition, B2347 = −B1348 = −y′′
1 (1) and any other determinant Bi1,i2,i3,i4

are linear independent. This implies that

A2347 − A1348 = −(a17 + a28) = 0. (21)

Combining (20) and (21), we get

a17 = a28 = 0.

Likewise,
a16 = a27 = a38 = 0.

Further, B1235 = y4(1) and any other determinant Bi1,i2,i3,i4 are linear indepen-
dent. So if Δ(λ) − P (s) ≡ 0, then the minor A1235 = a45 = 0. As before, we
have

a34 = a46 = a25 = a36 = a47 = 0.

Therefore if A1234 �= 0, then the matrix A has the form A1.
Arguing as above, we see that if A5678 �= 0, then the matrix A has the form

A2.
This completes the proof of Theorem 1. �	

3 Eigenvalue Boundary Problems for the Operator D4

Whose Spectrum Fills the Entire Complex Plane

In this section we prove that the characteristic determinant is identically equal
to zero if and only if the matrix of coefficients of boundary conditions has a two
diagonal form. The elements of this matrix for one of the diagonal are units, and
the elements of the other diagonal are numbers (10).

Proof. If A1234 �= 0 and Δ(λ) ≡ 0 it follows from Theorem 1 that

0 ≡ Δ(λ) = det(A1 · BT ) = 1 + 1
2 (a1 a2 + a1 a4 + a2 a3 + a3 a4) + a1 a2 a3 a4+

+ 1
4 (a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a3 + 2 a2 a4) (es + e−s) cos s+

+ 1
4 (a1 + a2 + a3 + a4 + a1 a2 a3+

+a1 a2 a4 + a1 a3 a4 + a2 a3 a4) (es + e−s + 2 cos s) .
(22)
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The functions 1, (es + e−s) cos s, and (es + e−s + 2 cos s) are linear inde-
pendent. So characteristic determinant (22) is identically equal to zero if and
only if the coefficients a1, a2, a3, a4 are solutions of the following system of the
equations

2 + a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a2 a3 a4 = 0,

a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a3 + 2 a2 a4 = 0,

a1 + a2 + a3 + a4 + a1 a2 a3 + a1 a2 a4 + a1 a3 a4 + a2 a3 a4 = 0.

(23)

By direct calculation we find the solutions of the system of the equations
(23). This solutions are (10).

If A5678 �= 0 and Δ(λ) ≡ 0 it follows from Theorem 1 that

0 ≡ Δ(λ) = det(A2 · BT ). (24)

From this we have the system of equations (23) , the solutions of whose are (10).
This concludes the proof of Theorem 2. �	

4 Conclusion

In this paper it is shown that the matrix for coefficients of degenerate boundary
conditions has a two diagonal form and the elements for one of the diagonal are
units. All eigenvalue boundary problems for the operator D4 whose spectrum
fills the entire complex plane are described. It is proved that the characteristic
determinant is identically equal to zero if and only if the matrix of coefficients
of boundary conditions has a two diagonal form. The elements of this matrix
for one of the diagonal are units, and the elements of the other diagonal are
numbers (10).

Let us remark that if

2 + a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a2 a3 a4 = C �= 0

in (23), then solving of the new system of equations reduces to solving a sixth-
degree equation, and therefore is no longer analytically. Therefore, we can not
write specific expressions for the coefficients in Theorem 1. The system (23) can
be solved analytically in view of the fact that the coefficients of odd powers van-
ish, and therefore the sixth-degree equation reduces to a three-degree equation.
So specific expressions for the coefficients are given in Theorem 2.
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Abstract. In the present study, the problem of a hyperbolic equation
with the involution is investigated. The stability estimates in maximum
norm in t for the solution of this problem are established.

Keywords: Hyperbolic equation · Self-adjoint operator · Positive
definite operator · Stability estimates · Involution · Stability estimates
· Differential equations in Banach space · Operator method · Boundary
value problems · Neuman conditions

1 Introduction

Hyperbolic partial differential equations arise in many branches of science and
engineering e.g., electromagnetic, electrodynamics, thermodynamics, hydrody-
namics, elasticity, fluid dynamics, wave propagation, materials science. The
method of operators as a tool for the investigation of the solution of local
and nonlocal problems to hyperbolic differential equations in Hilbert and
Banach spaces, has been systematically developed by several authors (see, e.g.,
[2,3,5–9,12,13,16,17,23,24] and the references given therein). The theory of
functional-differential equations with the involution has received less attention
than functional-differential equations. Moreover, one of the unstudied areas of
partial differential equations are parabolic differential and difference equations
with the involution (see, e.g., [25]-[1] and the references given therein). For exam-
ple, in the paper [25], the mixed problem for a parabolic partial differential
equation with the involution with respect to t

ut (t, x) = auxx (t, x) + buxx (−t, x) , 0 < x < l, − ∞ < t < ∞ (1)

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_19
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with the Dirichlet condition in x was studied. The Fourier method was used to
get existence of unbounded solutions and non existence of solution dependent
on coefficients a and b. Moreover, in papers [19]-[10], the mixed problem for
a first-order partial differential equation with the involution was investigated.
The Fourier method was used to find a classical solution of the mixed problem
for a first-order differential equation with involution. The application of the
Fourier method was substantiated using refined asymptotic formulas obtained
for the eigenvalues and eigenfunctions of the corresponding spectral problem.
The Fourier series representing the formal solution was transformed using certain
techniques, and the possibility of its term-by-term differentiation was proved.

The paper [11] was devoted to the study of first order linear problems with
involution and periodic boundary value conditions. First, it was proved a corre-
spondence between a large set of such problems with different involutions to later
focus attention to the case of the reflection. Then in different cases, for which a
Green’s function can be obtained explicitly, it was derived several results in order
to obtain information about its sign. More general existence and uniqueness of
solution results were established.

In papers [14]-[15], the basis properties of systems of eigenfunctions and asso-
ciated functions for one kind of generalized spectral problems for a second-order
and a first-order ordinary differential operators. In the paper [21], the notion of
regularity of boundary conditions for a simplest second-order differential equa-
tion with a deviating argument was introduced. The Riesz basis property for a
system of root vectors of the corresponding generalized spectral problem with
regular boundary conditions (in the sense of the introduced definition) was estab-
lished. Examples of irregular boundary conditions, to which the theory of Il’in
basis property can be applied, were given.

In the paper [22], a nonclassical operator L in L2 (−1, 1), generated by the
differential expression with shifted argument

Lu := −u′′(−x),−1 < x < 1 (2)

and the boundary conditions

αju
′(−1) + βju

′(1) + αj1u(−1) + βj1u(1) = 0, j = 1, 2 (3)

was considered. For the spectral problem corresponding to (1), (2), the author
introduces a concept of regular boundary conditions (2). In some sense, the defi-
nition is similar to that of strong (Birkhoff) regular boundary conditions (2) for
second-order ordinary differential equations. The main result of the paper states
that a system of eigenfunctions and associated functions of the operator L forms
an unconditional basis of the space L2 (−1, 1). In the paper [20], the spectral
problem for a model second-order differential operator with an involution was
considered. The operator is given by the differential expression Lu = −u

′′
(−x)

and boundary conditions of general form. A criterion for the basis property of
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the systems of eigenfunctions of this operator in terms of the coefficients in the
boundary conditions was obtained. In the paper [4], the problem of a parabolic
equation with the involution was investigated. The stability and coercive stability
estimates in Hölder norms in t for the solution of this problem were established.
In the present paper, we will study the mixed problem for a hyperbolic equation
with the involution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 = (a(x)ux (t, x))x + β (a(−x)ux (t,−x))x − σu (t, x) + f (t, x) ,

−l < x < l, 0 < t < T,

ux (t,−l) = 0, ux (t, l) = 0, 0 ≤ t ≤ T,

u (0, x) = ϕ (x) , ut (0, x) = ψ (x) ,−l ≤ x ≤ l, ϕx (−l) = ϕx (l) = 0,
(4)

where u (t, x) is unknown function, ϕ (x) , ψ (x) , a (x) , and f (t, x) are sufficiently
smooth functions, a ≥ a (x) = a (−x) ≥ δ > 0 and σ > 0 is a sufficiently
large number. The stability estimates in maximum norm in t for the solution of
problem (4) are established.

2 Preliminaries. Main Results

To formulate our results, we introduce the Hilbert space L2[−l, l] of all integrable
functions f defined on [−l, l], equipped with the norm

‖ f ‖L2[−l,l]=

⎧
⎨

⎩

l∫

−l

|f(x)|2dx

⎫
⎬

⎭

1
2

. (5)

We introduce the inner product in L2[−l, l] by the following formula

〈u, v〉 =

l∫

−l

u(x)v(x)dx. (6)

Moreover, C ([0, T ] ,H) stands for the Banach space of all abstract continuous
functions ϕ(t) defined on [0, T ] with values in H equipped with the norm

‖ϕ‖C([0,T ],H) = max
0≤t≤T

‖ϕ(t)‖H . (7)

Finally, we introduce a differential operator Ax defined by the formula

Axv(x) = − (a(x)vx(x)x − β (a(−x)vx (−x))x + σv (x) (8)
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with the domain D(Ax) = {u, uxx ∈ L2[−l, l] : ux (−l) = 0, ux (l) = 0} . We can
rewrite the problem (4) in the following abstract form as the abstract Cauchy
problem for hyperbolic equations

v′′(t) + Av(t) = f(t) (0 ≤ t ≤ T ), v(0) = ϕ, v′(0) = ψ (9)

in a Hilbert space H with the self -adjoint positive definite operator A = Ax

defined by formula (8). Here, f (t) = f (t, x) and u (t) = u (t, x) are respectively,
known and unknown abstract functions defined on (0, T ) with values in H =
L2[−l, l] , ϕ = ϕ (x) , ψ = ψ(x) and a = a (x) are given smooth elements of
H = L2[−l, l]. The main result of the present paper is the following theorem on
stability estimates of (4) in spaces C ([0, T )] , L2[−l, l]) for the solution of this
problem.

Theorem 21. Assume that δ − a |β| ≥ 0, ϕ (x) , ϕxx (x) ∈ L2[−l, l], ψ (x) , ψx

(x) ∈ L2[−l, l], and f (t, x) ∈ C(1)([0, T ], L2[−l, l]). Then for the solution of
problem (4) the following stability estimates

max
0≤t≤T

‖u(t, ·)‖W 1
2 [−l,l] ≤ M [ max

0≤t≤T
‖f(t, ·)‖L2[−l,l] + ‖ ϕ ‖W 1

2 [−l,l] + ‖ ψ ‖L2[−l,l]],

(10)

max
0≤t≤T

‖u(t, ·)‖W 2
2 [−l,l] + max

0≤t≤T
‖utt(t, ·)‖L2[−l,l] (11)

≤ M

[

max
0≤t≤T

‖ft(t, ·)‖L2[−l,l] + ‖f(0, ·)‖L2[−l,l] + ‖ϕ‖W 2
2 [−l,l] + ‖ψ‖W 1

2 [−l,l]

]

(12)
hold, where M does not depend on f(t, x) and ϕ(x), ψ(x). Here, the Sobolev
space W 1

2 [−l, l] is defined as the set of all functions f defined on [−l, l] such that
f and first order derivative function f ′ are both locally integrable in L2 [−l, l],
equipped with the norm

‖ f ‖W 1
2 [−l,l]=

⎧
⎨

⎩

l∫

−l

|f(x)|2dx

⎫
⎬

⎭

1
2

+

⎧
⎨

⎩

l∫

−l

|fx(x)|2dx

⎫
⎬

⎭

1
2

, (13)

and the Sobolev space W 2
2 [−l, l] is defined as the set of all functions f defined

on [−l, l] such that f and second order derivative function f ′′ are both locally
integrable in L2 [−l, l], equipped with the norm

‖ f ‖W 2
2 [−l,l]=

⎧
⎨

⎩

l∫

−l

|f(x)|2dx

⎫
⎬

⎭

1
2

+

⎧
⎨

⎩

l∫

−l

|fxx(x)|2dx

⎫
⎬

⎭

1
2

. (14)
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The proof of Theorem 21 is based on the following abstract Theorem on stability
of problem (9) in C([0, T ] ,H) space and on self-adjointness and positive defi-
niteness of the unbounded operator A = Ax defined by formula (8) in L2[−l, l]
space.

Theorem 22. [5]. Suppose that ϕ ∈ D(A) , ψ ∈ D(A
1
2 ) and f(t) are contin-

uously differentiable on [0, T ] function. Then there is a unique solution of the
problem (9) and the stability inequalities

max
0≤t≤T

‖v(t)‖H ≤ M

[

‖ϕ‖H +
∥
∥
∥A−1/2ψ

∥
∥
∥

H
+ max

0≤t≤T

∥
∥
∥A−1/2f(t)

∥
∥
∥

H

]

, (15)

max
0≤t≤T

∥
∥
∥A1/2v(t)

∥
∥
∥

H
≤ M

[∥
∥
∥A1/2ϕ

∥
∥
∥

H
+ ‖ψ‖H + max

0≤t≤T
‖f(t)‖H

]

, (16)

max
0≤t≤T

‖Av(t)‖H ≤ M

[

‖Aϕ‖H +
∥
∥
∥A1/2ψ

∥
∥
∥

H
+ ‖f(0)‖H + max

0≤t≤T
‖f ′‖H

]

, (17)

hold, where M does not depend on f(t), t ∈ [0, T ] and ϕ,ψ.

In the next Section, the self-adjointness and positive definiteness of the oper-

ator A = Ax defined by formula (8) in L2[−l, l] space will be studied.

3 Self-adjointness and Positive Definiteness

Theorem 31. Assume that δ − a |β| ≥ 0, then the operator A = Ax defined
by formula (8) is the self-adjoint and positive definite operator in L2[−l, l] space
with the spectral angle ϕ(A,H) = 0.

Proof. We will prove the following identity and estimate

〈Axu, v〉 = 〈u,Axv〉 , u, v ∈ D(Ax), (18)

〈Axu, u〉 ≥ σ 〈u, u〉 , u ∈ D(Ax). (19)

Applying the definition of the inner product and integrating by part, we get

〈Axu, v〉 = −
l∫

−l

(a(x)ux(x))x v(x)dx − β

l∫

−l

(a(−x)ux (−x))x v(x)dx + σ

l∫

−l

u (x) v(x)dx (20)

= −a(l)ux(l)v(l) + a(−l)ux(−l)v(−l) +

l∫

−l

a(x)ux(x)vx(x)dx (21)

+β [−a(−l)ux(−l)v(−l) + a(l)ux(l)v(l)]+β

l∫

−l

a(−x)ux (−x) vx(x)dx+σ

l∫

−l

u (x) v(x)dx. (22)
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From u, v ∈ D(Ax) it follows that

〈Axu, v〉 =

l

−l

a(x)ux(x)vx(x)dx + β

l

−l

a(x)ux (x) vx(−x)dx + σ

l

−l

u (x) v(x)dx. (23)

In a similar manner one establishes formula

〈u, Axv〉 =

l

−l

a(x)ux(x)vx(x)dx+β

l

−l

ux (x) a(−x)vx(−x)dx+σ

l

−l

u (x) v(x)dx. (24)

Therefore, from these formulas and condition a (x) = a (−x) it follows identity
(18). Now, we will prove the estimate (19). Applying the identity (23), we get

〈Axu, u〉 =

l

−l

a(x)ux(x)ux(x)dx+β

l

−l

ux (x) a(−x)ux(−x)dx+σ

l

−l

u (x) u(x)dx (25)

≥ σ 〈u, u〉 + δ

l∫

−l

ux(x)ux(x)dx + βδ

l∫

−l

a(−x)ux (x) ux(−x)dx. (26)

Using the Cauchy inequality, we get

l

−l

a(−x)ux (x) ux(−x)dx ≤ a

l

−l

|ux (x)|2 dx

1
2 l

−l

|ux (−x)|2 dx

1
2

= a 〈ux, ux〉 .

(27)
Since β ≥ − |β| , we have that

β

l∫

−l

a(−x)ux (x) ux(−x)dx ≥ − |β| a 〈ux, ux〉 . (28)

Then
〈Axu, u〉 ≥ σ 〈u, u〉 + (δ − |β| a) 〈ux, ux〉 ≥ σ 〈u, u〉 . (29)

Theorem 31 is proved.

4 Conclusion

In the present study, the mixed problem (4) for a hyperbolic equation with the
involution is investigated. The stability estimates in C([0, T ], L2[−l, l]) norm for
the solution of this problem are established.
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Moreover, applying results of paper [3] and present paper, we can study the
nonlocal problem for a hyperbolic equation with the involution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 = (a(x)ux (t, x))x + β (a(−x)ux (t,−x))x − σu (t, x) + f (t, x) ,

−l < x < l, 0 < t < T,

ux (t,−l) = 0, ux (t, l) = 0, 0 ≤ t ≤ T,

u (0, x) =
T∫

0

α (ρ) u (ρ, x) dρ +
n∑

i=1

a (λi) u (λi, x) + ϕ (x) ,

ut (0, x) =
T∫

0

β (ρ) ut (ρ, x) dρ +
n∑

i=1

β (λi) u (λi, x) + ψ (x) ,

−l ≤ x ≤ l, ϕx (−l) = ϕx (l) = 0,
(30)

where u (t, x) is unknown function, ϕ (x) , ψ (x) , a (x) , and f (t, x) are sufficiently
smooth functions, a ≥ a (x) = a (−x) ≥ δ > 0 and σ > 0 is a sufficiently large
number, and α(s), β(s), a(s), b(s) are scalar real-valued continuous functions.
Under the assumption

∣∣∣∣∣1 +
T∫
0

α (s)β (s) ds +
n∑

k=1
a (λk)

n∑
k=1

b (λk) +
n∑

k=1
a (λk)

T∫
0

β (s) ds +
n∑

k=1
b (λk)

T∫
0

α (s) ds

∣∣∣∣∣
>

T∫
0

(|α (s)| + |β (s)|) ds +
n∑

k=1
|a (λk) + b (λk)|,

stability estimates in maximum norm in t for the solution of problem (30) can
be established. Finally, applying the result of the monograph [5], the high order
of accuracy two-step difference schemes for the numerical solution of the mixed
problem (4) can be presented. Of course, the stability estimates for the solution
of these difference schemes have been established without any assumptions about
the grid steps.
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Abstract. In this paper we study the spectral properties of relatively
bounded correct perturbations of the correct restrictions and extensions.
Method for constructing a class of correct perturbations, which spectra
coincide with the spectrum of a fixed boundary correct extension, is
obtained. Examples illustrating the application of the obtained results
are given.

Keywords: Correct restrictions · Correct extensions · Relatively
bounded perturbations · Spectral properties · Volterra correct
extensions

1 Introduction

Let us present some definitions, notation, and terminology.
In a Hilbert space H, we consider a linear operator L with domain D(L) and

range R(L). By the kernel of the operator L we mean the set

Ker L =
{
f ∈ D(L) : Lf = 0

}
.

Definition 1. An operator L is called a restriction of an operator L1, and L1

is called an extension of the operator L, briefly L ⊂ L1, if:
1) D(L) ⊂ D(L1),
2) Lf = L1f for all f from D(L).

Definition 2. A linear closed operator L0 in a Hilbert space H is called minimal
if there exists a bounded inverse operator L−1

0 on R(L0) and R(L0) �= H.

Definition 3. A linear closed operator L̂ in a Hilbert space H is called maximal
if R(L̂) = H and Ker L̂ �= {0}.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_20
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Definition 4. A linear closed operator L in a Hilbert space H is called correct
if there exists a bounded inverse operator L−1 defined on all of H.

Definition 5. We say that a correct operator L in a Hilbert space H is a correct
extension of minimal operator L0 (correct restriction of maximal operator L̂) if
L0 ⊂ L (L ⊂ L̂).

Definition 6. We say that a correct operator L in a Hilbert space H is a bound-
ary correct extension of a minimal operator L0 with respect to a maximal oper-
ator L̂ if L is simultaneously a correct restriction of the maximal operator L̂ and
a correct extension of the minimal operator L0, that is, L0 ⊂ L ⊂ L̂.

Let L̂ be a maximal linear operator in the Hilbert space H, let L be any
known correct restriction of L̂, and let K be an arbitrary linear bounded (in H)
operator satisfying the following condition:

R(K) ⊂ Ker L̂.

Then the operator L−1
K defined by the formula (see [5])

L−1
K f = L−1f + Kf, (1)

describes the inverse operators to all possible correct restrictions LK of L̂, i.e.,
LK ⊂ L̂.

Let L0 be a minimal operator in the Hilbert space H, let L be any known
correct extension of L0, and let K be a linear bounded operator in H satisfying
the conditions

a) R(L0) ⊂ Ker K,
b) Ker (L−1 + K) = {0},

then the operator L−1
K defined by formula (1) describes the inverse operators to

all possible correct extensions LK of L0 (see [5]).
Let L be any known boundary correct extension of L0, i.e., L0 ⊂ L ⊂ L̂. The

existence of at least one boundary correct extension L was proved by Vishik in
[7]. Let K be a linear bounded (in H) operator satisfying the conditions

a) R(L0) ⊂ Ker K,
b) R(K) ⊂ Ker L̂,
then the operator L−1

K defined by formula (1) describes the inverse operators
to all possible boundary correct extensions LK of L0 (see [5]).

Definition 7. A bounded operator A in a Hilbert space H is called quasinilpo-
tent if its spectral radius is zero, that is, the spectrum consists of the single point
zero.

Definition 8. An operator A in a Hilbert space H is called a Volterra operator
if A is compact and quasinilpotent.
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Definition 9. A correct restriction L of a maximal operator L̂ (L ⊂ L̂), a
correct extension L of a minimal operator L0 (L0 ⊂ L) or a boundary cor-
rect extension L of a minimal operator L0 with respect to a maximal operator
L̂ (L0 ⊂ L ⊂ L̂), will be called Volterra if the inverse operator L−1 is a Volterra
operator.

Definition 10. A densely defined closed linear operator A in a Hilbert space
H is called formally normal if

D(A) ⊂ D(A∗), ‖Af‖ = ‖A∗f‖ for all f ∈ D(A).

Definition 11. A formally normal operator A is called normal if

D(A) = D(A∗).

2 Main Results

Let L0 be some minimal operator, and let M0 be another minimal operator
related to L0 by the equation (L0u, v) = (u,M0v) for all u ∈ D(L0) and v ∈
D(M0). Then L̂ = M∗

0 and M̂ = L∗
0 are maximal operators such that L0 ⊂ L̂ and

M0 ⊂ M̂ . The existence of at least one boundary correct extension L was proved
by Vishik in [7], that is, L0 ⊂ L ⊂ L̂. In this case, L∗ is a boundary correct
extension of the minimal operator M0, that is, M0 ⊂ L∗ ⊂ M̂ . The inverse
operators to all possible correct restrictions LK of the maximal operator L̂ have
the form (1), then D(LK) is dense in H if and only if Ker (I + K∗L∗) = {0}.
Thus, it is obvious that any correct extension MK of M0 is adjoint of some
correct restriction LK with dense domain, and vice versa [2]. Finally, all possible
correct extensions MK of M0 have inverses of the form

M−1
K f = (L∗

K)−1f = (L∗)−1f + K∗f, (2)

where K is an arbitrary bounded linear operator in H with R(K) ⊂ Ker L̂ such
that Ker (I + K∗L∗) = {0}. It is also clear that R(M0) ⊂ Ker K∗. In particular,
MK is a boundary correct extension of M0 if and only if R(M0) ⊂ Ker K∗ and
R(K∗) ⊂ Ker M̂ .

Lemma 1. Let LK be a densely defined correct restriction of the maximal oper-
ator L̂ in a Hilbert space H. Then D(L∗) = D(L∗

K) if and only if R(K∗) ⊂
D(L∗) ∩ D(L∗

K), where L and K are the operators from the representation (1).

Proof. If D(L∗) = D(L∗
K) then from the representation (1), we easily get

R(K∗) ⊂ D(L∗) ∩ D(L∗
K) = D(L∗) = D(L∗

K)
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Let us prove the converse. If

R(K∗) ⊂ D(L∗) ∩ D(L∗
K),

then we obtain

(L∗
K)−1f = (L∗)−1f + K∗f = (L∗)−1(I + L∗K∗)f, (3)

(L∗)−1f = (L∗
K)−1f − K∗f = (L∗

K)−1(I − L∗
KK∗)f, (4)

for all f in H. It follows from (3) that D(L∗
K) ⊂ D(L∗), and from (4) it implies

that D(L∗) ⊂ D(L∗
K). Thus D(L∗) = D(L∗

K). Lemma 1 is proved. �

Lemma 2. If R(K∗) ⊂ D(L∗)∩D(L∗
K) then a bounded operators I +L∗K∗ and

I − L∗
KK∗ from (3) and (4), respectively, have a bounded inverse defined on H.

Proof. By virtue of the density of the domains of the operators L∗
K and L∗ we

imply that the operators I + L∗K∗ and I − L∗
KK∗ are invertible. Since from (3)

and (4) we have Ker (I +L∗K∗) = {0} and Ker (I −L∗
KK∗) = {0}, respectively.

From the representations (3) and (4) we also note that R(I + L∗K∗) = H and
R(I −L∗

KK∗) = H, since D(L∗) = D(L∗
K). The inverse operators (I +L∗K∗)−1

and (I −L∗
KK∗)−1 of the closed operators I +L∗K∗ and I −L∗

KK∗, respectively,
are closed. Then the closed operators (I + L∗K∗)−1 and (I − L∗

KK∗)−1, defined
on the whole of H, are bounded. Lemma 2 is proved. �

Under the conditions of Lemma 2 the operators KL and KLK will be (see
[3]) a part of bounded operators KL and KLK , respectively, where the bar
denotes the closure of operators in H. Thus (I − L∗

KK∗)−1 = I + L∗K∗ and
(I − KLK)−1 = I + KL.

Next we consider the following statement

Theorem 1. Let LK be a densely defined correct restriction of the maximal
operator L̂ in a Hilbert space H. If R(K∗) ⊂ D(L∗) ∩ D(L∗

K), where L and K
are the operators from the representation (1) then

1. The operator BK = (I +KL)LK is relatively bounded correct perturbations of
the correct restriction LK and the spectra of the operators BK and L coincide,
that is, σ(BK) = σ(L);

2. The operator L is a quasinilpotent (the Volterra) boundary correct extension
of L0, and BK is a quasinilpotent correct operator simultaneously;

3. If L is an operator with discrete spectrum then the system of root vectors of
the operator L is complete (the basis) in H if and only if the system of root
vectors of the operator BK is complete (the basis) in H;

4. In particular, when L is a normal operator with discrete spectrum, then the
system of root vectors of the operator BK form a Riesz basis in H.

Proof. 1. Note that B−1
K = L−1

K (I−KLK), and (I−KLK)L−1
K = L−1

K −K = L−1.
The correctness of the operator BK is obvious. For bounded operators R and
S it is known (see [1]) the property σ(RS) \ {0} = σ(SR)\{0}. Thus, Item 1
is proved.



Relatively Bounded Perturbations of Correct Restrictions . . . 217

2. Note that B−1
K = (I −KLK)−1L−1(I −KLK). It follows easily from Lemmas

1 and 2 that the operators I − KLK and (I − KLK)−1 are bounded and
defined on the whole of H. It is then obvious that the operators L−1 and B−1

K

are quasinilpotent (the Volterra) simultaneously. Item 2 is proved.
3. From the known facts of functional analysis (see [6]) imply that the system of

root vectors of the operators L and BK are complete (the basis) simultane-
ously.

4. The system of root vectors of the normal discrete correct operator L form
an orthonormal basis in H. Then the system of root vectors of the correct
operator BK form a Riesz basis in H.
Theorem 1 is proved. �

Example 1. In the Hilbert space L2(0, 1) let us consider the minimal operator
L0 generated by the differentiation operator

L̂y = y′ = f for all f ∈ L2(0, 1).

Then
D(L0) = {y ∈ W 1

2 (0, 1) : y(0) = y(1) = 0}.

The action of the maximum operator M̂ = L∗
0 has the form

M̂v = −v′ = g for all g ∈ L2(0, 1).

Then
D(M0) = {v ∈ W 1

2 (0, 1) : v(0) = v(1) = 0}.

As a fixed boundary correct extension L of L0 we take the operator acting as
the maximal operator L̂ on the domain

D(L) = {y ∈ D(L̂) : y(0) = 0}.

Then all possible correct restriction LK of L̂ have the following inverse

y = L−1
K f = L−1 + Kf =

∫ x

0

f(t)dt +
∫ 1

0

f(t)σ(t)dt,

where σ(x) ∈ L2(0, 1) defines the operator K. The domain D(LK) of LK is
defined as

D(LK) = {y ∈ W 1
2 (0, 1) : y(0) =

∫ 1

0

y′(t)σ(t)dt}.

Then D(LK) is not dense in L2(0, 1) if and only if σ(x) ∈ W 1
2 (0, 1), σ(1) = 0,

and σ(0) = −1. If we exclude such σ(x) from L2(0, 1) then there exists L∗
K which

has an inverse of the form

v = (L∗
K)−1g = (L−1

K )∗g = (L∗)−1g + K∗g for all g ∈ L2(0, 1).
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This is a description of inverse operators of all possible correct extensions L∗
K

of M0. Let the condition of Theorem 1 holds. Then σ(x) ∈ W 1
2 (0, 1), σ(1) = 0,

and σ(0) �= −1. Let us construct the following operators

KLf = −
∫ 1

0

f(t)σ′(t)dt,

KLKf = − 1
1 + σ(0)

∫ 1

0

f(t)σ′(t)dt.

Note that

L∗
Kv = −v′(x) +

σ′(x)
1 + σ(0)

v(0) = f(x),

D(L∗
K) = D(L∗) = {v ∈ W 1

2 (0, 1) : v(1) = 0}.

Then the operator BK has the following form

BKu = u′(x) −
∫ 1

0

u′(t)σ′(t)dt = f(x),

D(BK) = D(LK) = {u ∈ W 1
2 (0, 1) : u(0) =

∫ 1

0

u′(t)σ(t)dt},

where σ(x) ∈ W 1
2 (0, 1), σ(1) = 0, and σ(0) �= −1. By virtue of Theorem 1

BK is a Volterra correct operator. We know that for a first order differentiation
operator there are no Volterra correct restrictions or correct extensions, except
the Cauchy problem at some point x = d, 0 ≤ d ≤ 1. But the operator BK

is neither correct restriction of L̂ nor correct extension of L0. This Volterra
problem is obtained by the perturbation of the differentiation operator itself
and the boundary conditions of Cauchy simultaneously.

Example 2. If in Example 1 as a fixed boundary correct operator L we take the
operator L̂ with the domain

D(L) = {y ∈ W 1
2 (0, 1) : y(0) + y(1) = 0},

then L is a normal operator. In this case, the operator BK has the form

BKy = y′(x) −
∫ 1

0

y′(t)σ′(t)dt = f(x),

D(BK) = {y ∈ W 1
2 (0, 1) : y(0) + y(1) = 2

∫ 1

0

y′(t)σ(t)dt},

where σ(x) ∈ W 1
2 (0, 1), σ(0) + σ(1) = 0, and σ(0) �= − 1

2 . The operator BK

is correct and the system of root vectors form a Riesz basis in L2(0, 1). The
eigenvalues of the normal operator L and the correct operator BK coincide.

Corollary 1. The results of Theorem 1 are also valid for the operator B∗
K =

L∗
K(I +L∗K∗). All four items will take place for a pair of operators B∗

K and L∗.
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Remark 1. The results of Examples 1–2 are also valid for the operator B∗
K .

B∗
Kv = − d

dx
[v(x) − σ′(x)

∫ 1

0

v(t)dt] = f,

D(B∗
K) = {v ∈ L2(0, 1) : v(x) − σ′(x)

∫ 1

0

v(t)dt ∈ D(L∗)},

where σ(x) ∈ W 1
2 (0, 1), σ(1) = 0, and σ(0) �= −1, in the case of Example 1, and

σ(x) ∈ W 1
2 (0, 1), σ(0) + σ(1) = 0, and σ(0) �= − 1

2 , in the case of Example 2. We
recall that the conditions σ(0) �= −1 and σ(0) �= −1

2 provide the density of the
domain D(LK) in H.

Example 3. In the Hilbert space L2(Ω), where Ω is a bounded domain in R
m

with an infinitely smooth boundary ∂Ω, let us consider the minimal L0 and
maximal L̂ operators generated by the Laplace operator

− Δu = −
(

∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · · +
∂2u

∂x2
m

)
. (5)

The closure L0, in the space L2(Ω) of the Laplace operator (5) with the
domain C∞

0 (Ω), is the minimal operator corresponding to the Laplace operator.
The operator L̂, adjoint to the minimal operator L0 corresponding to the Laplace
operator, is the maximal operator corresponding to the Laplace operator (see [4]).
Note that

D(L̂) = {u ∈ L2(Ω) : L̂u = −Δu ∈ L2(Ω)}.

Denote by LD the operator, corresponding to the Dirichlet problem with the
domain

D(LD) = {u ∈ W 2
2 (Ω) : u|∂Ω = 0}.

Then, by virtue of (1), the inverse operators L−1 to all possible correct restric-
tions of the maximal operator L̂ corresponding to the Laplace operator (5) have
the following form:

u ≡ L−1f = L−1
D f + Kf,

where, by virtue of (1), K is an arbitrary linear operator bounded in L2(Ω) with

R(K) ⊂ Ker L̂ = {u ∈ L2(Ω) : −Δu = 0}.

Then the direct operator L is determined from the following problem:

L̂u = −Δu = f, f ∈ L2(Ω),

D(L) = {u ∈ D(L̂) : [(I − KL̂)u]|∂Ω = 0},

where I is the identity operator in L2(Ω). There are no other linear correct
restrictions of the operator L̂ (see [2]). The operators (L∗)−1, corresponding to
the adjoint operators L∗

v = (L∗)−1g = L−1
D g + K∗g,
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describe the inverse operators to all possible correct extensions of L0 if and only
if K satisfies the condition (see [2]):

Ker (I + K∗L∗) = {0}.

Note that the last condition is equivalent to the following: D(L) = L2(Ω).
We apply Theorem 1 to the particular case when

Kf = ω(x)
∫∫

Ω

f(ξ)g(ξ)dξ, x, ξ ∈ Ω ⊂ R
m,

where ω(x) is a harmonic function from L2(Ω), and g(x) ∈ L2(Ω).

K∗f = g(x)
∫∫

Ω

f(ξ)ω(ξ)dξ.

From the conditions of Theorem 1 it follows that g(x) ∈ W 2
2 (Ω), g(x) |∂Ω= 0,

and ∫∫

Ω

(Δg)(ξ)ω(ξ)dξ �= 1.

Then

BKu = −Δu − ω(x)
∫∫

Ω

(Δu)(ξ)(Δg)(ξ)dξ = f(x), for all f ∈ L2(Ω),

D(BK) =
{

u ∈ W 2
2 (Ω) :

(
u(x) + ω(x)

∫∫

Ω

(Δu)(ξ)g(ξ)dξ
) |∂Ω= 0

}

We obtained a relatively compact perturbation BK of L which has the same
eigenvalues as the Dirichlet problem LD. The system of root vectors of BK forms
a Riesz basis in L2(Ω). If {vk} are an orthonormal system of eigenfunctions of
L (the Dirichlet problem), then the system of eigenvectors {uk} of BK have the
form

uk = (I + KL)vk = vk(x) + ω(x)
∫∫

Ω

vk(ξ)(Δg)(ξ)dξ, k = 1, 2, . . .
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Abstract. We are studying the issue of stability and instability of the
basis property of the system of eigenfunctions and associated functions of
the Sturm-Liouville operator with an integral perturbation of one bound-
ary condition. This paper is devoted to a spectral problem for operator
with an integral perturbation of boundary conditions, which are regu-
lar, but not strongly regular. We assume that the unperturbed problem
has system of normalized eigenfunctions and associated functions which
forms a Riesz basis. We construct a characteristic determinant of the
spectral problem with an integral perturbation of the boundary condi-
tions. The present work is the continuation of authors’ researchers on
stability (instability) of basis property of root vectors of a differential
operator with nonlocal perturbation of one of boundary conditions. The
work includes a more detailed exposition of some previous results of
authors in this directive, and there are given new results.

Keywords: Sturm-Liouville operators · Regular boundary condition
· Not strongly regular boundary condition · Integral perturbation ·
Spectral problem · Characteristic determinant · Basis property ·
Eigenfunctions · Associated functions

1 Introduction

A well-known fact is that the system of eigenfunctions of an operator given
by formally adjoint differential expressions, with arbitrary self-adjoint boundary
conditions providing a discrete spectrum, forms an orthonormal basis in L2. The
question of persisting the basis properties under some (weak in definite sense)
perturbation of an original operator has been investigated in many works. For
example, the analogous question for the case of a self-adjoint original operator
has been investigated in [7,11,13], and for a non-selfadjoint operator in [4,18].

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_21
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In [19] the spectral properties of operators of the form A = T + B are analyzed
(where B is a non-symmetric operator subordinate to a self-adjoint or normal
operator T ) and a survey of research in this area is presented.

Spectral theory of non-self-adjoint boundary value problems for ordinary dif-
ferential equations on a finite interval goes back to the classical works of Birkhoff
[1] and Tamarkin [20]. They introduced the concept of regular boundary condi-
tions and investigated asymptotic behavior of eigenvalues and eigenfunctions of
such problems.

In L2(0, 1) we consider an operator L0, generated by the following second
order ordinary differential expression:

�u ≡ −u′′(x) + q(x)u(x), q(x) ∈ C[0, 1], 0 < x < 1 (1)

and the boundary value conditions of the form
⎧
⎨

⎩

U1(u) = a11u
′(0) + a12u

′(1) + a13u(0) + a14u(1) = 0,

U2(u) = a21u
′(0) + a22u

′(1) + a23u(0) + a24u(1) = 0.
(2)

When the boundary conditions (2) are strongly regular, the results by Dun-
ford [2,3], Mikhailov [14] and Kesel’man [8] provide the Riesz basis property
in L2(0, 1) of system of the eigenfunctions and associated functions (EAF) of
the problem. In the case when the boundary conditions are regular but not
strongly regular, the question on basis property of the system of EAF is not
yet completely resolved. When q(x) ≡ 0, the problem about basis property of
the system of EAF of the problem with general regular boundary conditions has
been completely resolved in [10].

2 Statement of the Problem

In the present paper we consider a spectral problem with integral perturbation
of one of the boundary conditions (2). By L1 denote an operator given by the
differential expression (1) and by the “perturbed” boundary conditions

U1(u) = 0, U2(u) =
∫ 1

0

p(x)u(x)dx, p(x) ∈ L2(0, 1). (3)

When the boundary conditions (2) are strongly regular, the results by A.A.
Shkalikov [18] provide the Riesz basis property in L2(0, 1) of the system of EAF
of the operator L1.

In the present paper we consider the case when the boundary conditions (2)
are not strongly regular.

3 Classes of Not Strongly Regular Boundary Conditions

We introduce the matrix of coefficients of the boundary conditions (2):

A =
(

a11 a12 a13 a14

a21 a22 a23 a24

)

.
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By A(ij) we denote the matrix composed of the i-th and j-th columns of the
matrix A, Aij = det A(ij).

Let the boundary conditions (2) be regular but not strongly regular. Accord-
ing to [15, p. 73], if the following conditions hold:

A12 = 0, A14 + A23 �= 0, A14 + A23 = ∓(A13 + A24), (4)

then the boundary conditions (2) are regular, but not strongly regular boundary
conditions.

Makin [12] suggested dividing all regular, but not strongly regular, boundary
conditions into four types:

I. A14 = A23, A34 = 0; III. A14 �= A23, A34 = 0;
II. A14 = A23, A34 �= 0; IV. A14 �= A23, A34 �= 0.

.

For example, periodical or antiperiodical boundary conditions form the type
I, and can be determined in the following form: A14 = A23, A34 = 0. That is,
a11 = −a12, a13 = a14 = a21 = a22 = 0 and a23 = −a24. These conditions will
be equivalent to matrix A, where the following two options are possible:

A =
(

1 −1 0 0
0 0 1 −1

)

are periodical or

A =
(

1 1 0 0
0 0 1 1

)

are antiperiodical.
And the same boundary conditions with “the lowest coefficients” form the

type II. These conditions will be equivalent to matrix A, where the following
two options are possible:

A =
(

1 ±1 α 0
0 0 1 ±1

)

, α �= 0.

This case was allocated by Makin [12] as one type of non-strongly regular
boundary conditions, when the systems of EAF of the spectral problem

L0(u) ≡ −u′′(x) + q(x)u(x) = λu(x), q(x) ∈ C[0, 1], 0 < x < 1, (5)

with boundary conditions of type II forms a Riesz basis for any potentials q(x).

4 Adjoint Operator L∗
1

Just as in [15, p. 20] we complement the system of forms U1, U2 by some forms
U3, U4 up to the linearly independent system from 4 forms U1, . . . , U4. Then
there exist linear homogenous forms V4, . . . , V1 equal to

Vj(v) ≡
1∑

k=0

[
α∗
jkv

(k)(0) + β∗
jkv

(k)(1)
]
, j = 1, 4, (6)
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for which Lagrange’s formula

1∫

0

�(y)v(x)dx −
1∫

0

y(x)�∗(v)dx =
4∑

j=1

Uj(y)V5−j(v) (7)

holds. Here
�∗(v) = −v′′(x) + q(x)v(x) (8)

is an adjoint differential expression.
Therefore, operator L∗

0, adjoint to the operator L0, is given by the differential
expression (8) and boundary value conditions

V1(v) = 0, V2(v) = 0. (9)

Now we define an adjoint operator L∗
1. Using Lagrange’s formula (7) for all

functions y ∈ D(L1) and v ∈ D(L∗
1), and taking into account the boundary

conditions (3), we obtain

(L1y, v) − (y, �∗(v)) =
4∑

j=1

Uj(y)V5−j(v) =

=
{∫ 1

0

p(x)y(x)dx

}

V3(v) + U3(y)V2(v) + U4(y)V1(v) = 0.

In view of the linear independence of the forms Uj(y) and V3(v), we see that the
operator L∗

1 is given by a loaded differential expression

L∗
1(v) = −v′′(x) + q(x)v(x) + p(x)V3(v) (10)

and the boundary conditions (9). It should be noted that, in the case of integral
boundary conditions, adjoint operators were first constructed in Krall’s paper
[9].

5 Characteristic Determinant of a Spectral Problem

We additionally assume that the potential q(x) is chosen in such a way that
the unperturbed spectral problem (5) with boundary conditions (2) has the
system of EAF generating an unconditional basis in L2(0, 1). Let λ0

k be eigen-
values (numbered in decreasing order of their modules) of the operator L0 of the
multiplicity mk + 1 to which the eigenfunctions y0

k0(x) and chains of the adjoint
functions y0

kj(x), j = 1,mk correspond. Then the biorthogonal system consists of
the eigenfunctions v0kmk

(x) and the associated functions v0kj(x), j = 0,mk − 1 of
the operator L∗

0 corresponding the eigenvalues λ0
k. Obviously that the system of

EAF
{
v0kj(x), j = 0,mk, k = 1,∞

}
of the operator L∗

0 forms an unconditional
basis in L2(0, 1).
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Now we construct a characteristic determinant of the spectral problem. Let
y1(x, λ), y2(x, λ) be fundamental solution system of the equation �(y) = λy sat-
isfying the conditions y

(k−1)
j (0, λ) = δjk, j, k = 1, 2. Here δjk is the Kronecker

symbol. Introducing the general solution by the formula

y(x, λ) = C1y1(x, λ) + C2y2(x, λ),

and satisfying the boundary conditions (3), we obtain a linear system regarding
the coefficients C1, C2:

C1U1 (y1(1, λ)) + C2U1 (y2(1, λ)) = 0,

C1 U2 (y1(1, λ)) −
1

0

p(x)y1(x, λ)dx + C2 U2 (y2(1, λ)) −
1

0

p(x)y2(x, λ)dx = 0,

And the determinant of this system is the characteristic determinant of prob-
lem (1), (3):

Δ1(λ) =

∣
∣
∣
∣
∣
∣

U2 (y2(·, λ)) − ∫ 1

0
p(x)y2(x, λ)dx U1 (y2(·, λ))

U2 (y1(·, λ)) − ∫ 1

0
p(x)y1(x, λ)dx U1 (y1(·, λ))

∣
∣
∣
∣
∣
∣
. (11)

It is easy to see that the characteristic determinant of unperturbed problem (1),
(2) is obtained from (11) by p(x) = 0. We denote it by Δ0(λ).

We shall express the kernel of the integral perturbation p(x) as a series expan-
sion in the basis

{
v0kj(x), j = 0,mk, k = 1,∞

}
of the eigenfunctions and asso-

ciated functions of the unperturbed adjoint operator L∗
0:

p(x) =
∞∑

k=1

⎡

⎣
mk∑

j=0

akjv
0
kj(x)

⎤

⎦ , akj =
(
p(x), y0

kj(x)
)

L2(0,1)
. (12)

Using (12), we can find a more convenient representation of the determinant
Δ1(λ). To do this, let us first calculate

1∫

0

p(x)ys(x, λ)dx =
∞∑

k=1

⎡

⎣

m0
k∑

j=0

akj

(
ys(·, λ), v0kj(·)

)

⎤

⎦, s = 1, 2. (13)

Taking into account the fact that the chains of eigenfunctions and associated
functions of the adjoint problem are defined by the formulas:

L∗
0v

0
km0

k
= λ0

kv
0
km0

k
, L∗

0v
0
kj = λ0

kv
0
kj + v0kj+1, j = 0,m0

k − 1,

we can easily verify the following sequence of equalities for j < m0
k:

(λ − λ0
k)
(
ys(·, λ), v0kj(·)

)
=
(
λys(·, λ), v0kj(·)

)
−
(
ys(·, λ), λ0

kv
0
kj(·)

)
=

=
(
�(ys), v0kj

)
−
(
ys, L

∗
0v

0
kj

)
+
(
ys, v0kj+1

)
.
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Here let us use Lagrange’s formula (7) and the boundary condition (9). Then,
for all j = 0, ...,m0

k − 1, we obtain

(λ − λ0
k)(ys(x, λ), v0kj(x)) = Bks(j) + (ys, v0kj+1),

where we denote

Bks(j) = U1 (ys) V4

(
v0kj

)
+ U2 (ys) V3

(
v0kj

)
. (14)

Repeating similar calculations (m0
k − 1 − j) times, we can write

(ys(·, λ), v0kj(·)) =
m0

k−1−j∑

r=0

Bks(j + r)

(λ − λ0
k)

r+1 +
1

(λ − λ0
k)

m0
k−j

(ys, v0k m0
k
).

Similarly for the eigenfunction v0
k m0

k
we get

(λ − λ0
k)(ys(·, λ), v0k mk

(·)) = Bks(mk).

Combining the last two equalities, we can write

(ys(·, λ), v0kj(·)) =
m0

k−j∑

r=0

Bks(j + r)

(λ − λ0
k)

r+1 .

Substituting expression (14) into the above formula, after elementary transfor-
mations, we obtain

(ys(·, λ), v0kj(·)) =
mk−j∑

r=0

U1 (ys) V4

(
v0k j+r

)
+ U2 (ys) V3

(
v0k j+r

)

(λ − λ0
k)

r+1 . (15)

Now, substituting (15) into formula (13), we can write

∫ 1

0

p(x)ys(x, λ)dx = U1 (ys) A1(λ) + U2 (ys) A2(λ),

where we denote

Ai(λ) =
∞∑

k=1

⎡

⎣

m0
k∑

j=0

ak j

⎛

⎝

m0
k−j∑

r=0

V5−i

(
v0k j+r

)

(λ − λ0
k)

r+1

⎞

⎠

⎤

⎦ . (16)

Using the resulting expressions from (11), we obtain

Δ1(λ) = Δ0(λ) −
2∑

i=1

Ai(λ)
∣
∣
∣
∣
Ui(y2) U1(y2)
Ui(y1) U1(y1)

∣
∣
∣
∣ . (17)
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It is easy to see that one summand (for i = 1) in (17) vanishes (as determinants
with identical rows). Therefore,

Δ1(λ) = Δ0(λ) − Δ0(λ)A2(λ) = Δ0(λ) (1 − A2(λ)) . (18)

Substituting the value of A2(λ) from (16), we obtain the following representation
of the characteristic determinant of the operator L1:

Δ1(λ) = Δ0(λ)

⎛

⎝1 −
∞∑

k=1

⎡

⎣

m0
k∑

j=0

ak j

⎛

⎝

m0
k−j∑

r=0

V3

(
v0k j+r

)

(λ − λ0
k)

r+1

⎞

⎠

⎤

⎦

⎞

⎠ . (19)

Let us state the obtained result as a theorem.

Theorem 1. Let problem (1), (2) possess the eigenvalues λ0
k and the EAF gen-

erating an unconditional basis in L2(0, 1). Then the characteristic determinant
of problem (1), (3) with the perturbed boundary conditions is expressed as (19),
where Δ0(λ) is the characteristic determinant of the unperturbed problem (1),
(2); V3 is the linear homogeneous form arising from the construction of the
boundary conditions (9) of the adjoint unperturbed problem; {v0kj} are the EAF
of the adjoint unperturbed problem; and akj are the Fourier coefficients of the
biorthogonal expansion (12) of functions p(x) by this system.

First, it is necessary to see that, in the representation (18) the function A2(λ)
can have poles of maximal order m0

k +1 at the points λ = λ0
k. However, at these

points, the function Δ0(λ) has zeros of order m0
k + 1. Therefore, the function

Δ1(λ) expressed by formula (19) is an entire analytic function of the variable λ.
Second, it does not follow from (18) that all the zeros λ0

k of the characteristic
determinant Δ0(λ) will be zeros of Δ1(λ), because, at these points, the function
A2(λ) can have poles. The same also applies the multiplicity of the eigenvalues.
And this fact will depend on the behavior of the coefficients akj of the expansion
(12) of the function p(x).

Note that in our paper [16] formula (19) was obtained for the case of linear
ordinary differential operator of n-th order and regular boundary conditions of
general form with the integral perturbation of one of its boundary conditions.

6 Particular Cases of the Characteristic Determinant

The simplest form of formula (19) corresponds to the case in which all the
eigenvalues of the unperturbed problem (1), (2) are simple:

Δ1(λ) = Δ0(λ)

(

1 −
∞∑

k=1

ak

V3

(
v0k
)

λ − λ0
k

)

,

where v0k(x) are eigenfunctions of the adjoint unperturbed problem and ak are
Fourier coefficients of the biorthogonal expansion of the function p(x) in this
system.
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Another case of the simple form of the characteristic determinant is when
p(x) can be expressed as a finite sum in (12). In other words, when there exists
a number N such that akj = 0 for all k > N . In this case, formula (19) takes
the form

Δ1(λ) = Δ0(λ)

⎛

⎝1 −
N∑

k=1

⎡

⎣

m0
k∑

j=0

ak j

⎛

⎝

m0
k−j∑

r=0

V3

(
v0k j+r

)

(λ − λ0
k)

r+1

⎞

⎠

⎤

⎦

⎞

⎠ . (20)

For this particular case, it is easy to justify the following statement.

Corollary 1. Under the assumptions of Theorem 1, for all given numbers: the
complex λ̂ and the natural number m̂, there always exists a function p(x) such
that λ̂ will be an eigenvalue of problem (1), (3) of multiplicity m̂.

7 On Stability of Basis Property

It is easy to see from the analysis of formula (20) that Δ1(λ0
k) = 0 for all k > N .

In other words, for k > N , all the eigenvalues λ0
k of the unperturbed problem (1),

(2) are eigenvalues of the perturbed problem (1), (3). In addition it is not difficult
to verify that the multiplicity of the eigenvalues λ0

k, k > N is also preserved.
Moreover, it follows from the biorthogonality condition for the system of EAF

of the adjoint problems that, in this case
∫ 1

0

p(x)y0
kj(x, λ)dx = 0, j = 0, . . . , m0

k, k > N.

Therefore, for k > N , the EAF u0
kj(x) of problem (1), (2) satisfy the bound-

ary conditions (3) and, therefore, are the EAF of problem (1), (3). Hence, in
this case, the system of EAF of problem (1), (3) differs from the system of EAF
of problem (1), (2) (forming an unconditional basis) only by a finite number
of first terms. Therefore, the system of EAF of problem (1), (3) also forms the
unconditional basis in L2(0, 1).

In view of the basis property (in L2(0, 1)) of the system of EAF v0kj(x) of the
adjoint unperturbed problem, the set of functions p(x) expressible as the finite
series (12) is dense in L2(0, 1). Thus, we establish the following statement.

Theorem 2. Let problem (1), (2) possess EAF forming an unconditional basis.
Then the set of such functions p(x) ∈ L2(0, 1), for which the system of EAF of
problem (1), (3) forms an unconditional basis in L2(0, 1), is dense in L2(0, 1).

Note that, in first time in [11], an analog of Theorem 2 was proved for the
particular case of the integral perturbation of periodic boundary conditions for
the double differentiation operator. In addition, it was proved in [11] that the
set of functions p(x) ∈ L2(0, 1) such that the system of EAF of problem (1), (3)
does not even form a usual basis in L2(0, 1), is also dense in L2(0, 1).
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Let us now demonstrate the application of formula (19) to the particular
cases of a problem with integral perturbation of the boundary condition. Since
the case of strongly regular boundary conditions was completely solved in [18],
we shall consider an example from regular, but not strongly regular, boundary
conditions.

8 Type I. Periodic Boundary Conditions

In this section we consider the problem in case whether the basis property
changes under integral perturbations of the boundary condition for the peri-
odic boundary value problem

L1y = −y′′(x) + q(x)y(x) = λy(x), 0 < x < 1,

U1(y) ≡ y(0) − y(1) = 0, U2(y) ≡ y′(0) − y′(1) =
∫ 1

0
p(x)y(x)dx.

(21)

Note that problem (21) possesses specific spectral properties. For p(x) ≡ 0
depending on the coefficient q(x), the system of EAF of the problem can either
form or not form an unconditional basis in L2(0, 1).

In this case, Lagrange’s formula is of the form
∫ 1

0
�(y)(x)v(x)dx − ∫ 1

0
y(x)�∗(v)(x)dx = − [y(0) − y(1)] v′(0)+

+ [y′(0) − y′(1)] v(0) + y′(1)
[
v(0) − v(1)

]
− y(1)

[
v′(0) − v′(1)

]
.

Therefore

U1(y) = y(0) − y(1), U2(y) = y′(0) − y′(1), U3(y) = y′(1), U4(y) = −y(1),

and

V4(v) = −v′(0), V3(v) = v(0), V2(v) = v(0) − v(1), V1(v) = v′(0) − v′(1).

On the basis of Theorem 1 we get the characteristic determinant of problem
(21):

Δ1(λ) = Δ0(λ)

(

1 −
∞∑

k=1

[

ak0

(
v0k0(0)
λ − λ0

k

+
v0k1(0)

(λ − λ0
k)

2

)

+ ak1
v0k1(0)
λ − λ0

k

])

, (22)

where Δ0(λ) is the characteristic determinant of the unperturbed problem (21);
{v0k0, v0k1} are the EAF of the adjoint unperturbed problem; and ak0, ak1 are
the Fourier coefficients of the biorthogonal expansion of functions p(x) by this
system:

p(x) =
∞∑

k=1

{
ak0v

0
k0 + ak1v

0
k1

}
.

Note that formula (22) obtained from Theorem 1 coincides with the results of
[5,17], in which the characteristic determinant was obtained by direct calcula-
tion. In these works on the basis of formula (22) there was also obtained the
following result:
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Theorem 3. ([5,17]). Let unperturbed (i.e., for p(x) ≡ 0) periodic problem (21)
have a system of EAF forming a Riesz basis in L2(0, 1), let the eigenvalues of
the problem be double, and let root subspaces corresponding to double eigenvalues
consist of two eigenfunctions. Then the set of all functions p ∈ L2(0, 1), for
which the system of EAF of problem (21) does not form even an ordinary basis
in L2(0, 1), is dense in L2(0, 1).

9 Type II. Boundary Conditions of Periodical Type

The present section is devoted to the spectral problem of type II:

L1y = −y′′(x) + q(x)y(x) = λy(x), 0 < x < 1,

U1(y) ≡ y′(0) − y′(1) + αy(1) = 0, U2(y) ≡ y(0) − y(1) =
∫ 1

0
p(x)y(x)dx.

(23)
Note that problem (23) possesses specific spectral properties. For p(x) ≡ 0 unde-
pending on the coefficient q(x), the system of EAF of the problem forms an
unconditional basis in L2(0, 1) [12]. And for any α �= 0 the unperturbed problem

L1y = λy; U1(y) = 0; U2(y) = 0

has an asymptotically simple spectrum, and the system of its normalized eigen-
functions generates the Riesz basis in L2(0, 1).

In this case, Lagrange’s formula is of the form
∫ 1

0
�(y)(x)v(x)dx − ∫ 1

0
y(x)�∗(v)(x)dx = [y′(0) − y′(1) + αy(1)] v(0)−

− [y(0) − y(1)] v′(0) + y′(1)
[
v(0) − v(1)

]
− y(1)

[
v′(0) − v′(1) + αv(0)

]
.

Therefore

U1(y) = y′(0) − y′(1) + αy(1), U2(y) = y(0) − y(1), U3(y) = y′(1), U4(y) = −y(1),

and

V4(v) = v(0), V3(v) = −v′(0), V2(v) = v(0) − v(1), V1(v) = v′(0) − v′(1) + αv(0).

On the basis of Theorem 1 we obtain the characteristic determinant of prob-
lem (23):

Δ1(λ) = Δ0(λ)

(

1 −
∞∑

k=1

[

ak0

(
v0k0

)′ (0)
λ − λ0

k0

+ ak1

(
v0k1

)′ (0)
λ − λ0

k1

])

, (24)

where Δ0(λ) is the characteristic determinant of the unperturbed problem (21);
v0k0, v

0
k1 are the eigenfunctions of the adjoint unperturbed problem to which the

eigenvalues λ0
k0, λ0

k1 correspond; and ak0, ak1 are the Fourier coefficients of the
biorthogonal expansion of functions p(x) by this system:

p(x) =
∞∑

k=1

{
ak0v

0
k0 + ak1v

0
k1

}
.
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Note that formula (24) obtained from Theorem 1 coincides with the results
of [6], in which the characteristic determinant was obtained by direct calculation
for the case q(x) ≡ 0. In this work on the basis of formula (24) there was also
obtained the result of stability of basis property. By the methods of [6] we prove
the following theorem:

Theorem 4. ([6]). For any function p(x) ∈ W 1
2 (0, 1) the system of eigen and

adjoint functions of problem (23) forms a Riesz basis in L2(0, 1).

10 Types III and IV. Boundary Conditions
of Samarskii-Ionkin Type

In the space L2(0, 1), consider the operator L0 generated by the ordinary differ-
ential expression and the boundary conditions

�y = −y′′(x) + q(x)y(x), 0 < x < 1,
U1(y) ≡ y′(0) − y′(1) + αy(1) = 0, U2(y) ≡ y(0) = 0.

(25)

For α = 0 these conditions belong to type III, and for α �= 0 they are conditions
of type IV.

In the literature, this problem is called the Samarskii-Ionkin problem. Note
that problem (25) possesses specific spectral properties. Depending on the coef-
ficient q(x), the system of EAF of the problem can either form or not form an
unconditional basis in L2(0, 1). As is shown in [12], the EAF of the problem con-
stitute an unconditional basis in L2(0, 1) only if the eigenvalues of the problem
are asymptotically double and the corresponding root subspaces consist of one
eigenfunction and one associated function.

Let L1 be an operator in L2(0, 1) given by the ordinary differential expression
and the “perturbed” boundary conditions

L1y = −y′′(x) + q(x)y(x), 0 < x < 1,

U1(y) ≡ y′(0) − y′(1) + αy(1) = 0, U2(y) ≡ y(0) =
∫ 1

0
p(x)y(x)dx.

(26)

In this case, Lagrange’s formula is of the form
∫ 1

0
�(y)(x)v(x)dx − ∫ 1

0
y(x)�∗(v)(x)dx = [y′(0) − y′(1) + αy(1)] v(0)−

−y(0)v′(0) + y′(1)
[
v(0) − v(1)

]
+ y(1)

[
v′(1) − αv(0)

]
.

Therefore

U1(y) = y′(0) − y′(1) + αy(1), U2(y) = y(0), U3(y) = y′(1), U4(y) = y(1),

and

V4(v) = v(0), V3(v) = −v′(0), V2(v) = v(0) − v(1), V1(v) = v′(1) − αv(0).
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On the basis of Theorem 1 we obtain the characteristic determinant of prob-
lem (26): Δ1(λ) =

= Δ0(λ)

(

1 −
∞∑

k=1

[

ak0

((
v0k0

)′ (0)
λ − λ0

k

+

(
v0k1

)′ (0)

(λ − λ0
k)

2

)

+ ak1

(
v0k1

)′ (0)
λ − λ0

k

])

, (27)

where Δ0(λ) is the characteristic determinant of the unperturbed problem (25);
{v0k0, v0k1} are the EAF of the adjoint unperturbed problem to which the eigenval-
ues λ0

k0 correspond; and ak0, ak1 are the Fourier coefficients of the biorthogonal
expansion of functions p(x) by this system:

p(x) =
∞∑

k=1

{
ak0v

0
k0 + ak1v

0
k1

}
.

Note that the formula obtained from Theorem 1 is new even for the case
q(x) ≡ 0. On the basis of formula (27) one can obtain asymptotic behavior of the
eigenvalues and eigenfunctions of the problem. On the basis of these asymptotics
we prove the following theorem.

Theorem 5. Let the unperturbed problem (25) possess eigenfunctions and asso-
ciated functions forming an unconditional basis in L2(0, 1). Then the set of func-
tions p(x) ∈ L2(0, 1), for which the system of eigenfunctions and associated
functions of the perturbed problem (26) does not form an unconditional basis in
L2(0, 1), is dense in L2(0, 1).
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Abstract. In this paper we construct a nonlocal integral boundary con-
dition of the volume potential for second order strongly elliptic differen-
tial equations, which generalizes previous known results. We also review
similar results for polyharmonic operators.

Keywords: Non-local boundary conditions · Volume potential ·
Polyharmonic operators · Dirichlet boundary conditions · Green
function

1 Introduction

Let Ω ⊂ Rd be an open bounded domain with a sufficiently smooth boundary
∂Ω. We consider the second order uniformly strongly elliptic equation

D(u) = −
d∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
) +

d∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω. (1)

The functions aij , bj and c are real-valued functions which, for convenience, are
supposed to be C∞-functions.

Definition 1. The second order real-valued scalar linear differential operator
D is called strongly elliptic in Ω if there exists a smooth function γ(x) > 0 such
that

d∑

i,j=1

aijξiξj ≥ γ(x)|ξ|2 (2)

for all ξ ∈ Rd. If, in addition, γ > 0 is a constant independent of x and (2) holds
for all x ∈ Ω, then D is called uniformly strongly elliptic.
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Note that strongly elliptic real differential operators are of even order and
are properly elliptic.

Definition 2. Let x ∈ Rd be any chosen point. Then the distribution E(x, y) is
called a fundamental solution of the differential operator D (in Rd) if it satisfies
the equation

Dy(E(x, y)) = δ(x − y) (3)

in the distributional sense, where δ is the Dirac distribution.

As usual, in (3) the notation Dy stands for differentiation with respect to y.
For strongly elliptic operators it can be shown with the Green’s formula that (3)
implies

Dx(E(x, y)) = δ(x − y) (4)

for any fixed y ∈ Rd.
For a general differential operator, the existence of a fundamental solution is

by no means trivial. However, we have

Lemma 1. (Hörmander [1].) Let D be a uniformly strongly elliptic differential
operator of even order with real leading coefficients aij ∈ C∞. Then for every
compact domain Ω ⊂ Rd with ∂Ω ∈ C∞ there exists a local fundamental solution
E(x, y) which is a C∞ function of all variables for x �= y and x, y ∈ Ω.

In Section 2 of this paper by using properties of fundamental solutions we
construct a correct boundary value problem for the differential equation (1). In
Section 3 we review similar results for polyharmonic equations, which hints how
to extend results of Section 2 to higher order cases. Throughout this paper we
use notations from [2] and [3].

2 Second Order Strongly Elliptic Equations

Let Ω1 ⊂ ... ⊂ Ωn ⊂ Rd be open bounded domains with boundaries ∂Ωi ∈
C∞, i = 1, ..., n, respectively. By Hörmander’s Lemma there exists a local fun-
damental solution Ei(x, y) of D for each Ωi. Consider the following function

u(x) =
∫

Ω

G(x, y)f(y)dy (5)

in Ω ⊂ Ω1, ∂Ω ∈ C∞, where

G(x, y) =
n∑

i=1

αiEi(x, y), x, y ∈ Ω,
n∑

i=1

αi = 1. (6)

Here αi, i = 1, ..., n are numbers. A trivial observation shows that u(x) is a
solution of (1) in Ω. The aim of this section is to find a boundary condition
such that with this boundary condition the equation (1) has a unique solution
in H2(Ω), which is u(x).
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Theorem 1. For any f ∈ L2(Ω), (5) is a unique solution of the equation (1)
(in H2(Ω)) with the boundary condition

− u(x)
2

+
∫

∂Ω

∂νyG(x, y)u(y)dSy− (7)

∫

∂Ω

G(x, y){∂νyu(y) −
d∑

j=1

njbju(y)}dSy = 0, x ∈ ∂Ω,

where the conormal derivative is ∂νy =
∑d

k,j=1 njajk
∂

∂xk
and n1, n2, ..., nd are

components of the normal vector on the boundary.

Proof. From (6) it is easy to see that G is a fundamental solution of the operator
D in Ω. Therefore,

u(x) =
∫

Ω

G(x, y)f(y)dy

is the solution of (1). In addition, the following representation formula can be
derived from the generalized second Green’s formula in Sobolev spaces as in the
classical approach by density and completion arguments [2]

u(x) =
∫

Ω

G(x, y)f(y)dy +
∫

∂Ω

∂νyG(x, y)u(y)dSy − (8)

∫

∂Ω

G(x, y){∂νyu(y) −
d∑

j=1

njbju(y)}dSy

for any x ∈ Ω. From (5) and (8) it implies that

∫

∂Ω

∂νyG(x, y)u(y)dSy −
∫

∂Ω

G(x, y){∂νyu(y) −
d∑

j=1

njbju(y)}dSy = 0

for any x ∈ Ω.
By using the properties of the double and single layer potentials [2] as x →

∂Ω, we find that

−u(x)
2

+
∫

∂Ω

∂νyG(x, y)u(y)dSy −
∫

∂Ω

G(x, y){∂νyu(y) −
d∑

j=1

njbju(y)}dSy = 0, x ∈ ∂Ω.

We have shown that (5) is the solution of the boundary value problem (1)
with the boundary condition (7) (in H2(Ω)). Now let us prove its uniqueness.
If the boundary value problem has two solutions u and u1, then the function
v = u − u1 ∈ H2(Ω) satisfies the homogeneous equation

D(v) = −
d∑

i,j=1

∂

∂xi
(aij

∂v
∂xj

) +
d∑

i=1

bi(x)
∂v
∂xi

+ c(x)v = 0, x ∈ Ω, (9)
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and the boundary condition (7), i.e.

− v(x)
2

+
∫

∂Ω

∂νyG(x, y)v(y)dSy − (10)

∫

∂Ω

G(x, y){∂νyv(y) −
d∑

j=1

njbjv(y)}dSy = 0, x ∈ ∂Ω.

Since f ≡ 0 instead of (8) we have the following representation formula

v(x) =
∫

∂Ω

∂νyG(x, y)v(y)dSy − (11)

∫

∂Ω

G(x, y){∂νyv(y) −
d∑

j=1

njbjv(y)}dSy

for any x ∈ Ω. As above, by using the properties of the double and single layer
potentials as x → ∂Ω, we obtain

v(x)
2

+
∫

∂Ω

∂νyG(x, y)v(y)dSy − (12)

∫

∂Ω

G(x, y){∂νyv(y) −
d∑

j=1

njbjv(y)}dSy = 0, x ∈ ∂Ω.

Comparing this with (2), we arrive at

v(x) = 0, x ∈ ∂Ω. (13)

The second order homogeneous strongly elliptic equation (9) with the Dirich-
let boundary condition (13) has only trivial solution v ≡ 0. This shows that the
boundary value problem (1) with the boundary condition (7) has a unique solu-
tion in H2(Ω). Theorem 1 is proved.

Example 1. Let D be Δ-Laplacian, n = 1 and Ω1 ≡ Ω, then

εd(x − y) := E1(x, y) =
{ 1

(d−2)sd

1
|x−y|d−2 , d ≥ 3,

− 1
2π log|x − y|, d = 2,

is a fundamental solution of Laplacian in Ω1, sd = 2π
d
2

Γ( d
2 )

is the surface area of

the unit sphere in Rd, d ≥ 2, and |x − y| is the standard Euclidean distance
between x and y. In this case instead of (5) we have

u(x) =
∫

Ω

εd(x − y)f(y)dy, x ∈ Ω, (14)

which is a unique solution of

− Δu(x) = f(x), x ∈ Ω, (15)
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with the boundary condition

− u(x)
2

+
∫

∂Ω

∂εd(x − y)
∂ny

u(y)dSy −
∫

∂Ω

εd(x− y)
∂u(y)
∂ny

dSy = 0, x ∈ ∂Ω, (16)

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω.

For the first time the boundary condition (16) was mentioned (without proof)
in Kac’s work [4], he called it “the principle of not feeling the boundary” [5]. In [6]
T. Sh. Kal’menov and D. Suragan proved the existence of the boundary condition
(16) and as byproduct the eigenvalues and eigenfunctions of the Newton potential
(14) were calculated in the 2-disk and in the 3-ball.

The boundary value problem (15)-(16) has various interesting extensions and
applications (see, for example, [8–13]).

The boundary value problem (15)-(16) can also be generalized for higher
degrees of Laplacian [7].

3 Polyharmonic Equations

In this paper we present a result of the paper [7] in a different way, which hints
how to extend results of the previous section to higher order cases. Let Ω1 ⊂
... ⊂ Ωn ⊂ Rd be open bounded domains with boundaries ∂Ωi ∈ C∞, i = 1, ..., n,
respectively. By Hörmander’s Lemma there exists a local fundamental solution
Ei(x, y) of the polyharmonic equation

(−Δx)mu(x) = f(x), m = 1, 2, ..., (17)

for each Ωi.
Consider the following function

u(x) =
∫

Ω

Gm,d(x, y)f(y)dy (18)

in Ω ⊂ Ω1, ∂Ω ∈ C∞, where

Gm,d(x, y) =
n∑

i=1

αiEi(x, y), x, y ∈ Ω,

n∑

i=1

αi = 1. (19)

Here αi, i = 1, ..., n are numbers. A trivial observation shows that (18) is a
solution of (17) in Ω. The aim of this section is to find a boundary condition
such that with this boundary condition the equation (17) has a unique solution
in H2m(Ω), which coincides with (18).

Theorem 2. For any f ∈ L2(Ω), (18) is a unique solution of the equation (17)
(in H2m(Ω)) with the boundary conditions

−1
2
(−Δx)iu(x) +

m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)j+iu(y)dSy −
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m−i−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)j+iu(y)dSy = 0, (20)

for i = 0, 1, ...,m−1 and x ∈ ∂Ω, where ∂
∂ny

= n1
∂

∂y1
+ ...+nn

∂
∂yn

is the normal
derivative on the boundary and n1, ..., nn are the components of the unit normal.

Proof. By applying the Green’s formula for each x ∈ Ω, we obtain

u(x) =
∫

Ω

Gm,d(x, y)f(y)dy =
∫

Ω

Gm,d(x, y)(−Δy)mu(y)dy =

∫

Ω

(−Δy)Gm,d(x, y)(−Δy)m−1u(y)dy +

∫

∂Ω

∂Gm,d(x, y)
∂ny

(−Δy)m−1u(y)dSy −
∫

∂Ω

Gm,d(x, y)
∂(−Δy)m−1u(y)

∂ny
dSy =

∫

Ω

(−Δy)2Gm,d(x, y)(−Δy)m−2u(y)dy +

∫

∂Ω

∂(−Δ)Gm,d(x, y)
∂ny

(−Δy)m−2u(y)dSy −
∫

∂Ω

(−Δ)Gm,d(x, y)
∂(−Δy)m−2u(y)

∂ny
dSy +

∫

∂Ω

∂Gm,d(x, y)
∂ny

(−Δy)m−1u(y)dSy −
∫

∂Ω

Gm,d(x, y)
∂(−Δy)m−1u(y)

∂ny
dSy = ... =

u(x) +
m−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)ju(y)dSy −

m−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)ju(y)dSy, x ∈ Ω, (21)

where ∂
∂ny

= n1
∂

∂y1
+ ... + nn

∂
∂yn

is the normal derivative on the boundary and
n1, ..., nn are the components of the unit normal. This implies the identity

m−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)ju(y)dSy −

m−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)ju(y)dSy = 0, x ∈ Ω. (22)
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By using the properties of the double and single layer potentials as x → ∂Ω,
from (22) we obtain

−u(x)
2

+
m−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)ju(y)dSy −

m−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)ju(y)dSy = 0, x ∈ ∂Ω. (23)

Thus, this relation is one of the boundary conditions of (18).
Let us derive the remaining boundary conditions. To this end, we set

(−Δx)m−i(−Δx)iu(x) = f(x), i = 0, 1, ...,m − 1, m = 1, 2, ..., (24)

and carry out similar considerations just as above,

(−Δx)iu(x) =
∫

Ω

(−Δy)iGm,d(x, y)(−Δy)m−i(−Δy)iu(y)dy =

∫

Ω

(−Δy)(−Δy)iGm,d(x, y)(−Δy)m−i−1(−Δy)iu(y)dy +

∫

∂Ω

∂

∂ny
(−Δy)iGm,d(x, y)(−Δy)m−i−1(−Δy)iu(y)dSy −

∫

∂Ω

(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)m−i−1(−Δy)iu(y)dSy =

∫

Ω

(−Δy)2(−Δy)iGm,d(x, y)(−Δy)m−i−2(−Δy)iu(y)dy +

∫

∂Ω

∂

∂ny
(−Δy)(−Δy)iGm,d(x, y)(−Δy)m−i−2(−Δy)iu(y)dSy −

∫

∂Ω

(−Δy)(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)m−i−2(−Δy)iu(y)dSy +

∫

∂Ω

∂

∂ny
(−Δy)iGm,d(x, y)(−Δy)m−i−1(−Δy)iu(y)dSy −

∫

∂Ω

(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)m−i−1(−Δy)iu(y)dSy =

... =
∫

Ω

(−Δy)m−i(−Δy)iGm,d(x, y)(−Δy)iu(y)dy +

m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−i−1−j(−Δy)iGm,d(x, y)(−Δy)j(−Δy)iu(y)dSy −
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m−i−1∑

j=0

∫

∂Ω

(−Δy)m−i−1−j(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)j(−Δy)iu(y)dSy =

(−Δx)iu(x)+
m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−i−1−j(−Δy)iGm,d(x, y)(−Δy)j(−Δy)iu(y)dSy −

m−i−1∑

j=0

∫

∂Ω

(−Δy)m−i−1−j(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)j(−Δy)iu(y)dSy,

where (−Δy)iGm,d(x, y) are fundamental solutions of the polyharmonic equation
(24); i.e.,

(−Δx)m−i(−Δy)iGm,d(x, y) = δ(x − y), i = 0, 1, ...,m − 1.

From the previous relations, we obtain the identities

m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)j+iu(y)dSy −

m−i−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)j+iu(y)dSy = 0

for any x ∈ Ω, i = 0, 1, ...,m−1. By using the properties of the double and single
layer potentials as x → ∂Ω, we find that

−1
2
(−Δx)iu(x)+

m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)j+iu(y)dSy −

m−i−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)j+iu(y)dSy = 0, (25)

for x ∈ ∂Ω, i = 0, 1, ...,m − 1. These are all boundary conditions of (18). From
this classical approach by density and completion arguments (by passing to the
limit), one can readily show that formula (25) remains valid for all u ∈ H2m(Ω)
[2]. Conversely, let us show that if a function w ∈ H2m(Ω) satisfies the equation
(−Δ)mw = f and the boundary conditions (20), then it coincides with the
solution (18). Indeed, otherwise the function

v = u − w ∈ H2m(Ω),

where u is (18), satisfies the homogeneous equation

(−Δ)mv = 0 (26)
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and the boundary conditions (20), i.e.

Ii(v)(x) := −1
2
(−Δ)iv(x)+

m−i−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)j+iv(y)dSy −

m−i−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)j+iv(y)dSy = 0, (27)

for any x ∈ ∂Ω and i = 0, 1, ...,m − 1. By applying the Green’s formula to
the function v ∈ H2m(Ω) and by following the lines of the above argument, we
obtain

0 =
∫

Ω

(−Δy)iGm,d(x, y)(−Δy)m−i(−Δy)iv(y)dy =
∫

Ω

(−Δy)(−Δy)iGm,d(x, y)(−Δy)m−1v(y)dy +

∫

∂Ω

∂

∂ny
(−Δy)iGm,d(x, y)(−Δy)m−1v(y)dSy −

∫

∂Ω

(−Δy)iGm,d(x, y)
∂

∂ny
(−Δy)m−1v(y)dSy = ... =

(−Δx)iv(x) +
m−j−1∑

j=0

∫

∂Ω

∂

∂ny
(−Δy)m−1−jGm,d(x, y)(−Δy)j+iv(y)dSy −

m−j−1∑

j=0

∫

∂Ω

(−Δy)m−1−jGm,d(x, y)
∂

∂ny
(−Δy)j+iv(y)dSy,

for any x ∈ Ω and i = 0, 1, ...,m − 1. By passing to the limit as x → ∂Ω, hence
we obtain the relations

(−Δx)iv(x) |x∈∂Ω= −Ii(v)(x) |x∈∂Ω= 0, i = 0, 1, ...,m − 1, (28)

The uniqueness of the solution of the boundary value problem

(−Δ)mv = 0,

(−Δ)iv |x∈∂Ω= 0, i = 0, 1, ...,m − 1.

implies that v = u − w ≡ 0,∀x ∈ Ω, i.e. w coincides with (18). Thus (18) is
the unique solution of the boundary value problem (17), (20) in Ω. The proof of
Theorem 2 is complete.
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Abstract. Estimates in various Lebesgue spaces Ls(G), 1 ≤ s ≤ ∞,
are obtained for the root functions of an operator which relates to the
differential operation −u′′+p(x)u′+q(x)u, x ∈ G = (a, b), with complex-
valued singular coefficients. Among these estimates there are also the
so-called anti-a priori estimates that link the root functions in the same
chain. It is supposed that p(x) and q(x) belong locally to the spaces L2

and W −1
2 , respectively, may have singularities at the end-points of G, and

q(x) = q1(x) + Q′(x) while Q(x), p(x), Q2(x)w(x), p2(x)w(x), q1(x)w(x)
are integrable on the whole interval G with w(x) = (x − a)(b − x).

Keywords: Second-order differential operator · Singular coefficients
· Potential-distribution · Root functions · Lp-estimates · Anti-a priori
estimates

1 Introduction and Main Results

Let G = (a, b) be a finite interval and let L be a general second-order differential
operation of the form

Lu = −u′′ + p(x)u′ + q(x)u (1)

with complex-valued coefficients p(x), q(x).
We consider a singular case, namely, we suppose that
a) the coefficient q(x) in (1) is a distribution and it could be represented as

the sum
q(x) = q1(x) + Q′(x), (2)

where q1(x), Q2(x) are locally integrable on G;
b) the coefficient p(x) belongs to the space L2 on each compact subset of G;
c) both coefficients p(x) and q(x) may have singularities at the end-points

x = a and x = b which match the conditions

c© Springer International Publishing AG 2017
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Springer Proceedings in Mathematics & Statistics 216,
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p(x), Q(x) ∈ L1(G), (3)
q1(x)w(x), p2(x)w(x), Q2(x)w(x) ∈ L1(G), (4)

with w(x) = (x − a)(b − x).
For example, the admissible coefficients in (1) may have the bounds q1(x) =

O
(
(x−a)α1 logβ1(x−a)−1

)
, p(x), Q(x) = O

(
(x−a)α2 logβ2(x−a)−1

)
as x → a + 0,

where α1 > −2, β1 is arbitrary or α1 = −2, β1 > −1, and α2 > −1, β2 is
arbitrary or α2 = −1, β2 > −1/2.

In the present paper we obtain the estimates for the Ls-norms of the root
functions (i.e. eigen- and associate functions) of the operation (1) which are con-
sidered here as solutions of the respective equations with a spectral parameter.

The root function uk(x, λ) of the order k ≥ 0 that corresponds to the opera-
tion (1) and the eigenvalue λ ∈ C, is defined as an arbitrary nontrivial solution
to the equation

Luk(x, λ) = λuk(x, λ) + sgn k · uk−1(x, λ). (5)

If k = 0 then u0(x, λ) is called the eigenfunction of (1), and if k ≥ 1
then uk(x, λ) is called the associated function which relates to the eigenfunc-
tion uk(x, λ).

The equation (5) is understood in the following regularized sense (see [20]).
The function uk(x, λ) and its quasi-derivative

u
[1]
k (x, λ) = u′

k(x, λ) − Q(x)uk(x, λ) (6)

are absolutely continuous in G and the operation L acts on a function u(x)
according to the rule

Lu = −(u[1]) ′ + (p(x) − Q(x))u[1] + (q1(x) + p(x)Q(x) − Q2(x))u. (7)

If Q(x) ≡ 0 in (2), then the above mentioned definition transforms into the
conventional definition of the root functions due to V. Il’in [8], namely, uk(x, λ)
is the almost everywhere solution to (5) which is absolutely continuous in G
together with its first derivative. We note that the absence of any additional con-
ditions (boundary, general non-local ones etc.) on the functions uk(x, λ) allows
to span more general systems that relate solely to the differential operation (1)
and consist of the chains of functions u0(x, λ), u1(x, λ), . . . , um(x, λ) that satisfy
(5)–(7) for some set of complex numbers λ.

The main result of this paper gives the following assertion.

Theorem 1. There exists such constant C > 0 which depends solely on the
order k of the root function that, for all λ ∈ C, 1 ≤ s, r ≤ ∞, the estimates

‖uk(·, λ)‖s ≤ C
(
1 + |Im

√
λ|)(1/r)−(1/s)‖uk(·, λ)‖r, (8)

‖uk(·, λ)‖s ≤ C
(
1 + |

√
λ|)(1 + |Im

√
λ|)‖uk+1(·, λ)‖s (9)

hold. Here ‖·‖s, ‖·‖r denote the norms in the Lebesgue spaces Ls(G) and Lr(G),
respectively, and

√
λ stands for the value of the square root of λ ∈ C for which

the inequality Re
√

λ ≥ 0 holds.
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The estimates (8)–(9) play a key role in the study of spectral properties of
differential operators such as the basis property of root functions, the conver-
gence and equiconvergence of the related spectral expansions. In the regular case
when the coefficients in (1) belong to the classes: q(x) ∈ L1(G), p(x) ∈ W 1

1 (G),
these estimates were proved in [9,11,15,21]. Taking q(x) = p(x) ≡ 0, it is easy to
show that they are sharp with respect to λ. Estimates for the general nth-order
differential operation with integrable coefficients were considered in [10,16].

Note that the estimate (9) that links the norms of “adjacent” root functions
in a chain, are essential in the case when the system contains infinitely many
associate functions. These estimates were introduced by V. Il’in [6] and called
the anti-a priori type estimates.

In the self-adjoint case the estimate (8) for the norms with s = ∞, r = 2
gives the positive solution to the problem of uniform boundedness of normalized
eigenfunctions of any operator which relates to (1) (see further [1,3,5,7,23]).

The interest to the spectral analysis of operators that are generated by the
differential operations (1) with singular coefficients is motivated by their appli-
cations in the quantum theory (see, e.g., [2]), in particular those that describe
short-range and point interactions. Approaches introduced by A. Shkalikov and
A. Savchuk [19,20] permitted to study operators that correspond to the opera-
tion (1) with arbitrary coefficients in the Sobolev classes with negative derivation
order. These studies revived further research in this area [17,18,22].

Operators that correspond to the operation (1) with p(x) = Q(x) ≡ 0 and
locally integrable coefficient q1(x) that may have non-integrable singularities on
the end-points of G satisfying (4) were studied in [4] (in the self-adjoint case)
and in [12,13] (in the non-self-adjoint case).

In the present paper, the estimates of Theorem 1 are obtained through inte-
gral representations for regularized by (7) solutions to the equation (5). These
representations are constructed in Section 2. Section 3 contains the proof of the
estimates (8)–(9).

2 Representation for Root Functions

Let us derive an appropriate integral representation for the root functions
uk(x, λ) of the operation (1).

We pass from the root functions uk(x, λ) to the functions

ψk(x, λ) = uk(x, λ) exp
(
−

∫ x

a

[p(ξ) − Q(ξ)] dξ
)

(10)

and redefine their quasi-derivatives by the relation

ψ
[1]
k (x, λ) = ψ′

k(x, λ) − P (x)ψk(x, λ), (11)

where the coefficient P (x) = 2Q(x) − p(x) belongs to L2,loc(G).



248 L.V. Kritskov

It follows from the condition (3) that P (x) is integrable over G and, therefore,
the estimates1

C1‖ψk(·, λ)‖s ≤ ‖uk(·, λ)‖s ≤ C2‖ψk(·, λ)‖s (12)

hold.
Moreover, due to the relation

ψ
[1]
k (x, λ) = u

[1]
k (x, λ) exp

(
−

∫ x

a

[p(ξ) − Q(ξ)] dξ
)
,

the quasi-derivatives (11) are also connected with the quasi-derivatives (6) of
the functions uk(x, λ) by the estimates (12).

It follows from (12) that it is sufficient to proof the estimates (8) and (9) for
the functions ψk(x, λ).

For ψk(x, λ), the equation (5) takes the form

− (ψ[1]
k (x, λ)) ′ + q0(x)ψk(x, λ) = λψk(x, λ) + sgn k · ψk−1(x, λ), (13)

where
q0(x) = q1(x) + p(x)Q(x) − Q2(x). (14)

The condition (4) provides that

q0(x)w(x) ∈ L1(G). (15)

By the standard reasoning [14], the equation (13) yields the relations

ψk(x ± t, λ) = ψk(x, λ) cos μt ± μ−1ψ
[1]
k (x, λ) sin μt ±

±
∫ t

0

P (x ± τ)ψk(x ± τ , λ) cos μ(t − τ) dτ +
∫ t

0

q0(x ± τ)ψk(x ± τ , λ) ×

×μ−1 sinμ(t − τ) dτ − sgn k

∫ t

0

ψk−1(x ± τ , λ)μ−1 sinμ(t − τ) dτ, (16)

where x ∈ G, 0 < t < min(x − a, b − x) and, for brevity, we use the notation
μ =

√
λ.

Let us consider the functions ψk(x ± t, λ) as the solutions of the integral
equation (17) with respect to the variable t. For that purpose, we introduce the
operators that act on a function of variable t by the rules:

[
C±χ

]
(t) = ±

∫ t

0

P (x ± τ)χ(τ) cos μ(t − τ) dτ, (17)

[
S±χ

]
(t) = μ−1

∫ t

0

q0(x ± τ)χ(τ) sin μ(t − τ) dτ, (18)

[
S0χ

]
(t) = −μ−1

∫ t

0

χ(τ) sin μ(t − τ) dτ. (19)

1 Here and in what follows we denote by C, C0, C1, C2, . . . any positive constants that
do not depend on the parameter λ.
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Besides we note that, for any given x ∈ G, the extraintegral terms on the
right-hand side of (17):

ψk(x, λ) cos μt ± μ−1ψ
[1]
k (x, λ) sin μt ≡ A±

k (t) (20)

are the eigenfunctions 2 of the simplest differential operation L0u(t) = −u′′(t).
Taking into account the accepted notation, we rewrite the relation (17) in

the form

ψk(x ± t, λ) = A±
k (t) + T±ψk(x ± t, λ) + sgn k · S0ψk−1(x ± t, λ), (21)

where T± = C± + S±.
Thereby, the formal solution to the equation (22) could be written via the

Neumann series:

ψk(x ± t, λ) = (E − T±)−1A±
k (t) + sgn k · (E − T±)−1S0ψk−1(x ± t, λ). (22)

Lemma 1. The integral operator T± satisfies the estimate
∣
∣[T±χ

]
(t)

∣
∣ ≤ Cω(t) sup

0≤τ≤t
|χ(τ) cosh (Im μ(t − τ))|, (23)

where χ(t) is an arbitrary bounded function and ω(t) is a non-negative non-
decreasing function that vanishes as t → 0 + 0.

Proof. The estimate (24) directly follows from the relations (15), (16), (18) and
(19) if we set

ω(t) = sup
K⊂G: mesK≤t

{∫

K

|P (ξ)| dξ +
∫

K

|q0(ξ)|(ξ − a)(b − ξ) dξ

}

and use the inequalities | cos z| ≤ cosh (Im z), | sin z| ≤ cosh (Im z), |z−1 sin z| ≤
cosh (Im z), z ∈ C, and the inequality cosh y1 cosh y2 ≤ cosh (y1+y2), y1, y2 ≥ 0.

It is the immediate consequence of the estimate (24) that the equality (23)
is correct for all rather small values of t.

Lemma 2. There exists such R0 > 0 that the functions (10) satisfy the relation
(23) for all t ∈ (0;R0] and x ∈ [a + t, b − t]. Moreover, the functions ψk(x, λ)
are absolutely continuous on the closed interval G and continuously depend on
the complex parameter λ.

If we solve the recurrent relation (23) then, after extracting the main terms
in each Neumann series, we obtain the equality

ψk(x ± t, λ) = A±
k (t) + S0A

±
k−1(t) + . . . + (S0)kA±

0 (t) +

+
k∑

j=0

{
ψk−j(x, λ)F±

j (t, x, λ) ± μ−1ψ
[1]
k−j(x, λ)Φ±

j (t, x, λ)
}

, (24)

2 For brevity, we omit the arguments x and μ in the notation A±
k (t).
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where

F±
0 (t, x, λ) = T±(E − T±)−1 cos μt, Φ±

0 (t, x, λ) = T±(E − T±)−1 sin μt, (25)
F±
j (t, x, λ) = ((E − T±)−1S0)j(E − T±)−1 cos μt − (S0)j cos μt,

Φ±
j (t, x, λ) = ((E − T±)−1S0)j(E − T±)−1 sin μt − (S0)j sinμt. (26)

Let us introduce the functions

Ψ±
k (t) = A±

k (t) + S0A
±
k−1(t) + . . . + (S0)kA±

0 (t) (27)

in the right-hand side of (25).
As the function ϕ(t) = S0f(t) is a solution to the equation −ϕ′′(t) =

μ2ϕ(t) + f(t) while each function (21) is the eigenfunction of the operation
L0, the sequence Ψ±

0 (t), Ψ±
1 (t), . . . , Ψ±

k (t) forms the chain of root function for
the operation L0. The estimates (8)–(9) of Theorem 1 for these functions are
well-known — this fact will be use hereinafter.

Thereby, the relations (20), (24)–(28) could be summarized in the following
assertion.

Lemma 3. There exists the number R0 > 0 such that, for all t ∈ (0, R0] and
x ∈ [a + t, b − t], the representation

ψk(x ± t, λ) = Ψ±
k (t) +

k

j=0

ψk−j(x, λ)F ±
j (t, x, λ) ± μ−1ψ

[1]
k−j(x, λ)Φ±

j (t, x, λ) (28)

holds, where ψk(x, λ) and Ψk(t) are defined by the relations (10) and (28) respec-
tively, and the coefficients on its right-hand side introduced by (26), (27) satisfy
the estimates

|Fj(t, x, λ)| ≤ Cω(t)

(
2min

(
t, (1 + |Im μ|)−1

)

1 + |μ|

)j

cosh (Im μt), (29)

|Φj(t, x, λ)| ≤ Cω(t)min(|μ|t, 1)

(
2min

(
t, (1 + |Im μ|)−1

)

1 + |μ|

)j

cosh (Im μt), (30)

here ω(t) is a non-negative non-decreasing function that vanishes as t → 0 + 0.

It follows from the estimate (24) that it is sufficient to choose R0 > 0 match-
ing the inequality ω(R0) ≤ 1/2.

3 Proof of the Estimates for the Root Functions

By virtue of Lemma 2, it is sufficient to prove the estimates (8), (9) for rather
large values of |μ|. In fact, each norm ‖uk(·, λ)‖s is non-zero for all k ≥ 0 and λ ∈
C and continuous with respect to λ. Therefore, if |μ| ≤ μ0 then the inequalities
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0 < C1 ≤ ‖uk(·, λ)‖s ≤ C2 < ∞
hold.

Further we suppose that the inequality |μ| ≥ μ0 is satisfied with some positive
number μ0. For any R ∈ (0, R0], we will obtain the estimates of Theorem 1 over
each closed interval K = K(x) ≡ [x − R, x + R], where x ∈ [a + R, b − R], i.e.,
taking into account (12), we will prove that, for any k ≥ 0, the estimates

‖ψk(·, λ)‖s,K ≤ C (1 + |Im μ|)(1/r)−(1/s)‖ψk(·, λ)‖r,K , (31)
‖ψk(·, λ)‖s,K ≤ C |μ|(1 + |Im μ|)‖ψk+1(·, λ)‖s,K (32)

hold, where ‖ · ‖s,K denotes the norm in the space Ls(x − R, x + R).
The estimates for norms on the whole interval G apparently follow from (32),

(33) while the corresponding constants C in them will depend on R (the choice
of R is clarified further).

First of all we refine the dependence on R of the constants in the estimates
for the functions Ψ±

k (t) in the spaces Ls(0, R).

Lemma 4. For any k ≥ 0 and all 1 ≤ s, r ≤ ∞, the following estimates hold
uniformly with respect to R ∈ (0, R0]:

a) if |Im μR| ≥ 1, then

‖Ψ±
k (t)‖Ls(0,R) ≤ C|Im μ|(1/r)−(1/s)‖Ψ±

k (t)‖Lr(0,R), (33)

‖Ψ±
k (t)‖Ls(0,R) ≤ C|Im μ| · |μ| ‖Ψ±

k+1(t)‖Ls(0,R), (34)

b) if |Im μ| ≤ ν0, then

‖Ψ±
k (t)‖Ls(0,R) ≤ CR(1/s)−(1/r)‖Ψ±

k (t)‖Lr(0,R), (35)

c) if |Im μ| ≤ ν0 and |μR| ≥ 1, then

‖Ψ±
k (t)‖Ls(0,R) ≤ CR−1|μ| ‖Ψ±

k+1(t)‖Ls(0,R), (36)

d) if |μ| ≤ μ0, then

‖Ψ±
k (t)‖Ls(0,R) ≤ CR−2‖Ψ±

k+1(t)‖Ls(0,R). (37)

Proof. Let us make the substitution t = ξR in the equations for the functions
Ψ±
k (t). Then 0 < ξ < 1 and the equalities

−∂2
ξ Ψ±

0 (ξR) = (μR)2Ψ±
0 (ξR), −∂2

ξ Ψ±
k (ξR) = (μR)2Ψ±

k (ξR) + R2Ψ±
k−1(ξR)

are satisfied.
Hence, the estimates

‖R2Ψ±
k (ξR)‖Ls(0,1) ≤ C(1 + |Im μR|)(1 + |μR|)‖Ψ±

k+1(ξR)‖Ls(0,1), (38)

‖Ψ±
k (ξR)‖Ls(0,1) ≤ C(1 + |Im μR|)(1/r)−(1/s)‖Ψ±

k (ξR)‖Lr(0,1) (39)
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hold with constants C that do not depend on R.
Let us take into account that

‖Ψ±
k (t)‖Ls(0,R) = R1/s‖Ψ±

k (ξR)‖Ls(0,1). (40)

Thus, the estimate (40) yields directly the estimate (34) if |Im μR| ≥ 1, and
the estimate (36) if |Im μ| ≤ ν0, since in the latter case |Im μR| ≤ ν0R0 holds.

If |Im μR| ≥ 1 then |μR| ≥ 1, and therefore, the estimate (35) follows from
(39) and (41).

The estimate (37) also reformulates (39) since |Im μR| ≤ ν0R0, and, to obtain
(38), it suffices to note that, in this case, |Im μ| ≤ |μ| ≤ μ0 holds.

The proof of the estimates (32) and (33) is accomplished separately in the
following cases: 1) when μ satisfies the condition |Im μ| ≥ ν0 > 0 (the value of
ν0 is chosen further), and 2) when |Im μ| ≤ ν0 holds.

The case |Im μ| ≥ ν0. Suppose the inequality |Im μR| ≥ 1 holds. Using the
representation (29) and the estimates (30) and (31) we calculate the norms of
the functions ψk(x + t, λ) and ψk(x − t, λ) in the space Ls(0 < t < R):

‖ψk(·, λ)‖s,K ≤ ‖Ψ+
k (t)‖Ls(0,R) + ‖Ψ−

k (t)‖Ls(0,R) + Cω(R)|Im μ|−1/s ×

× cosh (Im μR))
k∑

j=0

(|μ| |Im μ|)−j
{

|ψk−j(x, λ)| +
|ψ[1]

k−j(x, λ)|
|μ|

}
. (41)

It is also clear that one can swap the terms ‖ψk(·, λ)‖s,K and ‖Ψ+
k (t)‖Ls(0,R)+

‖Ψ−
k (t)‖Ls(0,R) of this estimate.
Now we apply the representation (29) to the half-sum 1

2

(
ψk(x+t, λ)+ψk(x−

t, λ)
)
. Since3

1
2
(
Ψ+
k (t) + Ψ−

k (t)
)

= ψk(x, λ) cos μt +
k∑

j=1

ψk−j(x, λ)(S0)j cos μt, (42)

we obtain the relation

ψk(x, λ) cos μt =
1
2
(
ψk(x + t, λ) + ψk(x − t, λ)

) −

−
k∑

j=1

ψk−j(x, λ)(S0)j cos μt −
k∑

j=0

{
ψk−j(x, λ)

F+
j (t, x, λ) + F−

j (t, x, λ)
2

+

+ψ
[1]
k−j(x, λ)

Φ+
j (t, x, λ) − Φ−

j (t, x, λ)
2μ

}
. (43)

Since the condition |Im μR| ≥ 1 provides the inequality

‖ cos μt‖Ls(0,R) ≥ C0|Im μ|−1/s cosh (Im μR), (44)

3 In the case when k = 0 the sum k
j=1 should be omitted.
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and the estimates (30), (31) hold, the definition (20) of the operator S0 and the
relation (43) yield the estimate

C0|Im μ|−1/s cosh (Im μR)|ψk(x, λ)| ≤ ‖ψk(·, λ)‖s,K +

+Cω(R)|Im μ|−1/s cosh (Im μR)
{

|ψk(x, λ)| +
|ψ[1]

k (x, λ)|
|μ|

}
+

+C|Im μ|−1/s cosh (Im μR)
k∑

j=1

(|μ| |Im μ|)−j
{

|ψk−j(x, λ)| +
|ψ[1]

k−j(x, λ)|
|μ|

}
. (45)

If we repeat the above reasoning for the half-difference 1
2

(
ψk(x+t, λ)−ψk(x−

t, λ)
)

instead of the half-sum and take into account the equality

1
2
(
Ψ+
k (t) − Ψ−

k (t)
)

= μ−1ψ
[1]
k (x, λ) sin μt +

k∑

j=1

μ−1ψ
[1]
k−j(x, λ)(S0)j sinμt,

instead of (42), we obtain the relation for μ−1ψ
[1]
k (x, λ) sin μt which is similar to

(43). As the norm ‖ sin μt‖Ls(0,R) also satisfies the inequality (44), we will actu-
ally get the estimate (45), but with C0|Im μ|−1/s cosh (Im μR)|μ|−1|ψ[1]

k (x, λ)| on
its left-hand side.

Summing these two estimates and choosing R to match the inequality
4Cω(R) ≤ C0, we finally obtain the estimate

|Im μ|−1/s cosh (Im μR)
{

|ψk(x, λ)| +
|ψ[1]

k (x, λ)|
|μ|

}
≤ C‖ψk(·, λ)‖s,K +

+C|Im μ|−1/s cosh (Im μR)
k∑

j=1

(|μ| |Im μ|)−j
{

|ψk−j(x, λ)| +
|ψ[1]

k−j(x, λ)|
|μ|

}
. (46)

Applying the estimate (46) k + 1 times in the right-hand side of (42), we
primarily get the estimate

‖ψk(·, λ)‖s,K ≤ ‖Ψ+
k (t)‖Ls(0,R) + ‖Ψ−

k (t)‖Ls(0,R) +

+Cω(R)
k∑

j=0

(|μ| |Im μ|)−j‖ψk−j(·, λ)‖s,K , (47)

which, for rather small R, transforms into the estimate

‖ψk(·, λ)‖s,K ≤ C
{‖Ψ+

k (t)‖Ls(0,R) + ‖Ψ−
k (t)‖Ls(0,R)

}
+

+Cω(R)
k∑

j=1

(|μ| |Im μ|)−j‖ψk−j(·, λ)‖s,K .

Hence we get

‖ψk(·, λ)‖s,K ≤ C
{‖Ψ+

k (t)‖Ls(0,R) + ‖Ψ−
k (t)‖Ls(0,R)

}
+

+Cω(R)
k∑

j=1

(|μ| |Im μ|)−j{‖Ψ+
k−j(t)‖Ls(0,R) + ‖Ψ−

k−j(t)‖Ls(0,R)

}
. (48)
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The estimate

‖Ψ±
k (t)‖Ls(0,R) ≤ ‖ψk(·, λ)‖s,K + Cω(R)

k∑

j=1

(|μ| |Im μ|)−j‖ψk−j(·, λ)‖s,K (49)

could be derived similar to the estimate (47).
Now we turn directly to the anti-a priori estimate (33).
We take into account the anti-a priori estimate (35) for the functions Ψ±

k (t)
and rewrite the estimate (48) in the form

‖ψk(·, λ)‖s,K ≤ C
{‖Ψ+

k (t)‖Ls(0,R) + ‖Ψ−
k (t)‖Ls(0,R)

}
. (50)

Then, by virtue of the estimates (35) and (50) with k = 0 and the estimate
(49) with k = 1, we obtain

‖ψ0(·, λ)‖s,K ≤ C
{‖Ψ+

0 (t)‖Ls(0,R) + ‖Ψ−
0 (t)‖Ls(0,R)

} ≤
≤ C|Im μ| |μ|{‖Ψ+

1 (t)‖Ls(0,R) + ‖Ψ−
1 (t)‖Ls(0,R)

} ≤
≤ C|Im μ| |μ| ‖ψ1(·, λ)‖s,K + Cω(R)‖ψ0(·, λ)‖s,K .

This, for rather small R, implies the anti-a priori estimate (33) with k = 0.
Now, by virtue of the estimates (35) and (50) with k = 1, the estimate (49)

with k = 2, and already justified anti-a priori estimate (33) with k = 0, we
obtain

‖ψ1(·, λ)‖s,K ≤ C
{‖Ψ+

1 (t)‖Ls(0,R) + ‖Ψ−
1 (t)‖Ls(0,R)

} ≤
≤ C|Im μ| |μ|{‖Ψ+

2 (t)‖Ls(0,R) + ‖Ψ−
2 (t)‖Ls(0,R)

} ≤
≤ C|Im μ| |μ| ‖ψ2(·, λ)‖s,K + Cω(R)‖ψ1(·, λ)‖s,K ,

whence, for rather small R, we again derive the anti-a priori estimate (33), but
with k = 1.

Repeating the reasoning, one can obtain the estimate (33) for all k ≥ 2.
Let us proceed with proving the estimates for the norms in (32).
For that purpose, it is sufficient to apply the estimates for the norms (34),

the estimate (50), and also the estimate

‖Ψ±
k (t)‖Lr(0,R) ≤ C‖ψk(·, λ)‖r,K

which follows from (49) and the anti-a priori estimate (33).
Summing up the above reasoning, we note that the constant ν0 for this case

equals R−1 where R matches all the mentioned restrictions.

The case |Im μ| ≤ ν0. We once again use the representation (29) and calculate
the norms of the functions ψk(x + t, λ) and ψk(x − t, λ) in the space Ls(0 <
t < R). Applying the estimates (30), (31) and the boundedness of the factors
cosh (Im μR), we obtain

‖ψk(·, λ)‖s,K ≤ ‖Ψ+
k (t)‖Ls(0,R) + ‖Ψ−

k (t)‖Ls(0,R) +

+Cω(R)R1/s
k∑

j=0

(
2|μ|−1R

)j{|ψk−j(x, λ)| +
|ψ[1]

k−j(x, λ)|
|μ|

}
. (51)
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Similarly one can also swap the norm ‖ψk(·, λ)‖s,K and the sum of norms
‖Ψ+

k (t)‖Ls(0,R) + ‖Ψ−
k (t)‖Ls(0,R) in this estimate.

Now we take the norms in Ls(0 < t < R) of the both sides of the relation
(43). As the function cos μt is the eigenfunction of the operation L0, it follows
from (36) that it satisfies the estimate

‖ cos μt‖Ls(0,R) ≥ C0R
1/s‖ cos μt‖L∞(0,R) ≥ C0R

1/s‖ cos Re μt‖L∞(0,R).

The latter norm on the right-hand side equals 1 if the condition

|μR| ≥ μ1 ≥ 1 (52)

is satisfied and μ1 is chosen to provide ReμR ≥ π
2 . As a result, we obtain the

estimate

C0R
1/s|ψk(x, λ)| ≤ ‖ψk(·, λ)‖s,K + Cω(R)R1/s

{
|ψk(x, λ)| +

|ψ[1]
k (x, λ)|

|μ|
}

+

+CR1/s
k∑

j=1

(|μ|−1R
)j{|ψk−j(x, λ)| +

|ψ[1]
k−j(x, λ)|

|μ|
}

. (53)

Reproducing the same reasoning for the half-difference 1
2

(
ψk(x+t, λ)−ψk(x−

t, λ)
)
, we obtain the estimate (53) for R1/s|μ|−1|ψ[1]

k (x, λ)|. Combining these two
estimates together we conclude that the relation

R1/s
{

|ψk(x, λ)| +
|ψ[1]

k (x, λ)|
|μ|

}
≤ C‖ψk(·, λ)‖s,K +

+CR1/s
k∑

j=1

(|μ|−1R
)j{|ψk−j(x, λ)| +

|ψ[1]
k−j(x, λ)|

|μ|
}

(54)

holds instead of (53).
Applying successively the estimate (54) in the right-hand side of (51) we

obtain the estimate

‖ψk(·, λ)‖s,K ≤ C
{‖Ψ+

k (t)‖Ls(0,R) + ‖Ψ−
k (t)‖Ls(0,R)

}
+

+Cω(R)
k∑

j=1

(|μ|−1R
)j{‖Ψ+

k−j(t)‖Ls(0,R) + ‖Ψ−
k−j(t)‖Ls(0,R)

}
(55)

which replaces (48), and the estimate

‖Ψ±
k (t)‖Ls(0,R) ≤ C‖ψk(·, λ)‖s,K + Cω(R)

k∑

j=1

(|μ|−1R
)j‖ψk−j(·, λ)‖s,K (56)

which replaces (49).
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Since under the conditions |Im μ| ≤ ν0 and (52) the anti-a priori estimate
(37) holds, one needs now to repeat the reasoning of the first case and obtain
the anti-a priori estimate (33) in the form

‖ψk(·, λ)‖s,K ≤ C |μ|R−1‖ψk+1(·, λ)‖s,K . (57)

The proof of the estimate (32) for the norms in the form

‖ψk(·, λ)‖s,K ≤ C R(1/s)−(1/r)‖ψk(·, λ)‖r,K
now comes clear by virtue of the estimates (36), (55)–(56).

Summing up the second case, we note that here μ should satisfy the condition
|μ| ≥ μ0, where μ0 = μ1R

−1 and μ1 is the constant in (52) while rather small
value of R matches all the mentioned restrictions.

Theorem 1 is completely proved.
Let us conclude with one more estimate that follows from the estimates (8),

(9), (46) and (54).

Theorem 2. For any R ∈ (0, R0] and all k ≥ 0, there exists a constant Ck =
Ck(R) such that the estimate

cosh (Im μR)
{

|uk(x, λ)| +
|u[1]

k (x, λ)|
|μ|

}
≤ Ck(R)(1 + |Im μ|)1/s‖uk(·, λ)‖s

holds for all |μR| ≥ μ1 ≥ 1.
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Abstract. In this work a unique solvability of a class of hyperbolic
type partial differential equations with unbounded coefficients is proved
in R

2. The estimates of the weight norms of the solution u and its partial
derivatives ux and uy are derived.

Keywords: Sturm-Liouville operator · Hyperbolic type equations
· Existence of a solution · Unique solvability · Estimation of the norm
· Forces of a friction · Behavior of the coefficients · Unbounded domain
· Fast growing coefficients

1 Introduction

Consider the equation

Lλu = uxx − uyy + a(y)ux + c(y)u + λu = f(x, y), (x, y) ∈ R2, (1)

where f ∈ L2(R2), λ ≥ 0. Assume that the following conditions hold:

i) a(y), c(y) are the continuous functions: |a(y)| ≥ δ0 > 0, c(y) ≥ δ > 0,
y ∈ R.

In case of a bounded domain an extensive literature is devoted to the ques-
tions of existence, uniqueness and smoothness of solutions of boundary value
problems for the hyperbolic type equation (1) (see [1]-[3]). The solvability of

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_24
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hyperbolic type equation, in general, depends on the behavior of the coefficients
a and c. For example (see [4], p. 108), the solution of the steady state problem

utt = uyy − αut (0 < y < l, t ∈ R), u(0, t) = μ1(t), u(l, t) = μ2(t),

where the term αut, α > 0, on the right-hand side of the equation corresponds to
the friction which is proportional to speed, may not be unique. Moreover it does
not always exist when α = 0. Minor terms and the right-hand of the equation (1)
characterize forces of a friction which are inherent in any real physical system.
Hence, studying the equation (1) is of practical interest.

In the present work we show that the condition i) provides unique solvabil-
ity and a uniform estimates for the solution in weighted L2− norms and its
first derivatives. These questions have been investigated only in the cases of the
elliptic and pseudo-differential equations in [5]-[10]. The problem with periodic
conditions with respect to the variable x and in the domain Ω = {(x, y) : −π <
x < π,−∞ < y < ∞} was studied in [11]-[12] for the equation (1). Unlike the
case considered in [11]-[12] the spectrum of the differential operator correspond-
ing to (1) is continuous. Generally, in case of unbounded domains with the fast
growing coefficients the theory of the differential equations of hyperbolic and
mixed type has a rather short history.

By a solution of equation (1) we mean a function u ∈ L2 for which there exists
a sequence {un}∞

n=1 ⊂ C∞
0 (R2) such that ‖un − u‖2 → 0, ‖Lλun − f‖2 → 0 as

n → ∞ (‖ · ‖2 is the L2− norm).
The main results of this work are Theorems 1 and 2.

Theorem 1. Let the condition i) be fulfilled. Then there exists a unique solution
u of the equation (1).

Theorem 2. Let the condition i) be fulfilled. Then the solution u of the equation
(1) satisfies the estimate ‖ux‖2 + ‖uy‖2 + ‖c(·)u‖2 ≤ C‖f‖2, where C > 0 is a
constant.

In what follows c0, c1, c2, ... are positive constants, and 〈·, ·〉D is a scalar
product in L2(D).

2 Preliminaries

Denote by Lλ the closure in L2− norm of the differential operator
lλu = uxx − uyy + a(y)ux + c(y)u + λu defined on the set C∞

0 (R2). Evidently, lλ
is a closable operator. In what follows in Lemmas 1-10 we will assume that the
condition i) holds.

Lemma 1. Assume that λ ≥ 0. Then the following inequality holds for all u ∈
D(Lλ) :

‖Lλu‖2 ≥ c0‖u‖2, c0 = c0(δ0, δ). (2)
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Proof. Let u ∈ C∞
0 (R2). Transforming the expressions 〈Lλu, u〉R2 and

〈Lλu, ux〉R2 , we obtain the following inequalities

1
2δ

‖Lλu‖22 ≥
∫

R2

[|uy|2 + (λ + δ/2) |u|2] dxdy −
∫

R2

|ux|2dxdy, (3)

‖Lλu‖22 ≥ δ20‖ux‖22. (4)

Here we used the ε− Cauchy inequality, with ε = δ/2. From (3) and (17) the
estimate (2) follows. Since Lλ is the closed operator the estimate (2) holds for
all u ∈ D(Lλ). �

Let −∞ < t < +∞, Δj = (j − 1, j + 1) (j ∈ Z), and let γ be a constant such
that γa(y) > 0. Denote by lt,j,γ + λE the closure in L2(Δj) of the differential
operator (lt,j.γ +λE)u = −u

′′
+

[−t2 + ita(y) + itγ + c(y) + λ
]
u defined on the

set C2
0 (Δj) of twice continuously differentiable functions u on Δj which satisfy

the equalities u(j − 1) = u(j + 1) = 0.

Lemma 2. Let λ ≥ 0 and let γ be constants such that

(δ0 + |γ|)2√
δ + λ

− 1 ≥ 0. (5)

Then for any u ∈ D(lt,j.γ + λE) the following inequalities hold:
a) ‖(lt,j,γ + λE)u‖L2(Δj)

≥ c1(δ)
(‖u′‖L2(Δj) + ‖√

c + λu‖L2(Δj)+

‖t
√|a + γ|u‖L2(Δj)

)
;

b) c2(δ)/
√

δ + λ ‖(lt,j,γ + λE)u‖L2(Δj) ≥ ‖u‖L2(Δj);

c) c3(δ)/ 4
√

δ + λ ‖(lt,j,γ + λE)u‖L2(Δj) ≥ ‖u′‖L2(Δj), where c1 = c1(δ),
c2 = c2(δ), c3 = c3(δ).

Proof. Let u ∈ C2
0 (Δj). Then we have

∣∣〈(lt,j,γ + λE)u, u〉Δj

∣∣ ≥ ‖u′‖2L2(Δj)
+

∫

Δj

[c(y) + λ]|u|2dy −

∣∣∣∣∣∣∣
∫

Δj

t2|u|2dy

∣∣∣∣∣∣∣
.

Hence

‖(lt,j,γ + λE)u‖L2(Δj)‖u‖L2(Δj) ≥
∫

Δj

|u′|2dy −
∫

Δj

t2|u|2dy (6)

and

1
2δ

‖(lt,j,γ + λE)u‖2L2(Δj)
≥ 1

2

∫

Δj

[c(y) + λ] |u|2dy −
∫

Δj

t2|u|2dy. (7)
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On the other hand, by transforming the expression 〈(lt,j,γ + λE)u,−itu〉Δj
, we

have

‖(lt,j,γ + λE)u‖L2(Δj) ≥ ‖t
√

|a(·) + γ|u‖L2(Δj), u ∈ C2
0 (Δj), (8)

and

‖(lt,j,γ + λE)u‖2L2(Δj)
≥ (δ0 + |γ|)2|t|2‖u‖2L2(Δj)

, u ∈ C2
0 (Δj). (9)

Combining (7) with (9), then using condition (18), we obtain

c4(δ)‖(lt,j,γ + λE)u‖L2(Δj) ≥ ‖
√

c(·) + λu‖L2(Δj). (10)

Hence by the condition i) we conclude:

c4(δ)√
δ + λ

‖(lt,j,γ + λE)u‖L2(Δj) ≥ ‖u‖L2(Δj). (11)

From inequalities (6), (9) and (11) we obtain the following estimate

c4(δ) + 1√
δ + λ

‖(lt,j,γ + λE)u‖2
L2(Δj) ≥ ‖u′‖2

L2(Δj) + t2

Δj

(δ0 + |γ|)2√
δ + λ

− 1 |u|2dy. (12)

The estimate a) follows from inequalities (8), (10) and (12) by using the condition
i) and (18). Further, the estimate (11) implies b). Finally it follows from (12)
that

c4(δ) + 1√
δ + λ

‖(lt,j,γ + λE)u‖2L2(Δj)
≥ ‖u′‖2L2(Δj)

.

This implies the estimate c), which completes the proof of the lemma. �

Lemma 3. Assume that λ ≥ 0 and condition (18) holds. Then the operator
lt,j,γ + λE is invertible, and the inverse operator (lt,j,γ + λE)−1 is defined in all
L2(Δj), j ∈ Z.

Proof. By estimate b) in Lemma 2 it is enough to prove that R(lt,j,γ + λE) =
L2(Δj). Assume the contrary. Then there exists a function v ∈ L2(Δj), v �= 0,
such that

(lt,j,γ + λE)∗v := −v
′′

+
[−t2 − ita(y) − itγ + c(y) + λ

]
v = 0. (13)

This implies that v
′′ ∈ L2(Δj). By transforming the expression 〈(lt,j,γ +

λE)u, v〉Δj
we have u′(j + 1)v̄(j + 1) − u′(j − 1)v̄(j − 1) = 0 for any function

u ∈ D(lt,j,γ + λE). Therefore v(j + 1) = v(j − 1) = 0, and using these equalities,
we can derive the similar to (11) estimate:

‖(lt,j,γ + λE)∗v‖2L2(Δj)
≥ c5‖v‖2L2(Δj)

. (14)

From (13) and (14) we conclude that v = 0. �
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By lt,γ + λE (−∞ < t < +∞) we denote the closure of the differential
expression (lt,γ + λE)u = −u

′′
+

[−t2 + ita(y) + itγ + c(y) + λ
]
u defined on

the set C∞
0 (R).

Lemma 4. Let λ ≥ 0 and let condition (5) hold. Then for any u ∈ D(lt,γ +λE)
the following estimates hold:

‖(l0,γ + λE)u‖L2(R) ≥ √
δ + λ‖u‖L2(R),

‖(lt,γ + λE)u‖L2(R) ≥ |t|(δ0 + |γ|)‖u‖L2(R), t �= 0.

Lemma 4 is proved by transforming the expression < (lt,γ + λE)u,−itu >,
where u ∈ C∞

0 (R).
Let now {ϕj(y)}+∞

j=−∞ ⊂ C∞
0 (R) be a sequence of functions satisfying the

conditions ϕj ≥ 0, supp ϕj ⊆ Δj (j ∈ Z),
+∞∑

j=−∞
ϕ2

j (y) = 1. Introducing the oper-

ators Kλ,γf =
+∞∑

j=−∞
ϕj(lt,j,γ +λE)−1ϕjf, Bλ,γf =

+∞∑
j=−∞

ϕ
′′
j (lt,j,γ +λE)−1ϕjf +

2
+∞∑

j=−∞
ϕ

′
jd/dy(lt,j,γ + λE)−1ϕjf, f ∈ L2(R), λ ≥ 0, we can prove that

(lt,γ + λE)Kλ,γf = f − Bλ,γf. (15)

Lemma 5. There exists a number λ0 > 0 such that ‖Bλ,γ

‖L2(R)→L2(R) < 1 for all λ ≥ λ0, where γ satisfies condition (18).

Proof. Let f ∈ C∞
0 (R). Since only the functions ϕj−1, ϕj , ϕj+1 can be nonzero

on Δj (j ∈ Z) we have

‖Bλ,γf‖2L2(R) ≤
+∞∑

j=−∞

+∞∫

−∞

∣∣∣∣∣∣
j+1∑

k=j−1

[
ϕ

′′
k(lt,k,γ + λE)−1ϕkf+

2ϕ
′
k

d

dy
(lt,k,γ + λE)−1ϕkf

]∣∣∣∣
2

dy.

Hence using the inequality (a0 + b0 + d0)2 ≤ 3(a2
0 + b20 + d20) and estimates b),

c) in Lemma 2, we obtain ‖Bλ,γf‖2L2(R) ≤ c6

[
(λ + δ)− 1

2 + (λ + δ)− 1
4

]
‖f‖2L2(R),

where the constant c6 depends on max
j∈Z

{|ϕ′
j |}, max

j∈Z
{|ϕ′′

j |}, c2(δ), and c3(δ). Now

choose λ0 = 16c46 + 1 − δ. This completes the proof. �

In what follows in Lemmas 6-10 λ0 is a constant as in Lemma 5. From the
representation (15) by Lemmas 4 and 5 follows the next lemma.
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Lemma 6. Let us assume that λ ≥ λ0 and condition (18) holds. Then the
operator lt,γ + λE is continuously invertible, and for the inverse operator (lt,γ +
λE)−1 the following equality holds:

(lt,γ + λE)−1 = Kλ,γ(E − Bλ,γ)−1. (16)

Lemma 7. Let us assume that λ ≥ λ0, γ satisfies condition (5), and ρ(y) is
a continuous function defined on R. Then for α = 0, 1 the following estimate
holds:

‖ρ|t|α(lt,γ + λE)−1‖2L2(R)→L2(R) ≤
≤ c7(λ) sup

j∈Z
‖ρ|t|αϕj(lt,j,γ + λE)−1‖2L2(Δj)→L2(Δj)

. (17)

Proof. For f ∈ C∞
0 (R) from representation (16) and by the properties of the

functions ϕj (j ∈ Z), we conclude:

‖ρ|t|α(lt,γ + λE)−1f‖2L2(R) ≤

+∞∑
j=−∞

+∞∫

−∞

∣∣∣∣∣∣
j+1∑

k=j−1

[
ρ(y)|t|αϕk(lt,k,γ + λE)−1ϕk(E − Bλ,γ)−1f

]
∣∣∣∣∣∣
2

dy.

Hence by the obvious inequality (a0 + b0 +d0)2 ≤ 3(a2
0 + b20 +d20) and by Lemma

5, we obtain estimate (17). �

The result below follows from Lemma 2 and the estimate (17).

Lemma 8. Let λ ≥ λ0 and let condition (18) hold. Then
a)‖√

c + λ(lt,γ + λE)−1‖L2(R)→L2(R) < ∞;
b)‖it(lt,γ + λE)−1‖L2(R)→L2(R) < ∞;
c)‖d/dy(lt,γ + λE)−1‖L2(R)→L2(R) < ∞.

Consider the equation

(lt + λE)u = −u
′′

+
[−t2 + ita(y) + c(y) + λ

]
u = f, (18)

where f ∈ L2(R). The function u ∈ L2(R) is called a solution of the equation
(18) if there exists a sequence {un}∞

n=1 ⊂ C∞
0 (R) such that ‖un − u‖L2(R) → 0,

‖(lt + λE)un − f‖L2(R) → 0 as n → ∞. The closure in L2(R) of the operator
lt + λE is denoted by lt + λE, too.

Lemma 9. Let us assume that λ ≥ λ0. Then the operator lt + λE, t ∈ R is
boundedly invertible, and for the inverse operator (lt + λE)−1 the equality

(lt + λE)−1f = (lt,γ + λE)−1(E − Aλ,γ)−1f, f ∈ L2(R), (19)

holds for any t �= 0, where ‖Aλ,γ‖L2(R)→L2(R) < 1, and γ satisfies condition
(5).
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Proof. First assume that t �= 0. We rewrite the equation (lt + λE)u = f in the
form v − Aλ,γv = f, where v = (lt,γ + λE)u, Aλ,γ = itγ(lt,γ + λE)−1, and γ
satisfies condition (5). From Lemma 4 it follows that ‖Aλ,γ‖L2(R)→L2(R) < 1.
Then there exists the inverse operator (lt+λE)−1, and u = (lt+λE)−1f = (lt,γ+
λE)−1(E−Aλ,γ)−1f, f ∈ L2(R). Further, since l0+λE is a self-adjoint operator
[13] (p. 208), then the estimate ‖(l0 + λE)u‖L2(R) ≥ (δ + λ)‖u‖L2(R) holds for
any u ∈ D(l0 + λE). These implies that the operator l0 + λE is boundedly
invertible. �

Lemma 8 and the equality (19) imply the following lemma.

Lemma 10. If λ ≥ λ0, then
a)‖√

c + λ(lt + λE)−1‖L2(R)→L2(R) < ∞;
b)‖it(lt + λE)−1‖L2(R)→L2(R) < ∞;
c)‖d/dy(lt + λE)−1‖L2(R)→L2(R) < ∞.

We will use also the following well-known lemma [14] (p. 350).

Lemma 11. Let us assume that θ0 > 0 is a constant and the operator L +
θ0E is boundedly invertible in L2(R), and the estimate ‖(L + θE)u‖L2(R) ≥
c8‖u‖L2(R), u ∈ D(L + θE) holds for θ ∈ [0, θ0). Then the operator L : L2(R) →
L2(R) is also boundedly invertible.

3 Proofs of Theorems

Proof of Theorem 1. Applying the Fourier transform with respect to the
variable x from the equation (1), we obtain:

(lt + λE)ũ = −ũ
′′

+
[−t2 + ita(y) + c(y) + λ

]
ũ = f̃ , (20)

where

ũ = (Fx→tu)(t, y) =
1√
2π

+∞∫

−∞
u(x, y)e−itxdx, f̃ = (Fx→tf)(t, y)

=
1√
2π

+∞∫

−∞
f(x, y)e−itxdx.

If λ ≥ λ0 (λ0 is a constant as in Lemma 5, then by Lemma 9 there exists a unique
solution of equation (20). Then from Lemma 11 it follows that equation (20) is
uniquely solvable for all λ ≥ 0 and ũ = (lt + λE)−1f̃ is a solution. Therefore by
Lemma 1

u = F−1
t→x(lt + λE)−1f̃ (21)

is the unique solution of equation (1). �
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Proof of Theorem 2. Using the representation (21), we obtain

‖ux‖22 ≤
+∞∫

−∞
‖it(lt + λE)−1‖2L2(R)→L2(R)‖f̃‖2L2(R)dt ≤

sup
t∈R

‖it(lt + λE)−1‖2L2(R)→L2(R)‖f‖22,

‖uy‖22 ≤
+∞∫

−∞

∥∥∥∥ d

dy
(lt + λE)−1

∥∥∥∥
2

L2(R)→L2(R)

‖f̃‖2L2(R)dt

≤ sup
t∈R

∥∥∥∥ d

dy
(lt + λE)−1

∥∥∥∥
2

L2(R)→L2(R)

‖f‖22,

‖
√

c(·) + λu‖22 ≤
+∞∫

−∞
‖√

c + λ(lt + λE)−1f̃‖2L2(R)dt

≤ sup
t∈R

‖√
c + λ(lt + λE)−1‖2L2(R)→L2(R)‖f‖22.

The proof of Theorem 2 follows from these estimates, by taking into account the
assertions a) − c) of Lemma 10. �
Acknowledgements. This publication is supported by the target program
0085/PTSF-14 from the Ministry of Science and Education of the Republic of
Kazakhstan.
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Abstract. In this paper we extend results on regularized trace formulae
which were established in [9,10] for the Laplace and m-Laplace operators
in a punctured domain with the fixed iterating order m ∈ N. By using
techniques of Sadovnichii and Lyubishkin [21], the authors in the papers
[9,10] described regularized trace formulae in the spatial dimension d =
2. In this remark one is to be claimed that the formulae are also valid
in the higher spatial dimensions, namely, 2 ≤ d ≤ 2m. Also, we give the
further discussions on a development of the analysis associated with the
operators in punctured domains. This can be done by using so called
‘nonharmonic’ analysis.

Keywords: Regularization · Trace formulae · Laplacian · m-Laplace
operator · Punctured domain · Nonharmonic analysis

1 Introduction

In this note we study a differential operator in a punctured domain. For motiva-
tion, we refer to the manuscripts [1,4,5,11,13,14,22,23] and references therein,
where different model differential equations in punctured domains or with δ–like
potentials are investigated, and some spectral properties, for example, formulae
for the resolvents and regularized traces, are also established.

Here, we observe that the results of the paper [9] are also true when the
spatial dimension is greater than two.

Let D ⊂ R
d be a simply connected domain with the smooth boundary ∂D.

Denote by s = (s1, . . . , sd) a fixed point of the domain D. Then we define a
punctured domain D0 := D\{s}. During this paper, we deal with the differential
expression

(−Δ)mu :=

⎛
⎝−

d∑
j=1

∂2u

∂x2
j

⎞
⎠

m

(1)

in a punctured domain D0.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_25
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Since D0 is not simply connected, we need a special functional space for (1)
to define an operator correctly. For this, we introduce the functional class Fm

that can be represented in the following form

w(x) = w0(x) + kGm(x, s), (2)

where k is some constant. The function w0 is from the functional space Fm

consisting of the functions v ∈ H2m(D) such that

(
∂

∂n

)j

v
∣∣
∂D

= 0, (3)

for all j = 0, . . . , m − 1, where ∂
∂n is the outer normal derivative. Here Hq

stands for the usual Sobolev space with the parameters (2, q), and Gm(x, s) is
the Green’s function of the Dirichlet problem for the equation (1) in the whole
domain D with the boundary conditions (3).

Now, we define a functional for our further investigations. To this, we consider
the parallelled

Πs,δ = {x : −δ ≤ |x − s| ≤ δ}.

Then for the function h from the space Fm defined as (2) we introduce the
following functional

αm(h) = lim
δ→+0

∫

∂Πs,δ

[
∂(−Δ)m−1h(ξ)

∂nξ

]
dsξ. (4)

Remark 1. We note that the functional (4) is defined for all d ∈ N. Moreover,
the value of αm from the function G(x, s) exists.

For our convenience, we denote

γ := αm(G(·, s)), α(·) :=
1
γ

αm(·),

and
ξ−(w) := α(w), ξ+(w) := w0(s).

2 Main Results

In this section we repeat the results of the paper [9]. However, here we formulate
them also for the case d ≤ 2m.

Now, we are in a way in the Hilbert space H2(D) to introduce an operator
associated with the differential equation (1), that is, (−Δ)mu. We denote by
KM the operator defined as

KMu = (−Δ)mu,
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in the punctured domain D0 for all functions u ∈ Fm. Assign Km as the restric-
tion of the operator KM to

D(Km) = {u|u ∈ Fm, ξ−(u) = 0, ξ+(u) = 0}.

Discussing as in the works [7,9,10], we get the following statements:

Proposition 1. Let d ≤ 2m. Assume that u, v ∈ Fm. Then, we have

< KMu, v >=< u,KMv > +ξ−(u)ξ+(v) − ξ−(v)ξ+(u).

Moreover, the operator Kθ defined on Fm by the expression

(−Δ)mu = f,

in the punctured domain D0 with the condition

θ1ξ
−(u) = θ2ξ

+(u) (5)

is a self-adjoint extension of Km in the functional space Fm. Here θ = (θ1, θ2),
θ1, θ2 ∈ R with the property θ21 + θ22 �= 0.

In the Hilbert space H2(D) consider the operator

KQu(x) := (−Δ)mu(x), x ∈ D0 (6)

on u ∈ Fm with

α(u) +
∫

D

Q(x)((−Δ)mu0)(x)dx = 0, (7)

where Q ∈ H2(D). Here we can write
∫

D

Q(x)((−Δ)mu0)(x)dx =: 〈Q, (−Δ)mu0〉,

where 〈·, ·〉 denotes inner product of H2(D).
Now, we consider the operator KQ as a perturbation of K0. Here K0 stands

for the Dirichlet problem for m–Laplace operator in the whole domain D. Then,
we assume that {μn}∞

n=1 are the eigenvalues of KQ ordered in the increasing
order of their absolute values taking into account the multiplicities, and suppose
that {λn}∞

n=1 are the eigenvalues of K0 ordered in the increasing order by taking
into account their multiplicities.

Theorem 1. Let the spatial dimension d ≤ 2m. Suppose that p, ε > 0 are fixed
numbers. Assume that Q ∈ D(K m

0 ), K m−1
0 Q ∈ Hp(Πs,ε), and Q(s) �= −1.

Then, we have the following regularized trace formula
∞∑

n=1

(μn − λn) =
Q̃(s)

1 + Q(s)
. (8)

Here Q̃(s) = − lim
x→s

K m−1
0 Q(x).

The proof of Theorem 1 follows directly from the proofs of the main theorems
of the papers [9,21].
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3 Further Discussions

Finally, we note that Proposition 1 implies the following corollary, which gives
a way to find out self–adjoint operators from the class of operators {KQ : Q ∈
H2(D)}, namely:

Corollary 1. Suppose that θ1 �= 0 and Q(x) = −μGm(x, s) with μ = θ2/θ1.
Then the operator KQ is self–adjoint with the parameter (θ1, θ2) in the space
Fm:

K−μGm
∼ K(1,μ) = K(θ1,θ2).

Thus, we observe that the class of operators given by the equation (6) and
condition (7) has a huge number of self–adjoint operators in a punctured domain.
One can be started a ’nonharmonic’ analysis connected with the singular, in the
above sense, operators. Note, that the nonharmonic analysis is developed in the
works [2,3,12,15,17] with applications given in [16]. Also, the reader is referred
to [20] and the monograph [19], where the analysis on the torus was developed by
Ruzhansky and Turunen. For more general setting of the nonharmonic analysis,
see for instance [8,18].
Acknowledgements. This research is partially supported by a grant from the
Ministry of Education and Science of the Republic of Kazakhstan (Grant No.
0773/GF4). This publication is supported by the target program 0085/PTSF-14
from the Ministry of Science and Education of the Republic of Kazakhstan.
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Abstract. We consider well-posedness issues of problems of the Laplace
operator in the unit circle with two internal points. For boundary value
problems, one of the main issues is the well-posedness of the problem.
When the problem is considered in a non-simply-connected domain, there
usually appear additional conditions depending on the features of the
domain under consideration. If for the well-posedness of the problem, in
addition to the boundary conditions, one requires to take into account the
internal communications of the domain, then such problems are called
internal boundary value problems. For such problems there is written out
a class of functions in which there exist such kinds of well-posed problems.
A constructive method for constructing solutions to such problems is
developed. As an illustration, examples are considered.

Keywords: Differential operator · Internal boundary value problems ·
Non-simply-connected domain · Well-posed problems · Green
function · Dirichlet problem · Laplace operator

1 Introduction

In the theory of differential operators, one of the key questions is the well-
posedness of the operator. At the end of the 20th century, the question of the
correct perturbation of differential operators in a simply connected domain was
actively researched [8,10,12]. In these problems, an essential important point was
the development of a mathematical apparatus, which would allow us to obtain
correct differential operators perturbing the original correct differential operator
in a simply connected domain.

At that time, there was simultaneously developing a theory of explicitly solv-
able models associated with the problems of quantum mechanics, the physics of
solids [2,9]. These problems were considered in non-simply-connected domains
[5]. The Sturm-Liouville problem with delta-shaped potential

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_26
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�(y) = −y′′ + δ (x − π/2) y(x) = λy, x ∈ (0, π), (1)

with the Dirichlet conditions

y (0) = y (π) = 0 (2)

is transformed to the problem (this is known from [4])

L(y) = −(y′ − u(x)y)′ − u(x) (y′ − u(x)y) − u2(x)y, (3)

where

u (x) =
{

1, if x ≥ π
2

0, if x < π
2

D (L) =
{

y ∈ AC

∣∣∣∣ y′ ∈ AC
[
0, π

2

] ∪ [
π
2 , π

]
y′ (π

2 + 0
) − y′ (π

2 − 0
)

= y
(

π
2

)
, y (0) = y (π) = 0

}
. (4)

The regularized trace of problem (1) - (2) was calculated in [24,25]. A further
generalization of the Sturm-Liouville problem with singular coefficients was stud-
ied in papers [26]. In the case of the Schrodinger operator T +Q, where T = −Δ
(or T = (−Δ)n) is Laplace operator, Q is the operator of multiplication by the
generalized function, an abstract generalization of the following result is given:
if the sequence of functions qn converges to q in the space of multipliers, then
the sequence of operators −Δ + qn converges to −Δ + q in the sense of uniform
resolvent convergence and there is a convergence of spectra [21].

In the early 2000s there was a question about the existence of well-posed
problems in a multiply connected domain. In Kazakhstan, this issue is addressed
by the scientific school of professor B.E. Kanguzhin. In [14,15] there are written
out all well-posed solvable problems and an explicit form of the resolvent for
ordinary differential operators in a multiply connected domain. The regularized
trace of two-fold differentiation operator in a multiply connected domain with a
correct perturbation is calculated in [1]. In [13] all well-posed solvable problems
for the Laplace operator in the unit circle with one punctured point are written
out. An explicit form of the resolvent is obtained in [3]. In [17] self-adjoint
extension of the Laplace operator in a punctured circle is described. In [18]
regularized trace formula of correctly perturbed Laplace operator in a circle
with one punctured point is calculated. The properties of the Green’s function
for such problems are researched in [16]. In [6,19], for a polyharmonic differential
Laplace operator with a one punctured point, there is written out the resolvent
formula of well-posed solvable problems. In [11] properties of the Green’s function
for the Dirichlet problem of polygarmonic equation in a sphere are researched. In
[23] a representation of the Green’s function of the classical Neumann problem
for the Poisson equation in the unit ball of any dimension is obtained.

The main purpose of this work is a description of all well-posed solvable
problems for the Laplace operator in the unit circle with two punctured points.
Note that this paper is a continuation of the work [13].
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2 Statement of the problem

Let Ω = {x2+y2 < 1}, Ω0 = Ω\{(x0, y0), (x1, y1)}, (x1−x0)2+(y1−y0)2 ≥ 4δ2, δ
be sufficiently small positive number, and let (x0, y0), (x1, y1) be internally fixed
field points of Ω. In this paper we consider the internal boundary value problem
for an non-homogeneous Laplace equation in the punctured area of Ω0

ΔW (x, y) = f (x, y) (5)

with the boundary condition

W (x, y)|∂Ω = 〈ΔW (x, y) , σ(x, y)〉 (6)

and the internal boundary conditions

1
2 lim

δ→+0

yi+δ

∫
yi−δ

[
∂W (xi+δ,η)

∂ξ − ∂W (xi−δ,η)
∂ξ

]
dη+

+ 1
2 lim

δ→+0

xi+δ

∫
xi−δ

[
∂W (ξ,yi+δ)

∂η − ∂W (ξ,yi−δ)
∂η

]
dξ = 〈ΔW (x, y) , σi(x, y)〉 ,

lim
δ→+0

yi+δ

∫
yi−δ

[W (xi − δ, η) − W (xi + δ, η)] dη = 〈ΔW (x, y) , σi+2(x, y)〉 ,

lim
δ→+0

xi+δ

∫
xi−δ

[W (ξ, yi − δ) − W (ξ, yi + δ)] dξ = 〈ΔW (x, y) , σi+4(x, y)〉 , i = 0, 1,

(7)
where σi+k (ξ, η) ∈ L2 (Ω) , i = 0, 1, k = 0, 2, 4, 〈·, ·〉 is a scalar product in
L2(Ω).

Let D be a set of all functions

h (x, y) = h1 (x, y) + α0G (x, y, x0, y0) + α1G (x, y, x1, y1) , (x, y) ∈ Ω0

αi ∈ R, i = 0, 1, h1 ∈ D =
{
h1 ∈ W 2

2 (Ω) , h1|∂Ω = 0
}

. Here and below
G(x, y, ξ, η) is the Green’s function of the Dirichlet problem for the Laplace
operator in Ω. The properties of these types of operators are studied in [13,20].

It is convenient to introduce the class of functions W̃ 1
2 (Ω0), which consists

of the function h(x, y) ∈ D , that in a neighborhood of (xi, yi) have the following
behavior:

sup
0<δ<δi

sup
yi−δ<η<yi+δ

δ
(∣∣∣∂h(xi+δ,η)

∂ξ

∣∣∣ + |h(xi + δ, η)| +

+
∣∣∣∂h(xi−δ,η)

∂ξ

∣∣∣ + |h(xi − δ, η)|
)

≤ C,

(8)

sup
0<δ<δi

sup
xi−δ<ξ<xi+δ

δ
(∣∣∣∂h(ξ,yi+δ)

∂η

∣∣∣ + |h(ξ, yi + δ)| +

+
∣∣∣∂h(ξ,yi−δ)

∂η

∣∣∣ + |h(ξ, yi − δ)|
)

≤ C,

(9)
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(C − const, δ is a sufficiently small positive number) and there are limits

αi (h) = 1
2 lim

δ→+0

yi+δ

∫
yi−δ

[
∂h(xi+δ,η)

∂ξ − ∂h(xi−δ,η)
∂ξ

]
dη+

+ 1
2 lim

δ→+0

xi+δ

∫
xi−δ

[
∂h(ξ,yi+δ)

∂η − ∂h(ξ,yi−δ)
∂η

]
dξ < ∞,

βi (h) = lim
δ→+0

yi+δ

∫
yi−δ

[h (xi − δ, η) − h (xi + δ, η)] dη < ∞,

γi (h) = lim
δ→+0

xi+δ

∫
xi−δ

[h (ξ, yi − δ) − h (ξ, yi + δ)] dξ < ∞, i = 0, 1. (10)

3 Auxiliary Statements

We introduce a new function by the formula

I (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) Δξ,ηh (ξ, η) dξdη, (11)

where G (x, y, ξ, η) is the Green’s function of the Dirichlet problem in Ω,
Δξ,η = ∂2

∂ξ2 + ∂2

∂η2 is a Laplace operator with relative to variables ξ, η.

From [7] it is known that

G (x, y, ξ, η)|(x,y)∈∂Ω,(ξ,η)∈Ω = 0 (12)

for the Dirichlet problem in Ω. Then the function I (x, y) has properties:

Δx,yI (x, y) = Δx,yh (x, y) , (x, y) ∈ Ω (13)

I (x, y)|∂Ω = 0 (14)

On the other hand, remembering the Green’s formula
∫ ∫

Ω

Δuvdxdy =
∫ ∫

Ω

uΔvdxdy− ∫
∂Ω

(
u ∂v

∂n̄ − ∂u
∂n̄v

)
ds, function I (x, y) can be rewritten in the form

I (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) Δξ,ηh (ξ, η) dξdη =

=
∫ ∫

Ω

Δξ,ηG (x, y, ξ, η) h (ξ, η) dξdη+

+
∫

∂Ω

(
G (x, y, ξ, η) ∂h

∂nξ,η
− ∂G(x,y,ξ,η)

∂nξ,η
h (ξ, η)

)
dsξ,η,

(15)

where nξ,η is an outer normal to the circle ∂Ω in point (ξ, η) . Note that
G (x, y, ξ, η) = 0 at (ξ, η) ∈ ∂Ω, because G (x, y, ξ, η) = G (ξ, η, x, y) and (12)
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holds. Similarly, by the symmetry of the Green’s function G (x, y, ξ, η) with
respect to pairs (x, y) and (ξ, η), we have the equality

Δξ,ηG (x, y, ξ, η) = δΩ ((x, y) , (ξ, η)) , (16)

where δΩ ((x, y) , (ξ, η)) is the Dirac delta function in the domain Ω.
From (15) and (16) it follows

I (x, y) = h (x, y) −
∫

∂Ω

∂G (x, y, ξ, η)
∂nξ,η

h (ξ, η) dsξ,η (17)

From [13] the following theorem is known

Theorem 1. Function

W (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη + h (x, y) − I (x, y) (18)

is the solution of the following problem:
{

ΔW (x, y) = f (x, y) , (x, y) ∈ Ω
W (x, y)|∂Ω = h (x, y)|∂Ω ,

(19)

where h (x, y) is an arbitrary sufficiently smooth function.

Also in [13] all well-posed solvable problems for the Poisson equation in the
domain Ω are written out. Our purpose is to generalize this result in the
domain Ω0.

It is required to describe all well-posed internal boundary value problems for
the Poisson equation in the class W̃ 1

2 (Ω0).
We take an arbitrary function h (x, y) from D and consider the function

I (x, y) as follows

I (x, y) = lim
δ→+0

∫
Ωδ

G (x, y, ξ, η) Δξ,ηh (ξ, η) dξdη,

where Ωδ = Ω\ {Πδ (M0) ,Πδ (M1)}, δ is a sufficiently small positive number.
Πδ (Mi) = {(ξ, η) : xi − δ ≤ ξ ≤ xi + δ, yi − δ ≤ η ≤ yi + δ} , i = 0, 1
(xi, yi) are coordinates of a point Mi.

Then from (15) and (16) similarly to equality (17) it follows

I (x, y) = h (x, y) − ∫
∂Ω

∂G(x,y,ξ,η)
∂nξ,η

h (ξ, η) dsξ,η−

− lim
δ→+0

1∑
i=0

∫
∂Πδ(Mi)

(
G (x, y, ξ, η) ∂h(ξ,η)

∂nξ,η
− ∂G(x,y,ξ,η)

∂nξ,η
h (ξ, η)

)
dsξ,η

(20)
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for (x, y) 
= Mi. Write out the limit in the neighborhood of the point M0.

lim
δ→+0

∫
∂Πδ(M0)

(
G (x, y, ξ, η) ∂h(ξ,η)

∂nξ,η
− ∂G(x,y,ξ,η)

∂nξ,η
h (ξ, η)

)
dsξ,η =

= lim
δ→+0

y0+δ∫
y0−δ

G(x,y,x0+δ,η)−G(x,y,x0,y0)
δ · δ · ∂h(x0+δ,η)

∂ξ dη+

+ lim
δ→+0

y0+δ∫
y0−δ

G(x,y,x0,y0)−G(x,y,x0−δ,η)
δ · δ · ∂h(x0−δ,η)

∂ξ dη+

+G (x, y, x0, y0) lim
δ→+0

y0+δ∫
y0−δ

[
∂h(x0+δ,η)

∂ξ − ∂h(x0−δ,η)
∂ξ

]
dη+

+ lim
δ→+0

x0+δ∫
x0−δ

G(x,y,x0,y0)−G(x,y,ξ,y0−δ)
δ · δ · ∂h(ξ,y0−δ)

∂η dξ+

+ lim
δ→+0

x0+δ∫
x0−δ

G(x,y,ξ,y0+δ)−G(x,y,x0,y0)
δ · δ · ∂h(ξ,y0+δ)

∂η dξ+

+G (x, y, x0, y0) lim
δ→+0

x0+δ∫
x0−δ

[
∂h(ξ,y0+δ)

∂η − ∂h(ξ,y0−δ)
∂η

]
dξ+

+ lim
δ→+0

y0+δ∫
y0−δ

∂G(x,y,x0,y0)
∂ξ − ∂G(x,y,x0+δ,η)

∂ξ

δ · δ · h (x0 + δ, η) dη+

+ lim
δ→+0

y0+δ∫
y0−δ

∂G(x,y,x0−δ,η)
∂ξ − ∂G(x,y,x0,y0)

∂ξ

δ
· δ · h (x0 − δ, η) dη+

+
∂G (x, y, x0, y0)

∂ξ
lim

δ→+0

y0+δ∫
y0−δ

[h (x0 − δ, η) − h (x0 + δ, η)] dη+

+ lim
δ→+0

x0+δ∫
x0−δ

∂G(x,y,ξ,y0−δ)
∂η − ∂G(x,y,x0,y0)

∂η

δ · δ · h (ξ, y0 − δ) dξ+

+ lim
δ→+0

x0+δ∫
x0−δ

∂G(x,y,x0,y0)
∂η − ∂G(x,y,ξ,y0+δ)

∂η

δ · δ · h (ξ, y0 + δ) dξ+

+
∂G (x, y, x0, y0)

∂η
lim

δ→+0

x0+δ∫
x0−δ

[h (ξ, y0 − δ) − h (ξ, y0 + δ)] dξ.
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Since by assumption for the function h (ξ, η) there exists δ0 and C > 0 such that
the relations (8), (9) hold, then the limit relation is true

lim
δ→+0

∫
∂Πδ(M0)

(
G (x, y, ξ, η)

∂h (ξ, η)
∂nξ,η

− ∂G (x, y, ξ, η)
∂nξ,η

h (ξ, η)
)

dsξ,η =

= α0 (h)G (x, y, x0, y0) + β0 (h)
∂G (x, y, x0, y0)

∂ξ
+ γ0 (h)

∂G (x, y, x0, y0)
∂η

.

Similarly, in the neighborhood of the point M1.

lim
δ→+0

∫
∂Πδ(M1)

(
G (x, y, ξ, η)

∂h (ξ, η)
∂nξ,η

− ∂G (x, y, ξ, η)
∂nξ,η

h (ξ, η)
)

dsξ,η =

= α1 (h)G (x, y, x1, y1) + β1 (h)
∂G (x, y, x1, y1)

∂ξ
+ γ1 (h)

∂G (x, y, x1, y1)
∂η

,

where αi (h) , βi (h) , γi (h) , (i = 0, 1) are defined by formulas (10).
It is taken into account that the function G (x, y, ξ, η) for (x, y) 
= (ξ, η) is a

sufficiently smooth function. Then we get

I (x, y) = h (x, y) − ∫
∂Ω

∂G(x,y,ξ,η)
∂nξ,η

h (ξ, η) dsξ,η−

−
1∑

i=0

(
αi (h) G (x, y, xi, yi) + βi (h) ∂G(x,y,xi,yi)

∂ξ + γi (h) ∂G(x,y,xi,yi)
∂η

)
.

Hence

h (x, y) − I (x, y) =
∫

∂Ω

∂G(x,y,ξ,η)
∂nξ,η

h (ξ, η) dsξ,η+

+
1∑

i=0

(
αi (h) G (x, y, xi, yi) + βi (h) ∂G(x,y,xi,yi)

∂ξ + γi (h) ∂G(x,y,xi,yi)
∂η

)
.

Then the analogous function (18)

W (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη +
∫

∂Ω

∂G(x,y,ξ,η)
∂nξ,η

h (ξ, η) dsξ,η+

+
1∑

i=0

(
αi (h) G (x, y, xi, yi) + βi (h) ∂G(x,y,xi,yi)

∂ξ + γi (h) ∂G(x,y,xi,yi)
∂η

) (21)

gives the solution of the non-homogeneous Laplace equation in the punctured
domain Ω0. We formulate the result in the form of a separate statement.

Theorem 2. A boundary value problem for the non-homogeneous Laplace equa-
tion in the punctured domain Ω0

ΔW (x, y) = f (x, y) (22)
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with boundary conditions

W (x, y)|∂Ω = h (x, y)|∂Ω,

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂W (xi+δ,y)

∂x − ∂W (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂W (x,yi+δ)

∂y − ∂W (x,yi−δ)
∂y

]
dx = αi (h) ,

lim
δ→+0

yi+δ∫
yi−δ

[W (xi − δ, y) − W (xi + δ, y)] dy = βi (h) ,

lim
δ→+0

xi+δ∫
xi−δ

[W (x, yi − δ) − W (x, yi + δ)] dx = γi (h) , (i = 0, 1) (23)

for any right-hand side of f (x, y) ∈ L2 (Ω) has a unique solution W (x, y) from
W̃ 1

2 (Ω0), and it is given by formula (21). We have four internal boundary con-
ditions in (23).

To prove Theorem 2, we give the following lemmas.

Lemma 1. For any continuously differentiable function F (x, y) the following
equalities hold:

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂F (xi+δ,y)

∂x − ∂F (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂F (x,yi+δ)

∂y − ∂F (x,yi−δ)
∂y

]
dx = 0

(24)

lim
δ→+0

yi+δ∫
yi−δ

[F (xi − δ, y) − F (xi + δ, y)] dy = 0 (25)

lim
δ→+0

xi+δ∫
xi−δ

[F (x, yi − δ) − F (x, yi + δ)] dx = 0. (26)

Lemma 2. For G (x, y, xi, yi) , (i = 0, 1) the following equalities hold:

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂G(xi+δ,y,xi,yi)

∂x − ∂G(xi−δ,y,xi,yi)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂G(x,yi+δ,xi,yi)

∂y − ∂G(x,yi−δ,xi,yi)
∂y

]
dx = 1

(27)
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lim
δ→+0

yi+δ∫
yi−δ

[G (xi − δ, y, xi, yi) − G (xi + δ, y, xi, yi)] dy = 0 (28)

lim
δ→+0

xi+δ∫
xi−δ

[G (x, yi − δ, xi, yi) − G (x, yi + δ, xi, yi)] dx = 0. (29)

Lemma 3. For ∂G(x,y,xi,yi)
∂ξ , (i = 0, 1) the following equalities hold:

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂2G(xi+δ,y,xi,yi)

∂ξ∂x − ∂2G(xi−δ,y,xi,yi)
∂ξ∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂2G(x,yi+δ,xi,yi)

∂ξ∂y − ∂2G(x,yi−δ,xi,yi)
∂ξ∂y

]
dx = 0

(30)

lim
δ→+0

yi+δ∫
yi−δ

[
∂G (xi − δ, y, xi, yi)

∂ξ
− ∂G (xi + δ, y, xi, yi)

∂ξ

]
dy = 1 (31)

lim
δ→+0

xi+δ∫
xi−δ

[
∂G (x, yi − δ, xi, yi)

∂ξ
− ∂G (x, yi + δ, xi, yi)

∂ξ

]
dx = 0. (32)

Lemma 4. For ∂G(x,y,xi,yi)
∂η , (i = 0, 1) the following equalities hold:

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂2G(xi+δ,y,xi,yi)

∂η∂x − ∂2G(xi−δ,y,xi,yi)
∂η∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂2G(x,yi+δ,xi,yi)

∂η∂y − ∂2G(x,yi−δ,xi,yi)
∂η∂y

]
dx = 0

(33)

lim
δ→+0

yi+δ∫
yi−δ

[
∂G (xi − δ, y, xi, yi)

∂η
− ∂G (xi + δ, y, xi, yi)

∂η

]
dy = 0 (34)

lim
δ→+0

xi+δ∫
xi−δ

[
∂G (x, yi − δ, xi, yi)

∂η
− ∂G (x, yi + δ, xi, yi)

∂η

]
dx = 1. (35)

Lemmas 1-4 are proved similarly as in [17].

Proof. We show that for W (x, y) defined by the formula (21) the following
equation (22) is true. The validity of (22) follows from the fact that the rela-
tions (16) are true, and also that Δx,yG (x, y, xi, yi) = 0, Δx,y

∂G(x,y,xi,yi)
∂ξ = 0,
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and Δx,y
∂G(x,y,xi,yi)

∂η = 0 for (x, y) 
= (xi, yi) , (i = 0, 1) . Verify that for
W (x, y) the first relation from (23) is true. Let (x, y) ∈ ∂Ω. Then from
the properties of the Green’s function G(P,Q) = 0, P ∈ ∂Ω, Q ∈ Ω and
relation ∂

∂nξ,η
G (x, y, ξ, η)

∣∣∣
(x,y)∈∂Ω,(ξ,η)∈∂Ω

= δ∂Ω ((x, y) , (ξ, η)) from [20] and

G (x, y, xi, yi) = 0, ∂G(x,y,xi,yi)
∂ξ = 0, ∂G(x,y,xi,yi)

∂η = 0 for (x, y) ∈ ∂Ω it follows
the required first boundary relation from (23).

Denote by

F (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη +
∫

∂Ω

∂G (x, y, ξ, η)
∂n̄ξ,η

h (ξ, η) dsξ,η, (36)

then F (x, y) satisfies the limit relations of Lemma 1. Indeed, F (x, y) is a contin-
uously differentiable function. Since the first term on the right-hand side of (36)
is a solution of the Dirichlet problem for the non-homogeneous Laplace equation,
then it can be differentiated twice. Consequently, the conditions of Lemma 1 for
the first term on the right-hand side of (36) are satisfied. As (x, y) changes in the
neighborhood (x0, y0), and (ξ, η) is on the external border, that is (x, y) 
= (ξ, η),
then ∂G(x,y,ξ,η)

∂n̄ξ,η
function is continuously differentiable. The conditions of Lemma

1 for the second term on the right-hand side of (36) are satisfied.
Now we show the implementation of the second internal boundary condition

from (23)

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂W (xi+δ,y)

∂x − ∂W (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂W (x,yi+δ)

∂y − ∂W (x,yi−δ)
∂y

]
dx =

= 1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂F (xi+δ,y)

∂x − ∂F (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂F (x,yi+δ)

∂y − ∂F (x,yi−δ)
∂y

]
dx+

+ 1
2

1∑
k=0

αk (h) lim
δ→+0

{
yi+δ∫
yi−δ

[
∂G(xi+δ,y,xk,yk)

∂x − ∂G(xi−δ,y,xk,yk)
∂x

]
dy+

+
xi+δ∫
xi−δ

[
∂G(x,yi+δ,xk,yk)

∂y − ∂G(x,yi−δ,xk,yk)
∂y

]
dx

}
+
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+ 1
2

1∑
k=0

βk (h) lim
δ→+0

{
yi+δ∫
yi−δ

[
∂2G(xi+δ,y,xk,yk)

∂ξ∂x − ∂2G(xi−δ,y,xk,yk)
∂ξ∂x

]
dy +

+
xi+δ∫
xi−δ

[
∂2G(x,yi+δ,xk,yk)

∂ξ∂y − ∂2G(x,yi−δ,xk,yk)
∂ξ∂y

]
dx

}
+

+ 1
2

1∑
k=0

γk (h) lim
δ→+0

{
yi+δ∫
yi−δ

[
∂2G(xi+δ,y,xk,yk)

∂η∂x − ∂2G(xi−δ,y,xk,yk)
∂η∂x

]
dy+

+
xi+δ∫
xi−δ

[
∂2G(x,yi+δ,xk,yk)

∂η∂y − ∂2G(x,yi−δ,xk,yk)
∂η∂y

]
dx

}
, (i = 0, 1) .

Respectively using the limit equalities (24), (27), (30), (33) from Lemmas 1, 2,
3 and 4, we obtain the required second equality in (23), then

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂W (xi+δ,y)

∂x − ∂W (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂W (x,yi+δ)

∂y − ∂W (x,yi−δ)
∂y

]
dx = αi (h) .

Since the above function F (x, y) is equal

F (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη +
∫

∂Ω

∂G (x, y, ξ, η)
∂n̄ξ,η

h (ξ, η) dsξ,η,

then F (x, y) satisfies the limit relations of Lemma 1. This statement has been
proved in the above proof of the second boundary condition from (23). Let us
check implementation of the third internal boundary condition from (23)

lim
δ→+0

yi+δ∫
yi−δ

[W (xi − δ, y) − W (xi + δ, y)] dy =

= lim
δ→+0

yi+δ∫
yi−δ

[F (xi − δ, y) − F (xi + δ, y)] dy+

+
1∑

k=0

αk lim
δ→+0

yi+δ∫
yi−δ

[G (xi − δ, y, xk, yk) − G (xi + δ, y, xk, yk)] dy+

+
1∑

k=0

βk lim
δ→+0

yi+δ∫
yi−δ

[
∂G(xi−δ,y,xk,yk)

∂ξ − ∂G(xi+δ,y,xk,yk)
∂ξ

]
dy+

+
1∑

k=0

γk lim
δ→+0

yi+δ∫
yi−δ

[
∂G(xi−δ,y,xk,yk)

∂η − ∂G(xi+δ,y,xk,yk)
∂η

]
dy, (i = 0, 1) .
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Respectively using the limit equalities (25), (28), (31), (34) from Lemmas 1, 2,
3 and 4, we obtain the required third equality in (23), then

lim
δ→+0

yi+δ∫
yi−δ

[W (xi − δ, y) − W (xi + δ, y)] dy = βi (h) .

Since the above function F (x, y) is equal

F (x, y) =
∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη +
∫

∂Ω

∂G (x, y, ξ, η)
∂n̄ξ,η

h (ξ, η) dsξ,η,

then F (x, y) satisfies the limit relations of Lemma 1. This statement has been
proved in the above proof of the second boundary condition from (23). Let us
check implementation of the fourth internal boundary condition from (23)

lim
δ→+0

xi+δ∫
xi−δ

[W (x, yi − δ) − W (x, yi + δ)] dx =

= lim
δ→+0

xi+δ∫
xi−δ

[F (x, yi − δ) − F (x, yi + δ)] dx+

+
1∑

k=0

αk (h) lim
δ→+0

xi+δ∫
xi−δ

[G (x, yi − δ, xk, yk) − G (x, yi + δ, xk, yk)] dx+

+
1∑

k=0

βk (h) lim
δ→+0

xi+δ∫
xi−δ

[
∂G(x,yi−δ,xk,yk)

∂ξ − ∂G(x,yi+δ,xk,yk)
∂ξ

]
dx+

+
1∑

k=0

γk (h) lim
δ→+0

xi+δ∫
xi−δ

[
∂G(x,yi−δ,xk,yk)

∂η − ∂G(x,yi+δ,xk,yk)
∂η

]
dx, (i = 0, 1) .

Respectively using the limit equalities (26), (29), (32), (35) from Lemmas 1, 2,
3 and 4, we obtain the required fourth equality in (23), then

lim
δ→+0

xi+δ∫
xi−δ

[W (x, yi − δ) − W (x, yi + δ)] dx = γi (h) .

Problem (22) - (23) in the punctured domain has a unique solution at f (x, y) ≡
0, h (x, y) ≡ 0. This follows from the theorem on the removable singularity of a
harmonic function [22]. �


4 Main result

Further, we consider operators K (may be nonlinear), mapping the elements of
the space L2 (Ω) into the elements of space W̃ 1

2 (Ω0) and continuous in the sense
of L2:
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If the sequence of norms ‖fj‖L2(Ω) tends to zero as j → ∞, then
‖Kfj‖L2(Ω) also tends to zero as j → ∞.

In this case we will say that K is continuous in the sense of L2, which maps
L2 (Ω) into W̃ 1

2 (Ω0). And we write h = K (f).
Now we show how, using Theorem 2, we can obtain new boundary well-posed

solvable problems for the non-homogeneous Laplace solution in the punctured
domain Ω0. For this it is sufficient that the function h (x, y) ∈ D continuously
depends on the function f (x, y) ∈ L2 (Ω).

Suppose that there exists operator K continuous in the sense of L2, mapping
f (x, y) ∈ L2 (Ω) into h (x, y) ∈ D . Let h = K (f). Then problem (22) - (23)
takes the form

ΔW (x, y) = f (x, y) , (x, y) ∈ Ω0 (37)

W (x, y)|∂Ω − K (ΔW )|∂Ω = 0,

1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂W (xi+δ,y)

∂x − ∂W (xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂W (x,yi+δ)

∂y − ∂W (x,yi−δ)
∂y

]
dx = αi (K (ΔW )) ,

lim
δ→+0

yi+δ∫
yi−δ

[W (xi − δ, y) − W (xi + δ, y)] dy = βi (K (ΔW )) ,

lim
δ→+0

xi+δ∫
xi−δ

[W (x, yi − δ) − W (x, yi + δ)] dx = γi (K (ΔW )) , (i = 0, 1) .

(38)

The conditions (38) imposed on the function W (x, y) can be interpreted
as additional conditions in order that equation (37) for any right-hand side of
f (x, y) ∈ L2 (Ω) has a unique solution. Thus, problem (37) - (38) represents
a well-posed solvable problem with an internally “boundary” condition of the
form (38).

We also need the concept of a stable solution in the sense of L2: The solution
of problem (37) - (38) will be called stable in the sense of L2, if from the fact
that the sequence of norms of the right-hand sides of ‖fj‖L2(Ω) tends to zero
as j → ∞ it follows that the sequence of norms of solution ‖Wj‖L2(Ω) tends to
zero. So, it is fair

Theorem 3. For any operator K continuous in the sense of L2 mapping the
space {f} ∈ L2 (Ω) into the set of smooth functions h (x, y) ∈ D the problem
(37) - (38) has a unique stable solution W (x, y) ∈ W̃ 1

2 (Ω0) in the sense of L2

for all right-hand sides of f from L2 (Ω)

Now we prove the converse statement.
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Theorem 4. If equation (37) for all right-hand sides of f from L2 (Ω) with
some additional conditions has a unique stable solution W (x, y) ∈ W̃ 1

2 (Ω0) in
the sense of L2. Then there exists an operator K continuous in the sense of L2,
mapping the space {f} ∈ L2 (Ω0) into the set of smooth functions {h} ∈ D , such
that the additional condition is equivalent to the condition of the form (38) with
the operator K.

Proof. Suppose that equation (37) with some additional conditions is uniquely
solvable for any right-hand side of f (x, y) ∈ L2 (Ω). The corresponding
unique solution we denote by W (x, y, f). Introduce the function u (x, y, f) =∫ ∫

Ω

G (x, y, ξ, η) f (ξ, η) dξdη and make up the difference

v (x, y) = W (x, y, f) − u (x, y, f) . (39)

It is clear that v (x, y) is a solution of the homogeneous equation Δv = 0 and is
uniquely determined by f ∈ L2 (Ω). Thus, to any element of f ∈ L2 (Ω) there
corresponds a single function v, which is a sufficiently smooth function and is a
harmonic function. By K denote an operator, putting each f ∈ L2 (Ω) in
accordance with v ∈ W̃ 1

2 (Ω0), that is v = K (f). Consider an entirely new
function according to the formula

w (x, y) = u (x, y, f) +
∫

∂Ω

∂G(x,y,ξ,η)
∂nξ,η

v (ξ, η) dsξ,η+

+
1∑

i=0

(
αi (ν) G (x, y, xi, yi) + βi (ν) ∂G(x,y,xi,yi)

∂ξ + γi (ν) ∂G(x,y,xi,yi)
∂η

)
,

(40)

where

αi (ν) = 1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂v(xi+δ,η)

∂ξ − ∂v(xi−δ,η)
∂ξ

]
dη+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂v(ξ,yi−δ)

∂η − ∂v(ξ,yi+δ)
∂η

]
dξ,

βi (ν) = lim
δ→+0

yi+δ∫
yi−δ

[v (xi − δ, η) − v (xi + δ, η)] dη,

γi (ν) = lim
δ→+0

xi+δ∫
xi−δ

[v (ξ, yi − δ) − v (ξ, yi + δ)] dξ.

Formula (40) is similar to formula (21). In this case, the function v (x, y) plays
the role of h (x, y). Consequently, the above arguments from Theorem 2 show
that

Δw (x, y) = f (x, y) (41)

w (x, y)|∂Ω = v (x, y)|∂Ω,
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1
2 lim

δ→+0

yi+δ∫
yi−δ

[
∂w(xi+δ,y)

∂x − ∂w(xi−δ,y)
∂x

]
dy+

+ 1
2 lim

δ→+0

xi+δ∫
xi−δ

[
∂w(x,yi+δ)

∂y − ∂w(x,yi−δ)
∂y

]
dx = αi (ν)

lim
δ→+0

yi+δ∫
yi−δ

[w (xi − δ, y) − w (xi + δ, y)] dy = βi (ν) ,

lim
δ→+0

xi+δ∫
xi−δ

[w (x, yi − δ) − w (x, yi + δ)] dx = γi (ν) , (i = 0, 1) ,

(42)

where v (x, y) = K (f) or v (x, y) = K (Δw) .
On the other hand, from the representation (39) it follows that W (x, y, f) =

u (x, y, f) + v (x, y) also satisfies the relation (41). Therefore, from the unique-
ness theorem it follows that W (x, y, f) = w (x, y). Consequently, the additional
conditions for unique solvability have the form (42). �

Note that by the Riesz theorem [27] on the general form of a bounded linear
functional h = K (ΔW ) in a Hilbert space L2 (Ω) takes the form (6)-(7).

The resulting explicit solution of the problem makes it possible to analyze
the behavior of an analytic solution in the neighborhood of singular points and
to perform a comparative numerical analysis. For clarity in this section, we will
look at a few examples.

Example 1. Let f (x, y) = 0, M0 =
(
1
2 , 1

4

)
, M1 =

(
1
2 ,− 1

2

)
, α0 (h) =

2, α1 (h) = 1, h (x, y)|∂Ω = 0, βi (h) = 0, γi (h) = 0, (i = 0, 1) . (fig 1. a)

Example 2. Let f (x, y) = 0, M0 =
(− 1

2 ,− 1
2

)
, M1 =

(
1
2 ,− 1

2

)
, α0 (h) =

1, α1 (h) = −2, h (x, y)|∂Ω = 0, βi (h) = 0, γi (h) = 0, (i = 0, 1) . (fig 1. b)

a) b)

Fig. 1. a) Two jumps are positive, b) one jump is positive and the other one is negative
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Abstract. In this paper we investigate a singular high-order differen-
tial operator with rapidly growing intermediate coefficients. We give suf-
ficient conditions for complete continuity of its resolvent in the space
L2(−∞, +∞). Furthermore, we show that this resolvent belongs to the
Schatten class σp, 1 < p < ∞, and give the uniform estimate for the
resolvent norm.

Keywords: Singular differential operator · Separable operator ·
Discrete spectrum · Resolvent · Schatten class · Hilbert-Schmidt
operator · Nuclear operator

1 Introduction

We consider the following linear differential operator with variable coefficients

L0y = y(2n) + a1y
(2n−1) + a2y

(2n−2) + ... + a2ny

defined on the set C
(2n)
0 (R), R = (−∞, +∞) of 2n-times continuously differen-

tiable functions with compact support. We denote by L its closure in the space
L2 = L2(R).

There are questions: when the spectrum of L is discrete and its resolvent
belongs to Schatten class under some conditions for the coefficients? These ques-
tions are important goals of the spectral theory of operators. In present paper,
we study above questions for the singular nonselfadjoint differential operator L.
The singularity of the operator L is that its coefficients are unbounded on R.

Series of practical problems lead to study the linear operator L in an
unbounded domain. It is well-known that a representative of these operators
is the Sturm-Liouville operator. This is the fundamental operator of quantum
mechanics. A large number of papers was devoted to the questions of self-adjoint
and spectral properties of the Sturm-Liouville operator. We note that in the gen-
eral case, the operator L with unbounded coefficients can not lead to self-adjoint

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_27
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form. The singular higher-order operator L began to be studied in the first half
of the twentieth century. Powerful methods for constructing the asymptotics of
the eigenfunctions, the study of the Green’s functions and computing the index
of the defect have been developed in [1–5]. However, the results of these works
were obtained only in the case, where the operator L is self-adjoint and inter-
mediate coefficients as ( s = 1, 2, ... , 2n − 1) are nearly constant or at infinity
they are controlled above by some degree of |a2n|. We are not impose similar
restrictions on as ( s = 1, 2, ... , 2n − 1) in this work, so previous methods not
useful for this case.

We give results on the compactness of the resolvent L−1 of L, as well as
estimates for its singular numbers. Our results (Theorem 1, Theorem 2 and its
corollaries) extend some results of [4,6] on the differential operators with rapidly
growing intermediate coefficients.

For the Sturm-Liouville operator (the case n = 1), the problems of compact-
ness of the resolvent and when it belongs to the Schatten class are studied in
a lot of works (see [6,7]) and the references therein. These problems for other
differential operators were considered in [6,8–11,14].

2 Auxillary Statements

First, we give sufficient conditions of continuous invertibility of L obtained in
[12]. Let

αg,hl
(t) =

[∫ t

0

|g(s)|2ds

]1/2 [∫ +∞

t

θ2(l−1)|h(θ)|−2dθ

]1/2

(t > 0),

βg,hl
(τ) =

[∫ 0

τ

|g(ν)|2dν

]1/2 [∫ τ

−∞
ξ2(l−1)|h(ξ)|−2dξ

]1/2

(τ < 0),

γg,hl
= max

(
sup
t>0

αg,hl
(t), sup

τ<0
βg,hl

(τ)
)

(l = 1, 2, ..., 2n − 1),

where g and h are given functions. Let C(k)(R) (k ∈ N) be the set of all bounded
functions with bounded continuous derivatives up to order k. Let C

(k)
loc (R) denote

the set of all f such that ψf ∈ C
(k)
0 (R) for all ψ ∈ C

(k)
0 (R) (k ∈ N).

Lemma 1 [12]. Let the coefficients aj ∈ C
(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy

the following conditions:

|a1| ≥ 1, γ
1,

(√
|a1|

)
2n−1

< ∞, γak, (a1)k−1 < +∞ (k = 2, 3, ..., 2n). (1)

Then L is invertible bounded , and the inverse L−1 is defined on entire space L2

and for any y ∈ D(L) the following estimate holds:
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∥∥∥√
|a1|y(2n−1)

∥∥∥
2

+
2n−2∑
j=1

∥∥∥ajy
(2n−j)

∥∥∥
2

≤ c1 ‖Ly‖2 ,

where ‖ · ‖2 is the norm in L2.

Lemma 2 [12]. Let aj ∈ C
(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy the conditions

(1). If there is a constant c > 1 such that

c−1 ≤ a1(x)
a1(η)

≤ c (2)

for all x, η ∈ R : |x − η| ≤ 1 holds, then for y ∈ D(L) the following estimate
holds: ∥∥∥y(2n)

∥∥∥
2

+
2n∑

j=1

∥∥∥ajy
(2n−j)

∥∥∥
2

≤ c2 ‖Ly‖2 (3)

Equation (3) is called a separability estimate, and if (3) holds, then L is
called a separable operator in L2. Lemma 2 shows that under the conditions (1)
and (2) the inverse L−1 is bounded from L2 to the following weighted Sobolev
space

W 2n
2, a(R) =

⎧⎨
⎩y ∈ L2 :

∥∥∥y(2n)
∥∥∥
2

+
2n∑

j=1

∥∥∥ajy
(2n−j)

∥∥∥
2

< +∞
⎫⎬
⎭ .

3 Main Results

We give some conditions under which the resolvent L−1 has some spectral and
approximation properties.

Theorem 1. Let aj ∈ C
(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy (1) and (2). If

lim
|x|→+∞

|a2n(x)| = +∞ (4)

or
lim

t→+∞ α1, (as)2n−s
(t) = 0, lim

τ→−∞ β1, (as)2n−s
(τ) = 0 (5)

hold for at least one s of s = 1, 2, ..., 2n − 1, then L−1 is completely continuous
operator in the space L2.

To prove this theorem we consider the set M = {y ∈ D(L) :
‖Ly‖2 ≤ 1}. By Lemma 2, M is bounded in W 2n

2, a(R). Using Theorem 3 in [13]
(Chapter IX), we obtain the desired result.

Under the conditions of this theorem the self-adjoint positive definite oper-
ator

(
L−1

)∗ (
L−1

)
is also completely continuous. The existence of the operator(

L−1
)∗ conjugate to the operator L−1 follows from the smoothness of the coef-

ficients aj (j = 1, 2, ..., 2n).
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We number the eigenvalues of the operator
√

(L−1)∗ (L−1) in decreasing
order in accordance with their multiplicity and denote by sk

(
L−1

)
. They are

called s-numbers of the operator L−1. It is known that

sk

(
L−1

)
= inf

K∈T k−1

∥∥L−1 − K
∥∥

L2→L2
, k = 1, 2, ...,

where T
k−1 is a set of operators, whose ranks do not exceed k − 1. If

∞∑
k=1

[
sk

(
L−1

)]p
< ∞,

then we say that the operator L−1 belongs to the class σp. In this case L−1 is
called a finite type operator. Operators of the class σ2 are called Hilbert-Schmidt
operators, and σ1 is a class of nuclear operators. We denote by W 2n

2, a(R) the
Banach space with norm

∥∥∥y(2n)
∥∥∥
2

+
2n∑

j=1

∥∥∥ajy
(2n−j)

∥∥∥
2
.

Under the conditions of Lemma 2, the operator L−1 is bounded from L2 to
W 2n

2, a(R), in additional, if the conditions (4) or (5) are fulfilled, then it is com-
pletely continuous.

In the next statement we find sufficient conditions such that the resolvent
L−1 of a singular high-order differential operator L belongs to Schatten class σp,
1 ≤ p < ∞, and we give the uniform estimate of the resolvent norm.

Theorem 2. Suppose that aj ∈ C
(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy the condi-

tions (1), (2) and (4). Let 4nθ > 1 and

+∞∫
−∞

dx

|a2n(x)|θ − 1/4n
< ∞.

Then L−1 ∈ σθ and

{ ∞∑
k=1

[
sk

(
L−1

)]θ

}1/θ

≤ C
∥∥∥ |a2n(·)|θ−1/4n

∥∥∥1/θ

L1(R)
.

This statement implies the following:
Corollary 1. Let aj ∈ C

(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy the conditions

(1), (2) and (4). Then L−1 is a nuclear operator, if

+∞∫
−∞

dx

|a2n(x)|1− 1/4n
< ∞.
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For the trace of the operator L−1 the following estimate holds:

∞∑
k=1

sk

(
L−1

) ≤ C
∥∥∥ |a2n(·)|−1+1/4n

∥∥∥
L1(R)

.

Corollary 2. Let aj ∈ C
(2n−j)
loc (R) (j = 1, 2, ..., 2n) satisfy the conditions

(1), (2) and
lim

|x|→+∞
|a2n(x)| = +∞.

Then L−1 is a Hilbert-Schmidt operator, if

+∞∫
−∞

dx

|a2n(x)|2− 1/4n
< ∞.

For the Hilbert-Schmidt norm of the operator L−1 the following estimate holds:

{
+∞∑
k=1

[
sk

(
L−1

)]2}1/2

≤ C
∥∥∥ |a2n(·)|−2+1/4n

∥∥∥1/2

L1(R)
.

Example. We consider the following minimal closed operator

l0y = y(4) + (1 + x2)5y(3) + (x4 − 6)y′ + (3x2 + 5)y

in the space L2. Since the coefficients are fast growing, intermediate terms y′′′

and y′ in the expression l0y does not obey to the operator ly = y4 +(3x2 +5)y in
the operational sense. Therefore, l0 is similar to L, which we considered above.

A simple verification shows that all conditions of Theorem 1 are satisfied. So,
there is a bounded inverse l−1

0 of l0 and it is completely continuous in the space
L2. It is easy to check that

+∞∫
−∞

dx

(3x2 + 5) 1− 1/8
< ∞.

By Corollary 1, l−1
0 is the nuclear operator, and the following estimate holds:

∞∑
k=1

sk

(
L−1

) ≤ C

+∞∫
−∞

dx

(3x2 + 5)1− 1/8
.
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Abstract. In this paper we give sufficient conditions for complete con-
tinuity of resolvent of a differential operator corresponding to a system
of first order singular differential equations. Using coercive estimates for
the solution of the above differential equation, we obtain the main result.
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1 Introduction

It is well known that if A(t) is the (n×n)-matrix with continuous elements, and
−∞ < a < b < ∞, then the resolvent of the linear differential operator

L =
d

dt
− A(t)In,

in the space C([a, b], Rn) is compact, where R = (−∞,+∞) and In is an identity
(n × n)−matrix.

There is natural question whether the result also holds for the case a =
−∞ and b = +∞? In this paper we study the operator L in continuous and
bounded vector-valued function space Cb(R,Rn), where A(t) = (ai,j(t))n

i,j=1 is
the (n × n)− matrix with continuous, in general, not bounded elements.

The compactness is one of main problems in the theory of bounded linear
operators in a Banach space. For differential operator usually it is considered
the compactness of its resolvent. The compactness of the resolvent allows to
apply the approximate methods for solving the corresponding differential equa-
tion LV = F. The compactness of the resolvent of a self-adjoint Dirac operator
was investigated by Dzhumabaev [1]. Dzhumabaev [2] has studied the more gen-
eral self-adjoint system of differential equations. With respect to the compactness

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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of resolvents of the singular elliptic operators we refer to [3,4,7–10] and the ref-
erences therein. But these works are devoted to the Hilbert case. There is a
growing interest to the study of non-selfadjoint operators and the case of non-
Hilbert space.

First, we give sufficient conditions for the existence and uniqueness of a
bounded and continuous solution V = (V1, V2, ..., Vn) of the equation LV = F.
Under some conditions we prove that the solution V has bounded derivative and
satisfies the following estimate:

∥
∥
∥
∥

dV

dt

∥
∥
∥
∥
1

+ ‖AV ‖1 ≤ C0 ‖F‖1 ,

where ‖V (·)‖1 = sup
t∈R

‖V (t)‖ = sup
t∈R

max
i=1,n

|Vi(t)| .
Using this result, we prove that the inverse L−1 is compact.

2 Auxillary Statements

We denote by Cb(R, Rn) the set of all continuous and bounded vector-valued
functions on R. We consider the following system of differential equations

dV

dt
= A(t)V + F (t), t ∈ R, (1)

where V = (V1(t), V2(t), ..., Vn(t)). We assume that elements of the (n × n)−
matrix A(t) = (ai,j(t))n

i,j=1 and the vector-valued function F (t) are continuous.
We only study the solution of (8), which satisfies the following condition

V (t) ∈ Cb(R, Rn). (2)

A continuously differentiable function V (t) ∈Cb(R, Rn) is called a solution
of the problem (8), (2), if it satisfies the system (8) for all t ∈ R.

Let the matrix A(t) satisfy the following conditions:
i) the diagonal dominance holds by rows and a continuous function θ(t) ≥ θ0 >
0, i.e.,
|aii(t)| ≥ ∑

j �=i

|aij(t)| + θ(t) (i = 1, n), where θ(t) ≥ θ0 > 0;

ii) θ(t) ≥ η |aii(t)| (i = 1, n), 0 < η < 1.
Let aii(t) < 0 (i = 1, n1) and ajj(t) > 0 (j = n1 + 1, n ), and T > 0. We

consider the following auxiliary problem

dv

dt
= A(t)v + F (t), t ∈ (−T, T ), (3)

P(1)v(−T ) = 0, P(2)v(T ) = 0, (4)

where P(1) =
(

In1 0
0 0

)

, P(2) =
(

0 0
0 In−n1

)

are (n × n)-matrices.

A continuously differentiable function v(t) in [−T, T ] is called a solution of
the problem (3), (4), if it satisfies the system (3) and the condition (4).
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Lemma 1. Let the condition i) hold. Then, for each T > 0 the problem (3), (4)
has a unique solution vT (t) and for vT the following estimate holds:

max
t∈[−T ;T ]

‖vT (t)‖ ≤ max
t∈[−T ;T ]

∥
∥
∥
∥

F (t)
θ(t)

∥
∥
∥
∥

= max
t∈[−T ;T ]

max
i=1,n

∣
∣
∣
∣

Fi(t)
θ(t)

∣
∣
∣
∣
. (5)

Using the parameterization method (see [5]) and Hadamard’s lemma [6], one
can prove this Lemma.

Theorem 1. Let conditions i) and ii) be fulfilled, and let columns of the matrix
A(t)
θ(t) and the vector-valued function F (t)

θ(t) belong to Cb(R, Rn). Then the problem
(8), (2) has a unique solution V ∗(t) and

‖V ∗(·)‖1 ≤
∥
∥
∥
∥

F (·)
θ(·)

∥
∥
∥
∥
1

(6)

holds.

Proof. By Lemma 1, for each T > 0 there is a unique solution V ∗
T (t) of the

problem (3), (4). By estimate (5) and the condition F (t)
θ(t) ∈ Cb(R, Rn), we obtain

that the sequence {V ∗
T (t)} is bounded uniformly with respect to T. Then using

the standard diagonal method, we can get a subsequence which converges to the
solution V ∗(t) of the equation (8) for all t ∈ R:

lim
T ′→∞

V ∗
T ′(t) = V ∗(t) ∀t ∈ R.

Moreover, here the convergence is uniform with respect to [−T, T ]. Passing to
the limit as T → ∞ in (5), we obtain (6).

Next, we prove that the solution of (8), (2) is unique. Suppose that V (t) and
V (t) are its solutions. Then ΔṼ (t) = V (t) − V (t) is a solution in Cb(R, Rn) of
the following system of differential equations:

dΔṼi

dt
= aii(t)ΔṼi +

∑

j �=i

aij(t)ΔṼj , i = 1, n, t ∈ R. (7)

Since (7) satisfies conditions of the theorem, we can prove the existence of the
solution of (7) as above. Thez homogeneous system corresponding to (7) is

dΔṼi

dt
= aii(t)ΔṼi, i = 1, n, t ∈ R.

It is well known that if |a(t)| ≥ γ > 0 is a continuous function in R, and z̃ is
the bounded solution of the equation dz

dt = a(t)z, then z̃ = 0. Hence ΔṼ (t) =

V (t) − V (t) = 0 and V (t) =V (t). The theorem is proved.



298 M.N. Ospanov

Theorem 2. Suppose the conditions i) and ii) are fulfilled, and
a) columns of the matrix A(t)

θ(t) and vector-valued function F (t) belong in
Cb(R, Rn);
b) there exists the constant c > 1 such that

c−1 ≤ θ(t)
θ(t̄)

≤ c

holds for t, t̄ ∈ R with |t − t̄| ≤ d.
Then the solution V (t)∈Cb(R, Rn) of (8) satisfies the following estimate:

∥
∥
∥
∥

dV (·)
dt

∥
∥
∥
∥
1

≤ M

∥
∥
∥
∥

A(·)
θ(·)

∥
∥
∥
∥
1

+ ‖F (·)‖1 , (8)

where

M =
c + 1
cd

∥
∥
∥
∥

F (·)
θ(·)

∥
∥
∥
∥
1

+ ‖F (·)‖1 .

Proof. Let

θ̃(t) =
1
d

∫ t+d

t

θ(τ)dτ.

We put ωT (t) = θ̃(t)vT (t), where vT (t) is a solution of (3), (4). The equality
dvT (t)

dt = A(t)vT (t) + F (t), t ∈ [−T, T ] implies

dωT (t)
dt

=
1
d
[θ(t + d) − θ(t)]vT (t) + θ̃(t)A(t)vT (t) + θ̃(t)F (t) .

So, the function ωT (t) is a solution of the following problem

dω

dt
= A(t)ω + F̃ (t), t ∈ (−T, T ), (9)

P(1)ω(−T ) = 0, P(2)ω(T ) = 0 , (10)

where F̃ (t) = 1
d [θ(t + d) − θ(t)]vT (t)+θ̃(t)F (t). It is clear that

max
t∈[−T,T ]

∥
∥
∥
∥
∥

F̃ (t)
θ(t)

∥
∥
∥
∥
∥

≤ max
t∈[−T,T ]

1
d

∥
∥
∥
∥

[θ(t + d) − θ(t)]vT (t)
θ(t)

∥
∥
∥
∥

+ max
t∈[−T,T ]

∥
∥
∥
∥
∥

θ̃(t)F (t)
θ(t)

∥
∥
∥
∥
∥

≤

≤ c + 1
d

max
t∈[−T,T ]

∥
∥
∥
∥

F (t)
θ(t)

∥
∥
∥
∥

+ c max
t∈[−T,T ]

‖F (t)‖ < ∞.

Thus F̃ (t)
θ(t) ∈Cb(R, Rn). Then, by Lemma 1, there exists the unique solution ωT (t)

of problem (9), (10) and the following estimate holds:

max
t∈[−T,T ]

‖ωT (t)‖ ≤ M ′,
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where M ′ = (c + 1)/d max
t∈[−T,T ]

‖F (t)/θ(t)‖+ c max
t∈[−T,T ]

‖F (t)‖. We replace T with

T ′ and take the limit as T ′ → ∞ in the last inequality. Then, taking into account
the equality lim

T ′→∞
ωT ′(t) = θ̃(t)v∗(t) ( t ∈ R) (the convergence is uniform with

respect to compact [−T, T ]), we obtain max
t∈[−T,T ]

‖ω∗(t)‖ = max
t∈[−T,T ]

∥
∥
∥θ̃(t)v∗(t)

∥
∥
∥ ≤

M ′. This implies sup
t∈R

‖ω∗(t)‖ = sup
t∈R

∥
∥
∥θ̃(t)v∗(t)

∥
∥
∥ ≤ M ′. Furthermore,

sup
t∈R

‖A(t)V (t)‖ = sup
t∈R

∥
∥
∥
∥

A(t)
θ(t)

θ(t)
θ̃(t)

θ̃(t)V (t)
∥
∥
∥
∥

≤

≤ sup
t∈R

∣
∣
∣
∣

θ(t)
θ̃(t)

∣
∣
∣
∣

sup
t∈R

∥
∥
∥
∥

A(t)
θ(t)

∥
∥
∥
∥

sup
t∈R

∥
∥
∥θ̃(t)V (t)

∥
∥
∥ ≤ M

c
sup
t∈R

∥
∥
∥
∥

A(t)
θ(t)

∥
∥
∥
∥

.
(11)

From (8) it follows that

sup
t∈R

∥
∥
∥
∥

dV (t)
dt

∥
∥
∥
∥

≤ 1
c

sup
t∈R

∥
∥
∥
∥

A(t)
θ(t)

∥
∥
∥
∥

sup
t∈R

‖ω∗(t)‖ + sup
t∈R

‖F (t)‖ .

By this estimate and condition a) and ω(t) ∈Cb(R, Rn), we obtain dV (t)
dt ∈

Cb(R, Rn) and the inequality (8). The theorem is proved.
Equations (8) and (11) imply the following estimate:

∥
∥
∥
∥

dV

dt

∥
∥
∥
∥
1

+ ‖AV ‖1 ≤ C0 ‖F‖1 . (12)

3 The Main Result and Its Proof

Consider the differential operator L = d
dt − A(t)In in continuous and bounded

vector-valued function space Cb(R,Rn), where A(t) = (ai,j(t))n
i,j=1 is the (n×n)-

matrix with continuous elements.

Theorem 3. Let the matrix A(t) satisfy the following conditions:
i)

∑

j �=i

|aij(t)| + θ(t) ≤ |aii(t)| ≤ 1
η θ(t) (i = 1, n), where θ(t) ≥ θ0 > 0 is

continuous, and 0 < η < 1;
ii) there exist the constant c > 1 such that

c−1 ≤ |θ(t)|
|θ(t̄)| ≤ c

holds for t, t̄ ∈ R with |t − t̄| ≤ 1;
iii) lim

|t|→+∞
θ(t) = +∞.

Then the resolvent L−1 of the operator L is a completely continuous in the space
Cb(R,Rn).
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Proof. Let C
(1)
b, A(R,Rn) be the space of all functions that are bounded and have

a bounded and continuous derivative, with finite norm

‖V ‖1, A =
∥
∥
∥
∥

dV

dt

∥
∥
∥
∥
1

+ ‖AV ‖1 .

By Theorem 2, there exists the inverse L−1 of the operator L, which is defined on
the whole Cb(R,Rn) and is continuous from Cb(R,Rn) to the space C

(1)
b, A(R,Rn),

and
∥
∥L−1F

∥
∥
1, A

≤ C0 ‖F‖1 holds.

We show that the set T =
{

U ∈ Cb(R,Rn) : ‖U‖1, A ≤ C0 ‖F‖1
}

is compact
in Cb(R,Rn). Let α > 0, then, according to the condition ii), there is n ∈ N
such that

‖U‖1, n = sup
t∈R\[−N, N ]

‖U(t)‖ ≤ α

2
, ∀U(t) ∈ T. (13)

Let ϕn(t) ∈ C
(1)
0 (−n−1, n+1) satisfy 0 ≤ ϕn(t) ≤ 1 and ϕn(t) = 1, ∀t ∈ [−n, n].

We consider the set Tϕn
= {Uϕn : U ∈ T}. By (13) Tϕn

is the α-net for T . On
the other hand, Tϕn

is a subset of C
(1)
b, A([−n, n], Rn)

⋂
C0([−n − 1, n + 1], Rn).

Then by Hausdorff theorem (see [7], Ch. 1) T is compact. The theorem is proved.
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1 Introduction

Fractional integral inequalities involving (k, s)− type integrals attract the atten-
tions of many researchers due their diverse applications see, for examples, [1–4].
In [5], Farid et al. an integral inequality obtained by Mitrinovic and Pecaric was
generalized to measure space as follows.

Theorem 1. Let (Ω1, Σ1, μ1),(Ω2, Σ2, μ2) be measure spaces with σ−finite mea-
sures and let fi : Ω2 → R, i = 1, 2, 3, 4 be non-negative functions. Let g be the
function having representation

g(x) =
∫

Ω1

k(x, t)f(t)dμ1(t),

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_29
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where k : Ω2 × Ω1 → R is a general non-negative kernel and f : Ω1 → R is
real-valued function, and μ2 is a non-decreasing function. If p, q are two real
numbers such that 1

p + 1
q = 1, p > 1, then

∫
Ω2

f1(x)f2(x)g(x)dμ2(x) (1)

≤ C

(∫
Ω2

f3(x)g(x)dμ2(x)
) 1

p
(∫

Ω2

f4(x)g(x)dμ2(x)
) 1

q

,

where

C = sup
t∈Ω1

{(∫ b

a

k(x, t)f1(x)f2(x)dμ2(x)

)
(2)

(∫ b

a

k(x, t)f3(x)dμ2(x)

)−1
p

(∫ b

a

k(x, t)f4(x)dμ2(x)

)−1
q

}
.

The following definitions and results are also required.

2 Preliminaries

Recently fractional integral inequalities are considered to be an important tool
of applied mathematics and their many applications described by a number
of researchers. As well as, the theory of fractional calculus is used in solving
differential, integral and integro-differential equations and also in various other
problems involving special functions [6–8].

We begin by recalling the well-known results.

1. The Pochhammer k-symbol (x)n,k and the k-gamma function Γk are defined
as follows (see [9]):

(x)n,k := x(x + k)(x + 2k) · · · (x + (n − 1)k) (n ∈ N; k > 0) (3)

and

Γk(x) := lim
n→∞

n! kn (nk)
x
k −1

(x)n,k

(
k > 0; x ∈ C\kZ−

0

)
, (4)

where kZ−
0 :=

{
kn : n ∈ Z

−
0

}
. It is noted that the case k = 1 of equation

((3)) and equation ((4)) reduces to the familiar Pochhammer symbol (x)n and
the gamma function Γ . The function Γk is given by the following integral:

Γk(x) =
∫ ∞

0

tx−1 e− tk

k dt (�(x) > 0). (5)
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The function Γk defined on R
+ is characterized by the following three prop-

erties: (i) Γk(x + k) = x Γk(x); (ii) Γk(k) = 1; (iii) Γk(x) is logarithmically
convex. It is easy to see that

Γk(x) = k
x
k −1 Γ

(x

k

)
(�(x) > 0; k > 0) . (6)

2. Mubeen and Habibullah [10] introduced k-fractional integral of the Riemann-
Liouville type of order α as follows:

kJα
a [f (t)] =

1
Γk(α)

∫ t

a

(t − τ)
α
k −1

f (τ) dτ, (α > 0, x > 0, k > 0) , (7)

which, upon setting k = 1, is seen to yield the classical Riemann-Liouville
fractional integral of order α:

Jα
a {f(t)} := 1J

α
a {f(t)} =

1
Γ (α)

∫ t

a

(t− τ)α−1f(τ) dτ (α > 0; t > a) . (8)

3. Sarikaya et al. [11] presented (k, s)-fractional integral of the Riemann-
Liouville type of order α, which is a generalization of the k-fractional integral
(7), defined as follows:

s
kJα

a [f (t)] :=
(s + 1)1− α

k

kΓk (α)

∫ t

a

(
ts+1 − τ s+1

)α
k −1

τsf (τ) dτ, τ ∈ [a, b] , (9)

where k > 0, s ∈ R\ {−1} and which, upon setting s = 0, immediately reduces
to the k-integral (7).

4. In [11], the following results have been obtained. For f be continuous on
[a, b], k > 0 and s ∈ R\{−1}. Then,

s
kJα

a

[
s
kJβ

a f (t)
]

= s
kJα+β

a f (t) = s
kJβ

a [skJα
a f (t)] , (10)

and

s
kJα

a

[(
xs+1 − as+1

) β
k −1

]
=

Γk(β)

(s + 1)
α
k Γk(α + β)

(
xs+1 − as+1

)α+β
k −1

,

for all α, β > 0, x ∈ [a, b] and Γk denotes the k−gamma function.
5. Also, in [12], Akkurt et al. introduced (k,H)−fractional integral. Let (a, b) be

a finite interval of the real line R and �(α) > 0. Also let h(x) be an increasing
and positive monotone function on (a, b], having a continuous derivative h′(x)
on (a, b). The left- and right-sided fractional integrals of a function f with
respect to another function h on [a, b] are defined by

(
kJα

a+,hf
)

(x) (11)

:=
1

kΓk(α)

∫ x

a

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,�(α) > 0
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(
kJα

b−,hf
)

(x) (12)

:=
1

kΓk(α)

∫ b

x

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,�(α) > 0.

Recently, Tomar and Agarwal [13] obtained following results for
(k, s)−fractional integrals.

Theorem 2 (Hölder Inequality for (k, s)-fractional integrals). Let f, g :
[a, b] → R be continuous functions and p, q > 0 with 1

p + 1
q = 1. Then, for all

t > 0, k > 0, α > 0, s ∈ R − {−1},

s
kJα

a | fg (t)| ≤ [skJα
a |f (t)|p] 1

p [skJα
a |g (t)|q] 1

q . (13)

Lemma 1. Let f, g : [a, b] → R be two positive functions and 1
p + 1

q = 1, α, k > 0
and s ∈ R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ f(τ)
g(τ)

≤ M < ∞, τ ∈ [a, b], (14)

then the inequality

[skJα
a f(t)]

1
p [skJα

a g(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a

[
f

1
p (t)g

1
q (t)

]
(15)

holds.

Lemma 2. Let f, g : [a, b] → R be two positive functions α, k > 0 and s ∈
R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ fp(τ)
gq(τ)

≤ M < ∞, τ ∈ [a, b], (16)

then we have

[skJα
a fp(t)]

1
p [skJα

a gq(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a (f(t)g(t)) , (17)

where p > 1 and 1
p + 1

q = 1.

Motivated by this work, we establish in this paper some new extensions of the
reverse Hölder type inequalities by taking (k, s)−Riemann-Liouville fractional
integrals.
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3 Reverse Hölder Type Inequalites

In this section we prove our main results (Theorems 3 and 4).

Theorem 3. Let f(x) and g(x) be integrable functions and let 0 < p < 1,
1
p + 1

q = 1. Then, the following inequality holds

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q . (18)

Proof. Set c = 1
p , q = −pd. Then we have d = c

c−1 . By the Hölder inequality for
(k, s)−fractional integrals, we have

s
kJα

a |fp(t)| = s
kJα

a |fg(t)|p ∣∣g−p(t)
∣∣

≤ [skJα
a |fg(t)|pc]

1
c

[
s
kJα

a |g(t)|−pd
] 1

d

= [skJα
a |fg(t)|] 1

c [skJα
a |g(t)|q]1−p

. (19)

In equation (19), multiplying both sides by (s
kJα

a |gq(t)|)p−1, we obtain

s
kJα

a |fp(t)| (s
kJα

a |gq(t)|)p−1

≤ [skJα
a |fg(t)|]p . (20)

Inequality (20) implies inequality

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q (21)

which completes this theorem.

Theorem 4. Suppose p, q, l > 0 and 1
p + 1

q + 1
l = 1. If f, g and h are positive

functions such that

i.) 0 < m ≤ f
p
s

g
g
s

≤ M < ∞ for some l > 0 such that 1
p + 1

q = 1
s ,

ii.) 0 < m ≤ (fg)s

hr ≤ M < ∞,

then

(s
kJα

a fp(t))
1
p (s

kJα
a fq(t))

1
q (s

kJα
a fr(t))

1
r

≤
(

M

m

) 1
sr +

pq

s3
s
kJα

a (fgh)(t). (22)

Proof. Let 1
p + 1

q = 1
s for some s > 0. Thus, s

p + s
q = 1 and 1

s + 1
r = 1. If we use

ii and Lemma 2 for H = fg and h, then we get

(s
kJα

a Hs(t))
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (Hh)(t)) (23)
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which is equivalent to

(s
kJα

a [fs(t)gs(t)])
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (fgh)(t)) . (24)

Now, using i and the fact that s
p + s

q = 1, and applying Lemma 2 to fs and gs,
we also have

(s
kJα

a fp(t))
s
p (s

kJα
a gq(t))

s
q ≤

(
M

m

) pq

s2

(s
kJα

a fs(t)gs(t)) (25)

which is equivalent to

(s
kJα

a fp(t))
1
p (s

kJα
a gq(t))

1
q ≤

(
M

m

) pq

s3

(s
kJα

a fs(t)gs(t))
1
s . (26)

Combining equations (24) and (26), we obtain desired inequality equation (22),
which is complete the proof.

4 Applications for Some Types Fractional Integrals

Here in this section, we discuss some applications of Theorem 1 in the terms of
Theorems 5-7 and Corollary 1-5.

Theorem 5. Let p, q be two real numbers such that 1
p + 1

q = 1, p > 1 and let
f be continuous on [a, b], k > 0 and s ∈ R\{−1} . Then

∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (27)

≤ C

(∫ b

a

f3(x)s
kJα

a f(x)dx

) 1
p

(∫ b

a

f4(x)s
kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{ (∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(28)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

f3(x)dx

)−1
p

(∫ b

a

(
xs+1 − ts+1

)α
k −1

f4(x)dx

)−1
q

}
.

Proof. In Theorem 1, if we take Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx and
the kernel

k(x, t) =

⎧⎨
⎩

(s+1)1− α
k (ts+1−τs+1)

α
k

−1
τs

kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes s
kJα

a f(t) and so we get desired inequality (27). This completes
the proof of Theorem 5.
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Corollary 1. In Theorem 5, if we take s = 0, then we get
∫ b

a

f1(x)f2(x)kJα
a f(x)dx (29)

≤ C

(∫ b

a

f3(x)kJα
a f(x)dx

) 1
p

(∫ b

a

f4(x)kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(30)

(∫ b

a

(x − t)
α
k −1

f3(x)dx

)−1
p

(∫ b

a

(x − t)
α
k −1

f4(x)dx

)−1
q

}
.

Remark 1. In Corollary 1, α = k = 1, Theorem 1 reduces to Theorem 3.1 in [5].

Corollary 2. In Theorem 5, if we take f3(x) = fp
1 (x) and f4(x) = fq

2 (x), then
we get

∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (31)

≤ C

(∫ b

a

fp
1 (x)s

kJα
a f(x)dx

) 1
p

(∫ b

a

fq
2 (x)s

kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(32)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

fp
1 (x)dx

)−1
p

(∫ b

a

(
xs+1 − ts+1

)α
k −1

fq
2 (x)dx

)−1
q

}
.

Corollary 3. In Corollary 2, if we take s = 0, then we get
∫ b

a

f1(x)f2(x)kJα
a f(x)dx (33)

≤ C

(∫ b

a

fp
1 (x)kJα

a f(x)dx

) 1
p

(∫ b

a

fq
2 (x)kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{ (∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(34)

(∫ b

a

(x − t)
α
k −1

fp
1 (x)dx

)−1
p

(∫ b

a

(x − t)
α
k −1

fq
2 (x)dx

)−1
q

}
.
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Remark 2. In Corollary 3, α = k = 1, Corollary 3 reduces to Corollary 3.2 in [5].

Theorem 6. Let (a, b) be a finite interval of the real line R and �(α) > 0.
Let h(x) be an increasing and positive monotone function on (a, b], having a
continuous derivative h′(x) on (a, b). Also, let p, q be two real numbers such that
1
p + 1

q = 1, p > 1 and let f be continuous on [a, b], k > 0 and s ∈ R\{−1} .
Then

∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (35)

≤ C

(∫ b

a

f3(x)
(

kJα
a+,hf

)
(x)dx

) 1
p

(∫ b

a

f4(x)
(

kJα
a+,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (36)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx
and the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes
(

kJα
a+,hf

)
(x) and so we get desired inequality (35). This

completes the proof of Theorem 6.

Corollary 4. In Theorem 6, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (37)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

a+,hf
)

(x)dx

) 1
p

(∫ b

a

fq
2 (x)

(
kJα

a+,hf
)

(x)dx

) 1
q

,
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where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (38)

Theorem 7. Under the assumptions of Theorem 6, we have

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (39)

≤ C

(∫ b

a

f3(x)
(

kJα
b−,hf

)
(x)dx

) 1
p

(∫ b

a

f4(x)
(

kJα
b−,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (40)

Proof. In contrast to Theorem 6, if we take the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if x ≤ t ≤ b

0 if a < t ≤ x,

we obtain desired inequality.

Corollary 5. In Theorem 7, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (41)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

b−,hf
)

(x)dx

) 1
p

(∫ b

a

fq
2 (x)

(
kJα

b−,hf
)

(x)dx

) 1
q

,
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where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (42)
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Abstract. In this work we suggest a new method for investigating the
model Volterra type integral equation with super-singularity, the kernel
of which consists of a composition of polynomial functions with super-
singularity and functions with super-singular points. The problem of
investigating this type of integral equation for n = 2m is reduced to
m Volterra type integral equation for n = 2, and for n = 2m + 1 it
is reduced to m Volterra integral equation for n = 2 and one integral
equation for n = 1.

Keywords: Volterra type integral equation · Super-singular kernels ·
Asumptotic behavior · Explicit solution · Representation manifold
solution · Characteristic integral equation · n-order degenerate
ordinary differential equation

Let Γ = {x : a < x < b} be a set of points on real axis and consider an
integral equation

ϕ (x) +
∫ x

a

⎡
⎣ n∑

j=1

Aj(ωα
a (t) − ωα

a (x))j−1

⎤
⎦ ϕ (t)

(t − a)α dt = f (x) , (1)

where Aj(1 ≤ j ≤ n) is given constants, f (x) is a given function in Γ and ϕ (x)

to be found , ωα
a (x) =

[
(α − 1) (x − a)α−1

]−1

, α = const > 1.
The works [1–7] are dedicated to the problem of investigating integral equa-

tions of type (1) with kernels K (x, t) =
∑n

j=1 Aj lnj−1
(

x−a
t−a

)
(t − a)−1. Mono-

graph [1] and the case n = 2 of the work [8] are devoted to the problem
investigation integral equation (1) for n = 1.
The solution of the integral equation (1) we will seak in the class of function
ϕ (x) ∈ C

(
Γ

)
vanishing at the singular point t = a, i.e

ϕ (x) = o [(x − a)γ1 ] , γ1 > n (α − 1) at x → a.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_30
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Assume that, the solution of the equation (I) is the function ϕ (x) ∈ C(n) (Γ ) .
Besides let the function f (x) ∈ C(n) (Γ ) in equation (I). Then differentiating
integral equation (I) n times and every time multiplying by (x − a)α, we obtain
the following nth order degenerate ordinary differential equation

(Dα
x )n

ϕ (x) + A1(Dα
x )n−1

ϕ (x) + A2(Dα
x )n−2

ϕ (x)

+2!A3(Dα
x )n−3

ϕ (x) + . . . (n − 1)!Anϕ (x) = (Dα
x )n

f (x) ,

(2)

where Dα
x = (x − a)α d

dx .
The homogeneous differential equation (2) is corresponding to the following

characteristic equation

λn + A1λ
n−1+A2λ

n−2 + 2!A3λ
n−3 + 3!A4λ

n−4 + · · · + (n − 1)!An = 0 . (3)

To the investigation problem of different cases (n = 1, n = 2) for the integral
equation (1) the papers [1,8] are devoted. The case of equation (1) when the
parameters Aj(1 ≤ j ≤ n) are such that the roots of the characteristic equation
(3) are real, different and positive is investigated in [8]. In this case we have the
following confirmation

Theorem 1. Let in the integral equation (1) the parameters Aj(1 ≤ j ≤ n) be
such that the roots of the characteristic equation (3) λj(1 ≤ j ≤ n) are real,
different and positive, let the function f (x) ∈ C

(
Γ

)
, f (a) = 0 with asymptotic

behavior
f (x) = o

[
e−λωα

a (x)(x − a)γ]
, γ > α − 1 at x → a,

where λ = max (λ1, λ2, . . . . . . . . . λn ). Then integral equation (1) in the class
of function ϕ (x) ∈ C

(
Γ

)
vanishing in point x = a is always solvability and its

solution is given by the formula

ϕ (x) =
∑n

j=1 Cjexp [−λjω
α
a (x)] + f (x)

+ 1
Δ0

∫ x

a

{∑n
j=1 (−1)n+j

Δjnλn
j exp [λj (ωα

a (t) − ωα
a (x))]

}
f(t)

(t−a)α dt

≡ ∑n
j=1 Cjexp [−λjω

α
a (x)] + Kα (f) ,

(4)

where Δ0 is a Vandermond determinant, Δjn is minor of (n − 1) −order, which
is obtained from Δ0 by dividing n−th lines and j−th column, Cj (1 ≤ j ≤ n) are
arbitrary constants.

But in investigating other cases for the roots of the characteristic equation
(3) and obtaining the manifold of solutions to equation (1) there arise great
difficulties of analytical character.

In this connection we offer here a method for representing the manifold of
solution of integral equation (1) for n = 1 and n = 2. This theory was con-
structed in [1] for n = 1 and in [8] for n = 2. In [8] other possible cases were
investigated for n = 2. Depending on the cases n = 2m and n = 2m+1 we give
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a representation of the manifold of solutions to equation (1) with respect to m
of second order algebraic equations.

Here a new method is offered. Let n = 2m. In this case a general solution of
the integral equation (1) is represented by the solutions m of integral equation
of the type

Tα
pj,qj

(ϕ) = f (x) , (5)

where

Tα
pj,qj

(ϕ) ≡ ϕ (x) +
∫ x

a

[pj + qj (ωα
a (t) − ωα

a (x))]
ϕ (t)

(t − a)α dt ,

and when n = 2m + 1 the general solution of (1) we represent by the solution
m of the integral equation of the type (5) and by one solution to the integral
equation

Πα
λ (ϕ) = g (x) , (6)

where

Πα
λ (ϕ) ≡ ϕ (x) + λ

∫ x

a

ϕ (t)
(t − a)α dt.

The respective theory is constructed in [1,8].
Let n = 2m in integral equation (1). Then we represent the integral equation

in the form
m∏

j=1

Tα
pj,qj

(ϕ) = f (x), (7)

where pj , qj (1 ≤ j ≤ m) are constants , which are the coefficients of the following
characteristic equation

(
λ(j)

)2

+ pjλ
(j) + qj = 0(1 ≤ j ≤ m). (8)

Later on we denote the roots of the characteristic equation (6) by

λ
(j)
k (k = 1, 2, 1 ≤ j ≤ m).

We can represent the integral equation (1) in the form (5) when the roots of
the characteristic equation (6) are connected with the parameters Aj(1 ≤ j ≤ n)
of equation (1) by

A1 = −∑m
j=1

(
λ
(j)
1 + λ

(j)
2

)
,

A2 =
∑m

j, k = 1
j �= k

(
λ
(k)
1 λ

(j)
2

)
+

∑m

j, k = 1
j �= k

(
λ
(k)
1 λ

(j)
1

)
+

∑m

j, k = 1
j �= k

(
λ
(k)
2 λ

(j)
2

)
,

2!A3 =
∑m

j, k, s = 1
j �= k �= s

(
λ
(k)
1 λ

(j)
2 λ

(s)
1

)
+

∑m

j, k, s = 1
j �= k �= s

(
λ
(k)
2 λ

(j)
1 λ

(s)
2

)
,

. . ., (n − 1)!An =
∏m

j=1 λ
(j)
1 λ

(j)
2 .

(9)
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Equation (5) is written as the system

Ψm (x) = Tα
pm,qm

(ϕ) ,

Ψm−1 (x) = Tα
pm−1,qm−1

(Ψm) ,

Ψm−2 (x) = Tα
pm−2,qm−2

(Ψm−1) ,

. . .. . ..,
Ψ2 (x) = Tα

p2,q2
(Ψ3) , Tα

p1,q1
(Ψ2) = f (x) .

(10)

So, in this case the problem of finding the general solution of the integral equation
(1) is reduced to the problem of finding the solution of the system (6) of the
Volterra integral equations.

In particular if the roots of the characteristic equation (6) are real, equal and
negative and the constants pj (1 ≤ j ≤ m) satisfy the following inequities

|pm| > |pm−1| > |pm−2| . . . . . . .. > |p1| , (11)

and the function f (x) ∈ C
(
Γ

)
, f (a) = 0 with asymptotic behavior

f (x) = o
[
exp

(pm

2
ωα

a (x)
)

(x − a)γ3
]
, γ3 > n (α − 1) , at x → a, (12)

then the solution of the integral equation (1) is given by the formula

ϕ (x) =
m∏

j=1

(
T

αCm−j+1
1 , Cm−j+1

2
pm−j+1, qm−j+1

)−1

(f) , (13)

where Cm−j+1
1 , Cm−j+1

2 (1 ≤ j ≤ m) are arbitrary constants

(
T

αC
m−j+1
1 , C

m−j+1
2

pm−j+1, qm−j+1

)−1
(f)

= exp
[ pm−j+1

2 ωα
a (x)

] [
C

m−j+1
1 + ωα

a (x) C
m−j+1
2

]
+ f (x)

− ∫ x
a exp

[ pm−j+1
2

(
ωα

a (x) − ωα
a (t)

)] [
pm−j+1 +

(
pm−j+1

)2
4

(
ωα

a (x) − ωα
a (t)

)]
f(t)

(t−a)α dt.

So, we have proved the following confirmation

Theorem 1. (Main Theorem). Let in integral equation (1) n = 2m, let para-
meters Aj(1 ≤ j ≤ n) be connected with the coefficients of the algebraic equation
(8) given by formula (9). Moreover, let the function f (x) ∈ C

(
Γ

)
, f (a) = 0

with asymptotic behavior (12) and let in (8) the parameters pj (1 ≤ j ≤ m) sat-
isfy conditions (11). Then the integral equations (1) in the class of function
ϕ (x) ∈ C

(
Γ

)
vanishing in the point x = a is always solvable, and its general

solution contains 2m arbitrary constants and is given by formula (13), where
Cm−j+1

k (k = 1, 2, 1 ≤ j ≤ m) are arbitrary constants.

Remark 1. The representation of the manifold of solution of the integral equa-
tion (1) in form (5) for the case n = 2m gives the possibility to write the general
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solution in dependence of the roots of the characteristic equation (5). When
n = 2m + 1, we represent equation (1) in the form

m∏
j=1

Tα
pj,qj

(Ψ) = f (x), (14)

where
Ψ (x) = Πα

pm+1
(ϕ) , (15)

Πα
pm+1

(ϕ) ≡ ϕ (x) + pm+1

∫ x

a

ϕ (t)
(t − a)α dt,

pj , qj (1 ≤ j ≤ m) are the coefficients of the algebraic equations

(
μ(j)

)2

+ pjμ
(j) + qj = 0(1 ≤ j ≤ m). (16)

In this case equation (14) is represented in the form

Ψ (x) +
∫ x

a

⎡
⎣ 2m∑

j=1

Bj(ωα
a (t) − ωα

a (x) )j−1

⎤
⎦Ψ (t)

t − a
dt = f (x) , (17)

where the parameters Bj(1 ≤ j ≤ 2m) are connected with the roots of the
algebraic equations (16) defined by the formula

B1 = −∑m
j=1

(
μ
(j)
1 + μ

(j)
2

)
,

B2 =
∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
2

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
1

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
2 μ

(j)
2

)
,

2! B3 =
∑m

j, k, s = 1
j �= k �= s

(
μ
(k)
1 μ

(j)
2 μ

(s)
1

)
+

∑m

j, k, s = 1
j �= k �= s

(
μ
(k)
2 μ

(j)
1 μ

(s)
2

)
,

. . ...,

(n − 1)!Bn =
∏m

j=1 μ
(j)
1 μ

(j)
2 ,

(18)

where μ
(j)
1 , μ

(j)
2 (1 ≤ j ≤ m) are the roots of the algebraic equations (16).

Substituting Ψ (x) from (15) into formula (17) and taking into account the equa-
tion ∫ x

a

(ωα
a (t) − ωα

a (x))j−1

[∫ t

a

ϕ (τ)
(t − a)α dτ

]
dt

(t − a)α

=
1
j

∫ x

a

(ωα
a (t) − ωα

a (x))j ϕ (t)
(t − a)α dt,

we obtain

ϕ (x) +
∫ x

a

⎡
⎣2m+1∑

j=1

Aj(ωα
a (t) − ωα

a (x))j−1

⎤
⎦ ϕ (t)

(t − a)α dt = f (x) , (19)
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where
A1 = pm+1 + B1,
A2 = B2 + B1pm+1,

A3 = B3 + B2pm+1
2 ,

A4 = B4 + B3pm+1
3 ,

. . .. . .. . .. . .. . .,

A2m = B2m + B2m−1.pm+1
2m−1 ,

A2m+1 = B2m.pm+1
2m .

Substituting into these equations Bj (1 ≤ j ≤ 2m) from formula (18), we have

A1 = pm+1 − ∑m
j=1

(
μ
(j)
1 + μ

(j)
2

)
,

A2 =
∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
2

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
1

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
2 μ

(j)
2

)

−∑m
j=1

(
μ
(j)
1 + μ

(j)
2

)
pm+1,

2! A3 =
∑m

j, k, s = 1
j �= k �= s

(
μ
(k)
1 μ

(j)
2 μ

(s)
1

)
+

∑m

j, k, s = 1
j �= k �= s

(
μ
(k)
2 μ

(j)
1 μ

(s)
2

)

+pm+1[
∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
2

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
1 μ

(j)
1

)
+

∑m

j, k = 1
j �= k

(
μ
(k)
2 μ

(j)
2

)
],

(20)

where μ
(j)
1 , μ

(j)
2 are the roots of the algebraic equations (16).

So, we proof the following confirmation

Theorem 2. (Main Theorem). Let the parameters Aj(1 ≤ j ≤ n) in integral
equation (1) be connected with the roots of the characteristic equation (16) and
the number pm+1 given by formula (20). Then the problem of finding the solution
of the integral equation (1) for n = 2m+1, or the integral equation (19) reduces
to the problem for finding the solution of the integral equation

m∏
j=1

Tα
pj,qj

Πα
m+1 ((ϕ)) = f (x). (21)

By introducing in the integral equation (13) the new unknown functions

Ψm+1 (x) = Πα
m+1 (ϕ) ,

Ψm (x) = Tα
pm,qm

(Ψm+1) ,

Ψm−1 (x) = Tα
pm−1,qm−1

(Ψm) ,

Ψm−2 (x) = Tα
pm−2,qm−2

(Ψm−1) ,

. . .. . ..,
Ψ2 (x) = Tα

p2,q2 (Ψ1) ,

(22)

Tα
p1,q1 (Ψ1) = f (x) , (23)

we reduce the problem of finding of the general solution of this integral equation
to the solution m of integral equation of type (5) and one integral equation of
the type (6).
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In particular case, if all the roots of the characteristic equations (16) are real,
equal, negative and

|pm+1| > |pm| > |pm−1| > |pm−2| . . . . . . .. > |p1| , (24)

function f (x) ∈ C
(
Γ

)
, f (a) = 0 with asymptotic behavior

f (x) = o
[
exp

(pm+1

2
ωα

a (x)
)
(x − a)γ3

]
, γ3 > |pm+1| , at x → a, (25)

then the solution of the integral equation (1) for n = 2m + 1 is given by the
formula

ϕ (x) = =
(
Πα, Cm+1

pm+1

)−1

[
m∏

j=1

(
T

α,Cm−j+1
1 , Cm−j+1

2
pm−j+1, qm−j+1

)−1

(f) ] , (26)

where Cm−j+1
1 , Cm−j+1

2 (1 ≤ j ≤ m) , Cm+1 are arbitrary constants,

(
Π

α,Cm+1
pm+1

)−1

(ω) ≡ exp [pm+1ω
α
a (x)] Cm+1 + ω (x)

−pm+1

∫ x

a
exp [pm+1 (ωα

a (x) − ωα
a (t))] ω(t)

(t−a)α dt.
(27)

So, we have proved the following confirmation

Theorem 3. (Main Theorem). Let n = 2m+1 in integral equation (1), let the
parameters Aj(1 ≤ j ≤ n) be connected with coefficients of the algebraic equa-
tion (16) by formula (20). Moreover, let the roots of the characteristic equation
(16) be real, equal and positive, and let the function f (x) ∈ C

(
Γ

)
, f (a) = 0

with asymptotic behavior (25) and let in (16) parameters pj (1 ≤ j ≤ m), pm+1

satisfy conditions (24). Then integral equations (1) in the class of function
ϕ (x) ∈ C

(
Γ

)
, vanishing at the point x = a are solvable, and its general solu-

tion contains 2m + 1 arbitrary constants and is given by formula (26), where
Cm−j+1

k (k = 1, 2, 1 ≤ j ≤ m), Cm+1 are arbitrary constants.
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Abstract. In this paper we review our previous isoperimetric results for
the logarithmic potential and Newton potential operators. The main rea-
son why the results are useful, beyond the intrinsic interest of geometric
extremum problems, is that they produce a priori bounds for spectral
invariants of operators on arbitrary domains. We demonstrate these in
explicit examples.

Keywords: Logarithmic potential operator · Newton potential
operator · Geometric extremum problem · Schatten p-norm ·
Rayleigh-Faber-Krahn inequality · Polya inequality · Luttinger type
inequality

1 Introduction

In a bounded domain of the Euclidean space Ω ⊂ R
d, d ≥ 2, it is well known

that the solution to the Laplacian equation

− Δu(x) = f(x), x ∈ Ω, (1)

is given by the Newton potential formula (or the logarithmic potential formula
when d = 2)

u(x) =
∫

Ω

εd(|x − y|)f(y)dy, x ∈ Ω, (2)

for suitable functions f with suppf ⊂ Ω. Here

εd(|x − y|) =

{
1
2π ln 1

|x−y| , d = 2,
1

(d−2)sd

1
|x−y|d−2 , d ≥ 3,

(3)

is the fundamental solution to −Δ and sd = 2π
d
2

Γ ( d
2 )

is the surface area of the unit

sphere in R
d.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_31
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An interesting question having several important applications is what bound-
ary conditions can be put on u on the (Lipschitz) boundary ∂Ω so that equation
(1) complemented by this boundary condition would have the solution in Ω still
given by the same formula (2), with the same kernel εd given by (3). It turns
out that the answer to this question is the integral boundary condition

−1
2
u(x)+

∫
∂Ω

∂εd(|x − y|)
∂ny

u(y)dSy−
∫

∂Ω

εd(|x−y|)∂u(y)
∂ny

dSy = 0, x ∈ ∂Ω, (4)

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω. A converse
question to the one above would be to determine the trace of the Newton poten-
tial (2) on the boundary surface ∂Ω, and one can use the potential theory to
show that it has to be given by (4).

The boundary condition (4) appeared in M. Kac’s work [1], where he called
it “the principle of not feeling the boundary”. This was further expanded in
Kac’s book [2] with several further applications to the spectral theory and the
asymptotics of the Weyl’s eigenvalue counting function. Independently in [3]
T.Sh. Kal’menov and the second author proved the existence of the boundary
condition (4) and as byproduct the eigenvalues and eigenfunctions of the New-
ton potential (2) were calculated in the 2-disk and in the 3-ball. In general, the
boundary value problem (1)-(4) has various interesting properties and applica-
tions (see, for example, [1–7]). The boundary value problem (1)-(4) can also be
generalised for higher degrees of the Laplacian, see [8,9]. In the present paper we
consider spectral problems of inverse operators to the nonlocal Laplacian (1)-(4),
namely the logarithmic potential operator on L2(Ω) defined by

LΩf(x) :=
∫

Ω

1
2π

ln
1

|x − y|f(y)dy, f ∈ L2(Ω), Ω ⊂ R
2, (5)

and the Newton potential operator on L2(Ω) defined by

NΩf(x) :=
∫

Ω

1
(d − 2)sd

1
|x − y|d−2

f(y)dy, f ∈ L2(Ω), Ω ⊂ R
d, d ≥ 3. (6)

Spectral properties of the logarithmic and the Newton potential operator have
been considered in many papers (see, e.g. [4,9–15]). In this paper we are inter-
ested in isoperimetric inequalities of these operators, that is also, in isoperimetric
inequalities of the nonlocal Laplacian (1)-(4). A recent general review of isoperi-
metric inequalities for the Dirichlet, Neumann and other Laplacians was made
by Benguria, Linde and Loewe in [16]. In addition to [16], we refer G. Pólya and
G. Szegö [17], Bandle [18] and Henrot [19] for historic remarks on isoperimet-
ric inequalities, namely the Rayleigh-Faber-Krahn inequality and the Luttinger
inequality.

We review an analogue of the Luttinger inequality for the Newton potential
operator NΩ and provide related explicit examples. It is a particular case of our
previous result with G. Rozenblum in [20] for the Newton potential (see also
[21–23] for a non-self adjoint operators). In Section 3 we present:
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• Luttinger type inequality for NΩ : The d-ball is a maximizer of the Schatten p-
norm of the Newton potential operator among all domains of a given measure
in R

d, d ≥ 3, for all integer d
2 < p < ∞.

In Section 2, we review the following facts for the logarithmic potential from
[24]:

• Rayleigh-Faber-Krahn inequality: The disc is a minimizer of the characteristic
number of the logarithmic potential LΩ with the smallest modulus among
all domains of a given measure.

• Pólya inequality: The equilateral triangle is a minimizer of the first charac-
teristic number of the logarithmic potential LΩ with the smallest modulus
among all triangles of a given area.

• Luttinger type inequality for LΩ : The disc is a maximizer of the Schatten
p-norm of the logarithmic potential operator among all domains of a given
measure in R

2, for all integer 2 ≤ p < ∞.
• Luttinger type inequality for LΩ in triangles: The equilateral triangle is

a maximizer of the Schatten p-norm of the logarithmic potential operator
among all triangles of a given area in R

2, for all integer 2 ≤ p < ∞.

2 Isoperimetric Inequalities for LΩ and Examples

In this section we review our results for the logarithmic potential from [24] and
for the Newton potential [20]. Let Ω ⊂ R

2 be an open bounded set. We consider
the logarithmic potential operator on L2(Ω) defined by

LΩf(x) :=
∫

Ω

1
2π

ln
1

|x − y|f(y)dy, f ∈ L2(Ω), (7)

where ln is the natural logarithm and |x − y| is the standard Euclidean distance
between x and y. Clearly, LΩ is compact and self-adjoint. Therefore, all of
its eigenvalues and characteristic numbers are discrete and real. We recall that
the characteristic numbers are inverses of the eigenvalues. The characteristic
numbers of LΩ may be enumerated in ascending order of their modulus,

|μ1(Ω)| ≤ |μ2(Ω)| ≤ ...,

where μi(Ω) is repeated in this series according to its multiplicity. We denote the
corresponding eigenfunctions by u1, u2, ..., so that for each characteristic number
μi there is a unique corresponding (normalized) eigenfunction ui,

ui = μi(Ω)LΩui, i = 1, 2, ....

It is known, see for example [3], that the equation

u(x) = LΩf(x) =
∫

Ω

1
2π

ln
1

|x − y|f(y)dy
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is equivalent to the equation

− Δu(x) = f(x), x ∈ Ω, (8)

with the nonlocal integral boundary condition

− 1

2
u(x) +

∂Ω

∂

∂ny

1

2π
ln

1

|x − y|u(y)dSy −
∂Ω

1

2π
ln

1

|x − y|
∂u(y)

∂ny
dSy = 0, x ∈ ∂Ω,

(9)
where ∂

∂ny
denotes the outer normal derivative at a point y on the boundary

∂Ω, which is assumed piecewise C1 here.
Let H be a separable Hilbert space. By S ∞(H) we denote the space of

compact operators P : H → H. Recall that the singular numbers {sn} of P ∈
S ∞(H) are the eigenvalues of the positive operator (P ∗P )1/2 (see [25]). The
Schatten p-classes are defined as

S p(H) := {P ∈ S ∞(H) : {sn} ∈ �p}, 1 ≤ p < ∞.

In S p(H) the Schatten p-norm of the operator P is defined by

‖P‖p :=

( ∞∑
n=1

sp
n

) 1
p

, 1 ≤ p < ∞. (10)

For p = ∞, we can set
‖P‖∞ := ‖P‖

to be the operator norm of P on H. As outlined in the introduction, we assume
that Ω ⊂ R

2 is an open bounded set and we consider the logarithmic potential
operator on L2(Ω) of the form

LΩf(x) =
∫

Ω

1
2π

ln
1

|x − y|f(y)dy, f ∈ L2(Ω). (11)

It is known that LΩ is a Hilbert-Schmidt operator. By |Ω| we will denote the
Lebesque measure of Ω.

Theorem 1. Let D be a disc centred at the origin. Then

‖LΩ‖p ≤ ‖LD‖p (12)

for any integer 2 ≤ p ≤ ∞ and any bounded open domain Ω with |Ω| = |D|.
Let us give several examples calculating explicitly values of the right hand

side of (3) for different values of p.

Example 1. Let D ≡ U be the unit disc. Then by Theorem 1 we have

‖LΩ‖p ≤ ‖LU‖p =

( ∞∑
m=1

3
j2p
0,m

+
∞∑

l=1

∞∑
m=1

2
j2p
l,m

) 1
p

, (13)
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for any integer 2 ≤ p < ∞ and any bounded open domain Ω with |Ω| = |U |.
Here jkm denotes the mth positive zero of the Bessel function Jk of the first kind
of order k.

The right hand sight of the formula (21) can be confirmed by a direct calcu-
lation of the logarithmic potential eigenvalues in the unit disc, see Theorem 3.1
in [10].

Example 2. Let D ≡ U be the unit disc. Then by Theorem 1 we have

‖LΩ‖ ≤ ‖LU‖ =
1

j201
(14)

for any bounded open domain Ω with |Ω| = |U |. Here ‖ · ‖ is the operator norm
on the space L2.

From Corollary 3.2 in [10] we calculate explicitly the operator norm in the right
hand sight of (23).

In Theorem 1 when p = ∞, the following analogue of the Rayleigh-Faber-
Krahn theorem for the integral operator LΩ is used.

Theorem 2. The disc D is a minimizer of the characteristic number of the
logarithmic potential LΩ with the smallest modulus among all domains of a
given measure, i.e.

0 < |μ1(D)| ≤ |μ1(Ω)|
for an arbitrary bounded open domain Ω ⊂ R

2 with |Ω| = |D|.
In Landkof [26] the positivity of the operator LΩ is proved in domains Ω ⊂ U,

where U is the unit disc. In general, LΩ is not a positive operator. For any
bounded open domain Ω the logarithmic potential operator LΩ can have at
most one negative eigenvalue, see Troutman [13] (see also Kac [12]).

In other words Theorem 2 says that the operator norm of LΩ is maximized
in a disc among all Euclidean bounded open domains of a given area.

It follows from the properties of the kernel that the Schatten p-norm of the
operator LΩ is finite when p > 1, see e.g. the criteria for Schatten classes in
terms of the regularity of the kernel in [27]. Our techniques do not allow us to
prove Theorem 1 for 1 < p < 2. In view of the Dirichlet Laplacian case, it seems
reasonable to conjecture that the Schatten p-norm is still maximized on the disc
also for 1 < p < 2. However, In Section 3 by using different method we prove
such conjecture for the Newton potential operator, see also [20].

We can ask the same question of maximizing the Schatten p-norms in the
class of polygons with a given number n of sides. We denote by Pn the class of
plane polygons with n edges. We would like to identify the maximizer for Schat-
ten p-norms of the logarithmic potential LΩ in Pn. According to the Dirichlet
Laplacian case, it is natural to conjecture that it is the n-regular polygon. Cur-
rently, we have proved this only for n = 3:



Isoperimetric Inequalities for Some Integral . . . 325

Theorem 3. The equilateral triangle centred at the origin has the largest Schat-
ten p-norm of the operator LΩ for any integer 2 ≤ p ≤ ∞ among all triangles of
a given area. More precisely, if 
 is the equilateral triangle centred at the origin,
we have

‖LΩ‖p ≤ ‖L�‖p (15)

for any integer 2 ≤ p ≤ ∞ and any bounded open triangle Ω with |Ω| = |
|.
When p = ∞, Theorem 3 implies the following analogue of the Pólya theorem

[28] for the operator LΩ .

Theorem 4. The equilateral triangle 
 centred at the origin is a minimizer
of the first characteristic number of the logarithmic potential LΩ among all
triangles of a given area, i.e.

0 < |μ1(
)| ≤ |μ1(Ω)|
for any triangle Ω ⊂ R

2 with |Ω| = |
|.
In other words Theorem 4 says that the operator norm of LΩ is maximized

in an equilateral triangle among all triangles of a given area.

3 The Newton Potential

Let Ω ⊂ R
d, d ≥ 3 be an open bounded set. We consider the Newton potential

operator NΩ : L2(Ω) → L2(Ω) defined by

NΩf(x) :=
∫

Ω

εd(|x − y|)f(y)dy, f ∈ L2(Ω), (16)

where εd(|x − y|) = 1
(d−2)sd

1
|x−y|d−2 , d ≥ 3.

Since εd is positive, real and symmetric function, NΩ is a positive self-adjoint
operator. Therefore, all of its eigenvalues and characteristic numbers are posi-
tive real numbers. We recall that the characteristic numbers are inverses of the
eigenvalues. The characteristic numbers of NΩ may be enumerated in ascending
order

0 < μ1(Ω) ≤ μ2(Ω) ≤ . . . ,

where μi(Ω) is repeated in this series according to its multiplicity. We denote the
corresponding eigenfunctions by u1, u2, ..., so that for each characteristic number
μi there is a unique corresponding (normalized) eigenfunction ui,

ui = μi(Ω)NΩui, i = 1, 2, . . . .

This spectral problem has various interesting properties and applications (see
[1] and [5], for example). In particular, one can prove that in the unit ball its
spectrum contains the spectrum of the corresponding Dirichlet Laplacian by
using an explicit calculation (cf. [9]).
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Kac [1] proved that

1 = lim
δ→0

∞∑
j=1

1
1 + μjδ

uj(y)
∫

Ω

uj(x)dx, y ∈ Ω, (17)

where μj , j = 1, 2, ..., and uj , j = 1, 2, ... are the characteristic numbers and
the corresponding normalized eigenfunctions of the Newton potential operator
(16), respectively. The purely analytic fact (17) expresses that the expansion of
1 in a series of orthonormal functions uj is summable to 1 for every y ∈ Ω.
In [29] Kac gave asymptotic formulae for the characteristic numbers in R

d, d ≥
3. In this section we discuss some other pure analytic facts for the Newton
potential. It should be noted that similar results are already known for the
Dirichlet Laplacian.

By using the Feynman-Kac formula and spherical rearrangement, Luttinger
proved that the ball Ω∗ is the maximizer of the partition function of the Dirichlet
Laplacian among all domains of the same volume as Ω∗ for all positive values of
time [30], i.e.

ZD
Ω (t) :=

∞

i=1

exp(−tλD
i (Ω)) ≤ ZD

Ω∗(t) :=
∞

i=1

exp(−tλD
i (Ω∗)), |Ω| = |Ω∗|, ∀t > 0,

where λD
i (Ω), i = 1, 2, ... are the eigenvalues of the Dirichlet Laplacian ΔD

Ω in Ω.
The partition function and the Schatten norms are related:

‖ΔD
Ω‖p

p =
1

Γ (p)

∫ ∞

0

tp−1ZD
Ω (t)dt,

where Γ is the gamma function. Hence it easily follows that

‖ΔD
Ω‖p ≤ ‖ΔD

Ω∗‖p, |Ω| = |Ω∗|, (18)

when p > d/2, Ω ⊂ R
d. Here the Schatten p-norm of the Dirichlet Laplacian is

defined by

‖ΔD
Ω‖p :=

( ∞∑
i=1

1
[λD

i ]p

)p

, d/2 < p < ∞.

The right hand side of the inequality (18) gives the exact upper bound of the
Schatten p-norm and it can be calculated explicitly.

Example 3. Let U be the unit disk, then

‖ΔD
U ‖22 = 0.0493....

Therefore, from (18) we have

‖ΔD
Ω‖22 ≤ 0.0493..., |Ω| = |U |.

This inequality is better than the inequality conjectured in [31]

‖ΔD
Ω‖p

p ≤ Γ (p − d
2 )

Γ (p)
V ol|Ω| 2p

d

(4π)
d
2

, p >
d

2
, (19)
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which implies that
‖ΔD

Ω‖22 ≤ 0.7853...,

when |Ω| = |U |.
However, it is important to note that in (19) p is an arbitrary real number greater
than d

2 .
The condition p > d/2 in (18) is necessary to absolute convergence of series,

but in case p ≤ d/2 one may use regularization process to get an absolute
convergent series.

Example 4. ([32]). In Ω ⊂ R
2 the sum

‖ΔD
Ω‖1 =

∞∑
k=1

1
λD

k (Ω)
= ∞, Ω ⊂ R

2.

However, using the following regularisation, we find that if U ≡ Ω ⊂ R2 is the
unit disk, then

∞∑
k=1

(
1

λD
k (U)

− 1
4k

)
= −0.3557....

As usual by |Ω| we will denote the Lebesque measure of Ω [33–37].

Theorem 5. Let B be a ball centred at the origin, d ≥ 3. Then

‖NΩ‖p ≤ ‖NB‖p (20)

for any integer d
2 < p ≤ ∞ and an arbitrary bounded open domain Ω with

|Ω| = |B|.
Let us give some examples:

Example 5. Let B ≡ U be the unit 3-ball. Then by Theorem 5 we have

‖NΩ‖p ≤ ‖NU‖p =

⎛
⎝ ∞∑

l=0

∞∑
m=1

2l + 1
j2p

l− 1
2 ,m

⎞
⎠

1
p

, (21)

for any real 2 ≤ p < ∞ and any bounded open domain Ω with |Ω| = |U |. Here
jkm denotes the mth positive zero of the Bessel function Jk of the first kind of
order k. The right hand side of the formula (21) can be confirmed by a direct
calculation of the characteristic numbers of the Newton potential in the unit
3-ball, see Theorem 4.1 in [10] (cf. [3]).

Example 6. For the Hilbert-Schmidt norm we have

‖NΩ‖2 ≤ ‖NU‖2 =

√
7
48

, (22)

for any bounded open domain Ω with |Ω| = |U |, where B ≡ U is the unit 3-ball.
Here, when p = 2, we have calculated the value on the right hand side of the
inequality (22) by using the polar representation. We omit the routine technical
calculation.
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Example 7. When p = ∞ by Theorem 5, we have

‖NΩ‖op ≤ ‖NB‖op =
4
π2

(23)

for any domain Ω with |Ω| = |B|, where Ω∗ ≡ B is the unit ball. Here ‖ · ‖op is
the operator norm of the Newton potential on the space L2.
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Abstract. We consider a problem on finding a solution of an initial-
boundary value problem for a heat equation with regular, but not
strongly regular boundary conditions. It is shown that in the case of
the potential parity q(x) = q(1−x) the researched class of problems can
always be reduced to a sequential solution of two analogous problems,
but with strongly regular boundary conditions. Herewith the proof does
not depend on whether the system of eigen- and associated functions of
a corresponding spectral problem for an ordinary differential equation
arising in applying the Fourier method forms a basis. The suggested way
of the problem solution can be applied for constructing as classical, and
for various types of generalized solutions. The solution method earlier
suggested by the author is modernized. Due to this fact input data of
the problem do not require an additional smoothness.

Keywords: Initial-boundary value problem · Heat equation · Regular
boundary conditions · Not strongly regular boundary conditions ·
Spectral problem · Eigenfunctions · Associated functions · Fourier
method · Basis

1 Introduction

A solution of initial-boundary value problems for partial equations (which
describe a great amount of physical, chemical, biological and other processes) by
the Fourier method leads to a question of possibility of expansion of an initial
function in series by eigen- and associated functions of some boundary value
problem for an ordinary differential equation. This question is the basis of the
spectral theory of differential operators.

Let Ω = {(x, t) : 0 < x < 1, 0 < t < T} be a plane rectangular domain.
Consider a problem on finding a solution of the heat equation

ut(x, t) − uxx(x, t) + q(x)u(x, t) = f(x, t), (1)

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_32
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satisfying the initial condition

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1 (2)

and the boundary conditions of the general type
⎧
⎨

⎩

a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,

c1ux(0, t) + d1ux(1, t) + c0u(0, t) + d0u(1, t) = 0.
(3)

The coefficients ak, bk, ck, dk, k = 0, 1 of the boundary condition (3) are,
generally speaking, complex numbers.

The problems of a parabolic type with two-point boundary conditions of the
general type (3) were earlier investigated in works of N.I. Ionkin and E.I. Moissev
[1].

Applying the Fourier method for solving problem (1)-(3) leads to the fol-
lowing problem: under which conditions the arbitrary initial function ϕ(x) is
expanded in a convergent series by eigenfunctions or by eigen- and associated
functions of an operator given by the differential expression

l(y) = −y′′(x) + q(x)y(x), 0 < x < 1 (4)

and the boundary conditions
{

a1y
′(0) + b1y

′(1) + a0y(0) + b0y(1) = 0,
c1y

′(0) + d1y
′(1) + c0y(0) + d0y(1) = 0.

(5)

In the case, when the boundary conditions (5) are strongly regular, the Riesz
basis property in L2 of the system of eigen- and associated functions of the
problem follows from the results of V.P. Mikhailov [2] and G.M. Kesselmann [3].
Basing on this fact, in [1] under assumption of the strong regularity of conditions
(5) the solution of problem (1)-(3) is constructed by the method of separation of
variables, its uniqueness and stable dependence on initial data in various norms
are proved.

But in the case, when boundary conditions are regular but not strongly
regular, the question on the basis property of the system of eigen- and associated
functions is not solved by the end yet. In this connection we note the work
of A.S. Makin [4], where it is distinguished one type of not strongly regular
boundary conditions under which the system of eigen- and associated functions
of the problem forms a Riesz basis for any potentials q(x). In a more simple
case q(x) ≡ 0 the question on the basis property of the system of eigen- and
associated functions of a problem with not strongly regular boundary conditions
is fully solved in [5].

The most sufficient contribution to the spectral theory of non-selfadjoint dif-
ferential operators is the cycle of works of V.A. Il’in, fully enough cited in the
review [6]. Particularly, he established necessary and sufficient conditions of the
unconditional basis property of the system of eigen- and associated functions of
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the differential second order operator (4) regardless of type of boundary condi-
tions. If the system of root functions of problem (4)-(5) satisfies conditions of
the theorem of V.A. Il’in, then problem (1)-(3) can be solved by the Fourier
method.

The well-posedness of problem (1)-(3) in the particular case q(x) ≡ 0 under
not strongly regular boundary conditions

ux(0, t) − ux(1, t) = 0, u(0, t) = 0, (6)

known in the literature as the boundary conditions of Samarskii-Ionkin, for
which the system of eigen- and (specially chosen) associated functions of the
corresponding problem (4)-(5) forms a Riesz basis, was established in [7].

Another particular case of problem (1)-(3) was investigated in [8] by the
method of separation of variables in the case when q(x) ≡ 0, and boundary
conditions have the form

ux(0, t) − ux(1, t) + αu(1, t) = 0, u(0, t) = 0, α �= 0.

The boundary conditions of this problem are not strongly regular and the system
of eigen- and associated functions of the problem does not form a basis.

We must also note that the Abel means of spectral expansions satisfy the
heat equation and a solution of the problem of type (1)-(3) can be obtained
in the form of a reduction series, if these expansions are summed by the Abel
method with brackets. It is also known that the system of root functions of
an ordinary differential operator of an arbitrary order with regular boundary
conditions forms a block-basis [9]. A lot of works are published in this direction,
but in this paper we will not focus on them.

In the present paper we identify a new property of the not strongly regular
boundary conditions (1)-(3) which allows in case q(x) = q(1 − x) to reduce an
arbitrary problem for the heat equation with any regular, but not strongly reg-
ular boundary conditions to a sequential solution of two analogous problem, but
already with strongly regular boundary conditions. Herewith the proof does not
depend on whether the system of eigen- and associated functions of the corre-
sponding spectral problem (4)-(5) for an ordinary differential equation arising
in applying the Fourier method forms a basis. The suggested way of the prob-
lem solution can be applied for constructing as classical, and for various types
of generalized solutions. Therefore we will not focus on concrete conditions of
smoothness existing in the formulating the problem of functions.

2 Not Strongly Regular Boundary Conditions

The boundary conditions (5) are regular ([10], p. 73), if one of the following
three conditions holds:

a1d1 − b1c1 �= 0;

a1d1 − b1c1 = 0, |a1| + |b1| > 0, a1d0 + b1c0 �= 0;
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a1 = b1 = c1 = d1 = 0, a0d0 − b0c0 �= 0.

The regular boundary conditions are strongly regular in the first and third cases,
and in the second case under the additional condition:

a1c0 + b1d0 �= [a1d0 + b1c0].

Let us distinguish a class of regular but not strongly regular boundary con-
ditions in the form convenient for us.

Lemma 1. If the boundary conditions (5) are regular, but not strongly regular,
then the boundary conditions (3) can always be reduced to the form

{
a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,

c0u(0, t) + d0u(1, t) = 0,
|a1| + |b1| > 0 (7)

of one of the following four types:

I. a1 + b1 = 0, c0 − d0 �= 0;
II. a1 − b1 = 0, c0 + d0 �= 0;
III. c0 − d0 = 0, a1 + b1 �= 0;
IV. c0 + d0 = 0, a1 − b1 �= 0.

(8)

Proof. According to ([10], p. 73), if the boundary conditions (5) are regular,
but not strongly regular, then c1 = d1 = 0 and

b1c0 + a1d0 �= 0, (9)

a1c0 + b1d0 = ±[a1d0 + b1c0]. (10)

In its turn, condition (10) can be written in the form

(a1 ± b1)(c0 ± d0) = 0,

that is, even one of the equalities of condition (8) holds. If one of this equalities
holds, condition (9) provides the fulfillment of the corresponding inequality from
(8). The lemma is proved.

It is necessary to note that the regularity and strong regularity of boundary
conditions do not depend on coefficients of a differential operator and on coeffi-
cients in boundary conditions. The first variant of the lemma for q(x) ≡ 0 was
firstly formulated in our paper [14]. By virtue of the remark mentioned above,
this result remains true and for an equation with lower-order coefficients. It was
used for solving inverse problems for the heat equation (1).

Further we will consider only the boundary conditions of type (7) satisfying
one of conditions (8).

For applying the suggested method we need the parity of a function of the
potential:

q(x) = q(1 − x). (11)

In what follows we will assume that this condition is fulfilled.
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3 Reduction of the Problem to a Sequential Solution
of Two Initial-Boundary Value Problems
with Non-homogeneous Boundary Conditions
of the Sturm Type

Let us consider the even C(x, t) and odd S(x, t) parts of the function u(x, t) with
respect to x: u(x, t) = C(x, t) + S(x, t), where

2C(x, t) = u(x, t) + u(1 − x, t); 2S(x, t) = u(x, t) − u(1 − x, t). (12)

Herewith for all (x, t) ∈ Ω the equation holds

C(x, t) = C(1 − x, t), S(x, t) = −S(1 − x, t),
Cx(x, t) = −Cx(1 − x, t), Sx(x, t) = Sx(1 − x, t). (13)

It is obvious that for constructing a solution of u(x, t) it is sufficient to determine
the functions C(x, t) and S(x, t) on “a half” of Ω, i.e., in the subdomain

Ω0 = {(x, t) : 0 < 2x < 1, 0 < t < T}.

Taking into account requirements (11), it is easy to make sure that the func-
tions C(x, t) and S(x, t) are solutions of the heat equations in Ω0:

Ct(x, t) = Cxx(x, t) − q(x)C(x, t) + f0(x, t), (14)

St(x, t) = Sxx(x, t) − q(x)S(x, t) + f1(x, t), (15)

and satisfy the initial conditions

C(x, 0) = ϕ0(x), 0 ≤ 2x ≤ 1, (16)

S(x, 0) = ϕ1(x), 0 ≤ 2x ≤ 1. (17)

Here it is denoted

2f0(x, t) = f(x, t) + f(1 − x, t), 2f1(x, t) = f(x, t) − f(1 − x, t),

2ϕ0(x) = ϕ(x) + ϕ(1 − x), 2ϕ1(x) = ϕ(x) − ϕ(1 − x).

Now for the functions C(x, t) and S(x, t) find boundary conditions on the
boundary of the domain Ω0. By satisfying the function u(x, t) = C(x, t)+S(x, t)
to the boundary conditions (7), taking into account (13), we get:

(a1 − b1)Cx(0, t) + (a1 + b1)Sx(0, t) + (a0 + b0)C(0, t)
+(a0 − b0)S(0, t) = 0, (18)

(c0 + d0)C(0, t) + (c0 − d0)S(0, t) = 0.

Under fulfillment of each of conditions (8) of regularity, but not strongly
regularity of the boundary conditions, one of “the main” coefficients of relation
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(18) always turns to zero. Using this property, for each of types (8) we obtain for
C(x, t) and S(x, t) the following boundary conditions on the left-hand boundary
of Ω0:

I. If a1 + b1 = 0, c0 − d0 �= 0, then

(a1 − b1)(c0 − d0)Cx(0, t) − (a0d0 − b0c0)C(0, t) = 0, (19)

S(0, t) =
(c0 + d0)
(c0 − d0)

C(0, t). (20)

II. If a1 − b1 = 0, c0 + d0 �= 0, then

(a1 + b1)(c0 + d0)Sx(0, t) + (a0d0 − b0c0)S(0, t) = 0, (21)

C(0, t) =
(c0 − d0)
(c0 + d0)

S(0, t). (22)

III. If c0 − d0 = 0, a1 + b1 �= 0, then

C(0, t) = 0, (23)

(a1 + b1)Sx(0, t) + (a0 − b0)S(0, t) = −(a1 − b1)Cx(0, t). (24)

IV. If c0 + d0 = 0, a1 − b1 �= 0, then

S(0, t) = 0, (25)

(a1 − b1)Cx(0, t) + (a0 + b0)C(0, t) = −(a1 + b1)Sx(0, t). (26)

Additionally, from relations (13) we get the boundary conditions

Cx(
1
2
, t) = 0, (27)

S(
1
2
, t) = 0 (28)

on the right-hand boundary of the domain Ω0.
Consequently, each of types (8) of the not strongly regular boundary value

problems is reduced to the sequential solution of two boundary value problems:
Problem I. In Ω0 find a solution C(x, t) of equation (14) satisfying

the initial condition (16) and the boundary conditions (19), (27). Using the
obtained C(x, t), in Ω0 find a solution S(x, t) of equation (15) satisfying
the initial condition (17) and the boundary conditions (20), (28).

Problem II. In Ω0 find a solution S(x, t) of equation (15) satisfying
the initial condition (17) and the boundary conditions (21), (28). Using the
obtained S(x, t), in Ω0 find a solution C(x, t) of equation (14) satisfying the
initial condition (16) and the boundary conditions (22), (27).

Problem III. In Ω0 find a solution C(x, t) of equation (14) satisfying
the initial condition (16) and the boundary conditions (23), (27). Using the
obtained C(x, t), in Ω0 find a solution S(x, t) of equation (15) satisfying the
initial condition (17) and the boundary conditions (24), (28).



336 M.A. Sadybekov

Problem IV. In Ω0 find a solution S(x, t) of equation (15) satisfying
the initial condition (17) and the boundary conditions (25), (28). Using the
obtained S(x, t), in Ω0 find a solution C(x, t) of equation (14) satisfying
the initial condition (16) and the boundary conditions (26), (27).

It is easy to see that all new boundary conditions obtained on the boundary
of Ω0 for the functions C(x, t) and S(x, t) will be separated. Therefore they
are the boundary conditions of the Sturm type and consequently, are strongly
regular.

Thus, it is proved.

Theorem 1. A solution of problem (1)–(3) in case of regular, but not strongly
regular conditions for q(x) = q(1 − x) can be always equivalently reduced to
the sequential solution of two boundary value problems with the strongly regular
conditions of the Sturm type.

By the solutions of the boundary problems found in Ω0 a solution of problem
(1)-(3) is constructed by the formula

u(x, t) =
{

C(x, t) + S(x, t), 2x ≤ 1
C(1 − x, t) + S(1 − x, t), 2x ≥ 1.

Herewith the smoothness of the obtained solution in the whole domain Ω is
provided by conditions (13).

By using this theorem, the existence of the solution of problem (1)-(3), its
uniqueness and stable dependence on the initial data in the various considered
classes of solutions can be obtained from theorems for corresponding problems
with strongly regular boundary conditions.

Particularly, the Samarskii-Ionkin problem (1), (2), (6) is reduced to the
sequential solution of two boundary value problems. First of all, in Ω0 we solve
equation (14) with the initial condition (16) and the homogeneous boundary
conditions of Neumann

Cx(0, t) = 0, Cx(
1
2
, t) = 0.

Further, using the found value C(x, t), in Ω0 we find a solution of equation (15)
satisfying the initial condition (17) and the inhomogeneous boundary conditions
of Dirichlet

S(0, t) = C(0, t), S(
1
2
, t) = 0.

The method of separating solutions onto the even and odd parts is not new.
Earlier it was successfully applied by, for example, E.I. Moissev in [11] for solving
one non-classical boundary value problem of type of the Tricomi generalized
problem for an equation of elliptic-hyperbolic type; it was applied by T.Sh.
Kal’menov in [12] for constructing the system of eigenfunctions of a boundary
value problem with displacement for a wave equation; and it was applied in [13]
for proving the well-posedness of the boundary value problem of Bitsadze for a
multidimensional wave equation on a half of a characteristic cone.
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This method was worked out by us and firstly applied in [14] in solving
inverse problems for the heat equation (1). In [14] we considered a class of
problems modeling the process of determining the temperature and density of
heat sources given through initial and finite temperature. Their mathematical
statements involve inverse problems for the heat equation, in which solving the
equation, we have to find the unknown right-hand side depending only on the
space variable. We proved the existence and uniqueness of classical solutions to
the problem. We solved the problem independently on whether the corresponding
spectral problem (for the operator of multiple differentiation with not strongly
regular boundary conditions) has a basis of generalized eigenfunctions.

Later, other problems were solved by this method. For example, in [14,15]
we considered one family of problems simulating the determination of target
components and density of sources from given values of the initial and final states.
The mathematical statement of these problems leads to the inverse problem for
the diffusion equation, where it is required to find not only a solution of the
problem, but also its right-hand side that depends only on a spatial variable. One
of specific features of the considered problems is that the system of eigenfunctions
of the multiple differentiation operator subject to boundary conditions of the
initial problem does not have the basis property. The other specific feature of
the considered problems is that an unknown function is simultaneously present
both in the right-hand side of the equation and in conditions of the initial and
final redefinition. We proved the unique existence of a generalized solution to
the mentioned problem.

This method also allowed constructing new stable difference schemes for solv-
ing heat problems. In [16] we proposed a new method of solving non-local prob-
lems for the heat equation with finite difference method. The main important
feature of these problems is their non-self-adjointness. This non-self-adjointness
causes major difficulties in their analytical and numerical solving. The problems,
which boundary conditions do not possess strong regularity, are less studied. The
scope of study of the paper justifies possibility of building a stable difference
scheme with weights for above-mentioned type of problems.

We need to note once more that by this method problem (1)-(3) can be solved
independently on whether the corresponding spectral problem (4), (5) has the
basis property of root functions.

However, the main difficulty is that the second of two obtained boundary
value problems is a problem with non-homogeneous boundary conditions. For its
solution it is required that the input data of the problem have such smoothness
that traces of the solution of the first of two problems (for example, Sx(0, t))
have higher smoothness. For this we have to require the smoothness of the input
data which will be higher than it is required in similar problems.

For correcting such difficulty, in the next section we suggest modification of
the method under which problems with homogeneous boundary conditions are
obtained.
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4 Reduction of the Problem to a Sequential
Solution of Two Initial-Boundary Value Problems
with Homogeneous Boundary Conditions
of the Sturm Type

The method of solution, consisting in reducing the initial problem to a sequential
solution of two initial-boundary value problems with homogeneous boundary
conditions of the Sturm type with respect to a spatial variable, will be formulated
separately for each of types mentioned in Lemma 1.

4.1 Reduction of the Problem of Type I to a Sequential
Solution of Two Problems with Homogeneous Boundary
Conditions of the Sturm Type

Consider a problem of type I. Since a1 + b1 = 0, and herewith |a1| + |b1| > 0,
then without loss of generality we can assume a1 = −b1 = 1. Since c0 − d0 �= 0,
then without loss of generality we can assume c0 − d0 = −1. To simplify writing
(omitting additional indexes) we denote c0 = c. Then d0 = 1 + c.

Therefore the problem of type I can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the heat

equation (1) satisfying the initial condition (2) and boundary conditions of type
I: {

ux (0, t) − ux (1, t) + au (0, t) + bu (1, t) = 0,
cu (0, t) + (1 + c) u (1, t) = 0.

(29)

Here the coefficients a, b, c of the boundary condition are arbitrary complex num-
bers.

To solve the problem we introduce the auxiliary functions:

v (x, t) = [u (x, t) + u (1 − x, t)] /2, (30)

w (x, t) = u (x, t) − [1 − (1 + 2c) (2x − 1)] v (x, t) . (31)

Note that if the solution has been searched in the form of the sum of even
and odd parts u (x, t) = C (x, t) + S (x, t) in the initial version of the method
(see section 3), then now in a variant suggested by us:

• the function v (x, t) is even on the interval 0 < x < 1, and is the even part of
the function u (x, t);

• and the function w (x, t) is not the odd part of the function u (x, t), though
it is the odd function.

The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1
2

[u (x, t) − u (1 − x, t)] + (1 + 2c) (2x − 1) v (x, t) , (32)

that is, in the form of the sum of the odd part 1
2 [u (x, t) − u (1 − x, t)] of the

function u (x, t) and of the summand (1 + 2c) (2x − 1) v (x, t), which (it is easy
to verify) is also the odd function on the whole interval 0 < x < 1.
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From (31) it is easy to see that if we find the functions v (x, t) and w (x, t),
then the solution of the initial problem can be reestablished by the formula

u (x, t) = w (x, t) + [1 − (1 + 2c) (2x − 1)] v (x, t) . (33)

Thus, if in the previous variant the solution is represented in the form of the
sum of even and odd parts of the solution, then in the new variant suggested
by us it is not quite so. In representation (33) the first summand is even on
the interval 0 < x < 1, and the second summand is neither even, nor odd for
1 + 2c �= 0.

It is easy to make sure that in virtue of the symmetry conditions (11) the
functions v (x, t) and w (x, t) are solutions of the heat equations, satisfy the initial
and homogeneous boundary conditions in Ω.

For the function v (x, t) we obtain the initial-boundary value problem which
we need to solve first:

vt (x, t) − vxx (x, t) + q (x) v (x, t) = f0 (x, t) , (34)

v (x, 0) = ϕ0 (x) , 0 ≤ x ≤ 1, (35)

vx (0, t) + [a (1 + c) − bc] v (0, t) = 0, 0 ≤ t ≤ T, (36)

vx (1, t) − [a (1 + c) − bc] v (1, t) = 0, 0 ≤ t ≤ T. (37)

Here we use the notations

f0 (x, t) =
1
2

[f (x, t) + f (1 − x, t)] , ϕ0 (x) =
1
2

[ϕ (x) + ϕ (1 − x)] . (38)

Having the solution v (x, t) of this problem, for the function w (x, t) we get
the initial-boundary value problem which we need to solve second:

wt (x, t) − wxx (x, t) + q (x) w (x, t) = f1(x, t), (39)

w (x, 0) = ϕ1 (x) , 0 ≤ x ≤ 1, (40)

w (0, t) = 0, 0 ≤ t ≤ T, (41)

w (1, t) = 0, 0 ≤ t ≤ T. (42)

Here we use the notations

f1 (x, t) = f (x, t) − [1 − (1 + 2c) (2x − 1)] f0 (x, t) − 4 (1 + 2c) vx(x, t), (43)

ϕ1 (x) = ϕ (x) − [1 − (1 + 2c) (2x − 1)] ϕ0 (x) . (44)

By direct checking from (38) and (44) it is easy to make sure that if the initial
data ϕ (x) of problem (1), (2), (29) satisfy necessary (classical and well-known)
consistency conditions, then the initial data ϕ0 (x) and ϕ1 (x) also satisfy the
necessary consistency conditions of their corresponding problems.

Thus the solution of the problem of type I (1), (2), (29) is reduced to the
sequential solution of two problems with homogeneous boundary conditions of
the Sturm type with respect to the spatial variable:
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• At first for the function v (x, t) we solve the initial-boundary value problem
(34) – (37) with the homogeneous boundary conditions of the Sturm type
with respect to the spatial variable;

• Then, using the obtained value v (x, t), for the function w (x, t) we solve the
initial-boundary value problem (39) – (42) with the homogeneous boundary
conditions of the Sturm type (in this particular case they are the Dirichlet
conditions) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of
the problem of type I (1), (2), (29) in classical and generalized senses follows
from the well-known theorems on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result
at once for all the four types of not strongly regular boundary conditions at the
end of the section.

4.2 Reduction of the Problem of Type II to a Sequential
Solution of Two Problems with Homogeneous Boundary
Conditions of the Sturm Type

Consider a problem of type II. Since a1 − b1 = 0, and herewith |a1| + |b1| > 0,
then without loss of generality we can assume a1 = b1 = 1. Since c0 + d0 �= 0,
then without loss of generality we can assume c0 + d0 = 1. To simplify writing
(omitting additional indexes) we denote c0 = c. Then d0 = 1 − c.

Therefore the problem of type I can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the heat

equation (1) satisfying the initial condition (2) and boundary conditions of type
II: {

ux (0, t) + ux (1, t) + au (0, t) + bu (1, t) = 0,
cu (0, t) + (1 − c) u (1, t) = 0.

(45)

Here the coefficients a, b, c of the boundary condition are arbitrary complex
numbers.

We introduce the auxiliary functions:

v (x, t) =
1
2

[u (x, t) − u (1 − x, t)] , (46)

w (x, t) = u (x, t) − [1 − (1 − 2c) (2x − 1)] v (x, t) . (47)

Note that if the solution has been searched in the form of the sum of even
and odd parts u (x, t) = C (x, t) + S (x, t) in the initial version of the method
(see section 3), then in a new variant suggested by us:

• the function v (x, t) is odd on the interval 0 < x < 1, and is the odd part of
the function u (x, t);

• and the function w (x, t) is not the even part of the function u (x, t), though
it is the even function.
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The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1
2

[u (x, t) + u (1 − x, t)] + (1 − 2c) (2x − 1) v (x, t) , (48)

that is, in the form of the sum of the even part 1
2 [u (x, t) − u (1 − x, t)] of the

function u (x, t) and the summand (1 − 2c) (2x − 1) v (x, t), which (it is easy to
verify) is also the even function on the interval 0 < x < 1.

From (47) it is easy to see that we find the functions v (x, t) and w (x, t),
then the solution of the initial problem can be reestablished by the formula

u (x, t) = w (x, t) + [1 − (1 − 2c) (2x − 1)] v (x, t) . (49)

Thus if in the previous variant of the method the solution is represented
in the form of the sum of the even and odd parts of the solution, then in the
new variant suggested by us it is not quite so. In representation (49) the first
summand is even on the interval 0 < x < 1, and the second summand is neither
even, nor odd for 1 − 2c �= 0.

For the function v (x, t) we obtain the initial-boundary value problem which
we need to solve first:

vt (x, t) − vxx (x, t) + q (x) v (x, t) = f0 (x, t) , (50)

v (x, 0) = ϕ0 (x) , 0 ≤ x ≤ 1, (51)

vx (0, t) + [a (1 − c) − bc] v (0, t) = 0, 0 ≤ t ≤ T, (52)

vx (1, t) − [a (1 − c) − bc] v (1, t) = 0, 0 ≤ t ≤ T. (53)

Here we use the notations

f0 (x, t) =
1
2

[f (x, t) − f (1 − x, t)] , ϕ0 (x) =
1
2

[ϕ (x) − ϕ (1 − x)] . (54)

Having the solution v (x, t) of this problem, for the function w (x, t) we get
the initial-boundary value problem which we need to solve second:

wt (x, t) − wxx (x, t) + q (x) w (x, t) = f1(x, t), (55)

w (x, 0) = ϕ1 (x) , 0 ≤ x ≤ 1, (56)

w (0, t) = 0, 0 ≤ t ≤ T, (57)

w (1, t) = 0, 0 ≤ t ≤ T. (58)

Here we use the notations

f1 (x, t) = f (x, t) − [1 − (1 − 2c) (2x − 1)] f0 (x, t) + 4 (1 − 2c) vx(x, t), (59)

ϕ1 (x) = ϕ (x) − [1 − (1 − 2c) (2x − 1)] ϕ0 (x) . (60)

By direct checking from (54) and (60) it is easy to make sure that if the initial
data ϕ (x) of problem (1), (2), (45) satisfy necessary consistency conditions, then
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the initial data ϕ0 (x) and ϕ1 (x) also satisfy the consistency conditions of their
corresponding problems.

Thus the solution of the problem of type II (1), (2), (45) is reduced to the
sequential solution of two problems with homogeneous boundary conditions of
the Sturm type with respect to a spatial variable:

• At first for the function v (x, t) we solve the initial-boundary value problem
(50)–(53) with the homogeneous boundary conditions of the Sturm type ( in
this case they are the Dirichlet conditions) with respect to the spatial variable;

• Then, using the obtained value v (x, t), for the function w (x, t) we solve the
initial-boundary value problem (55)–(58) with the homogeneous boundary
conditions of the Sturm type (in this case with conditions of the Dirichlet
problem) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of
the problem of type II (1), (2), (45) in classical and generalized senses follows
from the well-known theorems on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result
at once for all the four types of not strongly regular boundary conditions at the
end of the section.

4.3 Reduction of the Problem of Type III to a Sequential
Solution of Two Problems with Homogeneous Boundary
Conditions of the Sturm Type

Consider a problem of type III. Since c0 + d0 = 0, and herewith |c0| + |d0| > 0,
then without loss of generality we can assume c0 = −d0 = 1. Since a1 − b1 �= 0,
then without loss of generality we can assume a1 − b1 = −1. To simplify writing
(omitting additional indexes) we denote a1 = c. Then b1 = 1 + c.

Therefore the problem of type III can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the heat

equation (1) satisfying the initial condition (2) and the boundary condition of
type III: {

cux (0, t) + (1 + c) ux (1, t) + au (0, t) = 0,
u (0, t) − u (1, t) = 0.

(61)

Here the coefficients a, b, c of the boundary condition are arbitrary complex
numbers.

We introduce the auxiliary functions:

v (x, t) =
1
2

[u (x, t) − u (1 − x, t)] , (62)

w (x, t) = u (x, t) − [1 − (1 + 2c) (2x − 1)] v (x, t) . (63)

Note that if the solution has been searched in the form of a sum of even and
odd parts u (x, t) = C (x, t)+S (x, t) in the initial version of the method (section
3), then in a variant suggested by us:
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• the function v (x, t) is odd on the interval 0 < x < 1, and is the odd part of
the function u (x, t);

• and the function w (x, t) is not the even part of the function u (x, t), though
it is the even function.

The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1
2

[u (x, t) + u (1 − x, t)] − (1 + 2c) (2x − 1) v (x, t) , (64)

that is, in the form of the sum of the even part 1
2 [u (x, t) + u (1 − x, t)] of the

function u (x, t) and the summand − (1 + 2c) (2x − 1) v (x, t), which (it is easy
to verify) is also the even function on the interval 0 < x < 1.

From (63) it is easy to see that if we find the functions v (x, t) and w (x, t),
then the solution of the initial problem can be reestablished by the formula

u (x, t) = w (x, t) + [1 − (1 + 2c) (2x − 1)] v (x, t) . (65)

Thus if in the previous variant of the method the solution is represented
in the form of the sum of the even and odd parts of the solution, then in the
new variant suggested by us it is not quite so. In representation (65) the first
summand is even on the interval 0 < x < 1, and the second summand is neither
even, nor odd for (1 + 2c) �= 0.

For the function v (x, t) we obtain the initial-boundary value problem which
we need to solve first:

vt (x, t) − vxx (x, t) + q (x) v (x, t) = f0 (x, t) , (66)

v (x, 0) = ϕ0 (x) , 0 ≤ x ≤ 1, (67)

v (0, t) = 0, 0 ≤ t ≤ T, (68)

v (1, t) = 0, 0 ≤ t ≤ T. (69)

Here we use the notations

f0 (x, t) =
1
2

[f (x, t) − f (1 − x, t)] , ϕ0 (x) =
1
2

[ϕ (x) − ϕ (1 − x)] . (70)

Having the solution v (x, t) of this problem, for the function w (x, t) we get
the initial-boundary value problem which we need to solve second:

wt (x, t) − wxx (x, t) + q (x) w (x, t) = f1(x, t), (71)

w (x, 0) = ϕ1 (x) , 0 ≤ x ≤ 1, (72)

wx (0, t) − aw (0, t) = 0, 0 ≤ t ≤ T, (73)

wx (1, t) + aw (1, t) = 0, 0 ≤ t ≤ T. (74)

Here we use the notations

f1 (x, t) = f (x, t) − [1 − (1 + 2c) (2x − 1)] f0 (x, t) − 4(1 + 2c)vx(x, t), (75)
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ϕ1 (x) = ϕ (x) − [1 − (1 + 2c) (2x − 1)] ϕ0 (x) . (76)

By direct checking from (70) and (76) it is easy to make sure that if the initial
data ϕ (x) of problem (1), (2), (61) satisfy necessary consistency conditions, then
the initial data ϕ0 (x) and ϕ1 (x) also satisfy the necessary consistency conditions
of their corresponding problems.

Thus the solution of the problem of type III (1), (2), (61) is reduced to the
sequential solution of two problems with homogeneous boundary conditions of
the Sturm type with respect to a spatial variable:

• At first for the function v (x, t) we solve the initial-boundary value problem
(66)–(69) with the homogeneous boundary conditions of the Sturm type (in
this case with conditions of the Dirichlet problem) with respect to the spatial
variable;

• Then, using the obtained value v (x, t), for the function w (x, t) we solve the
initial-boundary value problem (71)–(74) with the homogeneous boundary
conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of
the problem of type III (1), (2), (61) in classical and generalized senses follows
from the well-known theorems on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result
at once for all the four types of not strongly regular conditions at the end of the
section.

4.4 Reduction of the Problem of Type IV to a Sequential
Solution of Two Problems with Homogeneous Boundary
Conditions of the Sturm Type

Consider a problem of type IV. Since c0 − d0 = 0, and herewith |c0| + |d0| > 0,
then without loss of generality we can assume c0 = d0 = 1. Since a1 + b1 �= 0,
then without loss of generality we can assume a1 + b1 = 1. To simplify writing
(omitting additional indexes) we denote a1 = c. Then b1 = 1 − c.

Therefore the problem of type IV can be formulated in the form:
In Ω = {(x, t) , 0 < x < 1, 0 < t < T} find a solution u (x, t) of the heat

equation (1) satisfying the initial condition (2) and the boundary conditions of
type IV: {

cux (0, t) + (1 − c) ux (1, t) + au (0, t) = 0,
u (0, t) + u (1, t) = 0.

(77)

Here the coefficients a, b, c of the boundary condition are arbitrary complex
numbers.

We introduce the auxiliary functions:

v (x, t) =
1
2

[u (x, t) + u (1 − x, t)] , (78)

w (x, t) = u (x, t) − [1 − (1 − 2c) (2x − 1)] v (x, t) . (79)



Initial-Boundary Value Problem for a Heat Equation . . . 345

Note that if the solution has been searched in the form of the sum of the even
and odd parts u (x, t) = C (x, t) + S (x, t) in the initial version of the method
(section 3), then in the variant suggested by us:

• the function v (x, t) is even on the interval 0 < x < 1, and is the even part of
the function u (x, t);

• and the function w (x, t) is not the odd part of the function u (x, t), though
it is the odd function.

The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1
2

[u (x, t) − u (1 − x, t)] − (1 − 2c) (2x − 1) v (x, t) , (80)

that is, in the form of the sum of the odd part 1
2 [u (x, t) − u (1 − x, t)] of the

function u (x, t) and the summand − (1 − 2c) (2x − 1) v (x, t), which (it is easy
to verify) is also the odd function on the interval 0 < x < 1.

From (79) it is easy to see that if we find the functions v (x, t) and w (x, t),
then the solution of the initial problem can be reestablished by the formula

u (x, t) = w (x, t) + [1 − (1 − 2c) (2x − 1)] v (x, t) . (81)

Thus if in the previous variant of the method the solution is represented
in the form of the sum of the even and odd parts of the solution, then in the
new variant suggested by us it is not quite so. In representation (81) the first
summand is odd on the interval 0 < x < 1, and the second summand is neither
even, nor odd for (1 − 2c) �= 0.

For the function v (x, t) we obtain the initial-boundary value problem which
we need to solve first:

vt (x, t) − vxx (x, t) + q (x) v (x, t) = f0 (x, t) , (82)

v (x, 0) = ϕ0 (x) , 0 ≤ x ≤ 1, (83)

v (0, t) = 0, 0 ≤ t ≤ T, (84)

v (1, t) = 0, 0 ≤ t ≤ T. (85)

Here we use the notations

f0 (x, t) =
1
2

[f (x, t) + f (1 − x, t)] , ϕ0 (x) =
1
2

[ϕ (x) + ϕ (1 − x)] . (86)

Having the solution v (x, t) of this problem, for the function w (x, t) we get
the initial-boundary value problem which we need to solve second:

wt (x, t) − wxx (x, t) + q (x) w (x, t) = f1(x, t), (87)

w (x, 0) = ϕ1 (x) , 0 ≤ x ≤ 1, (88)

wx (0, t) + aw (0, t) = 0, 0 ≤ t ≤ T, (89)
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wx (1, t) − aw (1, t) = 0, 0 ≤ t ≤ T. (90)

Here we use the notations

f1 (x, t) = f (x, t) − [1 − (1 − 2c) (2x − 1)] f0 (x, t) − 4(1 − 2c)vx(x, t), (91)

ϕ1 (x) = ϕ (x) − [1 − (1 − 2c) (2x − 1)] ϕ0 (x) . (92)

By direct checking from (86) and (92) it is easy to make sure that if the initial
data ϕ (x) of problem (1), (2), (77) satisfy necessary consistency conditions, then
the initial data ϕ0 (x) and ϕ1 (x) also satisfy the necessary consistency conditions
of their corresponding problems.

Thus the solution of the problem of type IV (1), (2), (77) is reduced to the
sequential solution of two problems with homogeneous boundary conditions of
the Sturm type with respect to a spatial variable:

• At first for the function v (x, t) we solve the initial-boundary value problem
(82)–(85) with the homogeneous boundary conditions of the Sturm type (in
this case with boundary conditions of Dirichlet) with respect to the spatial
variable;

• Then using the obtained value v (x, t), for the function w (x, t) we solve the
initial-boundary value problem (87)–(90) with the homogeneous boundary
conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of
the problem of type IV (1), (2), (77) in classical and generalized senses follows
from the well-known theorems on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this result as
well as the results of sections 4.1, 4.2, 4.3 at once for all the four types of not
strongly regular boundary conditions in the next subsection.

4.5 Formulation of the Main Result on Solvability of the Heat
Equation with not Strongly Regular Boundary Conditions

For completeness of exposition we formulate the considered problem:
In Ω = {(x, t) , 0 < x < 1, 0 < t < T} consider a problem on finding the

solution u (x, t) of the heat equation

ut (x, t) − uxx (x, t) + q (x) u (x, t) = f (x, t) , (1)

satisfying the initial condition

u (x, 0) = ϕ (x) , 0 ≤ x ≤ 1 (2)

and the not strongly regular boundary conditions of the general form
{

a1ux (0, t) + b1ux (1, t) + a0u (0, t) + b0u (1, t) = 0,
c0u (0, t) + d0u (1, t) = 0.

(7)
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The coefficients ak, bk, ck, dk, (k = 0, 1) of the boundary condition (7) are
arbitrary complex numbers, and ϕ (x) and f (x, t) are given functions.

We consider the boundary conditions which are regular, but not strongly
regular, that is, cases when one of the conditions holds:

I. a1 + b1 = 0, c0 − d0 �= 0;
II. a1 − b1 = 0, c0 + d0 �= 0;
III. c0 − d0 = 0, a1 + b1 �= 0;
IV. c0 + d0 = 0, a1 − b1 �= 0.

(8)

As shown in sections 4.1–4.4, the solution of the problem with the not strongly
regular boundary conditions of all the four types has been reduced to the sequen-
tial solution of two problems with the homogeneous boundary conditions of the
Sturm type with respect to the spatial variable. Herewith one of these problems
has the Dirichlet boundary conditions with respect to the spatial variable, that
is, it is a classical first initial-boundary value problem.

On the basis of this fact, using the known results from [1], now we can
easily formulate a theorem on well-posedness of the general problem with the
not strongly regular boundary conditions with respect to the spatial variable.

We formulate the main result in the form of two theorems.

Theorem 2. Let q (x) = q (1 − x) and let one of conditions (8) hold. That
is, the boundary conditions (7) are regular, but not strongly regular. If ϕ (x) ∈
C2[0, 1], f(x, t) ∈ C2

(
Ω

)
and the functions ϕ (x) , f(x, t) satisfy the boundary

conditions (7), then there exists a unique classical solution u(x, t) ∈ C2,1
x,t

(
Ω

)
of

problem (1), (2), (7).

Theorem 3. Let q (x) = q (1 − x) and let one of conditions (8) hold. That
is, the boundary conditions (7) are regular, but not strongly regular. If ϕ (x) ∈
W 2

2 (0, 1) and satisfies the boundary conditions (7), then for any f (x, t) ∈ L2(Ω)
there exists a unique generalized solution u(x, t) ∈ W 2,1

2 (Ω) of problem (1), (2),
(7).

Thus in the present paper the method suggested by us in [11] has been modi-
fied such way that it can be applied to an equation with lower-order coefficients.
Herewith the solution of problem (1), (2), (7) in case of regular, but not strongly
regular conditions can be always equivalently reduced to the sequential solution
of two problems with the strongly regular homogeneous boundary conditions of
the Sturm type. Thus we have no need in having the estimate of traces of solu-
tions of boundary value problems with boundary conditions of the Sturm type
with respect to the of spatial variable.

Note that by this method, problem (1), (2), (7) can be solved regardless
whether a corresponding spectral problem for an operator of multiple differenti-
ation with the not strongly regular boundary conditions has the basis property
of root functions.

It is easy to see that the suggested method can be used in solving a wide
range of problems for equations of the form

A(t)u(x, t) = uxx(x, t) − q(x)u(x, t) + f(x, t)
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with the operator coefficient A(t) and with the regular, but not strongly regu-
lar boundary conditions (7). For example, initial-boundary value problems for
hyperbolic equations belong to the problems of such type [17].
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Abstract. In this paper we prove that the first s-number of the Cauchy-
Dirichlet heat operator is minimized in the equilateral cylinder among
all Euclidean triangular cylindric domains of a given volume as well
as we obtain spectral geometric inequalities of the Cauchy-Dirichlet-
Neumann heat operator in the right and equilateral triangular cylin-
der. It is also established that maximum of the second s-number of the
Cauchy-Neumann heat operator is reached by the equilateral triangular
cylinder among all triangular cylinders of given volume. In addition, we
prove that the second s-number of the Cauchy-Neumann heat opera-
tor is maximized in the circular cylinder among all cylindrical Lipschitz
domains of fixed volume.

Keywords: Isoperimetric inequalities · Non-selfadjoint operator ·
S-Number · Polya inequality · Heat operator

1 Introduction

In G. Pólya’s work [6] he proves that the first eigenvalue of the Dirichlet Lapla-
cian is minimized in the equilateral triangle among all triangles of given area.
Our aim (see, e.g. [3]) is to extend those similar known results of the self-adjoint
operators to non-self adjoint operators. Thus, first of all, we prove a Pólya type
inequality for the Cauchy-Dirichlet heat operator, that is, the first s-number of
the Cauchy-Dirichlet heat operator is minimized in the equilateral triangular
cylinder among all triangular cylinders of given volume.

In [11] the author proves certain (isoperimetric) eigenvalue inequalities for
the mixed Dirichlet-Neumann Laplacian operator in the right and equilateral
triangles. As many other isoperimetric inequalities these inequalities have phys-
ical interpretation. Note that one can also think about eigenvalues as related to
the time dependent survival probability of the Brownian motion on a triangle,
reflecting on the Neumann boundary, and dying on the Dirichlet part (see [11]).
In this context, it is clear that enlarging the Dirichlet part leads to a shorter sur-
vival time. It is also reasonable, that having the Dirichlet condition on one long

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_33
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side gives a larger chance of dying, than having a shorter Dirichlet side. In this
paper we generalize these inequalities for the mixed Cauchy-Dirichlet-Neumann
heat operator in the right and equilateral triangular cylinders.

R. S. Laugersen and B. Siudeja [4] proved that the first nonzero Neumann
Laplacian eigenvalue is shown to be maximal for the equilateral triangle among
all triangles of given area. Below we also obtain a version of R. S. Laugersen and
B. Siudeja’s inequality for the Cauchy-Neumann heat operator in the triangular
cylinders.

The Szegö-Weinberger inequality (see [2,12,14]) shows that the second eigen-
value of the Laplacian with the Neumann boundary condition is maximized in
a ball among all Lipschitz domains in Rd, d ≥ 2, of the same measure. In this
paper analogue of Szegö-Weinberger inequality is also proved for the heat oper-
ator. That is, we prove that the second s-number of the Cauchy-Neumann heat
operator is maximized in the circular cylinder among all Euclidean cylindric
Lipschitz domains of a given volume. Spectral isoperimetric inequalities have
been mainly studied for the Laplacian related operators, for instance, for the
p-Laplacians and bi-Laplacians. However, there also many papers on this sub-
ject for other type compact operators. For instance, in the recent work [7] the
authors proved Rayleigh-Faber-Krahn type inequality and Hong-Krahn-Szegö
type inequality for the Riesz potential (see also [8–10]). All these works were
for self-adjoint operators. As mentioned our main goal is to extend those known
isoperimetric inequalities for non-self-adjoint operators (see, e.g. [3]). Summa-
rizing our main results of the present paper, we prove the following facts:

• The first s-number of the Cauchy-Dirichlet heat operator is minimized in the
equilateral triangular cylinder among all triangular cylinders of given area.

• Isoperimetric inequalities of s-numbers for the mixed Cauchy-Dirichlet-
Neumann heat operator in the right and equilateral triangular cylinders.

• The second s-number of the Cauchy-Neumann heat operator is maximized in
the equilateral triangular cylinder among all triangular cylinders with given
area.

• The second s-number is maximized in the circular cylinder among all cylindric
Lipschtiz domains of the same volume.

In Section 2 we give preliminary discussions and fix notations. In Section 3 we
present main results of this paper and their proofs. In Section 4 we give some
geometric extremum results on the circular cylinder.

2 Preliminaries

Let D = Ω × (0, 1) be cylindrical domain, where Ω ⊂ R2 is a triangle. We
consider (see, for example, [13]) the Cauchy-Dirichlet and Cauchy-Neumann heat
operators ♦D, ♦N : L2(D) → L2(D) respectively, by the formulae

♦Du(x, t) :=

⎧
⎨

⎩

∂u(x,t)
∂t − Δxu(x, t),

u(x, 0) = 0, x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

(1)
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and

♦Nu(x, t) :=

⎧
⎨

⎩

∂u(x,t)
∂t − Δxu(x, t),

u(x, 0) = 0, x ∈ Ω,
∂u(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),
(2)

Here ∂Ω is the boundary of Ω and ∂
∂n is the normal derivative on the bound-

ary. The operators ♦D and ♦N are compact, but these are non-selfadjoint oper-
ators in L2(D). Adjoint operators ♦∗

D and ♦∗
N to the operators ♦D and ♦N can

be presented as

♦∗
Dv(x, t) =

⎧
⎨

⎩

−∂v(x,t)
∂t − Δxv(x, t),

v(x, 1) = 0, x ∈ Ω,
v(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

(3)

and

♦∗
Nv(x, t) =

⎧
⎨

⎩

−∂v(x,t)
∂t − Δxv(x, t),

v(x, 1) = 0, x ∈ Ω,
∂Δxv(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1).
(4)

Recall that if A is a compact operator, then the eigenvalues of the operator
(A∗A)1/2, where A∗ is the adjoint operator to A, are called s-numbers of the
operator A (see, e.g. [1]).

A direct calculation gives that those operators ♦∗
D♦D and ♦∗

N♦N have the
following formulae

♦∗
D♦Du(x, t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t),
u(x, 0) = 0, x ∈ Ω,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

Δxu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

(5)

and

♦∗
N♦Nu(x, t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t),
u(x, 0) = 0, x ∈ Ω,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ Ω,

∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

∂Δxu(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1).

(6)

Let D� = � × (0, 1) be a cylindrical domain, where � ⊂ R2 is a right
triangle with the sides of length L ≥ M ≥ S (that is, with the boundary ∂� =
{L,M,S}). We also denote by L, M, S sides of the right triangle with respect to
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their lengths (cf. [11]). We consider the heat operator with the Cauchy-Dirichlet-
Neumann problem ♦� : L2(D�) → L2(D�) in the form

♦�u(x, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t − Δxu(x, t),

u(x, 0) = 0, x ∈ �,
u(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1)

∂u(x,t)
∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1).

(7)

Here D ∈ {L,M,S} means D is one of the sides, where we set the Dirichlet
condition. Its adjoint operator ♦∗

� can be presented as

♦∗
�v(x, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

−∂v(x,t)
∂t − Δxv(x, t),

u(x, 1) = 0, x ∈ �,
Δv(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1)

∂Δv(x,t)
∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1).

(8)

A direct calculation gives that the operator ♦∗
�♦� has the following formula

♦∗
�♦�u(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t),
u(x, 0) = 0, x ∈ �,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ �,

u(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1),
∂u(x,t)

∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1),
Δxu(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1),

∂Δxu(x,t)
∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1).

(9)

Let sN
1 and sN

2 be the first and second s-numbers of the Cauchy-Neumann
problem, respectively. Let sside

1 be first s-number of the spectral problem with the
Dirichlet condition to this side. That is, sSL

1 would correspond to the Dirichlet
conditions imposed on the shortest and longest sides. sD

1 is the first s-number
of the Cauchy-Dirichlet heat operator. Thus, we will use these notations in the
following sections.

3 Main Results and Their Proofs

We denote an equilateral triangular cylinder by C� = Ω∗×(0, 1), where Ω∗ ⊂ R2

is an equilateral triangle. Here and after | · | is measure of a domain.
Let us introduce the operators TD, LD : L2(Ω) → L2(Ω) respectively, by the

formulas

TDz(x) =
{ −Δz(x) = μz(x),

z(x) = 0, x ∈ ∂Ω.
(10)

and

LDz(x) =

⎧
⎨

⎩

Δ2z(x) = λz(x),
z(x) = 0, x ∈ ∂Ω,

Δz(x) = 0, x ∈ ∂Ω.
(11)
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Lemma 1. The first eigenvalue of the operator LD is minimized in the equilat-
eral triangle among all triangles with given area.

Proof. Pólya’s theorem [6] for the operator TD says that the equilateral triangle
is minimizer of the first Dirichlet Laplacian eigenvalue among all triangles Ω of
the same area with |Ω∗| = |Ω|. It is easy to see that

T 2
Dz(x) =

⎧
⎨

⎩

Δ2z(x) = μ2z(x),
z(x) = 0, x ∈ ∂Ω,

Δz(x) = 0, x ∈ ∂Ω.
(12)

That is, T 2
D = LD and μ2 = λ. Thus, we establish λ1(Ω∗) = μ2

1(Ω
∗) ≤ μ2

1(Ω) =
λ1(Ω). Thus, λ1(Ω∗) ≤ λ1(Ω).

Theorem 1. The first s-number of the operator ♦D is minimized in the equi-
lateral triangular cylinder among all triangular cylinders of given volume, that
is,

sD
1 (C�) ≤ sD

1 (D),

with |D| = |C�|.
Proof. Let u be a nonnegative, measurable function on R2, and let V be a line
through the origin of R2. Choose an orthogonal coordinate system in R2 such
that the x1-axis is perpendicular to V = x2.

Recall that a nonnegative, measurable function u�(x|V ), x = (x1, x2), on
R2 is called a Steiner symmetrization with respect to V of the function u(x),
if u�(x1, x2) is a symmetric decreasing rearrangement with respect to x1 of
u(x1, x2) for each fixed x2. The Steiner symmetrization (with respect to the
x1-axis) Ω� of a measurable set Ω is defined in the following way: if we write
x = (x1, y) with y ∈ R2, and let Ωz = {x1 : (x1, y) ∈ Ω}, then

Ω� := {(x1, y) ∈ R × R : x1 ∈ Ω∗
y},

where Ω∗
y is a symmetric rearrangement of Ωy.

The domain D = {(x, t)|x ∈ Ω ⊂ R2, t ∈ (0, 1)} is a cylindrical domain
and we can have u(x, t) = X(x)ϕ(t), so that u1(x, t) = X1(x)ϕ1(t) is the first
eigenfunction of the operator ♦∗

D♦D, where ϕ1(t) and X1(x) are the first eigen-
functions of variables t and x, respectively. Therefore, we have

− ϕ
′′
1 (t)X1(x) + ϕ1(t)Δ2X1(x) = sD

1 ϕ1(t)X1(x). (13)

By the variational principle for the operator ♦∗
D♦D and after a straightforward

calculation, we obtain

sD
1 (D) =

− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω
X2

1 (x)dx +
∫ 1

0
ϕ2
1(t)dt

∫

Ω
(ΔX1(x))2dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω
X2

1 (x)dx

=
− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω
X2

1 (x)dx +
∫ 1

0
ϕ2
1(t)dt

∫

Ω
(−μ1(Ω)X1(x))2dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω
X2

1 (x)dx
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=
− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω
X2

1 (x)dx + μ2
1(Ω)

∫ 1

0
ϕ2
1(t)dt

∫

Ω
(X1(x))2dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω
X2

1 (x)dx

=
− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω
X2

1 (x)dx + λ1(Ω)
∫ 1

0
ϕ2
1(t)dt

∫

Ω
(X1(x))2dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω
X2

1 (x)dx
,

where λ1(Ω) is the first eigenvalue of the operator LD given by the formula (11).
For each non-negative function X ∈ L2(Ω), we obtain

∫

Ω

|X1(x)|2dx =
∫

Ω∗
|X∗

1 (x)|2dx with |Ω∗| = |Ω|. (14)

By applying Lemma 1 and (14), we get

sD
1 (D) =

− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω
X2

1 (x)dx + λ1(Ω)
∫ 1

0
ϕ2
1(t)dt

∫

Ω
(X1(x))2dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω∗ X2
1 (x)dx

≥ − ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω∗(X∗
1 (x))

2dx + λ1(Ω∗)
∫ 1

0
ϕ2
1(t)dt

∫

Ω∗(X∗
1 (x))

2dx
∫ 1

0
ϕ2
1(t)dt

∫

Ω∗(X∗
1 (x))2dx

=
− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω∗(X∗
1 (x))

2dx +
∫ 1

0
ϕ2
1(t)dt

∫

Ω∗ X∗
1 (x)(λ1(Ω∗)X∗

1 (x))dx
∫ 1

0
ϕ2
1(t)dt

∫

Ω∗(X∗
1 (x))2dx

=
− ∫ 1

0
ϕ

′′
1 (t)ϕ1(t)dt

∫

Ω∗(X∗
1 (x))

2dx +
∫ 1

0
ϕ2
1(t)dt

∫

Ω∗ X∗
1 (x)Δ

2X∗
1 (x)dx

∫ 1

0
ϕ2
1(t)dt

∫

Ω∗(X∗
1 (x))2dx

=
− ∫ 1

0

∫

Ω∗
∂2u∗

1(x,t)
∂t2 dxdt +

∫ 1

0

∫

Ω∗ u∗
1(x, t)Δ2

xu∗
1(x, t)dxdt

∫ 1

0

∫

Ω∗(u∗
1(x, t))2dxdt

≥ inf
z(x,t) �=0

− ∫ 1

0

∫

Ω∗ zt(x, t)z(x, t)dxdt +
∫ 1

0

∫

Ω∗ z(x, t)Δ2
xz(x, t)dxdt

∫ 1

0

∫

Ω∗ z2(x, t)dxdt
= sD

1 (C�).

The proof is complete.

Now let us introduce operators T�, L� : L2(�) → L2(�), respectively, by

T�z(x) =

⎧
⎨

⎩

−Δz(x) = βz(x),
z(x) = 0, x ∈ D ⊂ {L,M,S},

∂z(x)
∂n = 0, ∂�\D,

(15)

and

L�z(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ2z(x) = ηz(x),
z(x) = 0, x ∈ D ⊂ {L,M,S},

∂z(x)
∂n = 0, x ∈ ∂�\D,

Δz(x) = 0, x ∈ D ⊂ {L,M,S},
∂Δz(x)

∂n = 0, x ∈ ∂�\D.

(16)
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Lemma 2. For the operator L� and any right triangle � with the smallest
angle α with π

6 < α < π
4 we have

0 = ηN
1 < ηS

1 < ηM
1 < ηN

2 < ηL
1 < ηSM

1 < ηSL
1 < ηML

1 < ηD
1 . (17)

When α = π
6 , ηM

1 = ηN
2 , and for α = π

4 (right isosceles triangle) we have
S = M and ηN

2 < ηL
1 . All other inequalities stay sharp in these cases. For

arbitrary triangle

min{ηS
1 , ηM

1 , ηL
1 } < ηN

2 ≤ ηSM
1 ≤ ηSL

1 ≤ ηML
1 (18)

for any length of sides. However, it is possible that ηN
2 > ηL

1 (for any small
perturbation of the equilateral triangle) or ηN

2 < ηM
1 (for the right triangle with

α < π
6 ).

Proof. It is easy to see that L� = T 2
�. It means that η = β2. From [11] for any

right triangle with smallest angle α ∈ (π
6 , π

4 ) we have the following inequalities

0 = βN
1 < βS

1 < βM
1 < βN

2 < βL
1 < βSM

1 < βSL
1 < βML

1 < βD
1 .

Using this fact, we obtain

0 = ηN
1 < ηS

1 < ηM
1 < ηN

2 < ηL
1 < ηSM

1 < ηSL
1 < ηML

1 < ηD
1 .

When α = π
6 , we have βM

1 = βN
2 , then ηM

1 = ηN
2 and for α = π

4 (right isosceles
triangle) we have S = M and βN

2 < βL
1 , then ηN

2 < ηL
1 . For arbitrary triangle

min{βS
1 , βM

1 , βL
1 } < βN

2 ≤ βSM
1 ≤ βSL

1 ≤ βML
1

for any length of sides. Moreover,

min{ηS
1 , ηM

1 , ηL
1 } < ηN

2 ≤ ηSM
1 ≤ ηSL

1 ≤ ηML
1 .

However, it is possible that βN
2 > βL

1 in the case ηN
2 > ηL

1 (for any small
perturbation of the equilateral triangle) or βN

2 < βM
1 , after that ηN

2 < ηM
1 (for

right triangle with α < π
6 ). This completes the proof.

Theorem 2. For any right triangular cylinder D�, with the smallest angle α
with π

6 < α < π
4 ,

π2

4
= sN

1 < sS
1 < sM

1 < sN
2 < sL

1 < sSM
1 < sSL

1 < sML
1 < s1. (19)

When α = π
6 , sM

1 = sN
2 , and for α = π

4 (right isosceles triangular cylinder)
we have S = M and sN

2 < sL
1 . All other inequalities stay sharp in these cases.

For arbitrary triangular cylinder

min{sS
1 , sM

1 , sL
1 } < sN

2 ≤ sSM
1 ≤ sSL

1 ≤ sML
1 (20)

for any length of sides. However, it is possible that sN
2 > sL

1 (for any small per-
turbation of the equilateral triangular cylinder) or sN

2 < sM
1 (for right triangular

cylinders with α < π
6 ).
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Proof. Let us prove first step of the inequality (19). To do it we solve the following
problem by Fourier’s method:

♦∗
�♦�u(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t),
u(x, 0) = 0, x ∈ �,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ �,

u(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1),
∂u(x,t)

∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1),
Δxu(x, t) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1),

∂Δxu(x,t)
∂n = 0, x ∈ ∂�\D, ∀t ∈ (0, 1).

(21)

Thus, we arrive at the spectral problems for ϕ(t) and X(x) separately, i.e
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ2X(x) = β2(�)X(x), x ∈ �,
X(x) = 0, x ∈ D ⊂ {L,M,S}, ∀t ∈ (0, 1),

∂X(x)
∂n = 0, x ∈ ∂�\D,

ΔX(x) = 0, x ∈ D ⊂ {L,M,S},
∂ΔX(x)

∂n = 0, x ∈ ∂�\D,

(22)

and
⎧
⎨

⎩

ϕ
′′
(t) + (s − β2)ϕ(t) = 0, t ∈ (0, 1),

ϕ(0) = 0,
ϕ

′
(1) + β(�)ϕ(1) = 0.

(23)

It also gives that

tan
√

s − β2 = −
√

s − β2

β
. (24)

We have (see, [11]) 0 = ηN
1 < ηS

1 < ηM
1 < ηN

2 < ηL
1 < ηSM

1 < ηSL
1 < ηML

1 < ηD
1

and

tan
√

s(β) − β2 = −
√

s(β) − β2

β
. (25)

It is easy to see that,

s′(β) =
2s(β) cos2

√
s − β2

β2 + β cos2
√

s − β2
. (26)

The s-numbers and β are positive, then

s′
1(β) > 0. (27)

It means the function s(η) is monotonically increasing. If βN
1 = 0 from (23) we

take sN
1 = π2

4 and [11] and from Lemma 2 we take 0 = ηN
1 < ηS

1 < ηM
1 < ηL

1 <
ηSM
1 < ηSL

1 < ηML
1 < η1, and thus get

π2

4
= sN

1 < sS
1 < sM

1 < sL
1 < sSM

1 < sSL
1 < sML

1 < s1. (28)
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Let us prove the second part of inequality (19) sM
1 < sN

2 < sL
1 and from

Lemma 2 we get ηM
1 < ηN

2 < ηL
1 . The operator ♦∗

�♦� is a self-adjoint and
compact operator. Hence, we have complete orthonormal system in L2(D�),
therefore, ∫

D�
uiujdxdt =

{
0, i 
= j,
1, i = j.

Now using Lemma 2, we obtain

sM
1 =

− 1

0
ϕ

′′
1 (t)ϕ1(t)dt �(XM

1 (x))2dx +
1

0
ϕ2

1(t)dt � XM
1 Δ2XM

1 (x)dx
1

0 �(uM
1 (x, t))2dxdt

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt + � XM

1 Δ2XM
1 (x)dx

1

0 �(uM
1 (x, t))2dxdt

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt + ηM

1

1

0 �(uM
1 (x, t))2dxdt

<
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt �(XN

2 (x)dx)2 +
1

0
ϕ1(t)ϕ1(t)dt � XN

2 (x)Δ2XN
2 (x)dx

1

0 �(uN
2 (x, t))2dxdt

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt + � ηN

2 (XN
2 (x))2dx

1

0 �(uN
2 (x, t))2dxdt

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt + ηN

2

1

0 �(uN
2 (x, t))2dxdt

= sN
2 <

− 1

0
ϕ

′′
1 (t)ϕ1(t)dt + ηL

1

1

0 �(uL
2 (x, t))2dxdt

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt �(XL

1 (x)dx)2 +
1

0
ϕ1(t)ϕ1(t)dt � XL

1 (x)Δ
2XL

1 (x)dx
1

0 �(uL
2 (x, t))2dxdt

= sL
1 .

The rest of equalities and inequalities imply from the monotonicity prop-
erty (27).

Theorem 3. For all triangular cylinders the second s-number of the Cauchy-
Neumann heat operator (2) satisfies

sN
2 (Ω) ≤ (2.78978609910027)2 +

(
4π2

3
√
3

)2

,

and equality if only if the triangular cylinder coincides with the equilateral tri-
angular cylinder Ω∗ × (0, 1), that is, |Ω| = |Ω∗|.
Proof. By using the fact that s-numbers are monotonically increasing (see (27))
and the main result of [4], we obtain

sN
2 (Ω) ≤ sN

2

(
4π2

3
√
3

)

. (29)

A straightforward calculation in (25) gives

sN
2 (Ω) ≤ sN

2 (
4π2

3
√
3
) ∼= (2.78978609910027)2 +

(
4π2

3
√
3

)2

. (30)
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4 On Szegö-Weinberger Type Inequality

Let D = Ω×(0, 1) be a cylindrical domain, where Ω ⊂ Rd is a simply-connected
Lipschitz set with smooth boundary ∂Ω. We consider the heat operator with the
Cauchy-Neumann problem ♦ : L2(D) → L2(D) in the form

♦u(x, t) :=

⎧
⎨

⎩

∂u(x,t)
∂t − Δxu(x, t),

u(x, 0) = 0, x ∈ Ω,
∂u(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1).
(31)

The operator ♦ is a non-selfadjoint operators in L2(D). Adjoint operator ♦∗

to operator ♦ is

♦∗v(x, t) :=

⎧
⎨

⎩

−∂v(x,t)
∂t − Δxv(x, t),

v(x, 1) = 0, x ∈ Ω,
∂v(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1).
(32)

A direct calculation gives that the operator ♦∗♦ has the following formula

♦∗♦u(x, t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t),
u(x, 0) = 0, x ∈ Ω,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ Ω,

∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

∂Δxu(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1).

(33)

We consider a (circular) cylinder C = B × (0, 1), where B ⊂ Rd is an open
ball. Let Ω be a simply-connected Lipschitz set with smooth boundary ∂Ω with
|B| = |Ω|, where |Ω| is the Lebesgue measure of the domain Ω.

Let us introduce the operators T,L : L2(Ω) → L2(Ω), respectively, by

Tz(x) :=
{ −Δz(x) = μz(x),

∂z(x)
∂n = 0, x ∈ ∂Ω,

(34)

and

Lz(x) :=

⎧
⎨

⎩

Δ2z(x) = λz(x),
∂z(x)

∂n = 0, x ∈ ∂Ω,
∂Δz(x)

∂n = 0, x ∈ ∂Ω.

(35)

Lemma 3. The second eigenvalue of the operator L is maximized in the ball B
among all Lipschitz domains Ω of the same measure with |Ω| = |B|.
Proof. The Szegö-Weinberger inequality is valid for the Neumann Laplacian,
that is, the ball is a maximizer of the second eigenvalue of the operator T among



On S-Number Inequalities of Triangular . . . 359

all Lipschitz domains Ω with |B| = |Ω|. A straightforward calculation from (34)
gives that

T 2z(x) :=

⎧
⎨

⎩

Δ2z(x) = μ2z(x),
z(x) = 0, x ∈ ∂Ω,

∂Δz(x)
∂n = 0, x ∈ ∂Ω.

(36)

Thus, T 2 = L and μ2 = λ. Now using the Szegö-Weinberger inequality, we
establish λ2(B) = μ2

2(B) ≥ μ2
2(Ω) = λ2(Ω), i.e. λ2(B) ≥ λ2(Ω).

Theorem 4. The second s-number of the operator ♦ is maximized in the cir-
cular cylinder C among all cylindric Lipschitz domains of a given measure, that
is,

sN
2 (C) ≥ sN

2 (D),

for all D with |D| = |C|.
Proof. Recall that D = Ω × (0, 1) is a bounded measurable set in Rd+1. Its
symmetric rearrangement C = B×(0, 1) is the circular cylinder with the measure
equal to the (Lebesgue) measure of D, i.e. |D| = |C|. Let u be a nonnegative
measurable function in D, such that all its positive level sets have finite measure.
With the definition of the symmetric-decreasing rearrangement of u we can use
the layer-cake decomposition [5], which expresses a nonnegative function u in
terms of its level with respect to the space variable x sets as

u(x, t) =
∫ ∞

0

χ{u(x,t)>z}dz, ∀t ∈ (0, 1), (37)

where χ is the characteristic function of the domain. The function

u∗(x, t) =
∫ ∞

0

χ{u(x,t)>z}∗dz, ∀t ∈ (0, 1), (38)

is called the (radially) symmetric-decreasing rearrangement of a nonnegative
measurable function u.

Consider the following spectral problem

♦∗♦u = su,

♦∗♦u(x, t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t) = sNu(x, t),
u(x, 0) = 0, x ∈ Ω,

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ Ω,

∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0, 1),

∂Δxu(x,t)
∂n = 0, x ∈ ∂Ω.

(39)

We can set u(x, t) = X(x)ϕ(t) and u2(x, t) = X2(x)ϕ1(t) is the second eigen-
function of the operator ♦∗♦, where ϕ1(t) and X2(x) are the first and second
eigenfunctions with respect to variables t and x. Consequently, we have

− ϕ
′′
1 (t)X2(x) + ϕ1(t)Δ2X2(x) = sN

2 ϕ1(t)X2(x). (40)
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Now by the variational principle for the self-adjoint compact positive operator
♦∗♦, we get

sN
2 (D) =

− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

Ω
X2

2 (x)dx +
1

0
ϕ2

1(t)dt
Ω

X2(x)Δ
2X2(x)dx

1

0
ϕ2

1(t)dt
Ω

X2
2 (x)dx

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

Ω
X2

2 (x)dx +
1

0
ϕ2

1(t)dt
Ω

λ2(Ω)(X2(x))
2dx

1

0
ϕ2

1(t)dt
Ω

X2
2 (x)dx

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

Ω
X2

2 (x)dx + λ2(Ω)
1

0
ϕ2

1(t)dt
Ω

X2
2 (x)dx

1

0
ϕ2

1(t)dt
Ω

X2
2 (x)dx

,

where λ2(Ω) is the second eigenvalue of the operator L. For each non-negative
function X ∈ L2(Ω), we have

∫

Ω

|X1(x)|2dx =
∫

B

|X∗
1 (x)|2dx, with |Ω| = |B|. (41)

By applying Lemma 3 and (41), we get

sN
2 (D) =

− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

Ω
(X2(x))

2dx + λ2(Ω)
1

0
ϕ2

2(t)dt
Ω
(X2(x))

2dx
1

0
ϕ2

1(t)dt
Ω
(X2(x))2dx

≤ − 1

0
ϕ

′′
1 (t)ϕ1(t)dt

B
(X∗

2 (x))
2dx + λ2(B)

1

0
ϕ2

1(t)dt
B
(X∗

2 (x))
2dx

1

0
ϕ2

1(t)dt
B
(X∗

2 (x))
2dx

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

B
(X∗

2 (x))
2dx +

1

0
ϕ2

1(t)dt
B

X∗
2 (x)(λ2(B)X∗

2 (x))dx
1

0
ϕ2

1(t)dt
B
(X∗

2 (x))
2dx

=
− 1

0
ϕ

′′
1 (t)ϕ1(t)dt

B
(X∗

2 (x))
2dx +

1

0
ϕ2

1(t)dt
B

X∗
2 (x)Δ

2X∗
2 (x)dx

1

0
ϕ2

1(t)dt
B
(X∗

2 (x))
2dx

=
− 1

0 B
u∗
2(x, t)

∂2u∗
2(x,t)

∂t2
dxdt +

1

0 B
u∗
2(x, t)Δ2

xu∗
2(x, t)dxdt

1

0 B
(u∗

2(x, t))2dxdt

≤ sup
ν(x,t) �=0

− 1

0 B
ν(x, t) ∂2ν(x,t)

∂t2
dxdt +

1

0 B
ν(x, t)Δ2

xν(x, t)dxdt
1

0 B
ν2(x, t)dxdt

= sN
2 (C).

The proof is complete.

Remark 1. The norm of the operator ♦−1 is equal to 2
π in any circular cylinder

C with |C| = |D|, i.e. ‖♦−1‖C = ‖♦−1‖D = 2
π .

Proof. Let us consider the following spectral problem by Fourier’s method

♦∗♦u(x, t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂2u(x,t)
∂t2 + Δ2

xu(x, t) = sNu(x, t),
u(x, 0) = 0, x ∈ Ω(B),

∂u(x,t)
∂t |t=1 − Δxu(x, t)|t=1 = 0, x ∈ Ω(B),
∂u(x,t)

∂n = 0, x ∈ ∂Ω(∂B), ∀t ∈ (0, 1),
∂Δxu(x,t)

∂n = 0, x ∈ ∂Ω(∂B).

(42)
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Thus, we obtain two spectral problems with respect to variables x and t:
⎧
⎨

⎩

Δ2X(x) = μ2X(x),
∂X(x)

∂n = 0, x ∈ ∂Ω(∂B), t ∈ (0, 1),
∂ΔX(x)

∂n = 0, x ∈ ∂Ω(∂B), t ∈ (0, 1).
(43)

and
⎧
⎨

⎩

ϕ
′′
(t) + (s − μ2)ϕ(t) = 0, t ∈ (0, 1),

ϕ(0) = 0,
ϕ

′
(1) + μ(Ω)ϕ(1) = 0.

(44)

We have μ1 = 0 in any simply-connected bounded domain. Thus, we substi-
tute it to the second spectral problem (44) and we establish s1 = π2

4 . According
to [1], 1√

s1
gives the norm of the operator. Thus, we arrive at

||♦−1||C = ||♦−1||D =
2
π

.
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Abstract. We describe different aspects of the theory of pseudo-
differential equations on manifolds with non-smooth boundaries. Using a
concept of special factorization for an elliptic symbol we consider distinct
variants of this approach including asymptotic and discrete situations.
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1 Introduction

From the 90s the author develops the theory of boundary value problems based
on two principles [10]. These are a local principle and factorizability principle at a
boundary point like [2,5,9]. The first principle was known earlier and it also was
known as a freezing coefficients principle. Usually the second name corresponds
to partial differential equations theory but the first name was introduced for mul-
tidimensional singular integral equations and more general for pseudo-differential
equations. Main difference between differential and pseudo-differential operator
is the following. A differential operator D has a local property i.e. if one takes
two smooth functions ϕ,ψ with non-intersecting supports and compose the oper-
ator ψ ·D ·ϕ, then it leads to a zero operator. For a pseudo-differential operator
P this property does not hold and we obtain for ψ · P · ϕ a compact operator
only. This case permits to obtain rough properties for pseudo-differential equa-
tions and related boundary value problems namely Fredholm properties only in
comparison with differential operators and boundary value problems, where one
has as a rule results on existence and uniqueness.

There are a lot of approaches to construct such a theory (see for example
papers [4,7,8]). I have written many times [12,14] what is difference between
this consideration and others, it is choice of distinct key principles. In any case
one needs to declare an invertibility of so-called local representatives of an initial
pseudo-differential operator to describe its Fredholm properties.

Local principle and factorizability was first introduced in papers of I.B.
Simonenko [9] (for multidimensional singular integral operators in Lebesgue Lp-
spaces) and M.I. Vishik – G.I. Eskin [2] (for pseudo-differential operators in
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Sobolev – Slobodetskii Hs-spaces). For manifolds with a smooth boundary one
uses an idea of “rectification of a boundary“, and the problem reduces to a
half-space case, for which a factorizability principle holds immediately because
under localization at a boundary point and applying the Fourier transform we
obtain well known one-dimensional classical Riemann boundary value problem
for upper and lower complex half-planes with a multidimensional parameter.
This approach does not work if a boundary has at least one singular point like
a conical point. One needs here other considerations and approaches.

2 Domains and Operators

Our main goal is to describe possible solvability conditions for the pseudo-
differential equation

(Au)(x) = f(x), x ∈ D,

where D is manifold with a boundary, A is pseudo-differential operator with the
symbol A(x, ξ).

Such operators are defined locally by the formula

u(x) �−→
∫

Rm

∫

Rm

A(x, ξ)ũ(y)e−i(x−y)·ξdξdy, (1)

if D is a smooth compact manifold, because one can use “freezing coefficients
principle”, or in other words “local principle”. For manifold with a smooth
boundary we need new local formula for defining the operator A: more pre-
cisely in inner points of D we use the formula 1, but in boundary points we need
another formula

u(x) �−→
∫

Rm
+

∫

Rm

A(x, ξ)u(y)e−i(x−y)·ξdξdy. (2)

For invertibility of such operator (2) with symbol A(·, ξ) non-depending on
spatial variable x one can apply the theory of classical Riemann boundary prob-
lem for upper and lower complex half-planes with a parameter ξ′. This step was
systematically studied in the book [2]. But if the boundary ∂D has at least one
conical point, this approach is not effective.

The conical point at the boundary is a such point, for which its neighborhood
is diffeomorphic to the cone

Ca
+ = {x ∈ Rm : xm > a|x′|, x′ = (x1, ..., xm−1), a > 0},

hence the local definition for pseudo-differential operator near the conical point
is the following

u(x) �−→
∫

Ca
+

∫

Rm

A(x, ξ)u(y)e−i(x−y)·ξdξdy. (3)
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We consider the operator 1 in the Sobolev – Slobodetskii space Hs(Rm) with
norm

||u||2s =
∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ,

where ũ(ξ) denotes the Fourier transform for u, and introduce the following class
of symbols non-depending on spatial variable x: ∃c1, c2 > 0, such that

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ξ ∈ Rm. (4)

The number α ∈ R we call the order of pseudo-differential operator A.
It is well-known that pseudo-differential operator with symbol A(ξ) satisfying

3, is linear bounded operator acting from Hs(Rm) into Hs−α(Rm) [2].
We are interested in studying invertibility operator 3 in corresponding

Sobolev – Slobodetskii spaces. By definition, Hs(Ca
+) consists of distributions

from Hs(Rm) with support in Ca
+. The norm in the space Hs(Ca

+) is induced
by the norm Hs(Rm). We associate such operator with corresponding equation

(Au+)(x) = f(x), x ∈ Ca
+, (5)

where right-hand side f is chosen from the space Hs−α
0 (Ca

+).
Hs

0(Ca
+) is the space of distributions S′(Ca

+), which admit continuation on
Hs(Rm). The norm in Hs

0(Ca
+) is defined by

||f ||+s = inf ||lf ||s,

where infimum is chosen for all possible continuations l.

3 Complex Variables and Wave Factorization

Below we will consider the symbols A(ξ) satisfying the condition 4.

Definition 1. Wave factorization of symbol A(ξ) is called its representation in
the form

A(ξ) = A�=(ξ)A=(ξ),

where the factors A�=(ξ), A=(ξ) satisfy the following conditions:
1) A�=(ξ), A=(ξ) are defined everywhere without may be the points {ξ ∈ Rm :

|ξ′|2 = a2ξ2m};
2) A�=(ξ), A=(ξ) admit an analytical continuation into radial tube domains

T (
∗

Ca
+), T (

∗
Ca

−) respectively, which satisfy the estimates

|A±1
�= (ξ + iτ)| ≤ c1(1 + |ξ| + |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ| + |τ |)±(α−æ), ∀τ ∈

∗
Ca

+ .

The number æ is called index of wave factorization.



366 V.B. Vasilyev

Here
∗

Ca
+ is conjugate cone to Ca

+, and
∗

Ca
−= −

∗
Ca

+.

Example 1. Let

A = − ∂2

∂x2
1

− · · · − ∂2

∂x2
m

+ k2, k ∈ R \ {0},

and then according to some properties of the Fourier transform the symbol of
this operator has the form

A(ξ) = ξ21 + ξ22 + · · · + ξ2m + k2.

The following equality is the wave factorization of the Helmholtz operator.
We will write it as

ξ2m + |ξ′|2 + k2 =(√
a2 + 1 ξm +

√
a2ξ2m − |ξ′|2 − k2

) (√
a2 + 1 ξm −

√
a2ξ2m − |ξ′|2 − k2

)

meaning for
√

a2ξ2m − |ξ′|2 − k2 the boundary value
√

a2(ξm + i0)2 − |ξ′|2 − k2.

4 Pseudo-differential Equations and Solvability

To describe a solvability picture for a model elliptic pseudo differential equation
(5) in 2-dimensional cone Ca

+ = {x ∈ R2 : x2 > a|x1|, a > 0} the author earlier
considered a special singular integral operator [10]

(Kau)(x) =
a

2π2
lim

τ→0+

∫

R2

u(y)dy

(x1 − y1)2 − a2(x2 − y2 + iτ)2
. (6)

This operator served a conical singularity in the general theory of boundary
value problems for elliptic pseudo differential equations on manifolds with a non-
smooth boundary. The operator Ka is a convolution operator, and the parameter
a is a size of an angle, x2 > a|x1|, a = cot α.

One of author’s main result [10] is the following (we formulate it for m = 2
for simplicity)

Theorem 1. If elliptic symbol A(ξ) admits wave factorization with respect to
the cone Ca

+ and |æ − s| < 1/2, then the equation (5) has a unique solution

ũ(ξ) = A−1
�= (ξ)(Ka l̃v)(ξ),

where lv is an arbitrary continuation of v on the whole Hs(R2).
A priori estimate holds

||u+||s ≤ c||f ||+s−α.

Below we will mention other possible situations.
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4.1 Boundary Value Problems

If æ−s = n+δ, n ∈ N, |δ| < 1/2, then one has the formula for a general solution
of the equation (5), and this formula contains a certain number of arbitrary
functions from corresponding Sobolev–Slobodetskii spaces [10]. To obtain the
uniqueness theorem one needs to add some complementary conditions as a rule
these are boundary conditions.

Some classical variants are considered in [10], some new constructions are
described in [15].

4.2 Equations with Potentials

It is possible that æ − s = n + δ,−n ∈ N, |δ| < 1/2, then the equation (5)
is over-determined so that one needs to add some unknowns. According to the
special representation for a solution of the equation (5) these unknowns should
have a potential like form [10].

5 Asymptotical Variants

For |æ − s| < 1/2 one has the existence and uniqueness theorem [10]

ũ(ξ) = A−1
�= (ξ)(Ka l̃v)(ξ),

where lv is an arbitrary continuation of v on the whole Hs(R2).

5.1 Preliminaries

The formula (6) can be treated as a convolution of the distribution

Ka(ξ) =
a

2π2

1
ξ21 − a2ξ22

with a basic function u(ξ). If so it is interesting to study behavior of the operator
(6) for limit cases (a = 0, a = +∞) from convolution point of view.

Let S(R2) be the Schwartz space of infinitely differentiable rapidly decreas-
ing at infinity functions, then S′(R2) is a corresponding space of distributions
over S(R2).

When a → +∞ one obtains [11] the following limit distribution

lim
a→∞

a

2π2

1
ξ21 − a2ξ22

=
i

2π
P

1
ξ1

⊗ δ (ξ2) , (7)

where the notation for distribution P is taken from V.S. Vladimirov’s books
[16,17], and ⊗ denotes the direct product of distributions. Here δ denotes one-
dimensional Dirac mass-function which acts on ϕ ∈ S(R) in the following way

(δ, ϕ) = ϕ(0),
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and the distribution P 1
x is defined by the formula

(P
1
x

, ϕ) = v.p.

+∞∫

−∞

ϕ(x)dx

x
≡ lim

ε→0+

⎛
⎝

−ε∫

−∞
+

+∞∫

ε

⎞
⎠ ϕ(x)dx

x
.

Our main goal in this paper is obtaining an asymptotical expansion for the
two-dimensional distribution

Ka(ξ1, ξ2) ≡ a

2π2

1
ξ21 − a2ξ22

with respect to small a−1. It is defined by the corresponding formula ∀ϕ ∈ S(R2)

(Ka, ϕ) =
a

2π2

∫

R2

ϕ(ξ1, ξ2)dξ

ξ21 − a2ξ22
. (8)

5.2 Asymptotical Representation for a Solution

Below we denote lv ≡ V .

Theorem 2. If the symbol A(ξ) admits a wave factorization with respect to the
cone Ca

+ and |æ − s| < 1/2, then the equation 1 has a unique solution in the
space Hs(Ca

+), and for a large a it can be represented in the form

ũ(ξ) =
i

2π
A−1

�= (ξ)v.p.

+∞∫

−∞

(A−1
= Ṽ )(η1, ξ2)dη1

ξ1 − η1
+

A−1
�= (ξ)

∑
m,n

cm,n(a)

+∞∫

−∞
(ξ1 − η1)m(A−1

= Ṽ )(n)ξ2
(η1, ξ2)dη1 (9)

assuming Ṽ ∈ S(R2), A−1
= Ṽ means the function A−1

= (ξ)Ṽ (ξ).

Proof. Let ϕ ∈ S(R2).
A formal using the Maclaurin formula for the first integral in 4 will lead to

the following result

(Ka, ϕ) =
1

2π2

∞∑
k=0

bk

k!

+N∫

−N

ϕ
(k)
ξ2

(ξ1, 0)

⎛
⎝

+N∫

−N

tkdt

ξ21 − t2

⎞
⎠ dξ1, (10)

and we need to give a certain sense for the expression in brackets.
Let us denote

Tk,N (ξ1) ≡
+N∫

−N

tkdt

ξ21 − t2
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and reproduce some calculations.
First Tk,N (ξ1) ≡ 0,∀k = 2n− 1, n ∈ N. So the non-trivial case is k = 2n, n ∈

N. Let us remind T0,∞(ξ1) = πi2−1ξ−1
1 [11,12]. For other cases we can calculate

this integral. We have the following
k = 2,

T2,N (ξ1) = −2N − 2−1ξ−1
1 ln

N − ξ1
N + ξ1

+ πi2−1ξ−1
1 ;

k = 4,

T4,N (ξ1) = −2/3N3 − 2ξ21N − 2−1ξ31 ln
N − ξ1
N + ξ1

+ πi2−1ξ31 ;

k = 6,

T6,N (ξ1) = −2/5N5 − 2/3ξ21N
3 − 2ξ51N − 2−1ξ51 ln

N − ξ1
N + ξ1

+ πi2−1ξ51 ,

and so on. One can easily write all expressions for arbitrary T2n,N (ξ1).
In general one can write

T2n,N (ξ1) = P2n−1(N, ξ1) − 2−1ξ2n−1
1 ln

N − ξ1
N + ξ1

+ πi2−1ξ2n−1
1 ,

where P2n−1(N, ξ1) is a certain polynomial of order 2n − 1 on variables N, ξ1.
Therefore instead of the formula (10) we can write

(Ka, ϕ) =
i

2π
(P

1
ξ1

⊗ δ(ξ2), ϕ)+ (11)

1

2π2

∞∑

n=1

b2n

(2n)!

+N∫

−N

ϕ
(2n)
ξ2

(ξ1, 0)

(
P2n−1(N, ξ1) − 2−1ξ2n−1

1 ln
N − ξ1

N + ξ1
+ πi2−1ξ2n−1

1

)
dξ1.

Let us describe the polynomial P2n−1(N, ξ1) more precisely. Obviously

P2n−1(N, ξ1) = c2n−1N
2n−1 + c2n−3N

2n−3ξ21 + · · · + c1Nξ2n−1
1 .

Further we rewrite the equality (11) in the following form

(Ka, ϕ) =
i

2π
(P

1

ξ1
⊗ δ(ξ2), ϕ)+

1

2π2

∞∑

n=1

b2n

(2n)!

n∑

k=1

c2k−1N2k−1

+N∫

−N

ϕ
(2n)
ξ2

(ξ1, 0)ξ2k−1
1 dξ1−

1

4π2

∞∑

n=1

b2n

(2n)!

+N∫

−N

ϕ
(2n)
ξ2

(ξ1, 0)ξ2n−1
1 ln

N − ξ1

N + ξ1
dξ1 +

i

4π

∞∑

n=1

b2n

(2n)!

+N∫

−N

ϕ
(2n)
ξ2

(ξ1, 0)ξ2n−1
1 dξ1.



370 V.B. Vasilyev

We will start from two last summands. The second summand does not play
any role because

lim
N→+∞

ln
N − ξ1
N + ξ1

= 0.

The third summand we will represent according to lemma 1 (see below)
taking into account that we can pass to the limit under N → +∞

i

4π

∞∑
n=1

b2n

(2n)!
( ˜δ(2n−1)(ξ1) ⊗ δ(2n)(ξ2), ϕ).

For the first summand we consider separately the case Nb ∼ 1(N → ∞, b →
0). In other words we consider a special limit to justify the decomposition. Then

1
2π2

∞∑
n=1

b2n

(2n)!

n∑
k=1

c2k−1N
2k−1

+N∫

−N

ϕ
(2n)
ξ2

(ξ1, 0)ξ2k−1
1 dξ1 ∼

1
2π2

∞∑
n=1

1
(2n)!

n∑
k=1

c2k−1b
2n−2k+1

+∞∫

−∞
ϕ
(2n)
ξ2

(ξ1, 0)ξ2k−1
1 dξ1.

Therefore

1
2π2

∞∑
n=1

1
(2n)!

n∑
k=1

c2k−1b
2n−2k+1

+∞∫

−∞
ϕ
(2n)
ξ2

(ξ1, 0)ξ2k−1
1 dξ1 =

1
2π2

∞∑
n=1

1
(2n)!

n∑
k=1

c2k−1b
2n−2k+1( ˜δ(2k−1)(ξ1) ⊗ δ(2n)(ξ2), ϕ).

One can note if desirable

c2k−1 = −2(1 +
1
3

+ · · · +
1

2k − 1
).

Further details one can find in [13]. �

6 Discrete Variants

6.1 Discrete Functions and Operators: Preliminaries
and Examples

Given function ud of a discrete variable x̃ ∈ Zm we define its discrete Fourier
transform by the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈Zm

eix̃·ξud(x̃), ξ ∈ Tm,

where Tm = [−π, π]m and partial sums are taken over cubes

QN = {x̃ ∈ Zm : x̃ = (x̃1, · · · , x̃m), max
1≤k≤m

|x̃k| ≤ N}.

One can define some discrete operators for such functions ud.
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Example 2. If K(x), x ∈ Rm \ {0} is a Calderon–Zygmund kernel, then the
corresponding operator is defined by the formula

(Kdud)(x̃) =
∑

ỹ∈Zm,ỹ �=x̃

K(x̃ − ỹ)ud(ỹ), x̃ ∈ Zm.

Example 3. If a first order finite difference of a discrete variable x̃k is defined by

δkud(x̃) = ud(x̃k + 1) − ud(x̃k),

then the discrete Laplacian is

(Δdud)(x̃) =
m∑

k=1

(ud(x̃k + 2) − 2ud(x̃k + 1) + ud(x̃k)) ,

and its discrete Fourier transform is the function

(FdΔdud)(ξ) =
m∑

k=1

(eiξk − 1)2.

Let D ⊂ Rm be a sharp convex cone, Dd ≡ D∩Zm, and let L2(Dd) be a space
of functions of discrete variable defined on Dd, and let A(x̃) be a given function
of a discrete variable x̃ ∈ Zm. We consider the following types of operators

(Adud)(x̃) =
∫
Tm

∑
ỹ∈Dd

ei(ỹ−x̃)·ξÃd(ξ)ũd(ξ)dξ, x̃ ∈ Dd, (12)

and introduce the function

Ãd(ξ) =
∑

x̃∈Zm

eix̃·ξA(x̃), ξ ∈ Tm.

Definition 2. The function Ãd(ξ) is called a symbol of the operator Ad, and
this symbol is called an elliptic symbol if Ãd(ξ) �= 0,∀ξ ∈ Tm.

Remark 1. If D = Rm, then an ellipticity is necessary and sufficient condition
for the operator Ad to be invertible in the space L2(Zm).

Remark 2. One can define a general pseudo-differential operator with symbol
Ã(x̃, ξ) depending on a spatial discrete variable x̃ by the similar formula

(Adud)(x̃) =
∫
Tm

∑
ỹ∈Dd

ei(ỹ−x̃)·ξÃ(x̃, ξ)ũd(ξ)dξ, x̃ ∈ Dd,

but taking into account a local principle [5], the main aim in this situation
is describing invertibility conditions for model operators like (12) in canonical
domains Dd.

Below we will refine the lattice Zm and introduce more convenient space
scale.
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6.2 Discrete Sobolev–Slobodetskii Spaces

We consider here refined lattice hZm, h > 0, and define corresponding discrete
Fourier transform. If a function of a discrete variable is defined on a lattice hZm,
then its discrete Fourier transform can be introduced by the formula

(ũd)(ξ) =
∑

x̃∈hZm

ud(x̃)eix̃·ξhm, ξ ∈ �Tm,

where � = h−1.
Let Hs(hZm) denote the space of functions of a discrete variable for which

||ud||2s ≡
∫

�Tm

|ũd(ξ)|2(1 + |σΔd
(h)(ξ)|)sdξ < +∞,

where

σΔd
(h)(ξ) = h−2

m∑
k=1

(eihξk − 1)2, ξ ∈ �Tm.

6.3 Solvability for Discrete Equations

6.3.1 Conical Case and Periodic Bochner Kernel Let D be a sharp
convex cone, and let

∗
D be a conjugate cone for D, i.e.,

∗
D= {x ∈ Rm : x · y > 0, y ∈ D}.

Let T (
∗
D) ⊂ Cm be a set of the type Tm + i

∗
D. For Tm ≡ Rm such a domain

of multidimensional complex space is called a radial tube domain over the cone
∗
D ([1,16,17]). We introduce the function

Bd(z) =
∑

x̃∈Dd

eix̃·z, z = ξ + iτ, ξ ∈ Tm, τ ∈ ∗
D,

and define the operator

(Bdu)(ξ) = lim
τ→0

∫

Tm

Bd(z − η)ud(η)dη.

Lemma 1. For arbitrary ud ∈ L2(Zm), the following property

FdPDd
ud = BdFdud

holds.
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Let us define the subspace A(Tm) ⊂ L2(Tm) consisting of functions which

admit a holomorphic continuation into T (
∗
D) and satisfy the condition

sup
τ∈ ∗

D

∫

Tm

|ũd(ξ + iτ)|2dξ < +∞.

In other words, the space A(Tm) ⊂ L2(Tm) consists of boundary values of

holomorphic in T (
∗
D) functions.

Let us denote
B(Tm) = L2(Tm) � A(Tm),

so that B(Tm) is a direct complement of A(Tm) in L2(Tm).

6.3.2 A Jump Problem We formulate the problem in the following way:
finding a pair of functions Φ±, Φ+ ∈ A(Tm), Φ− ∈ B(Tm), such that

Φ+(ξ) − Φ−(ξ) = g(ξ), ξ ∈ Tm, (13)

where g(ξ) ∈ L2(Tm) is given.

Lemma 2. The operator Bd : L2(Tm) → A(Tm) is a bounded projector. A
function ud ∈ L2(Dd) iff its Fourier transform ũd ∈ A(Tm).

Theorem 3. The jump problem has unique solution for arbitrary right-hand
side from L2(Tm).

Example 4. If m = 2 and D is the first quadrant in a plane, then a solution of
a jump problem is given by formulas

Φ+(ξ) =
1

(4πi)2
lim
τ→0

π∫

−π

π∫

−π

cot
ξ1 + iτ1 − t1

2
cot

ξ2 + iτ2 − t2
2

g(t1, t2)dt1dt2

Φ−(ξ) = Φ+(ξ) − g(ξ), τ = (τ1, τ2) ∈ D.

6.3.3 A General Statement It looks as follows. Finding a pair of functions
Φ±, Φ+ ∈ A(Tm), Φ− ∈ B(Tm), such that

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), ξ ∈ Tm, (14)

where G(ξ), g(ξ) are given periodic functions. If G(ξ) ≡ 1, we have the jump
problem (3).

Like classical studies [3,6], we want to use a special representation for an
elliptic symbol to solve the problem (4).



374 V.B. Vasilyev

6.3.4 Periodic Wave Factorization Let us denote by Hs(Dd) a subspace
of Hs(Zm) consisting of functions of discrete variable x̃ for which their supports
belong to Dd, and H̃s(Dd), H̃s(Zm) are their Fourier images.

Lemma 3. For |s| < 1/2, the operator Bd is a bounded projector H̃s(Zm) →
H̃s(Dd), and a jump problem has unique solution Φ+ ∈ H̃s(Dd), Φ− ∈ H̃s(Zm \
Dd) for arbitrary g ∈ H̃s(Zm).

Definition 3. Periodic wave factorization for elliptic symbol Ã(ξ) is called its
representation in the form

Ãd(ξ) = Ã�=(ξ)Ã=(ξ),

where the factors A±1
�= (ξ), A±1

= (ξ) admit bounded holomorphic continuation into

domains T (± ∗
D).

Theorem 4. If |s| < 1/2 and the elliptic symbol Ãd(ξ) ∈ Sα(Tm) admits peri-
odic wave factorization, then the operator Ad is invertible in the space Hs(Dd).

7 Conclusion

As it was shown all aspects of this problem of solving the equation (5) are closely
related and use similar ideas and methods. Author hopes that in future it will
be possible to unit these considerations in a general theory of elliptic pseudo-
differential equations on manifolds with non-smooth boundaries.
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Abstract. The mathematical model describing the axisymmetric elec-
tromagnetic field and the constriction resistance of the semispace with
AC electrical current passing through a ring-shaped contact is presented.
It is based on the system of the Maxwell equations with the special
boundary conditions. The analytical formulas for the electric and mag-
netic fields are obtained. The asymptotic expression for the constriction
resistance is found and the corresponding expression for the DC current
may be derived from this general expression as a special case. Compari-
son of this expression with the well known classical formula shows very
good approximation.

Keywords: Electromagnetic field · Constriction resistance ·
Ring-shaped contact · Skin-effect · Maxwell equations

1 Introduction

A ring-shaped electrical contact appears in special types of circuit breakers and
fuses [1,2], in a hollow liquid metal bridge at contact opening at great opening
velocities [3] and many others contact systems. It is very important also at the
modeling of skin effect when the real circle contact spot is replaced by a ring
[4]. However the information about electromagnetic field and contact resistance
in this case is known in an approximate form only [5]. This paper is an attempt
to construct a mathematical model of a ring-shaped contact.

2 Electromagnetic Field

Let us consider two conductors occupied the semi spaces D1(−∞ < z < ∞, 0 <
r < ∞) and D1(−∞ < z < ∞, 0 < r < ∞) with the contact on the ring-shape
D0 = (z = 0, r1 < r < r2). The plane z = 0 is a plane of the symmetry,
thus we consider the electromagnetic field in the domain D2 only caused by the
c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_35
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current I(t) = i0e
iwt entering the ring-shape D0. The axisymmetric component

of the electrical field Ez = (r, z, t) satisfies the equation

μ0μ

ρ

∂Ez

∂t
=

1
r

∂

∂r
(r

∂Ez

∂r
) +

∂2Ez

∂z2
, (1)

where μ is the relative magnetic permittivity, μ0 is the permeability of vacuum,
and the boundary conditions

Ez(r, 0, t) =

⎧
⎪⎨

⎪⎩

0, 0 ≤ r < r1
ρI(t)

π(r2
2−r2

1)
, r1 ≤ r ≤ r2

0, r2 ≤ r < ∞

∂Ez(∞, z, t)
∂r

=
∂Ez(z,∞, t)

∂z
= 0.

(2)
There is no initial condition because it is supposed that the AC current is pass-
ing through the contact for all time.The electrical and magnetic fields can be
represented in the form

Ē(r, z, t) = eiwtĒ(r, z), H̄(r, z, t) = eiwtH̄(r, z).

Applying the Hankel transform

Ê(s, z) =

∞∫

0

Ez(r, z)J0(sr)r dr

to the equation (1) and conditions (2), we get

∂2Êz(s, z)
∂z2

− (s2 + k2)Êz(s, z) = 0 (3)

Êz(s, 0) =
i0ρ

π(r22 − r21)

[r2
s

J1(sr2) − r1
s

J1(sr1)
]
, (4)

where k2 = μ0μ·iw
ρ . The solution of the problem (3)-(4) can be found in the form

Êz(s, z) =
i0ρ

π(r22 − r21)

[r2
s

J1(sr2) − r1
s

J1(sr1)
]
e−√

s2+k2z. (5)

Using the inverse Hankel transform, we get

Ez(r, z) =
i0ρ

π(r22 − r21)

∞∫

0

[r2
s

J1(sr2) − r1
s

J1(sr1)
]
e−√

s2+k2zJ0(sr)s ds (6)

The magnetic field can be found from the Maxwell equation

rotH̄ =
1
ρ
Ē
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For axial z-component it means that

1
r

∂(rHϕ)
∂r

=
1
ρ
Ez (7)

Substituting here the expression (6) and integrating with respect to r on the
interval [0, r], we get

Hϕ(r, z) =
i0ρ

π(r22 − r21)

∞∫

0

[r2
s

J1(sr2) − r1
s

J1(sr1)
]
e−√

s2+k2zJ0(sr)s ds (8)

The radial component of the electrical field Er is defined from the Maxwell
equation

rotĒ = −μ0μ
∂H̄

∂t

Taking the ϕ-component of this equation and using the obtained expressions for
Ez and Hϕ, we get

Hϕ(r, z) =
i0ρ

π(r22 − r21)

∞∫

0

[ r2

s
J1(sr2) − r1

s
J1(sr1)

]
e−

√
s2+k2zJ0(sr)

√
s2 + k2s ds (9)

3 Constriction Resistance

The constriction resistance can be found using the expression [6]

∞∫

0

[ĒH̄]

∣
∣
∣
∣
∣
∣
z=0

= RJ2(t) (10)

Integration of this expression is very difficult problem, thus we try to find asymp-
totic formulas for the constriction resistance R.
Let us consider first the case when r >> r2, all the more r >> r1.The integral (6)
can be calculated if we us the asymptotic formulas for J1(sr2) and J1(sr1).Then
we can reduce the expression for Ez to form

Ez(r, z) = − i0ρ

2π

∂

∂z

(
1√

z2 + r2
e−k

√
z2+r2

)

Using this formula, we can find Hϕ(r, z) and Er(r, z):

Hϕ(r, z) =
i0ρ

2kπr

∂

∂z

[
e−k

√
z2+r2 − e−kz

]
=

i0

2kπr

[
− kz√

z2 + r2
e−k

√
z2+r2

+ ke−kz

]

Er(r, z) =
i0ρ

2π

{

− ∂

∂z

1√
z2 + r2

e−k
√

z2+r2
+

k

r

[
e−k

√
z2+r2 − e−kz

]}

=
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= − i0ρ

2π

{
k

r
e−kz + e−k

√
z2+r2

[
kr

z2 + r2
− k

r
+

r

(z2 + r2)3/2

]}

(11)

Substituting these expressions in the formula (10) and replacing the upper limit
of integration ∞ for the radius of conductor r3 which is sufficiently greater than
the radius of the contact spot r, we get

R =
ρ

2πr2
e−kr2 +

kρ

2π

∞

r2

dr

r
− kρ

2π

∞

r2

e−kz dr

r
=

ρ

2πr2
e−kr2 +

kρ

2π
ln

r3
r2

− kρ

2π
Ei(−kr2)

(12)
where Ei(kr2) is the integral exponential function.

Similarly for the condition r << r1 we get

Ez(r, z) = − i0ρ

π(r22 − r21)

[
∂

∂z
e−k

√
z2+r2

2 − ∂

∂z
e−k

√
z2+r2

1

]

Er(r, z) =
i0ρrk

2π(r22 − r21)

[
e−k

√
z2+r2

2 − e−k
√

z2+r2
1

]

Hϕ(r, z) =
i0r

2πk(r22 − r21)

[
∂

∂z
e−k

√
z2+r2

2 − ∂

∂z
e−k

√
z2+r2

1

]

However at this condition R = 0 since Hϕ(r, 0) = 0

4 Direct Current

Let us consider the special case of the direct current. For this case w = 0 and
the fields Er(r, 0) and Hϕ(r, 0) can be obtained from the expressions (8), (9) if
we put k = 0:

Er(r, 0) =
i0ρ

π(r22 − r21)

∞∫

0

[r2J1(sr2) − r1J1(sr1)]
J1(sr)

s
ds (13)

Hϕ(r, 0) =
i0

2π(r22 − r21)

∞∫

0

[r2
s

J1(sr2) − r1
s

J1(sr1)
]
J1(sr)s ds =

=
i0

2π(r22 − r21)

⎧
⎪⎨

⎪⎩

0, 0 ≤ r < r1

r(1 − r21/r2), r1 ≤ r ≤ r2

(r22 − r21)/r, r > r2

(14)

Substituting the expression (13), (14) into (10), we get the expression for the
constriction resistance
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R =
2ρ

π(r22 − r21)

[
4
3π

r32 +
4
3π

r31 − r22r1F

(
1
2
,
1
2
, 2,

r21
r22

)]

, (15)

where F is the hypergeometric function.

It is interesting to note that if we put in (15) r1 = 0 this expression should give
the formula for the traditional circle contact spot of the radius r2. We obtain in
this case

R =
8ρ

3π2r2
≈ 0.27

ρ

r2
.

That is very good approximation for the well-known formula for the construction
resistance of the semispace

R =
ρ

4r2
= 0.25

ρ

r2
.
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Abstract. In this work we consider an inverse problem of finding a
coefficient of right hand side of pseudo-parabolic equation. By successive
approximation method the existence and uniqueness of a strong solution
are proved. Under the integral overdetermination condition, which has
important applications in various areas of applied science and engineer-
ing.

Keywords: Inverse problem · Pseudoparabolic equation ·
Kelvin-Voigt fluids · Successive approximation method · Strong
solution · A priori estimate · Integral overdetermination condition

1 Introduction

In this work we consider an inverse problem of identifying the coefficient of
right hand side of pseudo-parabolic equation from the integral overdetermination
condition, which has important applications in various areas of applied science
and engineering.

Statement of the problem. Consider the pseudo-parabolic equation

ut − ν uxx − χ uxxt = f (t) g (x, t) , (x, t) ∈ QT (1)

with initial condition

u (x, 0) = u0 (x) , x ∈ (0, l) , (2)

boundary conditions

u (0, t) = u (l, t) = 0, t ∈ [0, T ], (3)

and with additional condition in the integral form

l∫

0

u (x, t) ω (x) dx = e (t) , (4)

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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where u0 (x), ω (x), e (t), and g (x, t) are given functions, while u (x, t) and f (t)
are two unknown functions to be determined.

Equations of this type arise in many areas of mechanics and physics. Such
equations are encountered, for example, these equations are included in a model
for Kelvin-Voight fluids [3,6,7]. The unique solvability of the inverse problem
for Kelvin-Voight equation with overdetermination condition over time variable
is considered in [2]. The existence and uniqueness of the strong solution of
the direct problem (1)-(3) are proved in [12]. For a discussion of existence and
uniqueness results of inverse problems for parabolic and pseudo-parabolic equa-
tions see [1,2,4,5,8] (see also the references cited in them).

We understood the strong solution to (1)-(4) as follow.

Definition 1. A pair of functions (u (x, t) , f (t)) is called a strong solution to
problem (1)-(4), if

(u (x, t) , f(t)) ∈ L∞
(
0, T ;

◦
W

1
2 (0, l)

)
∩ W 1

2

(
0, T ;W 1

2 (0, l)
) × L2 (0, T )

and (3), (4) hold, and for any ϕ (x, t) ∈ L∞
(
0, T ;

◦
W 1

2 (0, l)
)

∩ W 1
2(

0, T ;W 1
2 (0, l)

)
the integral identity

T∫

0

l∫

0

{utϕ + νuxϕx + χuxtϕx} dxdt =

T∫

0

l∫

0

f (t) g (x, t) ϕ (x, t) dxdt. (5)

Assume that the given functions in the problem (1)-(4) satisfy the following
conditions:

u0(x) ∈ ◦
W 1

2 (0, l) , ω(x) ∈ W 1
2 (0, l) ,

e (t) ∈ W 1
2 (0, T ) , g (x, t) ∈ L∞ (0, T ;L2 (0, l)) ,

g0(t) ≡
l∫

0

ω(x)g (x, t) dx ≥ k0 > 0, ∀t ∈ [0, T ] .
(6)

2 Main Results

Lemma 1. If (6) holds, then the function f (t) can be determined by the explicit
formula

f (t) =
1

g0(t)

⎡
⎣e′(t) +

l∫

0

(νuxωx + χuxtωx) dx

⎤
⎦ (7)

and the inverse problem (1)-(4) is equivalent to the problem (1)-(3) and (7).

Proof. Multiply (1) by ω (x) and integrate by x from 0 to l using 4. In conse-
quence, by the last condition in (6), we get the (7). The main result in this work
is the following theorem.
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Theorem 1. Assume that the condition (6) holds and

max
t∈[0,T ]

‖g‖2

(
1
ν

+
1
χ

)
l2 ‖ωx‖2

2k2
0

< 1. (8)

Then there exists a unique strong solution (u (x, t) , f(t)) of the inverse problem
(1)-(4).

Proof. We use the successive approximation method. Let us take u0 = 0 as start
approximate. We construct the sequence {(um, fm)} as follow: At fist determine
the function fm (t) by the relation

fm (t) =
1

g0(t)

⎡
⎣e′ (t) +

l∫

0

(
νum−1

x ωx + χum−1
xt ωx

)
dx

⎤
⎦ , (9)

and substituting fm (t) into the right hand side of the following equation, we
determine a function um (x, t) as a strong solution of the following direct problem
with given right hand side F (x, t) = g (x, t) fm (t):

um
t − νum

xx − χum
xxt = fm (t) g (x, t) , (x, t) ∈ QT , (10)

um (x, 0) = u0 (x) , x ∈ [0, l] , (11)

um (0, t) = 0, um (l, t) = 0, t ∈ [0, T ] . (12)

By [1], the direct problem (10)-(12) for every m has a unique strong solution.
Hence, the sequence {(um, fm)} is well constructed. If we now prove that the
sequence {(um, fm)} is a Cauchy sequence in V2 (QT )×L2 (0, T ), then it follows
from completeness of the space V2 (QT )×L2 (0, T ) that the sequence {(um, fm)}
has a limit {(υ, f)} as m → ∞, and the limit is a strong solution of (1)-(4), here

V2 ≡ L∞
(
0, T ;

◦
W 1

2 (0, l)
)

∩ W 1
2

(
0, T ;W 1

2 (0, l)
)
.

Let us introduce the notation

Um = um − um−1, Fm = fm − fm−1.

Then we get from (9)

Fm (t) =
1

g0(t)

⎡
⎣

l∫

0

(
νUm−1

x ωx + χUm−1
xt ωx

)
dx

⎤
⎦ (13)
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and from (10) -(12) the following initial-boundary value problem

Um
t − νUm

xx − χUm
xxt = Fm (t) g (x, t) , (x, t) ∈ QT , (14)

Um (x, 0) = 0, x ∈ [0, l] , (15)

Um (0, t) = 0, Um (l, t) = 0, t ∈ [0, T ] . (16)

We estimate (13) by Hölder inequality

|Fm (t)| =
1

|g0|

l

0

νUm−1
x ωx + χUm−1

xt ωx dx ≤ ‖ωx‖
k0

ν Um−1
x + χ Um−1

xt .

If one squares both sides of the last inequality and integrates the resulting
expressions over τ from 0 to t, then

t∫

0

|Fm|2 dτ ≤ ‖ωx‖2

k2
0

t∫

0

(
ν

∥∥Um−1
x

∥∥2
+ χ

∥∥Um−1
xt

∥∥2
)

dτ. (17)

Now we multiply Eq. (14) by Um and integrate over [0, l]:

1
2

d

dt

(
‖Um‖2 + χ ‖Um

x ‖2
)

+ ν ‖Um
x ‖2 =

∫

Ω

FmgUmdx. (18)

Using the inequality (Poincare inequality)

‖u‖ ≤ l√
2

‖ux‖ , ∀u ∈ ◦
W

1
2 (0, l) ,

and Cauchy inequality, we estimate right hand side as follows

Ω

FmgUmdx ≤ ‖Um‖ · |Fm| ‖g‖ ≤ l√
2

‖Um
x ‖ |Fm| ‖g‖ ≤ ν

2
‖Um

x ‖2 +
l2

4ν
|Fm|2 ‖g‖2 .

Substituting this inequality into (18) and multiplying both sides of the result
by 2, and integrating over τ from 0 to t, we obtain

max
t∈[0,T ]

(
‖Um‖2 + χ ‖Um

x ‖2
)

+ν

t∫

0

‖Um
x ‖2

dτ ≤ l2

2ν
max

t∈[0,T ]
‖g‖2

t∫

0

|Fm|2 dτ. (19)

Multiplying (14) by Um
t and integrating over x from 0 to l, we obtain

ν

2
d

dt
‖Um

x ‖2 + ‖Um
t ‖2 + χ ‖Um

xt‖2 =
∫

Ω

FmgUm
t dx.
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Estimate the right hand side by Hölder, Poincare and Cauchy inequalities as
above. Then we have

ν max
t∈[0,T ]

‖Um
x ‖2 + 2

t∫

0

‖Um
t ‖2

dτ + χ

t∫

0

‖Um
xt‖2

dτ ≤ l2

2χ
max

t∈[0,T ]
‖g‖2

t∫

0

|Fm|2 dτ.

(20)
Adding the inequalities (19) and (20), we obtain the estimate

t∫

0

(
ν ‖Um

x ‖2 + χ ‖Um
xt‖2

)
dτ ≤ l2

2
max

t∈[0,T ]
‖g‖2

(
1
ν

+
1
χ

) t∫

0

|Fm|2 dτ (21)

Combining (17) and (21) for every m = 1, 2, ..., we get

‖Fm‖2
L2(0,T ) ≤ μ

∥∥Fm−1
∥∥2

L2(0,T )
, ‖Um‖2

V2(QT ) ≤ μ
∥∥Um−1

∥∥2

V2(QT )
, (22)

where μ ≡ max
t∈[0,T ]

‖g‖2
(

1
ν + 1

χ

)
l2‖ωx‖2

2k2
0

and by assumption (8) μ < 1.

Hence the convergency of infinite decreasing geometrical progression implies
that {(um, fm)} is the Cauchy sequence in V2 (QT ) × L2 (0, T ). By virtue of the
above arguments, there exists the unique pair of functions (u, f) in V2 (QT ) ×
L2 (0, T ), such that

um (x, t) → u (x, t) in V2 (QT ) ,

fm (t) → f (t) in L2 (0, T )

as m → ∞.
Using these information, take the limit of (9)-(12) as m → ∞. Then by

convergence of {(um, fm)} and by Lemma 1, we see that the pair of limit func-
tions (u, f) is the strong solution of the inverse problem of (1)-(4). Proof of the
Theorem is complete.
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Abstract. The purpose of this study is to test the elaborated theory for
inverse two phase spherical Stefan problem by using Integral Error Func-
tion and check effectiveness of the suggested solution form for engineering
purposes. It was shown that by collocation method we can achieve small
error which doesn’t exceed 8 percent for three points, which substantially
eases calculations. Investigation of such problems enables one to analyse
diverse electric contact phenomena.

Keywords: Two-phase Stefan problem · Free boundary value
problems · Inverse problem · Flux conditions · Test problem

1 Introduction

This study is the continuation of previous studies [1–4] and an attempt to obtain
exact solution and develop an easy way for engineers to find approximate tem-
perature distribution function with relatively small error and to find heat flux
function. Nowadays, Stefan type problems are widely used for modelling elec-
tric contact phenomena [5–9] and it looks expedient and important to conduct
research studies in this field as from theoretical as well as from practical point
of view.

Due to the Holm’s ideal sphere (b < 10−4m) spherical Stefan problem nicely
fits as a mathematical model for describing electric contact phenomena with
small electric currents.

2 Problem Statement

The contact spot in mathematical model is given by the spherical domain with
radius b. P (t) is heat flux which passes through liquid zone b(t) < r < α(t) and
then through the solid zone α(t) < r < ∞.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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∂θ1
∂t

= a2
1

(
∂2θ1
∂r2

+
2
r

∂θ1
∂r

)
, b < r < α(t) , (1)

∂θ2
∂t

= a2
2

(
∂2θ2
∂r2

+
2
r

∂θ2
∂r

)
, α(t) < r < ∞ (2)

with initial condition

θ1(b, 0) = 0, (3)
θ2(r, 0) = f(r), (4)

f(r) = θm + r − b, f(b) = θm (5)

and boundary condition

r = b : −λ1
∂θ1(b, t)

∂r
= P (t), (6)

r = α(t) : θ1(α(t), t) = θm, (7)
θ2(α(t), t) = θm, (8)

the Stefan’s condition

− λ1
∂θ1(α(t), t)

∂r
= −λ2

∂θ2(α(t), t)
αr

+ Lγ
dα

dt
, (9)

as well as the condition at the infinity

θ2(∞, t) = 0 , (10)

where θ1 and θ2 is an unknown heat functions, P (t) is an unknown heat flux
coming from electric arc of radius b. θm is a melting temperature of electrical
contact material, f(r) is a given function, λ1, λ2, a1, a2 and Lγ are constants.

3 Problem Solution

We can expend the initial and boundary functions in Maclaurin series as

P (t) =
∞∑

n=0

Pntn/2, f(r) =
∞∑

n=0

f (n)(0)
n!

(r − b)n

and α(t) = b + α
√

t. The solution of (1)-(10) we represent in the new form of
series

θ1(r, t) =
1
r

∞∑
n=0

(2a1

√
t)n

[
Aninerfc

r − b

2a1

√
t

+ Bninerfc
b − r

2a1

√
t

]
,

θ2(r, t) =
1
r

∞∑
n=0

(2a2

√
t)n

[
Cninerfc

r − b

2a2

√
t

+ Dninerfc
b − r

2a2

√
t

]
,
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where coefficients An, Bn, Cn and Dn have to be found and as the same analogy
of previous study we determined

Dn =
1
2
f (n)(b), n = 0, 1, 2, ..., (11)

C0 =
1
2
θm(2b − 1), (12)

C1 =
θmα

2a2ierfc α
2a2

− ierfc −α
2a2

2ierfc α
2a2

, (13)

Cn = −1
2
f (n)(b)

inerfc −α
2a2

inerfc α
2a2

, n = 2, 3, 4, ...., (14)

B0 = A0 exp
(

α2

2(a1)2

)
− Lγa1

√
παb

2λ1
exp

(
α

2a1

)2

, (15)

A0 =
θmb

1 + exp

(
α√
2a1

)2 − Lγa1
√

παb

2λ1

(
1 + exp

(
α√
2a1

)2) exp
(

α

2a1

)2

, (16)

A1 =
Lγα2ierfc −α

2a1

2λ1

(
ierfc α

2a1
+ ierfc −α

2a1

) − ierfc −α
2a2

2ierfc α
2a2

λ2ierfc −α
2a1

λ1

(
ierfc α

2a1
+ ierfc −α

2a1

)

− λ2ierfc −α
2a1

2λ1

(
ierfc α

2a1
+ ierfc −α

2a1

) , (17)

B1 = A1 +
λ2

λ1

ierfc −α
2a2

2ierfc α
2a2

+
λ2

2λ1
− Lγα2

2λ1
, (18)

An = −Bn

inerfc −α
2a1

inerfc α
2a1

, n = 2, 3, 4, .... (19)

From Stefan’s condition we get expression

− λ1(2a1)n−1

[
− Anin−1erfc

α

2a1
+ Bnin−1erfc

−α

2a1

]

= −λ2(2a2)n−1

[
− Cnin−1erfc

α

2a2
+ Dnin−1erfc

−α

2a2

]
, n = 2, 3, 4, ... (20)

Pn =
λ1

b
(2a1)n(An+1 − Bn+1)inerfc0, n = 0, 1, 2, 3, .... (21)

Thus coefficients A0, B0 are found in (15),(16) and A1 and B1 are found in
(17),(18), An, Bn can be determined in (19),(20) when n = 2, 3, 4, ..., C0, Cn,Dn

from (11),(12) and (14), Pn from (21).
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Fig. 1. Exact and approximate values of flux function at small t

Fig. 2. Relative error

Test result We use Mathcad 15 for calculations and get following exact val-
ues A0 = 0.43, A1 = −2, 576, A2 = 0, B0 = −0.43, B1 = 0.429 and B2 = 0,
then approximate values A0 = 0.579, A1 = −3.004, A2 = 7.582 × 10−15, B0 =
−0.183, B1 = 0.5 and B2 = 0. At last we have exact and approximate values of
heat flux function as in Fig. 1 and relative error function which reaches maximum
value 7.9 percent as in Fig. 2.

4 Conclusion

As a result of the current approach we receive the approximation function, con-
vergent to the exact solution. The heat flux P (t) is determined from expression
(21) in electric contacts on the base of two phase spherical inverse Stefan prob-
lem. Temperatures θ1, θ2 are found by determining coefficients An, Bn, Cn and
Dn from equations (11),(12),(19) and (20).

Acknowledgements. The authors would like to thank Prof. S. N. Kharin (IMMM
and KBTU, Kazakhstan) for his valuable comments and suggestions which were help-
ful in improving the paper. This publication is supported by the target program
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Abstract. We present an alternative proof for the classification of semi-
stable representations of a linear quiver and of a circular quiver with three
vertices and briefly discuss the meaning of this result for the study of
quiver sheaves.
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1 Introduction

The theory of quiver sheaves over a smooth projective variety has been developed
by Álvarez-Cónsul and Garćıa-Prada [2–4], Gothen and King [19], the author
[29,31,32], and many others. In this note, we will focus on the notion of slope
semistability.1 If n is the number of vertices of the quiver, the notion of slope
semistability depends on an n-tuple κ of positive real numbers and an n-tuple χ
of real numbers. If X is a curve and one fixes the ranks and degrees of the vector
bundles under consideration, then one may attach to each stability parameter
(κ, χ) a moduli space. It is a fundamental problem to understand the variation
of the moduli spaces with the stability parameter. This involves the question
for which stability parameters the moduli space is non-empty. Explicit examples
were studied in [5,9,25] . In those papers, κ has the fixed value (1, ..., 1) and only
χ varies. General properties of the chamber decomposition and related bounded-
ness questions were discussed in [6]. An important step was made in the papers
[33,35]. The main result of these papers is that, in the circumstances outlined
above, there are only finitely many distinct notions of slope semistability. This
implies that there are only finitely many distinct moduli spaces.

1 In the case that X is a curve, the notion of slope semistability is the “right” one for
constructing moduli spaces.

c© Springer International Publishing AG 2017
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Let us fix a polarized smooth projective variety (X,OX(1)) over the complex
numbers, a quiver Q = (V,A, t, h), and a tuple of line bundles M = (Ma, a ∈ A)
on X.2 We let K := C(X) be the function field of X. Recall that an M -twisted Q-
sheaf is a tuple R = (Ev, v ∈ V, ϕa, a ∈ A) in which Ev is a coherent OX -module,
v ∈ V , and ϕa : Ma ⊗ Et(a) −→ Eh(a) is a twisted homomorphism, a ∈ A. The
tuple (r, d) with r = (rk(Ev), v ∈ V ) and d = (deg(Ev), v ∈ V ) is the type of R.
We may restrict R to the generic point η of X. Then, Ma ⊗OX

K is isomorphic
to the constant sheaf K, and we choose isomorphisms Ma ⊗OX

K ∼= K. Next,
Wv := Ev ⊗OX

K is a K-vector space of dimension rk(Ev), v ∈ V , and, using
the above trivializations, we get the linear maps fa := ϕa|{η} : Wt(a) −→ Wh(a),
a ∈ A. In other words, R = (Wv, v ∈ V, fa, a ∈ A) is a K-representation of
Q. With the help of this construction and King’s theory of semistability for K-
representations [23], we may divide the class of M -twisted Q-sheaves into two
subclasses:

• the class of generically totally unstable ones, i.e., those for which there is
no non-zero stability parameter with respect to which the K-representation
R of Q is semistable, and

• the class of generically semistable ones, that is, the class of M -twisted Q-
sheaves for which the associated K-representation R of Q is semistable with
respect to some non-zero stability parameter.

For the first class, one may use the theory of the instability flag of Ramanan
and Ramanathan [26] in order to get bounds for the stability parameters χ ([35],
compare [30,33]). In addition, we were able to reduce the case of generically
semistable M -twisted Q-sheaves to the case of M -twisted Q-sheaves which are
generically totally unstable in a different sense and obtain bounds on the stability
parameters χ in this case, as well. Applying Harder–Narasimhan filtrations of
quiver sheaves for the stability parameter κ, an argument introduced in [18], and
the analysis of the chamber structure from [6], we obtained the finiteness result
explained above.

There is another interesting aspect in the above distinction. The region of sta-
bility parameters (κ, χ) for which generically totally unstable (κ, χ)-slope semi-
stable quiver sheaves may exist is a priori bounded, by the results discussed
before. If there are slope semistable quiver sheaves which are generically semi-
stable with respect to the stability parameter, say, η, then the region of stability
parameters may stretch out to infinity in the direction specified by η. This gives
rise to an interesting question on representations of quivers over a field, namely,
for which quiver representations does there exist a stability parameter χ �= 0,
such that the representation is χ-semistable in the sense of King?

In order to deal with this question, let us briefly review the basic set-up for
studying the classification of quiver representations. Fix a field K and a quiver
Q = (V,A, t, h), let r = (rv ∈ N, v ∈ V ) be a dimension vector, and set

R := Repr(Q) :=
⊕

a∈A

HomK−vs(Krt(a) , Krh(a)),

2 In general, one may allow vector bundles of arbitrary rank.
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G := GLr(V ) :=
ą

v∈V

GLrv
(K), S := SLr(V ) :=

ą

v∈V

SLrv
(K).

The group G acts in a natural way on the vector space R, and the set of G-
orbits in R corresponds in a natural way to the set of isomorphy classes of
representations of Q with dimension vector r. In order to study the question
just raised, we need to look at the action of S on R, more precisely at the
invariant ring K[R]S . For r = (fa, a ∈ A) ∈ R, there exists a non-trivial stability
parameter χ �= 0, such that r is χ-semistable if and only if there exists a non-zero
S-invariant function F ∈ K[R]S with F (r) �= 0. So, in order to answer the above
question, we may try to compute the invariant ring K[R]S . By work of Schofield
and Van den Bergh [36,37], Derksen and Weyman [11], and Domokos and Zubkov
[13], the ring K[R]S is generated by determinants (see Remark 6). This implies
a satisfactory answer to our question although it still may be difficult to make
it explicit for a concretely given quiver.

Let us turn to a basic example, the quiver3

An+1 : n
an−−−−→ n − 1

an−1−−−−→ · · · a2−−−−→ 1 a1−−−−→ 0.

This case was studied by Koike [24]. Koike’s paper is a predecessor to the work
of Schofield, Van den Bergh, Derksen, Weyman, Domokos, and Zubkov. His
result implies that, for r = (fa, a ∈ A) ∈ R, there exists a non-trivial stability
parameter χ �= 0, such that r is χ-semistable if and only if there are indices
n ≥ m > l ≥ 0, such that fal+1 ◦ · · · ◦ fan

: C
ran −→ C

ral is an isomorphism.
Koike’s proof is based on an analysis of the representation of SLr1(C)×SLr2(C)
on Matr1,r2(C), r1, r2 ∈ N.

In this note, we will provide a different proof based on the Hilbert–Mumford
criterion. It works well for linear quivers, because we know the decomposition
into indecomposable objects in this case. The technique is similar to the one
used by Abeasis and Del Fra [1] in the investigation of degenerations of orbits in
Repr(An+1). In our set-up, we need less detailed information than Abeasis and
Del Fra. On a representation space of a quiver, the Hilbert–Mumford criterion for
semistability holds over an arbitrary field (see Remark 1, v). So, an advantage of
our method is that we get a characterization of semistable quiver representations
over any field. Recall that, in the applications we have in mind, the field K will
be the field of rational functions on an algebraic variety X. Linear quiver sheaves
play an important role in the theory of Higgs bundles (see, e.g., [5,16]).

Koike also deals with the case of circular quivers. For circular quivers with
three vertices, it is possible to work out everything by hand. Let us point out
that quiver sheaves associated with circular quivers appeared in the form of
cyclotomic or cyclic Higgs bundles in work of Simpson [38], Collier [10], and
Garćıa-Prada and Ramanan [17].

3 We choose this labeling of the vertices in order to comply with the standard notation
for holomorphic chains.
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2 Quiver Representations

A quiver Q is a quadruple (V,A, t, h) in which V and A are finite sets, called the
set of vertices and the set of arrows respectively, and t, h : A −→ V are maps,
associating with an arrow a ∈ A its tail t(a) and its head h(a), respectively. The
dual quiver is Q∨ = (V,A, t∨, h∨) with t∨ = h and h∨ = t, i.e., Q∨ is obtained
from Q by reversing all arrows.

Obviously, a quiver is the same as a category with a finite set of objects and
finite morphism sets. Given an abelian category A, one may study the functors
from Q to A. These form again an abelian category. The classical case is when
A is the category Vect

K
of finite dimensional vector spaces over a field K. A

theorem of Gabriel’s [15] (compare [7], Theorem II.3.7) asserts that, for any
finite dimensional algebra A over an algebraically closed field K, there is a
unique quiver Q, such that the category of representations of A is equivalent to
the category of representations of Q in Vect

K
, obeying certain relations.

The classification of quiver representations reduces to the classification of
indecomposable representations. Another famous result of Gabriel’s ([14], 1.2,
Satz, [28], Chap. 8) characterizes quivers of finite representation type, i.e., quiv-
ers which admit only finitely many isomorphy classes of indecomposable repre-
sentations. In addition, it provides a classification of the indecomposable repre-
sentations. This should be a valuable result for studying quiver sheaves.

In this section, we will briefly review the formalism of quiver representations
and the parameter dependent theory of semistability, due to King [23]. Since sta-
ble representations are indecomposable, this is an important tool for partially
understanding indecomposable representations for wild quivers. For applications
to quiver sheaves, it will be important to characterize those quiver representa-
tions for which there exists a non-zero stability parameter with respect to
which they are semistable in the sense of King. For circular and linear quivers,
these characterizations were obtained by Koike ([24], Theorem 1 and 2). In fact,
Koike determined generators for the whole ring of semi-invariants. Here, we will
give different proofs for circular quivers with three vertices and An+1-quivers
(compare Sect. 2.5).

2.1 Representations

Let K be a field. A K-representation of Q is a tuple R = (Wv, v ∈ V, fa, a ∈ A) in
which Wv is a finite dimensional K-vector space, v ∈ V , and fa : Wt(a) −→ Wh(a)

is a K-linear map, a ∈ A. The tuple dim(R) := (dimK(Wv), v ∈ V ) is the
dimension vector of R. A K-subrepresentation of R is a collection (Uv, v ∈ V )
in which Uv is a linear subspace of Wv, such that fa(Ut(a)) ⊂ Uh(a) is sat-
isfied, a ∈ A. It is non-trivial (proper), if there is an index v0 ∈ V with
Uv0 �= 0 (Uv0 �= Wv0). A quotient K-representation of R consists of a tuple
(qv : Wv −→ Qv, v ∈ V ) of surjective K-linear maps, such that (ker(qv), v ∈ V ) is
a K-subrepresentation. We will often denote it in the form (Qv, v ∈ V ). It is non-

http://dx.doi.org/10.1007/978-3-319-67053-9_8
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zero (proper), if (ker(qv), v ∈ V ) is proper (non-zero). The dual K-representation
is R∨ := (W∨

v , v ∈ V, f∨
a : W∨

t(a) −→ W∨
h(a)). It is a K-representation of the dual

quiver Q∨ of Q.

2.2 Semistability

Semistability of K-representations depends on a tuple χ = (χv, v ∈ V ) of real
numbers. For a collection (Tv, v ∈ V ) of finite dimensional K-vector spaces which
are not all trivial, we define the χ-dimension as dimχ(Tv, v ∈ V ) :=

∑
v∈V

χv ·
dimK(Tv) and the χ-slope as

μχ(Tv, v ∈ V ) :=
dimχ(Tv, v ∈ V )

∑
v∈V

dimK(Tv)
.

We say that a K-representation R = (Wv, v ∈ V, fa, a ∈ A) of Q is χ-(semi)stable,
if

μχ(Uv, v ∈ V )(≤)μχ(Wv, v ∈ V )

holds true for any non-trivial, proper K-subrepresentation (Uv, v ∈ V ) of R.

Remark 1. i) Note that any K-representation of Q is semistable with respect to
the parameter 0 ∈ R

n. It will be 0-stable if and only if it is simple, i.e., does not
have a non-zero, proper K-subrepresentation.

ii) One readily checks that, for a stability parameter χ = (χv, v ∈ V ) ∈ R
n,

a real number c, and χc := (χv + c, v ∈ V ), a K-representation R = (Wv, v ∈
V, fa, a ∈ A) is χ-(semi)stable if and only it is χc-(semi)stable. One may use this
observation to assume without loss of generality that

∑

v∈V

χv · dimK(Wv) = 0.

Under this assumption, R is χ-(semi)stable if and only if

∑

v∈V

χv · dimK(Uv)(≤)0

holds for every non-zero, proper K-subrepresentation (Uv, v ∈ V ) of R.
iii) Since the dimension of K-vector spaces behaves additively on short exact

sequences, one sees that a K-representation R = (Wv, v ∈ V, fa, a ∈ A) is χ-
(semi)stable if and only if

μχ(Wv, v ∈ V )(≤)μχ(Qv, v ∈ V )

holds true for any non-trivial and proper quotient K-representation (qv : Wv −→
Qv, v ∈ V ) of R.
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iv) Part iii) implies that a K-representation R of Q is (semi)stable with
respect to the parameter χ = (χv, v ∈ V ) if and only if the dual K-representation
R∨ of Q∨ is (semi)stable with respect to the parameter −χ = (−χv, v ∈ V ).

v) There exists a Harder–Narasimhan filtration for K-representations with
respect to the stability parameter χ ([21], Theorem 2.5). As in [22], Theorem
1.3.7, one uses it to show that a K-representation of Q is χ-semistable over K if
and only if it is χ-semistable over the algebraic closure K. This is not necessarily
true for χ-stability (see Example 1).

vi) For a tuple (Tv, v ∈ V ) of K-vector spaces, we define the support as the
set Supp(Tv, v ∈ V ) := { v ∈ V |Tv �= 0 }. Likewise, we define the support of a
tuple χ = (χv, v ∈ V ) of real numbers as Supp(χ) := { v ∈ V |χv �= 0 }. When
studying (semi)stability of a K-representation (Wv, v ∈ V, fa, a ∈ A), it clearly
suffices to restrict to stability parameters χ with Supp(χ) ⊂ Supp(Wv, v ∈ V ).

vii) Let R = (Wv, v ∈ V, fa, a ∈ A) be a K-representation. Define

N :=
{

ψ = (ψv, v ∈ V ) ∈ R
#V

∣∣
∑

v∈V

ψv · dimK(Wv) = 0
}

(1)

and
S :=

{
ω ∈ N |R isω-semistable

}
.

Note that S is a cone in N , i.e., for χ1, χ2 ∈ S and λ1, λ2 ∈ R≥0, the tuple
λ1 · χ1 + λ2 · χ2 also lies in S.

viii) Fix a tuple r = (rv, v ∈ V ) of non-negative integers. A test configuration
is a tuple e = (ev, v ∈ V ) of integers with 0 ≤ ev ≤ rv, v ∈ V , and 0 <

∑
v∈V

ev <
∑

v∈V

rv. With a test configuration e, we associate the wall

We :=
{

ω = (ωv, v ∈ V )
∣∣

∑

v∈V

ωv · ev = 0
}

.

These walls induce a decomposition

N =
⊔

v∈V

Ci

into locally closed subsets, called chambers, such that, for i = 1, ..., w, χ, χ′ ∈
Ci, a K-representation R of Q is χ-(semi)stable if and only if it is χ′-
(semi)stable. Note that every chamber contains integral vectors. This means
studying (semi)stability with respect to real stability parameters amounts to
the same as studying it with respect to integral stability parameters. A result
of Derksen and Weyman ([12], Theorem 5.1, see also [27], Theorem 3) explains
how to compute this decomposition in terms of the quiver Q.

The last result we would like to emphasize is the existence of Jordan–Hölder
filtrations.
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Proposition 1. For every stability parameter χ = (χv, v ∈ V ) ∈ N and every
χ-semistable K-representation R = (Wv, v ∈ V, fa, a ∈ A), there exists a filtra-
tion

0 =: R0
� R1

� · · · � Rs
� Rs+1 := R

by K-subrepresentations, such that

a) dimχ(Ri) = 0, i = 0, ..., s + 1,
b) Ri+1/Ri is χ-stable, i = 0, ..., s.

Furthermore, the isomorphism class of

s⊕

i=0

Ri+1/Ri (2)

depends only on R and χ.

Proof. See [21], Proposition 2.7.

The filtration in Proposition 1 is the Jordan–Hölder filtration of R (with respect
to χ), and the representation in (2) is denoted by grχ(R) and called the associated
graded K-representation of R (with respect to χ).

Remark 2. i) Note that grχ(R) is χ-semistable.
ii) If K is not algebraically closed, the Jordan–Hölder filtration and the asso-

ciated graded object may change when passing to an algebraic extension L of K

(see the following example).

Example 1. We look at the quiver Using the normalization from Remark 1, ii),
we see that 0 is the only relevant stability parameter for K-representations of
Q. A K-representation of Q is a finite dimensional K-vector space W together
with an endomorphism f : W −→ W . If dimK(W ) = 2, then a one dimensional
K-subrepresentation is spanned by a non-zero eigenvector of f . So, we may take
K = R and an endomorphism f : R

2 −→ R
2 with characteristic polynomial

x2 + 1. Then, (R2, f) is 0-stable (Remark 1, i), but its extension to C isn’t.
The Jordan–Hölder filtration over R is 0 ⊂ R

2, and, over C, the Jordan–Hölder
filtrations are of the form 0 ⊂ 〈v〉 ⊂ R

2, v being a non-zero eigenvector of f .

A K-representation R is χ-polystable, if it is χ-semistable and isomorphic to
grχ(R). We say that a K-representation R is totally unstable, if it is unstable
with respect to any non-zero stability parameter χ ∈ R

#V . We will present
the classification of totally unstable K-representations of certain quivers in the
section after next.

http://dx.doi.org/10.1007/978-3-319-67053-9_2
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2.3 The GIT Set-Up

Fix a tuple r = (rv, v ∈ V ) of non-negative integers and set

U := Repr(Q) :=
⊕

v∈V

HomK(Krt(a) , Krh(a)).

It parameterizes K-representations of Q with dimension vector r. Every K-repre-
sentation of Q with dimension vector r is isomorphic to one in Repr(Q). Next,
introduce the reductive affine algebraic group

G := GLr(K) :=
ą

v∈V

GLrv
(K).

It acts on Repr(Q) via

GLr(K) × Repr(Q) −→ Repr(Q)

(g, u) =
(
(Bv, v ∈ V ), (fa, a ∈ A)

) 
−→ (
Bh(a) ◦ fa ◦ B−1

t(a), a ∈ A
)
.

Note that two K-representations in Repr(Q) are isomorphic if and only they lie
in the same GLr(K)-orbit. Let

S := K[U ]G =
{

f ∈ K[U ]
∣∣ ∀g ∈ G, u ∈ U : f(g · u) = f(u)

}
.

The affine algebraic variety

U//G := Spec(S)

parameterizes semisimple, i.e., 0-polystable, K-representations of Q with dimen-
sion vector r.

Remark 3. Suppose χ ∈ R
#V \ {0} is a non-trivial stability parameter and R =

(Wv, v ∈ V, fa, a ∈ A) is a χ-semistable K-representation. Let

0 =: R0
� R1

� · · · � Rs
� Rs+1 := R

be the Jordan–Hölder filtration of R with respect to χ and write Rj = (W j
v , v ∈

V ), j = 1, ..., s. We may pick bases {wv1, ..., wvdv
} for Wv, such that

〈wv1, ..., wv dimK(W
j
v ) 〉 = W j

v , j = 1, ..., s, v ∈ V.

Using these bases, R and grχ(R) define points u and u′ in Repr(An+1), r being
the dimension vector of R. We also choose integral weights γ1 < · · · < γs < γs+1.
One may use these data to define a one parameter subgroup

λ : Gm(K) −→ GLr(K)

with
lim

t→∞λ(t) · u = u′.

This shows that u′ lies in the closure of the orbit of u.
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Let χ : GLr(K) −→ Gm(K) be a character. A χ-semi-invariant is a regular
function

f : U −→ K

with the property

∀g ∈ G, u ∈ U : f(g · u) = χ(g) · f(u).

Remark 4. Let f be a χ-semi-invariant. The open subset

Uf :=
{

u ∈ U | f(u) �= 0
}

is invariant under the G-action on U .

We let
K[U ]χ :=

{
f ∈ K[U ]

∣∣ f is aχ-semiinvariant
}

be the sub vector space of χ-semi-invariant functions. The ring

K[U ]χ :=
∞⊕

d=0

K[U ]χ
d

is a finitely generated K-algebra. We set

U//χG := Proj(K[U ]χ).

Since K[U ]χ
0

= K[U ]G, we have a projective morphism

πχ : U//χG −→ U//G.

Remark 5. i) The natural rational map U ��� U//χG is defined in a point u ∈
U if and only if there exist a positive integer d > 0 and a χd-semi-invariant
f ∈ K[U ]χ

d

with f(u) �= 0. This is the GIT notion of semistability defined with
respect to the linearization of the G-action in OU defined by the character χ (see
[23], Sect. 2).

ii) Let χ = (χv, v ∈ V ) ∈ Z
#V be a tuple of integers. It yields the character

χ : GLr(K) −→ Gm(K) (3)

(Bv, v ∈ V ) 
−→
∏

v∈V

det(Bv)χv .

Theorem 1. ([23], Theorem 5.1) Let χ = (χv, v ∈ V ) ∈ (N ∩Z
#V ) be a tuple

of integers and let χ : GLr(K) −→ Gm(K) be the character from (3). Then,
for a point u = (fa, a ∈ A) ∈ Repr(Q), the K-representation R = (Krv , v ∈
V, fa, a ∈ A) is χ-semistable if and only if there exist a positive integer d > 0
and a χ−d-semi-invariant4 f ∈ K[U ]χ

−d

with f(u) �= 0.
4 Take note of the sign.
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In view of Remark 1, viii), this gives the GIT interpretation of the notion of
semistability introduced before.

Remark 6. i) An obvious way to construct semi-invariants is the following: For
a given dimension vector r = (rv, v ∈ V ), look for tuples λ = (λv, v ∈ V ),
λ′ = (λv, v ∈ V ) of non-negative integers with

∑
v∈V

λv · rv =
∑

v∈V

λ′
v · rv and

paths in Q, including those of length zero, connecting points in Supp(λ) to
points Supp(λ′). Given these data, we may assign to every K-representation
R = (Wv, v ∈ V, fa, a ∈ A) of Q a linear map

⊕

v∈V

W⊕λv
v −→

⊕

v∈V

W
⊕λ′

v
v .

Mapping R to the determinant of this linear map, gives a semi-invariant function
Repr(Q) −→ K. It was shown by Schofield and Van den Bergh [36,37], Derksen
and Weyman [11], and Domokos and Zubkov [13] that, for a quiver without
oriented cycles and an infinite field K, all semi-invariants may be generated
from semi-invariants of the above shape. This implies that semistability can be
characterized by basic linear algebra conditions, stating that at least one linear
map from a certain list must be an isomorphism.

ii) Set
SLr(K) :=

ą

v∈V

SLrv
(K).

The ring
K

[
Repr(Q)

]SLr(K)

consists of all semi-invariants. Koike determined in [24] generators for this ring
for circular quivers and quivers of type An+1.

2.4 Quivers of Type a

Let n ≥ 1 be a natural number. We write An+1 for the quiver

n
an−−−−→ n − 1

an−1−−−−→ · · · a2−−−−→ 1 a1−−−−→ 0. (4)

For a K-representation (Wi, i = 0, ..., n, fai
, i = 1, ..., n) of An+1, we set fi := fai

,
i = 1, ..., n.

Lemma 1. Let R = (Wi, i = 0, ..., n, fi, i = 1, ..., n) be a K-representation of
An+1 and χ = (χi, i = 0, ..., n) ∈ N a stability parameter, such that R is χ-
semistable. Set S := Supp(Wi, i = 0, ..., n) ∩ Supp(χ), m := min(S) and M :=
max(S). Then, χm ≤ 0 ≤ χM .

Proof. The tuple (Ui, i = 0, ..., n) with Ui = Wi, i = 0, ...,m, and Ui = 0,
i = m + 1, ..., n, is a K-subrepresentation. It satisfies

n∑

i=0

χi · dimK(Ui) = χm · dimK(Wm).
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By our conventions, dimK(Wm) > 0. The tuple (Vi, i = 0, ..., n) with Vi = Wi,
i = 0, ...,M − 1, and Vi = 0, i = M, ..., n, is also a K-subrepresentation. We find

n∑

i=0

χi · dimK(Vi) = −χM · dimK(WM ).

Again, our set-up grants dimK(WM ) > 0.

Our considerations regarding semistability of K-representations of An+1 will rely
on the classification of indecomposable K-representations. Let us briefly recall
it.5 For j = 0, ..., n, we let Ijj be the K-representation (Wi, i = 0, ..., n, fi, i =
1, ..., n) with Wj = K and Wi = 0, i ∈ { 0, ..., n } \ {j}. Moreover, for 0 ≤
j < k ≤ n, we have the K-representation Ijk = (Wi, i = 0, ..., n, fi, i = 1, ..., n)
with Wi = K, i = j, ..., k, Wi = 0, i ∈ { 0, ..., n } \ { j, ..., k }, and fi = idK,
i = j + 1, ..., k. Graphically, we have

Ijj : 0 −→ · · · −→ 0 −→ K −→ 0 −→ · · · −→ 0,

Ijk : 0 −→ · · · −→ 0 −→ K
idK−→ · · · idK−→ K −→ 0 −→ · · · −→ 0.

Proposition 2. Every K-representation of An+1 is isomorphic to a direct sum
of K-representations of the form Ijk, 0 ≤ j ≤ k ≤ n.

Proof. For n = 0, 1, one knows the result from basic Linear Algebra. We proceed
by induction on n. Let R = (Wi, i = 0, ..., n, fi, i = 1, ..., n) be a K-representation
of An+1. We form the K-subrepresentation S = (Ui, i = 0, ..., n) of R, by setting
U0 := 0, Ui := ker(f1 ◦ · · · ◦ fi), i = 1, ..., n. Since U0 = 0, we may view
S as a K-representation of An and apply the induction hypothesis to it. To
conclude, we will construct a direct complement T to S which is a direct sum of
indecomposable K-representations from the above list.

Set ci := codimWi
(Ui), i = 0, ..., n, and cn+1 := 0. Note that ci ≤ ci−1,

i = 1, ..., n. In fact, let i ∈ { 1, ..., n } and Xi ⊂ Wi be a direct complement to
Ui. Then, Xi

∼= fi(Xi) and fi(Xi)∩Ui−1 = 0. Next, let n ≥ j1 > · · · > jr ≥ 0 be
the indices where the codimension jumps, i.e., cjρ+1 < cjρ

, ρ = 1, ..., r. Choose
vectors u1

1, ..., u
1
d1

∈ Wj1 which form the basis of a direct complement Xj1 of
Uj1 . Define I1,ν = (I1,ν

i , i = 0, ..., j1) with I1,ν
j1

:= 〈u1
ν〉 and I1,ν

i = 〈(fi+1 ◦ · · · ◦
fj1)(u

1
ν)〉, ν = 0, ..., j1 − 1. Next, choose vectors u2

d1+1, ..., u
2
d2

∈ Wj2 which form
together with the vectors (fj2−1◦· · ·◦fj1)(u

1
1), ...., (fj2−1◦· · ·◦fj1)(u

1
d1

) the basis
of a direct complement Xj2 for Uj2 . Then, we may define I2,ν , ν = d1 + 1, ..., d2,
similarly as before and iterate the construction. Now,6

r⊕

ρ=1

dρ⊕

dρ−1+1

Iρ,ν

5 The general classification scheme for indecomposable representations of a quiver of
finite representation type is given by Gabriel’s theorem (see [28], Chap. 8).

6 Set d0 := 0.
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clearly is a K-subrepresentation of R and a direct complement to S. Finally,
note that, if jr = 0, then I0,ν ∼= I00, ν = dr−1 + 1, ..., dr, and that, otherwise,
Iρ,ν ∼= I0jρ

, ν = dρ−1 + 1, ..., dρ, ρ = 1, ..., r.

Remark 7. i) For 0 ≤ j < k ≤ n, the K-subrepresentations of Ijk are Ijl, l =
j, ..., k.

ii) For l = 1, ..., n, define the stability parameter χl = (χl
i, i = 0, ..., n) by

χl := 1, χl−1 := −1, and χi = 0, i ∈ { 0, ..., n }\{ l−1, l }. The K-representation
Ijk is semistable with respect to the stability parameters χl, l = j + 1, ..., k,
0 ≤ j < k ≤ n.

iii) Let R = (Wi, i = 0, ..., n, fi, i = 1, ..., n) be a K-representation of An+1

and χ = (χi, i = 0, ..., n) ∈ N a stability parameter, such that R is χ-semistable.
If Ijj occurs in the decomposition of R into indecomposables, then χj = 0,
j = 0, ..., n. If Ijk occurs in the decomposition of R into indecomposables, then
k∑

i=j

χi = 0, 0 ≤ j < k ≤ n. These conditions follow, because the respective

indecomposable K-representation is both a K-subrepresentation and a quotient
K-representation of R (compare Remark 1, iii).

Lemma 2. Fix 0 ≤ j < k ≤ n, and let χ = (χi, i = 0, ..., n) be a stability

parameter with
k∑

i=j

χi = 0 and Supp(χ) ⊂ { j, ..., k }. Then, Ijk is χ-semistable if

and only if χ is a linear combination of the χl, l = j +1, ..., k, with non-negative
coefficients.

Proof. If χ is a linear combination of the χl, l = j + 1, ..., k, with non-negative
coefficients, then Remarks 7, ii), and 1, vii), show that Ijk is χ-semistable.

Suppose conversely that Ijk is χ-semistable. We apply induction on k − j.
For k − j = 1, there is nothing to show. According to Remark 7, i), Ijj is a
K-subrepresentation, so that χj ≤ 0. Set χ′ = (χ′

i, i = 0, ..., n) := χ + χj · χj .
In order to apply induction, we need to show that Ij+1k is χ′-semistable. For
l = j + 1, ..., k, we find

l∑

i=j+1

χ′
i =

(
l∑

i=j+2

χi

)
+ (χj+1 + χj) =

l∑

i=j

χi ≥ 0.

So, the K-subrepresentation Ij+1l is not destabilizing, l = j + 1, ..., k.

Remark 8. i) Using the decomposition of a K-representation R into indecompos-
ables, Lemma 2 enables one to determine all stability parameters χ with respect
to which R is semistable.

ii) A K-representation which is stable for some stability parameter χ is inde-
composable. This follows from Remark 1, iii), because a direct summand is both
a K-subrepresentation and a quotient K-representation. For j = 0, ..., n, the K-
representation Ijj is 0-stable, by Remark 1, i). Now, let 0 ≤ j < k ≤ n and

χ ∈ R
#V be a stability parameter with

k∑
i=j

χi = 0. Using the description of the
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K-subrepresentations of Ijk (Remark 7, i), we see that the following conditions
are equivalent:

• Ijk is χ-stable.

•
l∑

i=j

χi < 0, l = j, ..., k − 1.

•
k∑

i=l

χi > 0, l = j + 1, ..., k.

Lemma 3. Let 0 ≤ j ≤ k ≤ n, 0 ≤ l ≤ m ≤ n, and let χ ∈ R
#V \ {0} be a

stability parameter with
k∑

i=j

χi = 0 =
m∑
i=l

χi. Suppose that Ijk and Ilm are both

χ-stable.7 Then, one of the following conditions is satisfied:

• j = l and k = m.
• k < l.
• m < j.
• j < l and m < k.
• l < j and k < m.

Proof. Suppose that none of the above conditions is satisfied. Then, after
exchanging the roles of (j, k) and (l,m), if necessary, we have j ≤ l ≤ k ≤ m
and j < l or k < m. Let us assume j < l. Then, by Remark 8, ii),8

0 <

k∑

i=l

χi ≤ 0.

This is clearly impossible. A similar argument applies if j = l and k < m.

The following result gives a characterization of the totally unstable K-represen-
tations of An+1.

Proposition 3. Let R = (Wi, i = 0, ...., n, fi, i = 1, ..., n) be a K-representa-
tion of An+1. Then, there exists a stability parameter χ ∈ N \ {0} for which
R is semistable if and only if there are indices 0 ≤ j < k ≤ n, such that
fj+1 ◦ · · · ◦ fk : Wk −→ Wj is an isomorphism.

Proof. Suppose there exist indices 0 ≤ j < k ≤ n, such that fj+1 ◦ · · · ◦
fk : Wk −→ Wj is an isomorphism. Then, R is semistable with respect to the
stability parameter χ = (χi, i = 0, ..., n) with χj = −1, χk = 1, and χi = 0,
i ∈ { 0, ..., n } \ { j, k }. In fact, let (Ui, i = 0, ..., n) be a K-subrepresentation.
Then, dimK(Uk) ≤ dimK(Uj), i.e.,

n∑

i=0

χi · dimK(Ui) = dimK(Uk) − dimK(Uj) ≤ 0.

7 Then, Ijk ⊕ Ilm is χ-semistable.
8 The second inequality is an equality if and only if k = m.
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Pick a non-trivial stability parameter χ ∈ N\{0}, such that R is χ-semistable,
and let grχ(R) = (W ′

i , i = 0, ...., n, f ′
i , i = 1, ..., n) be the associated graded K-re-

presentation of R with respect to χ. We contend that it is sufficient to prove the
assertion for grχ(W ) which is also χ-semistable. To this end, we may choose bases
for the Wi, i = 1, ..., n, which are compatible with the Jordan–Hölder filtration,
so that they induce bases for the vector spaces W ′

i , i = 1, ..., n. So, we may
think of R and grχ(R) as points of Repr(An+1), r = (dimK(W0), ...,dimK(Wn))
(compare Remark 3). Suppose that 0 ≤ j < k ≤ n are indices, such that f ′

j+1 ◦
· · · ◦ f ′

k : Wk −→ Wj is an isomorphism. Then, necessarily rj = rk, and we may
study the function

djk : Repr(An+1) −→ K (5)
(hi, i = 1, ..., n) 
−→ det(hj+1 ◦ · · · ◦ hk). (6)

It is a semi-invariant for the GLr(K)-action with respect to the character

χjk : GLr(K) −→ Gm(K)
(Bi, i = 0, ..., n) 
−→ det(Bj) · det(Bk)−1.

The set where djk does not vanish is open and GLr(K)-invariant. By Remark 3,
grχ(R) is contained in the closure of the GLr(K)-orbit of R. Therefore, djk does
not vanish in R. This means that fj+1 ◦ · · · ◦ fk : Wk −→ Wj is an isomorphism.

By the above discussion, we may suppose that R is χ-polystable. By Remark
8, ii), χ-stable K-representations are indecomposable. This means that the direct
sum decomposition of R into χ-stable K-representations is the decomposition
into indecomposable K-representations. If Ijj appears in the decomposition, then
χj = 0, j = 0, ..., n. Since we assume χ to be non-trivial, there must be indices
0 ≤ j < k ≤ n, such that Ijk occurs in the decomposition. Pick 0 ≤ j0 < k0 ≤ n,
such that Ij0k0 is a direct summand of R and k0 − j0 takes the minimal value
among the index pairs (j, k) with 0 ≤ j < k ≤ n and Ijk appearing in the direct
sum decomposition. We assert that fj0+1 ◦ · · · ◦ fk0 is an isomorphism. In fact,
this follows from Lemma 3 and the fact that R is χ-polystable.

Remark 9. The argument given at the end of the above proof shows, more pre-
cisely, that, if Ijk appears in the decomposition of grχ(R), then fj+1 ◦ · · · ◦
fk : Wk −→ Wj is an isomorphism.

Example 2. Let R = (Wi, i = 0, ..., n, fi, i = 1, ..., n) be a K-representation of
An+1 with dimK(Wj) �= dimK(Wk), for 0 ≤ j < k ≤ n. Then, R is totally
unstable.

Remark 10. i) Given a quiver Q and a dimension vector r, one may ask for
which stability parameters χ there do exist χ-semistable K-representations of
Q with dimension vector r. The results mentioned in Remark 6 and the cone
decomposition of N discussed in Remark 1, viii), both give a general answer to
this question. I have not checked, if these methods can be applied to classify
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totally unstable representations. (Note that the quoted results all start from a
given dimension vector. The answer we are looking for should not mention the
dimension vector explicitly but rather imply conditions for it being eligible as
the dimension vector of a semistable representation of the quiver.)

ii) The above reasoning can, in principle, be carried out for all quivers of
finite representation type. However, already for other orientations of the graph

the conditions may become much more complicated to state. They can be
extracted from [24], Theorem 3.

iii) Note that for every stability parameter χ ∈ N there exists — up to
isomorphy — at most one χ-polystable K-representation of dimension vector
r. So, a moduli space for χ-semistable K-representations of An+1 of dimension
vector r is either empty or consists of just one point.

2.5 The Invariant Ring

We would like to recover Koike’s computation of the invariant ring K[U ]S . We
will apply the following classical result of Hilbert.

Theorem 2. Let K be an algebraically closed field of characteristic zero, S a
reductive algebraic group, U a finite dimensional K-vector space, and ρ : S −→
GL(U) a rational representation. Suppose that f1, ..., fs ∈ K[U ]S are invari-
ants whose common vanishing locus is the set of nullforms. Then, the invariant
ring K[U ]S equals the integral closure of K[f1, ..., fs] in the field of invariants
Q(K[U ]S).

Proof. [20], §4, [39], Theorem 4.6.1.

Let n be a positive integer, r a dimension vector, and K a field. As before,

we define U := Repr(An+1), G :=
nŚ

i=0

GLri
(K). and S :=

nŚ

i=0

SLri
(K). For

0 ≤ l < m ≤ n with rl = rm, rν ≥ rm, ν = l + 1, ...,m − 1, let dlm : U −→ K be
the invariant defined in (5). We say that dlm is a basic invariant, if

∀ν ∈ { l + 1, ...,m − 1 } : rν > rm.

Remark 11. Let 0 ≤ li < mi ≤ n, i = 1, 2, be such that dl1m1 and dl2m2 are
distinct basic invariants. If #({ l1, ...,m1 } ∩ { l2, ...,m2 }) ≥ 2, then l1 < l2 <
m2 < m1 or l2 < l1 < m1 < m2.

Proposition 4. (Koike) Assume that K is infinite. Then, the basic invariants
are algebraically independent.

Before we start with the proof, let us compare G-orbits and S-orbits in U . For
0 ≤ l < m ≤ n and λi ∈ K

∗, i = l + 1, ...,m, define the indecomposable
representation

Ilm(λl+1, ..., λm) : K
λm·idK−−−−→ K

λm−1·idK−−−−−−→ · · · λl+2·idK−−−−−→ K
λl+1·idK−−−−−→ K.

http://dx.doi.org/10.1007/978-3-319-67053-9_4
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We assume that K admits r-th roots of unity, for r ∈ { r0, ..., rn }. This implies
that

Gn(K)×(n+1) × S −→ G(
(zi, i = 0, ..., n), (Bi, i = 0, ..., n)

) 
−→ (zi · Bi, i = 0, ..., n)

is surjective. In view of Proposition 2, we see that every S-orbit contains a
representation of the form

s⊕

i=1

Ilimi
(λli+1, ..., λmi

)⊕νi , (7)

satisfying (li,mi) �= (lj ,mj), 1 ≤ i < j ≤ s, and νi > 0, i = 1, ..., s.

Remark 12. For fixed values of s, and (li,mi), νi, i = 1, ..., s, there might be
distinct tuples (λ1, ..., λs), (λ′

1, ..., λ
′
s) which define, via (7), representations in

the same S-orbit. This applies, for example, if λi and λ′
i differ by an ri-th root

of unity, i = 1, ..., s. More identifications will appear in the proof of Theorem 3.

Proof. (of Proposition 4) We will prove by induction on k that any set of k basic
invariants is algebraically independent. For k = 1, there is nothing to show.

For the induction step, let us suppose we are given 0 ≤ li < mi ≤ n, such
that dlimi

is a basic invariant, i = 1, ..., k + 1. We choose the indexing in such a
way that

mk+1 − lk+1 = μ := min{mi − li | i = 1, ..., k + 1 }
and

mk+1 = max
{

mi | i ∈ { 1, ..., k + 1 } : mi − li = μ
}
.

Set Ii := dlimi
, i = 1, ..., k + 1, and assume that s ∈ K[x1, ..., xk+1] \ {0} is a

polynomial with
s(I1, ..., Ik+1) = 0.

We write

s = a0 · xt
k+1 + · · · + at−1 · xk+1 + at with aj ∈ K[t1, ..., tk], j = 0, ..., t.

By the induction hypothesis, Aj := aj(I1, ..., Ik) �= 0, for those j ∈ { 0, ..., t } with
aj �= 0. Since we are working over an infinite field, we may pick a representation
r = (fa, a ∈ A) ∈ U with Aj(r) �= 0, for those j ∈ { 0, ..., t } with aj �= 0. Define

Υ :=
{

i ∈ { 1, ..., k } ∣∣ dlimi
(r) �= 0 ∧ #

({ li, ...,mi } ∩ { lk+1, ...,mk+1 }
) ≥ 2

}
.

By Remark11, this set is ordered by the relation “≺” with

∀(l1,m1), (l2,m2) ∈ N × N : (l1,m1) ≺ (l2,m2) :⇐⇒ l2 < l1 ≤ m1 < m2.

Let us first assume Υ = ∅. For λ ∈ K, we define r̃λ = (fλ
i , i = 0, ..., n), such

that fλ
i = fi, i ∈ { 0, ..., n } \ {lk+1 + 1, ...,mk+1}, and fλ

lk+1+1 ◦ · · · ◦ fλ
mk+1

=
λ · id

K
rmk+1 . Then,

Ii(r̃λ) = Ii(r), i = 1, ..., k, and Ik+1(r̃λ) = λrmk+1 .



Generically Semistable Linear Quiver Sheaves 409

This is clearly impossible.
Next, we look at the case Υ �= ∅. Let i0 be the index, such that (li0 ,mi0)

is minimal with respect to “≺” among the pairs (li,mi), i ∈ Υ. Without loss
of generality, we may assume i0 = k. We may also suppose that r has the form
specified in (7). For λ ∈ K, we define r̃λ = (fλ

i , i = 0, ..., n), such that fλ
i = fi,

i ∈ { 0, ..., n }\{lk+1 +1, ...,mk+1}, and fλ
lk+1+1 ◦ · · ·◦fλ

mk+1
is given by the block

matrix (
(flk+1+1 ◦ · · · ◦ fmk+1)|Kmk 0

0 λ · id
K

rmk+1−rmk

)
.

Then, Ii(r̃λ) = Ii(r), i = 1, ..., k, and

Ik+1(r̃λ) = λrmk+1−rmk · Det((flk+1+1 ◦ · · · ◦ fmk+1)|Kmk ).

Again, this is impossible.

Theorem 3. (Koike) Let K be an algebraically closed field of characteristic
zero. Then, the invariant ring K[U ]S is (freely) generated by the basic invariants.

Proof. Proposition 3 implies that the basic invariants cut out the set of nullforms.
By Theorem 2, it remains to show that the field Q(K[U ]S) is generated by the
basic invariants, too. Let B ⊂ K[U ]S be the K-subalgebra generated by the basic
invariants. We know that

Spec
(
K[U ]S

) −→ Spec(B)

is a finite morphism. Since we are working in characteristic zero, Zariski’s main
theorem ([8], AG 18.2, Theorem) implies that it suffices to verify that this mor-
phism is (generically) one-to-one. This amounts to showing that the basic invari-
ants separate closed S-orbits.

So, we need to understand what the closed S-orbits are. Let us look at a
representation r as in (7). In the obvious labeling, there is a basis

eb,c
a , a = lb, ...,mb, c = 1, ..., νb, b = 1, ..., s,

for K

n�

i=0
ri

, corresponding to the presentation of r in the form (7). Suppose we
have two distinct indices i, j ∈ { 1, ..., s } with

lj ≤ li ≤ mj ≤ mi.

(Note that lj < li or mj < mi.) Let λ : Gm(K) −→ S be the one parameter
subgroup which acts on ei,c

a with weight −νj , a = li, ...,mj , c = 1, ..., νi, on ej,c
a

with weight νi, a = li, ...,mj , c = 1, ..., νi, and on all other basis vectors with
weight zero. Let

r∞ := lim
z→∞λ(z) · r.

Then, we obtain r∞ from r by replacing

Ilimi
(λli+1, ..., λmi

)⊕νi ⊕ Iljmj
(λj

lj+1, ..., λ
j
mj

)⊕νj
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by

I(mj+1)mi
(λmj+2, ..., λmi )

⊕νi⊕Ilimj
(λli+1, ..., λmj )

⊕(νi+νj) ⊕Ilj(li−1)(λlj+1, ..., λli−1)
⊕νj ,

and leaving all the other summands unchanged.
Now, let us assume that r is as in (7) and that the S-orbit of r is closed. Set

Π :=
{

(li,mi)
∣∣ i = 1, ..., s

}
.

By our previous argument, we have, for 1 ≤ i < j ≤ s, li ≤ mi < lj ≤ mj ,
lj ≤ mj < li ≤ mi, (li,mi) ≺ (lj ,mj), or (lj ,mj) ≺ (li,mi). It is now clear
that the basic invariants, evaluated at r, determine Π. Then, ν1, ..., νs are also
determined.

Applying induction on s, we will prove that λ1, ..., λn can be recovered from
the basic invariants evaluated at r.9 For s = 1, the assertion is trivial.

For the induction step, we may assume without loss of generality that Π
has a unique maximal element with respect to “≺”. We choose the labeling
in such a way that (lp+1,mp+1) is minimal with respect to “≺” among the
elements of Π. Let i0 ∈ { 1, ..., s } be an index with (lp+1,mp+1) ≺ (li0 ,mi0) and
¬((li0 ,mi0) ≺ (li,mi) ≺ (lp+1,mp+1)), i = 1, ..., s.10 We may choose the labeling
in such a way that (li0 ,mi0) ≺ (li,mi), i = i0 +1, ..., s, and ls+1 ≤ ms+1 < · · · <
li0+1 ≤ mi0+1. If there is an index j ∈ { i0 + 1, ..., s }, such that lj − mj+1 ≥ 2,
then we may directly apply the induction hypothesis. If lj − mj+1 = 1, j =
i0 + 1, ..., s, the induction hypothesis shows that all λi are determined, except
for, possibly, λj with j ∈ { li | i = i0 + 1, ..., s + 1 } ∪ {mi0+1 + 1}. Let s ∈ S
be the element which multiplies eb,c

a by λls+1 , a = ls+1, ...,ms+1, c = 1, ..., νb,
b ∈ B′ := { 1, ..., i0 | (ls+1,ms+1) ≺ (li,mi) }, and es+1,c

a by μ, a = ls+1, ...,ms+1,

c = 1, ..., νs+1. Here, μ ∈ K satisfies μνs+1 = (λls+1)
− �

b∈B′
νb

. If we apply s to r,
we get r′ with λ′

ls+1
= 1, λ′

ls
= μ−1 ·λls , and the remaining numbers unchanged.

Continuing this way, we see that we may assume without loss of generality
λlj = 1, j = i0 + 1, ..., s + 1. We recover λmi0+1+1 from d(ls+1−1)(mi0+1+1)(r).11

2.6 Circular Quivers

Let n ≥ 2 be a natural number. In this section, we will work with the quiver
Ãn = ({ 1, ..., n }, A, t, h) whose arrow set is A = { a1, ..., an }, t(ai) = i, and

h(ai) = i + 1 :=
{

i + 1, fori = 1, ..., n − 1
1, fori = n

,

i = 1, ..., n.
9 There might be different sets of numbers giving isomorphic representations. This

will become clear in the proof.
10 As an example, look at the picture

• −→ • −→ • • −→ • • −→ •
• −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ • .

.
11 Bear in mind Remark 12.
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Remark 13. Note that the dual quiver of a circular quiver is also a circular
quiver.

For a K-representation (Wi, fai
, i = 1, ..., n) of a circular quiver Ãn, we will write

fi instead of fai
, i = 1, ..., n, and denote it as (Wi, fi, i = 1, ..., n). We start this

section with two observations which work for any n ∈ N.

Example 3. Let (Wi, fi, i = 1, ..., n) be a K-representation of Ãn, such that there
exist indices 1 ≤ j < k ≤ w, such that fk−1 ◦ · · · ◦ fj : Wj −→ Wk is an
isomorphism. Then, (Wi, fi, i = 1, ..., n) is semistable with respect to the stability
parameter χ = (χi, i = 1, ..., n) with χj = 1, χk = −1, and χi = 0, i =
1, ..., n \ { j, k }. To check this, let (Ui, i = 1, ..., n) be a K-subrepresentation.
Then, dimK(Uj) ≤ dimK(Uk), i.e.,

∑

v∈V

χi · dimK(Ui) = dimK(Uj) − dimK(Uk) ≤ 0.

If dimK(Wj) = dimK(Wk) > 1 and K is algebraically closed, then (Wi, fi, i =
1, ..., n) is not χ-stable. In fact, let v ∈ Wk be a non-zero eigenvector of
fj−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fj : Wj −→ Wj , Uj := 〈v〉, Ui := (fi−1 ◦ · · · ◦
f1 ◦ fn ◦ · · · ◦ fj)(Uj), i = 1, ..., n \ {j}. This is a K-subrepresentation with
dimK(Uj) = dimK(Uk) = 1.

Lemma 4. Let (Wi, fi, i = 1, ..., n) be a K-representation of the circular quiver
Ãn, ri := dimK(Wi), i = 1, ..., n, and χ = (χi, i = 1, ..., n) a non-zero stability
parameter with

∑
v∈V

χi · ri = 0, such that (Wi, fi, i = 1, ..., n) is χ-semistable.

i) Assume that 1 ≤ j ≤ k ≤ w are indices with χj > 0 and χi ≥ 0, i =
j + 1, ..., k. Then, fk ◦ · · · ◦ fj : Wj −→ Wk+1 is injective.

ii) If 1 ≤ j ≤ k ≤ w are indices with χk < 0 and χi ≤ 0, i = j, ..., k − 1, then
fk−1 ◦ · · · ◦ fj−1 : Wj−1 −→ Wk is surjective.

Proof. i) Assume that V := ker(fk ◦ · · · ◦fj) is a non-zero subspace of Wj . Then,
(Ui, i = 1, ..., n) with Ui = 0, i �∈ { j, ..., k }, and Uj := V , Uj+l := (fj+l−1 ◦
· · · ◦ fj)(V ), l = 1, ..., k − j, is a non-trivial proper K-subrepresentation which
desemistabilizes (Wi, fi, i = 1, ..., n) with respect to χ.

ii) This statement follows from i), by passing to the dual K-representation
(see Remark 1, iv). Concretely, we define Uk := (fk−1◦· · ·◦fj−1 )(Wj−1), Uk−i :=
(fk−1 ◦ · · · ◦ fk−i)−1(Uk), i = 1, ..., k − j, and Ui := Wi, i �∈ { j, ..., k }. Then,
(Ui, i = 1, ..., n) is a K-subrepresentation which desemistabilizes (Wi, fi, i =
1, ..., n) with respect to χ, if Uk is a proper subspace of Wk. This can be
most easily seen by looking at the corresponding quotient K-representation
(cf. Remark 1, iii).

Proposition 5. Let r = (r1, r2, r3) be a dimension vector with ri > 0, i =
1, 2, 3, χ = (χ1, χ2, χ3) a stability parameter with χ1 · r1 + χ2 · r2 + χ3 · r3 =
0, χ3 < 0, χ1 ≥ 0,12 and (Wi, fi, i = 1, 2, 3) a K-representation of Ã3 with
12 For any non-trivial stability parameter, this holds true for a suitable cyclic relabeling

of the vertices.
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dimK(Wi) = ri, i = 1, 2, 3. Then, the K-representation (Wi, fi, i = 1, 2, 3) is
χ-semistable if and only if one of the following conditions is satisfied:

a) r1 = r2 = r3, and f1 and f2 are isomorphisms.
b) r1 = r3, f2 ◦ f1 is an isomorphism, and χ = λ · (1, 0,−1), for some positive

real number λ.
c) r2 = r3, f2 is an isomorphism, and χ = λ · (0, 1,−1), for some positive real

number λ.

Proof. Let us first check that the stated conditions are sufficient. We start with
Case a). Note that χ2 + χ3 ≤ 0. For any K-subrepresentation (U1, U2, U3), we
have dimK(U1) ≤ dimK(U2) ≤ dimK(U3), so that

χ1 · dimK(U1) + χ2 · dimK(U2) + χ3 · dimK(U3)
= χ2 ·

(
dimK(U2) − dimK(U1)

)
+ χ3 ·

(
dimK(U3) − dimK(U1)

)

≤ χ3 ·
(
dimK(U3) − dimK(U2)

) ≤ 0.

Cases b) and c) are included in Example 3.
Let (Wi, fi, i = 1, 2, 3) be a χ-semistable K-representation of Ã3. Note that

χ3 < 0 implies that f2 is surjective, by Lemma 4.
If f1 is not injective, then χ1 = 0, for the same reason. But then, χ2 > 0 and

f2 must be injective, i.e., f2 has to be an isomorphism, and we have Case c).
Next, suppose f1 is injective. If χ2 < 0, then f1 must be surjective, i.e.,

an isomorphism. Thus, r1 = r2 and χ1 + χ2 > 0. This implies that f2 ◦ f1 is
injective. Indeed, a non-zero element v ∈ ker(f2 ◦ f1) would provide us with the
K-subrepresentation (v, f1(v), 0). Its dimension vector is (1, 1, 0), so it would be
destabilizing. Since f1 is an isomorphism, f2 has to be injective. Since this linear
map is also surjective, it is an isomorphism, and we are in Case a).

We have already seen that χ2 > 0 implies that f2 is an isomorphism. If
χ1 > 0, then χ2+χ3 < 0. This forces f1 to be surjective. If it were not surjective,
(0,W2/f1(W1),W3/(f2 ◦ f1)(W1)) would be a quotient K-representation with
dimension vector (0, r2 − r1, r2 − r1), i.e., it would be destabilizing. So, χ2 > 0
leads to Case a) or Case c).

It remains to look at the case χ2 = 0. The same argument as before shows that
f2◦f1 is injective. If it were not surjective, then (0,W2/f1(W1),W3/(f2◦f1)(W1))
would again be a destabilizing K-quotient representation. This leads to Case a)
or Case b).

Example 4. Proposition 5 shows that every K-representation (Wi, f, i = 1, 2, 3)
of Ã3 with ri �= rj , 1 ≤ i < j ≤ 3, is totally unstable.

We refer to [24] for more general results, including the analog of Proposition 5
for arbitrary n.

3 Quiver Sheaves

Let (X,OX(1)) be a polarized smooth projective variety over the complex num-
bers. The general formalism of quiver sheaves on X has been surveyed in [6].
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We will stick to the notation in that paper.13 In this section, we will assume
that all twisting sheaves are line bundles, that is, in M = (Ma, a ∈ A), we have
rk(Ma) = 1, a ∈ A (see Remark 14, iii). We let K := C(X) be the function field
of the variety X. The restriction of a quiver sheaf R to the generic point of the
variety X is a representation of the quiver in the category of K-vector spaces.
In this way, the theory of quiver sheaves becomes related to the theory of quiver
representations. In [5], this observation was used to get an understanding of
the shape of parameter regions of semistable A3-sheaves.14 In this note, we will
slightly expand this method.

For the following, let Q = (V,A, t, h) be a quiver, M = (Ma, a ∈ A) a
collection of line bundles on X, r = (rv, v ∈ V ) a tuple of positive integers,
and d = (dv, v ∈ V ) a tuple of integers. We say that an M -twisted Q-sheaf
R = (Ev, v ∈ V, ϕa, a ∈ A) has type (r, d), if rk(Ev) = rv, deg(Ev) = dv, v ∈ V .

3.1 The Generic Representation of a Quiver Sheaf

An M -twisted Q-sheaf R = (Ev, v ∈ V, ϕa, a ∈ A) can be restricted to the generic
point of X. This restriction will be denoted by R = (Wv, v ∈ V, fa, a ∈ A). It is
a K-representation of Q. It makes sense to study its stability properties. So, let
α = (αv, v ∈ V ) ∈ R

#V be a stability parameter. We say that R is generically
α-semistable, if R is α-semistable.15

Remark 14. i) Assume that α satisfies
∑

v∈V

αv · rk(Ev) =
∑

v∈V

αv · dimK(Wv) =

0. Then, an M -twisted Q-sheaf R = (Ev, v ∈ V, ϕa, a ∈ A) is generically α-
semistable if and only if, for every Q-subsheaf (Fv, v ∈ V ), we have

∑
v∈V

αv ·
rk(Fv) ≤ 0. This is because any K-subrepresentation of R can be extended to a
Q-subsheaf (Fv, v ∈ V ) of R.16

ii) Any M -twisted Q-sheaf is generically 0-semistable, by Remark 1, i).
iii) If we allow twisting sheaves of higher rank, then the restriction of a Q-

sheaf R to the generic point of X will be a K-representation of the quiver Q(M)
in which the arrow a is replaced by rk(Ma) copies of it, a ∈ A. Note that the
analysis of totally unstable K-representations of the quiver Q and the quiver
Q(M) may be quite different. For example, look at • a−→ • and rk(Ma) = 2.

It is now clear how the subdivision of the family of semistable quiver sheaves
into two classes described in the introduction works. The results of Sect. 2 make
this subdivision explicit for the quivers An+1, n ∈ N, and Ã3. The reader should
compare this with [5]. From the detailed investigation of the stability parameters,

13 An exception is the case of the quiver An+1. Here, we use the labeling of the vertices
according to [3].

14 In that work, only the stability parameter χ was used, more precisely, κi := 1,
i = 0, 1, 2.

15 We do not look at stability, because stability is not well-behaved on non-algebraically
closed fields.

16 The extension is unique, if we require that Ev/Fv be torsion free, v ∈ V .
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we, thus, obtain important information on the shape of the region of stability
parameters for which semistable quiver sheaves might exist. The reader may
consult [5,25], for specific examples, [6] for generalities on the chamber decom-
position of the region of stability parameters, and [33,35], for general results on
boundedness of stability parameters and semistable quiver sheaves.
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2. Álvarez-Cónsul, L.: Some results on the moduli spaces of quiver bundles. Geom.
Dedicata. 139, 99–120 (2009)
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7. Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of
associative algebras. 1: Techniques of representation theory. London Mathematical
Society Student Texts 65. Cambridge University Press, Cambridge (2006)

8. Borel, A.: Linear algebraic groups. 2-nd edt. Graduate Texts in Mathematics 126.
Springer-Verlag, New York (1991)
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Abstract. The force function is constructed for the given properties of
motion, independent from velocities. Previously the stochastic Ito equa-
tion is built for a given integral manifold by quasi-inversion method.
Further, the equivalent equation of Lagrangian structure is built accord-
ing to stochastic Ito equation, and then the force function is defined by
Lagrange’s function.
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manifold · Force function

1 Statement of the Problem

On the basis of a given set

Λ(t) : λ(x, t) = 0, λ ∈ Rm x ∈ Rn, λ ∈ C22
xt (1)

it is necessary to construct a generalized force function U = U (x, ẋ, t) so that
Λ (t) is the integral manifold of the stochastic equations of the Lagrange structure

d

dt

(
∂L

∂ẋν

)
− ∂L

∂xν
= σ′

νj(x, ẋ, t)ξ̇j ,
(
ν = 1, n, j = 1, r

)
. (2)

Here, the system of random processes with independent increments {ξ1(t, ω), . . . ,
ξr(t, ω)}, as in [16], can be represented as the sum of the processes: ξ = =
ξ0 +

∫
c(y)P 0(t, dy), where ξ = (ξ1(t, ω), . . . , ξr(t, ω))T is vector process with

independent increments, ξ0 = (ξ10(t, ω), . . . , ξr0(t, ω))T is vector Wiener process;
P 0 is Poisson process; P 0(t, dy) is the number of jumps of the process P 0 in the
interval [0, t ] into the set dy; c(y) is vector function mapping the space of R2n

into the space of values Rr of the process ξ(t)for any t.

c© Springer International Publishing AG 2017
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The problem posed above is one of the inverse problems of differential sys-
tems. The theory of inverse problems for differential systems and its general
methods go back to works [2,3] and have been further developed in [1,7–10] for
deterministic systems described by ordinary differential equations (ODE). Thus,
the set of ODE with given integral curve was constructed in [2]. The cited paper
plays a fundamental role in the formation and development of the theory of
inverse problems in the dynamics of systems described by ODE. The statement
and classification of the inverse problems for differential equations and their
solutions in the class of ODE are discussed in [1,3,7–10].

The solving of inverse problems of differential systems (problems of construc-
tion of set of the differential equations according to a given integral manifold)
is based on two methods: the Erugin method and the quasi-inversion method.
Firstly, the Erugin method (the method of introduction of auxiliary Erugin func-
tion) provides necessary and sufficient conditions in order that given set is inte-
gral manifold [2,3]. And, secondly, the quasi-inversion method, developed in
[8,9], allows to write out the common solution of the functional-algebraic equa-
tion, to which the problem of construction of set of the differential equations for
a given integral manifold is reduced.

However, the increasing requirements to the accuracy of description and ser-
viceability of material systems lead to the situation in which numerous observed
phenomena cannot be explained on the basis of the analysis of deterministic
processes. Thus, in particular, the probability laws should be used for the sim-
ulation of the behavior of actual systems.

Thus, the problem of generalization of the methods used for the solution of
inverse problems for differential systems to the class of stochastic differential
equations seems to be quite urgent [6,13].

Stochastic differential equations of the Itô-type are used to describe vari-
ous models of mechanical systems taking into account the action of external
random forces and important for numerous applications, e.g., the motion of
artificial satellites under the action of gravity and aerodynamic forces [12], the
fluctuation drift of a heavy gyroscope in the gimbal suspension [14], and many
others. In [5,6,16], the inverse problems of dynamics are studied under the addi-
tional assumptions of presence of random perturbations from the class of Wiener
processes. In particular, the following problems are solved by the method of
quasi-inversion:

(i) the main inverse problem of dynamics, i.e., the construction of the set of
Itô-type second-order stochastic differential equations with given integral mani-
fold;

(ii) the problem of reconstruction of the equations of motion, i.e., the con-
struction of the set of control parameters contained in a given system of Itô-type
second-order stochastic differential equations according to a given integral man-
ifold, and

(iii) the problem of closure of the equations of motion, i.e., the construction
of the set of closing Itô-type second-order stochastic differential equations for a
given system of equations and a given integral manifold.
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The problems of construction the Lagrange, Hamilton, and Birkhoff equa-
tions on the given properties of the motion (1) were considered in the class of
ordinary differential equations in [2–4], and in the class of Ito stochastic differ-
ential equations in [5,6]. In [6], Lagrange, Hamilton and Birkhoff equations are
constructed for the given properties of motion in the class of stochastic differen-
tial equations of Ito-type under the assumption that random perturbations are
from a class of Wiener processes.

In this paper, in contrast to [6], the force function is constructed under
the assumption that random perturbations are from a more general class than
Wiener processes, namely, from the class of processes with independent incre-
ments.

Previously at the first stage, the Ito equation

ẍ = f(x, ẋ, t) + σ(x, ẋ, t)ξ̇ (3)

is constructed so that the set (1) is an integral manifold of the constructed
equation (3). For that, we use the quasi-inversion method [7,8] in combination
with the Erugin method [9,10] and the stochastic differentiation of a composite
function [1].

We say that a function g(y, t) belongs to the class K, g ∈ K, if g is continuous
in t, t ∈ [0,∞], satisfies the Lipschitz condition with respect to y in the entire
space y = (xT , ẋT )T ∈ R2n, i.e.,

‖g(y, t) − g(ỹ, t‖ ≤ M‖y − ỹ‖

and satisfies the condition of linear growth

‖g(y, t)‖ ≤ M(1 + ‖y‖)

with a certain constant M.
It is assumed that the vector functions f and also the matrix σ belong to the

class K that guarantees the existence and uniqueness (to within the stochastic
equivalence) of the solution y(t) =

(
x(t)T , ẋ(t)T

)T of the equation (3) with

the initial condition y(t0) =
(
x(t0)T , ẋ(t0)T

)T = = (xT
0 , ẋT

0 )T . This solution is a
strictly Markov process continuous with probability 1 [[5], p.107].

Then, in the second stage, on the basis of the obtained Ito equation of the
second order, we construct equivalent stochastic equations of the Lagrange type.
And in the third stage, under the assumption that the generalized Lagrangian
has the form

L = T (x, ẋ, t) + U (x, ẋ, t) , where T = aij ẋiẋj , (i, j = 1, n), (4)

we define the desired force function in the form

U (x, ẋ, t) = L (x, ẋ, t) − aij ẋiẋj .
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2 Construction of the Force Function on the Basis
of Given Properties of Motion

Previously, using the rule of Ito stochastic differentiation, we compose the equa-
tion of perturbed motion

λ̈ =
∂λ

∂x

(
f + σξ̇

)
+ ẋT ∂2λ

∂x∂x
ẋ + 2

∂2λ

∂x∂t
+

∂2λ

∂t2
.

Then, following the Erugin method [9], we introduce a vector function A and
a matrix function B such that A(0, 0, x, ẋ, t) ≡ 0, B(0, 0, x, ẋ, t) ≡ 0, and

λ̈ = A(λ, λ̇, x, ẋ, t) + B(λ, λ̇, x, ẋ, t) ξ̇. (5)

Comparing Eqs. (5) and (7), we obtain⎧⎪⎪⎨
⎪⎪⎩

∂λ

∂x
f = A − ẋT ∂2λ

∂x∂x
ẋ − 2

∂2λ

∂x∂t
− ∂2λ

∂t2
,

∂λ

∂x
σ = B.

(6)

Using these relations, we determine the vector-function f and the matrix σ by
the method of quasi-inversion [[6], p. 12]:

f = k

[
∂λ

∂x
C

]
+

(
∂λ

∂x

)+ (
A − ẋT ∂2λ

∂x∂x
ẋ − 2

∂2λ

∂x∂t
− ∂2λ

∂t2

)
,

σi = si

[
∂λ

∂x
C

]
+

(
∂λ

∂x

)+

Bi, i = 1, r, (7)

where σi = (σ1i, σ2i, . . . , σni)
T is the ith column of the matrix σ = (σνj),(

ν = 1, n, j = 1, r
)
; Bi = (B1i, B2i, . . . , Bmi)

T is the ith column of the matrix
B = (Bμj) ,

(
μ = 1,m, j = 1, r

)
; si and k are arbitrary scalar values.

Thus, it follows from (9) and (10) that the set of Itô differential equations of
the second order with given integral manifold (1) has the form

ẍ = k

[
∂λ

∂x
C

]
+

(
∂λ

∂x

)+ (
A − ẋT ∂2λ

∂x∂x
ẋ − 2

∂2λ

∂x∂t
− ∂2λ

∂t2

)
+

+ (s1

[
∂λ

∂x
C

]
+

(
∂λ

∂x

)+

B1, . . . , sr

[
∂λ

∂x
C

]
+

(
∂λ

∂x

)+

Br)ξ̇.

Using the rule of Ito stochastic differentiation, we write

d

dt

(
∂L

∂ẋν

)
=

∂2L

∂ẋν∂t
+

∂2L

∂ẋν∂xk
ẋk +

∂2L

∂ẋν∂ẋk
ẍk + S1ν + S2ν + S3ν , (8)

where S1ν =
1
2

∂3L

∂ẋν∂ẋi∂ẋk
σijσkj , S2ν =

∫ {∂L(x, ẋ + σc(y), t)
∂ẋν

− ∂L(x, ẋ, t)
∂ẋν

}dy,

S3ν =
∫

[
∂L(x, ẋ + σc(y), t)

∂ẋν
− ∂L(x, ẋ, t)

∂ẋν
]P 0(t, dy).
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With regard for (11), Eq. (2) takes the form

d

dt

(
∂L

∂ẋν

)
− ∂L

∂xν
− σ

′
νj(x, ẋ, t)ξ̇j =

∂2L

∂ẋν∂t
+

∂2L

∂ẋν∂xk
ẋk +

∂2L

∂ẋν∂ẋk
ẍk+

+ S1ν + S2ν + S3ν − ∂L

∂xν
− σ

′
νj(x, ẋ, t)ξ̇, (9)

or, with regard for (12) and Eq. (9),

∂2L

∂ẋν∂t
+

∂2L

∂ẋν∂xk
ẋk +

∂2L

∂ẋν∂ẋk
ẍk + S1ν + S2ν + S3ν −

− ∂L

∂xν
− σ

′
νj(x, ẋ, t)ξ̇j ≡ ẍν − fν(x, ẋ, t) − σνj(x, ẋ, t)ξ̇, (10)

where fν is the νth component of the vector function f (9), and the j th column
of the matrix σ = (σνj) has the form (10).

Using relation (13), we obtain
⎧⎪⎪⎨
⎪⎪⎩

∂2L

∂ẋν∂t
+

∂2L

∂ẋν∂xk
ẋk + S1ν + S2ν + S3ν − ∂L

∂xν
= −fν ,

∂2L

∂ẋν∂ẋk
= δk

ν , σ
′
νj(x, ẋ, t) = σνj .

(11)

Conditions (14) ensure the solving of the problem of direct representation of
the equivalent stochastic equation of a Lagrangian structure of the form (2) by
the constructed Ito equation (5).

Now let us consider the problem of indirect representation of a Lagrange-type
equation. To this end, we introduce a matrix H = (hk

ν) and consider the relation

hk
ν

(
ẍk − fk − σkj ξ̇

j
)

≡ d

dt

(
∂L

∂xν

)
− ∂L

∂xν
− σ

′
νj ξ̇

j . (12)

By analogy with the analysis of the direct representation of the Lagrange-
type equation (10) for identity (12) to be true following conditions must be
satisfied: ⎧⎪⎪⎨

⎪⎪⎩
hk

ν =
∂2L

∂ẋν∂ẋk
, hk

νσkj = σ
′
νj ,

−hk
νfk =

∂2L

∂ẋν∂t
+

∂2L

∂ẋν∂xk
ẋk + S1ν + S2ν + S3ν − ∂L

∂xv
.

(13)

For the Lagrange function of the form (4) and, correspondingly, the force
function of the form (5), conditions are equivalent to the following system of
partial differential equations

∂2U

∂ẋν∂ẋk
= hk

ν −aνk;
∂U

∂xν
=

∂2U

∂ẋν∂t
+

∂2U

∂ẋν∂xk
ẋk + S̃1ν + S̃2ν + S̃3ν +hk

v fk, (14)
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σ
′
νj(x, ẋ, t) = hk

νσkj ,

where

S̃1ν =
1
2

∂3U

∂ẋν∂ẋi∂ẋk
σijσkj , S̃2ν =

∫
{∂U(x, ẋ + σc(y), t)

∂ẋν
− ∂U(x, ẋ, t)

∂ẋν
}dy,

S3ν =
∫

[
∂U(x, ẋ + σc(y), t)

∂ẋν
− ∂U(x, ẋ, t)

∂ẋν
]Ṗ 0(t, dy).

Thus, it is proved [11,15,17–21].

Theorem 1. For the construction of the set of stochastic equations of the
Lagrangian structure (2) on the basis of the given set (1) in the indirect rep-
resentation such that set (1) is the integral manifold of Eq. (2), it is necessary
and sufficient that
1) the generalized force function U = U (x, ẋ, t) satisfies the conditions,
2) the vector-function f and the matrix σ satisfy respectively conditions (9),
(10).
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Abstract. In this paper an inverse problem of finding the time-
dependent coefficient of heat capacity together with solution of high-
order heat equation with nonlocal boundary and integral overdetermina-
tion conditions is considered. The existence and uniqueness of a solution
of the inverse problem are proved by using the Fourier method and the
iteration method. Continuous dependence upon the data of the inverse
problem is shown.

Keywords: Inverse problem · Quasilinear parabolic equation ·
Overdetermination data · Classical solution · Fourier method ·
Iteration method

1 Introduction

Denote the domain D by

D := {0 < x < π, 0 < t < T}.

We consider quasilinear high-order parabolic equation

∂u

∂t
= (−1)ka2 ∂2ku

∂x2k
− p(t)u + f(t, x, u), k ∈ N, (1)

with initial condition
u(x, 0) = ϕ(x), 0 ≤ x ≤ π, (2)

the nonlocal boundary conditions

∂iu

∂xi
|x=0=

∂iu

∂xi
|x=π, i = 0, 1, ..., 2k − 1, 0 ≤ t ≤ T, (3)

and the integral overdetermination data
∫ π

0

u(x, t)dx = E(t), 0 ≤ t ≤ T. (4)

c© Springer International Publishing AG 2017
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The functions E(t), ϕ(x) and f(x, t, u) are given functions on [0, T ], [0, π]
and D × (−∞,∞), respectively.

The problem of finding the pair {p(t), u(x, t)} in (1)-(4) are called inverse
problem.

Definition 1.
The pair {p(t), u(x, t)} from the class C[0, T ] × (C2k,1(D)

⋂
C2k−1,0

(D)), for which conditions (1)-(4) are satisfied and p(t) ≥ 0 on the interval
[0,T], is called the classical solution of the inverse problem (1)-(4).

The problem of indentifying a coefficient in a nonlinear parabolic equation is
an interesting problem for many scientists [1–3].

Inverse problem for parabolic equations with nonlocal conditions are inves-
tigated in [4,5]. This kind of conditions arise from many important applications
in heat transfer, life sciences, etc.

Using the Fourier method and the iteration method we prove the existence,
uniqueness and continuous dependence upon the data of the solution under some
natural regularity and consistency conditions on the input data.

2 Existence and Uniqueness of the Solution
of the Inverse Problem

The main result of the existence and uniqueness of the solution of the inverse
problem (1)-(4) is presented as follows. We have the following assumptions on
the data of the problem (1)-(4):

(C1)E(t) ∈ C1[0, T ], E(t) > 0, E′(t) ≤ 0,
(C2)ϕ(x) ∈ C3[0, π], ϕ(i)(0) = ϕ(i)(π), i = 0, 1, ..., k + 1,

(C3)f(x, t, u) ∈ C(D × (−∞,∞)), |∂nf(x,t,u)
∂xn − ∂nf(x,t,ũ)

∂xn | ≤ b(x, t)|u − ũ|,
n = 0, 1, ..., 2k
where b(x, t) ∈ L2(D), b(x, t) ≥ 0, f (i)(x, t, u)|x=0 =
f (i)(x, t, u)|x=π, i = 0, 2k, f0(t) ≥ 0, t ∈ [0, T ], where

f0(t) =
∫ π

0

1
2
f(x, t, u)dx.

A solution of (1)-(3) for arbitrary p(t) ∈ C[0, T ] we find in following form:

u(x, t) =
u0(t)

2
+

∞∑
n=1

(ucn(t)cos2nx + usn(t)sin2nx), (5)

It is clear that (5) satisfies conditions (3). In order to determine unknown
functions u0(t), ucn(t), usn(t) using equation (1) and condition (2) with

ϕ(x) =
ϕ0(t)

2
+

∞∑
n=1

(ϕcncos2nx + ϕsnsin2nx),
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we get the infinite system of integral equations:

u0(t) = ϕ0e
− ∫ t

0 p(s)ds +
2
π

∫ t

0

∫ π

0

f(ξ, τ, u)e
∫ τ
0 p(s)dsdξdτ,

ucn(t) = ϕcne−a2(2n)2kt−∫ t
0 p(s)ds +

2

π

∫ t

0

∫ π

0
f(ξ, τ, u)e−a2(2n)2k(t−τ)−∫ t

τ p(s)dscos2nξdξdτ

usn(t) = ϕsne−a2(2n)2kt−∫ t
0 p(s)ds +

2

π

∫ t

0

∫ π

0
f(ξ, τ, u)e−a2(2n)2k(t−τ)−∫ t

τ p(s)dssin2nξdξdτ.

Under conditions (C1) − −(C3), the series (5) and its derivatives converge
uniformly in D since their majorizing sums are absolutely convergent.

Differentiating (4) under condition (C1), we obtain
∫ π

0

ut(x, t)dx = E′(t), 0 ≤ t ≤ T. (6)

Equations (5) and (6) yield

p(t) =
1

E(t)
[−E′(t) +

1
2
f0(t)]. (7)

Definition 2. Denote the set

{u(t)} = {u0(t), uc1(t), us1(t), ..., ucn(t), usn(t), ...},

of continuous on [0, T ] functions satisfying the condition

max
t∈[0,T ]

|u0(t)| +
∞∑

n=1

[ max
t∈[0,T ]

|ucn(t)| + max
t∈[0,T ]

|usn(t)|] < ∞

by B1. Let

‖u(t)‖ = max
t∈[0,T ]

|u0(t)| +
∞∑

n=1

[ max
t∈[0,T ]

|ucn(t)| + max
t∈[0,T ]

|usn(t)|]

be norm in B1.
Let us denote

B2 = {p(t) ∈ C[0, T ] : p(t) ≥ 0},

‖p(t)‖ = maxt∈[0,T ] |p(t)| to be the norm in B2.

It can be shown that B1 and B2 are Banach spaces.

Theorem 1. Let assumptions (C1) − −(C3) be satisfied. The inverse problem
(1)-(4) has a unique solution.
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Proof. An iteration for (5) is defined as follows:

u
(N+1)
0 (t) = u

(0)
0 (t) +

2

π

t

0

π

0

f(ξ, τ, u(N))e
∫ τ
0 p(N)(s)dsdξdτ,

u(N+1)
cn (t) = u(0)

cn (t) +
2

π

t

0

π

0

f(ξ, τ, u(N))e−a2(2n)2k(t−τ)−∫ t
τ p(N)(s)dscos2nξdξdτ,

u(N+1)
sn (t) = u(0)

sn (t) +
2

π

t

0

π

0

f(ξ, τ, u(N))e−a2(2n)2k(t−τ)−∫ t
τ p(N)(s)dssin2nξdξdτ,

(8)

where N = 0, 1, 2, .. and

u
(0)
0 (t) = ϕ0e

− ∫ t
0 p(s)ds,

u(0)
cn (t) = ϕcne−a2(2n)2kt−∫ t

0 p(s)ds,

u(0)
sn (t) = ϕsne−a2(2n)2kt−∫ t

0 p(s)ds.

From the conditions of the theorem, we have u0(t) ∈ B1 and p0 ∈ B2. Let us
write N = 0 in (8)

u
(1)
0 (t) = u

(0)
0 (t) +

2
π

∫ t

0

∫ π

0

f(ξ, τ, u(0))dξdτ

Adding and subtracting 2
π

∫ t

0

∫ π

0
f(ξ, τ, 0)dξdτ to and from both sides of the last

equation, we obtain

u
(1)
0 (t) = u

(0)
0 (t) +

2

π

∫ t

0

∫ π

0
[f(ξ, τ, u(0)) − f(ξ, τ, 0)]dξdτ +

2

π

∫ t

0

∫ π

0
f(ξ, τ, 0)dξdτ.

Applying the Cauchy inequality and the Lipschitz condition to the last equa-
tion and taking the maximum of both sides of the last inequality yield the
following:

max
t∈[0,T ]

|u(1)
0 (t)| ≤ |ϕ0| +

√
T

π
‖b‖L2(D)‖u(0)(t)‖B1 +

√
T

π
‖f(x, t, 0)‖L2(D).

Analogously, we get

|u(1)
cn (t)| = |ϕcn| +

√
π√

2a(2n)k
(

∫ T

0

2

π

∫ t

0
(

∫ π

0
[f(ξ, τ, u0) − f(x, t, 0)]cos2nξdξ)2dτ)1/2 +

+

√
π√

2a(2n)k
(

∫ T

0

2

π

∫ t

0
(

∫ π

0
f(x, t, 0)cos2nξdξ)2dτ)1/2 (9)

Applying the Cauchy inequality, the Hölder inequality, the Bessel inequality,
the Lipschitz condition and taking maximum of both sides of the last inequality
yield the following
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∞

n=1

max
t∈[0,T ]

||u(1)
cn (t)| ≤

∞

n=1

|ϕcn| + M [‖b(t, x)‖L2(D)‖u(0)(t)‖B1 + ‖f(t, x, 0)‖L2(D)],

where M =
√

π
2 (

∑∞
n=1

1
a2(2n)2k )1/2.

Applying the same estimations, we obtain

∞

n=1

max
t∈[0,T ]

||u(1)
sn (t)| ≤

∞

n=1

|ϕsn| + M [‖b(t, x)‖L2(D)‖u(0)(t)‖B1 + ‖f(t, x, 0)‖L2(D)],

Finally, we have the following inequality:

‖u(1)(t)‖B1 = max
t∈[0,T ]

|u(1)
0 (t)| +

∞∑
n=1

[ max
t∈[0,T ]

||u(1)
cn (t)| + max

t∈[0,T ]
||u(1)

sn (t)|] ≤

|ϕ0| +
∞∑

n=1

(|ϕcn| + |ϕsn|) + 2M [‖b(t, x)‖L2(D)‖u(0)(t)‖B1 + ‖f(t, x, 0)‖L2(D)]

Hence u1(t) ∈ B1. In the same way, for a general value of N , we have

‖u(N)(t)‖B1 = max
t∈[0,T ]

|u(N)
0 (t)| +

∞∑
n=1

[ max
t∈[0,T ]

||u(N)
cn (t)| + max

t∈[0,T ]
||u(N)

sn (t)|] ≤

|ϕ0| +
∞∑

n=1

(|ϕcn| + |ϕsn|) + 2M [‖b(t, x)‖L2(D)‖u(N−1)(t)‖B1 + ‖f(t, x, 0)‖L2(D)].

Since uN−1(t) ∈ B1, we have uN (t) ∈ B1

{u(t)} = {u0(t), uc1(t), us1(t), ..., ucn(t), usn(t), ...} ∈ B1.

An iteration for (7) is defined as follows:

p(N)(t) =
1

E(t)
[−E′(t) +

1
2

∫ t

0

f(ξ, τ, u(N))dξ],

where N = 0, 1, 2...

p(1)(t) =
1

E(t)
[−E′(t) +

1
2

∫ t

0

f(ξ, τ, u(1))dξ].

Applying the Cauchy inequality, we get

‖p(1)(t)‖B2 = |−E′(t)
E(t)

| +
1

E(t)
[‖b(t, x)‖L2(D)‖u(1)(t)‖B1 + ‖f(t, x, 0)‖L2(D)].
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Hence p(1)(t) ∈ B2. In the same way, for a general value of N , we have

‖p(N)(t)‖B2 = |−E′(t)
E(t)

| +
1

E(t)
[‖b(t, x)‖L2(D)‖u(N)(t)‖B1 + ‖f(t, x, 0)‖L2(D)],

we deduce that p(N)(t) ∈ B2.
Now we prove the iterations uN+1(t) and p(N+1)(t) converge as N → ∞ in

B1 and B2, respectively. Analogously as above for arbitrary N , we have

‖p(N+1)(t) − p(N)(t)‖B2 ≤ 1
E(t)

[‖b(t, x)‖L2(D)‖u(N+1)(t) − u(N)(t)‖B1

‖u(N+1)(t) − u(N)(t)‖B1 ≤ (M(1 +
TM

E
)N πN/2

√
N !

‖b(t, x)‖LN
2 (D). (10)

Using (C1) − −(C3) and the comparison test, we deduce from (10) that the
series

∑∞
N=1[u

(N+1)(t) − u(N)(t)] is uniformly convergent to an element of B1.
However, the general term of the sequence {u(N+1)(t)} may be written as

u(N+1)(t) = u(0)(t) +
∞∑

N=1

[u(N+1)(t) − u(N)(t)].

So the sequence {u(N+1)(t)} is uniformly convergent to an element of B1

because the sum on the right-hand side is the Nth partial sum of the aforemen-
tioned uniformly convergent series. Therefore uN+1(t) and p(N+1)(t) converge in
B1 and B2, respectively. Furthermore these limits satisfy (8).

For the uniqueness, we assume that problem (1)-(4) has two solution pairs
(p, u), (q, v). Applying the Cauchy inequality, the Hölder inequality, the Bessel
inequality, the Lipschitz condition to |u(t) − v(t)| and |p(t) − q(t)|, we obtain

‖p(t) − q(t)‖B2 ≤ 1
E(t)

(
∫ t

0

∫ π

0

b2(ξ, τ)|u(τ) − v(τ)|2dξdτ)1/2

‖u(N+1)(t) − u(N)(t)‖B1 ≤ (‖ϕ‖ + M)
T

E
+

1
2
M)

(
∫ t

0

∫ π

0

b2(ξ, τ)|u(τ) − v(τ)|2dξdτ)1/2. (11)

Applying the Gronwall inequality to (11), we have u(t) = v(t). Hence p(t) =
q(t). The theorem is proved. �

3 Continuous Dependence upon the Data

Theorem 2. Under assumptions (C1)−(C2), the solution (p, u) of problem (1)-
(4) depends continuously upon the data ϕ,E.
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Proof. Let Φ = {ϕ,E, f} and Φ = {ϕ,E, f} be two sets of the data, which
satisfy the assumptions (C1) − (C2). Suppose that there exist positive constants
Mi, i = 0, 1, 2 such that

0 < M0 ≤ |E|, 0 < M0 ≤ |E|,
‖E‖C1[0,T ] ≤ M1, ‖E‖C1[0,T ] ≤ M1,

‖ϕ‖Ck+1[0,π] ≤ M2, ‖ϕ‖Ck+1[0,π] ≤ M2.

Let us denote ‖Φ‖ = (‖E‖C1[0,T ] + ‖ϕ‖Ck+1[0,π] + ‖f‖C2k+1,0(D)). Let (p, u)
and (p, u) be solution of inverse problem (1)-(4) corresponding to the data Φ =
{ϕ,E, f} and Φ = {ϕ,E, f}, respectively.

Using results of section 2, we get

‖p(t) − p(t)‖ ≤ M3‖E − E‖C1[0,T ] + M4(
t

0

π

0

b2(ξ, τ)|u(τ) − u(τ)|2dξdτ)1/2,

‖u(t) − u(t)‖ ≤ 2M5‖Φ − Φ‖2exp2M2
6 (

∫ t

0

∫ π

0

b2(ξ, τ)dξdτ),

here Mi, i = 3, 4, 5 are constants that are determined by M0,M1 and M2. If
Φ → Φ, then u → u. Hence p → p. Theorem is proved. �
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Fundamental Solutions of Biot Equations
for Moving Loads
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Abstract. Here the two-component medium of M. Biot consisting of
solid and fluid components is considered under action of moving loads.
The fundamental and generalized solutions of Biot equations have been
constructed for subsonic and supersonic velocities of loads.

Keywords: Continuum mechanics · Medium of M. Biot · Wave
propagation · Hyperbolic equations · Fundamental solutions · Fourier
transform · Moving loads · Subsonic velocities

1 Introduction

A special class of dynamic problems of continuum mechanics is transportation
problem in which the acting external forces and loads move with certain some
velocities and their shape does not change over time. This class of problems is a
model in the study of impact various transport load in mediums. Real mediums
are usually multi-component, so the study of the transport problems in such
mediums is actual. Type of equations system motion of the medium depends on
the ratio of the motion velocity of the moving load c to the sound velocities of
disturbances propagation in the medium cj , which may be several.

For transonic and supersonic velocities there exists the load in the medium
shock waves. This class of problems in elastic media were studied by M.V.
Eisenberg-Stepanenko, Sh.M. Aytaliev, L.A. Alexeyeva, V. Katsumi, V.N.
Ukrainec etc. Medium of Biot is more difficult than isotropic elastic medium.
In mainly by the Fourier method a class of solutions was studied in the works
Kh.L. Rakhmatullin, Ya.U. Saatov, I.G. Philippov, T.U. Artykov, I.A. Kiyko,
V.V. Shershnev [1–3] etc.

Here two-component medium of M. Biot consisting of solid and fluid compo-
nents is considered under action of moving loads. This medium has three sound
velocities [4] which describe the propagation velocities of longitudinal waves in
solid and fluid components of medium, and the propagation velocity of shear
wave. The fundamental solutions of Biot equations have been constructed for
subsonic and supersonic velocities of loads.

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_41
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2 Motion Equations for Medium of M. Biot

The motion of a homogeneous isotropic two-component medium of M. Biot in
the absence of fluid viscosity are described by the following system of second
order hyperbolic equations [1,4]:

(λ + μ)us
j ,ji +μus

i ,jj +Quf
j ,ji +Gs

i = ρ11ü
s
i + ρ12ü

f
i (1)

Qus
j ,ji +Ruf

j ,ji +Gf
i = ρ12ü

s
i + ρ22ü

f
i , (x, t) ∈ R3 × [0,∞) , (2)

where us
i and uf

i are the elastic components and the fluid components of the
displacement vector, Gs

i , Gf
i are the body forces acting respectively on the solid

and fluid components. The constants λ, μ,Q,R have the dimension of stress,
ρ11, ρ12, ρ22 are related to the particle mass density of the elastic component
ρs and fluid component ρf by relations: ρ11 = (1−m)ρs −ρ12, ρ22 = mρf −ρ12,
ρ22 = mρf − ρ12, m is the porosity of the medium. The elastic stress tensor
components and the fluid pressure are

σij = μ(us
i ,j +uf

i ,j ) + (λus
k,k +Quf

k ,k )δij ,

p = −
(
Qus

k,k +Ruf
k ,k

)
/m,

here δij is Kronecker delta, ui,j = ∂ui/∂xj . Everywhere summation is carried
over like indexes from 1 to 3.

In this medium there are three sound velocities of wave propagation:

c21,2 =
(λ + 2μ)ρ22 + Rρ11 − 2Qρ12

2(ρ11ρ22 − ρ212)
±

±
√

((λ + 2μ)ρ22 − Rρ11)2 + 4((λ + 2μ)ρ12 − Qρ11)(Rρ12 − 2Qρ22)
2(ρ11ρ22 − ρ212)

c3 =
√

μρ22
(ρ11ρ22 − ρ212)

,

where c1, c2 describe the propagation velocity of longitudinal waves and the
third c3 is the propagation velocity of shear wave (c2 < c3 < c1). For these
velocities take place the following relations:

c21 + c22 =
(λ + 2μ) ρ22 + Rρ11 − 2Qρ12

ρ22ρ11 − ρ212
, c21c

2
2 =

(λ + 2μ) R − Q2

ρ22ρ11 − ρ212

We introduce Mach numbers Mj = c/cj , j = 1, 2, 3 and we have c < min
{c1, c2, c3} ⇒ Mj < 1 ∀j for subsonic load and c > max{c1, c2, c3} ⇒ Mj > 1
∀j for supersonic load. For transonic loads there is c ∈ (c2, c1) , c �= c3. In the
case of sound there is c = cj ⇒ Mj = 1.
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When communication fails between the fluid and the elastic solid

Q → 0, ρ12 → 0,

we have c3 → √
μ/ρ11, c1 → cs, c2 → cf , where cs =

√
(λ + 2μ)/ρ11 is the

longitudinal wave velocity in a dry porous skeleton, cf =
√

R/ρ22 is the velocity
of longitudinal waves in the liquid, and

ζ1 =
λ + 2μ − c21ρ11

c21ρ12 − Q
≡ Q − c21ρ12

c21ρ22 − R
→ 0,

ζ2 =
R − c22ρ22
c22ρ12 − Q

≡ Q − c22ρ12
c22ρ11 − λ − 2μ

→ 0,

ζ3 = −ρ12
ρ22

→ 0.

3 Motion Equations for Moving Loads

It is assumed that the mass forces in the medium of M. Biot move with constant
velocity c along the axis x3 and are represented as

Gi = Gi(x1, x2, x3 + ct).

Solutions for ui have the same structure:

ui = ui(x1, x2, x3 + ct).

In the coordinate system (x′
1, x

′
2, x

′
3) = (x1, x2, x3 + ct) motion equations of Biot

equations (1), (2) are

(λ + 2μ)us
j ,ji +Quf

j ,ji +μus
i ,jj +Gs

i = c2(ρ11us
i ,33 +ρ12u

f
i ,33 ), (3)

Qus
i ,ji +Ruf

j ,ji +Gf
i = c2(ρ12us

i ,33 +ρ22u
f
i ,33 ), (4)

here ui,j = ∂ui/∂x′
j

For subsonic load we have elliptic equations. Equations (3), (4) are strong
hyperbolic for supersonic load. In the case of transonic loads and sound equations
are of mixed type depending on j.

Thereafter, for notational convenience, we introduce the vector u =
{us, uf} = {u1, u2, u3, u4, u5, u6} of dimension 6, assuming that ui are the
displacement components of the solid phase for i = 1, 2, 3 and fluid for
i = 4, 5, 6. Similarly, we introduce the vector of mass forces G = {Gs, Gf} =
{G1, G2, G3, G4, G5, G6}.
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4 Fourier Transform of Fundamental Solutions

Let mass forces in medium of Biot be concentrated impulse functions:

Gi(x) = δijδ(x1)δ(x2)δ(x3 + ct).

In this case, the system of equations (3), (4) for the fundamental solutions Uij

(of dimension 6 × 6) can be rewritten as

(λ + 2μ)Uik,kj +QUi(k+3),kj +μUij ,kk −

c2ρ11Uij ,33 −c2ρ12Ui(j+3),33 +δijδ(x′) = 0,

QUik,kj +RUi(k+3),kj −c2ρ12Uij ,33 −c2ρ22Ui(j+3),33 +δi(j+3)δ(x′) = 0.

Green’s tensor components have the following physical meaning: at 1 ≤ j ≤ 3
it is j-component of solid phase displacement, at 4 ≤ j ≤ 6 we have (j − 3)-th
components of displacements of the liquid from the action of a concentrated force
along the i-th coordinate axis on a solid phase (at 1 ≤ i ≤ 3) or from the action
of a concentrated force along the (i − 3)-th axis of coordinates on the liquid (at
4 ≤ i ≤ 6).

In the construction of the Green’s tensor it is commonly used apparatus of
integral Fourier transforms allowing you to transfer from the differential equa-
tions for the tensor to linear algebraic equations for his image. Allowing the
latter to determine the transform of the tensor in the form of fractional - ratio-
nal function of the variables of integral Fourier transforms and then to restore
the original tensor, using the inverse transformation.

It is constructed its Fourier transform, which is as follows:

Ukj =
c23
μ

(
bk3δkj

c23 (ξ2 − M2
3 ξ23)

− ξkξj
c2ξ23

3∑
l=1

bki
ξ2 − M2

3 ξ23

)
for k = 1, 3, j = 1, 6;

Ukj =
δkj

ρ22c2ξ23
+

c23
μ

(
d3δkj

c23 (ξ2 − M2
3 ξ23)

− ξk−3ξj−3

c2ξ23

3∑
l=1

dl
ξ2 − M2

l ξ23

)
(5)

for k = 4, 6, j = 4, 6;

U
kj

= U
jk

for k = 4, 6, j = 1, 3; ξ2 =
3∑

j=1

ξjξj ,

where

bk1 =
c21 − c2f
c21 − c22

, bk2 =
c22 − c2f
c21 − c22

, bk3 = −1, k = 1, 3,
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bk1 = ζ1
c21 − c2f
c22 − c2f

, bk2 = −ζ2
c22ρ11 − c2s
c21ρ22 − c22

, bk3 = −ζ3, k = 4, 6,

d1 =
c21ρ11 − c2s
c21ρ22 − c22

, d2 =
c22ρ11 − c2s
c21ρ22 − c22

, d3 = −ζ3, k = 4, 6.

In (5) Ml = c/cl (l = 1, 3) are Mach numbers, ml =
√

1 − M2
l . For subsonic

load we have Ml < 1 and for supersonic load there is Ml > 1.

5 Fundamental Solutions of the Motion Equations of
Biot Medium

Using the properties of the inverse Fourier transform of generalized functions
and the original of functions

f0j(ξ) =
1(

ξ2 − M2
j ξ23

) , f2j(ξ) =
f0j

(−iξ3)2
=

1(
ξ2 − M2

j ξ23
)
ξ23

,

which are constructed in [5] for various Mj , it is obtained the original of funda-
mental solutions Ukj(x).

For Mj < 1 we have

f0j(ξ) ↔ f0j(r, x3,mj) =
1

4π
√

m2
jr

2 + x2
3

r =
√

xkxk, k = 1, 2,

f2j(ξ) ↔

f2j(r, x3,mj) =

⎛
⎝|x3| ln

(
|x3| +

√
m2

jr
2 + x2

3

)

mjr
−

√
m2

jr
2 + x2

3

⎞
⎠ /4π.

For Ml > 1 we have

f0j(ξ) ↔ f0l(r, x3,mj) =
H(−x3 − mjr)

2π
√

x2
3 − m2

jr
2
,

f2j(ξ) ↔ f2l(r, x3,mj) = −H(−x3 − mjr)
2π

×

×
⎛
⎝|x3| ln

|x3| +
√

x2
3 − m2

jr
2

mjr
−

√
x2
3 − m2

jr
2

⎞
⎠ .
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For Ml = 1 we have

f0j(ξ) ↔ f0j(r, x3) =
1
2π

δ(x3) ln
1
r
,

f2j(ξ) ↔ f2l(r, x3) = − 1
2π

H(−x3) |x3| ln r.

So, fundamental solutions of the motion equations of Biot medium at subsonic
velocities are

Ukj =
bk3δkj

4πμ
√

m2
3r

2 + x2
3

−

− c23
4πμc2

3∑
l=1

bkl

(
x2
3xkxj − x3(δk3xj + δj3xk)r2 + δk3δj3r

4
)

r4
√

m2
l r

2 + x2
3

−

− c23
4πμc2

3∑
l=1

bkl

(√
m2

l r
2 + x2

3 − mlr
) (

δkjr
2 − xkxj

)

r4
, (6)

k = 1, 2, 3, j = 1, 6

Ujk = Ukj , k = 4, 5, 6, j = 1, 2, 3

Ukj = −δkj |x3|
2ρ22c2

+
d3δkj

4πμ
√

m2
3r

2 + x2
3

−

− c23
4πμc2

3∑
l=1

dl

(
x2
3xkxj − x3(δk3xj + δj3xk)r2 + δk3δj3r

4
)

r4
√

m2
l r

2 + x2
3

−

− c23
4πμc2

3∑
l=1

dl

(√
m2

l r
2 + x2

3 − mlr
) (

δkjr
2 − xkxj

)

r4
,

k = 4, 5, 6, j = 4, 5, 6.

Fundamental solutions (6) for ‖x‖ → ∞ have the following asymptotics

Ukj = O
(
|x|−1

)
.
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6 Generalized Solutions of M.Biot Equations

A generalized solution of equations (1), (2) for arbitrary mass forces can be
represented as a convolution

uj = Ujk ∗ Gk,

which for regular functions G(x) have the following integral form:

ûi =
∫

R3
Uik(x − y)Gk(y)dy1dy2dy3, i, k = 1, ..., 6,

where u =
{
us, uf

}
= {u1, ..., u6} , G =

{
Gs, Gf

}
= {G1, ..., G6}.

For concentrated source such singular generalized functions with point sup-
port (dipole, multipole etc.) it is necessary the convolution to take by rules of
the theory of generalized functions.

Acknowledgements. This publication is supported by the target program
0085/PTSF-14 from the Ministry of Science and Education of the Republic of
Kazakhstan.

Appendix

The constructed fundamental solutions can be used for solving boundary-value
problems in a Biot medium with cylindrical boundaries on the basis of methods
of boundary equations and boundary-element. A similar problem for an elastic
medium is considered in [6].

The solutions obtained here can also be used for investigating the dynamics
of the massif in the neighborhood of underground constructions such as tun-
nels, transport pipelines depending on the properties of water saturation of the
medium, the velocity and type of existing transport loads.
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Abstract. The methodology of stability analysis is expounded to the
systems automatic control feedback at presence of non-linearity. The
conditions of asymptotically instability of the basic control systems are
considered in the neighborhood of a program manifold. Nonlinearity sat-
isfies to generalized conditions of local quadratic relations. The sufficient
conditions of instability of the program manifold have been obtained rel-
atively to a given vector-function by means of construction of Lyapunov
function, in the form “quadratic form plus an integral from nonlinearity”.
It is solved more general inverse problem of dynamics: not only builds
the corresponding system of differential equations, but also investigates
the instability, which is very important for a variety of mathematical
models mechanics.

Keywords: Instability · Program manifold · Baswic control systems ·
Lyapunov function

1 Introduction

The problem of the construction of the complete set of systems of differential
equations with given integral curve was posed in [1],where a method for its solv-
ing was also presented. This problem further developed to the construction of
systems of differential equations on the basis of a given integral manifold, to
solving various inverse problem of dynamics, and constructing systems of pro-
gram motion. It should be noted that, in the course of investigation of these
problems, the construction of stable systems (which is one of the main problems
in the theory of stability) was developed into an independent theory. A detailed
survey of these works can be found in [2]. The works [6–8] are devoted to the con-
struction of automatic control systems on the basis of a given manifold. In these
works, control systems were constructed for a scalar nonlinear function ϕ(σ),
and sufficient conditions for absolute stability were established. The problem
of the construction of automatic control systems for a vector nonlinear function
with locally quadratic relations was solved in [5,10].In this paper it is studied the
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inverse dynamics problem: for a given manifold to restore a force field, which lies
in the tangent subspace to a manifold. It is solved more general inverse problem
of dynamics: not only it is built the corresponding system of differential equa-
tions, but also it is investigated the instability, which is very important for a
variety of mathematical models mechanics.

The frequency conditions of instability are received in [3,9] for nonlinear
control systems with respect to zero position of equilibrium. In this paper the
conditions of instability of the basic control systems are investigated in the neigh-
borhood of a program manifold.

Consider the problem of the construction of a stable control of the form

ẋ = f (t, x) − Bξ, ξ = ϕ (σ) , σ = PT ω, t ∈ I = [0, ∞) , (1)

on the basis of a given (n−s)-dimensional smooth integral manifold Ω (t) defined
by the vector equation

ω(t, x) = 0, (2)

where x ∈ Rn is a state vector of the object, f ∈ Rn is a vector-function,
satisfying conditions of existence and uniqueness of a solution x(t) = 0, B ∈
Rn×r, P ∈ Rs×r, are constant matrices, ω ∈ Rs(s ≤ n) is a vector, ξ ∈ Rr

is a vector-function of control on deviation from the given program manifold,
satisfying conditions of local quadratic relations

ϕ(0) = 0 ∧ ϕT θ(σ − K−1ϕ) > 0, ∀ σ �= 0,

θ = diag ‖θ1, . . . , θr‖ , K = KT > 0
(3)

differentiable in σ and
∂ϕ

∂σ
satisfies the conditions

K1 ≤ ∂ϕ

∂σ
≤ K2, Ki = diag ‖n1, . . . , nr‖ (i = 1, 2) , K2 	 0. (4)

The given program Ω(t) is exactly realized only if the initial values of the
state vector satisfy the condition ω(t, x) = 0. However, this condition cannot
always be exactly satisfied. Therefore, in the construction of systems of program
motion6 the requirement of the stability of the program manifold Ω(t) with
respect to the vector function ω should also be taken into account.

Actuality of studying these problems is caused by existence of number of the
inverse dynamics problems.

To the construction of the systems of equations on the given program man-
ifold, possessing properties of stability, optimality and establishment of estima-
tions of indexes’ quality of transient in the neighborhood of a program manifold
and to solving of various inverse problems of dynamics there was devoted a great
number of works, for example, see [1,2,4–8,10,11]. The detailed reviews of these
works were shown in [2,4,11].

In this paper we use Lyapunov function in the form “quadratic form plus
integral from nonlinearity” and estimates of positive defined quadratic form.



On Instability of a Program Manifold of Basic Control Systems 439

In the space Rn we select the domain G (R):

G (R) = {(t, x) : t ∈ I ∧ ‖ω (t, x)‖ ≤ ρ < ∞} . (5)

Taking into account that Ω(t) is the integral manifold for the system (1)-(3),
we have

ω̇ =
∂ω

∂ t
+ Hf (t, x) = F (t, x, ω), (6)

where H = ∂ ω
∂ x is the Jacobi matrix and F (t, x, 0) ≡ 0 is a certain s-dimensional

Erugin vector function [1].
Assuming that the Erugin function F (t, x, ω) = −Aω,−A ∈ Rs×s is Hurwitz

matrix and differentiating the manifold Ω(t) with respect to time t along the
solutions of system (1)-(3), we get

ω̇ = −Aω − HBξ, ξ = ϕ (σ) , σ = PT ω. (7)

Statement of the problem To get the condition of instability of a pro-
gram manifold Ω(t) of the basic control systems in relation to the given vector-
function ω.

The system (7) has only a position of equilibrium x = σ = 0 if and only if,
when

det
∥
∥A + HBhPT

∥
∥ �= 0, ∀ h ∈ (0,K].

Definition 1. A program manifold Ω(t) is called instable on the whole in rela-
tion to vector-function ω, if in phase space there is an unlimited open domain
G(R), including a neighborhood of the given program manifold and possessing
such property, that all solutions in relation to a vector-function ω beginning in
this domain, are unlimited at t → ∞.

Definition 2. A program manifold Ω(t) is called absolutely instable in relation
to a vector-function ω, if it is instable on the whole at all functions ϕ(σ) satisfying
the conditions (3).

Definition 3. The continuous function V (ω) will be called positive in the
domain (5) if V (0) = 0 and lim

ωk→∞ V (ω) = ∞ at least for one value k ≤ s.

Definition 4. The function V (t, ω) will be called positive and admitting a pos-
itive upper limit in the domain G(R) if there exist two continues functions
V1(ω), V2(ω) such that for ∀ ω are valid the following inequalities

V1(ω) ≤ V (t, ω) ≤ V2(ω) (8)

2 The Main Theorem on Instability

Theorem 1. If for the system (7) there is found a positive function V (t, ω)
admitting a positive upper limit in the domain G(R) derivative which is

V̇ (t, ω) ≥ γ > 0 ∀ ω ∈ G(R) ∧ t ∈ I, (9)

then the program manifold Ω(t) is instable as a whole with respect to vector-
function ω.
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Proof. Assume that ω = ω(t; t0, x0) is non-trivial solution of the system (7)
defined by the initial conditions

ω(t; t0, x0) = ω0 �= 0. (10)

Since the function V (t, ω(t)) is positive in the domain G(R) the next inequality
holds

V (t0, ω0) = α > 0,

where α is a certain number.
At V (t, ω(t)) > 0 owing to conditions (9), we have

V̇ (t, ω) > 0 ∀ ω ∈ Ξ ∧ t ∈ I.

Hence at t ≥ t0 we get

V (t, ω(t)) > V (t0, ω0) = α.

If the solution ω(t) leaves the domain G(R), then for some t1 > t0 we will get
V (t1, ω(t1)) = 0. Moreover

V (t, ω(t)) ≥ α > 0 for t0 ≤ t ≤ t1. (11)

Going to the limit in (11) at t → t1 − 0, we will have V (t1, ω(t1)) ≥ α > 0, what
is impossible. Therefore the solution ω(t) lies entirely in the domain G(R).

Taking into account condition (9), we have an inequality

V̇ (t, ω) ≥ γ > 0 ∀ ω ∈ Ξ ∧ t ∈ I (12)

Integrating the inequality (12) term by term, we will have at t ≥ t0

V (t, ω(t)) > V (t0, ω(t0)) + γ(t − t0). (13)

From the inequality (13) follows

lim
t→∞ V (t, ω(t)) = ∞.

Then by definition
lim

ωk→∞ V1(ω1, . . . , ωs) = ∞

and (13) we have
lim

t→∞ ‖ω(t; t0, ω0))‖ = ∞.

Therefore program manyfold Ω(t) is instable as a whole with respect to vector-
function ω.
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3 Asymptotical Instability of the Program Manifold

Consider the case when Erugin’s function F (t, x, ω) = F (t, ω) is non-
autonomous, then we get system

ω̇ = F (t, ω), (14)

where F (t, 0) = 0 and F (t, ω) satisfy the conditions of existence and uniqueness
of the trivial solution of the system (14).

Assume that there exists a nonnegative local quadratic relation:

S = S(t, ω) ≥ 0 ∧ S(0, ω) = 0. (15)

Theorem 2. Suppose that there exist a positive-definite function

V = V (t, ω) > 0 (16)

and a nonnegative number α such that

M [t, ω(t)] = V (t, ;ω) +

t∫

t0

S(τ, ω(τ))dτ > 0, (17)

where ω(t) is an arbitrary solution satisfying condition (15) and

Ṁ
∣
∣
(14)

= W [ω(t)] > 0, (18)

then the program manifold Ω(t) is asymptotically instable at conditions (15) with
respect to vector-function ω.

Proof. By virtue of (18) we have

dM

dt
≥ α0 > 0, (19)

where α0 is a certain number.
Then, for any t > t0, with regard for inequality (15), we get

M [ω(t)] = M [ω(t0)] +

t∫

t0

S(τ, ω(τ))dτ ≤ M [ω(t0)] + α0(t − t0). (20)

For sufficiently large t, it follows from (15) that M [ω(t)] becomes more large.
Therefore

lim
t→∞ M [ω(t)] = ∞. (21)

By virtue of supposition (13) relation (21) holds if and only if

lim
t→∞ ‖ω(t; t0, x0))‖ = ∞.

Therefore program manyfold Ω(t) is asymptotically instable with respect to
vector-function ω.
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The following theorem can be proved similarly.

Theorem 3. If there exist a positive-definite function V = V (ω) > 0 that pos-
sesses the property

V = V (ω) → ∞ as ‖ω(t; t0, x0))‖ → ∞ (22)

and a nonnegative number α such that relations (16) and (18) are true, then
program manyfold Ω(t) is asymptotically instable as a whole at conditions (15)
with respect to vector-function ω.

Now consider system (7) in the case, where the control is direct and scalar:

ω̇ = −Aω − bξ, ξ = ϕ (σ) , σ = cT ω. (23)

Using Theorem 2, one can obtain sufficient conditions for the program manyfold
Ω(t) to be asymptotically instable as a whole if

ϕ(0) = 0 ∧ k1σ
2 < σϕ(σ) < k1σ

2, ∀ σ �= 0, (24)

where k1 and k2 are certain constants, inequality (16)-(18) are true, and condi-
tion (24) is satisfied for

V (ω, ξ) = ωT Lω + β

σ∫

0

ϕ(σ)dσ > 0, (25)

where β is a nonnegative number.
In other words, the following theorem is true:

Theorem 4. If there exist a real matrix L = LT > 0 and nonnegative numbers
α and β such that one of the conditions

Q =
∥
∥
∥
∥

2G g
gT ρ

∥
∥
∥
∥

(26)

2ρG − ggT < 0, (27)

2G > 0 ∧ ρ − 2−1gT G−1g < 0 (28)

is satisfied, then program manyfold Ω(t) is asymptotically instable as a whole
with respect to vector-function ω at the conditions

S(ω) = (σ − k−1
2 ϕ(σ))(ϕ(σ) − k1σ) ≥ 0, (29)

where k ≥ 0 and k2 ≤ ∞, and

AT L + LA + k1αccT = 2G (30)

g = Lb + 2−1
[

βAT c − α
(

1 + k1k
−1
2

)]

(31)

ρ = αk−1
2 + βcT b. (32)
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Abstract. Some generalizations of the Landau-Lifschitz equation are
integrable, admit physically interesting exact solutions and these inte-
grable equations are solvable by the inverse scattering method. Investi-
gations of the integrable spin equations in (1+1)-, (2+1)-dimensions are
topical both from the mathematical and physical points of view. Inte-
grable equations admit different kinds of physically interesting equations
as domain wall solutions. We consider an integrable spin equation. There
is a corresponding Lax representation. Moreover the equation allows an
infinite number of integrals of motion. We construct a surface correspond-
ing to domain wall solution of the equation. Further, we investigate some
geometrical features of the surface.

Keywords: Inegrable equation · Lax reprezentation · Integrals of
motion · Exact solution · Domain wall solutuin · Surface

1 Introduction

We use the geometric approach to one of the generalized Landau-Lipshitz equa-
tion [1–4]

St = (S × Sy + uS)x, (1a)
ux = −(S, (Sx × Sy)), (1b)

where S is a spin vector, S2
1 + S2

2 + S2
3 = 1, × is a vector product, u is a scalar

function. The equation allows an infinite number of motion integrals and has
several exact solutions. One of them is the domain wall solution [3]. We identify
the spin vector S and vector rx according to the geometric approach [4]

S ≡ rx. (2)

Then (1a), (1b) take the form

rxt = (rx × rxy + urx)x (3a)
ux = −(rx, (rxx × rxy)). (3b)

c© Springer International Publishing AG 2017
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If we integrate (3a) by x, then it takes the form

rt = rx × rxy + urx.

Taking into account Gauss-Weingarten equation and E = r2x = 1, the system is
defined as

rt = (u +
MF√

Λ
)rx − M√

Λ
ry + Γ 2

12

√
Λn,

ux =
√

Λ(LΓ 2
12 − MΓ 2

11),

where
Γ 2
11 =

2EFx − EEt − FEx

2Λ
,

Γ 2
12 =

EGx − FEt

2Λ
,

Λ = EG − F 2. Equations (1a), (1b) is integrable equation and has solutions.

2 Construction of Surface Corresponding
to Domain Wall Solution

Here we present the domain wall solution of the equation (1a), (1b) [4],

S+(x, y, t) =
exp(iby)

cosh[a(x − bt − x0)]
, (4a)

S3(x, y, t) = − tanh[a(x − bt − x0)], (4b)

where a, b are real constants.
T h e o r e m . Domain wall solution (4a)–(4b) of the spin system (1a), (1b)

can be represented as components of the vector rx, where

r1 =
1
a

cos(by) arctan(sinh[a(x − bt − x0)]) + c1, (5a)

r2 =
1
a

sin(by) arctan(sinh[a(x − bt − x0)]) + c2, (5b)

r3 = −1
a

ln | cosh[a(x − bt − x0)]| + c3, (5c)

where c1, c2, c3 are constants. Solution of the form (5a)–(5c) corresponds to the
surface with the following coefficients of the first and second fundamental forms

E =
2 + sinh2[a(x − bt − x0)]

(1 + sinh2[a(x − bt − x0)])2
, F = 0, (6a)

G =
b2

a2
arctan2(sinh[a(x − bt − x0)]), L = 0, (6b)

M = 0, N = −b3 arctan2(sinh[a(x − bt − x0)])√
Λa2 cosh[a(x − bt − x0)]

. (6c)
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Proof. From (2) we have

(S1, S2, S3) = (r1x, r2x, r3x), (7)

i.e.

r1x = S1, r2x = S2, r3x = S3. (8)

Hence

r1 =
∫

S1dx + c1, (9a)

r2 =
∫

S2dx + c2, (9b)

r3 =
∫

S3dx + c3, (9c)

where c1, c2, c3 are constants of integration. Note

S+ = S1 + iS2 = r+x ,

then

r+ = r1 + ir2 =
∫

S+dx + c+, (10)

where c+ is constant of integration. Substituting (4b) to the equation (9c), we
have

r3 =
∫

S3dx + c3 = −
∫

[tanh[a(x − bt − x0)]dx + c3 =

= −1
a

ln | cosh[a(x − bt − x0)]| + c3, (11)

where c3 is constant. Thus

r3 = −1
a

ln | cosh[a(x − bt − x0)]| + c3. (12)

Substituting (4a) to (10), we have

r+ = r1 + ir2 =
∫

S+dx + c+ =

=
∫

exp(iby)
cosh[a(x − bt − x0)]

dx + c+,

then

r+ =
1
a

cos(by) arctan(sinh[a(x − bt − x0)]) + c1+

+i(
1
a

sin(by) arctan(sinh[a(x − bt − x0)]) + c2),
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i.e. we have obtained

r1 =
1
a

cos(by) arctan(sinh[a(x − bt − x0)]) + c1,

r2 =
1
a

sin(by) arctan(sinh[a(x − bt − x0)]) + c2. (13)

Thus, (12), (13) give us (5a)–(5c).
We proceed to prove the second part of the theorem. From (12) and (13) we

have

r1x =
cos(by)

1 + sinh2[a(x − bt − x0)]
, r2x =

sin(by)
1 + sinh2[a(x − bt − x0)]

, (14a)

r3x = − 1
cosh2[a(x − bt − x0)]

, r1y = − b

a
sin(by) arctan(sinh[a(x − bt − x0)]),

(14b)

r2y =
b

a
cos(by) arctan(sinh[a(x − bt − x0)]), r3y = 0. (14c)

Then we can calculate
E = r

2
x = r

2
1x + r

2
2x + r

2
3x =

=
cos2(by)

(1 + sinh2[a(x − bt − x0)])2
+

+
sin2(by)

(1 + sinh2[a(x − bt − x0)])2
+

1

cosh2[a(x − bt − x0)]
=

2 + sinh2[a(x − bt − x0)]

(1 + sinh2[a(x − bt − x0)])2
.

(15)

Similarly, using (13) and (14c), we obtain

G = r2y = r21y + r22y + r23y =
b2

a2
arctan2(sinh[a(x − bt − x0)]), (16)

F = (rx, ry) = r1xr1y + r2xr2y + r3xr3y = 0. (17)

Formulas (15)–(17) give us the first three equations (6a)–(6c). Using (15)–(17),
we compute

Λ = EG − F 2 =
b2(2 + sinh2[a(x − bt − x0)])

a2(1 + sinh2[a(x − bt − x0)])2
arctan2(sinh[a(x − bt − x0)]).

We calculate the components of the vector n

n =
rx × ry
|rx × ry| =

rx × ry√
Λ

=
1√
Λ

(n1, n2, n3),

n1 =
1√
Λ

(r2xr3y − r3xr2y) =
b cos(by) arctan(sinh[a(x − bt − x0)])√

Λach[a(x − bt − x0)]
. (18)

Similarly, for the components

n2 =
1√
Λ

(r3xr1y − r1xr3y) =
b sin(by) arctan(sinh[a(x − bt − x0)])√

Λach[a(x − bt − x0)]
, (19a)

n3 =
1√
Λ

(r1xr2y − r2xr1y) =
b arctan(sinh[a(x − bt − x0)])√
Λa(1 + sinh2[a(x − bt − x0)])

. (19b)
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Now, from (14a), (14b) we have

r1xx = −2 arccos(by) sinh[a(x − bt − x0)] cosh[a(x − bt − x0)]
(1 + sinh2[a(x − bt − x0)])2

, (20a)

r2xx = −2 arcsin(by) sinh[a(x − bt − x0)] cosh[a(x − bt − x0)]
(1 + sinh2[a(x − bt − x0)])2

, (20b)

r3xx =
ash[a(x − bt − x0)]

cosh2[a(x − bt − x0)]
. (20c)

Thus, using (18), (19a), (19b), (20a)–(20c), we can compute

L = (n, rxx) = n1r1xx + n2r2xx + n3r3xx.

It follows that

L = 0. (21)

Similarly, we calculate other coefficients of the second fundamental form

M = 0, (22)

N = −b3 arctan2(sinh[a(x − bt − x0)])√
Λa2 cosh[a(x − bt − x0)]

. (23)

The formulas (21)–(23) give us the last three equations (6a)–(6c). Finally, The-
orem is proved.

Finally, we use possibilities of the editor Maple and construct the surface at
some values of the parameters. The components of the vector rx (5a)–(5c) can
be represented as a function r3 = f(r1, r2), i.e.

r3 = −1
a

ln
∣∣√tanh(a((r1)2) + (r2)2)) + 1

∣∣, (24)

under c1 = c2 = c3 = 0. By varying the parameter a and by choosing the
segments for the values r1, r2, we obtain the figures presented below.

3 Conclusion

Based on the results of work [4], where Gauss-Codazzi-Mainardi equation is con-
sidered in multidimensional space, we have studied generalized Landau-Lipshitz
equation and built the surface corresponding to domain wall solution. Thus, this
work fully reveals the meaning of the geometric approach in (2+1)-dimensions
(Figs. 1 and 2).
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Fig. 1. The surface is illustrated at a := 1, r1 : [−2, 2], r2 : [−2, 2]

Fig. 2. The surface is illustrated at a := 1, r1 : [−5, 5], r2 : [−5, 5]



450 Z.Kh. Zhunussova

References

1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Non-linear Evolution Equations and
Inverse Scattering. Cambridge University Press, Cambridge (1992)

2. Bliev, N.K., Myrzakulov, R., Zhunussova, Zh.Kh.: Some exact solutions of the non-
linear sigma model. Doclady AN RK 5, 3–10 (1999)

3. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the
Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

4. Lakshmanan, M., Myrzakulov, R., et al.: Motion of curves and surfaces and non-
linear evolution equations in 2+1 -dimensions. J. Math. Phys. 39(7), 3765–3771
(1998)



Index

A
Adjoint operator, 111
Algebraic equation, 117–119
Algorithm, 113, 115, 118, 158, 161, 162
Almost convergent double sequence space,

83
α−dual, 83, 84
Angular domain, 123, 124
Anti-a priori estimates, 245, 247, 254, 256
Approximate solution, 113, 115, 142, 143,

151
Approximation, 32–36
A priori estimate, 382
Associated functions, 223, 225, 226, 233,

330–332
Asumptotic behavior, 313, 315, 318
Asymptotical expansion, 368
Average of the function, 91

B
Basis, 330–332, 337, 347
Basis property, 223, 229, 230, 232
Behavior of the coefficients, 259
Bifurcation value, 18
Boundary value problem, 98–100, 104, 123–

125, 138, 205
Bounded invertibility, 111
Boundedness, 393, 414
Burgers equation, 123–125, 138

C
Cauchy problem for third order differential

equation, 116, 118

Characteristic determinant, 195–197, 201,
202, 226, 228–233

Characteristic integral equation, 313, 314
Classical solution, 424
Commutators, 44, 45
Compactness, 44–46, 295
Constriction resistance, 379, 380
Constructing exact solutions, 179, 180
Continuum mechanics, 430
Controllability problem, 98, 104
Controllable system, 99, 104
Correct extensions, 213–218, 220
Correct restrictions, 213–219

D
Degenerate boundary conditions, 195–198,

202
Diagonal dominance, 296
Differential equation, 106, 111
Differential equations in Banach space, 204
Differential equations of fractional order,

179, 180
Differential operator, 106, 272, 273
Differential operator of even order, 195, 196
Dirichlet boundary conditions, 238
Dirichlet problem, 273–275, 281
Discrete equation, 372
Discrete spectrum, 289
Domain wall solution, 444, 445, 448
Dynamic system, 98, 104, 105

E
Eigenfunctions, 222, 223, 225, 226, 228,

231, 233, 331, 336, 337

© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9

451



452 Index

Eigenvalue problems, 195, 196, 198
Electromagnetic field, 377
Equation with deviating argument, 171, 173
Estimation of the norm, 258, 259
Exact solution, 444
Existence of a solution, 258

F
Family of periodic boundaryvalue problems,

143–145
Fast growing coefficients, 259
Finite function, 107
Force function, 416, 418, 420, 421
Forces of a friction, 259
Four-dimensional generalized difference

matrix, 83, 86
Fourier method, 330–332, 424
Fourier transform, 433, 434
Fourier transform multipliers, 58, 64, 68
Fredholm property, 164, 166, 167, 169
Fundamental solutions, 430, 433–436

G
γ−dual, 83, 84
Generalized Morrey space, 44–46
Generalized wallach space, 2–5
General regular system, 58, 63, 64
Generically semistable/totally unstable, 394,

399, 405, 412, 413
Geometric extremum problem, 320
Green function, 236, 237, 273–276, 281

H
Heat equation, 330, 332, 333, 337, 339, 346
Heat operator, 349, 350, 352, 357, 358
Hilbert-Schmidt operator, 292, 293
Hoelder class, 164
Hölder inequality, 305, 306
Homogeneous differential equations, 179
Hyperbolic cross, 23–25, 32–34, 36
Hyperbolic equation, 204, 206, 207, 209,

431
Hyperbolic type equations, 258, 259

I
Ill-posed problem, 171, 172
Inhomogeneous differential equations, 179,

184
Initial-boundary value problem, 330, 334,

338–345, 347, 348

Instability, 438, 439
Integral condition, 114, 116
Integral equation, 123–126, 128, 134, 136,

138, 140
Integral manifold, 416, 417, 419, 421
Integral overdetermination condition, 382
Integral perturbation, 226, 228–230
Integrals of motion, 444
Internal boundary value problems, 276
Inverse operator, 110, 111
Inverse problem, 382, 383, 386, 417, 424,

425, 429
Involution, 204–206, 209
Isoperimetric inequalities, 349, 350
Iteration method, 424

K
Kelvin-Voigt fluids, 383
(k, s)−Riemann-Liouville Fractional Inte-

grals, 305

L
Laplace operator, 172, 273–275
Lax representation, 444
Linear autonomous system, 98
Lizorkin theorem, 58, 74, 75
Logarithmic potential operator, 321–324
L p-estimates, 246
Luttinger type inequality, 322
Lyapunov function, 438

M
Matrix domain, 83
Matrix transformations, 85
Maxwell equation, 378
Medium of M. Biot, 430, 432
m–Laplace operator, 269
Modification of Euler method, 143, 151
Moisil–Teodorescu system, 164
Morrey space, 44–46
Moving loads, 430, 432
Multiple Haar system, 32
Multiplier of Fourier series, 58, 88
Multipoint condition, 115, 116
Multipoint-integral boundary value prob-

lem, 113–116, 118, 119

N
New method, 180



Index 453

Newton potential operator, 321, 322, 324,
326

Nonharmonic analysis, 270
Nonlinear equation, 159
Non-local boundary conditions, 235
Nonlocal problem, 171, 172, 177, 178
Non-selfadjoint operator, 351, 358
Non-simply-connected domain, 272
Non-trivial solution, 123, 125, 127, 140
n order degenerate ordinary differential

equation, 313
Normalized Ricci flow, 2–8, 15, 17
Normalized systems, 179–182, 184
Not strongly regular boundary conditions,

224, 331, 332, 337, 340, 342, 346–
348

Nuclear operator, 292, 293

O
Operator, 195, 196, 202
Operator method, 179, 204
Ordinary differential equation, 98, 104
Overdetermination data, 423

P
Parametrization method, 113, 115, 118, 142,

144, 145, 151, 158, 159, 297
Periodic solution, 98, 99, 102–105
Pólya inequality, 322, 349
Polyharmonic operators, 235, 236
Positive definite operator, 207, 208
Pre-compactness, 46
Program manifold, 438, 439, 441
Pseudo-differential equation, 363, 364, 374
Pseudoparabolic equation, 382, 383
Punctured domain, 267, 269, 270

Q
Quasilinear parabolic equation, 423
Quiver, 393–396, 399, 402, 407, 410–414

R
Rayleigh-Faber-Krahn inequality, 321
Regular boundary condition, 223, 224, 228,

230, 332, 333, 336
Regularization, 267, 269
Relatively bounded perturbations, 213, 216
Representation, 394–397, 399, 402–404,

407, 408, 411–413
Representation manifold solution, 314, 315

Resolvent, 289–292
Resolvent of a differential operator, 295
Reverese Hölder inequality, 305
Ricci curvature, 2, 4–6, 12, 15–17
Riemannian metric, 2, 3, 5, 7, 9, 11, 13, 15,

17–21
Riemann-Liouville derivative, 180
Riemann–Liouville integral, 180
Ring-shaped contact, 377
Root functions, 246, 247

S
Scalar curvature, 2, 6, 18
Schatten p-norm, 322–324, 326
Schatten class, 289, 290, 292
Schwarz problem, 164
Second-order differential operator, 245
Sectional curvature, 2–4, 11, 14, 15
Self-adjoint operator, 172, 174, 207, 208
Semiperiodical boundary value problem,

142, 143, 151
Semi-periodic boundary value problem, 158,

159, 162, 163
Separable operator, 291
Singular coefficients, 247
Singular differential equation, 295
Singular differential operator, 289
Singular integrals, 44, 45
Singular point, 6, 8, 18, 19
Skin-effect, 377
S-number, 349–353, 356, 357, 359
Solvability, 123–126, 140, 364, 366, 372
Solvability conditions, 158, 162
Spectral problem, 171, 173, 174, 176, 222,

223, 225, 226, 231, 332, 337, 347
Spectral properties, 213
Spectrum, 195, 196, 201, 202
Stability estimates, 204, 206, 207, 209, 210
Stability parameter, 393, 394, 396, 398, 402,

404, 406, 411, 413, 414
Stochastic Itô equation, 417
Strong solution, 383, 384, 386
Sturm-Liouville operators, 222
Subsonic velocities, 435
Successive approximation method, 384
Super-singular kernels, 312
Surface, 445, 448
Systems of hyperbolic equations, 159
Systems of nonlinear hyperbolic equation,

142, 151



454 Index

T
The Lizorkin – Triebel type space, 25
The Nikol’skii – Besov and the Lizorkin

– Triebel spaces associated with the
multiple Haar system, 32, 33, 35

The Nikol’skii – Besov type space, 25
Third order differential equation, 113, 115
Trace formulae, 267, 269
Trigonometric polynomial, 59
Twisted quiver sheaf, 394, 413

U
Unbounded domain, 259
Unique solvability, 113, 115, 118, 258, 264

V
Variation of moduli spaces, 393
Vector-valued function space, 295, 299
Volterra correct extensions, 216, 218
Volterra type integral equation, 315
Volume potential, 235

W
Wallach space, 2–8, 11, 12
Wave factorization, 365, 366, 368, 374
Wavelet system with compact supports, 23
Wave propagation, 431
Weighted Lebesgue spaces, 88
Weighted space of essentially bounded func-

tions, 123
Well-posedness, 171, 178
Well-posed problems, 273



Author Index

A
Abdrasheva, G., 213
Abiev, N., 2
Agarwal, P., 302
Aisagaliev, S., 98
Akhmetkaliyeva, R., 106
Akhtyamov, A., 195
Amangaliyeva, M., 123
Aniyarov, A., 272
Ashyralyev, A., 204
Assanova, A., 113
Azhymbaev, D., 416

B
Balgimbayeva, Sh., 23
Bazarkhanov D., 32
Biyarov, B., 213
Bizhigitova, N., 388
Bokayev, N., 44

D
Dadaeva, A., 258

I
Imanbaev, N., 222
Imanchiev, A., 113

J
Jain, Sh., 302
Jenaliyev, M., 123

K
Kabdrakhova, S., 142
Kal’menov, T., 235, 349
Kassabek, S., 377
Kassymov, A., 349
Kharin, S., 377
Khompysh, Kh., 382
Kosmakova, M., 123
Kritskov, L., 245
Kussainova, L., 52

M
Matin, D., 44
Milovanović, G., 302
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