
An AlgoView Web-visualization System
for the AlgoWiki Project

Alexander S. Antonov(B) and Nikita I. Volkov

Lomonosov Moscow State University, Moscow, Russia
asa@parallel.ru, volkovnikita94@gmail.com

Abstract. There are countless ways to define an algorithm structure,
which are mostly organized by flow of data, by executed tasks or by data
decomposition. The so-called information graph provides a combination
of these patterns. A possibility to investigate visually the information
graph of a particular algorithm is, therefore, an adequate tool that helps
to understand the algorithm itself, determining its resource of parallelism
and figuring out how to code it better for parallel computing systems.
In this paper, we present our approach to the information graphs visual-
ization system, where online availability and low computational cost are
the primary goals.

Keywords: Information graph · Parallel form · AlgoWiki · AlgoView ·
Web · Visualization · Algorithm

1 Introduction

1.1 The AlgoWiki Project

The AlgoWiki project has been on the scene since 2014. Its main purpose is
to describe algorithms with special attention to their logical structure, resource
of parallelism [1,2], possible parallel implementations, their scalability and effi-
ciency [13]. Attention is also paid to less-known characteristics, such as data
locality [3]. Powered by the MediaWiki engine and available online by refer-
ence [4], the whole project has already been developed steadily for three years,
with more than 30 articles written specifically by its authors, as well as hundreds
of articles created by its visitors. It is supported by the Russian Science Foun-
dation and officially led by Dr. J. Dongarra, from the University of Tennessee.

1.2 Why is the Information Graph Important

A very important part of an algorithm description is the so-called information
graph, since it allows to show the algorithm’s parallel structure both in detail
and at the macro level only. An algorithm structure can be defined in countless

The results were obtained at the Lomonosov Moscow State University with the
financial support of the Russian Science Foundation (agreement N 14-11-00190).

c© Springer International Publishing AG 2017
L. Sokolinsky and M. Zymbler (Eds.): PCT 2017, CCIS 753, pp. 3–13, 2017.
DOI: 10.1007/978-3-319-67035-5 1



4 A.S. Antonov and N.I. Volkov

ways that follow a certain organization pattern. The information graph is defined
in [1] as an acyclic graph where vertices stand for operations in the algorithm and
edges stand for data flows. Its structure is defined by the algorithm itself and the
amount of input data. Therefore, the number of vertices in an information graph
is not limited in any way, while the number of edges can reach that of a fully
connected graph. Such a graph provides by definition a combination of organi-
zation by flow of data, by executed tasks and by data decomposition patterns.
Graph edges give a complete overview of data flows within the algorithm, while
vertices and the common graph structure explain data decomposition and exe-
cuted tasks in detail. A very similar term, namely DAG, is used to describe the
behavior of an algorithm realization in numerous articles (see, for instance, [5]).

1.3 Related Work

Software capable of graph visualization exists for sure. Good examples of such
software are [6,7]. But where would common users normally look for an algo-
rithm description nowadays, in case they need one? Definitely, on the Internet.
And it is not common to install something specific on one’s laptop when will-
ing to read a Wiki article. A notable example in this field is a whole family of
molecular visualization systems, such as [8]. Furthermore, common graph visu-
alization software is not designed specifically for displaying information graphs,
in which keeping the regular structure of the original algorithm intact is a mat-
ter of primary importance. In face of this fact, it is appropriate to present an
important definition from [9]: a parallel form of an information graph, in which
all graph vertices are divided into a number of levels. If two vertices belong to the
same level, then the operations they represent may be executed simultaneously.
The parallel form is actually a basic restriction of graph representation aimed
towards handling its structure carefully.

1.4 Setting up the Goal

Thus, building a desired system involves addressing a set of lesser tasks. The first
one is to develop a method of presenting information graphs in 3-dimensional
space with minimal obscurement of their regular structure, so that one can com-
prehend it as easily as possible. This is followed by the creation of a tool capable
of performing a transformation sequence from some well-known and developed
representation of an algorithm to the actual 3D-model, so that source data for
the tool to work would already exist, and it would not be necessary to build them
from scratch. Finally, the online-availability goal defines that a displayer should
not require large computational resources from the device it is run on. How-
ever, we do not bother much about amounts of Internet connection bandwidth
required for the tool to work smoothly, since such approach follows a common
tendency: increasing bandwidth of networks and increasing popularity of cloud
computing.



An AlgoView Web-visualization System 5

2 Proposed Solution

In this section, we successively address the tasks described in the Introduction
section by giving a detailed description of the methods developed. The whole
system is divided into two independent tools. The exporter tool generates a set of
3D-models by means of parsing an information graph description obtained from
the reference realization of an algorithm. Doing so beforehand, we relieve users
of the task of performing this costly operation. The displayer tool combines the
pre-generated set into an interactive 3D-representation available online through
any browser with WebGL support. A simple and well-known mechanism is used
to integrate html pages containing such 3D-representations directly into Wiki
articles.

The builder and displayer software tools mentioned in this section will be
depicted in detail in the Implementation part.

2.1 A Method of Organizing a 3-Dimensional Graph Representation

To start with, a method that makes an automatically built 3-dimensional repre-
sentation of an information graph as easy to comprehend as possible should be
developed. In our previous research within the AlgoWiki project, a set of recom-
mendations was given in order to make 2-dimensional manually-built information
graph visualizations more uniform and representative. Those recommendations
included such things as explicit indication of data flow directions, using different
colors for vertices containing different operations, visualizing vertices standing
for macro operations (subgraphs of the original information graph, each repre-
sented as a single vertex in order to simplify the entire visualization) with circles
of different sizes, and many others. Basic recommendations that make common
sense are used in the AlgoView system.

But the most important thing is a method we used to create 2-dimensional
projections of 3-dimensional representations manually. A 3-dimensional Carte-
sian space and a grid in it are introduced. With the use of macro operations,
many information graphs can be represented with a combination of loop nests
not deeper than three levels each. So, each graph vertex is placed in a grid
node with coordinates based on iteration parameters of loops in the nest for
the given node, while graph edges just connect grid nodes. This approach was
further developed in our builder tool to work with loop nests of four and more
levels. We also address a problem of graph edges possibly interfering with each
other by using square Bezier curves to calculate exact line-positions. Since such
a curve is defined by three points, and we have information only about the two
grid nodes being connected, the exact position of the third point also depends
on the iteration parameters of the loops. The axes of the Cartesian space are
added directly into the information graph 3-dimensional representation to make
orientation easier.



6 A.S. Antonov and N.I. Volkov

2.2 Building 3-Dimensional Graph Models

An exact definition of “well-known and developed algorithm representation”
should be given in order to address the second task mentioned in the Introduc-
tion section. In this paper, we deem the source code of a reference algorithm
realization to be such a representation. We propose building a system that per-
forms a series of transformations: source code → inner representation → XML
representation → a set of 3D-models → 3D-representation. Assuming that trans-
formations here are indexed starting with zero, the displayer tool is responsible
for the third transformation, the builder is responsible for the second, an Algo-
Graph tool created by our colleagues responds for the first, and performing
the zeroth step is among our future plans and projects. Thus, creating a set
of 3D-models from an XML file of known structure is the main transformation
described in this work.

<?xml version="1.0" encoding="UTF-8"?>

<algograph version="0.0.1">

<algorithm num_ext_params="1" num_groups="2">

<ext_param name="n"/>

<loop>

<group id="0" number="3" depth="1" num_or_parts="1" num_oper="1">

<or_part id="0" num_and_parts="1">

<and_part id="0"><![CDATA[]]></and_part>

<statement id="0" num_inputs="1">

<input id="0" num_solutions="0"/>

</statement>

</or_part>

</group>

</loop>

</algorithm>

</algograph>

Fig. 1. XML file describing a simple code fragment

The main idea of the builder tool is to handle loop nests defined in an XML
file by the previously described method. The XML file has the following struc-
ture (see Fig. 1). It describes one algorithm: a sequence of loops or groups; a
loop consists of a sequence of loops or groups; a group stands for a set of vertices
(solutions) and edges (dependencies); exact coordinates for vertices depend on
exact iteration parameters of the loops a group belongs to according to the previ-
ously described method with 3-dimensional Cartesian space; an edge coordinates
are based on the coordinates of the vertices it connects. Thus, the builder tool
generates a list of coordinates for vertices and edges after parsing the given XML
file. To create a set of 3D-models from that list, we use the following method.
A set of functions is created to build geometrical 3-dimensional primitives, like
spheres, cones, etc. This primitives can be transformed by passing parameters



An AlgoView Web-visualization System 7

to appropriate functions, and these parameters are taken from the generated list
for each edge and each vertex.

2.3 Achieving Online Availability

Creating a set of 3-dimensional models from such an XML file is a very costly
operation, that is why it is done in advance without any participation of the
client’s device. The generated set of models is uploaded to the same web server
that stores the web pages used for the final 3-dimensional representation. WebGL
technology is used to display the uploaded models on the appropriate web page,
so the 3-dimensional representation is accessible via the client’s browser if it
supports WebGL (and modern browsers do [10]). The displayer tool is basically
a set of Java scripts attached to the web page that are responsible for loading
pre-generated models into it.

3 AlgoView Toolset

3.1 The Builder Tool Description

The whole builder tool is written in C++ and is platform-independent. It, how-
ever, uses external libraries for certain auxiliary jobs and, thus, cannot be called
a complete creation of ours. The RapidXML library [11] is used to make parsing
the XML file into a DOM-tree easier. The Exprtk library [12] is used to evaluate
expression strings contained in XML files. Our own source code is organized in
several files as well.

The XML file name and output file names are used as input parameters. The
builder tool works in several steps.

Initializing. First of all, objects of Para parser and Builder classes are created.
Input parameters are passed to these objects.

Parsing the DOM-tree. The Build params method from Para parser class
does the heavy lifting here. The input XML file is, first of all, parsed into a DOM-
tree by means of RapidXML. Then all the tree nodes are operated recursively.
By the end of this stage, our Para parser class object has two lists containing,
respectively, the coordinates of the graph vertices and pairs of graph vertices
(the first vertex is the beginning of an edge and the second is its end). We also
plan to add information about loop variables for each vertex created, which can
be later used for calculating exact edge-positions in 3-dimensional space, as well
as for adding new interactive features for 3-dimensional representation that we
do not have yet (see Sect. 4 for more details). The exact form of this information
is still a matter of some concern.

Building 3D models in JSON format. The Build JSON method from the
Builder class takes pointers to both lists as parameters. All the list nodes are
parsed in sequence, with 3D-model generation being called for each node. The
Builder class has private methods used to create geometric primitives both for
vertices and edges; these methods take coordinates stored in the list nodes as
parameters.



8 A.S. Antonov and N.I. Volkov

3.2 The Displayer Tool Description

The output of the builder tool is, as we already know, a set of 3D-models, which
are handled by the displayer tool to create a final representation. Each web page
is used to display a single information graph and is supported by the mentioned
set of Java scripts and source files. These include JS libraries, textures, auxiliary
3D-models (for example, axis models), Java scripts used to interact with the
representation, etc. The whole set of files contains library files, auxiliary source
files and actual elements of the displayer tool.

Displaying an information graph representation in a browser window is an
easy task compared to building a set of 3D-models from an XML file. It is done
in several steps.

Initializing. Whenever some client decides to open one of our web pages in
his browser, the InitGUI() function is called, creating a simple GUI to interact
with the information graph representation. The webGLStart() function creates
the canvas used to display the representation; a GL type object is initialized,
as well as shaders and textures; an appropriate set of 3D-models is loaded into
memory; reaction to user actions is set up. Then the tick() function is called, so
the system will work in real time.

Animating. The tick() function is responsible for drawing the current frame
and calculating parameters for the next frame (both implemented in separate
procedures: DrawScene() and Animate()).

3.3 Integrating the System into the AlgoWiki Project

This is a simple but important part. The problem is that the MediaWiki engine
used by the AlgoWiki project does not support WebGL technology. So we had
to figure out a method for integrating our web pages into AlgoWiki. Fortunately,
the IFrame MediaWiki widget was designed for performing such actions. All we
had to do was to install IFrame on AlgoWiki, and add the appropriate pages by
its means.

4 Experiments and Results

Here we describe our achievements in creating 3-dimensional representations of
information graphs. We have built some simple representations of hypothetic
graphs for testing purposes, and moved on to creating actual representations of
algorithms described in the AlgoWiki project. For now, automatic building does
not support creating macro operations at all, since XML files do not contain
that kind of information. Also, the aesthetic side is affected in certain cases.
To fix that, the builder tool can also be run in a manual mode in which it
creates vertices and edges according to commands given by the user. A basic
representation displays the coordinate axes, followed by all the graph vertices
and edges without paying attention to the exact nature of specific operations



An AlgoView Web-visualization System 9

Fig. 2. Parallel matrix multiplication information graph, n = 4

and data flows within the information graph. In simple cases, this is sometimes
not an issue, as shown in Fig. 2. Here a basic matrix multiplication is shown, all
operations being ternary: a + b ∗ c, where a is known from the previous opera-
tion in the same sequence, and b and c are elements of the input matrices. To
address that, we plan to use different colors for different operations, and add aux-
iliary information about what each color means, like we did in the 2-dimensional
representation. Another important idea one can deduce from the set of recom-
mendations given for the information graph 2-dimensional representation was to
display input data as vertices of different shapes. For the moment, we do not
show them in the 3-dimensional representation.

An important part of our 3-dimensional representation concept is interactiv-
ity. That means several actions are available to users. Many “multidimensional”
information graphs follow a set of structure patterns, different for each dimen-
sion. Thus, the most obvious feature is the adjustable point of view shown in
Fig. 3 going along with some preset camera settings that can be used for dis-
playing graph projections onto the coordinate planes, as one can see in Figs. 4
and 5.



10 A.S. Antonov and N.I. Volkov

Fig. 3. Parallel matrix-vector multiplication information graph, n = 5; note the control
panel in the upper right corner

Fig. 4. Horner’s scheme visualization, n = 6, XY projection



An AlgoView Web-visualization System 11

Fig. 5. Horner’s scheme visualization, n = 6, Y Z projection

Another option that may come in handy is the possibility to choose which
parts of a 3-dimensional representation are currently displayed, as it can be
noticed in Fig. 2 as well. This approach can ease the understanding of compli-
cated structures common within information graphs, when it comes to something
more intricate than matrix-vector operations. Addressing the parallel form of the
information graph is also important, and the plan is to allow users to highlight a
chosen level inside the graph, as well as to “walk” through levels to see how the
algorithm execution goes. Like all the other features that are not present in the
current version of 3-dimensional representation, it needs additional information
stored in the vertex list described in Sect. 3.

The biggest issue we came across in building up 3-dimensional graph repre-
sentations is the possible interference of graph edges. Assume we have a very
simple information graph of an algorithm that represents a simple loop with n
iterations where every iteration, except the first one, uses data from both the
previous iteration and the first. Such a loop would result in a line of vertices
with edges going from the first vertex to each one of the others, and neighbor
vertices connected as well. This basically means that the edges would cover each
other in a 3-dimensional representation. To avoid such an issue, the Bezier curve
technique previously mentioned in Sect. 2 was introduced. But this technique
itself does not completely resolve possible issues, as one can see in Fig. 6.



12 A.S. Antonov and N.I. Volkov

Fig. 6. Cholesky factorization information graph, n = 4

5 Conclusion

In this paper, we have reviewed our previously developed approach to the the-
oretical basis of creating 3-dimensional information graph representations. We
have introduced the idea of a representation transformation sequence and have
described a toolset implemented to automatically perform the two steps of the
sequence that had not been worked out yet. Our toolset has been integrated
into the AlgoWiki project, and some algorithm descriptions have been supple-
mented with our 3-dimensional representations. However, there is still work to
do, since, as we have shown, our system sometimes does not work well in the aes-
thetic aspect, allowing data flows in the representation to interfere each other.
Along with improvements to the tool responsible for transforming the source
code into the inner representation, minimizing the number of such “difficult”
algorithms stands as our primary goal. We have tested the system by creating
3D-representations of several sample algorithms described in AlgoWiki, and they
have proved to be successful.

References

1. Voevodin, V.V., Voevodin, V.V.: Parallel Computing. BHV-Petersburg, St. Peters-
burg (2002). (in Russian)

2. Voevodin, V., Antonov, A., Dongarra, J.: Why is it hard to describe properties of
algorithms? Proc. Comput. Sci. 101C, 3–6 (2016). doi:10.1016/j.procs.2016.11.002

3. Alexander Antonov, A., Voevodin, V., Voevodin, V., Teplov, A.: A study of the
dynamic characteristics of software implementation as an essential part for a uni-
versal description of algorithm properties. In: 24th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing Proceedings, pp.
359–363 (2016). doi:10.1109/PDP.2016.24

http://dx.doi.org/10.1016/j.procs.2016.11.002
http://dx.doi.org/10.1109/PDP.2016.24


An AlgoView Web-visualization System 13

4. Open Encyclopedia of Parallel Algorithmic Features AlgoWiki. https://
algowiki-project.org/

5. Sharp, J.A. (ed.): Data Flow Computing: Theory and Practice. Ablex Publishing
Corp, Norwood (1992)

6. The Open Graph Viz Platform. https://gephi.org/
7. Graph Visualization Software. http://www.graphviz.org/
8. An Open-Source web-application. http://molview.org/
9. Voevodin, V., Antonov, A., Dongarra, J.: AlgoWiki: an open encyclopedia of par-

allel algorithmic features. Supercomput. Front. Innov. 2(1), 4–18 (2015). doi:10.
14529/jsfi150101

10. Chong Lip Phang: Web Coding Bible (HTML, CSS, Javascript, PHP, SQL, XML,
SVG, Canvas, WebGL et al.)

11. A RapidXML manual. http://rapidxml.sourceforge.net/manual.html
12. Exprtk manual. http://www.partow.net/programming/exprtk/
13. Antonov, A., Frolov, A., Kobayashi, H., Konshin, I., Teplov, A., Voevodin, V.,

Voevodin, V.: Parallel processing model for Cholesky decomposition algorithm in
AlgoWiki project. Supercomput. Front. Innov. 3(3), 61–70 (2016). doi:10.14529/
jsfi160307

https://algowiki-project.org/
https://algowiki-project.org/
https://gephi.org/
http://www.graphviz.org/
http://molview.org/
http://dx.doi.org/10.14529/jsfi150101
http://dx.doi.org/10.14529/jsfi150101
http://rapidxml.sourceforge.net/manual.html
http://www.partow.net/programming/exprtk/
http://dx.doi.org/10.14529/jsfi160307
http://dx.doi.org/10.14529/jsfi160307

	An AlgoView Web-visualization System for the AlgoWiki Project
	1 Introduction
	1.1 The AlgoWiki Project
	1.2 Why is the Information Graph Important
	1.3 Related Work
	1.4 Setting up the Goal

	2 Proposed Solution
	2.1 A Method of Organizing a 3-Dimensional Graph Representation
	2.2 Building 3-Dimensional Graph Models
	2.3 Achieving Online Availability

	3 AlgoView Toolset
	3.1 The Builder Tool Description
	3.2 The Displayer Tool Description
	3.3 Integrating the System into the AlgoWiki Project

	4 Experiments and Results
	5 Conclusion
	References




