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Abstract. A heuristic user job-flow scheduling approach to grid virtual
organizations with non-dedicated resources is discussed in this article.
Users’ and resource providers’ preferences, virtual organization’s inter-
nal policies, resources geographical distribution along with local private
utilization impose specific requirements for efficient scheduling accord-
ing to different, usually contradictive, criteria. The available resources
set and the corresponding decision space decrease as resources utiliza-
tion increases. This introduces further complications into the task of
efficient scheduling. We propose a heuristic anticipation scheduling app-
roach to improve the overall scheduling efficiency. Initially, it generates
a near optimal but infeasible scheduling solution which is then used as a
reference for efficient allocation of resources.
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1 Introduction and Related Works

In distributed environments with non-dedicated resources, such as utility grids,
the computational nodes are usually partly utilized by local high-priority jobs
coming from resource owners. Thus, the resources available for use are repre-
sented with a set of slots, i.e. time intervals during which the individual com-
putational nodes are capable of executing parts of independent users’ parallel
jobs. These slots generally have different start and finish times and present a
difference in performance. The presence of a set of slots deprives the problem
of a coordinated selection of the resources that are necessary to execute the job
flow coming from computational environment users. Resource fragmentation also
results in a decrease of the total computing environment utilization level [1,2].

Two established trends may be outlined among diverse approaches to dis-
tributed computing. The first one is based on the available resources utilization
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and application level scheduling [3]. As a rule, this approach does not imply
any global resource sharing or allocation policy. Another trend is related to the
formation of user’s virtual organizations (VO) and a job flow scheduling [4,5].
In this case, a metascheduler is an intermediate chain between the users, and
local resource management and job batch processing systems.

Uniform rules of resource sharing and consumption, in particular based on
economic models, make it possible to improve the job-flow level scheduling and
resource distribution efficiency. VO policy may offer optimized scheduling to
satisfy both users’ and VO common preferences. The VO scheduling problems
may be formulated as follows: to optimize users’ criteria or utility function for
selected jobs [6,7], to keep resource overall load balance [8,9], to have job run
in strict order or maintain job priorities [10], to optimize overall scheduling
performance by some custom criteria [11,12], and so on.

VO formation and performance largely depends on mutually beneficial col-
laboration between all the related stakeholders. However, users’ preferences and
VO common preferences (owners’ and administrators’ combined) may conflict
with each other. Users are likely to be interested in the fastest possible running
time for their jobs with least possible costs, whereas VO preferences are usually
directed to available resources load balancing or node owners’ profit boosting.
Thus, VO policies in general should respect all members, and the most important
aspect of the rules suggested by VO is their fairness.

A number of works understand fairness as it is defined in the theory of coop-
erative games, such as fair job flow distribution [8], fair quotas [13,14], fair user
jobs prioritization [10], non-monetary distribution [15]. The cyclic scheduling
scheme (CSS) [16] implements a fair scheduling optimization mechanism that
ensures stakeholders interests to some predefined extent.

The downside of a majority of centralized metascheduling approaches is that
they loose their efficiency and optimization features in distributed environments
with a limited resource supply. For example, in [2], a traditional backfilling algo-
rithm provided better scheduling outcome when compared to different optimiza-
tion approaches in resource domain with a minimal performance configuration.
The common root cause is that, in fact, the same scarce set of resources (being
efficient or not) has to be used for a job-flow execution, otherwise some jobs might
hang in the queue. And under such conditions, user jobs priority and ordering
greatly influence the scheduling results. At the same time, application-level bro-
kers are still able to ensure user preferences and optimize the job’s performance
under free-market mechanisms.

A main contribution of this paper is a heuristic CSS-based job-flow schedul-
ing approach that retains optimization features and efficiency even in distributed
computing environments with limited resources. The rest of the paper is orga-
nized as follows. Section 2 presents a general CSS fair scheduling concept. The
proposed heuristic-based scheduling technique is presented in Sect. 3. Section 4
contains a simulation experiment setup and results for the proposed scheduling
approach. Finally, Sect. 5 summarizes the paper.
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2 Cyclic Alternative-Based Fair Scheduling Model
and Limited Resources

Scheduling of a job flow using the CSS is performed in time cycles known as
scheduling intervals, by job batches [16]. The actual scheduling procedure con-
sists of two main steps. The first step involves a search for alternative scenarios of
each job execution or simply alternatives [17]. During the second step, dynamic
programming methods [16] are used to choose an optimal alternatives combina-
tion (one alternative is selected for each job) with respect to the given VO and
user criteria. This combination represents the final schedule based on current
data regarding resources load and possible alternative executions.

An example of a user scheduling criterion may be a minimization of overall
job running time, a minimization of overall running cost, etc. This criterion
describes user’s preferences for that specific job execution, and expresses a type
of additional optimization to perform while searching for alternatives. Alongside
with time (T ) and cost (C) properties, each job execution alternative has a user
utility (U) value: a user evaluation against the scheduling criterion. A common
VO optimization problem may be stated as either minimization or maximization
of one of the properties, having other fixed or limited, or involve a Pareto-optimal
strategy search involving both kinds of properties [4,16,18].

We consider the following relative approach to represent a user utility U . A
job alternative with the minimum (the best) user-defined criterion value Zmin

corresponds to the left interval boundary (U = 0%) of all possible job schedul-
ing outcomes. An alternative with the worst possible criterion value Zmax cor-
responds to the right interval boundary (U = 100%). In the general case, for
each alternative with value Z of the user criterion, U is defined, depending on
its position in the interval [Zmin;Zmax], according to the following formula:

U =
Z − Zmin

Zmax − Zmin
· 100%. (1)

Thus, each alternative gets its utility in relation to the “best” and the “worst”
optimization criterion values that a user could expect according to the job’s
priority. And the more some alternative corresponds to user’s preferences, the
smaller is the value of U . Examples of user utility functions for a job with four
alternatives and a cost minimization criterion are presented in Table 1.

For a fair scheduling model, the second step of the VO optimization problem
could be expressed in the form: C → max, limU (maximize total job-flow exe-
cution cost while respecting user’s preferences to some extent); U → min, limT
(meet user’s best interests while ensuring some acceptable job-flow execution
time), and so on.

The launch of any job requires a co-allocation of a specified number of slots,
in the same manner as in the classic backfilling variation. A single slot is a time
span that can be assigned to run a part of a multiprocessor job. The target is to
scan a list of Ns available slots, and to select a window of m parallel slots with
the length of the required resource reservation time (see Fig. 1). The user job
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Table 1. User utility examples for a job with execution cost minimization

Job execution alternatives Execution cost Utility

First alternative 5 0%

Second alternative 7 20%

Third alternative 11 60%

Fourth alternative 15 100%

Fig. 1. An example of a window allocation procedure

requirements are arranged into a resource request containing a resource reser-
vation time, characteristics of computational nodes (clock speed, RAM amount,
disk space, operating system, etc.), and limitations on the selected window maxi-
mum cost. ALP, AMP and AEP window search algorithms were discussed in [17].

The job batch scheduling requires allocation of a multiple nonintersecting
(in terms of slots) alternatives for each job. Otherwise irresolvable collisions for
resources may occur, if different jobs will share the same time slots. Sequential
alternatives search and resources reservation procedures help to prevent such
scenario. However, in an extreme case, when resources are limited or overutilized,
only at most one alternative execution could be reserved for each job. In this case,
alternatives-based scheduling result will be no different from First Fit resources
allocation procedure [2]. First Fit resource selection algorithms [19] assign any
job to the first set of slots matching the resource request conditions, without any
optimization.

3 Heuristic Anticipation Scheduling

3.1 General Anticipation Scheduling Scheme

In order to address this problem, the following heuristic job batch scheduling
scheme, consisting of three main steps, is proposed.
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1. First, a set of all possible execution alternatives is found for each job, without
considering time slots intersections or any resource reservation. The resulting
intersecting alternatives found for each job reflect a full range of different
job execution possibilities that a user may expect on the current scheduling
interval. It may be noticed that this set is guaranteed to include the best and
the worst alternatives according to any scheduling criterion, including user
and VO criteria.

2. Second, the CSS procedure is performed to select alternatives combination
(one alternative for each job of the batch) optimal according to the VO policy.
The resulting alternatives combination most likely corresponds to an infeasi-
ble scheduling solution, since possible time-slots intersections will cause col-
lisions in the resources allocation stage.
The main idea of this step is that the obtained infeasible solution will provide
some heuristic insights on how each job should be handled during the schedul-
ing. For example, whether time-biased or cost-biased execution is preferred,
how it should correspond to user criterion and VO administration policy, and
so on.

3. Third, a feasible resources allocation is performed by replicating alternatives
selected in step 2. The base for this replication step is an Algorithm searching
for Extreme Performance (AEP) described in details in [17]. In the current
step, AEP helps to find and reserve feasible execution alternatives most sim-
ilar to those selected in the near-optimal infeasible solution.

After these three steps are performed, the resulting solution is both feasible
and efficient, as it reflects a scheduling pattern obtained from a near-optimal
reference solution from step 2.

The following subsections will discuss these scheduling steps in more details.

3.2 Finding a Near Optimal Infeasible Scheduling Solution

CSS results strongly depend on the diversity of alternatives sets obtained for
batch jobs. The task of finding all possible execution alternatives for each job of
the batch may become impractical, since the number of different resources com-
binations may reach C(p,m), where p is the total number of different resource
types available, and m is the number of resources requested by the user. More-
over, if we consider non-dedicated resources, then this task will be additionally
complicated by local resources utilization. In this case, not all the resources
combinations may be available during the scheduling cycle.

However, as we need to find alternatives for an a priori infeasible refer-
ence solution, a reasonable diverse set of possible execution alternatives will do.
An important feature of this set is that it should contain extreme execution
alternatives according to different criteria, e.g. the most expensive, the least
time-consuming alternative, and so on.

Further, this set of possible alternatives may be used to evaluate actual user
job execution against the job execution possibilities according to Eq. (1). We
assume that such a set may represent a fair uniform basis for a user utility
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expectations. This uniform user utility UU may be used to compare different
scheduling algorithms from the user’s point of view.

We used a modification of the AEP to allocate a diverse set of execution
alternatives for each job. Originally, the AEP is able to find only one alternative
execution that satisfies the user resource request and is optimal according to the
user custom criterion. The main idea of the current modification is to save all
intermediate AEP search results to a dedicated list as shown in the following
algorithm description:

Data: slotList — a list of available slots; job — a job for which the search is
performed

Result: alternativesSet — a set of possible alternatives
slotList = orderSystemSlotsByStartTime();
for each slot in slotList do

if not(properHardwareAndSoftware(slot.node)) then
continue;

end
windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime - windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then

minCostWindow = getMinCostWindow(windowSlotList);
maxCostWindow = getMacCostWindow(windowSlotList);
minRuntimeWindow =

getMinRuntimeWindow(windowSlotList);
alternativesSet.add(minCostWindow);
alternativesSet.add(maxCostWindow);
alternativesSet.add(minRuntimeWindow);

end

end
Algorithm 1. AEP modification to allocate a set of possible job execution
alternatives

In this algorithm, an expanded window windowSlotList of size M moves
through a list slotList of all available slots sorted by their start time in ascend-
ing order. At each step, any combination of m slots inside windowSlotList (in
the case when m ≤ M) can form a window that meets all the requirements to
run the job. The main difference from the original AEP algorithm is indicated in
bold. Instead of searching for a single window with a maximum criterion value,
we allocate several windows with extreme criteria values from every instance



64 V.V. Toporkov et al.

of windowSlotList, and save to alternativesSet. By the end of slotList, alterna-
tivesSet will contain a diverse set of possible job execution alternatives. And
since every possible windowSlotList instance is processed by the AEP, alter-
nativesSet is guaranteed to contain alternatives with extreme criteria values
(maxCost/minCost/minTime), as well as a variety of alternatives with some
intermediate criteria values.

After sets of possible intersecting execution alternatives are allocated for each
job, a CSS scheduling optimization procedure selects an optimal alternatives
combination according to VO and users criteria [16].

3.3 Replication Scheduling and Resources Allocation

The resulting near-optimal scheduling solution in most cases is infeasible, since
the selected alternatives may share the same time slots, thereby causing resource
collisions. However, we suggest to use it as a reference solution, and replicate it
into a feasible resources allocation.

For the purpose of replication, a new Execution Similarity criterion was intro-
duced, which assists AEP in finding a window with minimum distance to a ref-
erence alternative. Generally, we define a distance between two different alterna-
tives (windows) as a relative difference or error between their significant criteria
values. For example, if the reference alternative has total cost Cref, and some
candidate alternative cost is Ccan, then the relative cost error EC is calculated as

EC =
|Cref − Ccan|

Cref
.

If one needs to consider several criteria, then the distance D between two alter-
natives may be calculated as a linear sum of criteria errors,

Dm = EC + ET + .. + EU ,

or as a geometric distance in a parameters space,

Dg =
√

E2
C + E2

T + ... + E2
U .

For a feasible job batch resources allocation, the AEP consequentially allo-
cates for each job a single execution window with a minimum distance to a ref-
erence alternative. Time slots allocated to the i-th job are reserved and excluded
from the slot list when the AEP search algorithm is performed for the follow-
ing jobs i + 1, i + 2, ...N . Thus, this procedure prevents any conflicts between
resources and provides a scheduling solution that in some sense reflects a near-
optimal reference solution.

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows, using a custom distributed environment
simulator [20]. Virtual organization and computing environment properties:
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– The resource pool includes 80 heterogeneous computational nodes.
– The specific cost of a node is an exponential function of its performance value

(base cost) with an added variable margin distributed normally as ±0.6 of
the base cost.

– The scheduling interval length is 800 time quanta. The initial resource load
with owner jobs is distributed hyper-geometrically resulting in 5 to 10% of
time quanta excluded in total.

Job batch properties:

– The number of jobs in a batch is 125.
– The number of nodes needed for a job is a whole number distributed evenly

in [2; 6].
– The node reservation time is a whole number distributed evenly in [100; 500].
– The job budget varies in a way that some of the jobs can pay as much as

160% of the base cost, whereas some may require a discount.
– Every request contains a specification of a custom user criterion, namely one

of the following: job execution runtime or overall execution cost.

During each experiment, a VO domain and a job batch were generated, and
the following scheduling schemes were simulated and studied.

First, a general CSS solved the optimization problems T → min, limU with
different limits Ua ∈ {0%, 1%, 4%, 10%, 16%, 32%, 100%}. Ua stands for the aver-
age user utility for one job, e.g. limUa = 10% means that at average the resulting
deviation from the best possible outcome for each user did not exceed 10%.

Second, a near-optimal but infeasible reference solution REF (see Sect. 3.2)
was obtained for the same problems.

Third, a replication procedure CSS rep was performed based on the CSS
solution to demonstrate the replication process accuracy.

For the heuristic anticipation scheduling ANT , the same replication proce-
dure was performed based on the REF solution.

Finally, two independent job batch scheduling procedures were performed
to find the scheduling solutions most suitable for VO users (USERopt) and VO
administrators (VOopt). USERopt was obtained applying only user criteria to
allocate resources for jobs without taking into account VO preferences. VOopt

was obtained by using one VO optimization criterion (the runtime minimization
T → min in our example) for each job scheduling without taking into account
user preferences.

4.2 Simulation Results

1000 single scheduling experiments were simulated. The average number of alter-
natives found for a job in CSS was 2.6. This result shows that usually a few
alternative executions were found for relatively small jobs, whereas large jobs
usually had at most one possible execution option (remember that according
to the simulation settings the difference between jobs execution time could be
up to 15-fold). At the same time, the REF algorithm at average considered more



66 V.V. Toporkov et al.

than 100 alternative executions for each job. CSS failed to find any alternative
execution at least for one job of the batch in 209 experiments; ANT did the
same in 155 experiments.

These results show that the simulation settings provided a quite diverse job
batch and, at the same time, a limited set of resources not allowing to execute
all the jobs during every experiment.

Figure 2 shows the average job execution time (VO criterion) in a T →
min, limU optimization problem. Different limits Ua ∈ {0%, 1%, 4%, 10%,
16%, 32%, 100%} specify to what extent user preferences were taken into account.
The two horizontal lines USERopt and VOopt indicate, respectively, the practical
T values when only user or VO administration criteria are optimized.

Fig. 2. Average job execution time in T → min, limU problem

The first thing that attracts our attention in Fig. 2 is that REF provides for
U > 10% a better (smaller) job execution time value than those of VOopt. This
behavior is, nonetheless, expected, as REF generates an infeasible solution and
may use time-slots from more suitable (according to VO preferences) resources
several times for different jobs.

On the other hand, ANT provided a better VO criterion value than CSS for
all U > 0%. The relative advantage reaches 20% when U > 20%.

Interestingly, the ANT algorithm graph gradually changes from the USERopt

value at U = 0% to almost the VOopt value at U = 100% just as the average user
utility limit changes. Therefore, ANT represents a general scheduling approach
allowing to balance between VO stakeholders criteria according to a specified
scenario, including VO or user criteria optimization.

A similar pattern can be observed in Fig. 3, where the C → max, limU
scheduling problem is represented. In this scenario, however, the ANT advantage
over CSS amounts to 10% against the VO criterion.
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Fig. 3. Average job execution cost in the C → max, limU problem

The advantage of ANT over CSS can be explained by a scarce set of alter-
natives found for user jobs by the latter algorithm. To compare ANT and CSS
scheduling results against user criteria we used UU uniform user utility metric
(see Sect. 3.2). Figure 4 shows average uniform user utility UU for ANT and CSS
recalculated based on reference alternatives from REF using Eq. 1.

Fig. 4. Uniform user utility value in the T → min, limU problem

As it can be seen from Fig. 4, ANT provides a higher uniform user utility in
each experiment compared with CSS . Even more, ANT generally operates in a
wider range of possible user utilities: from 17% when U = 0% (only user criteria
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are optimized) to 35% when U = 100% (only the VO criterion is optimized).
At the same time, CSS is able to change uniform user utility in the interval
(16%; 26%). Wider UU interval represents greater decision space for ANT which
implies optimization advantage.

It may seem that both algorithms operate in a rather small uniform user
utilities interval and are not efficient enough. However, uniform user utilities are
based on an infeasible set of alternatives and cannot be entirely replicated in
a feasible solution. In Fig. 4, the VOopt and USERopt horizontal lines roughly
represent a feasible interval for uniform user utility values. In this case, ANT
covers more than half of this feasible UU interval.

Finally, Fig. 5 shows the average replication error (or distance) for each job
of the batch provided by replicating a feasible CSS solution for Ua = 30%
(CSS ref30) and infeasible REF solutions with lim Ua = 0% (ANT ) and lim
Ua = 30% (ANT30). In this experiment, we used time and cost errors to calculate
a geometric distance Dg between reference and allocated alternatives. Figure 5
shows that the CSS ref error is practically independent from ordinal job number,
reaching 0.05 (or 5%) for the last job of the batch. Thus, we can conclude that
a feasible solution generally may be replicated with a good accuracy even when
resources are limited.

Completely different results are provided by ANT . Depending on Ua, the
ANT error may reach 0.35 (or 35%) for the last jobs of the batch. Unlike CSS ,
an infeasible REF solution may require, for example, the allocation of the nodes
with the highest possible performance for each job. In this case, the replication
process will not be able to reserve the required amount of high performance
nodes, and the error for the last jobs may increase greatly.

Fig. 5. Average replication error for user jobs
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5 Conclusions and Future Work

In this paper, we have studied the problem of a fair job batch scheduling with a
relatively limited resources supply. The main problem arising is a scarce set of job
execution alternatives, which eliminates the scheduling optimization efficiency.
We proposed an algorithm to obtain a diverse set of possible execution alterna-
tives for each job. This set may be used as a uniform basis for a fair uniform user
utility calculation to rate a scheduling solution. Then we proposed a heuristic
scheduling scheme that generates a near-optimal but infeasible reference solution
and, after that, replicates it to allocate a feasible accessible solution.

A computer simulation was performed to study these algorithms and evalu-
ate their efficiency. The obtained results show that the new heuristic approach
provides flexible and efficient solutions for different fair scheduling scenarios. The
advantage over the general CSS against VO preferences (for example, when min-
imizing the total job batch execution time) reaches 25%. The above-mentioned
replication procedure showed a relatively high accuracy providing less than 5%
error when replicating a batch of 125 user jobs.

Future work will focus on the study of the replication algorithm and its
possible application to fulfill complex user preferences expressed in a resource
request.
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