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Preface

This volume contains a selection of the papers presented at the 11th International
Scientific Conference on Parallel Computational Technologies, PCT 2017, held during
April 3‒7, 2017, in Kazan, Russia.

The PCT series of conferences aims at providing an opportunity to discuss the future
of parallel computing, as well as to report the results achieved by leading research
groups in solving both scientific and practical issues using supercomputer technologies.
The scope of the PCT series of conferences includes all aspects of high performance
computing in science and technology such as applications, hardware and software,
specialized languages, and packages.

The PCT series is organized by the Supercomputing Consortium of Russian
Universities and the Federal Agency for Scientific Organizations. Originated in 2007 at
the South Ural State University (Chelyabinsk, Russia), the PCT series of conferences
has now become one of the most prestigious Russian scientific meetings on parallel
programming and high-performance computing. PCT 2017 in Kazan continued the
series after Chelyabinsk (2007), St. Petersburg (2008), Nizhny Novgorod (2009), Ufa
(2010), Moscow (2011), Novosibirsk (2012), Chelyabinsk (2013), Rostov-on-Don
(2014), Ekaterinburg (2015), and Arkhangelsk (2016).

All papers submitted to the conference were scrupulously evaluated by three
reviewers on the relevance to the conference topics, scientific and practical contribu-
tion, experimental evaluation of the results, and presentation quality. PCT’s Program
Committee selected the 24 best papers to be included in this CCIS proceedings volume.

We would like to thank the Russian Foundation for Basic Research for their con-
tinued financial support of the PCT series of conferences, as well as respected PCT
2017 sponsors, namely platinum sponsors, Intel and RSC Group, gold sponsor,
NVIDIA, silver sponsor, Hewlett Packard Enterprise, and track sponsor AMD.

We would like to express our gratitude to every individual who contributed to the
success of PCT 2017. Special thanks to the Program Committee members and the
external reviewers for evaluating papers submitted to the conference. Thanks also to
Organizing Committee members and all the colleagues involved in the conference
organization from Kazan Federal University, the South Ural State University, and
Moscow State University. We thank the participants of PCT 2017 for sharing their
research and presenting their achievements as well.

Finally, we thank Springer for publishing the proceedings of PCT 2017 in the
Communications in Computer and Information Science series.

May 2017 Leonid Sokolinsky
Mikhail Zymbler
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An AlgoView Web-visualization System
for the AlgoWiki Project

Alexander S. Antonov(B) and Nikita I. Volkov

Lomonosov Moscow State University, Moscow, Russia
asa@parallel.ru, volkovnikita94@gmail.com

Abstract. There are countless ways to define an algorithm structure,
which are mostly organized by flow of data, by executed tasks or by data
decomposition. The so-called information graph provides a combination
of these patterns. A possibility to investigate visually the information
graph of a particular algorithm is, therefore, an adequate tool that helps
to understand the algorithm itself, determining its resource of parallelism
and figuring out how to code it better for parallel computing systems.
In this paper, we present our approach to the information graphs visual-
ization system, where online availability and low computational cost are
the primary goals.

Keywords: Information graph · Parallel form · AlgoWiki · AlgoView ·
Web · Visualization · Algorithm

1 Introduction

1.1 The AlgoWiki Project

The AlgoWiki project has been on the scene since 2014. Its main purpose is
to describe algorithms with special attention to their logical structure, resource
of parallelism [1,2], possible parallel implementations, their scalability and effi-
ciency [13]. Attention is also paid to less-known characteristics, such as data
locality [3]. Powered by the MediaWiki engine and available online by refer-
ence [4], the whole project has already been developed steadily for three years,
with more than 30 articles written specifically by its authors, as well as hundreds
of articles created by its visitors. It is supported by the Russian Science Foun-
dation and officially led by Dr. J. Dongarra, from the University of Tennessee.

1.2 Why is the Information Graph Important

A very important part of an algorithm description is the so-called information
graph, since it allows to show the algorithm’s parallel structure both in detail
and at the macro level only. An algorithm structure can be defined in countless

The results were obtained at the Lomonosov Moscow State University with the
financial support of the Russian Science Foundation (agreement N 14-11-00190).

c© Springer International Publishing AG 2017
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4 A.S. Antonov and N.I. Volkov

ways that follow a certain organization pattern. The information graph is defined
in [1] as an acyclic graph where vertices stand for operations in the algorithm and
edges stand for data flows. Its structure is defined by the algorithm itself and the
amount of input data. Therefore, the number of vertices in an information graph
is not limited in any way, while the number of edges can reach that of a fully
connected graph. Such a graph provides by definition a combination of organi-
zation by flow of data, by executed tasks and by data decomposition patterns.
Graph edges give a complete overview of data flows within the algorithm, while
vertices and the common graph structure explain data decomposition and exe-
cuted tasks in detail. A very similar term, namely DAG, is used to describe the
behavior of an algorithm realization in numerous articles (see, for instance, [5]).

1.3 Related Work

Software capable of graph visualization exists for sure. Good examples of such
software are [6,7]. But where would common users normally look for an algo-
rithm description nowadays, in case they need one? Definitely, on the Internet.
And it is not common to install something specific on one’s laptop when will-
ing to read a Wiki article. A notable example in this field is a whole family of
molecular visualization systems, such as [8]. Furthermore, common graph visu-
alization software is not designed specifically for displaying information graphs,
in which keeping the regular structure of the original algorithm intact is a mat-
ter of primary importance. In face of this fact, it is appropriate to present an
important definition from [9]: a parallel form of an information graph, in which
all graph vertices are divided into a number of levels. If two vertices belong to the
same level, then the operations they represent may be executed simultaneously.
The parallel form is actually a basic restriction of graph representation aimed
towards handling its structure carefully.

1.4 Setting up the Goal

Thus, building a desired system involves addressing a set of lesser tasks. The first
one is to develop a method of presenting information graphs in 3-dimensional
space with minimal obscurement of their regular structure, so that one can com-
prehend it as easily as possible. This is followed by the creation of a tool capable
of performing a transformation sequence from some well-known and developed
representation of an algorithm to the actual 3D-model, so that source data for
the tool to work would already exist, and it would not be necessary to build them
from scratch. Finally, the online-availability goal defines that a displayer should
not require large computational resources from the device it is run on. How-
ever, we do not bother much about amounts of Internet connection bandwidth
required for the tool to work smoothly, since such approach follows a common
tendency: increasing bandwidth of networks and increasing popularity of cloud
computing.
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2 Proposed Solution

In this section, we successively address the tasks described in the Introduction
section by giving a detailed description of the methods developed. The whole
system is divided into two independent tools. The exporter tool generates a set of
3D-models by means of parsing an information graph description obtained from
the reference realization of an algorithm. Doing so beforehand, we relieve users
of the task of performing this costly operation. The displayer tool combines the
pre-generated set into an interactive 3D-representation available online through
any browser with WebGL support. A simple and well-known mechanism is used
to integrate html pages containing such 3D-representations directly into Wiki
articles.

The builder and displayer software tools mentioned in this section will be
depicted in detail in the Implementation part.

2.1 A Method of Organizing a 3-Dimensional Graph Representation

To start with, a method that makes an automatically built 3-dimensional repre-
sentation of an information graph as easy to comprehend as possible should be
developed. In our previous research within the AlgoWiki project, a set of recom-
mendations was given in order to make 2-dimensional manually-built information
graph visualizations more uniform and representative. Those recommendations
included such things as explicit indication of data flow directions, using different
colors for vertices containing different operations, visualizing vertices standing
for macro operations (subgraphs of the original information graph, each repre-
sented as a single vertex in order to simplify the entire visualization) with circles
of different sizes, and many others. Basic recommendations that make common
sense are used in the AlgoView system.

But the most important thing is a method we used to create 2-dimensional
projections of 3-dimensional representations manually. A 3-dimensional Carte-
sian space and a grid in it are introduced. With the use of macro operations,
many information graphs can be represented with a combination of loop nests
not deeper than three levels each. So, each graph vertex is placed in a grid
node with coordinates based on iteration parameters of loops in the nest for
the given node, while graph edges just connect grid nodes. This approach was
further developed in our builder tool to work with loop nests of four and more
levels. We also address a problem of graph edges possibly interfering with each
other by using square Bezier curves to calculate exact line-positions. Since such
a curve is defined by three points, and we have information only about the two
grid nodes being connected, the exact position of the third point also depends
on the iteration parameters of the loops. The axes of the Cartesian space are
added directly into the information graph 3-dimensional representation to make
orientation easier.
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2.2 Building 3-Dimensional Graph Models

An exact definition of “well-known and developed algorithm representation”
should be given in order to address the second task mentioned in the Introduc-
tion section. In this paper, we deem the source code of a reference algorithm
realization to be such a representation. We propose building a system that per-
forms a series of transformations: source code → inner representation → XML
representation → a set of 3D-models → 3D-representation. Assuming that trans-
formations here are indexed starting with zero, the displayer tool is responsible
for the third transformation, the builder is responsible for the second, an Algo-
Graph tool created by our colleagues responds for the first, and performing
the zeroth step is among our future plans and projects. Thus, creating a set
of 3D-models from an XML file of known structure is the main transformation
described in this work.

<?xml version="1.0" encoding="UTF-8"?>

<algograph version="0.0.1">

<algorithm num_ext_params="1" num_groups="2">

<ext_param name="n"/>

<loop>

<group id="0" number="3" depth="1" num_or_parts="1" num_oper="1">

<or_part id="0" num_and_parts="1">

<and_part id="0"><![CDATA[]]></and_part>

<statement id="0" num_inputs="1">

<input id="0" num_solutions="0"/>

</statement>

</or_part>

</group>

</loop>

</algorithm>

</algograph>

Fig. 1. XML file describing a simple code fragment

The main idea of the builder tool is to handle loop nests defined in an XML
file by the previously described method. The XML file has the following struc-
ture (see Fig. 1). It describes one algorithm: a sequence of loops or groups; a
loop consists of a sequence of loops or groups; a group stands for a set of vertices
(solutions) and edges (dependencies); exact coordinates for vertices depend on
exact iteration parameters of the loops a group belongs to according to the previ-
ously described method with 3-dimensional Cartesian space; an edge coordinates
are based on the coordinates of the vertices it connects. Thus, the builder tool
generates a list of coordinates for vertices and edges after parsing the given XML
file. To create a set of 3D-models from that list, we use the following method.
A set of functions is created to build geometrical 3-dimensional primitives, like
spheres, cones, etc. This primitives can be transformed by passing parameters
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to appropriate functions, and these parameters are taken from the generated list
for each edge and each vertex.

2.3 Achieving Online Availability

Creating a set of 3-dimensional models from such an XML file is a very costly
operation, that is why it is done in advance without any participation of the
client’s device. The generated set of models is uploaded to the same web server
that stores the web pages used for the final 3-dimensional representation. WebGL
technology is used to display the uploaded models on the appropriate web page,
so the 3-dimensional representation is accessible via the client’s browser if it
supports WebGL (and modern browsers do [10]). The displayer tool is basically
a set of Java scripts attached to the web page that are responsible for loading
pre-generated models into it.

3 AlgoView Toolset

3.1 The Builder Tool Description

The whole builder tool is written in C++ and is platform-independent. It, how-
ever, uses external libraries for certain auxiliary jobs and, thus, cannot be called
a complete creation of ours. The RapidXML library [11] is used to make parsing
the XML file into a DOM-tree easier. The Exprtk library [12] is used to evaluate
expression strings contained in XML files. Our own source code is organized in
several files as well.

The XML file name and output file names are used as input parameters. The
builder tool works in several steps.

Initializing. First of all, objects of Para parser and Builder classes are created.
Input parameters are passed to these objects.

Parsing the DOM-tree. The Build params method from Para parser class
does the heavy lifting here. The input XML file is, first of all, parsed into a DOM-
tree by means of RapidXML. Then all the tree nodes are operated recursively.
By the end of this stage, our Para parser class object has two lists containing,
respectively, the coordinates of the graph vertices and pairs of graph vertices
(the first vertex is the beginning of an edge and the second is its end). We also
plan to add information about loop variables for each vertex created, which can
be later used for calculating exact edge-positions in 3-dimensional space, as well
as for adding new interactive features for 3-dimensional representation that we
do not have yet (see Sect. 4 for more details). The exact form of this information
is still a matter of some concern.

Building 3D models in JSON format. The Build JSON method from the
Builder class takes pointers to both lists as parameters. All the list nodes are
parsed in sequence, with 3D-model generation being called for each node. The
Builder class has private methods used to create geometric primitives both for
vertices and edges; these methods take coordinates stored in the list nodes as
parameters.
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3.2 The Displayer Tool Description

The output of the builder tool is, as we already know, a set of 3D-models, which
are handled by the displayer tool to create a final representation. Each web page
is used to display a single information graph and is supported by the mentioned
set of Java scripts and source files. These include JS libraries, textures, auxiliary
3D-models (for example, axis models), Java scripts used to interact with the
representation, etc. The whole set of files contains library files, auxiliary source
files and actual elements of the displayer tool.

Displaying an information graph representation in a browser window is an
easy task compared to building a set of 3D-models from an XML file. It is done
in several steps.

Initializing. Whenever some client decides to open one of our web pages in
his browser, the InitGUI() function is called, creating a simple GUI to interact
with the information graph representation. The webGLStart() function creates
the canvas used to display the representation; a GL type object is initialized,
as well as shaders and textures; an appropriate set of 3D-models is loaded into
memory; reaction to user actions is set up. Then the tick() function is called, so
the system will work in real time.

Animating. The tick() function is responsible for drawing the current frame
and calculating parameters for the next frame (both implemented in separate
procedures: DrawScene() and Animate()).

3.3 Integrating the System into the AlgoWiki Project

This is a simple but important part. The problem is that the MediaWiki engine
used by the AlgoWiki project does not support WebGL technology. So we had
to figure out a method for integrating our web pages into AlgoWiki. Fortunately,
the IFrame MediaWiki widget was designed for performing such actions. All we
had to do was to install IFrame on AlgoWiki, and add the appropriate pages by
its means.

4 Experiments and Results

Here we describe our achievements in creating 3-dimensional representations of
information graphs. We have built some simple representations of hypothetic
graphs for testing purposes, and moved on to creating actual representations of
algorithms described in the AlgoWiki project. For now, automatic building does
not support creating macro operations at all, since XML files do not contain
that kind of information. Also, the aesthetic side is affected in certain cases.
To fix that, the builder tool can also be run in a manual mode in which it
creates vertices and edges according to commands given by the user. A basic
representation displays the coordinate axes, followed by all the graph vertices
and edges without paying attention to the exact nature of specific operations
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Fig. 2. Parallel matrix multiplication information graph, n = 4

and data flows within the information graph. In simple cases, this is sometimes
not an issue, as shown in Fig. 2. Here a basic matrix multiplication is shown, all
operations being ternary: a + b ∗ c, where a is known from the previous opera-
tion in the same sequence, and b and c are elements of the input matrices. To
address that, we plan to use different colors for different operations, and add aux-
iliary information about what each color means, like we did in the 2-dimensional
representation. Another important idea one can deduce from the set of recom-
mendations given for the information graph 2-dimensional representation was to
display input data as vertices of different shapes. For the moment, we do not
show them in the 3-dimensional representation.

An important part of our 3-dimensional representation concept is interactiv-
ity. That means several actions are available to users. Many “multidimensional”
information graphs follow a set of structure patterns, different for each dimen-
sion. Thus, the most obvious feature is the adjustable point of view shown in
Fig. 3 going along with some preset camera settings that can be used for dis-
playing graph projections onto the coordinate planes, as one can see in Figs. 4
and 5.
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Fig. 3. Parallel matrix-vector multiplication information graph, n = 5; note the control
panel in the upper right corner

Fig. 4. Horner’s scheme visualization, n = 6, XY projection
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Fig. 5. Horner’s scheme visualization, n = 6, Y Z projection

Another option that may come in handy is the possibility to choose which
parts of a 3-dimensional representation are currently displayed, as it can be
noticed in Fig. 2 as well. This approach can ease the understanding of compli-
cated structures common within information graphs, when it comes to something
more intricate than matrix-vector operations. Addressing the parallel form of the
information graph is also important, and the plan is to allow users to highlight a
chosen level inside the graph, as well as to “walk” through levels to see how the
algorithm execution goes. Like all the other features that are not present in the
current version of 3-dimensional representation, it needs additional information
stored in the vertex list described in Sect. 3.

The biggest issue we came across in building up 3-dimensional graph repre-
sentations is the possible interference of graph edges. Assume we have a very
simple information graph of an algorithm that represents a simple loop with n
iterations where every iteration, except the first one, uses data from both the
previous iteration and the first. Such a loop would result in a line of vertices
with edges going from the first vertex to each one of the others, and neighbor
vertices connected as well. This basically means that the edges would cover each
other in a 3-dimensional representation. To avoid such an issue, the Bezier curve
technique previously mentioned in Sect. 2 was introduced. But this technique
itself does not completely resolve possible issues, as one can see in Fig. 6.
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Fig. 6. Cholesky factorization information graph, n = 4

5 Conclusion

In this paper, we have reviewed our previously developed approach to the the-
oretical basis of creating 3-dimensional information graph representations. We
have introduced the idea of a representation transformation sequence and have
described a toolset implemented to automatically perform the two steps of the
sequence that had not been worked out yet. Our toolset has been integrated
into the AlgoWiki project, and some algorithm descriptions have been supple-
mented with our 3-dimensional representations. However, there is still work to
do, since, as we have shown, our system sometimes does not work well in the aes-
thetic aspect, allowing data flows in the representation to interfere each other.
Along with improvements to the tool responsible for transforming the source
code into the inner representation, minimizing the number of such “difficult”
algorithms stands as our primary goal. We have tested the system by creating
3D-representations of several sample algorithms described in AlgoWiki, and they
have proved to be successful.
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Abstract. The most productive and powerful supercomputers always
arouse great interest being flagships of the HPC machines fleet. These
giants always require new forms of presentation because of innovations
in design. This also leads to evaluation and development of new ways of
comparison and supercomputer ranking. There is a variety of known
regional and world-level rankings based on different methods. Every
ranking is rich in peculiarities in its development. In this paper we try
to observe the evaluation of supercomputing rankings and discuss our
vision of vivification of the oldest regional ranking - The Top50 list of
most productive supercomputers of Russia and CIS and its features.

Keywords: Supercomputer · Model of supercomputer · HPC ranking ·
Performance and productiveness · Comparison of HPC systems · Meth-
ods of description for supercomputer design

1 Introduction

Researchers in the area of computational mathematics and adjacent areas have
always been attracted to the choice of implementation methods which would
better suit for a certain algorithm of calculations.

Computers have been evaluating fast and the diversity of architectures and
technologies has been growing as well, multiplying the available variety of plat-
forms and particular implementation hints.

It is quite natural that there appeared a need for measuring various plat-
form capabilities even at relatively early stages of computing bringing various
benchmarks to life. Later together with growing concurrence of platforms on the
market it actually gave birth to appearance of HPC rankings.

Good news is that all these rankings altogether give us colorful multidimen-
sional picture of HPC roadmap and trends, taken from a variety of viewing
points at a time.

Bad news is that despite rich performance evaluation history, each ranking
has its own weak sides. It can be seen taking form of insufficient architecture
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description, poor applicability to real-life applications seldom update period, low
participants number, etc.

Of course, every list has its own goals, its own core audience and locality,
but it is also interesting that all ranking engines have to be updated from time
to time, for example, to start supporting heterogeneous systems with a number
of computing unit and core types in the system.

It seems to be a good idea to look through the history of HPC rankings and
peculiarities to develop a ranking design that would at least meet the HPC list
requirements for close future and would be as useful for most users as it can be.

The paper has the following structure.
Section 2 covers a background of the project, reviewing existing HPC rankings

and summarizing the state of the art as a basis for the project evaluation.
Section 3 is devoted to the implementation details of the proposed design of

HPC system description for HPC rankings.
Section 4 introduces important features that become available with the pro-

posed approach.
Section 5 addresses the forthcoming research work packages and our roadmap

vision for the close future.
Broadly speaking in this paper we try to summarize our experience and vision

of HPC rankings present, and to discuss approbation of new ideas on Top50 list
of the most productive supercomputers of CIS and Russia.

2 Background

2.1 HPC Rankings

As of today, the most well-known lists are Top500, Green500 and Graph500,
which are receiving applications for participation all over the world. There are
also regional ratings, such as the Top50 of Russia and CIS, Top Supercomputers-
India, The Irish Supercomputer List.

All these ratings include descriptions of supercomputer systems that may
differ in structure and available characteristics; each list has its own method of
describing and representing its participating systems.

All the rankings can be divided into two groups: global rankings (Table 1)
that accept participating systems from all over the world and regional rankings
(Table 2) that represent the situation in a certain region or a country.

2.2 HPC Rankings

Speaking about high performance computing, the most famous is a Top500 rating
that is known to be as long living, as about fifty half-year editions old, with the
first list announcement dated back to 1993 [1].

The Top500 rating is the largest ranking of supercomputer systems in the
world. It is based on computer performance value, which is obtained via the
HPL (High Performance Linpack [2]) benchmark. In this benchmark, a dense



16 D. Nikitenko and A. Zheltkov

Table 1. Global HPC rankings (Perf. – Performance, Eff. – Efficiency).

Global rankings Top 500 Green 500 Graph 500 Green graph 500 HPCG HPGMG

Gradation criteria Perf. Eff. Perf. Eff. Perf. Perf.

Benchmark HPL HPL BFS BFS HPCG HPGMG-FV

Units FLOPS FLOPS/W TEPS TEPS/W FLOPS DOF/S

Year 1st announced 1993 2007 2010 2013 2014 2014

Lists/Year 2 2 2 2 2 2

Editions issued on: Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov

Number of systems as of

11.2016

500 500 216 30 101 11

Quality of system

description

High High Fair Poor Poor Poor

Heterogeneous

architecture

No No No No No No

Table 2. Global Top500 list and regional rankings.

Ranking title Top 500 Top50 Russia Top super-
computers
India

The Irish
supercomputer
list

Ranking region World-wide Russia and
CIS

India The island of
Ireland

Gradation criteria Perf. Perf. Eff. Perf.

Benchmark HPL HPL HPL HPL

Year 1st announced 1993 2004 2008 2013

Lists/Year 2 2 2 2

Editions issued on: June November March/April
September

June
December

June
November

Number of systems
as of 11.2016

500 50 33 27

Quality of system
description

High High Fair Fair

Heterogeneous
architecture

No Yes No Partial

system of linear equations Ax = f is being solved with an algorithm conforming
to LU factorization with partial pivoting. The result of the benchmark is the
number of floating point operations per time, referred to as FLOPS (Floating-
point OPerations per Second).

Green500 list [3] is based on the same submitted to the Top500 list data,
where the main criterion of comparison is the energy efficiency of systems. Par-
ticipating systems are compared by performance obtained via HPL divided by
the power consumption of system including its infrastructure during calculations.
Thus, the metric for a given rating is the FLOPS/W ratio. The information about
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supercomputer systems for this list is the same as for the Top500. The Green500
ranking was first announced in 2007.

HPCG [4] is a computing systems rating, which is using the HPCG (High
Performance Conjugate Gradients) benchmark to get performance of participat-
ing systems. Like HPL, this benchmark implements solution of systems of linear
equation, but, unlike HPL, the conjugate gradients method is used for it. The
resulting performance obtained by HPCG is also measured in FLOPS and turns
out to be 1–2 orders of magnitude lower compared with the results of HPL.
This rating was proposed by the creators of the Top500 ranking as an alter-
native to this list, because over time, the performance of computer systems on
the HPL benchmark and real-world applications became significantly different.
HPCG benchmark result can be considered as performance in the worst case,
as “pessimistic” estimation of computing power of a system. The HPCG list
appeared for the first time relatively recently in 2014.

The HPGMG rating is positioned as one of the Top500 list alternatives and
it uses the HPGMG (High Performance Geometric MultiGrid) benchmark [5]
for estimating systems performance. In this benchmark, solutions of systems
of linear equations are also being found, but the multigrid methods are used.
The result of this benchmark is measured in the number of solved differential
equations in a unit of time or quantity of degrees of freedom per time DOF/s
(Degrees Of Freedom per second). While HPL benchmark shows the best really
achievable performance and HPCG benchmark - performance of a system in the
worst case, the HPGMG benchmark was designed as a cross between these two,
in order to estimate the applicability of computer systems for real applications.
The benchmark is pretty young starting from 2014 just like HPCG, and the
current list edition consists of just as much as 11 entries at present.

Graph 500 [6] is an another alternative supercomputer rating to Top500
and it is based on a performance value obtained via the DFS (Depth First
Search) benchmark, which is oriented to process large data sets. The main task
in this benchmark is to find edges in a very large graph, which is reflected in
the title of the rating. The result of benchmark is the number of vertices being
traversed divided by time measured in TEPS (Traversed Edges Per Second).
Started in 2010, this ranking is the first large-scale successful attempt to move
from performance to real productive capability measurement.

The Green Graph 500 rating [7] in relation to the rating Graph 500 is anal-
ogous to the list Green500 in relation to the Top500 rating, where performance
divided by consumed energy is calculated, according to result of a supercom-
puter system in the Graph500 rating. Thus, the metric for rating Green Graph
500 is the TEPS/W ratio.

2.3 Regional HPC Rankings

Top50 supercomputer list of Russia and CIS [8] is a ranking of the 50 most
powerful computing systems located on the territory of Russia and CIS countries.
Performance is estimated using the HPL benchmark in accordance with the rules
established in the Top500 rating.
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List of Top Supercomputers-India [9] is a ranking of the most powerful high-
performance systems in India. Performance value in this list is also made in
accordance with the requirements of the Top500 list and measured via the HPL
benchmark.

The Irish Supercomputer List [10] is a list of the supercomputers in Ireland
with the highest performance. Performance of participating systems is measured
using the HPL benchmark.

2.4 Regional HPC Rankings

As hardware capabilities of supercomputers and task scales grow rapidly, ques-
tion of resource utilization is a hot topic. There are tons of conferences, discus-
sions and publications on performance measurements and benchmarking. Let us
highlight just several ideas that deal with HPC rankings.

– FLOPS of HPL at present are very much like Horse Power for the automobiles:
nice for the marketing, but hardly represent real productivity. Though, the
metric is and will be supported in close future because of rich historical HPC
roadmap already covered.

– New rankings appear based on alternative benchmarks that more and more
face productivity instead of performance as Top500 built on HPL no longer
represents real-life computing for most applications.

– Global HPC rankings are very inert, but still have to renew engine one per
7–8 years with evolution of hardware design principles and new hot topics
rising.

– Most lists try to avoid abundant data in supercomputer system description,
especially global rankings.

– Regional, local rankings have rather low refreshment rate, usually no more
than 10–20%. So systems in such rankings have a much longer lifetime, what
is often close to the systems usual lifetime (7–10 years).

This information is valuable for us as it illustrates quite a difference in global
and regional rankings [11–13]:

– Global rankings are up to the whole world scale trends exposure, but they do
illustrate the top of the iceberg only.

– Local rankings are much closer to the real situation in HPC of a local area,
as a significantly bigger part of all in-service systems is in the list.

Consequently, updating the engine of a local rating to support variety of
metrics would potentially be close to an encyclopedia of real HPC capabilities
of the specified geographical region, application area or computing pattern.

3 Implementation Basis

3.1 Disadvantages of Current Models for Describing Computer
Systems

Speaking about presented information about supercomputer systems, the
Top500 rating is one of the most detailed ratings, while, but even this rating
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does not reflect all the features of participating systems [14]. For instance, it does
not provide a description of heterogeneous systems which incorporate groups of
nodes of various types. Besides, coprocessors and accelerators are not separated
and its description is not detailed enough (the total quantity and model of GPU
or coprocessor unit are only given). Finally, there is no information about a
topology of a system, its data storage system and its other additional character-
istics. Descriptions of systems, represented in the Green500 and the Graph500
ratings, contain the same or less information, so the same can be said about
them. The Top Supercomputers-India rating has a good detailed description of
computation components of systems, however, this information is stored in a
text format, and therefore cannot be structured well, so it becomes practically
unsuitable for computing some statistic data.

The Top50 supercomputers of Russia and CIS rating also gives us a well-
detailed description, and moreover it has more clearly defined structure, when
compared to another regional rating the Indian supercomputer ranking, but
some implementation features like separate models for certain HPC system types
(clusters, SMPs, etc.) together with fixed hardware option descriptors doesn’t
allow using the ranking engine without plenty of temporary bug-fixing add-ons.

Based on analysis of information on participating systems, it can be assumed
that the Top500 rating uses the only one entity to describe all the attributes
of represented systems, or there is a main entity, which covers the majority
of characteristics of given systems, and a number of small dictionary entities
(countries, regions, processor series, etc.) which are connected to the main entity
via the foreign key. The same can be said about the rest of ratings presented in
this review.

Anyway, in these models, a set of properties of the described systems is
strictly held, so it leads to incomplete description in case of appearance of sys-
tems with new types of components or makes it necessary to review and adjust
model regularly for making it able to store new kind of information.

To sum up one can see a variety of supercomputer ratings and the diversity
of information being represented in them. Systems are described with different
levels of detail and in different formats. At the moment, there is no universal
model, which can contain all the features being used in these ratings and have
a possibility to extend the set of stored characteristics introducing new com-
ponents and new peculiarities of supercomputer systems. This lack of such a
model problem arises as often, as new features in HPC system design appear.
The proposed model of describing computing systems is aimed at solving such
a problem.

3.2 Proposed Method for Describing Supercomputer Systems

When building of the supercomputer model a computational node was sepa-
rated as the main component and the basic element of description. This choice
was made due to the fact that a compute node can be logically isolated in
any computing device, as the component which is responsible for computation
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(in the trivial case, the device is represented as a single compute node, coinciding
with this device itself).

A computer consists of a number of node groups with different types; nodes
within the same group are considered to be the same in architecture. Each node
can contain a number of components of various types (processors, co-processors,
accelerators, etc.) and have several attributes (including, for example, RAM
or HDD storage). Each component, in turn, has its own set of attributes and,
generally speaking, may contain other components.

The computer itself can also have a list of attributes, which are applicable
for a whole computing machine like operating system, etc.

This model is abstract enough to store all sorts of information and requires
the following key entities:

– Object. An Object represents a component. Objects can be linked with other
components via links of the type “contains”. Computing node and a computer
itself are objects.

– Attribute. An Attribute represents a characteristic of each computer and its
components. Values of attributes are specified for objects they belong to.

Via these entities we can obtain unification of representation of systems com-
ponents and its properties and achieve the requirement of universality and flex-
ibility of the model. For further convenience, the model can be supplemented
with other entities, which are specific for all types of the described systems.

Entities and relationships used in the model are presented in Fig. 1.
The general idea lies in the fact that not every type of element of a sys-

tem needs to be described by a separate entity (or table) an opposite approach
meaning detailed description of each element type would lead to the creation of
enormous number of entities and that would cause difficulties when working with
a model. Furthermore, such an approach limits a possible description model by
initially created entities, and for describing new, not pre-specified components
of the system, we will need to re-design the model each time they appear.

Lets illustrate an example of how it would be possible to take advantage of
our approach. For example, in the Top500 rating there is no information about
the system storage of a computer system.

In our proposed model, this information will be easy to add: the storage
system will be presented as a separate device with its own characteristics, i.e., it
will be described as an instance of an existing entity Object and its properties
as instances of Attribute. Likewise, you can describe the memory hierarchy of
supercomputer systems, describing their levels one-by-one.

The developed abstraction of the model will not limit its scope of application
only to the ratings of supercomputers and will provide an opportunity to expand
it to other areas. Via this model, for example, we can describe the character-
istics of mobile devices or embedded systems, using a similar approach to the
description of devices and its components.

It stands to mention the importance of structuring the data, which is adhered
in the model. A structured approach to the description of supercomputer sys-
tems will allow performing deeper analysis of data and identifying trends in
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Fig. 1. Principle design of description for HPC systems [14].

evolution of the supercomputer area, as well as identifying the key factors of
growth of the performance of systems. It is one of the main objectives of the
emergence and existence of the supercomputer rankings. In addition, such struc-
tured descriptions can be used to automate the processing of new applications
for participation in the ranking. Fully automation of this process is unlikely to
be reached, but existence of a clear structure can be suitable for the most basic
checks such as verifying the theoretical performance (Rpeak) of a system, the
correctness of components characteristics, etc.

4 Approach Features

The developed core of the ranking engine is designed with the following topics
in mind as important features of the project results.
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4.1 Vivification of Ranking Data Analysis

In-depth analysis. Support for in-depth analysis that would allow studying
the statistics and history of references. This would allow following short links to
the specific sublists and stats.

In the regular ranking list, almost every part of system description is a link
to the corresponding sublist and statistics (Fig. 2), for example:

– entries of all the vendor systems in the current list,
– systems using specified interconnect,
– systems having specified type of accelerators or processor model,
– systems hosted by the same site,
– and so on.

The link from the displayed HPC system name of its position drives to the
detailed system information page, where more detailed information is provided,
including history of appearing in HPC rankings. By the links from this history
user can proceed to the description of the HPC system that corresponds to the
exact ranking edition. Clicking on system components in detailed HPC system
info mode shows detailed information on the selected component. For example,
for a CPU it is vendor, family, model, number of cores, and frequency. The actual
layout for the pages is under development now and it is planned to be complete
in the close future.

The key idea is to give an answer to the most popular statistical questions
in no more than 3 clicks from the main page.

Stats constructor. A needless part for efficient tool is a clear interface with
a high usability, flexible sublist and stats generator functionality. Besides the
quickly accessed sublists and stats directly from the ranking list, it is quite
important to provide means for an all-round analysis. Not only statistics by a
specified hardware option may be interesting, but their combinations as well. For
example, the average available memory per core is quite an interesting parameter,
and so on.

Speaking of building various statistics and their representation, Top500 list is
ultimately leading as for now. Nevertheless, we plan to built even more flexible
toolkit for the stats, especially keeping in mind possible alternative ranking
engine implementation areas.

Visualization techniques. Speaking of visualization methods it is quite impor-
tant to develop and support optional representation formats in addition to reg-
ular graphs and diagrams. For example, introducing methods of music charts
where changing popularity of popular compositions is marked, can be useful and
illustrative for the list itself.

Figure 2 illustrates the draft of the default main list layout. In the left col-
umn one can see current system position and changes indicators: is it a new or
upgraded system (upgrade sign links to the description of previous system state),
indicator of movement up or down comparing to the previous ranking edition (if
the system position changed, user can see a pop-up message with the details like
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Fig. 2. Draft Top50 list layout with clickable components and extended position info.

previous position and number of positions gained or lost). Many other methods
yet to be studied and implemented.

4.2 AlgoWiki

Extremely perspective and ambitious integration point managing data from the
bases of real-life applications and algorithm implementations.

The idea is quite simple at a first glance. People run a popular algorithm
implementations or an application packages with the specified parameters on
various platforms and the results are stored into a database. This forms the
basis for portability, efficiency and scalability analysis and study of suitability
of this or that HPC system (or its part) for the specific application execution.

The question of all-round formal description of the studied algorithms should
be taken care of at first. From this point of view AlgoWiki [15–17] is a perfect
project to work in cooperation with.

4.3 OctoTron

Every system that participates in the ranking should have a page with full infor-
mation on it available. It should contain full-detailed configuration, history of
positions in popular ranking, benchmarking results, even photos and interesting
facts that can be provided by the system holder or a vendor. Such a description
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would be much wider if we could show not only the configuration itself, but real
topologies of supercomputer components.

In this, we see one of the most noticeable results of the OctoTron project a
formal model of supercomputers that can be built experimentally according to
the real installation peculiarities [18]. Asserted to the data on a specific machine
configuration it would form a complete description of the HPC system design
regarding hardware.

Such aggregated information on system configuration would also be very
useful being available through the systems for the support of any computing
center [19–21], especially for the largest HPC centers [22].

4.4 Mobile Linpack

The proposed implementation principles allow to apply the engine in similar
adjacent areas. For example, it is planned to be tested as an engine for the
Mobile Linpack project [23]. This list implements HPL testing of mobile devices
very much alike Top500 and Top50 does.

5 Conclusion and Future Work

In the conclusion we would like to share our plans for the future. The project
roadmap for now includes following work packages.

– Implementation of the existing engine full functionality by April, 2017 to
meet the upcoming revision of the Top50 list with all existing functionality
of present engine to ensure the operation capabilities of the new engine are
fine.

– Presentation the draft of renewed Top50 rating at the Parallel Computing
Technologies 2017 international conference.

– Establishing a tradition of having a specialized poster or exhibition
section participation with major up to the date list highlights at the key
supercomputing-oriented events in Russia Russian Supercomputing Days and
Parallel Computing Technologies conference series.

– Gathering feedback on obtained announced results and analyzing it with the
following implementation of the analysis results.

– Making full-functioning statistics subsystem operating by summer to have a
full-service engine as a point of discussion by the key European HPC event
ISC2017 International Supercomputing Conference.

– Research on integration with AlgoWiki project.
– Test-driving the developed engine on The Mobile Linpack ranking.
– Russian Supercomputing Days 2017 official introduction of the totally

renewed vivificated Top50 ranking of the most powerful and productive HPC
systems of CIS and Russia.

We hope that our integral approach and the revived Top50 rating engine
will bring fresh breath to the image of HPC ratings and the whole scientific
community will benefit from that both in Russia and abroad.
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Abstract. The paper covers the reconfigurable computer systems based
on high integration field programmable gate arrays (FPGAs) of Xil-
inx Virtex UltraScale+ series, where immersion liquid cooling system
is used for cooling of all electronic components. The original engineering
and technological solutions for thermal interface, cooling liquid, radiators
and the entire reconfigurable computer system are considered. Owing to
these features it is possible to achieve unprecedented layout density, up to
128 FPGAs for a 3U computational module placed into a standard 19′′

computer rack. The paper presents results of prototyping and experimen-
tal verification of energy-efficient computational module with immersion
liquid cooling system. On the base of the new computational module
it is possible to achieve the performance of 1 Pflops in a standard 47U
rack with total power consumption not more than 150 kW. The designed
immersion liquid cooling system has power reserve for already produced
and for next-generation high integration FPGA series, resistance to leaks
and their consequences, and compatibility with traditional water cooling
systems based on industrial chillers.

Keywords: Reconfigurable computer systems · Immersion liquid
cooling system · FPGAs · Liquid cooling · Computational module ·
High-performance computer systems · Real and specific performance ·
Energy efficiency

1 Introduction

One of perspective approaches to achieve high real performance of a computer
system is adaptation of its architecture to a structure of a solving task for cre-
ation of a special-purpose computer device which hardwarily implements all
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computational operations of the information graph of the task with the mini-
mum delays. Here, versatility of solving tasks, i.e. possibility of modification of
the solving task or of its algorithm, is the necessary requirement to the computer
system, the same as its capability of special-purpose application. It is possible to
eliminate these contradictions, combining creation of a special-purpose computer
device with a wide range of solving tasks, within a concept of reconfigurable com-
puter systems (RCS) based on FPGAs that are used as a principal computational
resource [1].

RCS, which contain large FPGA computational fields, are used for implemen-
tation of computationally laborious tasks from various domains of science and
technique, because they have a number of considerable advantages in comparison
with clusterlike multiprocessor computer systems: high real and specific perfor-
mance, high energetic efficiency, etc. So, special-purpose reconfigurable computer
systems such as Janus [2,3] and Janus2, which are used for spin glass calculations
and provide more than 100-time speedup in comparison with commercial cluster
systems. The supercomputer Anton [4], designed on basis of ASIC, speeds up
execution of molecular dynamic tasks in more than 1000 times.

The scientific team of Scientific Research Centre of Supercomputers and Neu-
rocomputers (SRC SC & NC, Taganrog, Russia) designs and produces super-
computerlike RCS. The principal computational resource of these RCS is not
microprocessors, but a set of FPGA chips, united into computational fields by
high speed data transfer channels. Spectrum of designed and produced products
is rather wide: from completely stand-alone small-size reconfigurable accelerators
(computational blocks), desktop or rack computational modules (Rigel, based on
Xilinx Virtex-6, Taygeta, based on Xilinx Virtex-7 FPGAs) to computer systems
which consist of several computer racks, placed in a specially equipped computer
room (RCS-7).

The main distinctive feature of the RCS, produced in SRC SC & NC, is high
board density and high (not less than 90%) filling of FPGA chips, that, as a
result, provide high specific energetic efficiency of such systems [5].

Practical experience of maintenance of large computer complexes based on
RCS proves that air cooling systems have reached their heat limit. Continuous,
at least double increasing of circuit complexity and 1.5-time increasing of the
clock rate of each new family of Xilinx FPGAs lead to considerable growth of
power consumption and also lead to growth of the maximal temperature on chip.
So, for the XC6VLX240T-1FFG1759C FPGAs of a computational module (CM)
Rigel-2 the maximum overheat of FPGAs relative to the indoor temperature of
25 ◦C in an operating mode and with power of 1255 W, consumed by the CM,
is 33.1 ◦C, i.e. the maximum temperature of the FPGA chip of the CM Rigel-2
is 58.1 ◦C. For the XC7VX485T-1FFG1761C FPGAs of the CM Taygeta the
maximum overheat of FPGAs relative to the indoor temperature of 25 ◦C in an
operating mode and with power of 1661 W, consumed by the CM, is 47.9 ◦C,
i.e. the maximum temperature of the FPGA of the CM Taygeta is 72.9 ◦C. If
we take into account that the permissible temperature of FPGA functioning is
65...70 ◦C, then it is evident, that for normal and safe maintenance of the CM
Taygeta it is necessary to have specially cooled air of 15 ◦C in a conditioned rack.
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According to the obtained experimental data, conversion from the FPGA
family Virtex-6 to the next family Virtex-7 leads to growth of the FPGA max-
imum temperature on 11...15 ◦C. Therefore further development of FPGA pro-
duction technologies and conversion to the next FPGA family Virtex Ultra Scale
(about 100 million equivalent gates, power consumption not less than 100 W for
each chip) will lead to growth of FPGA overheat on additional 10...15 ◦C. This
will shift the range of their operating temperature to 80...85 ◦C, which means
that their operating temperature exceeds the permissible range of the FPGA
operating temperature (65...70 ◦C), and hence, this will have negative influence
on their reliability when chips are filled up to 85–95% of available hardware
resource. This circumstance requires a quite different cooling method which pro-
vides keeping of growth rates of the RCS performance for the designed advanced
Xilinx FPGA families: Virtex UltraScale, Virtex UltraScale+, Virtex UltraScale
2, etc.

2 Liquid Cooling for Reconfigurable Computer Systems

Development of computer technologies leads to design of computer technique
which provides higher performance, and hence, more heat. Dissipation of released
heat is provided by a system of electronic element cooling, that transfers heat
from the more heated object (the cooled object) to the less heated one (the
cooling system). If the cooled object is constantly heated, then the temperature
of the cooling system grows and in some period of time will be equal to the
temperature of the cooled object. So, heat transfer stops and the cooled object
will be overheated. The cooling system is protected from overheat with the help
of cooling medium (a heat-transfer agent). Cooling efficiency of the heat-transfer
agent is characterized by heat capacity and heat dissipation. As a rule, heat
transfer is based on principles of heat conduction, that require a physical contact
of the heat-transfer agent with the cooled object, or on principles of convective
heat exchange with the heat-transfer agent, that consists in physical transfer of
the freely circulating heat-transfer agent.

To organize heat transfer to the heat-transfer agent, it is necessary to provide
heat contact between the cooling system and the heat-transfer agent. Various
radiators – facilities for heat dissipation in the heat-transfer agent are used for
this purpose. Radiators are set on the most heated components of computer
systems. To increase efficiency of heat transfer from an electronic component
to a radiator, a heat interface is set between them. The heat interface is a layer
of heat-conducing medium (usually multicomponent) between the cooled surface
and the heat dissipating facility, used for reduction of heat resistance between two
contacting surfaces. Modern processors and FPGAs need cooling facilities with
as low as possible heat resistance, because at present even the most advanced
radiators and heat interfaces cannot provide necessary cooling if an air cooling
system is used.

Till 2013 air cooling systems were used quite successfully for cooling super-
computers. But due to growth of performance and circuit complexity of micro-
processors and FGAs, used as components of supercomputer systems, air cooling
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systems have practically reached their limits for designed advanced supercom-
puters, including hybrid computer systems. Therefore the majority of vendors
of computer technique consider liquid cooling systems as an alternative decision
of the cooling problem. Today liquid cooling systems are the most promising
design area for cooling modern high-loaded electronic components of computer
systems.

A considerable advantage of all liquid cooling systems is heat capacity of
liquids which is better than air capacity (from 1500 to 4000 times), and higher
heat-transfer coefficient (to 100 times growth). To cool one modern FPGA chip,
1 m3 of air or 0.00025 m3 (250 ml) of water per minute is required. Transfer of 250
ml of water requires much less of electric energy, than transfer of 1 m3 of air. Heat
flow, trans-ferred by similar surfaces with traditional velocity of the heat-transfer
agent, is in 70 times more intensive in the case of liquid cooling than in the case
of air cooling. Additional advantage is use of traditional, rather reliable and
cheap components such as pumps, heat exchangers, valves, control devices, etc.
In fact, for corporations and companies, which deal with equipment with high
packing density of components operating at high temperatures, liquid cooling is
the only possible solution of the problem of cooling of modern computer systems.
Additional possibilities to increase liquid cooling efficiency are improvement of
the initial parameters of the heat transfer agent: increasing of velocity, decreasing
of temperature, providing of turbulent flow, increasing of heat capacity, reducing
of viscosity.

Heat transfer agent of liquid cooling systems of computer technique is liq-
uid such as water or any dielectric liquid [6–8]. Heated electronic components
transfer heat to the permanently circulating heat transfer agent liquid, which,
after its cooling in the external heat exchanger, is used again for cooling of
heated electronic components. There are several types of liquid cooling systems.
Closed loop liquid cooling systems have no direct contact between liquid and
electronic components of printed circuit boards. In open loop cooling systems
(liquid immersion cooling systems) electronic components are immersed directly
into the cooling liquid [7]. Each type of liquid cooling systems has its own advan-
tages and disadvantages.

In closed loop liquid cooling systems all heat-generating elements of the
printed circuit board are covered by one or several flat plates with a channel
for liquid pumping. So, for example, cooling of a supercomputer SKIF-Avrora
is based on a principle “one cooling plate for one printed circuit board”. The
plate, of course, had a complex surface relief to provide tight heat contact with
each chip. Cooling of a supercomputer IBM Aquasar is based on a principle
“one cooling plate for one (heated) chip”. In each case the channels of the plates
are united by collectors into a single loop connected to a common radiator (or
another heat exchanger), usually placed outside the computer case and/or rack
or even the computer room. With the help of the pump the heat transfer agent
is pumped through the plates and dissipates heat, generated by the computa-
tional elements, by means of the heat exchanger. In such system it is necessary
to provide access of the heat transfer agent to each heat-generating element
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of the calculator, what means a rather complex “piping system” and a large
number of pressure-tight connections. Besides, if it is necessary to provide main-
tenance of the printed circuit boards without any serious demounting, then the
cooling system must be equipped with special liquid connectors which provide
pressure-tight connections and simple mounting/demounting of the system.

In closed loop liquid cooling systems it is possible to use water or glycol solu-
tions as the heat transfer agent. However, leak of the heat transfer agent can
lead to possible ingress of electrically conducting liquid to unprotected contacts
of printed circuit boards of the cooled computer, and this, in its turn, can be
fatal for both separate electronic components and the whole computer system.
To eliminate failures the whole complex must be stopped, and the power supply
system must be tested and dried up. Control and monitoring systems of such
computers always contain multiple internal humidity and leak sensors. To solve
the leak problem a method, based on negative pressure of liquid in the cool-
ing system, is frequently used. According to this method, water is not pumped
in under pressure, it is pumped out, and this practically excludes leak of liq-
uid. If air-tightness of the cooling systems is damaged, then air ingresses the
system but no leak of liquid happens. Special sensors are used for detection of
leaks, and modular design allows maintenance without stopping of the whole sys-
tem. However, all these capabilities considerably complicate design of hydraulic
system.

Another problem of closed loop liquid cooling systems is a dew point problem.
In the section of data processing the air is in contact with the cooling plates. It
means that if any sections of these plates are too cold and the air in the section
of data processing is warmer and not very dry, then moisture can condense out
of the air on the plates. Consequences of this process are similar to leaks. This
problem can be solved ether by hot water cooling, which is not effective, or
by control and keeping on the necessary level the temperature and humidity
parameters of the air in the section of data processing, which is complicated and
expensive.

The design becomes even more complex, when it is necessary to cool several
components with a water flow proportionally to their heat generation. Besides
branched pipes, it is necessary to use complex control devices (simple T-fittings
and four-way fittings are not enough). An alternative approach is use of an
industrial device with flow control, but in this case the user cannot considerably
change configuration of cooled computational modules.

Advantages of closed loop liquid cooling systems are:

– use water or water solutions as the heat transfer agent which are available,
have perfect thermotechnical properties (heat transfer capacity, heat capacity,
viscosity), simple and comparatively safe maintenance;

– the large number of standard mechanisms, nodes and details for water supply
systems, which can be used;

– great experience of maintenance of water cooling systems in industry.

However, closed loop liquid cooling systems have a number of significant disad-
vantages, which restrict their widespread use:
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– difficulties with detection of the point of water leakage;
– catastrophic consequences that are the result of leakages not detected in time;
– technological problems of leakage elimination (a required power-off of the

whole computer rack, that is not always possible and suitable);
– required support of microclimate in the computer room (a dew point prob-

lem);
– a problem of cooling of all the rest components of the printed circuit board

of the RCS computational module. Even slight modification of the RCS con-
figuration requires a new heat exchanger;

– a problem of galvanic corrosion of aluminum heat exchangers or a problem of
mass and dimensions restrictions for more resistant copper heat exchangers
(aluminum is three times as lighter than copper);

– air removal from the cooling system that is required before starting-up and
adjustment, and during maintenance;

– complex placement of the computational modules in the rack with a large
number of fittings required for plug-in of every computational module;

– necessity of use of a specialized computer rack with significant mass and
dimension characteristics.

In open loop liquid cooling systems the heat transfer agent is the principal
component, a dielectric liquid based, as a rule, on a white mineral oil that pro-
vides much higher heat storage capacity of the heat transfer agent, than the one
of the air in the same volume. According to their design, such system is a bath
filled with the heat transfer liquid (also placed into a computer rack) and which
contains printed circuit boards and servers of computer equipment. The heat,
generated by electronic components, is dissipated by the heat transfer agent that
circulates within the whole bath. Advantages of immersion liquid cooling systems
are simple design and capability of adaptation to changing geometry of printed
circuit boards, simplicity of collectors and liquid connectors, no problems with
control of liquid flows, no dew point problem, high reliability and low cost of the
product.

The main problem of open loop liquid cooling systems is chemical composi-
tion of the used heat transfer liquid which must fulfil strict requirements of heat
transfer capacity, electrical conduction, viscosity, toxicity, fire safety, stability of
the main parameters and reasonable cost of the liquid.

Open loop liquid cooling systems have the following advantages:

– insensibility to leakages and their consequences, capability of operating even
with local leakages of the heat transfer agent;

– insensibility to climate characteristics of the computer room;
– solution of the problem of cooling of all RCS components, because the print-ed

circuit board of the computational module is immersed into the heat transfer
agent;

– capability of modification of the configuration of the printed circuit board of
the computational module without modification of the cooling system;

– simplicity of hydraulic adjustment of the system owing to lack of complex
system of collectors;
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– possibility of use of standard mechanisms, nodes and details, produced for
hydraulic systems of machine industry, and know-how of maintenance of elec-
trical equipment that uses dielectric oils;

– increasing of the total reliability of the liquid cooling system.

Disadvantages of open loop liquid cooling systems are the following:

– necessity of an additional pump and heat exchange equipment for improve-
ment of thermotechnical properties (heat transfer capacity, heat capacity,
viscosity) of the heat transfer agent. Here special dielectric organic liquids
are used as the heat transfer agent;

– necessity of training of maintenance staff and keeping increased safety pre-
cautions for work with the heat transfer agent;

– necessity of more frequent cleaning of the computer room because of high
fluidity of the heat transfer agent, especially in the case of leakage;

– necessity of special equipment for scheduled and emergency maintenance
operations (mounting/demounting of the computational module, load-
ing/unloading of the heat transfer liquid, etc.);

– increasing of the maintenance cost because of necessity of regular change-
out of the heat transfer liquid when its service life is over and necessity of
heat transfer agent management (transporting, receipt, accounting, storing,
distribution, recovery of the heat transfer agent, etc.) in the corporation.

Estimating the given advantages and disadvantages of the two liquid cooling
systems we can note more weighty advantages of open loop cooling systems for
electronic components of computer systems. That is why for RCS computational
modules designed on the base of advanced FPGA families, it is reasonable to use
liquid cooling, particularly immersion of printed circuit boards of computational
modules into the liquid heat transfer agent based on a mineral oil.

At present the technology of liquid cooling of servers and separate computa-
tional modules is developed by many vendors and some of them have achieved
success in this direction. However, these technologies are intended for cooling
computational modules which contain one or two microprocessors. All attempts
of its adaptation to cooling computational modules which contain a large num-
ber of heat generating components (an FPGA field of 8 chips), have proved a
number of shortcomings of liquid cooling of RCS computational modules.

The main disadvantages of existing technologies of immersion liquid cooling
for computational modules which contain FPGA computational fields are:

– poor adaptation of the cooling system for placement into standard computer
racks;

– inefficiency of cooling of electronic component chips with considerable (over
50 W) heat generation;

– the thermal paste between FPGA chips and radiators is washed out during
long-term maintenance;

– the system of cooling liquid circulation inside the module is designed for one
or two chips, but not for an FPGA field, and this fact leads to considerable
thermal gradients;
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– in the proposed systems, designed according to the IMMERS technology, all
cooling liquid is circulating within a closed loop though the chiller, and this
fact leads to some problems;

– necessity of computer complex maintenance stoppage for withdrawal separate
components and devices;

– necessity of use of a power specialized pump and hydraulic equipment adapted
to the cooling liquid;

– a complex system for control of cooling liquid circulation which causes peri-
odic failures;

– high cost of the cooling liquid which is produced by the only one manufacturer.

The presented disadvantages can be considered as an inseparable part of other
existing open loop liquid cooling systems because cooling of RCS computational
modules which contain not less than 8 FPGA chips has some specific features in
comparison with cooling of a single microprocessor. The special feature of the
RCS produced in Scientific Research Centre of Supercomputers and Neurocom-
puters is the number of FPGAs, not less than 6–8 chips on one printed circuit
board and high density of placement. This considerably increases the number of
heat generating components in comparison with microprocessor modules, com-
plicates application of the technology of direct liquid cooling IMMERS along
with other final solutions of immersion systems, and requires additional techni-
cal and design solutions for effective cooling of RCS computational modules.

3 Reconfigurable Computer System Based on XILINX
Ultrascale FPGAS

Since 2013 the scientific team of SRC SC and NC has actively developed the
domain of creation of next-generation RCS on the base of their original liquid
cooling system for printed circuit boards with high density of placement and
the large number of heat generating electronic components. The basis of design
criteria of the computational module (CM) of next-generation RCS with an open
loop liquid cooling system are the following principles:

– the principal configuration of the computer rack is the computational module
with the 3U height and the 19 width and with self-contained circulation of
the cooling liquid;

– one standard 47U computer rack can contain not less than 12 computational
modules with liquid cooling;

– one computational module can contain 12–16 printed circuit boards with
FPGA chips;

– each printed circuit board must contain up to 8 FPGAs with dissipating heat
flow of about 100 W from each FPGA;

– a standard water cooling system, based on industrial chillers, must be used
for cooling the liquid.
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The principal element of modular implementation of an open loop immersion
liquid cooling system for electronic components of computer systems is a recon-
figurable computational module of a new generation (see the design in Fig. 1-a).
The CM of a new generation consists of a computational section, a heat exchange
section, a casing, a pump, a heat exchanger and a fitting. In the casing, which is
the base of the computational section, a hermetic container with dielectric cool-
ing liquid and electronic components with elements that generate heat during
operating, is placed. The electronic components can be as follows: computational
modules (not less than 12–16), control boards, RAM, power supply blocks, stor-
age devices, daughter boards, etc. The computational section is closed with a
cover.

The computational section adjoins to the heat exchange section, which con-
tains a pump and a heat exchanger. The pump provides circulation of the heat
transfer agent in the CM through the closed loop: from the computational mod-
ule the heated heat-transfer agent passes into the heat exchanger and is cooled
there. From the heat exchanger the cooled heat-transfer agent again passes into
the computational module and there cools the heated electronic components.
As a result of heat dissipation the agent becomes heated and again passes into
the heat exchanger, and so on. The heat exchanger is connected to the exter-
nal heat exchange loop via fittings and is intended for cooling the heat-transfer
agent with the help of the secondary cooling liquid. As a heat exchanger it is
possible to use a plate heat exchanger in which the first and the second loops are
separated. So, as the secondary cooling liquid it is possible to use water, cooled
by an industrial chiller. The chiller can be placed outside the server room and
can be connected with the reconfigurable computational modules by means of a
stationary system of engineering services. The design of the computer rack with
placed CMs is shown in Fig. 1-b.

The computational and the heat exchange sections are mechanically inter-
connected into a single reconfigurable computational module. Maintenance of
the reconfigurable computational module requires its connection to the source
of the secondary cooling liquid (by means of valves), to the power supply or to
the hub (by means of electrical connectors).

In the casing of the computer rack the CMs are placed one over another.
Their number is limited by the dimensions of the rack, by technical capabilities
of the computer room and by the engineering services. Each CM of the computer
rack is connected to the source of the secondary cooling liquid with the help of
supply return collectors through fittings (or balanced valves) and flexible pipes;
connection to the power supply and the hub is performed via electric connectors.

Supply of cold secondary cooling liquid and extraction of the heated one into
the stationary system of engineering services connected to the rack, is performed
via fittings (or balanced valves). A set of computer racks placed in one or several
computer rooms forms a computer complex. To maintain the computer complex
it is connected to the source of the secondary cooling liquid, to the power supply,
and to the host computer that controls this computer complex.
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Fig. 1. The design of the computer system based on liquid cooling (a - the design of
the new generation CM, b - the design of the computer rack)

Besides advantages which are typical for open loop liquid cooling systems, the
considered modular implementation of the open loop liquid cooling system for
electronic components of computer systems has a number of additional advan-
tages:

– printed circuit boards of computational modules and reconfigurable compu-
tational modules are identical, relatively stand-alone and interchangeable. If
one of the CMs fails or if technical diagnosis is required, then it is not needed
to disconnect completely the computer rack and to stop execution of a task;

– high placement complexity of FPGAs in the CMs;
– the proposed technical solution allows, if it is necessary, increasing of perfor-

mance of reconfigurable computational modules without significant increasing
of dimensions (a more high-power pump and a heat exchanger can be placed
into the selected dimensions). Growth of the number of printed circuit boards
of the computational modules will slightly increase the dimensions (depth) of
the reconfigurable computational module but the density of placement will
remain unchangeable.

Owing to simplicity of design of the heat exchange section of the reconfigurable
computational module, its reliability grows significantly.

The 19′′ computer rack of the supercomputer (see the design in Fig. 2-a) has
the following technical characteristics:

– a standard 47U computer rack with 12 3U computational modules with liquid
cooling;

– each computational module contains 12 printed circuit boards with the power
of 800 W each;



Reconfigurable Computer Based on Virtex UltraScale+ FPGAs 37

– each printed circuit board contains 8 Kintex UltraScale XCKU095-
1FFVB2104C FPGAs, 95 million equivalent gates (134 400 logic blocks) each;

– the performance of the new generation computational module is 105 TFlops;
– the performance of the computer rack, which contains 12 CMs, is 1 PFlops;
– the power of the computer rack, which contains 12 CMs is 124 kW.

The performance of one computer rack with the liquid cooling system, which
contains 12 CMs with 12 printed circuit boards each, in 6.55 times exceeds the
performance of the similar rack with air cooling CMs Taygeta. Here the perfor-
mance of one CM of a new generation is increased in 8.74 times in comparison
with the CM Taygeta. Such qualitative increasing of the specific performance of
the system is provided by the density of placement, increased more than in three
times owing to original design solutions, and by increasing of the clock rate and
the number of gates in one chip.

For testing technical and technological solutions, and for determination of
expected technical and economical characteristics and service performance of the
designed high-performance reconfigurable computer system with liquid cooling,
we designed a number of models, experimental and technological prototypes.
Figure 2-b shows the technological prototype of a new generation CM. For this
CM new designs of printed circuit boards and computational modules with high
density of placement were created.

The printed circuit board of the advanced computational module contains 8
Virtex UltraScale FPGAs of logic capacity of not less than 100 million equivalent
gates each. The CM computational section contains 12–16 printed circuit boards
of computational modules with the power up to 800 W each. Besides, all boards
are completely immersed into an electrically neutral liquid heat-transfer agent;
the heat exchange section contains pump components and the heat exchanger,
which provide the flow and cooling of the heat-transfer agent. The design height
of the new generation CM is 3U.

For creation of an effective immersion cooling system a dielectric heat-transfer
agent was developed. This heat-transfer agent has the best electric strength, high
heat transfer capacity, the maximum possible heat capacity and low viscosity. On
the base of the transformer oil, a new oil called MD-4.5 with reduced viscosity
was created according to the method of vacuum distillation. The oil MD-4.5
was completely tested in the heat engineering laboratory of SRC SC&NC on
the technological prototype of the computational module with immersion open
loop liquid cooling system (see Fig. 2-b). The performed set of laboratory and
service tests proved reasonability of use of the oil MD-4.5 for cooling of electronic
computer components and of use of low-power pumps for its circulation (due to
its reduced viscosity).

During design of the new generation CMs we have obtained a number of
break-through technical solutions, such as an immersion power supply block for
the voltage of 380 V and a transducer DC/DC 380/12 V, the minimum height
of the CM printed circuit board of 100 mm is provided, an original immersion
control board is designed and produced. For the cooling subsystem of the new
generation CMs we have determined required components of the cooling system
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Fig. 2. The computational module with immersion open loop liquid cooling system (a
- the new generation CM, b - the technological prototype of the new generation CM)

such as an original heat interface, a low-height FPGA radiator of an original
design for convective heat exchange, a pump and a heat exchanger optimal for
the used heat-transfer agent. Besides, we have determined the design of a vol-
ume compensator of the heat-transfer agent and control elements of the cooling
subsystem such as optical level sensors and a flow sensor. The developed imple-
mentations of the cooling system design and circulation of the heat-transfer agent
provide effective solution of the heat dissipation problem from the most heated
components of the CM.

The complex of the developed solutions concerning the immersion liquid cool-
ing system will provide the temperature of the heat-transfer agent not more than
30 ◦C, the power of 91 W for each FPGA (8736 W for the CM) in the operating
mode of the CM. At the same time, the maximum FPGA temperature does not
exceed 55 ◦C. This proves that the designed immersion liquid cooling system
has a reserve and can provide effective cooling for advanced families of Xilinx
FPGAs (UltraScale+, UltraScale 2, etc.).

It is possible to adapt the designed cooling system to heat dissipation from
other devices which contain standard chips or microprocessors, because the CM
control board, which contains a microprocessor Intel Broadwell U from the fam-
ilies Core i3, i5 or i7 along with a loading and control unit and a DC/DC trans-
ducer, is already placed in the module. Adapting the suggested solutions of
immersion liquid cooling system to other devices we must take into account,
that initially it was designed for heat dissipation from a great number of tightly
placed heat generators, which generate heat of about 100 W each FPGA. There-
fore cooling of other devices can require rather small amount of the heat transfer
agent, and we can use CMs with other dimensions. So, the developed immersion
liquid cooling system can be adapted to other devices, which contain electronic
components, after required modification of its design.
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4 Programming Tools of Computer Systems with Tight
Component Arrangement

Due to increasing of the FPGA chips arrangement density in reconfigurable
computer systems, requirements to their software tools grow also, because, as a
rule, the chip capacity of each new Xilinx FPGA family grows twice, and the
number of external pins available to the user for data exchange remains constant
or even decreases. It complicates mapping of computing structures of parallel
programs on to the set of interconnected FPGA chips of the RCS, and increases
requirements to programming tools, particularly to the multichip synthesizer
Fire!Constructor [1], which is being developed in SRC SC & NC. One of the
main tasks of the synthesizer is decomposition of the information graph, which
describes the computational structure of the program, into disjoint subgraphs
with two conditions:

– hypothetical hardware resource of a computational structure described by a
subgraph cannot exceed hardware resource of one FPGA chip;

– the number of hypothetical traced external connections of a fragment of a
computational structure described by a subgraph cannot exceed the number
of user available pins of the FPGA chip in which the fragment is supposed to
be placed.

For existing programming tools [1] we had earlier developed and modified
several methods and algorithms, based on the methods of multilevel partition
scheme and recursive bisection. However, their use, when the ratio of “available
hardware resource”/“FPGA pin” is continuously growing, leads to more and
more limitations. That is why we have developed a new method of hierarchic
graph decomposition for the modern Xilinx families such as Virtex UltraScale,
Virtex UltraScale+ and advanced FPGAs of next generations. The method is
based on a W-like model of multilevel partition scheme and supposes use of
several selection criteria for pairs of merged vertices. Owing to such approach
it is possible to obtain various results of decomposition, using effective heuristic
algorithm - the multilevel scheme of graph partition. Besides, owing the new
W-like model of the multilevel scheme, the suggested method, in some cases,
provides evasion of local deadlock situations, in which the previously developed
algorithm of information graph partition stopped.

Another direction of development of programming tools based on the high-
level language COLAMO is extension of supported architectures of computer
systems. According to practice, majority of real tasks implemented on mod-
ern high-performance computer systems, require both sequential and concurrent
computational fragments, combined in a single computational space for effective
implementation of structural and procedural fragments of calculations [1]. Many
developers assume, that this problem can be solved with the help of hybrid com-
puter systems, which contain computational nodes with different architectures,
connected by channels for data transfer, and which provide implementation of
structural and procedural calculations in the single computational space. Sym-
biosis of nodes with different architecture in one computer system theoretically
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allows increasing of the computer system real performance owing to opportu-
nity of effective implementation of both structural and procedural fragments of
calculations in the nodes with different architecture.

However, for effective programming of hybrid computer systems it is nec-
essary to have language tools which allow description of fragments of calcula-
tions, which use different frequencies, data delay ratios and digital capacities of
processed data. Owing to this, it is possible to scale both fragments and single
circuit cores in both cases when hardware resource is increasing or decreasing,
and, in addition, it is also possible to use data with variable capacity for effective
use of hardware resource of the hybrid computer system. For this it is possible
to use a single parallel-pipeline form of applications [1], which allows automatic
adaptation of applications to the modified architecture or configuration of the
hybrid computer system. Owing to this we can reasonably use resources of nodes
with different architectures during hybrid computer system programming, and
we have a set of necessary tools for quick development of effective resource-
independent scalable parallel applications in a single language space. It simpli-
fies hybrid computer system programming and speeds up development of parallel
applications.

5 Conclusion

Use of air cooling systems for the designed supercomputers has practically
reached its limit because of reduction of cooling effectiveness with growing of
consumed and dissipated power, caused by growth of circuit complexity of micro-
processors and other chips. That is why use of liquid cooling in modern com-
puter systems is a priority direction of cooling systems perfection with wide
perspectives of further development. Liquid cooling of RCS computational mod-
ules which contain not less than 8 FPGAs of high circuit complexity is specific
in comparison with cooling of microprocessors and requires development of a
specialized immersion cooling system. The designed original liquid cooling sys-
tem for a new generation RCS computational module provides high maintenance
characteristics such as the maximum FPGA temperature not more than 55 ◦C
and the temperature of the heat-transfer agent not more than 30 ◦C in the oper-
ating mode. Owing to the obtained breakthrough solutions of the immersion
liquid cooling system it is possible to place not less than 12 CMs of the new
generation with the total performance over 1 PFlops within one 47U computer
rack. Power reserve of the liquid cooling system of the new generation CMs
provides effective cooling of not only existing but of the developed advanced
FPGA families Xilinx UltraScale+ and UltraScale 2. Since FPGAs, as principal
components of reconfigurable supercomputers, provide stable, practically linear
growth of RCS performance, it is possible to get specific performance of RCS,
based on Xilinx Virtex UltraScale+ FPGAs, similar to the one of the world best
cluster supercomputers, and to find new perspectives of design of super-high
performance supercomputers.
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Abstract. At all the stages of the design of new products and scien-
tific research, numerical analysis becomes a key competitive advantage
in contemporary economy. At the same time, the installation of large
supercomputing facilities requires investments that in most cases are
only possible with government support. Therefore, the evaluation of the
influence of supercomputer technology on the national innovation sys-
tem (NIS) and, ultimately, on the development of a country is a topical
problem. We present in this article the results of a two-stage research. In
the first stage, we built a model that relates the latent variables “coun-
try’s development”, “national innovation system”, “investments in super-
computers”, etc., and obtained quantitative estimates of these variables
using the PLS-SEM method and based on data published by the World
Bank, the OECD, the Human Development Index and the TOP500 rank-
ing. Modeling results confirm that investments in supercomputers affect
the NIS and are an essential component of a country’s development.
This is especially important for the BRIC countries. In the second stage,
we investigated the cross-correlation between supercomputing installed
capacity and the number of scientific publications (data were taken from
scimagojr.com). The cross-correlation coefficient for most countries and
scientific areas is close to 1. This finding can be deemed as a confirma-
tion of the significant impact that investments in supercomputers have
on the results of scientific activity. Russia stands out with a rather neg-
ative result, demonstrating a much smaller value of the cross-correlation
coefficient, which indicates a lower effectiveness of investments in super-
computers compared with other countries. A possible explanation of this
fact is the existing structure of the NIS.

Keywords: National inovation system · Country’s development ·
Investments in supercomputers · Number of scientific publications · PLS-
SEM

1 Introduction

Modern economy is increasingly acquiring features of “knowledge economy”,
which is characterized by the transition from mass production to mass customiza-
tion. Focusing on the needs of the individual customer requires a radical shift
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in the processes of design, manufacturing and logistics. Time-to-market should
be reduced. This creates new requirements: rapid development of product with
a high degree of customization in a completely digital form, production close to
the customer, reduction of the cost of information exchange, and improvement
of manufacturing and logistics operations.

Under these circumstances, knowledge is the main driving force of economic
growth, social development and international competitiveness [17]. The under-
standing of this fact has led to the concept of a “National Innovation System”
(NIS), which is defined, in its most general form, as a set of related public
institutions for creation, preservation and dissemination of knowledge, skills and
artifacts [15,23]. This is a system through which the government stimulates the
innovation process and exerts influence on it. Each country’s NIS has its own
specific features and degree of effectiveness [22]. As a result, the state creates a
network of actors (scientific and educational organizations, industry, government
agencies) that act within the framework of a given context, and rely on various
types of communication interfaces [10]. The quality level of NIS is a key factor
in the economic growth and development of a country [15].

Substantially, the emergence of new contemporary business opportunities is
a result of the development of modern information technology (IT). The Inter-
net facilitates communication of participants engaged in the production and
consumption process; corporate systems with different functionalities facilitate
group work; personal applications radically alter the individual work; embed-
ded systems allow to manage complex technological processes; supercomputer
simulations reduce the cost of research and development [27].

These IT system classes are divided not only by functions and applications;
significant differences can be noted in the methods applied to create these sys-
tems. In some cases, the creation of a new IT system is initiated by an IT supplier
or a community of independent developers that carry out the initial investment,
responding to specific functional needs. Some systems are developed by the users
themselves, which invest their own resources. In the case of large supercomputer
facilities, however, starting investments are often so large that they require the
participation of the government.

The establishment of such systems always requires the development of new
technologies and significant financial investments. These systems particularly
attract the attention of society. Nonetheless, the degree of influence of super-
computers on both the NIS development and that of the country as a whole has
not been investigated yet.

Many researchers note that each country has a particular specialization in the
field of scientific research [12,13]. Therefore, the study of the relations between
investments in supercomputers and the fields of national science is also of con-
siderable interest.

This paper presents the results of a two-stage study. In the first stage, we
considered the impact that investments in supercomputers have on the national
innovation system and, ultimately, on the country’s development. We selected
for this study countries whose supercomputer installations are regularly listed in
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the top 500 most powerful systems. The list includes the G7 (Group of Seven)
countries, the BRIC countries and South Korea. To assess the level of a country’s
development and its NIS, we referred to data provided by the World Bank,
the Organization for Economic Cooperation and Development (OECD) and the
Human Development Index (HDI) of the United Nations. Also, a structural
model linking the factors of development and investments was constructed using
the PLS-SEM method.

In the second stage, we investigated the correlation between the performance
of computer systems and the number of scientific publications in different fields.
This allows to identify the areas that are most closely related to supercomputing
in each country, and evaluate investment efficiency.

2 Soft Systems and PLS-SEM Method

There are two main concepts in economics: growth due to an increase in quantita-
tive indicators, and development, i.e. qualitative changes in a country’s social and
economical conditions. The term “development” usually refers to an improve-
ment of people’s living conditions. This improvement is associated, on the one
hand, with the spread of knowledge and technologies and, on the other hand,
with changes in social institutions [25]. According to [19], economic growth and
social development are closely linked to each other. Economic growth encour-
ages people to spend more money, not only on goods and services, but also on
education, medicine, culture and science, thereby contributing to development.
Development, in turn, contributes to further economic growth.

However, it should be noted that the definition of development is not suf-
ficiently clear and does not allow to build a model for its measurement. The
system under consideration (living conditions) refers to a class of so-called soft
systems, which, unlike “hard” systems, do not have a fully defined structure, a
fixed composition of elements and prescribed laws of behavior. There may be
several simultaneous and incomplete notions of soft systems performance as a
consequence of the presence of a social component in them [5]. The national
innovation system also has the properties of soft systems. The measurement
problem regarding NIS will be discussed below.

Key parameters of soft systems cannot be measured directly; their assessment
is possible only through the use of measurable indicators. One of the most widely
used approaches today is the Structural Equation Modeling (SEM) technique.
It is assumed that the matrix X of observed values, which has size n × p (n is
the number of observations, p is the number of variables), can be divided into
independent units, each with an associated latent variable LVj , j = 1, ..., J . Each
unit contains K variables: Xj1, ...,XjK . Latent variables are also often referred
to as constructs or factors. The basic idea is that the observed variables are the
indicators of latent variables (the so-called reflective mode), i.e. they are related
by the equation

Xjk = λ0jk + λjkLVj + εjk, k = 1, ...,K, (1)



Impact of the Investment in Supercomputers 45

or they form a latent variable (the formative mode). Then the corresponding
equation will appear as

LVj = w0j +
∑

k

wjkXjk + εj . (2)

The coefficients λjk are called factor loadings; wjk are weights, εjk and εj are
measurement errors.

There are several types of problems that can be solved by SEM [20]. The
most relevant in the light of the problem of our research is to build a structural
regression allowing for testing the hypothesis of existence of relations among the
latent variables. Mathematically, it can be written as

LVj = β0 +
∑

i→j

βjiLVi + εj , (3)

where εj is an error, βji are path coefficients, i → j indicates summation over
all i except i = j.

Obviously, the power of connection between latent variables can be estimated
by the value of βji. These links and their directions, describing the model struc-
ture, are formulated by the researcher in the form of hypotheses before model
evaluation. The parameters obtained by solving the Eqs. (1)–(3) on the basis
of empirical observations of indicators allow to confirm or reject a hypothesis.
A large number of parameters have been proposed to evaluate the correctness
of the model structure, validity of the latent variables and consistency of their
indicators. The use of these parameters will be discussed below.

Thus, the steps to solve a problem of structural regression are the following:

1. Formulation of hypotheses about the model structure, i.e. about the existence
of latent variables and relations among them.

2. Selection of the indicators of latent variables, data capture.
3. Numerical solution of Eqs. (1)–(3), validation of the model quality.
4. If necessary, modification of the model and return to step 3.
5. Interpretation of the results.

The system of Eqs. (1)–(3) can be solved by the general method of least
squares. Note that this usually imposes restrictions on the minimum size of the
observation matrix, the presence of collinearity among indicators, etc. In recent
years, the partial least squares (PLS) method, which allows to relax considerably
these limitations, is being increasingly used for structural regression.

The PLS method allows the number of indicators to be greater than that of
observations, i.e. p > n. In this case, the minimal number of observations has
only two restrictions [9]. The first, a technical one, is related to the convergence
of the method (for example, a too small sample size can lead to a singular matrix
in calculations). The second limitation is imposed by the statistical interpreta-
tion of the results. As a general rule, the larger the sample is, the narrower
confidence intervals for the values of model parameters will be. Therefore, the
well-known heuristic rule of regression stating that the sample size should be
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10 times greater than the number of independent variables should be applied in
the PLS method to the structural block (i.e. a latent variable; see Eq. (3)) with
the greatest number of incoming links [6]. For a more detailed discussion of this
issue, see in [16]. As for multicollinearity, the correlation of indicators is the key
to developing an effective model, as follows from Eq. (2).

The method of solving the problem of structural regression using partial least
squares is called PLS-SEM, and is widely used today for the empirical verification
of theories in economics, management, sociology, psychology and other sciences
concerned with the study of soft systems.

3 Model of the Impact Exerted by Investments in
Supercomputers on a Country’s Development

In accordance with the procedure formulated above, the latent variables and the
relations among them must be defined first.

Since the purpose of this work is to research the investment influence on the
level of a country’s development, these two factors must be included in the list
of latent model variables, although the relation between them is not straight but
is established by means of various mediators.

Let latent variable DEV denote the level of a country’s development. To
identify differences in levels of development, three groups of statistical indicators
(economic, demographic and quality of life) are used in economic research. The
first group of parameters is generally related to economic indicators such as gross
domestic product (GDP) and gross national income (GNI). To take into account
the country’s size, it is necessary to consider these figures as either per worker
or per capita. GDP per capita would be a more correct indicator for our study
purposes, since it evaluates the economic development on a territorial rather
than national basis, as the GNI does. The level of goods and service exports is
also an important economic indicator. It allows to make conclusions not only
about the degree of development of the national economy, but also about the
country’s involvement in the global system of labor division.

Life expectancy, population growth rate, the proportion of economically
active population, and so on, are considered as demographic indicators. The
group of life quality indicators includes factors measuring the provision of social
benefits (number of patients per doctor, literacy, energy consumption per capita,
etc.), the level of consumption (e.g., the number of cars per 1000 inhabitants),
and safety (e.g., the number of registered crimes).

Recently, a new integral indicator, Human Development Index (HDI), has
been introduced. It takes into account the physical condition of people, average
life expectancy, educational attainment and real income per capita. The max-
imum value of this index is 1. It should be noted that human capital plays a
key role in the processes of economic development. Lack of human capital or its
poor quality does not allow the country to create a competitive technological
structure of the economy [14].
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All these indicators, namely GDP per capita, volume of exports and human
development index, can be used to estimate the latent variable DEV .

An important factor in a country’s development is the sectoral structure of
its economy, i.e. the ratio of the primary (agriculture), the secondary (indus-
try) and the tertiary (service) sectors. It defines the sources of GDP/GNI and
the employment structure of the economically active population. Most modern
researchers [3,7] suppose that the development of a country is directly related
to innovation and a growing role of services in the national economy. The role
of the primary sector (agriculture) becomes less visible, labor productivity in
this sector becomes so high that a small number of employees are able to sat-
isfy the country’s entire domestic and export needs. The role of industry in the
development still remains high, although reduced due to the grow of the service
sector.

It follows from this discussion that it is necessary to introduce into the struc-
tural model various latent variables: SRV—development of domestic services,
IND—development of national industry, and AGR—development of national
agriculture. These latent variables can be measured by quantitative indicators
of volume, value added, exports in the sector, etc. To describe their relation with
the variable DEV , we propose the following hypotheses:

H1: Service sector development has a positive effect on the country’s devel-
opment.

H2: Industrial development has a positive effect on the development of the
country.

H3: The development of agriculture has no effect on the development of the
country.

As already noted, the national innovation system (NIS) specifies an individual
state’s ability to adapt to new economic conditions. These innovations are the
foundation for the development of all the sectors. Therefore, it is necessary to
add in the model the latent variable NIS , which evaluates the development of
the national innovation system. The following hypotheses describe its relations
with other latent variables:

H4: The development of the national innovation system has a positive effect
on the development of services.

H5: The development of the national innovation system has a positive effect
on the development of industry.

H6: The development of the national innovation system has a positive effect
on the development of agriculture.

NIS is also a weakly formalized variable, which can be measured only by
means of indirect indicators [2,8,18]. Creating innovations requires more than
funding of R&D. Innovations in sectors such as services depend more on intan-
gible investments in the form of costs of market research, testing, etc. Therefore,
the development level of the national innovation system is more often measured
by the number of applications for patents and trademarks issued in the country
[1], considering applications submitted by both residents and non-residents. This
indirectly measures the flows of knowledge between countries [4].
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However, research and development are the most important innovation fac-
tors; therefore, it is necessary to add in the model the latent variable RND ,
which evaluates research activities in the country. This variable can be mea-
sured by the overall national R&D spending, the number of articles in scientific
and technical journals, etc. Evidently, it is positively associated with the NIS
variable. Therefore, we can suggest the following hypothesis:

H7: The volume of research and development in a country has a positive
effect on the national innovation system.

Let us introduce yet another latent variable, namely the national investment
in supercomputer infrastructure, which we denote by HPC . This variable assesses
the technical provision of both research and development, as well as the national
innovation system in general, since supercomputing is widely applied in the
operating activities of companies (for instance, in the analysis of large data sets
and modeling of products). Thus, we assume that the place of the variable in
the model is described by the following hypothesis:

H8: The volume of investments in supercomputers has a positive effect on
the national innovation system.

The measurement of this variable is possible by means of indicators published
in the ranking of the 500 most powerful supercomputers in the world (TOP500).
Typically, systems that are included in this rating are created with the partici-
pation of the state, hence this indicators can serve as an indirect measurement
of public spending.

The resulting structural model of the investigated system is shown in Fig. 1.

Fig. 1. Preliminary model of the system

4 Empirical Data and Results of PLS-SEM Modeling

To verify the model, we used empirical data on countries whose supercomput-
ing systems have been constantly included in the TOP500 list during 10 years,
namely from 2005 to 2014. A total of 12 countries was selected:

– G7 Countries: Canada, France, Germany, Italy, Japan, United Kingdom and
United States;
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– BRIC countries: Brazil, Russia, India and China;
– South Korea.

We collected data covering a 10-year period (2005–2014), making a total of
120 observations. We used as data sources the World Bank Open Data1 (data-
bases: WDI—World Development Indicators, and GEM—Global Economic Mon-
itor), the Organization for Economic Cooperation and Development2 (OECD),
the Human Development Index3 (HDI) and the TOP500 list4. A total of 87
different indicators was examined. After removing variables with a low level of
relevance, the measurement model for each latent variable was constructed with
the three indicators listed in Table 1.

Figure 2 shows the results of calculations (using the plspm software pack-
age [21]). The circles represent latent variables; the rectangles represent their
indicators. The numbers near the arrows connecting the elements of the model
correspond to the calculated values of the coefficients λjk and βii.

Fig. 2. Validated model

It can be noted that the hypothesis H3 about nonsignificant influence of the
agriculture sector on the country’s development was confirmed. Based on the
set of empirical data described above, no statistically significant assessment of
the relation between DEV and AGR could be obtained, and herein the AGR
variable is excluded from the model. Hypothesis H6 is not confirmed on the
obtained data.

1 http://data.worldbank.org.
2 http://data.oecd.org.
3 http://hdr.yndp.org.
4 http://www.top500.org.

http://data.worldbank.org
http://data.oecd.org
http://hdr.yndp.org
http://www.top500.org
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Table 1. Latent variables and their indicators

Variable/Indicator Description Data source

DEV Country’s Development

DEV 01 GDP per worker in US dollars at the exchange
rate of 2011

WDI

DEV 02 Human development index HDI

DEV 03 Exports in US dollars at the exchange rate of 2005 WDI

IND The development of industry

IND01 Exports of goods in US dollars at current prices WDI

IND02 Exports of high-tech products in US dollars at
current prices

WDI

IND03 Industrial production in constant US dollars GEM

SRV The development of services

SRV 01 Sales of intellectual property rights in US dollars
at current prices

WDI

SRV 02 Exports of services in the US dollar at current
prices

WDI

SRV 03 Added value in US dollars at the rate of 2005 WDI

NIS The development of a national innovation system

NIS01 Patent applications, residents WDI

NIS02 Applications for registration of trademarks,
non-residents

WDI

NIS03 Applications for registration of trademarks,
residents

WDI

RND The development of a national R&D

RND01 Patent applications, non-residents WDI

RND02 The number of articles in scientific and technical
journals

WDI

RND03 Domestic expenditure on R&D in US dollars at
current prices

OECD

HPC Investments in supercomputers

HPC01 The total reached performance (RMax) of all
country’s systems included in the TOP500,
GFLOPS

TOP500

HPC02 The number of CPU cores of all country’s systems
included in the TOP500

TOP500

HPC03 Potential peak performance (RPeak) of all
country’s systems included in the rating TOP500,
GFLOPS

TOP500
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To check the quality of the model, firstly, it is necessary to assess the internal
consistency of the set of indicators describing the same latent variable. Typi-
cally, such assessment uses Cronbach’s α. This coefficient can have values in the
interval [−∞, 1]; acceptable values are α ≥ 0.7; negative values cannot be inter-
preted. The values of Cronbach’s α are shown in Table 2, containing also the
values of Dillon–Goldstein’s ρ, which is considered as a more reliable indicator
of consistency [21]. Values of ρ ≥ 0.7 are also admitted. Table 2 lists the aver-
age variance of the latent variable explained by its indicators (AVE—Average
Variance Extracted).

Table 2. Model parameters

Variable Cronbach’s α Dillon–Goldstein’s ρ AVE R2

DEV 0.750 0.936 0.597 0.697

SRV 0.947 0.951 0.905 0.069

IND 0.941 0.941 0.894 0.750

NIS 0.922 0.928 0.865 0.447

RND 0.961 0.965 0.927 NA

HPC 0.989 0.995 0.979 NA

The values of the factor loadings λjk also provide significant information
about the model quality; this is a measure of the correlation between an indicator
and the corresponding latent variable. A suitable value λjk ≥ 0.7 means that at
least 50% of the indicator variation (0.72 = 0.49) is determined by the latent
variable. The values of λjk are shown in Fig. 2. It is easy to see that the above
requirement is satisfied.

In addition, it is necessary to be sure that the relation of an indicator with its
“own” latent variable is stronger than that with “foreign” ones. This is done by
comparing the cross-loadings, i.e. the correlation coefficients between indicators
and latent variables. This condition is also satisfied.

The p-values of the model parameters (shown in Fig. 2) and the determination
coefficients R2 of the latent variables (see Table 2) are other parameters allowing
for an assessment of the model quality. All these parameters have acceptable
values confirming the quality of the model.

The results shown in Fig. 2 can be interpreted as follows. On the basis of
a sample of mixed data on developed (G7) and emerging (BRIC) countries, it
can be seen that in current conditions the service sector is already ahead of the
industrial one regarding contribution to the development of the country. How-
ever, the national innovation system is more significant for the industrial sector.
The role played by public investment in supercomputers in the development of
the national innovation system is insignificant (note also that path coefficient
βji from HPC to NIS has a relatively high p-value).

The G7 and BRIC groups show wide variations in economy structure. The G7
states are more uniform (although it has been noted in [24] that the European
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countries show a lower potential for innovation than the United States), whereas
the BRIC countries are much more varied. To investigate these assumptions,
we considered these groups of countries separately. The results are presented
in Figs. 3 and 4. All the model parameters meet the requirements of quality
indicated above.

Fig. 3. Model for G7 countries

Fig. 4. Model for BRIC countries

The influence of the variables SRV , IND , NIS , RND , HPC on DEV can
be estimated using the so-called total effect, which is calculated as the sum of
multiplied path coefficients over all the possible paths between exogenous and
endogenous variables. These data for two separate models (G7 and BRICS) are
shown in Table 3.

A comparative analysis of the results obtained for the two groups of countries
leads to the following conclusions. Firstly, the development of the group G7 relies
much more on the service sector, whose impact on the country’s development is
almost equal to that of the industrial sector. In the BRIC countries, the service
sector is underdeveloped, its impact on the development is inferior to that of the
industrial sector by more than an order of magnitude. This finding is consistent
with data available on the economy structure for these two groups of states.
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Table 3. The total effect on the variable DEV

Variable G7 BRIC

SRV 0.466 0.069

IND 0.487 0.911

NIS 0.804 0.964

RND 0.724 0.722

HPC 0.047 0.302

Secondly, the national innovation system is important for both groups of
countries, its contribution is the same in both the service sector and the industrial
sector in the two groups. Note also that, according to the model, the national
innovation system is the most important factor in the country’s development in
both groups.

Thirdly, the national innovation system in the BRIC countries is much more
dependent on supercomputing. Perhaps the following explanation can be pro-
posed for this phenomenon. Developed countries (group G7) have reached the
required level of saturation with supercomputers; for these states, an invest-
ment in the development of other elements of the NIS is much more important
(for example, in the creation of experimental facilities, in training talents, pro-
moting theoretical research). The BRIC countries have the so-called catching-
up economical systems; their technological progress is largely based on copying
the achievements of developed countries. Therefore, their share of costs in new
breakthrough ideas is relatively small. An important role is played by the costs of
reproduction of already-known innovative actions. It should be noted, however,
that the confirmation of this assumption requires further research.

5 The Impact of Investments in Supercomputers on
Scientific Specialization

As already mentioned, comparative studies of scientific publications [12,13] show
that each country has a certain scientific specialization. In this regard, one may
ask in which areas of research the investments in supercomputers are most effec-
tive, and whether a national distinction of these relations exists. These relations
can be rated by means of the cross-correlation coefficient between two time-series
representing the number of scientific publications and the total performance
(RMax ) achieved by supercomputer systems included in the TOP500 rating.

At the same time, we should take into account two considerations. First, the
preparation of a scientific publication takes a long time, suppose that in average
it is two years. Assume that one year is spent on research, and the second year,
on the publication of results. Second, the need for computing power in most
scientific areas grows according to a law close to exponential. Therefore, we will
investigate the cross-correlation between two time-series [Pi] and [Li−2], where
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Pi is the number of publications in the i-th year, and Li−2 = ln (Rmax i−2) is
the natural logarithm of the total installed computer power two years before.

Scimago Journal & Country Rank5 data were used as a source of data on
scientific publications. Data on the number of publications in the 12 countries
selected above for the period 2005–2014 were grouped into six categories accord-
ing to information on the structure of science6:

– Economics, management, finance, and social sciences (EMFS). In this area,
supercomputers are most often used in calculations associated with forecast-
ing of financial markets and social systems modeling.

– Computer Science and Mathematics (CSM). In this area, publications on
supercomputing are dedicated to the development of hardware and software
architectures, as well as problem-solving methods and algorithms.

– Engineering (ENG). In this direction, supercomputers are used in the design
of new products.

– Physics, chemistry, energy and material science (PCEM). In this area, super-
computers are used to study the properties of matter and the creation of new
materials in particular.

– Earth and Planets Science (EPS). In this area, problems of geodynamics and
astrodynamics are solved with the help of supercomputers.

– Genetics, molecular biology and pharmacology (GMBP). In this area, super-
computers are used to develop new drugs, study genomes and other aspects
of living systems.

The values of the cross-correlation coefficient between the time series repre-
senting the number of scientific publications (for the years 2005–2014) and the
natural logarithm of RMax (for the years 2003–2012) are presented in Table 4.

From data in Table 4, we can make the following conclusions. The cross-
correlation coefficient between the number of scientific publications and the
performance of supercomputers has a value close to 1 for almost all countries
and scientific disciplines. One of the exceptions concerns the publications in the
“Engineering” area in developed countries (USA, Japan). Probably, this suggests
that the use of supercomputers to create new products (in the case of Japan, it
includes the study of new materials) in these countries is not a subject of sci-
entific publications, but a routine technological process. At the same time, the
number of publications in Brazil, China and Korea in this area has the greatest
cross-correlation with supercomputer performance. In most developed countries
(USA, UK), the “Genetics, Molecular Biology and Pharmacology” area has the
greatest cross-correlation with supercomputer performance.

It is worth noting that these results are consistent with the priority areas
of science in different groups of countries [11]. One group consists of the states
where the structure of spending on science is determined by taxpayers, hence
the reason that there is an interest in areas related to medicine and life science.
In the second group, which is formed by developing countries, the demand for
5 http://scimagojr.com.
6 http://scimagojr.com/shapeofscience.

http://scimagojr.com
http://scimagojr.com/shapeofscience
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Table 4. Coefficients of cross-correlation between the number of scientific publications
and supercomputing capacity for various countries

Country All subjects EMFS CSM ENG PCEM EPS GMBP

USA 0.967 0.950 0.936 −0.331 0.947 0.976 0.977

UK 0.987 0.973 0.965 0.783 0.962 0.971 0.974

Germany 0.983 0.988 0.981 0.853 0.954 0.959 0.964

Japan 0.608 0.958 0.693 −0.844 −0.869 0.958 0.931

France 0.994 0.989 0.979 0.975 0.939 0.986 0.985

Canada 0.973 0.960 0.741 0.491 0.920 0.979 0.973

Italy 0.987 0.990 0.979 0.977 0.965 0.979 0.972

China 0.992 0.766 0.795 0.990 0.977 0.981 0.967

India 0.907 0.934 0.911 0.895 0.929 0.925 0.890

Russia 0.629 0.628 0.614 0.275 0.463 0.802 0.710

Brazil 0.944 0.942 0.950 0.950 0.934 0.947 0.944

Korea 0.946 0.928 0.881 0.952 0.931 0.922 0.940

research is based on the priorities of industrial development. The data obtained
are also consistent with the results of structural modeling presented in Sect. 4.
The industrial sector has the prevailing role in the BRIC countries, while the
service sector is very important in the G7 countries.

It should be noted that Russia stands out, with relatively small values of
the cross-correlation in all scientific areas. Obviously, this fact shows that public
investment in supercomputing capacity, which is mostly readdressed to univer-
sities, has not exerted the expected effect in stimulating science. At the same
time, it is impossible to talk of an insufficient volume of investments, as in terms
of RMax Russia is surely among the top ten TOP500 leaders, despite holding
only the 14–15th place in the rating by total number of scientific publications
(according to scimagojr.com data). Perhaps the features of the national innova-
tion system play the most important role in this disparity. In the case of Russia,
these are: resource constraints, low levels of scientific capacity on the part of
industry, problems of communication between science and industry, and the
availability of competitive foreign products [26]. In addition, a detailed analysis
of particular scientific fields (e.g., research in the field of “enterprise informa-
tion systems” [28]) shows that the focus of scientists that publish results in the
Russian language is significantly shifted relative to the priorities of international
science, and published works are of an inferior quality. This is because publica-
tions on the Russian language fall out of the scope of international expertise,
and Russian researchers are isolated from the international scientific community,
which is due to poor knowledge of the English language.

http://www.scimagojr.com
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6 Conclusions

The results presented here demonstrate that investments in supercomputing
technology are an essential element of the national innovation system. In turn,
NIS is a key factor contributing to a country’s development. The impact of
investments in supercomputers that is observed in the BRIC countries is par-
ticularly significant, although the mechanisms of this effect are not completely
clear.

Russia stands out compared with other countries: it has a small cross-
correlation between the achieved performance of supercomputers and the num-
ber of scientific publications, which means that investments in supercomputing
infrastructure are used less efficiently.
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Abstract. A heuristic user job-flow scheduling approach to grid virtual
organizations with non-dedicated resources is discussed in this article.
Users’ and resource providers’ preferences, virtual organization’s inter-
nal policies, resources geographical distribution along with local private
utilization impose specific requirements for efficient scheduling accord-
ing to different, usually contradictive, criteria. The available resources
set and the corresponding decision space decrease as resources utiliza-
tion increases. This introduces further complications into the task of
efficient scheduling. We propose a heuristic anticipation scheduling app-
roach to improve the overall scheduling efficiency. Initially, it generates
a near optimal but infeasible scheduling solution which is then used as a
reference for efficient allocation of resources.

Keywords: Scheduling · Grid · Resources · Utilization · Heuristic · Job
batch · Virtual organization · Anticipation

1 Introduction and Related Works

In distributed environments with non-dedicated resources, such as utility grids,
the computational nodes are usually partly utilized by local high-priority jobs
coming from resource owners. Thus, the resources available for use are repre-
sented with a set of slots, i.e. time intervals during which the individual com-
putational nodes are capable of executing parts of independent users’ parallel
jobs. These slots generally have different start and finish times and present a
difference in performance. The presence of a set of slots deprives the problem
of a coordinated selection of the resources that are necessary to execute the job
flow coming from computational environment users. Resource fragmentation also
results in a decrease of the total computing environment utilization level [1,2].

Two established trends may be outlined among diverse approaches to dis-
tributed computing. The first one is based on the available resources utilization
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and application level scheduling [3]. As a rule, this approach does not imply
any global resource sharing or allocation policy. Another trend is related to the
formation of user’s virtual organizations (VO) and a job flow scheduling [4,5].
In this case, a metascheduler is an intermediate chain between the users, and
local resource management and job batch processing systems.

Uniform rules of resource sharing and consumption, in particular based on
economic models, make it possible to improve the job-flow level scheduling and
resource distribution efficiency. VO policy may offer optimized scheduling to
satisfy both users’ and VO common preferences. The VO scheduling problems
may be formulated as follows: to optimize users’ criteria or utility function for
selected jobs [6,7], to keep resource overall load balance [8,9], to have job run
in strict order or maintain job priorities [10], to optimize overall scheduling
performance by some custom criteria [11,12], and so on.

VO formation and performance largely depends on mutually beneficial col-
laboration between all the related stakeholders. However, users’ preferences and
VO common preferences (owners’ and administrators’ combined) may conflict
with each other. Users are likely to be interested in the fastest possible running
time for their jobs with least possible costs, whereas VO preferences are usually
directed to available resources load balancing or node owners’ profit boosting.
Thus, VO policies in general should respect all members, and the most important
aspect of the rules suggested by VO is their fairness.

A number of works understand fairness as it is defined in the theory of coop-
erative games, such as fair job flow distribution [8], fair quotas [13,14], fair user
jobs prioritization [10], non-monetary distribution [15]. The cyclic scheduling
scheme (CSS) [16] implements a fair scheduling optimization mechanism that
ensures stakeholders interests to some predefined extent.

The downside of a majority of centralized metascheduling approaches is that
they loose their efficiency and optimization features in distributed environments
with a limited resource supply. For example, in [2], a traditional backfilling algo-
rithm provided better scheduling outcome when compared to different optimiza-
tion approaches in resource domain with a minimal performance configuration.
The common root cause is that, in fact, the same scarce set of resources (being
efficient or not) has to be used for a job-flow execution, otherwise some jobs might
hang in the queue. And under such conditions, user jobs priority and ordering
greatly influence the scheduling results. At the same time, application-level bro-
kers are still able to ensure user preferences and optimize the job’s performance
under free-market mechanisms.

A main contribution of this paper is a heuristic CSS-based job-flow schedul-
ing approach that retains optimization features and efficiency even in distributed
computing environments with limited resources. The rest of the paper is orga-
nized as follows. Section 2 presents a general CSS fair scheduling concept. The
proposed heuristic-based scheduling technique is presented in Sect. 3. Section 4
contains a simulation experiment setup and results for the proposed scheduling
approach. Finally, Sect. 5 summarizes the paper.
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2 Cyclic Alternative-Based Fair Scheduling Model
and Limited Resources

Scheduling of a job flow using the CSS is performed in time cycles known as
scheduling intervals, by job batches [16]. The actual scheduling procedure con-
sists of two main steps. The first step involves a search for alternative scenarios of
each job execution or simply alternatives [17]. During the second step, dynamic
programming methods [16] are used to choose an optimal alternatives combina-
tion (one alternative is selected for each job) with respect to the given VO and
user criteria. This combination represents the final schedule based on current
data regarding resources load and possible alternative executions.

An example of a user scheduling criterion may be a minimization of overall
job running time, a minimization of overall running cost, etc. This criterion
describes user’s preferences for that specific job execution, and expresses a type
of additional optimization to perform while searching for alternatives. Alongside
with time (T ) and cost (C) properties, each job execution alternative has a user
utility (U) value: a user evaluation against the scheduling criterion. A common
VO optimization problem may be stated as either minimization or maximization
of one of the properties, having other fixed or limited, or involve a Pareto-optimal
strategy search involving both kinds of properties [4,16,18].

We consider the following relative approach to represent a user utility U . A
job alternative with the minimum (the best) user-defined criterion value Zmin

corresponds to the left interval boundary (U = 0%) of all possible job schedul-
ing outcomes. An alternative with the worst possible criterion value Zmax cor-
responds to the right interval boundary (U = 100%). In the general case, for
each alternative with value Z of the user criterion, U is defined, depending on
its position in the interval [Zmin;Zmax], according to the following formula:

U =
Z − Zmin

Zmax − Zmin
· 100%. (1)

Thus, each alternative gets its utility in relation to the “best” and the “worst”
optimization criterion values that a user could expect according to the job’s
priority. And the more some alternative corresponds to user’s preferences, the
smaller is the value of U . Examples of user utility functions for a job with four
alternatives and a cost minimization criterion are presented in Table 1.

For a fair scheduling model, the second step of the VO optimization problem
could be expressed in the form: C → max, limU (maximize total job-flow exe-
cution cost while respecting user’s preferences to some extent); U → min, limT
(meet user’s best interests while ensuring some acceptable job-flow execution
time), and so on.

The launch of any job requires a co-allocation of a specified number of slots,
in the same manner as in the classic backfilling variation. A single slot is a time
span that can be assigned to run a part of a multiprocessor job. The target is to
scan a list of Ns available slots, and to select a window of m parallel slots with
the length of the required resource reservation time (see Fig. 1). The user job
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Table 1. User utility examples for a job with execution cost minimization

Job execution alternatives Execution cost Utility

First alternative 5 0%

Second alternative 7 20%

Third alternative 11 60%

Fourth alternative 15 100%

Fig. 1. An example of a window allocation procedure

requirements are arranged into a resource request containing a resource reser-
vation time, characteristics of computational nodes (clock speed, RAM amount,
disk space, operating system, etc.), and limitations on the selected window maxi-
mum cost. ALP, AMP and AEP window search algorithms were discussed in [17].

The job batch scheduling requires allocation of a multiple nonintersecting
(in terms of slots) alternatives for each job. Otherwise irresolvable collisions for
resources may occur, if different jobs will share the same time slots. Sequential
alternatives search and resources reservation procedures help to prevent such
scenario. However, in an extreme case, when resources are limited or overutilized,
only at most one alternative execution could be reserved for each job. In this case,
alternatives-based scheduling result will be no different from First Fit resources
allocation procedure [2]. First Fit resource selection algorithms [19] assign any
job to the first set of slots matching the resource request conditions, without any
optimization.

3 Heuristic Anticipation Scheduling

3.1 General Anticipation Scheduling Scheme

In order to address this problem, the following heuristic job batch scheduling
scheme, consisting of three main steps, is proposed.
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1. First, a set of all possible execution alternatives is found for each job, without
considering time slots intersections or any resource reservation. The resulting
intersecting alternatives found for each job reflect a full range of different
job execution possibilities that a user may expect on the current scheduling
interval. It may be noticed that this set is guaranteed to include the best and
the worst alternatives according to any scheduling criterion, including user
and VO criteria.

2. Second, the CSS procedure is performed to select alternatives combination
(one alternative for each job of the batch) optimal according to the VO policy.
The resulting alternatives combination most likely corresponds to an infeasi-
ble scheduling solution, since possible time-slots intersections will cause col-
lisions in the resources allocation stage.
The main idea of this step is that the obtained infeasible solution will provide
some heuristic insights on how each job should be handled during the schedul-
ing. For example, whether time-biased or cost-biased execution is preferred,
how it should correspond to user criterion and VO administration policy, and
so on.

3. Third, a feasible resources allocation is performed by replicating alternatives
selected in step 2. The base for this replication step is an Algorithm searching
for Extreme Performance (AEP) described in details in [17]. In the current
step, AEP helps to find and reserve feasible execution alternatives most sim-
ilar to those selected in the near-optimal infeasible solution.

After these three steps are performed, the resulting solution is both feasible
and efficient, as it reflects a scheduling pattern obtained from a near-optimal
reference solution from step 2.

The following subsections will discuss these scheduling steps in more details.

3.2 Finding a Near Optimal Infeasible Scheduling Solution

CSS results strongly depend on the diversity of alternatives sets obtained for
batch jobs. The task of finding all possible execution alternatives for each job of
the batch may become impractical, since the number of different resources com-
binations may reach C(p,m), where p is the total number of different resource
types available, and m is the number of resources requested by the user. More-
over, if we consider non-dedicated resources, then this task will be additionally
complicated by local resources utilization. In this case, not all the resources
combinations may be available during the scheduling cycle.

However, as we need to find alternatives for an a priori infeasible refer-
ence solution, a reasonable diverse set of possible execution alternatives will do.
An important feature of this set is that it should contain extreme execution
alternatives according to different criteria, e.g. the most expensive, the least
time-consuming alternative, and so on.

Further, this set of possible alternatives may be used to evaluate actual user
job execution against the job execution possibilities according to Eq. (1). We
assume that such a set may represent a fair uniform basis for a user utility
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expectations. This uniform user utility UU may be used to compare different
scheduling algorithms from the user’s point of view.

We used a modification of the AEP to allocate a diverse set of execution
alternatives for each job. Originally, the AEP is able to find only one alternative
execution that satisfies the user resource request and is optimal according to the
user custom criterion. The main idea of the current modification is to save all
intermediate AEP search results to a dedicated list as shown in the following
algorithm description:

Data: slotList — a list of available slots; job — a job for which the search is
performed

Result: alternativesSet — a set of possible alternatives
slotList = orderSystemSlotsByStartTime();
for each slot in slotList do

if not(properHardwareAndSoftware(slot.node)) then
continue;

end
windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime - windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then

minCostWindow = getMinCostWindow(windowSlotList);
maxCostWindow = getMacCostWindow(windowSlotList);
minRuntimeWindow =

getMinRuntimeWindow(windowSlotList);
alternativesSet.add(minCostWindow);
alternativesSet.add(maxCostWindow);
alternativesSet.add(minRuntimeWindow);

end

end
Algorithm 1. AEP modification to allocate a set of possible job execution
alternatives

In this algorithm, an expanded window windowSlotList of size M moves
through a list slotList of all available slots sorted by their start time in ascend-
ing order. At each step, any combination of m slots inside windowSlotList (in
the case when m ≤ M) can form a window that meets all the requirements to
run the job. The main difference from the original AEP algorithm is indicated in
bold. Instead of searching for a single window with a maximum criterion value,
we allocate several windows with extreme criteria values from every instance
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of windowSlotList, and save to alternativesSet. By the end of slotList, alterna-
tivesSet will contain a diverse set of possible job execution alternatives. And
since every possible windowSlotList instance is processed by the AEP, alter-
nativesSet is guaranteed to contain alternatives with extreme criteria values
(maxCost/minCost/minTime), as well as a variety of alternatives with some
intermediate criteria values.

After sets of possible intersecting execution alternatives are allocated for each
job, a CSS scheduling optimization procedure selects an optimal alternatives
combination according to VO and users criteria [16].

3.3 Replication Scheduling and Resources Allocation

The resulting near-optimal scheduling solution in most cases is infeasible, since
the selected alternatives may share the same time slots, thereby causing resource
collisions. However, we suggest to use it as a reference solution, and replicate it
into a feasible resources allocation.

For the purpose of replication, a new Execution Similarity criterion was intro-
duced, which assists AEP in finding a window with minimum distance to a ref-
erence alternative. Generally, we define a distance between two different alterna-
tives (windows) as a relative difference or error between their significant criteria
values. For example, if the reference alternative has total cost Cref, and some
candidate alternative cost is Ccan, then the relative cost error EC is calculated as

EC =
|Cref − Ccan|

Cref
.

If one needs to consider several criteria, then the distance D between two alter-
natives may be calculated as a linear sum of criteria errors,

Dm = EC + ET + .. + EU ,

or as a geometric distance in a parameters space,

Dg =
√

E2
C + E2

T + ... + E2
U .

For a feasible job batch resources allocation, the AEP consequentially allo-
cates for each job a single execution window with a minimum distance to a ref-
erence alternative. Time slots allocated to the i-th job are reserved and excluded
from the slot list when the AEP search algorithm is performed for the follow-
ing jobs i + 1, i + 2, ...N . Thus, this procedure prevents any conflicts between
resources and provides a scheduling solution that in some sense reflects a near-
optimal reference solution.

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows, using a custom distributed environment
simulator [20]. Virtual organization and computing environment properties:
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– The resource pool includes 80 heterogeneous computational nodes.
– The specific cost of a node is an exponential function of its performance value

(base cost) with an added variable margin distributed normally as ±0.6 of
the base cost.

– The scheduling interval length is 800 time quanta. The initial resource load
with owner jobs is distributed hyper-geometrically resulting in 5 to 10% of
time quanta excluded in total.

Job batch properties:

– The number of jobs in a batch is 125.
– The number of nodes needed for a job is a whole number distributed evenly

in [2; 6].
– The node reservation time is a whole number distributed evenly in [100; 500].
– The job budget varies in a way that some of the jobs can pay as much as

160% of the base cost, whereas some may require a discount.
– Every request contains a specification of a custom user criterion, namely one

of the following: job execution runtime or overall execution cost.

During each experiment, a VO domain and a job batch were generated, and
the following scheduling schemes were simulated and studied.

First, a general CSS solved the optimization problems T → min, limU with
different limits Ua ∈ {0%, 1%, 4%, 10%, 16%, 32%, 100%}. Ua stands for the aver-
age user utility for one job, e.g. limUa = 10% means that at average the resulting
deviation from the best possible outcome for each user did not exceed 10%.

Second, a near-optimal but infeasible reference solution REF (see Sect. 3.2)
was obtained for the same problems.

Third, a replication procedure CSS rep was performed based on the CSS
solution to demonstrate the replication process accuracy.

For the heuristic anticipation scheduling ANT , the same replication proce-
dure was performed based on the REF solution.

Finally, two independent job batch scheduling procedures were performed
to find the scheduling solutions most suitable for VO users (USERopt) and VO
administrators (VOopt). USERopt was obtained applying only user criteria to
allocate resources for jobs without taking into account VO preferences. VOopt

was obtained by using one VO optimization criterion (the runtime minimization
T → min in our example) for each job scheduling without taking into account
user preferences.

4.2 Simulation Results

1000 single scheduling experiments were simulated. The average number of alter-
natives found for a job in CSS was 2.6. This result shows that usually a few
alternative executions were found for relatively small jobs, whereas large jobs
usually had at most one possible execution option (remember that according
to the simulation settings the difference between jobs execution time could be
up to 15-fold). At the same time, the REF algorithm at average considered more
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than 100 alternative executions for each job. CSS failed to find any alternative
execution at least for one job of the batch in 209 experiments; ANT did the
same in 155 experiments.

These results show that the simulation settings provided a quite diverse job
batch and, at the same time, a limited set of resources not allowing to execute
all the jobs during every experiment.

Figure 2 shows the average job execution time (VO criterion) in a T →
min, limU optimization problem. Different limits Ua ∈ {0%, 1%, 4%, 10%,
16%, 32%, 100%} specify to what extent user preferences were taken into account.
The two horizontal lines USERopt and VOopt indicate, respectively, the practical
T values when only user or VO administration criteria are optimized.

Fig. 2. Average job execution time in T → min, limU problem

The first thing that attracts our attention in Fig. 2 is that REF provides for
U > 10% a better (smaller) job execution time value than those of VOopt. This
behavior is, nonetheless, expected, as REF generates an infeasible solution and
may use time-slots from more suitable (according to VO preferences) resources
several times for different jobs.

On the other hand, ANT provided a better VO criterion value than CSS for
all U > 0%. The relative advantage reaches 20% when U > 20%.

Interestingly, the ANT algorithm graph gradually changes from the USERopt

value at U = 0% to almost the VOopt value at U = 100% just as the average user
utility limit changes. Therefore, ANT represents a general scheduling approach
allowing to balance between VO stakeholders criteria according to a specified
scenario, including VO or user criteria optimization.

A similar pattern can be observed in Fig. 3, where the C → max, limU
scheduling problem is represented. In this scenario, however, the ANT advantage
over CSS amounts to 10% against the VO criterion.



Heuristic Anticipation Scheduling in Grid with Non-dedicated Resources 67

Fig. 3. Average job execution cost in the C → max, limU problem

The advantage of ANT over CSS can be explained by a scarce set of alter-
natives found for user jobs by the latter algorithm. To compare ANT and CSS
scheduling results against user criteria we used UU uniform user utility metric
(see Sect. 3.2). Figure 4 shows average uniform user utility UU for ANT and CSS
recalculated based on reference alternatives from REF using Eq. 1.

Fig. 4. Uniform user utility value in the T → min, limU problem

As it can be seen from Fig. 4, ANT provides a higher uniform user utility in
each experiment compared with CSS . Even more, ANT generally operates in a
wider range of possible user utilities: from 17% when U = 0% (only user criteria
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are optimized) to 35% when U = 100% (only the VO criterion is optimized).
At the same time, CSS is able to change uniform user utility in the interval
(16%; 26%). Wider UU interval represents greater decision space for ANT which
implies optimization advantage.

It may seem that both algorithms operate in a rather small uniform user
utilities interval and are not efficient enough. However, uniform user utilities are
based on an infeasible set of alternatives and cannot be entirely replicated in
a feasible solution. In Fig. 4, the VOopt and USERopt horizontal lines roughly
represent a feasible interval for uniform user utility values. In this case, ANT
covers more than half of this feasible UU interval.

Finally, Fig. 5 shows the average replication error (or distance) for each job
of the batch provided by replicating a feasible CSS solution for Ua = 30%
(CSS ref30) and infeasible REF solutions with lim Ua = 0% (ANT ) and lim
Ua = 30% (ANT30). In this experiment, we used time and cost errors to calculate
a geometric distance Dg between reference and allocated alternatives. Figure 5
shows that the CSS ref error is practically independent from ordinal job number,
reaching 0.05 (or 5%) for the last job of the batch. Thus, we can conclude that
a feasible solution generally may be replicated with a good accuracy even when
resources are limited.

Completely different results are provided by ANT . Depending on Ua, the
ANT error may reach 0.35 (or 35%) for the last jobs of the batch. Unlike CSS ,
an infeasible REF solution may require, for example, the allocation of the nodes
with the highest possible performance for each job. In this case, the replication
process will not be able to reserve the required amount of high performance
nodes, and the error for the last jobs may increase greatly.

Fig. 5. Average replication error for user jobs
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5 Conclusions and Future Work

In this paper, we have studied the problem of a fair job batch scheduling with a
relatively limited resources supply. The main problem arising is a scarce set of job
execution alternatives, which eliminates the scheduling optimization efficiency.
We proposed an algorithm to obtain a diverse set of possible execution alterna-
tives for each job. This set may be used as a uniform basis for a fair uniform user
utility calculation to rate a scheduling solution. Then we proposed a heuristic
scheduling scheme that generates a near-optimal but infeasible reference solution
and, after that, replicates it to allocate a feasible accessible solution.

A computer simulation was performed to study these algorithms and evalu-
ate their efficiency. The obtained results show that the new heuristic approach
provides flexible and efficient solutions for different fair scheduling scenarios. The
advantage over the general CSS against VO preferences (for example, when min-
imizing the total job batch execution time) reaches 25%. The above-mentioned
replication procedure showed a relatively high accuracy providing less than 5%
error when replicating a batch of 125 user jobs.

Future work will focus on the study of the replication algorithm and its
possible application to fulfill complex user preferences expressed in a resource
request.
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Abstract. The article considers parallel strategies and tactics at differ-
ent stages of mathematical modeling. These technological steps include
geometrical and functional modeling, discretization and approximation,
algebraic solvers and optimization methods for inverse problems, post-
processing and visualization of numerical results, as well as decision-
making systems. Scalable parallelism can be provided by combined
application of MPI tools, multi-thread computing, vectorization, and
the use of graphics accelerators. The general method to achieve high-
performance computing consists in minimizing data communications,
which are the most time and energy consuming. The construction of
efficient parallel algorithms and code optimization is based on various
approaches at different levels of computational schemes. The implemen-
tation of the biggest interdisciplinary direct and inverse problems in
cloud computing technologies is considered. The corresponding applied
software with a long life cycle is represented as integrated environment
oriented to large groups of end users.

Keywords: Scalable parallelism · Domain decomposition · Runtime ·
Communications · Multi-thread computing · Vectorization · Exchange
buffers · Hierarchical memory · Speedup · Accelerators

1 Introduction

The idea of parallelization is very old, and consists in the simultaneous oper-
ation of different hardware units. Modern heterogeneous supercomputer multi-
processor systems (MPS) have a rich architecture: a large net of nodes with dis-
tributed memory, sets of multi-core CPUs with shared hierarchical memory and
very fast registers, and several graphics accelerators (at each node) of GPGPU
or Intel Phi type, with a complicated internal structure. We can, accordingly,
consider four-level hybrid programming tools: Message Passage Interface (MPI
system), multi-thread computing (OpenMP), CUDA system, and vectorization
of machine operations by applying AVX instructions inside the CPU or the Phi
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unit. Moreover, programmers can use different hints for code optimization, taking
into account detailed peculiarities of the memory access. We should emphasize
that the evolution of computer platforms is dramatically fast, and applied soft-
ware must be flexibly adapted to hardware changes in order to provide a long
numerical life cycle of the environment.

Scalable parallelism is a challenging problem when solving interdisciplinary
direct and inverse super-tasks concerned with mathematical modeling (MM),
which now constitute the main tool for obtaining new fundamental knowledge
and optimizing industrial production. One of the main trends of development of
computational and informational technologies (CIT) to study various processes
and phenomena consists in the convergence of MM approaches and CAD-CAE-
CAM applications. Other important feature of the current situation is associated
with a rapid upsurge of new results in theoretical and computational mathemat-
ics. It is well-known that the most “clever” and efficient algorithms are difficult
to parallelize. Thus, the most urgent issue concerning MM support is to strike
the right balance between the mathematical efficiency of an algorithm and the
computer performance of its program implementation.

The bottleneck is programmer’s labor productivity, which lags far behind
the growth rates of supercomputer capacity. Overcoming the world-wide cri-
sis requires a new paradigm of development. The existing long-term practice is
the implementation of applied software packages (ASPs), either commercial or
publicaccess, for concrete classes of problems. Examples of such products are
ANSYS [1] and FeniCS [2]. Developments of other types are program libraries
that implement a totality of algorithms for a certain type of computational
tasks. For instance, Netgen [3] is responsible for mesh generation, PETSc [4]
is a suite of algebraic solvers, and so on. Another versions that are becoming
increasingly popular nowadays are instrumental computational systems Open-
FOAM [5], DUNE (Distributed Unified Numerical Environment) [6] and Basic
System of Modeling (BSM) [7]. Some general issues that arise when creating
a program environment for mathematical modeling are considered in [8]. It is
worth mentioning an interesting project devoted to algorithms and their parallel
implementations: the Open Encyclopedia of Properties of Algorithms [9].

This paper is organized as follows. Section 2 contains the algorithmic descrip-
tion of the main technological stages of mathematical modeling. In Sect. 3, we
discuss specific features of parallel tactics at different steps of a large-scale numer-
ical experiment. In the Conclusions, we make some remarks on parallelization
strategies for cloud computing and Data Center frameworks.

2 Technological Stages of Large-Scale Numerical
Experiments

Regardless of the subject orientation of applied software, a computational exper-
iment goes through similar technological stages. We can implement these steps
almost independently if we define the internal interfaces correctly, in accordance
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with Virt rule: “Program = Algorithms + Data Structure”. Some performance
and intellectuality issues of supercomputer modeling are discussed in [10].

Geometric and functional modeling. At the first stage, the user formulates a
computational task, which may include a description of a complex geometric
configuration consisting of subdomains with different material properties. While
geometric objects and operations have long been assimilated in numerous CAD
products (CAE, CAM, PLM) and graphics systems, functional modeling requires
operating with formalisms such as equations in subdomains, boundary conditions
on border segments, various coefficients, etc.

The formal description of an initial boundary value problem for partial dif-
ferential equations (PDEs) can be presented, for example, as follows:

Lu = f(x , t), x ∈ Ω̄, 0 < t ≤ T < ∞,
lu = g(x , t), x ∈ Γ, u(x , 0) = u0(x ),

L = A
∂

∂t
+ ∇B∇ + C∇ + D, Γ = ΓD ∪ ΓN ,

u
∣
∣
ΓD

= gD, (DNu + AN ∇nu)
∣
∣
ΓN

= gN .

(1)

Here x and t are spatial and time variables, L and � are differential operators, u
is the solution sought (in general, a vector), A,B,C,D are some matrices, and
ΓD, ΓN are border segments with different types of boundary conditions.

In addition to input data, we should specify what we want to obtain and
in which form. Methods to be applied or even detailed computational schemes,
which unambiguously determine the process of mathematical modeling in a con-
crete environment, may also be prescribed. Emphasizing the above aspects, we
have come, in fact, to the automation of the model and algorithm construc-
tion. Some questions on these topics, including geometric and functional data
structures (GDS and FDS), are discussed in [11].

Problem discretization. The solution of non-trivial mathematical equations essen-
tially always begins with constructing a grid. To show the diversity of questions
that arise in this respect, it suffices to mention the most popular types of grids,
such as adaptive, structured, unstructured and quasi-structured, matching, non-
matching and mortar, regular and irregular, static and dynamic, and so on.
Modern real super-tasks require a quite large number of nodes (109 and more).
Important questions on the performance of this stage, as well as a review of
algorithms and numerical software are presented in [12].

The most effective approaches to discretization are associated with suffi-
ciently complex discrete objects and their transformations, including sequences
of hierarchical grids and their local refinement, decomposition of grid domains
into subdomains, dynamic reconfiguration of grids, and an a posteriori and/or
a priori account of the properties of the desired solutions. Although there are
quite a few indicators of the quality of grids, the determination of the optimal
grid remains a very complicated problem, which practical studies do not even
formulate. The most frequently used principle of choice can be reduced to an
empirical approach: the use of distribution densities of mesh nodes according to
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general qualitative considerations. Individual methodological recommendations
relate to particular cases and are mere exceptions to the rule. The global applied-
software market offers both very expensive and free mesh generators, which use
a certain number of mesh data structures (MDSs) recognized by the compu-
tational community. The effective use of this colossal materialized intellectual
potential appears to be a very important task.

Discretization is a technological stage that is important for both resource
intensity as a whole and computational resolution, which largely determines the
success in application of the modeling. This is especially true for problems with
a complex spatial and temporal behavior of the solution, including actual sit-
uations with strong multi-scale characteristics. Therefore, mesh generation is
a highly intelligent methodology; the lack of substantial theoretical and algo-
rithmic results causes us to orient not toward automatic but toward automated
mesh construction accompanied by immediate visualization and participation of
an expert in controlling the computational process.

Approximation of equations. When the previous stages have been executed and
an MDS has been formed, which, together with the geometric and functional
data structures (GDS and FDS), reflects the whole information about the initial
problem at a discrete level, its approximation becomes possible. The result is
a system of finite-dimensional algebraic relations, i.e. an algebraic data struc-
ture (ADS) that can effectively use widespread matrix representations for sparse
algebraic systems. As an example, let us mention the Compressed Sparse Row
format (CSR).

The operations performed in this case are the most science-based and are
represented by diverse theoretical approaches: finite-difference, finite-volume and
finite-element methods (FDM, FVM and FEM); different spectral algorithms;
integral equation methods, etc. The logical complexity of the “approximators”
particularly increases when methods of a high order of accuracy are used, espe-
cially on unstructured grids, formulas for which would eventually extend over
several pages. This circumstance hinders their wide dissemination despite their
significant advantages. A cardinal solution to this situation is the use of artifi-
cial intelligence potentialities, namely the means of automating analytic symbolic
transformations. In principle, such tools are present in large specialized systems
of the Reduce or Maple types, and are successfully used, for example, in the
FEniCS package [2]. In the above cases, the problem is simplified by the FEM-
and FVM-based unique element-by-element technology of independent and eas-
ily parallelized computation of local matrices with the subsequent assembly of a
global matrix. Some general questions of approximation techniques are described
in [13].

Solving algebraic problems. At this stage, various matrix-vector operations are
performed that require the largest computer resources, since the volume of both
arithmetic operations and necessary memory often grows nonlinearly as the num-
ber of degrees of freedom (d.o.f.) of the problem grows. The performed computa-
tions may require implementing recurrent sequences, solving systems of algebraic
equations (linear, SLAEs, and nonlinear, SNAEs), solving eigenvalue problems,
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and optimizing algorithms for mathematical programming. These tasks consti-
tute vast fields of computational algebra, characterized by a colossal diversity
of conceptual approaches, concrete versions of methods, and particular ways
of their application. It is here where the issues of parallelization of algorithms
and their implementation on MPS architectures, particularly on cluster systems
containing heterogeneous nodes with classical and specialized processors, arise.

The international market offers a big amount of algebraic software, which is
continuously updated and expanded, owing to adaptive modifications for new
computer platforms and architectures, and the rapid development of new algo-
rithms. The rapid growth and regular updating create the problem of coordinated
re-use of existing products. Let us note that there are serious achievements in
this area: standard universal data structures and libraries with the basic set of
matrix-vector operations (BLAS, SPARSE BLAS) [14].

The diversity of algebraic methods is associated, first of all, with a vari-
ety of types of considered matrices: Hermitian and non-Hermitian, real and
complex, symmetrical and non-symmetrical, degenerate and non-degenerate,
positive-definite and indefinite, and so on. Matrices of all types are divided into
dense and sparse, and approaches to their processing are significantly different.
Moreover, the choice of optimal algorithms largely depends on structural prop-
erties of matrices (band, triangular, etc.), as well as on their dimension (the
notion of “large” matrices continuously changes depending on the capacity of
the current generation of computers, being in the post-petaflops era 109 to 1012

orders of magnitude). Ill-posed problems with a strong instability of numeri-
cal solutions relative to inherent or computer rounding errors are particularly
complicated.

The most efficient modern algorithms are characterized by high logical com-
plexity: algebraic multigrid approaches, domain decomposition methods, vari-
able ordering optimization, matrix scaling techniques, and so on. We can affirm
that the most resource-intensive algebraic methods also require an active use of
artificial intelligence. The conception of an integrated numerical environment for
computational algebra is presented in [15].

Optimization approaches to solving inverse problems. The solution of direct prob-
lems of mathematical modeling (1), which require to find the desired functions,
given the coefficients of the equations and the initial and boundary conditions,
may have a high computational complexity. But this is usually only a part of
the difficulties associated with the solution of an inverse problem. The latter is
characterized by the fact that some of its initial data depend on unknown para-
meters, which should be found by minimizing the described objective functional
under certain additional restrictions on the problem properties. For example,
when computing technical devices or instruments, the engineer usually aims not
only at studying their properties but also at the computer-aided design of opti-
mal configurations that would ensure the required characteristics. In addition,
almost always there are additional restrictions associated with the size, weight or
other functional conditions. Another characteristic example of an inverse prob-
lem is the identification of the parameters of a mathematical model based on
comparison of estimated results with data from natural measurements.
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The optimization statement of an inverse problem can be written in the form

Φ0(u(x , t,popt)) = min
p

Φ0(u(x , t,p)), p = {pk},

Lu(p) = f , pmin
k ≤ pk ≤ pmax

k , k = 1, ...,m1,
Φl(ū(x , t,p)) ≤ δl, l = 1, ...,m2,

(2)

where Φ0 is the goal functional, p is an unknown vector parameter, pmin
k and pmax

k

define linear constraints, Φ� and δ� are non-linear constraints, and Lu(p) = f
denotes a constitutive equation that is defined, in fact, by the whole direct
problem (1).

The main universal approaches to solving inverse problems rely on the use
of constrained minimization methods, which imply a directed sequential search
for a local or a global minimum and the intermediate values of the objective
functional being computed at each step, which is nothing but the solution of
a direct problem. Consequently, in the general case, the solution of an inverse
problem requires repeated solutions of direct problems.

In recent decades, optimization methods have been actively developed, giv-
ing rise to new trends, such as algorithms of interior points, sequential quadratic
programming and trust regions. Note, however, that the minimization of func-
tionals with complex geometric characteristics, especially those of the ravine
type, is something at the interface between science and art. That is why a fully
automated computational process is possible only in the simplest situations. In
fact, even in this case, highly intelligent technologies are necessary, entailing a
step-by-step implementation of the entire problem in dialogue with the user, who,
based upon his experience, should control the behavior of sequential approxima-
tions and govern the parameters of the algorithms to achieve the ultimate goal
as soon as possible.

Post-processing and visualization of results. Computational process control and
decision-making tools. The results of algebraic computations lack any physical
meaning and obviousness, primarily owing to their large volumes. For example,
the FEM makes it possible to obtain the coefficients of the expansion of the
required solutions with respect to the basic functions used in grid cells, whereas
the user needs a compact and illustrative picture of multidimensional vector
fields. Hence the reason why applied software should have a developed set of
instruments to construct typical representations, such as isosurfaces, force lines,
cross sections, various graphs, and so on. This is the first requirement. The
second one is associated with the fact that one cannot foresee everything, and
an intelligent modeling system should contain the means for automating the
programming of various possible characteristics of final data. Finally, the third
factor is that end users may come from different professions, and all of them
want to obtain a comfortable representation of the results of using a computer,
determining its production effect.

It is important that even ideal applied software does not preclude the fact
that computer-aided modeling of complicated processes or phenomena is a mul-
tifold creative activity. For example, to study some applications systemically,
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one should first make sure that the models and methods applied meet the spec-
ifications; for this, it is necessary, first, to perform test computations and then
to analyze whether the data obtained are adequate. Then it appears possible to
start the study itself, which can be a large-scale machine experiment preceded by
planning and method-selection procedures. The latter are unattainable without
providing for the flexible to compile computational schemes, which implies the
creation of the corresponding languages (declarative or imperative) to control the
computational processes. Finally, modeling is not an end in itself but a tool for
cognitive or production activities, therefore, to ensure the adoption of a decision
with computational results, applied software should contain either some cogni-
tive principles or means for connecting to CAD infrastructures or technologies
that support and optimize the operation regimes of concrete processes. However,
these issues are beyond the frame of mathematical modeling.

3 Scalable Parallelism: Problems and Solutions

Modern mathematical modeling offers a huge set of real applications, models and
numerical methods, as well as an essential diversity of hardware and computing
platforms. This provides a great possibility to choose tactics and strategies for
the optimization of computational processes.

Some general issues of parallelization. A universal requirement on applied soft-
ware is the absence of software restrictions on both the number of d.o.f. of the
problem to be solved and the quantity of processors and/or cores used. At the
same time, it should be recalled that there are important algorithm paralleliza-
tion characteristics such as weak and strong scaling. Weak scaling means that
computation time remains practically the same as the number of d.o.f. and the
number of computing devices grow. Strong scaling means a proportional time
decrease for a fixed problem as the number of computers grows.

Ideally, a solution to the problem of automation and optimization of algo-
rithm parallelization should be sought through simulation of a computer system
as a whole. However, this is too complicated: that is why one has to employ
semi-empirical techniques or the simplest models of computer calculations. Two
values can be mentioned as examples of parallelization characteristics, namely
the coefficients of computational speedup and the processor utilization efficiency:

Sp = T1/Tp, Ep = Sp/P,

where Tp is the time required for the execution of a task or algorithm on P
processors. An ideal situation is that where the value of Sp is directly propor-
tional to P and Ep = 1. In practice, however, we often have to content ourselves
with efficiency factors of only several percent.

Let us note that if the portion of consecutive operations is equal to θ, then
the maximum speedup is defined by Amdahl’s law [16]:

Sp = T1/(θT1 + (1 − θT1))/P = P/[1 + θ(P − 1)].



80 V. Il’in

The development of supercomputer technologies occurs in two main direc-
tions: high-performance computing (HPC) and operations with Big Data. Note
that the convergence of these two trends (intensive data computing) has recently
been observed. On the whole, the evolution of MPS generations and extremum
modeling problems is accompanied by a similar growth of RAM speed and capac-
ity (the number of teraflops or petaflops is quite similar to the number of ter-
abytes or petabytes of the computer).

The main objective of programming parallel algorithms is to minimize the
information exchange, since the total problem time T equals the sum of two
terms:

T = Ta + Tc, Ta = Naτa, Tc = M(τ0 + Ncτc),

where τa and τc are the average times required, respectively, for one arithmetic
operation and for one transfer, Na is the number of arithmetic operations, M
is the number of memory accesses, τ0 is the exchange operation delay (setting)
time, and Nc is the average volume of one transferred array. We should bear in
mind the characteristic relation τ0 � τc � τa. The requirement to reduce data
transfer is explained not only by a need to increase speed, but also by the energy
consumption of communications.

It is evident from all the above that the notion of the quality of algorithms
changes for large tasks: from any two methods being compared, the best is not
the one that requires fewer computations but the one that is executed faster
on MPSs of the type under consideration. In other words, there appears a new
concept of computation optimization based on the search for approaches that
would significantly reduce the volume of data transferred between processors,
even if they increase the number of arithmetic operations.

An important point of interest is the necessity to overcome the uzer mental
inconvenience when we have no supercomputer “within reach”. With modern
cloud technologies, it is sufficient to have Internet access to a computing center
for collective users (CCCU or Data Center). Of course, to intellectualize the user
interface, a workstation should be equipped with specialized means; however, this
is beyond the scope of this paper.

Characteristic features of the parallelization of technological studies. Paralleliza-
tion tactics at each computation stage are determined by the volume of data
and the number of operations. The stage of geometric and functional modeling,
substantial in intellectual loads and crucial for the user input interface, deals
with macro-objects, which should not be too many (tens, hundreds or, at worst,
thousands). Therefore, it seems desirable to manage without exchanges, copying
the computations in all MPI processes and storing in them the geometric and
functional data structures obtained.

The mesh generation may formally be represented as a data transformation:
GDS + FDS → MDS. Note that the mesh data structure for the entire compu-
tational space may have a large volume. For this reason, it is natural to create
an MDS by each MPI process for “its” mesh subdomain (with a certain over-
lapping). The formation of distributed data at the initial stage is reasonable,



On the Parallel Strategies in Mathematical Modeling 81

so much so that the decomposition of domains is the main instrument of paral-
lelization. However, since the estimated mesh domain should also be identified
as an integral object, all its nodes and other elementary objects (edges, faces,
cells) should be numbered twice, namely locally by a subdomain and globally.
Decomposition problems can employ two tactics: subdomain construction, which
precedes mesh generation (for example, it is natural to separate media with
contrasting material properties), or direct formation of mesh subdomains. We
should also bear in mind that many efficient algorithms are based on special re-
arrangements of components (one may speak of such tasks in terms of graphs as
well), and all the respective procedures should be accessible to all MPI processes
or subdomains, which will, on the whole, substantially reduce data exchange.
The popular software packages METIS, parMETIS and other tools for graph
partition are effective re-arrangement instruments (see, for example, the review
in Algowiki [9]).

Moving boundary problems are the most computationally complex, since
they imply that adaptive grids are dynamically reconfigurable as well. Many
efficient methods are based on a local refinement and multigrid approaches,
whose instrumental support should also be distributed.

Upon obtaining the distributed data arrays, mapping onto MDS, GDS and
FDS, one can approximate the original problem in parallel. For this purpose,
FEM and FVM have a unique technology for computing local matrices and
assembling a global matrix. Since the “approximator” works in parallel by sub-
domain or MPI processes, with already distributed necessary data, the obtained
matrix-vector structures must be in their subdomain. Therefore, this stage can be
perfectly implemented without exchanges. The principal operations performed
by the mesh cells independently of each other can be effectively parallelized
using multi-thread computing. In non-stationary problems and also in nonlinear
or optimization computations, approximations are repeated. However, from the
point of view of adaptation to computing devices, this usually changes nothing.

Linear systems are the most important intermediate elements when solv-
ing algebraic problems. Owing to this, we will focus on them. Special attention
should be given to very large SLAEs with sparse matrices, which emerge after
the FEM- or FVM-assisted approximation of differential or respective variational
multi-dimensional problems on unstructured grids. From the point of view of
the classification of algorithms, the SLAEs to be solved can be divided into two
major classes: special and general ones. For the former, which comprise systems
occurring in boundary value problems with separable variables, there are super-
fast direct and/or iterative problem solvers, as the fast Fourier transform or
alternating direction implicit (ADI) methods with optimal sets of iterative para-
meters. These approaches have been in demand over the last decades, because
of practical requirements to solve the actual Lyapunov and Sylvester matrix
equations.

Direct methods for large sparse SLAEs of the general type are actively
improving; however, in the most advanced versions of the popular PARDISO
[14] and MUMPS programs, their applicability is limited, mainly because of their
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requirements on RAM volume. Iterative additive domain decomposition meth-
ods (DDMs) constitute the main tool for a parallel highly productive solution of
SLAEs of this type. DDMs are covered in a considerable body of specialized liter-
ature (see, for example, the review in [17]), and have been discussed at 23 major
international conferences devoted to this topic. The essence of these decomposi-
tion methods consists in dividing a computational mesh domain into subdomains
with parametrized overlapping (in a particular case, without intersections) at
the internal boundaries of which certain interface boundary conditions are set
to determine informational interrelations between neighboring subdomains. In
the simplest case, iterations are formed according to the block Jacobi method,
which leads to solving auxiliary SLAEs in subdomains simultaneously with data
exchange between them. To accelerate this process, optimal algorithms in Krylov
subspaces are primarily used. For further increase in speed, various two- or multi-
level approaches are employed, such as deflation, aggregation, coarse-grid cor-
rection, low-rank matrix approximations, which are implemented in the library
KRYLOV [15]. A systematic analysis of modern approaches in algebraic DDMs is
presented in [18]. As examples of well-known libraries for parallel solving SLAEs,
we can mention PETSc [4] and pARMs [19].

Parallel time integration methods for solving evolution problems are a special
topic of interest. An overview of the exciting and rapidly developing area of
parallel time algorithms is given in [20].

To attain scalable parallelization, hybrid programming technologies are used:
MPI processes are formed over the memory distributed by computational nodes,
one per subdomain, inside which multi-threaded computations are performed
using OpenMP in common memory. Note that a substantial acceleration is
achievable if inter-processor exchanges are matched with synchronous perfor-
mance of arithmetic operations in subdomains. A separate problem is how
to effectively use universal graphics accelerator cards with a great number of
computer cores but relatively slow communications (General Purpose Graphic
Processor Units, GPGPU), as well as Intel Xeon Phi units and advanced Field
Programmable Gate Arrays (FPGAs).

The adaptation of modern decomposition methods to existing computer plat-
forms is, in terms of philosophy and methodology, a problem of mapping algo-
rithms onto the MPS architecture. This basic (in terms of significance) scientific
trend is largely experimental, and only numerous comparisons of real perfor-
mance measurements can be the foundation for elaborating practical recom-
mendations on solving classes of problems.

A special topic of parallelization analysis is that of optimization approaches
to solving inverse problems. Some computational issues of this important area
are described in [21]. Usually, the solution of an inverse problem requires solving
successively a set of direct tasks. In this case, the speedup of parallel computing
does not change. Exceptions must be made for the search for several minima of
the goal functional and the solution of a global minimization problem. In these
cases, we can decompose the domain in the spaces of parameters that should
be determined in the original problem, and find an auxiliary inverse constrained
subproblem independently in each subdomain.
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The post-processing and visualization of computational results is the most
favorable field for parallelization. Despite its apparent mathematical simplicity,
this technological stage is the key to the success of a large modeling project. High-
quality color graphics, especially with dynamic scenarios and regular control of
intermediate data, requires significant computer resources, and in a large-scale
computational experiment, it can take the lion’s share of machine time. Since
one of the main requirements on the quality of visualization is high speed of
image generation, a natural technical solution is the use of a high-speed graphics
processor. An important feature of visualization is that the resultant multi-
dimensional vector fields, which should be graphically presented to the user,
are distributed over hierarchical memory units of various processors. Another
circumstance is related to the presence of a large number of professional graphic
products (Visual Studio, OpenGL, and so on), and one of the main problems for
the developers of a modeling system is their effective re-use.

From the point of view of large-scale parallelization, optimization meth-
ods and computational experimentation control are a superstructure over data-
intensive computing stages, and we can expect no special problems here,
although the decisions made at the upper block level play a significant role
in reaching the final high performance.

4 Conclusions

From the previous analysis of computational models, algorithms and technolo-
gies, we can conclude that the infrastructure of large-scale mathematical model-
ing constitutes a sufficiently large and complicated system. Also, the optimal con-
trol of parallel computing requires a careful analysis of the peculiarities of every
technological stage. Tactics and strategies of scalable parallelism can be different
in terms of both the algorithm and the total task to be solved. We want to make
two more comments. First, creating a high-performance integrated numerical
environment for solving a wide class of applications on heterogeneous supercom-
puters with distributed and hierarchical shared memory is a big management
problem, which can be solved on the base of common component architecture
(CCA) principles (see a discussion in [22]). And second, the implementation of
large mathematical experiments should be actually done in a cloud computing
framework, with the task-flow technologies at Data Center, and here we have
another view to parallelism problems. It is possible to analyze the optimiza-
tion statement for the runtime, the performance or the speedup in terms of one
algorithm, a particular technological stage or a concrete applied mathematical
problem. In a sense, we obtain at different levels various local constrained mini-
mization or global multi-variable minimization problems, and the final strategy
solutions will be different. However, the main objective of this paper has just
been to outline some issues, while the real solutions of these subjects are topics
for a special additional research.
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Abstract. The Big Data phenomenon has spawned large-scale lin-
ear programming problems. In many cases, these problems are non-
stationary. In this paper, we describe a new scalable algorithm called
NSLP for solving high-dimensional, non-stationary linear programming
problems on modern cluster computing systems. The algorithm consists
of two phases: Quest and Targeting. The Quest phase calculates a solu-
tion of the system of inequalities defining the constraint system of the
linear programming problem under the condition of dynamic changes in
input data. To this end, the apparatus of Fejer mappings is used. The
Targeting phase forms a special system of points having the shape of an
n-dimensional axisymmetric cross. The cross moves in the n-dimensional
space in such a way that the solution of the linear programming problem
is located all the time in an ε-vicinity of the central point of the cross.
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1 Introduction

The Big Data phenomenon has spawned large-scale linear programming (LP)
problems [1]. Such problems arise in many different fields. In [2], the following
large-scale industrial optimization problems are presented within the context of
big data:

– schedule crews for 3400 daily flights in 40 countries;
– buy ads in 10–15 local publications across 40 000 zip codes;
– pick one of 742 trillion choices in creating the US National Football League

schedule;
– select 5 offers out of 1000 for each of 25 000 000 customers of an online store;
– place 1000 stock keeping units on dozens of shelves in 2000 stores;
– decide among 200 000 000 maintenance routing options.
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Each of these problems uses Big Data from the subject field. Such a problem is
formalized as a linear programming problem involving up to tens of millions of
constraints and up to hundreds of millions of decision variables.

Gondzio [3] presents a certain class of large-scale optimization problems
arising in quantum information science and related to Bell’s theorem. These
problems are two-level optimization problems. The higher-level problem is a
non-convex non-linear optimization task. It requires solving hundreds of linear
programming problems, each of which can contain millions of constraints and
millions of variables.

Mathematical modeling in economics is another source of large-scale LP
problems. In many cases, LP problems arising in mathematical economy are
non-stationary (dynamic). For example, Sodhi [4] describes a dynamic LP task
for asset-liability management. This task involves 1.7 billion constraints and 5.1
billion variables. Algorithmic trading is another area that generates large-scale
non-stationary linear programming problems [5–7]. In such problems, the num-
ber of variables and inequalities in the constraint system formed by using Big
Data can reach tens and even hundreds of thousands, and the period of input
data change is within the range of hundredths of a second.

Until now, one of the most popular methods for solving LP problems is the
class of algorithms proposed and designed by Dantzig on the basis of the simplex
method [8]. The simplex method has proved to be effective in solving a large class
of LP problems. However, Klee and Minty [9] gave an example showing that the
worst-case complexity of the simplex method is exponential time. Nevertheless,
Khaciyan [10] proved that the LP problem can be solved in polynomial time by
a variant of an iterative ellipsoidal algorithm developed by Shor [11]. Attempts
to apply the ellipsoidal algorithm in practice have been unsuccessful so far. In
most cases, this algorithm demonstrated much worse efficiency than the simplex
method did. Karmarkar [12] proposed the interior-point method, which runs in
polynomial time and is also very efficient in practice.

The simplex method and the interior-point method remain today the main
methods for solving the LP problem. However, these methods may prove inef-
fective in the case of large-scale LP problems with rapidly changing and (or)
incomplete input data. The authors described in [13] a parallel algorithm for
solving LP problems with non-formalized constraints. The main idea of the pro-
posed approach is to combine linear programming and discriminant analysis
methods. Discriminant analysis requires two sets of patterns M and N . The
first set must satisfy the non-formalized constraints, while the second must not.
To obtain representative patterns, methods of data mining [14] and time series
analysis can be used [15]. To overcome the problem of non-stationary input data,
the authors proposed in [16,17] the pursuit algorithm for solving non-stationary
LP problems on cluster computing systems. The pursuit algorithm uses Fejer
mappings (see [18]) to build a pseudo-projection onto a convex bounded set.
The pseudo-projection operator is similar to a projection, but in contrast to the
last, it is stable to dynamic changes in input data. In [19], the authors inves-
tigated the efficiency of using Intel Xeon Phi multi-core processors to calculate
the pseudo-projections.
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In this paper, we describe the new NSLP (Non-Stationary Linear Program-
ming) algorithm for solving large-scale non-stationary LP problems on cluster
computing systems. The NSLP algorithm is more efficient than the pursuit algo-
rithm, since it uses a compute-intensive pseudo-projection operation only once
(the pursuit algorithm computes pseudo-projections K times at each iteration,
K being the number of processor nodes). The rest of the paper is organized
as follows. Section 2 gives a formal statement of an LP problem and presents
the definitions of the Fejer process and the pseudo-projection onto a polytope.
Section 3 describes the new NSLP algorithm. Section 4 summarizes the obtained
results and proposes directions for future research.

2 Problem Statement

Let a non-stationary LP problem be given in the vector space R
n:

max {〈ct, x〉 |Atx ≤ bt, x ≥ 0} , (1)

where the matrix At has m rows. The non-stationarity of the problem means
that the values of the elements of the matrix At and the vectors bt, ct depend
on time t ∈ R≥0. We assume that the value of t = 0 corresponds to the initial
time:

A0 = A, b0 = b, c0 = c. (2)

Let us define the map ϕt : Rn → R
n as follows:

ϕt (x) = x − λ

m

m∑

i=1

max {〈ati, x〉 − bti, 0}
‖ati‖2

· ati, (3)

where ati is the i-th row of the matrix At, and bt1, . . . , btm are the elements of
the column bt. Let us denote

ϕ (x) = ϕ0 (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − bi, 0}
‖ai‖2

· ai. (4)

Let Mt be the polytope defined by the constraints of the non-stationary LP
problem (1). Such a polytope is always convex. It is known (see [18]) that ϕt is
a continuous single-valued Mt-fejerian1 map for the relaxation factor 0 < λ < 2.

By definition, put
ϕs

t (x) = ϕt . . . ϕt(x)︸ ︷︷ ︸
s

. (5)

1 A single-valued map ϕ : Rn → R
n is said to be fejerian relatively to a set M (or

briefly, M -fejerian) if

ϕ (y) = y, ∀y ∈ M ;
‖ϕ(x) − y‖ < ‖x − y‖ , ∀x /∈ M, ∀y ∈ M.

.
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The Fejer process generated by the map ϕt for an arbitrary initial approx-
imation x0 ∈ R

n is the sequence {ϕs
t (x0)}+∞

s=0. It is known (see Lemma 39.1
in [20]) that the Fejer process for a fixed t converges to a point belonging to the
polytope Mt:

{ϕs
t (x0)}+∞

s=0 → x̄ ∈ Mt. (6)

Let us consider the simplest non-stationary case, which is a translation of
the polytope M = M0 by the fixed vector d ∈ R

n in one unit of time. In this
case, At = A, ct = c, and the non-stationary problem (1) takes the form

max {〈c, x〉 |A(x − td) ≤ b, x ≥ 0} , (7)

which is equivalent to

max {〈c, x〉 |Ax ≤ b + Atd, x ≥ 0} .

Comparing this with (1), we obtain bt = b + Atd. In this case, the Mt-fejerian
map (3) is converted to the following:

ϕt (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − (bi + 〈ai, td〉) , 0}
‖ai‖2

· ai,

which is equivalent to

ϕt (x) = x − λ

m

m∑

i=1

max {〈ai, x − td〉 − bi, 0}
‖ai‖2

· ai (8)

The ϕ-projection (pseudo-projection) of the point x ∈ R
n on the polytope M

is the map πϕ
M (x) = lims→∞ ϕs(x).

3 The NSLP Algorithm

The NSLP (Non-Stationary Linear Programming) algorithm is designed to solve
large-scale non-stationary LP problems on cluster computing systems. It consists
of two phases: Quest and Targeting. The Quest phase calculates a solution of the
system of inequalities defining the constraint system of the linear programming
problem under the condition of dynamic changes in input data. To this end,
the apparatus of Fejer mappings is used. The Targeting phase forms a special
system of points having the shape of an n-dimensional axisymmetric cross. The
cross moves in the n-dimensional space in such a way that the solution of the LP
problem remains permanently in an ε-vicinity of the central point of the cross.
Let us describe both phases of the algorithm in more detail.
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3.1 The Quest Phase

Without loss of generality, we can assume that all the calculations are performed
in the region of positive coordinates. At the beginning, we choose an arbitrary
point z0 ∈ R

n
≥0 with non-negative coordinates. This point plays the role of initial

approximation for the problem (1). Then we organize an iterative Fejer process
of the form (6). During this process, the Fejer approximations are consecutively
calculated by using the Fejer mapping (3). This process converges to a point
located on the polytope Mt. Owing to the non-stationary nature of the problem
(1), the polytope Mt can change its position and shape during the calculation
of the pseudo-projection. An input data update is performed every L iterations,
L being some fixed positive integer that is a parameter of the algorithm. Let us
denote by t0, t1, . . . , tk, . . . sequential time points corresponding to the instants
of input data update. Without loss of generality, we can assume that

t0 = 0, t1 = L, t2 = 2L, . . . , tk = kL, . . . . (9)

This corresponds to the case when one unit of time is equal to the time spent
by the computer to calculate one value of the Fejer mapping using Eq. (3).

Let the polytope Mt take shapes and locations

M0,M1, . . . ,Mk, . . .

at time points (9). Let
ϕ0, ϕ1, . . . , ϕk, . . .

be the Fejer mappings determined by Eq. (3) taking into account the changes in
input data of problem (1) at time points (9). In the Quest phase, the iterative
process calculates the following sequence of points (see Fig. 1):

{z1 = ϕL
0 (z0), z2 = ϕL

1 (z1), . . . , zk = ϕL
k−1(zk−1), . . .}.

Let us briefly denote this iterative process as

{
ϕL

k (z0)
}+∞

k=0
. (10)

It terminates when2

dist
(
ϕL

k (zk−1),Mk

)
< ε,

where ε > 0 is a positive real number being a parameter of the algorithm. One
of the most important issues is the convergence of the iterative process (10). In
the general case, this issue remains open. However, the following theorem holds
for the non-stationary problem (7).

2 Here dist(z, M) = inf {‖z − x‖ : x ∈ M}.
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Fig. 1. The iterative process in the Quest phase for problem (7)

Theorem 1. Let a non-stationary LP problem be given by (7). Let the Fejer
mappings ϕ0, ϕ1, . . . , ϕk, . . . be defined by the equation

ϕk (x) = x − λ

m

m∑

i=1

max {〈ai, x − kLd〉 − bi, 0}
‖ai‖2

· ai. (11)

This equation is derived using (8) and (9). By definition, put

zk = ϕL
k−1(zk−1) (12)

where k = 1, 2, . . .. Then

lim
k→∞

dist(zk,Mk) = 0 (13)

under the following condition:

∀x ∈ R
n\M

(‖Ld‖ < dist(x,M) − dist(ϕL(x),M)
)
. (14)

The Theorem 1 gives a sufficient condition for the convergence of the itera-
tive process shown in Fig. 1. To prove this theorem, we will need the following
auxiliary lemma.

Lemma 1. Under the conditions of Theorem 1, we have

v − u = pLd ⇒ ϕl
p(v) − ϕl(u) = pLd (15)

for any p = 0, 1, 2, . . ., l = 1, 2, 3, . . . and u, v ∈ R
n.
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Fig. 2. Illustration to the proof of Lemma 1

Proof. The proof is by induction on l.
Induction base. Let l = 1, then the following condition holds:

v − u = pLd. (16)

Then using (4), (11) and (16), we get

ϕp(v) − ϕ(u) = ϕp(u + pLd) − ϕ(u)

= u + pLd − λ

m

m∑

i=1

max {〈ai, u〉 − bi, 0}
‖ai‖2

· ai − ϕ(u)

= u + pLd − λ

m

m∑

i=1

max {〈ai, u〉 − bi, 0}
‖ai‖2

· ai

− u +
λ

m

m∑

i=1

max {〈ai, u〉 − bi, 0}
‖ai‖2

· ai = pLd.

Thus, (15) holds if l = 1 (see Fig. 2).
Inductive step. Assume that condition (16) is true. Using the induction

hypothesis, we get
ϕl−1

p (v) − ϕl−1(u) = pLd. (17)
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Fig. 3. The process defined by (18)

Then, combining (4), (5), (17) and (11), we obtain

ϕl
p(v) − ϕl(u) = ϕp(ϕ

l−1
p (v)) − ϕ(ϕl−1(u))

= ϕp(ϕ
l−1(u) + pLd) − ϕ(ϕl−1(u))

= ϕl−1(u) + pLd − λ

m

m∑

i=1

max
{〈

ai, ϕ
l−1(u)

〉− bi, 0
}

‖ai‖2 · ai − ϕ(ϕl−1(u))

= ϕl−1(u) + pLd − λ

m

m∑

i=1

max
{〈

ai, ϕ
l−1(u)

〉− bi, 0
}

‖ai‖2 · ai

− ϕl−1(u) +
λ

m

m∑

i=1

max
{〈

ai, ϕ
l−1(u)

〉− bi, 0
}

‖ai‖2 · ai = pLd.

This completes the proof of Lemma 1.

Proof (of Theorem 1). Let us fix an arbitrary point z0 ∈ R
n\M . Let the map

ψ : Rn → R
n be given by

ψ (x) = ϕL(x) − Ld,∀x /∈ M ;
ψ (x) = x,∀x ∈ M.

(18)

By definition, put
y0 = z0 (19)

and
yk = ψ(yk−1) (20)

for k = 1, 2, . . . (see Fig. 3).
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Fig. 4. Illustration to Eq. (21)

Now let us show by induction on k that

zk − yk = kLd (21)

for k = 0, 1, 2, . . . (see Fig. 4).
Induction base. Equation (21) holds for k = 0. Taking into account (19), we

see that the equation
z0 − y0 = 0 · Ld

holds.
Inductive step. Suppose that

zk−1 − yk−1 = (k − 1)Ld (22)

for k > 0. Substituting u = yk−1, v = zk−1, l = L, p = k − 1 in Lemma 1, and
using (15), we obtain

zk−1 − yk−1 = (k − 1)Ld ⇒ ϕL
k−1(zk−1) − ϕL(yk−1) = (k − 1)Ld.

Comparing this with (22), we have

ϕL
k−1(zk−1) − ϕL(yk−1) = (k − 1)Ld. (23)

Combining (12), (18), (20) and (23), we get

zk − yk = zk − ψ(yk−1) = zk − ϕL(yk−1) + Ld

= ϕL
k−1(zk−1) − ϕL(yk−1) + Ld = (k − 1)Ld + Ld = kLd.

Thus, Eq. (21) holds.
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Fig. 5. Illustration to Eq. (24)

Now we show that
dist(zk,Mk) = dist(yk,M) (24)

for all k = 0, 1, 2, . . .. Let us choose a point ŷ ∈ M that satisfies the following
condition:

‖ŷ − yk‖ = dist(yk,M). (25)

Such a point exists and is unique since the polytope M is a bounded, closed
and convex set. The polytope Mk is the result of translating the polytope M by
the vector kLd (see Fig. 5). Since ŷ ∈ M , it follows that the point ẑ = ŷ + kLd
belongs to the polytope Mk. Taking into account (21), we conclude that the
points {yk, zk, ẑ, ŷ} are the vertices of a parallelogram. Therefore,

‖ẑ − zk‖ = ‖ŷ − yk‖ . (26)

Let us show that
‖ẑ − zk‖ = dist(zk,Mk). (27)

Assume for a contradiction that ∃z′ ∈ Mk such that

‖z′ − zk‖ < ‖ẑ − zk‖ . (28)

Since z′ ∈ Mk, it follows that the point y′ = z′ −kLd belongs to the polytope M .
Now, if we recall that the points {yk, zk, ẑ, ŷ} are the vertices of a parallelogram,
we get

‖y′ − yk‖ = ‖z′ − zk‖ .

Combining this with (25), (26) and (28), we obtain

‖y′ − yk‖ = ‖z′ − zk‖ < ‖ẑ − zk‖ = ‖ŷ − yk‖ = dist(yk,M).
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It follows that
∃y′ ∈ M (‖y′ − yk‖ < dist(yk,M)) .

This contradicts the definition of the distance between a point and a set. There-
fore, Eq. (27) holds. Combining (25), (26) and (27), we get that Eq. (24) also
holds.

Further, the map ψ defined by Eq. (18) is single-valued and continuous (this
follows from the fact that ϕ is a single-valued and continuous map). Let us
show that the map ψ is M -fejerian. Let x ∈ R

n\M be an arbitrary point not
belonging to the polytope M . Let us choose a point x̂ ∈ M that satisfies the
following condition ∥∥ϕL(x) − x̂

∥∥ = dist(ϕL(x),M). (29)

Such a point exists and is unique because the polytope M is a bounded, closed
and convex set. Combining the dist definition, Eq. (18), the triangle inequality
for the norm and Eqs. (14) and (29), we get

dist(ψ(x),M) ≤ ‖ψ(x) − x̂‖ =
∥∥ϕL(x) − Ld − x̂

∥∥
≤ ‖Ld‖ +

∥∥ϕL(x) − x̂
∥∥ = ‖Ld‖ + dist(ϕL(x),M) < dist(x,M).

It follows that ψ is M -fejerian. Therefore,
{
ψk(y0)

}+∞
k=0

→ ȳ ∈ M.

This means that lim
k→∞

dist(yk,M) = 0. Taking into account (24), we conclude

that lim
k→∞

dist(zk,Mk) = 0. This completes the proof of the theorem.

From a non-formal point of view, Theorem1 states that the Fejer process
must converge faster than the polytope M “runs away”. Manycore processors
can be used to increase the Fejer mapping calculation speed. In [19], the authors
investigated this issue on Intel Xeon Phi multi-core coprocessors with MIC archi-
tecture [21]. It was shown that the Intel Xeon Phi may be used efficiently for
solving large-scale problems.

3.2 The Targeting Phase

The Targeting phase begins after the Quest phase. At the Targeting phase, an n-
dimensional axisymmetric cross is formed. An n-dimensional axisymmetric cross
is a finite set G = {g0, . . . , gP } ⊂ R

n. The cardinality of G equals P + 1, where
P is a multiple of n ≥ 2. The point g0 is singled out from the point set G.
This point is called the central point of the cross. Initially, the central point is
assigned the coordinates of the point zk calculated in the Quest phase by using
the iterative process (10).

The set G\{g0} is divided into n disjoint subsets Ci (i = 0, . . . , n − 1) called
the cohorts:

G\{g0} =
n−1⋃

i=0

Ci,
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where n is the dimension of the space. Each cohort Ci consists of

K =
P

n
(30)

points lying on the straight line that is parallel to the i-th coordinate axis and
passes through the central point g0. By itself, the central point does not belong
to any cohort. The distance between any two neighbor points of the set Ci ∪{g0}
is equal to a constant s. An example of a two-dimensional cross is shown in Fig. 6.
The number of points in one dimension, excluding the central point, is equal to
K. The symmetry of the cross supposes that K takes only even values greater
than or equal to 2. Using Eq. (30), we obtain the following equation for the total
number of points contained in the cross:

P + 1 = nK + 1. (31)

Since K can take only even values greater than or equal to 2 and n ≥ 2, it follows
from Eq. (31) that P can also take only even values, and P ≥ 4. In Fig. 6, we
have n = 2, K = 6, P = 12.

Each point of the cross G is uniquely identified by a marker being a pair of
integer numbers (χ, η) such that 0 ≤ χ < n, |η| ≤ K/2. Informally, χ specifies
the number of the cohort, and η specifies the sequential number of the point
in the cohort Cχ counted from the central point. The corresponding marking of
points in the two-dimensional case is given in Fig. 6(a). The coordinates of the
point x(χ,η) having the marker (χ, η) can be reconstructed as follows:

x(χ,η) = g0 + (0, . . . , 0, η · s︸︷︷︸
χ

, 0, . . . , 0). (32)

The vector being added to g0 in the right part of Eq. (32) has a single non-zero
coordinate in position χ. This coordinate equals η · s, where s is the distance
between neighbor points in a cohort.

The Targeting phase includes the following steps.

1. Build the n-dimensional axisymmetric cross G that has K points in each
cohort, the distance between neighbor points equaling s, and the center at
point g0 = zk, where zk is obtained in the Quest phase.

2. Calculate G′ = G ∩ Mk.
3. Calculate C ′

χ = Cχ ∩ G′ for χ = 0, . . . , n − 1.

4. Calculate Q =
n−1⋃
χ=0

{arg max {〈ck, g〉 | g ∈ C ′
χ, C ′

χ �= ∅}}.

5. If g0 ∈ Mk and 〈ck, g0〉 ≥ max
q∈Q

〈ck, q〉, then k := k + 1, and go to step 2.

6. g0 :=

∑

q∈Q

q

|Q| .
7. k := k + 1.
8. Go to step 2.
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a) with markers (χ, η) b) sequential numbering

Fig. 6. A two-dimensional cross

Thus, in the Targeting phase, the steps 2–7 form a perpetual loop in which
the approximate solution of the non-stationary LP problem is permanently recal-
culated. From a non-formal point of view, in Step 2, we determine which points
of the cross G belong to the polytope Mk. To do this, we check the condition
Akg ≤ bk for each point g ∈ G. Such checks can be executed in parallel by differ-
ent processor nodes of a cluster computing system. For this goal to be achieved, P
MPI-processes can be exploited, where P is defined by Eq. (31). We use sequen-
tial numbering for distributing the cross points among the MPI-processes. Each
point of the cross is assigned a unique number α ∈ {0, . . . , P − 1}. The sequen-
tial number α can be converted to a marker (χ, η) by means of the following
equations3:

χ = ||α − K| − 1| ÷ (K/2);
η = sgn (α − K) · (((|α − K| − 1) mod (K/2)) + 1) .

The backward conversion can be performed by means of the equation

α = η + sgn(η)
χ

2
K + K.

Figure 6(b) demonstrates the sequential numbering of points that corresponds
to the marking in Fig. 6(a).

4 Conclusion

In this paper, a new NSLP algorithm for solving non-stationary linear program-
ming problems of large dimension has been described. This algorithm is oriented
to cluster computing systems with manycore processors. The algorithm consists
of two phases: Quest and Targeting. The Quest phase calculates a solution of the
system of inequalities defining the constraint system of the linear programming

3 The symbol ÷ denotes integer division.
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problem under the condition of input data dynamic changes. To do this, we
organize a Fejer process that computes a pseudo-projection onto the polytope
M defined by the constraints of the LP problem. In this case, input data changes
occur during calculation of the pseudo-projection. A convergence theorem for the
described iterative process is proved in the case of translation of the polytope
M . The Targeting phase forms a special system of points having the shape of an
n-dimensional axisymmetric cross. The cross moves in the n-dimensional space
in such a way that the solution of the linear programming problem is located all
the time in an ε-vicinity of the central point of the cross. A formal description of
the Targeting phase is presented in the form of a sequence of steps. Our future
goal is a parallel implementation of the NSLP algorithm in the C++ language
using the MPI library, as well as the development of computational experiments
on a cluster computing system using synthetic and real LP problems.
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Abstract. In this paper, we present and evaluate a parallel algorithm
for solving the minimum spanning tree (MST) problem on supercomput-
ers with distributed memory. The algorithm relies on the relaxation of
the message processing order requirement for one specific message type
compared to the original GHS (Gallager, Humblet, Spira) algorithm. Our
algorithm adopts hashing and message compression optimization tech-
niques as well. To the best of our knowledge, this is the first parallel
implementation of the GHS algorithm that linearly scales to more than
32 nodes (256 cores) of an InfiniBand cluster.

Keywords: Large graphs · MST · GHS · Supercomputers · MPI

1 Introduction

Given a connected, weighted undirected graph G = (V,E), a spanning tree is
a tree in this graph that contains all its vertices. A Minimum Spanning Tree
(MST) [1] is a spanning tree having the minimum possible weight, if the weight
of the tree is defined as the sum of the weights of all the edges contained in it.

The paper considers the minimum spanning tree problem in large graphs. By
large graphs, we mean graphs that will not fit in the memory of the typical node
of a distributed memory system.

The MST problem is encountered in many areas, for example, in bioinformat-
ics, computer vision, and also when designing various networks. Requirements
to the size of the processed graphs in real problems are constantly increasing.
For example, in bioinformatics, when considering clustering problems [2] that
can be solved by constructing a MST, graphs may take up to one petabyte or
even more memory.

There are many algorithms [3] that solve the MST problem; the best known
are Prim’s [4], Kruskal’s [5] and Boruvka’s algorithms [6]. Some algorithms are
suitable for shared memory parallelization, there are a lot of such implementa-
tions (see, for example, [7–10]).

Some of the mentioned algorithms are adapted for implementation on dis-
tributed memory systems [13–17]. Among the parallel implementations men-
tioned above, there is no implementation scalable to at least one hundred par-
allel processes. There are algorithms specially designed for distributed systems,
c© Springer International Publishing AG 2017
L. Sokolinsky and M. Zymbler (Eds.): PCT 2017, CCIS 753, pp. 101–113, 2017.
DOI: 10.1007/978-3-319-67035-5 8
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for example, the GHS (Gallager, Humblet, Spira) algorithm [11] and Awerbuch
algorithm [12]. To the best of our knowledge, there is only one paper [16] that
describes the implementation of the GHS algorithm, but it does not present any
good experimental results.

In this paper, we present a parallel algorithm for solving the minimum span-
ning tree problem on distributed memory systems. The algorithm has been devel-
oped on the basis of the GHS algorithm, it allows processing of large-scale graphs
and linearly scales to more than two hundred parallel processes.

2 GHS Algorithm

The GHS algorithm has been chosen for the research as a fundamental dis-
tributed parallel MST algorithm. This algorithm is based on a vertex-centric
programming model [18]. The idea of the algorithm is as follows. All vertices
perform the same procedure, which consists of sending, receiving and processing
the messages from adjacent vertices. The messages can be transmitted indepen-
dently in both directions of an edge, the order of messages must be preserved
along the edge direction.

At any time, the set of graph vertices is represented as a union of a certain
number of fragments, i.e. disjoint sets of vertices.

Initially, each vertex is a fragment. Each fragment finds an edge of minimum
weight among the edges outgoing from this fragment to other fragments. The
fragments are then combined over these edges. The edges that are used to com-
bine the fragments will compose a minimum spanning tree when there is only
one fragment comprising all the remaining vertices.

Let us consider the algorithm in detail. There are three possible vertex states:
Sleeping, Find and Found, where Sleeping is the initial state of all vertices. The
vertex will be in the state Find when is participating in a fragment’s search for
the minimum-weight outgoing edge, and is in the state Found in other cases.
Each fragment has an L variable characterizing its level. Initially the level of
each fragment is 0. Two fragments of the same level L can be combined into
a level L + 1 fragment. A fragment cannot join to another fragment of a lower
level.

The following is the detailed description of the searching process of the
minimum-weight outgoing edge of a fragment. In the trivial case where the frag-
ment consists of a single vertex and its level is 0, the vertex locally chooses its
minimum-weight outgoing edge, marks this edge as a branch of the minimum
spanning tree, sends a message called Connect over this edge, and goes into the
Found state.

Now consider the case where a fragment level is greater than 0. Suppose that
a new fragment at level L has just been formed by the combination of two level
L−1 fragments with the same outgoing edge, which becomes the core of the new
fragment. The weight of this core edge is used as the identity of the fragment.
Then an Initiate message is broadcast all over the fragment starting from the
vertices adjacent to the core, so that all vertices receive a new fragment level and
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identity, and are placed in the Find state. When a vertex receives the Initiate
message, it starts finding the minimum-weight outgoing edge.

Each edge of the graph can be in one of three states: Branch, if the edge
belongs to the minimum spanning tree; Rejected, if the edge is not part of the
minimum spanning tree; and Basic, if it is not yet known whether the edge is part
of the minimum spanning tree. In order to find the minimum-weight outgoing
edge, for each vertex v, all edges in the Basic state are sorted starting from the
most light-weight edge. Each edge is probed by sending Test messages along
that edge. The Test message contains fragment level and identity as arguments.
When a vertex u receives the Test message, it compares its own fragment identity
with the one received in the message. If the identities are equal, then the vertex
u sends the Reject message back, and then both vertices put the edge in the
Reject state. In this case, the vertex v that has sent the Test message continues
the search, analyzing the next best edge, and so on. If the fragment identity in
the received Test message is different from that of the receiving vertex u, and
if the receiving vertex fragment level is greater or equal to the one in the Test
message, then an Accept message is sent back. In this case, the state of the edge
incident to the vertex v is changed to Branch. However, if the fragment level of
the vertex u is smaller than the one in the received message, then the message
is postponed until the fragment level of the vertex u increases to the necessary
value.

Finally, each vertex finds a minimum-weight outgoing edge, if any. Now the
vertices are sending Report messages (see Fig. 1.a) to find the minimum-weight
outgoing edge of the whole fragment. If none of the graph vertices have outgoing
edges in the Basic state, then the algorithm terminates, and the edges in the
Branch state are the minimum spanning tree.

a) b)

Fig. 1. Scheme of the GHS algorithm execution. In (a), arrows denote the sending of
the Report messages. In (b), the arrow denotes the sending of the Change core message
towards the minimum-weight outgoing edge of the fragment. The edges shown by solid
lines are in the Branch state. Numbers on edges are weight values.
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Report messages are sent by the following rules. Each leaf vertex of the frag-
ment sends Report(w) along the only incident edge in the Branch state (w is
either the weight of the minimum outgoing edge from the vertex, or infinity if
there are no outgoing edges). Each internal vertex finds its own minimum-weight
outgoing edge, and waits for all messages from all the subtrees. Then the ver-
tex chooses the minimum weight from all the weight values. If the minimum is
achieved with a value that came from the subtrees, then the number of the out-
going branch is placed into the vertex variable best edge, otherwise the number
of the minimum-weight outgoing edge is placed into this variable. This is done
with the purpose of easily restoring the path by moving to where best edge is
pointing.

Further, there is a sending of the Report message up the tree of the fragment
with an argument equal to the minimum value found among all the weight values.
When the vertex sends the Report message, it also goes into the Found state.
Finally, two vertices that are incident to the core edge send Report messages
along the core and determine the weight of the minimum outgoing edge and the
direction to this edge.

To try to connect one fragment to another over the found minimum-weight
outgoing edge of the fragment, it is possible to use the best edge variable in every
vertex to trace the path from the core to the minimum-weight outgoing edge.
For this purpose, a Change core message is sent from one of the core vertices
that is closer to the minimum-weight outgoing edge (see Fig. 1.b). A vertex that
has received this message sends it further in accordance with its own best edge
value, and so on. When the message reaches the vertex having the minimum-
weight outgoing edge, then this vertex becomes the root of the tree formed by the
fragment. This vertex sends the Connect(L) message over the minimum-weight
outgoing edge, where L is the fragment level. If two level L fragments have the
same minimum-weight outgoing edge, then each of them sends the Connect(L)
message over this edge, and this edge becomes the core of the new level L + 1
fragment, which immediately starts to send the Initiate message with a new level
number and identity all over the fragment.

When a level L fragment with identity F sends the Connect message into a
level L′ > L fragment with identity F ′, the larger fragment will send the Initiate
message with L′ and F ′ into the smaller fragment.

The time complexity of the GHS algorithm is O(N logN), and the number of
communication messages is 5N logN + 2M , where N is the number of vertices,
and M is the number of edges in the graph. Not all the occurring cases are
considered in this algorithm description but only the basic ones.

3 MST Algorithm

The GHS algorithm considered in [11] is only a description and analysis of the
necessary high-level steps that must be performed at each vertex. As far as we
know, there is no paper describing details of an implementation of the algorithm
that scales well.
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It is necessary to reasonably choose and develop a set of techniques, and solve
a number of problems for the development of a parallel algorithm that finds an
MST using the GHS algorithm. The implementation of the proposed algorithm
has been made using the C++ language with an MPI library. When running
on a supercomputer, the number of vertices in the graph is significantly larger
than the number of MPI processes, so a large number of vertices and all related
information are typically stored in the memory allocated to each process. All
graph vertices are sequentially distributed in blocks among the processes. The
local part of the graph in each process is stored in the CRS (Compressed Row
Storage) format.

3.1 Preprocessing of the Original Graph

A preprocessing of the graph is conducted before searching for a minimum span-
ning tree in the graph, namely loops and multiple edges are removed from the
graph. The removal of multiple edges is performed to fulfil the GHS algorithm
condition that requires all the edges to be unique. The time spent on preprocess-
ing is negligible and is not included in the total time of algorithm execution.

3.2 Base Version

The base version of the algorithm was developed at the beginning of the work.
Every MPI process supports a queue where vertices can postpone a message

when necessary. The aggregation of messages is implemented to speed up the
algorithm; a separate buffer is created in every process for each possible receiving
process.

Implementation scheme of the base version of the parallel algorithm for con-
struction of an MST using an MPI library; executed in parallel in every MPI
process.

Input: local_G - local part of the graph
Output: local part of the MST

While (True) {
/* read messages and push them to the queue */
read_msgs ();
/* queue processing, sending messages (write to the buffer) */
If (time_to_process_queue) {

process_queue ();
}
If (time_to_send) {

/* send all aggregated messages */
send_all_bufs ();

}
/* checking for algorithm completion using MPI_Allreduce */
check_finish ();

}
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Besides information that is necessary for the algorithm execution, messages
also contain service information: the number of the sending vertex and the num-
ber of the receiving vertex, as well as the message type.

It is important to note that the GHS algorithm requires the original graph
to be connected. This is not necessary for the proposed algorithm because it will
work until the interconnect is in the “silence” state, when all queues are empty,
all messages are processed and there are no undelivered messages in the network.
Thus, the proposed algorithm allows finding not only an MST in a connected
graph, but also a minimum spanning forest in a graph with any number of
connected components.

Since the GHS algorithm requires the weights of graph edges to be different, a
special identity special id is added to the usual weight of the edge. The special id
identity is calculated for each graph edge e as follows: let u and v be the vertices
that are incident to the edge e, then special id in binary representation is equal
to the consecutively recorded binary representations of min(u, v) and max(u, v).
Such an arrangement enables the algorithm to work correctly even if the input
graph has two different edges with the same weights.

3.3 Searching Local Edges

When an MPI process receives an incoming message, it is necessary to find the
edge (an edge index in the list of local edges) over which the message came, i.e.
to find the index of the edge formed by the two vertices (the sending and the
receiving) in the list of local edges. The search is necessary since a change of
local data related to that edge may be required.

The base version uses a linear search for this operation. During the linear
search, all edges that are incident to the receiving vertex are sorted. If the vertex
on the other end of the edge is equal to the sending vertex, then the right edge
is found.

The first possible way to optimize this operation is to sort all incident edges
in each vertex of the original graph in ascending order of the vertex numbers on
the opposite ends of the edges. In this approach, it is necessary to spend some
time on sorting at the beginning of the algorithm execution but later, during the
algorithm execution, a binary search can be used instead of a linear one. This
approach provides a small gain in performance.

The second optimization that was considered is hashing. It is possible to
create a hash table in every process instead of sorting and binary search. Let u
be the vertex sending a message, v is the receiving vertex, a vertex identifier is
a 32-bit machine word. Let us define the hash function get hash(u, v) as

((u � 32) | v) mod hash table size, (1)

where � is left bit-shift, | is bitwise OR, mod is the remainder of the division,
hash table size is the hash table size (several times larger than the number of
local edges).

The hashing method used in the proposed algorithm is called linear search
and insertion [19]. Thus, the identity of the local edge can be determined by two
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adjacent vertices in time O(1). But firstly, it is necessary to create and populate
the hash table. This procedure is a part of the algorithm initialization and takes
very little time, hence the reason it is not included in the total time of algorithm
execution.

3.4 Separate Processing of the Test Messages

It is not always possible to process immediately certain types of messages (Con-
nect, Test and Report), since several conditions must be satisfied to perform the
processing. The condition is satisfied when some data are changed, and to change
a specific piece of data, it is necessary to wait for a specific message. Thus, there
are situations when a message should be postponed, and then an attempt should
be made again to process it. It is not known when it will be processed.

The original GHS algorithm requires that the order of the messages be pre-
served. The study of the algorithm execution showed, however, that Test mes-
sages constitute a significant part of all messages. It was determined that it
would be more effective to organize a separate queue for Test messages, and
process this queue much less frequently than the main one.

3.5 Messages Length Optimization

To achieve the maximum possible performance of the algorithm implementation
on a distributed memory system, it is necessary to minimize the size of the com-
munication messages. It is, therefore, important that the structure that stores a
message takes as little memory as possible.

At first messages were grouped into “short” (Connect, Accept, Reject, Change
core) and “long” messages (Initiate, Test, Report). The main difference is that
“long” messages contain a weight, which takes a significant amount of memory
(64 bit).

In the beginning of each structure, for both “long” and “short” messages, a
packed bit field of 16 bits is stored (actually, only 9 bits are necessary: 3 bits for
message type, 5 bits for fragment level, and 1 bit for vertex state).

Further, the structure stores the identifiers of both the sending vertex and
the receiving vertex (a vertex identifier is a 32-bit machine word).

Additionally, long messages store the extended weight of the edge (special id)
and the weight itself.

Finally, the following optimization is implemented. Instead of storing
special id in the extended weight (concatenation of the identifiers of two ver-
tices, 64 bits in total), it is possible to store the minimum number of all the MPI
processes that store this edge, after verifying that the weights of all the edges
in each process are different. Indeed, if the weights of all the edges in every
process are different, then two different edges with the same weight can be only
in different processes, thus, the numbers of the relevant processes are enough to
understand that such edges are different.

As a result, short and long messages are 80 and 152 bits in size, respectively.
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3.6 Parameters of the Proposed Algorithm

There are relevant implementation parameters:

– MAX MSG SIZE is the maximum size of aggregated messages (by default,
10 000 bytes);

– SENDING FREQUENCY is the frequency of flushing the aggregated mes-
sages (by default, every 5 iterations of the while loop);

– CHECK FREQUENCY is the frequency of processing the queue of Test
messages (by default, every 5 iterations of the while loop);

– EMPTY ITER CNT TO BREAK is the frequency of checking for com-
pletion (by default, every 100 000 iterations of the while loop);

– HASH TABLE SIZE is the size of the hash table, i.e. the number of ele-
ments contained in it. The default value is local actual m ∗ 5 ∗ 11 / 13,
where local actual m is the number of local edges in the MPI process after
removing multiple edges and self-loops.

4 Experimental Results

RMAT, SSCA2 and Uniformly Random graphs are used for the performance
evaluation of the algorithm.

– RMAT [20] graphs represent real-world large-scale graphs from social net-
works and the Internet, and are complex enough to analyze, thereby being
often used to evaluate performance of graph processing algorithms.

– SSCA2 [21] graphs represent a set of randomly connected cliques.
– In Uniformly Random [22] graphs, the neighbors of each vertex are chosen

randomly.

In the paper we examine graphs with the following parameters: the number
of vertices is a pow of 2, the average vertex degree is 32. The weights of the
edges are real numbers from the (0, 1) interval. The SCALE parameter specifies
the number of vertices in the graph. If n is the SCALE parameter, then 2n is
the number of vertices in the graph. For example, a graph with SCALE = n is
hereinafter referred to as RMAT-n.

The default values of the algorithm parameters listed in Subsect. 3.6 are used
for performance evaluation.

We focus our design and experimental evaluation on the MVS-10P cluster
system.

Table 1 provides an architecture overview of the system.

4.1 Impact of Optimizations

In this subsection, an RMAT graph with scale 23 (RMAT-23) is used for testing.
The number of MPI processes per node of the MVS-10P cluster is 8.

If binary search is used instead of linear search when finding a local edge,
then the execution time on a cluster node is reduced by 2%. If hashing is used
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Table 1. MVS-10P cluster system configuration

MVS-10P

Nodes 2x Xeon E5-2690 (8 cores, 2.9 GHz)

Number of nodes 207

Memory 64 GB

Interconnect InfiniBand 4xFDR

MPI Intel MPI 4.1

a) b)

Fig. 2. Impact of optimizations: from the base version to the final version (with all the
optimizations). MVS-10P cluster, RMAT-23 graph, 8 MPI processes per node.

instead of linear search, then the execution time on a node is approximately
18% less (MVS-10P cluster, RMAT-23 graph, 8 MPI processes per node). Thus,
hashing was chosen for the final version.

Figure 2.a shows how the runtime changes (in seconds) as the optimizations
described in Subsects. 3.3, 3.4 and 3.5 are added. Figure 2.b shows the scalability
of the same runs, i.e. the ratio of the problem solution time on one node to that
on a given number of nodes.

Figure 3.a shows the profiling results of the algorithm version with one opti-
mization of the local edge search, while Fig. 3.b shows the profiling results of the
final version of the algorithm.

The profiling shows that most of the time is spent on processing queues.
Some messages are processed repeatedly, including Test messages. Therefore,
in the final version of the algorithm, in which Test messages are processed less
frequently, the part of queue processing in the total execution time is less than in
the version with hashing optimization only. Precisely this optimization provided
a two-fold increase in algorithm scalability (see Fig. 2.b).

Also, the message length optimization made a considerable contribution to
the algorithm performance. This optimization reduced the execution time of the
final version of the algorithm on any number of nodes by approximately 50%.
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a) Version with hashing b) Final version

Fig. 3. Profiling results. MVS-10P cluster, RMAT-23 graph, 8 MPI processes per node.

4.2 Scaling

Table 2 shows performance evaluation results of the final algorithm version on
the MVS-10P cluster for the RMAT-24, SSCA2-24 and Random-24 graphs. The
number of MPI processes per node is 8.

Table 2. Performance of the proposed algorithm on the MVS-10P cluster system (all
used graphs have scale 24).

Number of nodes 1 2 4 8 16 32 64

MVS-10P RMAT-24 Time (s) 63.27 36.12 17.98 8.47 5.41 2.04 1.45

Scaling 1.00 1.75 3.52 7.47 11.7 31.01 43.63

SSCA2-24 Time (s) 54.69 32.37 11.90 6.02 3.63 1.72 n/a

Scaling 1.00 1.69 4.60 9.08 15.07 31.62 n/a

Random-24 Time (s) 88.61 51.65 21.47 10.27 6.68 3.23 n/a

Scaling 1.00 1.72 4.13 8.63 13.26 27.43 n/a

SCALE 24 is the largest graph scale that fits into a single node memory of
the MVS-10P cluster. The size of such graphs is approximately 6.5 GB. The rest
of the memory node is needed for the algorithm implementation. In particular,
a large amount of memory is required to organize the hash table.

The scalable mode in Intel MPI 4.1 on the MVS-10P cluster provides linear
scaling on 32 nodes. On 64 nodes (512 cores) of the MVS-10P, the scaling is 43.6.

In Fig. 4 we show the dependence between the average size of communication
messages and the execution time of the final algorithm version. Here message
size refers to an aggregated message sent over the interconnect. The value of the
MAX MSG SIZE aggregation parameter is 20 000 bytes. The figure shows
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that an increasing in the number of nodes yields a decrease in message size. On
32 nodes, messages are short; their size does not exceed 2 KB. It is also clear
that the size of the messages depends on the algorithm execution time.

We suppose that the main limitation factor of the algorithm performance
can be latency or injection rate of short messages.

Fig. 4. Average size (over all MPI
processes) of communication messages
in bytes, depending on interval number
(the total execution time of the algo-
rithm is divided into equal intervals).
MVS-10P cluster, RMAT-23 graph, 8
MPI processes per node.

Fig. 5. Execution time of the final algo-
rithm version for graphs of different
sizes. 32 nodes of the MVS-10P clus-
ter, 8 MPI processes per node.

Figure 5 shows a weak scaling for RMAT graphs on 32 nodes of the MVS-10P
cluster. RMAT-29 is the largest graph that fits into the memory of 32 nodes;
it takes a total of 205 GB. It should be noted that the implementation of the
algorithm for the solution of the MST problem is scalable in-memory, i.e. it is
possible to increase the size of the graph by increasing the number of nodes.

5 Conclusion

The paper presents a parallel algorithm for finding a minimum spanning tree
(forest) in a graph on distributed memory systems, and the corresponding algo-
rithm implementation using MPI.

Compared with the original GHS algorithm, the proposed parallel algorithm
has the following key features:

– the requirement of message processing order has been relaxed for Test mes-
sages, which doubled the scaling of the algorithm;

– the algorithm is generalized for the case of disconnected graphs. It builds a
minimum spanning forest in this case (the original algorithm is only applicable
to connected graphs).
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The proposed algorithm adopts some optimization techniques, namely hash-
ing for local edge search and compression of communication messages. The algo-
rithm implementation linearly scales on 32 nodes of the MVS-10P InfiniBand
cluster.

In the future, we intend to improve the algorithm scaling and develop its
hybrid MPI+OpenMP implementation.

The work was supported by the grant No. 17-07-01592A of the Russian Foun-
dation for Basic Research (RFBR).
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Abstract. In this paper we design the algorithm aimed at fast enumera-
tion of diagonal Latin squares of small order. This brute force based algo-
rithm uses straightforward representation of a Latin square and greatly
depends on the order in which we fill in Latin square cells. Moreover,
we greatly improved its effectiveness by careful optimization using bit
arithmetic. By applying this algorithm we have enumerated diagonal
Latin squares of order 9. This problem was previously unsolved. In order
to ensure the accuracy of the obtained result, two separate large-scale
experiments were carried out. In the first one a computing cluster was
employed. The second one was performed in a BOINC-based volunteer
computing project. Each experiment took about 3 months. As a result
we obtained two similar numbers.

Keywords: Combinatorics · Latin square · Enumeration · Bit arith-
metic · Volunteer computing · BOINC · Parallel computing

1 Introduction

Latin square of order N is a square table with N rows and N columns, filled with
elements from the set {0, . . . , N − 1} in such a way that each element appears
exactly once in each row and each column [1]. A Latin square is called diagonal, if
both its main diagonal and main antidiagonal contain all elements from 0 toN−1.
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Latin squares represent an interesting example of combinatorial design that is easy
to understand and experiment with, but at the same time there remain exception-
ally hard related open problems. The most well known one is to answer the question
whether there exist three mutually orthogonal Latin squares of order 10. One pos-
sible way to obtain an answer to such a problem is to generate all possible Latin
squares of order 10 and for each one check if it participates in said triple. Due to
combinatorial nature of Latin squares, the number of species representatives grows
very fast with the increase of N . Therefore it is usually considered unrealistic to
enumerate or generate all Latin squares of a specific order (even taking into account
equivalence classes). However, the rapid growth of supercomputing and computa-
tional combinatorics in the last decades makes it possible to change this point of
view.

In this paper we present the fast algorithm for enumerating diagonal Latin
squares of small order. In fact, the proposed algorithm has a very simple struc-
ture: essentially, it represents Latin square as an integer array and uses ≤ N2

nested loops to traverse all possible variants how it can be filled. However, here
the details play a very important role. In particular, the order in which we fill
the cells with numbers greatly influences the algorithm performance. The same
goes with the implementation details: how we choose the value to put in the next
cell, etc. The current version of our algorithm makes it possible to enumerate
up to 7 millions of diagonal Latin squares of order 9 per second on one CPU
core. Nevertheless, according to our estimations, a sequential implementation
of this algorithm (aimed at launching on a PC) can’t enumerate diagonal Latin
squares of order 9 in reasonable time. That is why we made two implementations
of this algorithm: one for a volunteer computing project and one for a computing
cluster. They made it possible to solve the considered problem.

Let us give a brief outline of the paper. In the next section we first discuss
possible approaches to generation of Latin squares. After this we describe the
basic structure of our algorithm that serves as a basis for further modifications.
In Sect. 3 we show that in practice the performance of the algorithm can be
greatly increased by using bit arithmetic in quite non-trivial ways and perform
experimental evaluation of different algorithm versions. In Sect. 4 we describe
two large-scale computational experiments aimed at enumerating diagonal Latin
squares of order 9. Both experiments were performed employing the improved
bit-arithmetic-based version of the algorithm (which is the fastest one). After
this we discuss related works and draw conclusions.

2 Algorithm Description

First, we would like to assume that for the purposes of our research, enumeration
and generation mean the same and therefore these terms are interchangeable.
Indeed, as it will be seen later, when we enumerate, we each time construct
a specific Latin square, so the difference between enumeration and generation
consists in whether we store the constructed Latin square or not.

Second, we are interested in algorithms that are deterministic and complete,
i.e. they generate all possible representatives of the species satisfying specific
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constraints. The latter condition is justified by the fact that since we already
know that the amount of Latin squares is very large and we do not intend to
store them all, then the generation should proceed in a fixed order, so that we
can be sure that we do not process some instances more than once, and at the
same time we traverse the entire search space. It means that the algorithm from
[2] that allows to generate Latin squares according to the uniform distribution
does not suite our purposes.

Taking into account the outlined conditions, let us next consider possible
approaches to generating Latin squares.

2.1 Approaches to Generating Latin Squares

It is easy to see that each row and each column of a Latin square represents a
permutation of N elements. Therefore for small N (N ≤ 10) it is possible to
generate all permutations and construct Latin squares from these permutations:
if we fill the square row-by-row, then we only need to ensure that rows do not
“intersect” (do not have equal elements in the same positions), because within
any row the elements satisfy the uniqueness constraint by definition. However,
once we filled several rows, the number of possible variants for the next row
significantly decreases, and we need to apply some additional techniques to take
this into account. One way of doing it is to represent the problem as exact cover
instance [3] and apply state-of-the-art algorithms, such as DLX [4], to solve it.
Another alternative is to represent permutations as bit vectors, and apply bit
arithmetic to make fast checks and comparisons. We can also split the space
of permutations into disjoint subsets separated according to values of several
first elements to speed up the deeper parts of the search. Additionally if we
are interested only in diagonal Latin squares we need to tune the algorithms
specifically for this purpose. In our empirical evaluation DLX and bit arithmetic
algorithms based on the outlined approaches make it possible to generate about
3 × 105 diagonal Latin squares of order 9 per second.

Another general approach to generating Latin squares consists in representing
a Latin square of order N as an array of N integer values. It means that in the
most basic variant we implement generation procedure as N2 nested for loops
with checks within each iteration. On the first glance it may seem that this
approach is much worse than the one where we employ permutations. Indeed,
the most simple implementation gives us a generation speed of about 6 × 103

diagonal Latin squares of order 9 per second on one CPU core. However, there
is a number of optimizations which make it possible to greatly improve the
algorithm performance. We consider them in detail in the following subsections.

We would like to note, that on the preliminary stage we experimented
with many different approaches to Latin squares generation, including recur-
rent implementations, using such meta-heuristic methods as simulated anneal-
ing, etc., but all these versions showed worse performance than the ones with
nested cycles.
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2.2 Algorithm Design

Assume that we consider enumeration of diagonal Latin squares of order N . For
this purpose our algorithm employs the following auxiliary constructs:

1. Integer array LS[N ][N ] which contains a Latin square;
2. Two-dimensional integer arrays Rows[N ][N ] and Columns[N ][N ], that

contain data regarding which elements are already “occupied” in each
row/column.

3. Two integer arrays MD[N ] and AD[N ] that contain data regarding which
elements are “occupied” on main diagonal and main antidiagonal.

4. Integer value SquaresCnt which contains the number of squares.

Data: LS[N ][N ], Rows[N ][N ], Columns[N ][N ], MD[N ], AD[N ], SquaresCnt
/* Assume that all variables are initialized by 0. */

/* Iterate over all possible values of cell [0][0] */

for LS[0][0] = 0; LS[0][0] < N ; LS[0][0] = LS[0][0] + 1 do
/* if the value is ‘‘occupied’’ within the row, column or main

diagonals - continue to the next value of loop variable */

if Rows[0][LS[0][0]]||Columns[0][LS[0][0]]||MD[LS[0][0]] then
continue

/* Otherwise mark the value as ‘‘occupied’’ and proceed */

Rows[0][LS[0][0]] = 1;
Columns[0][LS[0][0]] = 1;
MD[LS[0][0]] = 1;
for LS[0][1] = 0; LS[0][1] < N ; LS[0][1] = LS[0][1] + 1 do

if Rows[0][LS[1][1]]||Columns[1][LS[0][1]] then continue
Rows[0][LS[0][1]] = 1;
Columns[1][LS[0][1]] = 1;
...
/* Increment the counter if reached the last element */

for LS[N − 1][N − 1] = 0; LS[N − 1][N − 1] < N ;
LS[N − 1][N − 1] = LS[N − 1][N − 1] + 1 do

if Rows[N − 1][LS[N − 1][N − 1]]||Columns[N − 1][LS[N − 1][N −
1]]||MD[LS[N − 1][N − 1]] then continue;
SquaresCnt = SquaresCnt + 1;

end
...
Rows[0][LS[0][1]] = 0;
Columns[1][LS[0][1]] = 0;

end
/* On exit mark value as ‘free’ */

Rows[0][LS[0][0]] = 0;
Columns[0][LS[0][0]] = 0;
MD[LS[0][0]] = 0;

end
Algorithm 1. General outline of the algorithm
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As we already mentioned, the order in which we traverse cells plays a crucial
role in the effectiveness of the algorithm. Without the loss of generality, let us
first introduce the general outline of the algorithm for enumerating diagonal
Latin squares with simple order when we fill the square from the first (topmost
leftmost) element to the last. Its pseudocode is presented as Algorithm 1.

Note that one property of Latin squares allows us to make simple optimiza-
tion right from the start. Any ordinary Latin square (i.e. non-diagonal) can be
effectively transformed (via row and column permutations) in such a way that
its first row and first column appear in ascending order 0, 1, . . . , N − 1. It means
that we can safely fix the values of corresponding variables in the array LS[N ][N ]
and modify the initialization stage. It results in (N − 1)2 inner loops instead of
N2. In the case of diagonal Latin squares we can only fix either the first row to
0, 1, . . . , N − 1 or the first column (because if they become equal we violate the
constraints on diagonals), thus having N2 − N inner loops.

It is easy to see that essentially, the algorithm consists of simple blocks cor-
responding to loops over values of specific cells. The order in which we fill cells is
reflected by the order of loops. The structure of each particular loop is presented
as Algorithm 2.

Data: LS[N ][N ], Rows[N ][N ], Columns[N ][N ], MD[N ], AD[N ], SquaresCnt
/* Iterate over all possible values of cell [i][j] */

for LS[i][j] = 0; LS[i][j] < N ; LS[i][j] = LS[i][j] + 1 do
/* We check if the value is ‘‘occupied’’ in the current row,

column and diagonals (if applicable) */

bool Conditioni,j = Rows[i][LS[i][j]]||Columns[j][LS[i][j]];
if i = j then Conditioni,j = Conditioni,j ||MD[LS[i][j]];
if i + j=N - 1 then Conditioni,j = Conditioni,j ||AD[LS[i][j]];
if Conditioni,j then continue;
/* Otherwise mark the value as ‘‘occupied’’ and proceed */

Rows[i][LS[i][j]] = 1;
Columns[j][LS[i][j]] = 1;
if i = j then MD[LS[i][j]] = 1;
if i + j = N − 1 then AD[LS[i][j]] = 1;
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i][LS[i][j]] = 0;
Columns[j][LS[i][j]] = 0;
if i = j then MD[LS[i][j]] = 0;
if i + j = N − 1 then AD[LS[i][j]] = 0;

end
Algorithm 2. Inner loop structure

The body of the loop for the last cell according to specified order contains only
instruction to increment the counter SquaresCnt (if the corresponding value of
Latin square cell does not violate any conditions). Note that all statements in
each particular inner loop are hard-coded, i.e. there are no if statements which
check if i = j, etc. Now let us discuss the best ways to traverse the Latin square
cells.
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2.3 On the Optimal Order of Cells

In our preliminary experiments we noticed a peculiar pattern. The generation
speed for diagonal Latin squares greatly depended on the order in which we fill
cells. We finally figured out the following simple strategy that works best. It
should be noted, that this strategy is quite similar to the one suggested in [5].

Let us consider the generation of diagonal Latin squares of order 9. Assume
that we fill the cells of a Latin square A = {ai,j}. In accordance with the pre-
vious section, we fix the first row of A to 0, 1, . . . , 8. After this we use the iter-
ative process to choose what cell to assign next. Note that we do not want to
think about specific values that we assign, we need a general strategy. Each cell
with coordinates i, j participates in two to four ‘uniqueness’ constraints: one for
i-th row, one for j − th column, one for main diagonal (if i = j) and one for
main antidiagonal (if i = 9 − j − 1). It means that for each cell we can consider
the 4-component vector V k

i,j(ri,j , ci,j ,mdi,j , adi,j) in which ri,j is the number of
assigned cells in the i-th row, ci,j – the number of assigned cells in the j-th
column, etc. For elements that do not lie on main diagonal or main antidiagonal
we assume that mdi,j and adi,j are 0. The index k here corresponds to the step
number since the contents of Vi,j clearly depend on currently assigned cells. We
can choose vector norm and calculate norms for each element and then choose
the one with maximal value of norm as the next cell to be assigned.

In our experiments we obtained the best results with the simplest norm
|Vi,j | = |(ri,j , ci,j ,mdi,j , adi,j)| = ri,j + ci,j + mdi,j + adi,j . We also apply addi-
tional heuristics here: if in some row, column, main diagonal or main antidiago-
nal after assigning current element there are N − 1 assigned elements, then the
remaining element is automatically assigned next. Thus, returning to the gen-
eration of diagonal Latin squares of order 9, the first cell to be assigned is the
one that is situated on the intersection of main diagonal and main antidiagonal
(cell 4, 4) because V 1

44 = (0, 1, 1, 1), so the sum of components is 3 and for all
the other cells the sum is at most 2. On the next step we actually have several
alternatives with the same value, in this case we choose at random, etc. For the
considered enumeration problem the order of cells looks as follows (see Fig. 1).

- - - - - - - - -
20 2 16 17 21 18 19 3 22
25 26 6 23 27 24 7 28 29
55 56 57 10 53 11 58 59 60
61 63 65 45 1 47 67 69 70
62 64 66 12 54 14 68 71 72
32 33 8 30 34 31 9 35 36
39 4 42 37 40 38 43 5 41
13 49 50 44 48 46 51 52 15

Fig. 1. Order of cells for generation of diagonal Latin squares of order 9 (the first row
is omitted because the values of the corresponding elements are fixed)
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It is easy to see that for diagonal Latin squares it is best to start with diagonal
elements first and then fill the rest. The corresponding enumeration algorithm
that employs this order makes it possible to generate about 1.2 million squares
per second on one core of Intel Core i7-6700 CPU. Note, that for ordinary Latin
squares the trivial order of cells (row by row, column by columns) works best,
so we do not need special heuristics to construct it. For both cases, the perfor-
mance of enumeration algorithm can be significantly improved by the following
optimizations.

2.4 Optimizations

Here we introduce two basic optimizations that in conjunction make it possible
to improve the performance of the algorithm to about 1.8 million squares per
second (on the aforementioned platform).

UseFormula toCompute theLastElement in aRow/Column/Diagonal.
It is easy to see that in certain points of our algorithm there appear situations when
in some particular row, column, main diagonal or main antidiagonal exactlyN −1
element out of N are assigned. In this case the value of remaining element can be
computed directly, thus we do not need to use the for loop at all. Without the loss
of generality assume that we have already assigned firstN −1 out ofN elements of
the j-th row. Then the formula for the remaining element can be written as follows:

aj,N−1 = N × (N − 1)/2 −
N−2∑

l=0

al,j . (1)

If the corresponding value does not violate the other uniqueness constraints then
we can safely proceed deeper into the search space.

Lookahead Heuristic. The next optimization comes from the general area of
combinatorial search and represents a variant of lookahead heuristics. Its basic
idea consists in the fact, that on certain levels of search when the number of
assigned cells is relatively large, we can look ahead before branching and spend
a little more computational resources in order to sometimes avoid spending much
more.

Here we would like to once again use the vectors of constraints that we
applied to produce the optimal order of cells. Using the same (sum-of-elements)
norm, it is easy to see that at some point for many cells the total number
of constraints will exceed N . It means that in a lucky situation there will be
no possible assignment for the corresponding Latin square element. For the non-
diagonal element ai,j it corresponds to the situation when the following equation
holds (remind that Rows[i][l] = 1 iff there already exists an element with value
l within the i-th row).

N−1∑

l=0

(Rows[i][l]||Columns[j][l]) = N. (2)
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An important notice here is that excessive use of this heuristic may clutter
the search procedure and slow it down. Therefore there is a tradeoff achieved by
choosing the levels of depth on which to apply it. We have empirically found that
for generating diagonal Latin squares of order 9 the best results are achieved when
we apply this lookahead heuristic within inner loops from number 51 to 60.

It turned out that we can in a way fuse both optimizations and improve the
general performance of the algorithm by using bit arithmetic.

3 Bit-arithmetic-based Version of the Algorithm

Since we consider Latin squares of small order, and the algorithm employs lots
of checks whether some element is “occupied” or not, it is natural to employ
bit arithmetic to speed up its implementation. Hereinafter, without the loss of
generality, we assume that all integer values contain at least 16 bits.

Let us describe the modifications we introduce to the algorithm outlined
above. First, we drop one dimension from arrays Rows, Columns, MD, AD
since we fuse it within one integer value with ≥ N bits. Second, we represent
the values of Latin square cells in a different manner: when ai,j = k instead of
LS[i][j] = k we now write LS[i][j] = 1 � k, where � k means left bit shift for
k positions.

We also introduce array of auxiliary variables CR[N ][N ] to keep track of
the number of current constraints on each Latin square element. Then the inner
loop structure looks as follows (we omit the entries for main diagonal and main
antidiagonal for simplicity).

Data: LS[N ][N ], CR[N ][N ], Rows[N ], Columns[N ], MD, AD, SquaresCnt
/* Compute vector of possible values for cell [i][j] */

CR[i][j] = Rows[i]|Columns[j];
/* Iterate over all possible values of cell [i][j] */

for LS[i][j] = 1; LS[i][j] < (1 � N); LS[i][j] = LS[i][j] � 1 do
/* Check if the value is ‘‘occupied’’ */

if (CR[i][j]&LS[i][j])! = 0 then continue;
/* Otherwise mark the value as ‘‘occupied’’ and proceed */

Rows[i] = Rows[i]|LS[i][j];
Columns[j] = Columns[j]|LS[i][j];
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i] = Rows[i] ⊕ LS[i][j];
Columns[j] = Columns[j] ⊕ LS[i][j];

end
Algorithm 3. Inner loop structure in the bit-arithmetic-based version of the
algorithm

Even without any optimizations considered in the end of the previous section
this version of the algorithm makes it possible to generate about 2.6 × 106 diag-
onal Latin squares of order 9 per second. Nevertheless, there is still a room for
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improvement. Despite the fact that we can compute the vector of possible values
for each particular element very fast (CR[i][j] contains 1-bits in all the positions
in which LS[i][j] can not take the value of 1), we still need to iterate over all
N values of LS[i][j]. Is there a way to make proper use of this information?
Fortunately, yes. We can reconstruct the for loop in order to iterate over only
such values of LS[i][j] that satisfy the condition CR[i][j]&LS[i][j] = 0, thus
eliminating the need for if block in the loop body.

For this purpose we employ two more constants: MaxN = 1 � N that
contains the upper bound for LS[i][j], and AllN = MaxN − 1 that has exactly
N 1-bits in the beginning and 0-bits otherwise. We also make use of additional
auxiliary integer array L[i][j]. The next version heavily relies on the bit twiddling
tricks that make it possible to isolate the rightmost 1-bit (y = x&(−x)) and to
turn off the rightmost 1-bit (y = x&(x − 1)). Let us present the modified inner
loop structure in the pseudocode below.

Data: LS[N ][N ], CR[N ][N ], L[N ][N ], Rows[N ], Columns[N ], MD, AD, SquaresCnt
/* Compute vector of possible values for cell [i][j] */

L[i][j] = Rows[i]|Columns[j];
/* Iterate over values of cell [i][j] that do not violate any uniqueness

constraint. */

for CR[i][j] = AllN ⊕ L[i][j]; CR[i][j]! = 0; CR[i][j] = CR[i][j]&(CR[i][j] − 1) do
LS[i][j] = CR[i][j]&(−CR[i][j]);
/* Mark the value as ‘‘occupied’’ and proceed */

Rows[i] = Rows[i]|LS[i][j];
Columns[j] = Columns[j]|LS[i][j];
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i] = Rows[i] ⊕ LS[i][j];
Columns[j] = Columns[j] ⊕ LS[i][j];

end

Algorithm 4. Inner loop structure in the improved bit-arithmetic-based ver-
sion

Now in the for loop we first initialize CR[i][j] with bit vector that contains 1
bits only in positions corresponding to values of LS[i][j] that do not violate any
uniqueness constraint. Then we iterate over them by switching off the rightmost
1 bit until CR[i][j] becomes 0. For each value of CR[i][j] we produce the value
of LS[i][j] by isolating the rightmost bit in CR[i][j].

This improved algorithm version makes it possible to generate about 6× 106

diagonal Latin squares of order 9 per second even without heuristic optimiza-
tions.

In Table 1 we present the results of experimental evaluation of our algorithm.
The generation speed is measured on one core of Intel Core i7-6700 (16 Gb
RAM, Windows 10, Microsoft Visual Studio 2015, x64-release). For diagonal
Latin squares we fix only the first row. For ordinary Latin squares we fix both
the first row and the first column. (D)LS followed by number stands for (diag-
onal) Latin squares of specific order. The results are shown for the most rele-
vant version of algorithm, including all modifications described above. The order
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Table 1. Performance of the proposed versions of the algorithm for generation of Latin
squares of small order.

Version Problem Squares per second

Standard DLS9 1.8 × 106

Bit-arithmetic-based DLS9 2.6 × 106

DLS9 6.8 × 106

LS8 9 × 106

Improved bit-arithmetic-based DLS8 5.8 × 106

LS9 8.0 × 106

LS10 6.3 × 106

DLS10 6.0 × 106

of cells in each case is determined according to heuristic procedure outlined in
Subsect. 2.3. The performance of “Standard” and “Improved” versions for DLS9
was measured for the algorithm versions that use Lookahead heuristic (in other
cases the corresponding optimization requires a lot of empirical evaluation and
testing).

It is clear that bit arithmetic techniques make it possible to significantly
increase the performance of the algorithm.

4 Enumeration of Diagonal Latin Squares of Order 9

We used the preliminary version of the presented algorithm (as it is outlined in
Sect. 2, i.e. without bit arithmetic) to enumerate diagonal Latin squares of order
8 (300 286 741 708 800) [6], which is reflected in the sequence A274806 [7] in the
On-Line Encyclopedia of Integer Sequences. At the time of experiment it took
about 30 CPU h. Our current improved bit-arithmetic-based implementation
achieves this result in 21 min.

A large part of our motivation for the present research was to improve the
algorithm effectiveness to make enumerating of diagonal Latin squares of order 9
possible. The improved bit-arithmetic-based version of the algorithm, presented
in the previous sections, was employed to solve this large-scale computational
problem. In order to ensure the correctness of the results, we launched two sepa-
rate experiments. The first one was launched in the volunteer computing project
Gerasim@home [8]. The second one was performed on the computing cluster
“Academician V.M. Matrosov” of Irkutsk supercomputing center SB RAS1.
In the following subsection we describe how we decomposed the search space
into a pool of computational tasks. After this both experiments are described in
detail.

1 http://www.hpc.icc.ru.

http://www.hpc.icc.ru
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4.1 Decomposition of the Search Space

The considered problem of enumerating diagonal Latin squares of order 9 can
be decomposed into a separate subproblems in quite natural way. First, we fixed
the first row to 012345678. So, here we considered the problem of enumerating
diagonal Latin squares of order 9 with fixed first row. After this we formed 1
225 884 workunits (WU) which correspond to all possible correct assignments
of the first 10 cells in accordance with the order, presented on Fig. 1. It means
that in each WU the values of 19 cells out of 81 were fixed (the others should
be varied by our algorithm). Here by processing of a certain WU we mean the
enumeration of all diagonal Latin squares of order 9 in which the values of 19
corresponding cells are equal to those specified by WU. According to our results,
for some WUs the corresponding number of squares can be equal to 0.

The formed WUs can be processed by employing the embarrassing parallelism
[9], so one can use both parallel and distributed computing for this purpose. As
a result we have an array of 1 225 884 integer numbers (as we mentioned above,
some ot them can be equal to 0). The summation of all these numbers gives us the
number of reduced diagonal Latin squares of order 9. By multiplying this number
to 9! = 362880 we obtain the number of diagonal Latin squares of order 9.

4.2 Experiment in a Volunteer Computing Project

The first experiment was held in the volunteer computing project Gerasim@home
[8] which is based on BOINC (Berkeley Open Infrastructure for Network Com-
puting [10]). In Fig. 2 the scheme of this experiment is shown.

Let us describe this scheme. An input data of the application is a WU file with
values of 10 cells in accordance with the order from Fig. 1 (the values of the first
9 cells are constant in the algorithm implementation, so we don’t send them).
A number of diagonal Latin squares, which corresponds to a WU, is written to an
output file. In order to decrease the influence of possible software and hardware
errors we used quorum of 2. It means that each WU was generated and processed
twice. According to the BOINC redundancy technique, two copies of a certain
WU are sent to different volunteers. Then two results are compared and if they
coincide, then the result of the corresponding WU is marked as correct. If not,
then two new copies of the WU are generated.

The experiment was launched on 18 June, 2016. At that moment the per-
formance of the project was about 2.5 teraflops. In the experiment we used x86
and x64 applications for Windows OS. The experiment ended on 17 September,
2016, so it took 3 months. According to the statistics, about 500 volunteers from
51 countries participated in it. In total, they connected to the project about
1000 hosts and, as a result, the peak performance of 5 teraflops was achieved in
some time intervals (an average performance was equal to 3 teraflops).

As a result of post-processing we determined the number of reduced diagonal
Latin squares of order 9: 5 056 994 653 507 584. By multiplying it to 9! we
determined the number of diagonal Latin squares of order 9: 1 835 082 219 864
832 081 920. It should be noted, that in the case we didn’t made the algorithm
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Fig. 2. Scheme of the experiment which was held in Gerasim@home

improvements, described in Sects. 2 and 3, the corresponding experiment could
take about 10 years in Gerasim@home with its current performance (according
to the speed of enumeration from [6]).

4.3 Experiment on a Computing Cluster

While solving an enumeration problem the correctness of a result is the most
crucial feature. That is why we launched one more experiment aimed at solving
the same problem. This experiment was performed on the computing cluster
“Academician V.M. Matrosov” of Irkutsk supercomputing center SB RAS. Each
node of this cluster is equipped with 2 16-core CPUs AMD Opteron 6276 and
64 GB of RAM. We used the same decomposition (as it was described in the
previous subsection). Unlike the experiment held in Gerasim@home, here we
didn’t employ a redundancy technique, so each WU was processed exactly once.

We developed an MPI-program based on the improved bit-arithmetic-based
version of our algorithm. In this program there is one control process, and the
other ones are computing processes. First, on the control process a pool of WUs is
created. Next, these WUs are processed by computing processes. Control process
sends WUs to computing processes and receives results from them. Finally, con-
trol process accumulates results for all WUs and calculates their sum. The corre-
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sponding scheme of the experiment is quite similar to one used in Gerasim@home
(see Fig. 2).

There is very important restriction on the cluster, which was employed for
this experiment. According to administrator’s policy, the time duration of an
arbitrary MPI-task can’t exceed 7 days. That is why we added to our MPI-
program the possibility to continue a computational process from a checkpoint
file. This file contains a current state of the processing of each WU from the pool.
It is updated every time when new result from a computing process is obtained.
At the end of the experiment, this file contains the corresponding numbers for
each WU.

The experiment was started on 17 July, 2016. 19 launches of the MPI-program
were performed in total. In these launches the number of cluster nodes varied
from 10 to 15, and the time duration varied from 2 h to 7 days. The most of
launches were performed on 15 nodes with time duration of 7 days. The experi-
ment was finished on 17 October, 2016, so it took 3 months. The number obtained
as a result of this experiment was the same as the one obtained in Gerasim@home
(see the previous subsection). So, we can conclude, that the obtained result is
correct with very high probability.

In contrast to a volunteer computing project, our cluster is equipped with
nodes of the same type. That is why in this experiment we can compare WUs
not only on the number of squares, but on the processing time too. In Table 2
we give some details on processing WUs with no squares and WUs with at least
one square.

Table 2. Processing time (in seconds) of different types of WUs.

Type of WUs Number of WUs Min. time Max. time Avg. time

With no square 36254 0.84 9573.33 407.03

With at least one square 1219630 60.056 24993.2 1713.32

It should be noted, that the necessity to launch MPI-program many times to
perform the whole experiment is quite uncomfortable circumstance. From this
point of view, a volunteer computing project suits better for such large-scale
experiments.

5 Related Work

Authors are not aware of algorithms developed specifically for enumeration of
diagonal Latin squares. Usually, when it comes to Latin squares, even when the
order is relatively small, say 8 or 9, the number of species representatives is so
large that one does not attempt to generate them all since the amount of required
memory would be colossal. Instead, there are algorithms that make it possible
to generate uniformly distributed random Latin squares [2]. In paper [11] the
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enumeration of mutually orthogonal Latin squares of order 9 was performed.
For this purpose the authors used proprietary algorithm. We are not aware of its
performance and whether or not it can be adapted to work with diagonal Latin
squares.

Papers [12–14] report on the number of Latin squares of orders 9, 10 and 11.
The algorithms in these works are designed to take into account the fact that
the space of Latin squares can be divided into relatively large main classes, and
exploit the symmetrical structure of Latin squares a lot. In contrast to Latin
squares, diagonal Latin squares form relatively small equivalence classes and
restrict the vast majority of transformations. Thus we believe that these algo-
rithms can not be directly applied to the considered enumeration problem. The
authors of the present paper developed an algorithm for generating diagonal
Latin squares of special kind [15]. Based on this algorithm a triple of diago-
nal Latin squares of order 10 that is the closest to being a triple of mutually
orthogonal diagonal Latin squares found so far was found.

There are several examples of application of parallel and volunteer computing
to the search for combinatorial designs based on Latin squares. With the help
of a computing cluster there was proven that there is no finite projective plane
of order 10 [16]. In the volunteer computing project SAT@home several dozen
pairs of mutually orthogonal diagonal Latin squares were found [17,18].

The most similar approach, compared to ours, is the one employed in [19].
In this paper the hypothesis about the minimal number of clues in Sudoku was
proven. The authors developed the fast algorithm to enumerate and check all
possible Sudoku variants. This algorithm was implemented and launched on a
modern computing cluster. It took about 11 months for this cluster to check all
variants. The volunteer computing project Sudoku@vtaiwan [20] was used to
confirm the solution of this problem.

6 Conclusions and Future Work

In this paper we presented the fast algorithm for generating (diagonal) Latin
squares of small order. It was employed to enumerate diagonal Latin squares
of order 9. The obtained result is a consequence of the proper development
of the enumeration algorithm and the rational employing of huge amount of
computational resources. The corresponding source code is available online2.
In the nearest future we plan to make a GPU implementation of the suggested
algorithm.
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Abstract. In this paper, we describe the Globalizer Lite software sys-
tem for solving global optimization problems. This system implements an
approach to solving global optimization problems applying a block mul-
tistage scheme of dimension reduction that combines the use of Peano
curve type evolvents and a multistage reduction scheme. The scheme
allows for an efficient parallelization of the computations and a significant
increase in the number of processors employed in the parallel solution of
global optimization search problems. We also describe the synchronous
and asynchronous schemes of MPI-implementation of this approach in
the Globalizer Lite software system, and present a comparison of these
schemes demonstrating the advantage of the asynchronous variant.

Keywords: Multidimensional multiextremal optimization · Global
search algorithms · Parallel computations · Dimension reduction · Block
multistage dimension reduction scheme

1 Introduction

In spite of the rapid increase in computer performance, the capacity of existing
computer systems appears to be insufficient for the analysis and investigation
of some important problems [37]. Some of these problems may be reduced to
multidimensional problems of multiextremal nonlinear programming, for which
the solution is a global extremum. The computation costs of such problems cre-
ates a need for the parallelization of algorithms and the use of parallel computer
systems.

The general state of the art in the field of global optimization has been pre-
sented in a number of key monographs [10,18,22,27,38,39,41]. The development
of optimization methods that use high-performance computer systems to solve
time-consuming global optimization problems is a field that is currently receiving
extensive attention (see, for example, [5,6,23,37,38]).
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The theoretical results obtained provide efficient solutions to many applied
global optimization problems in various fields of scientific and technological
applications (see, for example, [8,9,22,23,26,27]).

At the same time, the practical implementation of these algorithms for mul-
tiextremal optimization is quite limited.

Among the software for global optimization, one can mention the follow-
ing systems: LGO (Lipschitz Global Optimization) [27], GlobSol [19], LINDO
[21], IOSO (Indirect Optimization on the basis of Self-Organization) [7], MAT-
LAB Global Optimization Toolkit (see, for example, [40]), TOMLAB system
(see, for example, [17]), BARON (Branch-And-Reduce Optimization Navigator)
[30], GAMS (General Algebraic Modeling System) (see [4]), Global Optimization
Library in R (see, for example, [25]).

The list provided above is certainly not exhaustive (additional information on
software systems for a wider spectrum of optimization problems can be obtained,
for example, in [24,28,29]). Nevertheless, even from such a short list the following
conclusions can be drawn (see also [20]):

– the collection of available global optimization software systems for practical
use is insufficient;

– the availability of numerous methods through these systems allows to solve
complex optimization problems in a number of cases, but this requires a
rather high level of user knowledge and understanding in the field of global
optimization;

– the use of parallel computing to achieve a higher efficiency in solving complex
time consuming problems is limited, therefore, the computational potential
of modern supercomputer systems is very poorly utilized.

In this paper, a novel Globalizer Lite software system is considered. The
development of this system was conducted on the basis of the information-
statistical theory of multiextremal optimization, aimed at developing efficient
parallel algorithms for global search (see, for example, [36–38]).

The paper is structured as follows. In Sect. 2, we consider the general for-
mulation of the multidimensional global optimization problem. In Sect. 3, we
give the approaches to its solving based on the information-statistical theory
of multiextremal optimization [38]. The Sect. 4 is devoted to the description of
the Globalizer Lite software system; the implementations of the synchronous
and asynchronous schemes of parallelization of the block multistage scheme will
also be described here. The results of experiments comparing the efficiencies of
these implementations will be presented in Sect. 5. Finally, our conclusions will
be summarized in Sect. 6.

2 Formulation of the Multidimensional Global
Optimization Problem

Let us consider the multidimensional multiextremal optimization problem

ϕ(y) → inf, y ∈ D ⊂ RN , (1)



132 A.V. Sysoyev et al.

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
, (2)

i.e. the problem of finding the extremum values of the objective (minimized)
function ϕ(y) in a domain D defined by the coordinate restrictions (2) on the
choice of feasible points y = (y1, y2, ..., yN ).

If y∗ is an exact solution of the problem (1)–(2), then the numerical solution
of the considered problem may be reduced to constructing an estimate of the
exact solution y0 matching some notion of nearness to a point (for example,
‖y∗ − y0‖ ≤ ε where ε > 0 is a predefined precision) based on a finite number k
of computations of the optimized function values.

Regarding the class of problems considered here, the fulfillment of the fol-
lowing important conditions is presumed:

– The optimized function (y) can be defined by some algorithm for computing
its values at the points of the domain D.

– The computation of the function value at each point is a computational-costly
operation.

– The function ϕ(y) satisfies the Lipschitz condition:

|ϕ(y1) − ϕ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D, 0 < L < ∞, (3)

which corresponds to a bounded variation of the function value for bounded
variations of the argument.

Multiextremal optimization problems i.e. problems with an objective function
ϕ(y) possessing several local extrema in the feasible domain D, are the subject
of consideration in the present paper. The dimensionality considerably affects
the difficulty of solving such problems. The so called “curse of dimensionality”,
consisting in the exponential growth of computational costs as the dimension
increases, appears in the case of multiextremal problems.

3 Approach for Solving Multidimensional Global
Optimization Problems

3.1 Dimension Reduction Methods

One of the approaches to solving multidimensional global optimization prob-
lems consists in their reduction to one-dimensional problems, and then using
efficient one dimensional global search algorithms for solving the reduced prob-
lems. Moreover, the reduction can be applied to the domain D in (2), which
defines a one to one mapping of the hyperparallelepiped D onto the interval
[0, 1], and also to the function ϕ(y), whose minimization can be performed on
the basis of the following recursive scheme [33]:

min{ϕ(y) : y ∈ D} = min
a1≤y1≤b1

min
a2≤y2≤b2

... min
aN≤yN≤bN

ϕ(y). (4)

For the multistage scheme of dimension reduction represented by the relation
(4), a generalization has been proposed in [1], namely a block multistage scheme
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of dimension reduction that reduces the solution of the initial multidimensional
optimization problem (1)–(2) to that of a sequence of “nested” problems of lower
dimension.

Thus, the initial vector y is represented as a vector of “aggregated” macro-
variables,

y = (y1, y2, ..., yN ) = (u1, u2, ..., uM ) (5)

where the i-th macro-variable ui is a vector of dimension Ni consisting of com-
ponents of the vector y taken sequentially, i.e.

u1 = (y1, y2, ..., yN1),

u2 = (yN1+1, yN1+2, ..., yN1+N2), (6)

ui = (yp+1, yp+2, ..., yp+Ni
), p =

i−1∑

k=1

Nk.

In addition
∑M

k=1 Nk = N .
Using the macro-variables, the main relation of the multistage scheme (4)

can be rewritten as

min
y∈D

ϕ(y) = min
u1∈D1

min
u2∈D2

... min
uM∈DM

ϕ(y), (7)

where the subdomains Di, 1 ≤ i ≤ M , are the projections of the initial
search domain D onto the subspaces corresponding to the macro-variables
ui, 1 ≤ i ≤ M .

The fact that the nested subproblems

ϕi(u1, ..., ui) = min
ui+1∈Di+1

ϕi+1(u1, ...ui, ui+1), 1 ≤ i ≤ M (8)

are multidimensional is the principal difference between the block multistage
scheme and the initial one. Thus, this approach can be combined with the reduc-
tion of the domain D (for example, with the evolvent based on a Peano curve)
in order to use efficient methods for solving one-dimensional problems of multi-
extremal programming [37].

The Peano curve y(x) allows to map the interval [0, 1] of the real axis onto
the domain D uniquely:

{y ∈ D ⊂ RN} = {y(x) : 0 ≤ x ≤ 1}. (9)

The evolvent is an approximation to the Peano curve with a precision of the
order of 2−m, where m is the density of the evolvent.

Mappings of this kind allow to reduce the multidimensional problem (1)–(2)
to a one-dimensional one:

ϕ(y∗) = ϕ(y(x∗)) = min{ϕ(y(x)) : x ∈ [0, 1]}. (10)
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3.2 Method for Solving the Reduced Global Optimization Problems

The information-statistical theory of global search formulated in [36,38] has
served as a basis for the development of a large number of efficient multiextremal
optimization methods (see, for example, [13–16,31–35]).

The Multidimensional Algorithm of Global Search (MAGS) established the
basis for the methods applied in Globalizer Lite. The general computational
scheme of MAGS can be presented as follows (see [36,38]).

Let us introduce a simpler notation for the problem being solved:

f(x) = ϕ(y(x)) : x ∈ [0, 1]. (11)

Let us assume that k > 1 iterations of the methods have already been com-
pleted (an arbitrary point of the interval [a, b], for example, its middle point,
may be taken as the point of the first trial, x1). Then, the next trial point is
selected in the (k + 1)-st iteration according to the following rules.

Rule 1. Renumber the points of the preceding trials, x1, ..., xn (including the
boundary points of the interval [a, b]), with subscripts in increasing order of
coordinate values:

0 = x0 < x1 < . . . < xk < xk+1 = 1. (12)

The function values zi = ϕ(xi) have been calculated at all points xi, i =
1, ..., k. At the points x0 = 0 and xk+1 = 1, the function values have not been
computed. For the sake of convenience, let us introduce the dummy notations
z0 and zk+1.

Rule 2. Compute the quantities

μ = max
1≤i≤k

|zi − zi−1|
Δi

, M =
{

rμ, μ > 0,
1, μ = 0,

(13)

where r > 1 is the reliability parameter of the method (specified by the user),
Δi = xi − xi−1.

Rule 3. Compute the characteristics for all intervals (xi−1, xi), 1 < i < k + 1,
according to the formulae

R(1) = 2Δ1 − 4
z1
M

,

R(i) = Δi +
(zi − zi−1)2

M2Δi
− 2

zi + zi−1

M
, 1 < i < k + 1, (14)

R(k + 1) = 2Δk+1 − 4
zk
M

.

Rule 4. Select the interval with the highest characteristic. Let us denote the
index of this interval with t.



Globalizer Lite 135

Rule 5. Execute the next trial at the point

xk+1 =

{ xt+xt−1
2 , t ∈ {1, k + 1},

xt+xt−1
2 − sign(zt − zt−1) 1

2r

[
|zt−zt−1|

µ

]N
, 1 < t < k + 1.

(15)

The algorithm is terminated if the condition Δt ≤ ε is satisfied.
The values

ϕ∗
k = min

1≤i≤k
ϕ(xi), x∗

k = arg min
1≤i≤k

ϕ(xi). (16)

are selected as the estimates of the globally optimized solution of the problem
(1)–(2).

The computational scheme of the Parallel Multidimensional Algorithm of
Global Search (PMAGS) is practically identical to that of the MAGS scheme.
The differences consist in the following set of rules.

Rule 4’. Arrange the characteristics of the intervals obtained according to
(14) in descending order,

R(t1) ≥ R(t2) ≥ ... ≥ R(tk) ≥ R(tk+1), (17)

and select p intervals with the highest characteristics (p is the number of proces-
sors/cores used for parallel computations).

Rule 5’. Execute new trials at the points

xk+j =

⎧
⎪⎨

⎪⎩

xtj
+xtj−1
2 , tj ∈ {1, k + 1},

xtj
+xtj−1

2 − sign(ztj − ztj−1) 1
2r

[ |ztj −ztj−1|
µ

]N

, 1 < tj < k + 1.
(18)

4 General Description of Globalizer Lite

4.1 Implementation of the Parallel Algorithm of Global
Optimization

Let us consider a parallel implementation of the block multistage dimension
reduction scheme described in Subsect. 3.1.

For the description of the parallelism in the multistage scheme, let us intro-
duce a vector of parallelization degrees,

π = (π1, π2, ..., πM ), (19)

where πi, 1 ≤ i ≤ M , is the number of subproblems in the (i + 1)-st nesting
level being solved in parallel, arising as a result of the execution of parallel
iterations at the i-th level. For the macro-variable ui, the number πi means
the number of parallel trials in the course of the minimization of the function
ϕM (u1, ..., uM ) = ϕ(y1, ..., yN ) with respect to ui for fixed values of u1,u2,...,ui−1

i.e. the number of values of the objective function ϕ(y) computed in parallel.
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In the general case, the quantities πi, 1 ≤ i ≤ M can depend on various
parameters and can change during the optimization, but we will limit ourselves
to the case when all the components of the vector π are constant.

Thus, a tree of MPI-processes is built during the solution of the problem. At
every nesting level (every level of the tree), the parallel implementation of the
MAGS described in Subsect. 3.2 is used. Let us remind that the parallelization is
implemented not by selecting a single point for the next trial (as in the sequential
version) but p points, which are placed in p intervals with the highest character-
istics. Therefore, if p processors are available, p trials can be executed at these
points in parallel. Moreover, the solution of the problem at the i-th level of the
tree generates the subproblems for the (i + 1)-st level. This scheme corresponds
to a method of organization of parallel computations of “master-slave” type.

When launching the software, the user specifies:

– The number of subdivision levels of the initial problem (in other words, the
number of levels in the tree of processes) M ;

– The number of variables (dimensions) at each level (
∑M

k=1 Nk = N , where N
is the dimension of the problem);

– The number of MPI-processes and their distribution among the levels (π =
(π1, π2, ..., πM )).

Let us consider an example:

N = 10,M = 3, N1 = 3, N2 = 4, N3 = 3, π = (2, 3, 0).

Thus, we have nine MPI-processes, which are arranged in a tree (Fig. 1: for
each function ϕi, only the varied parameters are shown; the fixed values are not
shown). According to N1, N2, N3, we have the following macro-variables: u1 =
(y1, y2, y3), u2 = (y4, y5, y6, y7), u3 = (y8, y9, y10). Each node solves a problem
from the relation (10). The root (level #0) solves the problem with respect to the
first N1 variables of the initial N -dimensional problem. The iteration generates a
problem of the next level at any point. The nodes of level #1 solve the problems
with respect to N2 variables for fixed values of the first N1 variables, etc.

Fig. 1. Scheme of organization of parallel computations.
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4.2 Synchronous Scheme of Computations

Let p be the number of child processes of a given node of the tree of MPI
processes.

At each iteration, we select p points of the next trials. The data is transferred
to the child processes. We wait until all child processes are completed and the
solutions of the subproblems are obtained. Now we compute the current estimate
of the extremum and select the points for the next trials.

The main disadvantage of the synchronous scheme is that the child processes
of some nodes, having completed their trials earlier than others, would stay idle
waiting for the completion of the whole iteration. The asynchronous scheme
considered below is free from this disadvantage.

4.3 Asynchronous Scheme of Computations

At the first iteration, we proceed in the same way as in the synchronous scheme:
we generate the trial points according to the number of child processes, then send
the scheduled trial point to each child process, and wait until all child processes
complete their subproblems.

At the second iteration, we send a single point to each child process. This is
be-cause for the correct functioning of the asynchronous scheme, a large enough
number of intervals generated during the solution should be available. In some
cases, the first iteration is not enough to ensure this, therefore, the second itera-
tion is executed separately from all the next ones according to a pure synchronous
scheme. At that, the transition to the asynchronous mode takes place, and we
wait until only one child process is completed, without waiting for the completion
of the rest, and obtain the data from this process.

At the next iteration, we select only one trial point and send it to the child
process from which a solution was obtained at the preceding iteration. Then, we
wait until each child process completes its own subproblem, and we obtain the
data from this one. These operations are repeated until the required precision
of the solution is reached.

4.4 Globalizer Lite System Architecture

Globalizer Lite, the system considered in this paper, expands the family of global
optimization software systems successively developed by the authors during the
past several years. One of the first developments was the SYMOP multiextremal
optimization system [11], which has been successfully applied for solving many
optimization problems. A special place is occupied by the ExaMin system (see,
for example, [1]), which was developed and used extensively to investigate the
application of novel parallel algorithms to the solution of global optimization
problems using high performance multiprocessor computing systems.

The program architecture of the Globalizer Lite system is shown in Fig. 2.
The structural components of the systems are:
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Fig. 2. Program architecture of the Globalizer Lite system.

– Block 0 consists of the procedures for computing the functional values (criteria
and constraints) for the optimization problem being solved; this is an external
block with respect to the Globalizer Lite system, and is provided by the user
through a predefined interface.

– Block 1 forms the optimization subsystem and solves the global optimization
problems.

– Block 2 is a subsystem for accumulating and processing search information;
this is one of the basic subsystems. On one hand, the amount of search infor-
mation for complex optimization problems may be quite large, but on the
other hand, the efficiency of global optimization methods depends to a great
extent on how completely all the available search data is used.

– Block 3 contains the dimension reduction procedures based on Peano evol-
vents. The optimization block solves the reduced (one-dimensional) optimiza-
tion problems. Block 3 provides interaction between the optimization block
and the initial multidimensional optimization problem.

– Block 4 is responsible for managing the parallel processes when performing
the global search.

5 Results of Numerical Experiments

In this section, we present the results of computational experiments. The first
series of experiments was aimed at comparing the synchronous and asynchronous
schemes of the block multistage reduction by comparison of various distributions
of dimensions over the levels of the tree of MPI-processes, and finding the most
efficient distribution.
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The computational experiments considered below were first carried out using
the ExaMin system (see [1–3,12]), and then were reproduced using the Globalizer
Lite system.

The Rastrigin function (20), the Rosenbrock function (21) and the Neumeier
function (22) were used in the experiments. This functions are classic test func-
tions in optimization theory. The Rastrigin function is a fairly difficult problem
due to a large search space and a large number of local minima. The global
minimum of the Rosenbrock function lies inside a long and narrow valley. It is
considered that the search for the global minimum of this functions is a non-
trivial task.

ϕ(y) = An +
n∑

i=1

[y2
i − A cos(2πyi)], A = 10, yi ∈ [−5.12, 5.12]. (20)

ϕ(y) =
n−1∑

i=1

[(1 − yi)2 + 100(yi+1 − y2
i )

2], y ∈ RN . (21)

ϕ(y) =
n∑

k=1

(bk −
n∑

i=1

yk+1
i )2, b[4] = {8, 18, 44, 114}. (22)

From the results of the experiments, one can see that the asynchronous ver-
sion works faster in most cases. In average, a 1.5-2-fold speedup was achieved
(Table 1).

Table 1. Results of the test problems solution: Rastrigin function (4-dimensional)

Dimension Sync.
scheme,
time (sec)

Async.
scheme,
time (sec)

Sync. scheme,
number of trials of
root process

Async.
scheme,
number of
trials of
root
process

Speedup

(1, 3) 5.874 5.819 33 29 1.009

(2, 2) 0.156 0.041 522 144 3.771

(3, 1) 0.069 0.007 3429 307 10.105

Also, when comparing the schemes one can note that the root-level process
(the root of the tree) performs fewer iterations in the asynchronous scheme than
it does in the synchronous one (Table 2).

The total computation time of the algorithm strongly depends on the prob-
lem being solved. Comparing the data obtained on the three test functions, one
can conclude that, for equal numbers of processes, it is more profitable to leave
the largest dimension at the zero level when distributing the dimensions among
the levels of the tree. Even though in this case the root performs more operations
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Table 2. Results of the test problems solution: Rosenbrock function (4-dimensional)

Dimension Sync.
scheme,
time (sec)

Async.
scheme,
time (sec)

Sync. scheme,
number of trials
of root process

Async. scheme,
number of trials
of root process

Speedup

(1, 3) 68.473 69.708 69 70 0.982

(2, 2) 12.832 7.236 2691 1931 1.773

(3, 1) 1.391 0.535 88428 48930 2.599

Table 3. Results of the test problems solution: Neumeier function (4-dimensional)

Dimension Sync.
scheme,
time (sec)

Async.
scheme,
time (sec)

Sync. scheme,
number of trials
of root process

Async. scheme,
number of trials
of root process

Speedup

(1, 3) 9.054 8.445 39 35 1,072

(2, 2) 0.241 0.163 396 258 1,480

(3, 1) 0.0609 0.032 3705 2274 1,878

than in other situations, the total time required to solve the problem is consid-
erably reduced. Thus, the distribution of the dimensions among the levels is an
important factor determining the computation time of the algorithm (Table 3).

Also, it is worth noting that increasing the number of levels in the tree
may not result in the desired speedup of the algorithm. This is caused by an
increasing amount of data being transmitted between processes. However, if the
time required to compute the objective function is rather long, then this variant
of tree construction is fully justified.

The next series of experiments was aimed both at comparing various struc-
tures of MPI-process trees and at determining the effect of the tree structure on
the rate of problem solving.

The results of the experiments are presented in Table 4. The number of child
processes at each level is shown in the first column. So, the sequence (2, 3, 0)
means that the root of the MTP-tree has 2 child processes, and every node of
the first level in the tree has 3 child processes (Fig. 1).

According to the data obtained in the experiments, a clear dependence is
observed for the synchronous scheme between the time required to solve the
problem and the number of trials of the root process.

From the results of the experiments, one can point out that (4, 2, 0) is the
most profitable structure for the synchronous scheme. It presents the minimum
number of trials of the root process in the MPI-tree and the best solution time.
This can be ex-plained by the fact that for the functions considered here, which
are computed relatively quickly, two child processes at the second level, which
would compute the function directly, are quite enough. In this regard, the struc-
tures (1, 11, 0) and (2, 5, 0) are less efficient.
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Table 4. Results of the test problems solution: Rastrigin function (5-dimensional)

Number of
child
processes at
each level

Sync.
scheme,
time (sec)

Async.
scheme,
time (sec)

Sync. scheme,
number of trials of
root process

Async. scheme,
number of trials of
root process

(1, 11, 0) 3.270 1.369 180 123

(2, 5, 0) 3.024 1.479 266 131

(3, 3, 0) 7.0824 1.698 552 150

(4, 2, 0) 1.789 2.552 156 214

(6, 1, 0) 2.836 1.517 228 136

(3, 1, 2, 0) 22.037 9.449 552 173

(2, 1, 4, 0) 75.341 7.430 266 93

The structures having four levels are not efficient for the Rastrigin function,
since the time costs of data transfer appear to exceed essentially the times of
computing the function itself.

6 Conclusion

In this paper, we have examined the Globalizer Lite global optimization soft-
ware system for implementing a general scheme of parallel solution of glob-
ally optimized decision making problem. We have considered the possibility of
speeding up the search of the global optimum when solving multidimensional
multiextremal optimization problems using a parallel block multistage scheme
of dimension reduction.

We have also considered the general principles of organization of synchronous
and asynchronous parallel computations. These schemes were implemented using
MPI. Finally, we studied the efficiency of the proposed block multistage schemes
when applied to problems with various times of computation of the optimized
function.
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Abstract. In this article, we construct new variants of iteratively reg-
ularized linearized gradient-type methods for solving structural inverse
gravimetry and magnetometry problems, namely the regularized conju-
gate gradient method, the modified regularized conjugate gradient meth-
od, and the hybrid regularized conjugate gradient method.

The main idea of the modification is to calculate the Jacobian matrix
of the integral operator at a fixed point, without updating it during the
entire iteration process.

We also developed memory-optimized and time-efficient parallel algo-
rithms and programs on the basis of the constructed modified meth-
ods. The memory optimization uses the block-Toeplitz structure of the
Jacobian matrix. The algorithms were implemented on GPUs using the
NVIDIA CUDA technology. We performed an efficiency and speedup
analysis, and solved a model problem with synthetic disturbed data.

Keywords: Nonlinear gradient-type methods · Parallel algorithms ·
Gravimetry and magnetometry problems · Toeplitz matrix · GPU

1 Introduction

Solving structural inverse gravimetry and magnetometry problems has a great
importance in the study of the Earth’s crust structure. The solution consists
in finding the interface between layers of different densities or magnetizations
using known density or magnetization contrasts and a gravitational or magnetic
field [6,10].

The problems are ill-posed. Therefore, it is necessary to use iterative regu-
larization methods [5].
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Effective methods to determine structural boundaries were constructed in
[1–4,7,11], namely the regularized linearized steepest descent method, the lin-
earized conjugate gradient method and the componentwise gradient method.

The modified regularized linearized steepest descent method is proposed and
studied in [12]. The main idea of the modification is to calculate the Jacobian
matrix of the integral operator at a fixed point without updating it at each
iteration.

In this paper, we construct a regularized variant of the linearized conjugate
gradient method based on the Tikhonov regularization, a modified variant of
this method and a hybrid conjugate gradient method.

We construct parallel algorithms on the basis of the modified regularized
linearized steepest descent method and the methods constructed in this paper.
Additionally, we implement a memory optimization based on the block-Toeplitz
structure of the Jacobian matrix.

Real observations are performed on large areas. To increase the accuracy and
degree of detail, it is essential to use larger grids producing high dimensional
data sets. The use of modern computing technologies and parallel computations
allows to reduce computation time.

In this paper, we implement parallel algorithms for GPUs using the NVIDIA
CUDA technology. Parallel programs are used to solve the model problem with
a large grid on the NVIDIA Tesla GPUs of the Uran supercomputer, installed at
the Institute of Mathematics and Mechanics of the Ural Branch of the Russian
Academy of Sciences. We also investigate the efficiency and speedup of the par-
allel algorithms.

2 Problems Statement

Let us introduce a Cartesian coordinate system where the x0y plane coincides
with the Earth’s surface, and the z axis is directed downwards, as shown in Fig. 1.
Assume that the lower half-space consists of two layers with constant densities
σ1 and σ2 divided by the sought surface, described by a bounded function ζ =
ζ(x, y) and lim

|x|+|y|→∞
(h − ζ(x, y)) = 0 for some h. The ζ function must satisfy

the following equation

fΔσ

∞∫

−∞

∞∫

−∞

{
1

((x − x′)2 + (y − y′)2 + ζ2(x′, y′))1/2

− 1
((x − x′)2 + (y − y′)2 + h2)1/2

}
dx′dy′ = Δg(x, y, 0),

(1)

where f is the gravitational constant, Δσ = σ2 − σ1 is the density contrast,
Δg(x, y, 0) is an anomalous gravitational field measured at the Earth’s surface.

A preliminary processing of gravitational data with the aim of extracting the
anomalous field from the measured gravitational data is performed using a tech-
nique suggested by Martyshko and Prutkin [9]. This technique was numerically
implemented in the Uran supercomputer [8].
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Fig. 1. Two-layer medium for the gravimetry problem.

For the magnetometry problem, the lower half-space consists of two layers
with constant vertical magnetizations J1 and J2 divided by the sought surface
ζ = ζ(x, y), as shown in Fig. 2. The function ζ must satisfy the equation

ΔJ

∞∫

−∞

∞∫

−∞

{
ζ(x′, y′)

((x − x′)2 + (y − y′)2 + ζ2(x′, y′))3/2

− h

((x − x′)2 + (y − y′)2 + h2)3/2

}
dx′dy′ = ΔZ(x, y, 0),

(2)

where ΔJ = J2 − J1 is the magnetization contrast, ΔZ(x, y, 0) is the vertical
component of the anomalous magnetic field measured at the Earth’s surface.

Equations (1) and (2) are nonlinear two-dimensional integral equations of
the first kind.

After the discretization of the area Π = {(x, y) : a � x � b, c � y � d}
into n = M × N grid and the approximation of the integral operators using
quadrature rules, we have the right-hand part vector F and the approximation
of the solution vector z of dimension n. Equations (1) and (2) take the form

fΔσΔxΔy
∑

j=1..n

[
1√

(xi − xj)2 + (yi − yj)2 + z2j

− 1√
(xi − xj)2 + (yi − yj)2 + h2

]
= Fi, i = 1..n;

(1a)
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Fig. 2. Two-layer medium for the magnetometry problem.

ΔJ

4π
ΔxΔy

∑
j=1..n

[
−h(

(xi − xj)2 + (yi − yj)2 + h2
)3/2

+
zj(

(xi − xj)2 + (yi − yj)2 + zj

)3/2

]
= Fi, i = 1..n.

(2a)

We can rewrite these equations as

A(z) = F. (3)

3 Numerical Methods for Solving the Problems

3.1 Modified Regularized Linearized Steepest Descent Method

The main idea of the modified regularized linearized steepest descent method
developed by Vasin [12] is to calculate the Jacobian matrix of the nonlinear oper-
ator at a initial point without updating it throughout the entire iteration process.
As a result, the method becomes more economical in terms of the number of oper-
ations executed at each iteration step. Moreover, numerical experiments show
that, in many cases, this modification is superior to the unmodified method in
terms of the computer time required for achieving the same accuracy of the
desired solution.

The modified regularized linearized steepest descent method (MRLSDM) has
the following form:

zk+1 = zk − ψ

∥∥S0
α(zk)

∥∥2

‖A′(z0)S0
α(zk)‖2 + α ‖S0

α(zk)‖
S0

α(zk), (4)
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where S0
α = A′(z0)T (A(z)−F )+α(z −z0), z0 is the initial approximation of the

solution, zk is the approximation of the solution at the k-th iteration, k ∈ N, α
is a regularization parameter, and ψ is a damping factor.

The condition
∥∥A(zk) − F

∥∥/‖F‖ < ε for some sufficiently small ε is taken as
a termination criterion.

3.2 Regularized Linearized Conjugate Gradient Method

Let us construct the regularized variant of the linearized conjugate gradient
method [3] by using the Tikhonov regularization, replacing Eq. (3) with

Sα(z) = A′(z)T (A(z) − F ) + α(z − z0) = 0, (5)

where z0 is the initial approximation of the solution, and α is the regularization
parameter.

Let us construct a process in the form

zk+1 = zk + ψ χk pk,

where
pk = Sα(zk) + βkpk−1,

p0 = Sα(z0),

βk = max

{
〈Sα(zk), (Sα(zk) − Sα(zk−1))〉

‖Sα(zk−1)‖2
, 0

}
.

To find an approximate expression for the step size χk, we use a linear approx-
imation of the operator A:

χk ≈ arg min
χ

{ ∥∥A(zk) + A′(zk)(zk + χpk − zk) − F
∥∥2

+ α
∥∥zk + χpk − z0

∥∥2

}

= arg min
χ

{ ∥∥(A(zk) − F )
∥∥2

+ 2χ〈A′(zk)T (A(zk) − F ), pk〉

+ χ2
∥∥A′(zk)pk

∥∥2
+ α

∥∥zk − z0
∥∥2

+ 2αχ〈(zk − z0), pk〉 + αχ2
∥∥pk

∥∥2

}

= arg min
χ

{ ∥∥(A(zk) − F )
∥∥2

+ α
∥∥zk − z0

∥∥2

+ χ2
∥∥A′(zk)pk

∥∥2
+ αχ2

∥∥pk
∥∥2

+ 2χ〈Sα, pk〉
}

.
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Using the necessary condition for minimum,

∂

∂χ

(∥∥(A(zk) − F )
∥∥2

+ α
∥∥zk − z0

∥∥2
+ χ2

∥∥A′(zk)pk
∥∥2

+ αχ2
∥∥pk

∥∥2
+ 2χ〈Sα, pk〉

)
= 0;

2χ
∥∥A′(zk)pk

∥∥2
+ 2αχ

∥∥pk
∥∥2

+ 2〈Sα, pk〉 = 0,

we obtain

χk ≈ χ̃k = − 〈pk, Sα(zk)〉
‖A′(zk)pk‖2 + α ‖pk‖2

.

Thus, the regularized linearized conjugate gradient method (RLCGM) takes
the following form:

zk+1 = zk − ψ
〈pk, Sα(zk)〉

‖A′(zk)pk‖2 + α ‖pk‖2
pk,

pk = Sα(zk) + βkpk−1,

p0 = Sα(z0),

βk = max

{
〈Sα(zk), (Sα(zk) − Sα(zk−1))〉

‖Sα(zk−1)‖2
, 0

}
,

Sα(z) = A′(z)T (A(z) − F ) + α(z − z0),

(6)

where z0 is the initial approximation of the solution, zk is the approximation of
the solution at the k-th iteration, k ∈ N, α is a regularization parameter, and ψ
is a damping factor.

3.3 Modified Regularized Linearized Conjugate Gradient Method

Let us modify the RLCGM method (6) using the same idea of calculating the
Jacobian matrix only at a fixed point z0. As a result, we obtain the modified
regularized linearized conjugate gradient method (MRLCGM):

zk+1 = zk − ψ
〈pk, S0

α(zk)〉
‖A′(z0)pk‖2 + α ‖pk‖2

pk,

pk = S0
α(zk) + βkpk−1,

p0 = S0
α(z0),

βk = max

{
〈S0

α(zk), (S0
α(zk) − S0

α(zk−1))〉
‖S0

α(z)k−1)‖2
, 0

}
,

S0
α(z) = A′(z0)T (A(z) − F ) + α(z − z0).

(7)
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3.4 Hybrid Regularized Linearized Conjugate Gradient Method

Let us construct the hybrid method by recalculating the Jacobian matrix at each
j-th iteration. This method should have slightly higher speed of convergence than
the modified method.

zk+1 = zk − ψ
〈pk, Sk

α(zk)〉∥∥∥Ãkpk
∥∥∥2

+ α ‖pk‖2
pk,

pk = Sk
α(zk) + βkpk−1,

p0 = Sk
α(z0),

βk = max

{
〈Sk

α(zk), (Sk
α(zk) − Sk

α(zk−1))〉
‖Sk

α(z)k−1)‖2
, 0

}
,

Sk
α(z) = Ãk

T
(A(z) − F ) + α(z − z0),

Ã = A′(z0), A′(z0), ...︸ ︷︷ ︸
j

, A′(zj), A′(zj), ...︸ ︷︷ ︸
j

, A′(z2j), A′(z2j), ...︸ ︷︷ ︸
j

, ...

(8)

4 Matrix Structure and Storage Method

Storing the matrix A′ can be very memory consuming for large grids; hence, it is
worthwhile investigating the matrix structure to optimize the storage method.

Let us assume that A′ is a block matrix. Then, its elements can be defined
as

ak,p,l,q = a(k−1)M+p,(l−1)M+q

= fΔσΔxΔy

(
−z(k−1)M+p

((xk − xl)2 + (yp − yq)2 + z2(k−1)M+p)
3/2

)
,

or

ak,p,l,q = a(k−1)M+p,(l−1)M+q

= fΔσΔxΔy

(
(xk − xl)2 + (yp − yq)2 − 2z(k−1)M+p

((xk − xl)2 + (yp − yq)2 + z2(k−1)M+p)
5/2

)
,

where k, l = 1..M are the block indices and p, q = 1..N are the indices of the
elements inside each block.

Apparently, when z0 ≡ h, the matrix elements depend only on the terms
(xk − xl)2 + (yp − yq)2.

Note that

(yp+1 − yq+1)2 = (yp + Δy − yq − Δy)2 = (yp − yq)2,

(xk+1 − xl+1)2 = (xk + Δx − xl − Δy)2 = (xk − xl)2.
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The former equation means that p = q ⇒ ak, p, l, q = ak, p+1, l, q +1; i.e. in
each block, each descending diagonal from left to right is constant. The latter
equation means that k = l ⇒ ak, p, l, q = ak + 1, p, l+1, q; i.e. each diagonal of
blocks is constant as well. In other words, the matrix A′ is symmetric Toeplitz-
block-Toeplitz. Its scheme structure is shown in Fig. 3.

Fig. 3. Matrix structure.

An obvious approach is to store only the first row of this matrix. Then each
subsequent row can be obtained by the following procedure:

(1) shifting the rows of elements inside each block rightwise by one element
and complementing each row from the left with the symmetrically positioned
element;

(2) shifting the entire row of blocks rightwise by one block and complementing
it with the symmetrically positioned block.

This method requires only O(MN) memory to store an MN × MN matrix.

5 Parallel Implementation and Automatic Parameter
Adjustment For GPUs

The parallel algorithms were implemented on NVIDIA M2090 GPUs using the
CUDA technology.

Note that storing the Jacobian matrix for a 29 × 29 grid takes 2 MB when
using the optimized method, while the full storage takes more than 512 GB.

In the unmodified methods, we use the on-the-fly calculation of the elements
of the Jacobian matrix; i.e., the value of the matrix element is computed when
calling this element without storing it in memory.
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The costliest operation is computing the values of the integral operator and
its Jacobian matrix. It consists of four nested loops. When using multiple GPUs,
two outer loops are distributed to the GPUs, and two inner loops are executed
on each GPU. The CPU transfers data between the host memory and GPUs,
and calls the kernel functions.

The adjustment of the kernel execution parameters for the grid size is an
important problem. The CUDA Occupancy API helps to estimate the required
parameters using heuristics methods. This API has an essential drawback: it
works only with one-dimensional grids.

To use the Occupancy API for generating parameters for two-dimensional
grids, which are the ones required in our problem, one should apply either a
complicated transformation of parameters or a fake one-dimensional kernel with
the same parameters.

Thus, we implemented the original method for automatic adjustment of para-
meters. For the reference 128 × 128 grid and M2090 GPUs, the optimal parame-
ters were found manually. For grid sizes divisible by 128, the reference parameters
are multiplied by the coefficient. When using multiple GPUs, the x dimension
is divided by the number of GPUs; i.e. the number of threads in the block is
reduced while the number of blocks in the grid remains constant.

This imposes some constraints on the input data and GPUs configuration:

– grid size must be divisible by 128 (128, 256, 512, 1024 ...);
– GPUs number must be a power of 2 (1, 2, 4, 8, ...).

6 Numerical Experiments

We consider the model problem of finding the interface between two layers.
Figure 4 shows the model gravitational field Δg(x, y, 0). This field was

obtained by solving the direct gravimetry problem using the surface z∗ shown
in Fig. 5 with the asymptotic plane H = 6 km and the density jump Δσ =
0, 1 g/cm3.

A noise with a 10% peak value was added to the gravitational field.
The problem was solved on the Uran supercomputer nodes with eight

NVIDIA Tesla M2090 GPUs by five methods:

– regularized linearized steepest descent method (RLSDM) (see [11]);
– regularized linearized conjugate gradient method (RLCGM) (6);
– modified regularized linearized steepest descent method (MRLSDM) (4);
– modified regularized linearized conjugate gradient method (MRLCGM) (7);
– hybrid regularized linearized conjugate gradient method (HRLCGM) (8).

The reconstructed interface z is shown in Fig. 6.
The termination criterion for all five methods was ε = 0.0087. The parameters

ψ = 1 and α = 0.1 were used for all five methods.
The interfaces reconstructed by five methods are similar. The relative error

of the solution is δ = ‖z − z∗‖/‖z∗‖ < 0.01.
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Fig. 4. Model gravitational field.

Fig. 5. Original surface z∗.

Fig. 6. Reconstructed surface z.
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Table 1. Comparison of methods

Method Number of iterations Execution time, min

RLSDM (see [11]) 60 25

RLCGM (6) 50 23

MRLSDM (4) 70 18

MRLCGM (7) 70 18

HRLCGM (8) 70 18.5

Table 1 shows the average execution times for 10 runs of the five methods for
a 512 × 512 grid.

Speedup and efficiency coefficients are used to analyse the scaling of the
parallel algorithms. The speedup is Sm = T1/Tm, where T1 is the execution time
of the program running on one GPU, and Tm is the execution time for m GPUs.
The efficiency is Em = Sm/m. The ideal values are Sm = m and Em = 1, but
the real values are lower because of the overhead.

Table 2 shows the average execution times, speedup and efficiency for the
MRLCGM method on a 512 × 512 grid for various number of GPUs.

The experiments showed that the constructed modified algorithms are very
effective. New algorithms are more economical in terms of operations and time
at each iteration step. The modification reduced the time required to perform
one iteration by approximately 45%. For this model problem, the hybrid method
and the modified methods showed the same performance in terms of iterations
number. The MRLCG method shows the best results in terms of execution time.
The parallel algorithms demonstrate a good scaling; the efficiency is more than
90% for eight GPUs.

Table 2. Speedup and efficiency of the parallel MRLCGM algorithm

Number m of GPUs Execution time, min Speedup Sm Efficiency Em

1 18 1 1

2 9.5 1.88 0.94

4 5 3.75 0.93

8 2.5 7.24 0.9

7 Conclusions

We constructed a regularized variant of the linearized conjugate gradient method
based on the Tikhonov regularization, a modified variant of this method and a
hybrid conjugate gradient method.

We developed parallel algorithms on the basis of the modified regularized
linearized steepest descent method and the methods constructed in this paper.
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The parallel algorithms were implemented on GPUs using the CUDA technology.
A model problem with large grids was solved. The parallel algorithms demon-
strated good scaling.
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Abstract. The boundary and the initial boundary value problems
form the basis of numerous mathematical models. Ultimately, the dis-
crete (linearized) boundary and the initial boundary value problems are
reduced to the systems of linear algebraic equations with sparse and
ill-conditioned coefficient matrix. In modern applications (such as com-
putational fluid dynamics) the number of equations in the system can
reach about 1012 and higher. Just the numerical solution of such sys-
tems requires significant computational effort, so an actual problem of
modern computational mathematics is working-out, theoretical analysis
and testing of high-performance parallel algorithms. The article discusses
algebraic, geometric and combined ways to formation of the parallel algo-
rithms. In this work we presented advantages and disadvantages of each
ways, the estimate of parallelism’s acceleration and efficiency, the com-
parison of volume of computational work compared with the optimal
sequential algorithm, and the results of computational experiments. The
peculiarities of parallel algorithms’ implementation by using of software
and hardware structures for parallel programming were discussed in this
work.

Keywords: Initial boundary value problems · Parallel algorithms

1 Introduction

A promising and challenging trend in numerical simulation and scientific comput-
ing is the use of parallelism in numerical algorithms. The background to this trend
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is the fact that most high performance computers are now parallel systems [1]. Fol-
lowing [2], there are two common measures of parallelism that we now introduce:

Definition 1. The speedup S̄ and the efficiency Ē of a parallel algorithm is

S̄ = pĒ =
T (1)
T (p)

, (1)

where T (1) is an execution time for a single processor and T (p) is an execution
time using p processors.

The execution time T (p) can be represented as

T (p) =
1
p
T (1) + T ∗(p),

where T ∗(p) is time for the communication and data transfer between the proces-
sors. Assuming that the execution for a single processor takes too much time
compared to time for the communication and data transfer

T (1) � pT ∗(p) or T ∗(p) → 0,

we have

S̄ = pĒ =
T (1)

1
p
T (1) + T ∗(p)

→ p, for T ∗(p) → 0.

It results in almost full parallelism, i.e.

Ē → 1 for T ∗(p) → 0

independently on p. Often numerically inefficient algorithms give (much) better
parallel efficiencies than more sophisticated and numerically efficient ones since
those are much easier to parallelize [1]. In order to avoid this paradox (high
parallel efficiency for numerically inefficient methods and low parallel efficiency
for numerically efficient ones), the following measures of parallelism can be used:

Definition 2. The speedup S̃ and the efficiency Ẽ of a parallel algorithm is

S̃ = pẼ =
T̃ (1)
T (p)

, (2)

where T̃ (1) is an execution time for a single processor processor of fastest sequen-
tial algorithm and T (p) is an execution time using p processors.

Assume that some classical multigrid method (for example, V-cycle [1]) is
used as the fastest sequential solver. Remember that the multigrid methods are
typically optimal in the sense that the number of arithmetic operations needed
to solve a (discrete) problem is proportional to the number N of unknowns in the
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problem considered. We can assume that T̃ (1) = CvN log ε, where log ε accounts
the discretization accuracy. On the other hand, some parallel method can has
close-to-optimal algorithmic complicity, i.e. T (1) = CN log N log ε. In this case

T (p) =
1
p
T (1) + T ∗(p) =

1
p
CN log N log ε + T ∗(p),

and the speedup S̃ and the efficiency Ẽ (2) become

S̃ = pẼ =
CvN log ε

1
p
CN log N log ε + T ∗(p)

.

If the solver with close-to-optimal algorithmic complicity is highly parallelizable
(T ∗(p) → 0), we have

S̃ = pẼ → p
Cv

C

1
log N

.

It means that Ẽ = O(1/ log N) independently on p. It is clear that Ẽ → 0 as
N → +∞.

As a rule, optimal solver cannot be parallelized efficiently in practice, but
efficiency Ẽ of a parallel algorithm with close-to-optimal complicity is not high
enough. This paper describes two approaches to development of efficient parallel
multigrid algorithms. The first relates to a decomposition of the given problem
into a number of subproblems on subdomains with an overlap. This (algebraic)
approach is effective if the computational grid is sufficiently fine. The second
relates to a decomposition of the given problem into a number of subproblems
on the domain without an overlap. This (geometric) approach is effective for
coarse grids.

In this paper we discuss different approaches to parallel computing. Devel-
oped parallel algorithms are applied to simulation of the hydrocarbon fuel flows
in cooling systems of the ramjet engines. The mathematical model is developed
for prediction of coke deposit formation on solid walls and for study an opportu-
nity to control the deposit phenomenon. Presented mathematical model is based
on the Navier-Stokes and Maxwell equations in the electric potential form.

2 Decomposition of the Discrete Problems

Grid partitioning is a natural approach for parallel solution of the discrete bound-
ary value problems on parallel computers. In this approach, the original grid
is split into p subgrids, such that p available processors can jointly solve the
underlying discrete problem. Figure 1 represents the 2D grid partitioning on
four overlapped parts. Each subgrid (and the corresponding “subproblem”, i.e.
the equations and the unknowns located in the subgrid) is assigned to a different
process such that each process is responsible for the computations in its part of
the domain. The grid partitioning idea is widely independent of the particular
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boundary value problem to be solved and of the particular parallel architec-
ture to be used. It is applicable to general d-dimensional domains, structured
and unstructured grids, linear and nonlinear equations and systems of partial
differential equations [1].

2.1 Algebraic Decomposition

The grid partitioning shown on Fig. 1 results in four independent subproblems.
The subproblems can be solved in parallel. After that the data exchange in the
overlapped areas as shown on Fig. 2. Unfortunately, convergence rate of such par-
allel algorithms will be very slow. The convergence rate of iterative algorithms
for solving boundary value problems depends on the speed of information trans-
fer about the boundary conditions into the region. The grid partitioning poses
barriers on way of the information transfer and deteriorates the convergence
rate.

The damped Jacobi iterations can be used as a smoother in parallel
algorithms. There are two obvious reasons why an algorithm and/or a parallel
system may perform unsatisfactorily: load imbalance and communication over-
head [1]. Load imbalance means that some processors have to do much more
work than most of the others. In this case, most of the processors have to wait
for others to finish their computation before a data exchange can be carried
out. Communication overhead means that the communication and data transfer
between the processors takes too much time compared to the effective computing
time.

Communication overhead on the very coarse grids (as compared to the time
for arithmetic computations) increases and may finally dominate over the arith-
metic work. This can result in a significant loss of efficiency for the overall parallel
multigrid algorithm.

Fig. 1. Example of 2D grid partitioning.
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Note that the grid partitioning is often considered as a geometric decompo-
sition of the computational grid. Discrete boundary value problems can be split
into p subproblems in algebraic manner.

2.2 Geometric Decomposition

To overcome problem on the communication overhead and load imbalance (i.e.
processor idleness) on very coarse grids, the geometric decomposition has been
proposed in [3]. The decomposition is based on the grid partitioning without an
overlap. It result in 3dl

∗
independent subproblems, where d = 2, 3 is dimension

of the problem and l∗ is parallelization depth or serial number of the grid level
for switching from one approach of parallelization to another.

Fig. 2. Scheme of data exchange in the overlapped areas.

Application of algebraic decomposition on finer grids (0 � l < l∗) and geo-
metric decomposition on coarser grids (l � l∗) makes it possible to construct
highly efficient parallel multigrid [3].

In this part of work, we implement numerical multigrid technique to problem
of coke precursors formation in heated channel. Series of simplifications were
used for the quantitative description of the main characteristics of the process of
coke precursor deposition on the solid surfaces of the channel taking into account
heat exchange and liquid-phase oxidation in the channel using a model substance
imitating the real hydrocarbon fuel [4]. Pentane was chosen as a model fuel. The
geometry of the considered region of the fuel is shown in Fig. 4b. The region
considered consists of the channel 200 mm in length, 10 mm in width, and 1 mm
in depth and of the electrodes mounted in the medium part on the inner bottom
and upper walls of the channel. It was assumed that near-surface reactions that
occur on the smooth walls do not change the geometry of the walls and their
thermal state. The constant in time potential difference was fed to the electrodes.
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2.3 Governing Equations

Flow equations. The system of Reynolds equations for a multispecies system
closed by the Spallart-Almaras turbulence model was used as a flow model. The
system of the Navier-Stokes equations with allowance for the electromagnetic
effect and the presence of neutral and charged particles were applied in the fol-
lowing form (the equations of continuity, momentum, and energy are presented):

∂ρ

∂t
+ ∇(

ρU
)

= 0,

Fig. 3. Example of 1D grid partitioning without an overlap.

∂
(
ρU

)

∂t
+ ∇(

ρU × U
)

= −∇p + ∇τ + F , F = qE

Cp

(
∂
(
ρT

)

∂t
+ ∇(

ρUT
)
)

= ∇(
λ∇T

)
+

∑

i

JiCpi∇T + Q̇ +
∑

r=elastic

εr ω̇r +
∑

r=ions

εr ω̇r,

where ρ is the density, U is the velocity vector, p is the pressure, τ is the tensor
of viscous stresses, q is the volume charge, T is the temperature, and F is the
Lorentz force (magnetic induction B = 0), E is the electric field intensity, λ is the
thermal conductivity coefficient, Cp is the mixture heat capacity under constant
pressure coefficient, Cpi is heat capacity under constant pressure coefficient of
ith specie, εr ω̇r is heat effect and reaction rate of nonelectronic and electron
elastic collisions reaction, respectively. The energy equation in the right part
contains the terms of the source related to elastic collisions of the electronic
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species, ohmic heating of the ionic species, and the heat effect of the volume and
surface reactions (see Fig. 3).

The source term related to the interaction of the ionic and neutral species
(Q̇) can be expressed by analogy to the ohmic heating

Q̇ =
∑

qi>0

qiniμiE · E .

Walls

Flow RH

O2

e

<RO>

<R><ROH>

EM field

e

ϕ

ϕ
Electrons

e
e

e

Catalytic surface
reactions

Charged radicals

a) b)

Fig. 4. Scheme of processes (a) and geometry (b).

To determine the concentrations of the species (ionic and neutral), we solved the
transfer equations in the following form (with allowance for ion drift):

∂
(
ρYj

)

∂t
+ ∇(

ρUYj

)
= −∇Ĵi,

Ĵi = −
(

ρDj,M +
μt

Sct

)
∇Yj + ρUdYj + J c

i ,

where Yj is the mass concentration of the jth species, Ĵi is the mass flux, Dj,M is
the mass diffusion coefficient of the jth species in a mixture, μt is dynamic tur-
bulent viscosity coefficient, Sct = 0.7 is the Schmidt turbulent number, Ud is the
ion drift velocity, and J c

i is the correction mass flow necessary for the fulfillment
of continuity equation for individual species. The transfer coefficients for indi-
vidual species of the mixture are taken as polynomial temperature dependences.
Maxwell equations were reduced to electrostatic form:

−∇ · ε∇ϕ = e

(
∑

i

qini − ne

)
,

E = −∇ϕ,

where E is the electric field strength and ε is the electric permeability of the
medium.
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Chemical kinetic equations. The temperatures T < 550 K were taken as the
main temperature range for which the liquid-phase oxidation of hydrocarbon
(LOH) fuel with dissolved oxygen predominates. The characteristic pressures in
the system P ∼ 5 MPa corresponding to the conditions fulfilled in tracts of fuel
systems. The simplified model based on degenerate chain branching characteris-
tic of partial oxidation is used as a kinetic model of coke formation. The initial
stage of chain formation is the interaction of the starting hydrocarbon with
dissolved oxygen. In the absence of initiating additives, the rate of radical for-
mation in the oxidation reactions is low. The degenerate branching character of
the LOH reactions is usually related to the accumulation of hydroperoxides that
easily decompose at the O–O bond, resulting in an additional chain nucleation.
The chain mechanism can be presented as follows:

RH + O2

k0−−→ Ṙ + HO2, 2ṘH + O2

k∞−−→ 2Ṙ + H2O2,

Ṙ + O2

k1−−→ ṘO2, ṘO2 + RH
k2−−→ ROOH + Ṙ,

ROOH
k3−−→ ṘO + ȮH, ROOH + RH

k4−−→ ṘO + Ṙ + H2O,

2ROOH
k5−−→ ṘO2 + ṘO + H2O, Ṙ + ROOH

k6−−→ ROH + ṘO,

ṘO + RH
k7−−→ ROH + Ṙ, H2O + RH

k8−−→ H2O2 + Ṙ,

ȮH + RH
k9−−→ H2O + Ṙ, Ṙ + H2O2

k10−−→ ROH + OH,

Ṙ + RO2

k11−−→ ROOR, ṘO2 + ṘO2

k12−−→ ROH + RCOR2 + O2,

Ṙ
kw−−→, ṘO

kw−−→,

ṘO2

kw−−→, ȮH
kw−−→,

H2O
kw−−→, H2O2

kw−−→ .

The radicals in the equations are designated as point above symbol, whereas
stoichiometric coefficients of the electronic species are not indicated. The reac-
tion constants k1–k12 and kw are taken from the work [5]. The mechanism pre-
sented covers both directions of chain development and includes 14 species and
17 reactions. However, the mechanism ignores the acceleration of solid deposit
formation due to the acceleration of bimolecular reactions on the wall in the
presence of primary deposits. High-molecular-weight products (HMP) similar to
the products of the volume recombination of radicals (alcohols ROH, ketones R–
R, aldehydes ROOR) are formed due to the bimolecular recombination on the
wall. It was accepted for simplicity that the three first reactions of radical chain
termination on the wall are bimolecular and directly result in the formation of
coke precursors corresponding, in turn, by weight to solid deposits.

Numerical procedure and results. As first stage of implementing multi-
grid technique hybrid calculations was adopted. Transport equations for species,
energy and electronic temperature were solved without multigrid technique,
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but pressure correction elliptic equation in SIMPLE procedure and electric
potential equation was solved separately on hierarchical numerical mesh. Details
of numerical procedure for multigrid part of solution can be found in [6].

a) b)

Fig. 5. Electric potential field and profile of axial velocity (a), mass fraction of high-
molecular products (b) with profile across the channel, Re = 4000, Δϕ = 150 V , adia-
batic walls, Tin = 600 K, t = 10 s.

For numerical experiments shared memory system 2*Intel Xeon E5-2630V4
10 cores 2.2 GHz, RAM DDR4 ECC 128 GB with QPI (up to 38.4 Gb/s) was
used. Charged volumes with different mobilities are formed in the system when
considering the block of chemical transformations in addition to the equations
of flow and electrostatic field. Effect of the Lorentz force on the charged volumes
results in convection and diffusion and in the mechanism of displacement of liquid
volumes to the region of highest electrostatic field strengths. The calculations
for t ∼ 3600 (t is time), Tin = 600K (Tin is the temperature of the mixture at
the inlet of the channel), and Re = 4000 showed that the formation of a discrete
charged phase as ions at the presented parameters of the flow exerts almost
no effect on the global strength distribution. Therefore, further, to shorten the
necessary resources, we accepted the simplification of the steady regime: the
regime was considered steady if the total mass concentration of the reaction
products at the outlet of the channel at consecutive time moments did not exceed
1%. The field of the weight fraction of HMP, more exactly, the sum of weight
fractions of alcohols ROH and aldehydes ROOR formed due to the reactions in
the channel volume, is presented in Fig. 5b.

The profile of the chosen weight concentration over the channel width along
the medium line is also shown. As can be seen from Fig. 5 the main amount of
HMP is formed at the presented time moment in the boundary layer near the
walls, and the characteristic value of the fraction for this moment is 106 kg kg−1.
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Table 1. Scalabilities of cases

Cores Standard approach, s Multigrid approach, s

1 30.1 26.4

3 15.2 13.0

5 10.1 9.5

9 5.6 4.2

Cases scalabilities for multigrid and non-multigrid cases are represented in Table 1
for 3 mln. cells mesh. As can be seen multigrid approach gives better results, but,
performance are depend strongly on multiplicity of the cores number.

3 Conclusions

The presented method of numerical solution of boundary value problems has
close to optimal algorithmic complicity and it can effectively parallelize com-
putations. Currently, the main difficulty is to expand the multigrid method on
computational girds of arbitrary mesh topology.
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Abstract. The paper covers the development and research of math-
ematical models of the algal bloom, causing suffocations in shallow
waters on the basis of modern information technologies and computa-
tional methods, by which the accuracy of predictive modeling of the
ecology situation of coastal systems is increased. Developed model takes
into account the follows: the water transport; microturbulent diffu-
sion; gravitational sedimentation of pollutants and plankton; nonlinear
interaction of plankton populations; biogenic, temperature and oxygen
regimes; influence of salinity. The computational accuracy is significantly
increased and computational time is decreased at using schemes of high
order of accuracy for discretization of the model. The practical signifi-
cance is the software implementation of the proposed model, the limits
and prospects of it practical use are defined. Experimental software was
developed based on multiprocessor computer system and intended for
mathematical modeling of possible progress scenarios of shallow waters
ecosystems on the example of the Azov Sea in the case of suffocation.
We used decomposition methods of grid domains in parallel implementa-
tion for computationally laborious convection-diffusion problems, taking
into account the architecture and parameters of multiprocessor computer
system. The advantage of the developed software is also the use of hydro-
dynamical model including the motion equations in the three coordinate
directions.
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1 Introduction

The Azov Sea is the great shallow water in stretch. Such waters are suffered the
great anthropogenic influence. However, most of them is the unique ecological
systems of fish productivity. The biogenic matters are entered in the shallow
waters with the river flows which causing the growth of the algae – water bloom.
The suffocation periodically occurs in shallow waters in summer. Because there
is the significant decrease of dissolved oxygen in them, consumed in the decom-
position of organic matter, due to the high temperature. The fish is suffering the
oxygen starvation and the mass dying of suffocation.

The results of satellite monitoring of the Earth are used in this paper to control
the quality modeling of processes of hydrodynamics and biological kinetics [1,2].
The satellite monitoring data of the Azov Sea, obtained by SRC Planeta, are given
in Fig. 1 [3]. The analysis of satellite data reveals the water areas of suffocations.

Fig. 1. The wide areas of the water bloom in the Azov Sea.

The dynamics of the development of the water bloom is given in Fig. 2. It
caused the suffocation in the south-eastern part of the Azov Sea on July 16,
2013.

Designations in Fig. 2 are follows: 1 – the removal of river or estuary water
out of the sleeves and throats of the delta of the Kuban river; 2 – water bloom
area; 3 – waters with higher degree of turbidity after the desintegration of the
water bloom area by the winds and waves.

The 3D spatially heterogeneous mathematical model was desintegration per-
formed for the reconstruction of the water bloom. This process caused the suffo-
cation in the South-Eastern part of the Azov Sea in July 2013. The information
about the wind velocity and direction in the Temryuk Bay in July 2016, provided
the meteorological station in Kerch city (WMO ID 33983) and shown in Fig. 3,
was used for this model as input data.

Water temperature in the computational domain for the simulated time inter-
val is shown in Fig. 4.
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Fig. 2. Dynamic of the water bloom process in the south-eastern part of the Azov Sea.

Fig. 3. Wind velocity and direction on July 16, 2013.

Fig. 4. Water temperature on July 16, 2013.
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2 Hydrodynamic Mathematical Model

The Navier-Stokes motion equations are initial equations of hydrodynamics of
shallow water:

u′
t + uu′

x + vu′
y + wu′

z = −1

ρ
p′
x +
(
μu′

x

)′
x

+
(
μu′

y

)′
y

+
(
νu′

z

)′
z

+ 2Ω(v sin θ − w cos θ),

v′
t + uv′

x + vv′
y + wv′

z = −1

ρ
p′
y +
(
μv′

x

)′
x

+
(
μv′

y

)′
y

+
(
νv′

z

)′
z
− 2Ωu sin θ, (1)

w′
t + uw′

x + vw′
y + ww′

z = −1

ρ
p′
z +
(
μw′

x

)′
x
+
(
μw′

y

)′
y
+
(
νw′

z

)′
z
+ 2Ωu cos θ + g (ρ0/ρ − 1) ;

– continuity equation was written for the case of variable density:

ρ
′
t + (ρu)

′

x + (ρv)
′

y + (ρw)
′

z = 0, (2)

where u = {u, v, w} are velocity vector components; p is an excess pressure above
the undisturbed fluid hydrostatic pressure; ρ is a density; Ω is an Earth’s angular
velocity; θ is an angle between the angular velocity vector and the vertical vector;
μ,ν are horizontal and vertical components of turbulent exchange coefficient.

We consider the system of Eqs. (1) and (2) with the following boundary
conditions:
– at the entrance (the mouth of Don and Kuban rivers):

u(x, y, z, t) = u(t), v(x, y, z, t) = v(t), p′
n(x, y, z, t) = 0, un(x, y, z, t) = 0,

– the lateral boundary (beach and bottom):

ρvμ(u′)n(x, y, z, t) = −τx(t), ρvμ(v′)n(x, y, z, t) = −τy(t),

un(x, y, z, t) = 0, p′
n(x, y, z, t) = 0,

– the upper boundary:

ρμ(u′)n(x, y, z, t) = −τx(t), ρμ(v′)n(x, y, z, t) = −τy(t),

w(x, y, t) = −ω − p′
t/ρg, p′

n(x, y, t) = 0, (3)

– at the output (Kerch Strait):

p′
n(x, y, z, t) = 0, u′

n(x, y, z, t) = 0 ,

where ω is a liquid evaporation intensity; τx, τy are tangential stress components
(Van-Dorn law); ρv is a suspension density.
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Tangential stress components for free surface are in the form:

τx = ρaCp (|w|) wx |w| , τy = ρaCp (|w|) wy |w| ,

where w is a wind velocity vector relative to the water; ρa is an atmosphere
density,

Cp (x) =
{

0.0088; x < 6.6 m/s
0.0026; x ≥ 6.6 m/s

– non-dimensional coefficient.

Tangential stress components for bottom are in the form:

τx = ρCp (|u|) u |u|, τy = ρCp (|u|) v |u| .

We can define the coefficient of the vertical turbulent exchange with inho-
mogeneous depth on the basic of the measured velocity pulsation:

ν = C2
s Δ2 1

2

√(
∂u

∂z

)2

+
(

∂v

∂z

)2

, (4)

where Δ is a grid scale; Cs is a non-dimensional empirical constant, defined on
the basis of attenuation process calculation of homogeneous isotropic turbulence.

Grid method was used for solving the problem (1)–(3) [4]. The approximation
in a time variable based on splitting schemes into physical processes [5–9] using
the pressure correction method.

3 Mathematical Model of Water Bloom Processes
of Shallow Waters

The spatially heterogeneous model of water bloom (WB) is described by
equations:

Si,t + u
∂Si

∂x
+ v

∂Si

∂ y
+ (w − wgi)

∂Si

∂x
= μiΔSi +

∂

∂ z

(
νi

∂Si

∂ z

)
+ ψi . (5)

(5) are equations of changes the concentration of impurities, index i indicates
the substance type, Si is the concentration of i -th impurity, i = 1, 6; 1 is the
total organic nitrogen (N); 2 are phosphates (PO4); 3 is a phytoplankton; 4 is a
zooplankton; 5 is a dissolved oxygen (O2); 6 is a hydrogen sulfide (H2S); u, v, w
are components of water flow velocity vector; ψi is a chemical-biological source
(drain) or a summand that describes the aggregation (clumping-declumping) if
the corresponding component is a suspension.

The WB model takes into account the water transport; microturbulent dif-
fusion; gravitational sedimentation of pollutants and plankton; nonlinear inter-
action of planktonic populations; nutrient, temperature and oxygen regimes;
influence of salinity.
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Fig. 5. Diagram of the computational domain Ḡ.

Computational domain Ḡ (Fig. 5) is a closed area, limited by the undisturbed
water surface Σ0, bottom ΣH = ΣH(x, y), and the cylindrical surface, the undis-
turbed surface σ for 0 < t ≤ T0.

∑
=

∑
0 ∪∑

H ∪σ – the sectionally smooth
boundary of the domain G [10–14].

We consider the system (5) with the following boundary conditions:

Si = 0 on σ, if Un < 0; ∂Si

∂n = 0 on σ, if Un ≥ 0;
S′

i,z = φ(Si) on Σ0;S′
i,z = −εiSi on ΣH ,

(6)

where εi is the absorption coefficient of the i -th component of the bottom
material.

We has to add the following initial conditions to (5):

Si|t=0 = Si0(x, y, z), i = 1, 6. (7)

Water flow velocity fields, calculated according to the model (1)–(3), are used
as input data for the model (5)–(7). The discretization of models (1)–(4), (5)–(7)
was performed on the basis of the high-resolution schemes which are described
in [15].

4 Parallel Implementation

The grid equations, obtained in the finite-difference approximations of tasks
(1)–(3), (5)–(7), can be present in the matrix form [16]:

Ax = f, (8)

where A is a linear, positive definite operator (A > 0). We use the implicit
iterative process for solving problem (8):

B
xm+1 − xm

τm+1
+ Axm = f. (9)
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In Eq. (9) m is the number of iteration, τ > 0 is an iterative parameter, and B
is an invertible operator (a stabilizer). The inverting of the operator B in Eq. (9)
should be significantly easier than the directly inverting of the original operator
A in Eq. (8). We construct B with using the additive representation of operator
A0, i.e., the symmetric part of the operator A:

A0 = R1 + R2, R1 = R∗
2, (10)

where A = A0 + A1, A0 = A∗
0, A1 = −A∗

1.
The operator-stabilizer can be written as follows:

B = (D + ωR1)D−1(D + ωR2), D = D∗ > 0, ω > 0, (11)

where D is some, generally diagonal, operator.
Relations (10) and (11) define the modified alternating triangular method

(MATM) for solving the problems if the operators R1, R2 are defined and meth-
ods of determining the parameters τm+1, ω and the operator D are specified.

The algorithm of the adaptive modified alternating triangular method of min-
imal corrections for calculating the grid equations with nonself-adjoint operators
is in the form:

rm = Axm − f,B(ωm)wm = rm, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
, (12)

s2m = 1 − (A0w
m, wm)2

(B−1A0wm, A0wm) (Bwm, wm)
, km =

(
B−1A1w

m, A1w
m

)
(B−1A0wm, A0wm)

,

θm =
1 −

√
s2
mkm

(1+km)

1 + km (1 − s2m)
, τm+1 = θm

(A0w
m, wm)

(B−1A0wm, A0wm)
,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,

where rm is the residual vector, wm is the correction vector, the diagonal part
of the operator A is used as the operator D [17,18].

The estimation of convergence rate of this method is in the form:

ρ ≤ ν∗ − 1
ν∗ + 1

, ν∗ = ν
(√

1 + k +
√

k
)2

, k =

(
B−1A1ω

m, A1ω
m

)
(B−1A0ωm, A0ωm)

,

where ν is the condition number of the operator C0, C0 = B−1/2A0B
−1/2.
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4.1 Parallel Implementation of the Modified Alternating Triangular
Method

We describe the parallel algorithms, which are used for solving the problems
(1)–(3), (5)–(7), with different types of domain decomposition.

Algorithm 1. Each processor is received its computational domain after the
partition of the initial computational domain into two coordinate directions, as
shown in Fig. 6. The adjacent domains overlap by two layers of nodes in the
perpendicular direction to the plane of the partition [19].

The residual vector and it uniform norm are calculated after that as each
processor will receive the information for its part of the domain. Then, each
processor determines the maximum element in module of the residual vector
and transmits its value to all remaining calculators. Now receiving the maximum
element on each processor is enough to calculate the uniform norm of the residual
vector [20].

Fig. 6. Domain decomposition.

The parallel algorithm for calculating the correction vector is in the form:

(D + ωmR1)D−1(D + ωmR2)wm = rm,

where R1 is the lower-triangular matrix, and R2 is the upper-triangular matrix.
We should solve consistently the next two equations for calculating the correction
vector:

(D + ωmR1)ym = rm, (D + ωmR2)wm = Dym.

At first, the vector ym is calculated, and the calculation is started in the
lower left corner. Then, the correction vector wm is calculated from the upper
right corner. The calculation scheme of the vector ym is given in Fig. 7 (the
transferring elements after the calculation of two layers by the first processor is
presented).
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In the first step of calculating the first processor work on with the top layer.
Then the transfer of overlapping elements is occurred to the adjacent proces-
sors. In the next step the first processor work on with the second layer, and
its neighbors – the first. The transfer of elements after calculating two layers
by the first processor is given in Fig. 7. In the scheme for the calculation of the
vector ym only the first processor does not require additional information and
can independently work on with its part of the domain. Other processors are
waiting the results from the previous processor, while it transfers the calculated
values of the grid functions for the grid nodes, located in the preceding positions
of this line. The process continues until all the layers will be calculated. Sim-
ilarly, we can solve the systems of linear algebraic equations (SLAE) with the
upper-triangular matrix for calculating the correction vector. Further, the scalar
products are defined (12), and the transition is proceeded to the next iteration
layer.

Fig. 7. Scheme of calculation the vector ym.

We performed the theoretical estimate of the time. It’s required to perform
the MATM step for SLAE with seven-diagonal matrix with using decomposition
in two spatial directions on a cluster of distributed calculations. All computa-
tional domain is distributed among processors (n is the total number of proces-
sors, n = nx · ny, nx ≥ ny), i.e. each of them received the domain by the size
N/n, N = NxNyNz, where Nx, Ny, Nz is the number of nodes in the spatial
directions; t0 is an execution time of one arithmetic operation; tx is a response
times (latency); tn is the time, required to transfer the floating point numbers

Therefore, we obtain the theoretical estimates [1] of acceleration S(1) and
efficiency E(1) of the parallel Algorithm 1:

S(1) =
n

1 + (
√

n − 1)
(

36
50Nz

+ 4n
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
n

NxNy

)) ,

E(1) =
S(1)

n
=

1

1 + (
√

n − 1)
(

36
50Nz

+ 4n
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
n

NxNy

)) .
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We considered the case of the problem solution with the rectangular domain.
The domain has a complex shape in the case of real water. At the same time
the real acceleration is less than its theoretical estimation. The dependence of
the acceleration, obtained in the theoretical estimates, can be used as the upper
estimate of the acceleration for parallel implementation of the MATM algorithm
by the domain decomposition in two spatial directions. ‘ We describe the domain
decomposition in two spatial directions with using the k-means algorithm.

Algorithm 2. The k-means method was used for geometric partition of the
computational domain for the uniform loading of MCS calculators (processors).
This method is based on the minimization of the functional of the total variance
of the element scatter (nodes of the computational grid) relative to the gravity
center of subdomain: Q = Q(3). Let Xi – the set of computational grid nodes,
included in the i -th subdomain, i ∈ {1, ...,m}, m – the given number of subdo-
mains. Q(3) =

∑
i

1
|Xi|

∑
x∈Xi

d2(x, ci) → min, where ci = 1
|Xi|

∑
x∈Xi

x – the
center of the subdomain Xi, and d(x, ci) – the distance between the calculated
node and the center of the grid subdomain in the Euclidean metric. The k-means
method converges only when all subdomain will be approximately equal.

The algorithm of k-means method.

(1) The initial centers of subdomains are selected with using maximum
algorithm.

Fig. 8. Domain decomposition.
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(2) All calculated nodes are divided into m Voronoi’s cells by the method of
the nearest neighbor, i.e. the current calculated grid node x ∈ Xc, where
Xc is a subdomain, which is chosen according to the condition ‖x − sc‖ =
min

1≤i≤m
‖x − si‖, where the sc is the center of the subdomain Xc.

(3) New centers are calculated by the formula: s
(k+1)
c = 1∣

∣
∣X

(k)
i

∣
∣
∣

∑
x∈X

(k)
i

x.

(4) The condition of the stop is checked s
(k+1)
c = s

(k)
c , k = 1, ...,m. If the condition

of the stop is not performed, then the transition to the algorithm step 2.

The result of the k-means method for model domains is given in Fig. 8 (arrows
are indicated exchanges between subdomains). All points in the boundary of
each subdomains are required to data exchange in the computational process.
The Jarvis’s algorithm was used for this aim (the task of constructing the convex
hull). The list of the neighboring subdomains for each subdomain was created,
and an algorithm was developed for data transfer between subdomains.

Theoretical estimates of the acceleration and efficiency of the Algorithm 2
were obtained similarly to the corresponding estimates of the Algorithm 1:

S(2) =
n · χ

1 + (
√

n − 1)
(

36
50Nz

+ 4n
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
n

NxNy

)) ,

E(2) =
S(2)

n
=

χ

1 + (
√

n − 1)
(

36
50Nz

+ 4n
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
n

NxNy

)) ,

where χ is the ratio of the number of computational nodes to the total number
of nodes (computational and fictitious).

Parallel algorithms of the adaptive alternating triangular method was imple-
mented on multiprocessor computer system (MCS) SFU. The peak performance
of the MCS is 18.8 TFlops. The system includes 8 computational racks. The com-
putational field of MCS is designed on the basis of the HP BladeSystem c-class

Table 1. Comparison of acceleration and efficiency of algorithms

n t(1) St
(1) S(1) t(2) Et

(2) E(2)

1 7.491 1.0 1.0 6.073 1.0 1.0

2 4.152 1.654 1.804 3.121 1.181 1.946

4 2.549 3.256 2.938 1.811 2.326 3.354

8 1.450 6.318 5.165 0.997 4.513 6.093

16 0.882 11.928 8.489 0.619 8.520 9.805

32 0.458 21.482 16.352 0.317 15.344 19.147

64 0.266 35.955 28.184 0.184 25.682 33.018

128 0.172 54.618 43.668 0.117 39.013 51.933
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infrastructure with integrated communication modules, power and cooling sys-
tems. The computational nodes are 512 same type 16-core HP ProLiant BL685c
Blade-servers, each of which has the four 4-core AMD Opteron 8356 2.3 GHz
processors and the operative memory in the volume of 32 GB. The total number
of cores in the complex is equaled to the 2048, the total amount of RAM – 4 TB.

The comparison of the developed parallel Algorithms 1 and 2 for the solution
(1)–(3), (5)–(7) was performed. The results are given in the Table 1.

In Table 1: n is the number of processors; t(k), S(k), E(k) are the processing
time, the acceleration and efficiency of the k-th algorithm; St

(k), E
t
(k) are the

theoretical estimates of the efficiency and acceleration of the k-th algorithm,
k = {1, 2} .

According to the Table 1 we can conclude that the developed algorithms
based on the decomposition method in two spatial directions and k-means
method can be effectively used for solving hydrodynamics problems in the case
the sufficiently large number of computational nodes.

The graphs of accelerations of Algorithms 1 and 2 for solving the WB problem
(5)–(7), obtained theoretically and practically, are given in Fig. 9.

The estimation is used for comparison the performance values of the
Algorithms 1 and 2, obtained practically:

δ =

√√√√ n∑
k=1

(
E(2)k − E(1)k

)2/
√√√√ n∑

k=1

E2
(2)k. (13)

Fig. 9. Graphs of accelerations for the developed parallel algorithms.
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In Fig. 9: 1 – the theoretical estimation of acceleration Algorithm 1; 2 – the
acceleration of the Algorithm 2, obtained practically; 3 – the acceleration of the
Algorithm 1, obtained practically; 4 – the theoretical estimations acceleration of
Algorithm 2.

The value δ in the Eq. (13) was calculated by:

δ =

√√√√ n∑
k=1

(
E(2)k − E(1)k

)2/
√√√√ n∑

k=1

E2
(2)k = 0.154.

On the basis the data, presented in the Table 1 and the Eq. (13), the com-
parison of the developed algorithms is shown that the use of the Algorithm 2
increased the efficiency for the problem (1)–(3) on 15%.

5 Software Complex Description

The Azov3d software complex was designed for solving problems (1)–(3), (5)–(7)
on MCS and the calculating water flow fields, the concentrations of pollutants,
phytoplankton and zooplankton in the complex areas (the Azov Sea and the
Taganrog Bay).

The software complex is designed for MCS of the Southern Federal Univer-
sity for mathematical modeling of possible scenarios of ecological situations of
coastal systems on the example of the Azov-Black Sea basin. This complex con-
tain the computational modules with the help of which we can: to take into
account factors that affect to the pollutant spread in coastal systems (weather
conditions, the influence of coastline and bottom topography); to research the
dependence of pollutant concentrations, the degree and size of the affected water
area from the intensity of water transport, hydrophysical parameters, climatic
and meteorological factors. Its features include the high performance, reliability
and the high accuracy of modelling results.

New computational modules (units) can be integrated to the Azov3d soft-
ware complex). The complex includes the module, which calculated the SLAE
solutions in the discretization by the following methods: Jacobi; minimal cor-
rections; steepest descent; Seidel; high relaxation; adaptive modified alternating
triangular method (MATM) of the variational type.

The sequentially condensed rectangular grids by dimensions 251 × 351 × 15,
502 × 702 × 30, 1004 × 1404 × 60 were used for the mathematical modeling of
hydrobiological and hydrodynamic processes in the three-dimensional complex
domain – the Azov Sea.

The calibration and verification of the developed WB model were performed
on the basis of the environmental data of the Azov Sea. They were obtained
during the scientific-research expeditions that are conducted by the scientists of
the SFU since 2000. The expedition data processing was digitized, classificated
for use in various model problems of hydrobiology of the sea.
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The software complex includes: the control unit, the oceanographic and mete-
orological database, interface systems, input-output and visualization systems.
High-level language C++ and MPI technology were used in the development of
this software.

6 Results of Numerical Experiments

A series of numerical experiments of the modeling the water bloom processes was
performed in the Azov Sea for the period from April 1 to October 31, 2013. The
results of the numerical experiment for reconstruction of the suffocation caused
by the phytoplankton bloom in July 2013 is given in Fig. 10.

Fig. 10. Phytoplankton concentration change in Azov Sea.

The developed software complex implements the designed scenarios for the
changing ecological situation in the Azov Sea using the numerical realization of
plankton evolution problems of biological kinetics. The comparison the similar
works in the mathematical modeling of hydro-biological processes was performed
in this work.

In result of the data analyze, shown in the Fig. 11, we obtained their quali-
tative conformity.

The verification criterion of the developed models (1)–(3), (5)–(7) was an
estimate of the error modeling taking into account the available field data mea-
surements, calculated according to the formula:

δ =

√√√√ n∑
k=1

(Sk nat − Sk)2/

√√√√ n∑
k=1

S2
k nat,

where Sk nat – the value of the harmful algae concentration, obtained through
field measurements; Sk – the value of the harmful algae concentration, calculated
by the model (1)–(3). The concentrations of pollutants and plankton calculated
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Fig. 11. Comparison of the software complex results with the satellite data. A: satellite
photo of the Azov Sea by RC Planeta; B: the software complex result (the variation of
the phytoplankton concentration).

for different wind situations were taken into consideration, if the relative error
did not exceed 30%.

The analysis of the same software complexes for shallow waters has shown
that the accuracy of the predictive changes in pollutant concentrations of plank-
ton in shallow waters has been increased at 10–15% depending on the chosen
problem of the biological kinetics.

7 Conclusion

The model of hydrodynamics and water bloom were proposed in this paper.
They used for the reconstruction of suffocation, occurred on July 16, 2013 in the
south-eastern part of the Azov Sea. The numerical implementation of the devel-
oped models was performed on the multiprocessor computer system with distrib-
uted memory. The theoretical values of the acceleration and efficiency of parallel
algorithms was calculated. The developed experimental software is designed for
mathematical modeling of possible scenarios of development of ecosystems of
shallow waters on the example of Azov-Black Sea basin. The decomposition
methods of grid domains were used in parallel implementation for computation-
ally laborious convection-diffusion problems, taking into account the architec-
ture and parameters of multiprocessor computer system. The maximum accel-
eration value was achieved with using 128 computational nodes and equaled to
43 times. Two algorithms were developed in the parallel algorithm implementa-
tion for solving the problem on the MCS and the data distribution between the
processors. Using k-means method, the algorithm efficiency of the problem was
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increased at 15% compared with the algorithm, based on a standard partition
the computational domain.

Due to the application on the MCS, the calculation time was decreased
and the accuracy was preserved that required for modeling of hydrobiological
processes occurring in the shallow waters. It is important in aquatic ecology
problems.
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Abstract. The work is concerned with the development of numerical
algorithms for solving direct problems of borehole geoelectrics by apply-
ing high-performance computing on GPUs. The numerical solution of
the direct 2D problem is based on the finite-element method and the
Cholesky decomposition for solving a system of linear equations. The
software implementations of the algorithm are made by means of the
NVIDIA CUDA technology and computing libraries making it possible
to decompose the equation system and find its solution on CPU and
GPU. The analysis of computing time as a function of the matrix order
has shown that in the case at hand the computations are the most effec-
tive when decomposing on GPU and finding a solution on CPU. We have
estimated the operating speed of CPU and GPU computations, as well
as high-performance CPU–GPU ones. Using the developed algorithm,
we have simulated electrical logging data in realistic models.

Keywords: Graphics processing units · Parallel algorithm · Finite-
element method · Direct 2D problem · Electrical logging data

1 Introduction

Contemporary geophysical methods are widely used to obtain comprehensive
information about oil and gas reservoirs, starting with the search for prospective
objects and estimation of their reserves, and ending with field management.
The reconstruction of the electrical resistivity of rocks plays an important role
when studying geological environments. The evaluation of oil and gas content
in reservoirs is conducted through electrical resistivity values based on borehole
measurements accomplished with electrical logging tools.

Interpreting data measured in some geological environments requires a
specialized mathematical description and the corresponding computational
algorithms. Among these environments one can mention stratified sedimentary
rocks represented by interbedded thin layers with various material composition
c© Springer International Publishing AG 2017
L. Sokolinsky and M. Zymbler (Eds.): PCT 2017, CCIS 753, pp. 186–200, 2017.
DOI: 10.1007/978-3-319-67035-5 14
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and electrophysical properties, such as highly conductive clay rocks and resis-
tive oil sands. Such media are electrically anisotropic, since the resistivity values
in the bedding plane and in the vertical direction differ greatly. The lack of
electrical anisotropy during the interpretation of electrical logging data leads to
significant errors in the determination of oil content. Therefore, a solution to the
problem of determining the electrical anisotropy of rocks according to electrical
logging data is extremely relevant and has great practical significance.

The simulation of electrical logging data in models of anisotropic media calls
for the development of special algorithms and software. The finite-difference and
finite-element methods are the main techniques for simulating electrical fields in
spatially inhomogeneous media [1–3]. As far as is known, the numerical solution
of electrodynamic problems with the use of grid methods results in solving sys-
tems of linear algebraic equations (SLE) with high-dimensional sparse matrices;
direct and iterative solution methods are effectively used for this task. However,
the use of these solutions for fast data interpretation in real time happens to be
inefficient due to their low performance and high resource intensity.

The use of multiprocessor computer systems and computing clusters is one
of the widely applied methods for reducing calculation time. However, their
utilization for prompt solutions of geophysical interpretation objectives directly
at the well is extremely challenging. Another method is associated with the use
of NVIDIA graphics processors and Intel Xeon Phi coprocessors for speeding up
calculations, and is widely applied in solving present-day problems in various
scientific fields, including well logging [4–7].

A further increase in processing speed and effectiveness of numerical solutions
of electrodynamic problems based on grid methods is connected with the creation
of highly efficient parallel algorithms. To a great extent, these algorithms create
a need for the development or application of fast computational libraries based
on different methods for solving SLE. To find a solution to an SLE, we use in this
study the direct method based on the Cholesky decomposition and subsequent
solution of two subsidiary systems with triangular matrices.

Traditionally, when it comes to the development of such high-performance
parallel algorithms, much attention is given to the efficiency of matrix decom-
position. For this purpose, both computational algorithms and corresponding
data structures are developed [8]. This is because solving the subsidiary SLE
takes much less computational resources compared to the original matrix decom-
position. The developed parallel algorithms for matrix decomposition are also
implemented on graphics processors (GPU). However, unlike central processors
(CPU), GPUs make it possible to implement only a rather narrow class of algo-
rithms effectively, which leads to the necessity of creating methods using both
CPUs and GPUs [8–10].

When it is necessary to solve a large number of SLE with the same matrix but
different right-hand sides, computational costs of solving the system significantly
exceed the costs of matrix decomposition. It will be illustrated further in the
article that this may lead to a low efficiency of the solution if we use only GPUs.
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This gives rise to a need for developing a method to solve such SLE that employs
cooperative computing on CPUs and GPUs.

Ultimately, these approaches make it possible to apply resource-intensive
computational tasks for the practical purpose of processing electrical logs, pro-
viding an improved accuracy in the determination of reservoir parameters, pri-
marily those of anisotropic. This work is dedicated to the development and
implementation of an algorithm for solving the direct 2D electrical logging prob-
lem in anisotropic models on the basis of the finite-element method and high-
performance computing on GPUs.

2 Solution of the Direct 2D Electrical Logging Problem

As already mentioned, the determination of the resistivity of rocks around a well
for further estimation of their hydrocarbon saturation plays a significant part
when investigating geological sections. One of the best-known ways of addressing
this problem is to record electrical potentials induced by a direct current source
in the borehole. Electrical logging holds a special place among geophysical well
logging methods [11]. An electrical logging borehole tool comprises several probes
including a coaxially placed current electrode A and two closely-spaced measur-
ing electrodes M and N . The probes measure the apparent resistivity, which is
calculated according to the formula for a homogeneous medium:

ρk = k
ϕM − ϕN

IA
, (1)

where ρk is the apparent resistivity, k is a geometrical constant of a probe
depending on the distances between the electrodes, ϕM is the potential mea-
sured at the electrode M , ϕN is the potential measured at the electrode N , and
IA is the strength of current flowing through the current electrode A.

The measurement results are well logs characterized by the apparent resis-
tivity values as a function of depth (distance) along the borehole. Electrical log-
ging makes use of three-electrode probes, which have the following designation:
A2.0M0.5N. Here the distance between the electrodes A and M equals 2.0 m,
whereas that between M and N is equal to 0.5 m (Fig. 1). The present article
provides an analysis of the logs corresponding to probes with lengths from 0.4
to 8.0 m.

Fig. 1. Scheme of the electrical logging tool

The basic ideas and principles of physical measurements by this method,
established as early as in the previous century, are fundamental, with their fur-
ther development largely depending on the existing mathematical framework.
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This implies considering various effects, including electrical anisotropy due to
thin layering of sedimentary rocks, which requires the development of appropri-
ate algorithms and software.

We examine a solution of the direct electrical logging problem within the
framework of a 2D anisotropic model (Fig. 2). The model approximates a case
when a vertical well penetrates a geological section represented by a thin-
layer formation with plane-parallel horizontal boundaries. In the context of an
anisotropic model, the formation is characterized by two values of resistivity: in
a horizontal plane and in the vertical direction. Such an anisotropic model is
transversely isotropic. In this case, the formation resistivity is described by the
diagonal tensor

ρ̂ =

⎡
⎣

ρh 0 0
0 ρh 0
0 0 ρv

⎤
⎦ .

Here ρh is the value of the resistivity in a horizontal plane, whereas ρv is its
value in the vertical direction. Resistivity is the reciprocal of conductivity:

ρh =
1
σh

, ρv =
1
σv

.

The electrical anisotropy factor is defined as follows:

Λ2 =
ρv

ρh
=

σh

σv
.

Fig. 2. 2D anisotropic earth model

In the near-borehole environment, there may be an invaded zone, which is
formed during the displacement of the formation fluid by drilling mud filtrate.
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It is separated from the well and reservoir by a coaxial cylindrical boundary. In
this case, each region (invaded zone and formation) is characterized by its own
set of values of horizontal and vertical resistivity (indices IZ and F; see Fig. 2).

We should note that the method consisting in the registration of responses
from eddy currents in the medium, which are generated by a monochromatic
inductive source in the borehole, is extensively used for studying electrophysical
properties of rocks. In induction logging, eddy currents excited in the borehole
environment are coaxial with the borehole and do not intersect the formation
boundaries. Therefore, the measured electromagnetic responses, in contrast to
resistivity logging signals, do not contain information on the vertical resistivity
and, correspondingly, on the electrical anisotropy. Induction logging data are
used to determine the geoelectric parameters of a 2D isotropic model [12–16].

Conventionally, a solution to the direct electrical logging problem or a sim-
ulation of electrical logs is associated with the determination of the apparent
resistivity from a given distribution function of both the horizontal and vertical
resistivity of the medium described by a fixed vector of the model parameters.
As follows from the definition of the apparent resistivity (1), to find its value
it is necessary to know the values of the electrical potentials at the measuring
electrodes M and N .

The distribution of the electrical potential in the simulated area is described
by the following boundary value problem:

div σ grad ϕ = 0, (2)

ϕ|Γ0 = 0, (3)

σ
∂ϕ

∂−→n
∣∣∣∣
Γ1

= 0, (4)

σ
∂ϕ

∂−→n
∣∣∣∣
Γ2

= j, (5)

where ϕ is the potential of the electrical field strength (
−→
E= − grad ϕ), σ is the

electrical conductivity (σ = ρ−1), Γ0 is the outer boundary of the area in which
the electrical potential is considered to be close to zero, Γ1 is the dielectric surface
of the tool, Γ2 is the current electrode surface, and j is the current density. It is
assumed that the tool housing has an infinite length and is oriented along the
borehole axis.

Since we are considering an axially symmetric model with cylindrical bound-
aries, it is convenient to convert Cartesian coordinates to cylindrical coordinates.
Then the differential operators take the form

grad u =
(

∂u

∂r
,
1
r

∂u

∂φ
,
∂u

∂z

)
,

div
−→
V =

1
r

∂rVr

∂r
+

1
r

∂Vφ

∂φ
+

∂Vz

∂z
.
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We will assume further that the simulated area has axial symmetry, i.e. the
vertical borehole axis and that of the probe coincide. In this case, the boundary
value problem (2)–(5) takes the following form:

1
r

∂

∂r

(
rσh

∂ϕ

∂r

)
+

∂

∂z

(
σv

∂ϕ

∂z

)
= 0, (6)

ϕ|Γ0 = 0, (7)

σh
∂ϕ

∂r

∣∣∣∣
Γ1

= 0, (8)

σh
∂ϕ

∂r

∣∣∣∣
Γ2

= j. (9)

We introduce the functional spaces

H1 (Ω) =
{
u ∈ L2 (Ω) |grad u ∈ L2 (Ω)

}
,

H1
0 (Ω) =

{
u ∈ H1 (Ω) |u|Γ0 = 0

}
,

where Ω is a computational space, namely a rectangle, Γ0 is a part of the com-
putational space boundary on which the first boundary conditions are given.

Let us define the following scalar product for the elements of these spaces:

(u, v) =
∫

Ω

uv dΩ.

To solve the boundary value problem (6)–(9), we will use the finite-element
method [17].

Let us use the defined scalar product to multiply the expression (6) by some
function υ ∈ H1

0 (Ω), applying the integration by parts formula, and bearing in
mind that the function υ is equal to zero in a part of the computational domain
boundary. As a result, we obtain the following variational formulation of the
boundary value problem (6)–(9):

Find a function ϕ ∈ H1
0 (Ω) such that for any υ ∈ H1

0 (Ω) the following
relation is fulfilled:

∫

Ω

[
σh

∂ϕ

∂r

∂υ

∂r
+ σv

∂ϕ

∂z

∂υ

∂z

]
r dr dz =

∫

Γ2

jυ dΓ2. (10)

We will seek an approximate solution ϕh of the variational formulation (10)
as an expansion in the set of basis functions ψi forming a finite-dimensional
subspace of the space H1

0 (Ω). As a basis, we will use bilinear basis functions
[17]. As a result, the approximate solution ϕh is completely determined by the
vector x consisting of the weight coefficients, which can be found by solving the
following SLE:

Ax = b.
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The elements of the matrix as well as those of the vector on the right side
can be calculated in the following manner:

[A]i,j =
∫

Ω

[
σh

∂ψi

∂r

∂ψj

∂r
+ σv

∂ψi

∂z

∂ψj

∂z

]
r dr dz,

[b]i =
∫

Γ2

jψi dΓ2.

To solve the resulting system, we will apply the Cholesky decomposition:

A = LLt, (11)

where L and Lt are upper and lower triangular matrices.
It should be noted that when the tool is moved along the well, only the

locations of the boundaries Γ1 and Γ2 in the whole boundary value problem
(6)–(9) will change, which in turn leads to a change in the right-hand side b of
the equation, whereas the A-matrix elements are invariable.

Thus, to simulate measurements at several points in the borehole, the decom-
position of the matrix into a product of two triangular matrices can be performed
just once. Afterwards, it may be used for finding several solutions of the SLE.

In such a way, the direct problem solution allows for the calculation of the
measured apparent resistivity at a given depth along the borehole from a given
vector of the anisotropic model parameters. The result of solving a corresponding
number of the direct problems is a set of synthetic apparent resistivity data of
various probes represented as a set of well logs. At the end of the article, we will
analyze the results of high-performance simulation of electrical logs in a realistic
oil reservoir model.

3 Performance on CPUs and GPUs in an Electrical
Logging Problem

On the basis of specialized computing on personal computer GPUs, we developed
parallel algorithms for high-performance electrical logging data simulation in
oil and gas wells. Using these algorithms, we estimated the computation speed
on a CPU (Intel Core i7-4770) and GPU (NVIDIA GeForce Titan), including
cooperative computing on the CPU and GPU. The development of the parallel
algorithms was performed using the NVIDIA CUDA technology [18] and the
computational libraries cuSOLVER and CHOLMOD, which have an advanced
application programming interface (API).

Further, we perform an analysis of computation time for the solution of the
direct electrical logging problem at a given point along the borehole for one
probe. In addition, employing (11), we decompose the system matrix into two
triangular matrices L and Lt, which is needed for finding one solution of the
SLE. It is determined that the main computational costs in an initial sequential
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algorithm are associated with the matrix decomposition, and reach 83% of the
total execution time of the program during the solution of a single SLE. For this
reason, it is advisable to perform these calculations in parallel on the GPU.

We developed a parallel algorithm for high-performance simulation of elec-
trical logging data based on the cuSOLVER computational library integrated in
the CUDA Toolkit 7 and its higher versions (for a detailed description, see [19]).
When using the cuSOLVER library, both the matrix decomposition and the
search of one or several solutions of the SLE are performed directly on the GPU.
Furthermore, the version of the cuSOLVER library that allows for calling them
separately is implemented in the CUDA Toolkit 7.5. It is shown that when solv-
ing the direct electrical logging problem with the algorithm developed here, the
computing time needed for matrix decomposition on the GPU is reduced by a
factor of 4.

Using the NVIDIA Visual Profiler, we analyzed the relations of time expen-
ditures when performing GPU computing. For instance, the data transfer time
from Host to Device and back is about 1% of all the operations on the GPU.
The analysis of the triangular matrices L and Lt and sorting the elements takes
up to 5% of the total time. The most resource-intensive task is matrix decompo-
sition, which takes about 70% of the total computing time. Finding a solution
to the SLE using the two triangular matrices is about 15% in this computa-
tional experiment, which focuses on the solution of one direct electrical logging
problem.

Afterwards, we analyzed the computational time needed for solving direct
electrical logging problems along a borehole profile of length 10 m, with a dis-
cretization interval of 0.1 m and 5 probes. In this task, one matrix decomposition
is performed, and 505 solutions of the system are found subsequently.

We estimated the computing time corresponding to the matrix decomposition
and finding of solutions to the SLE, as well as the total time on the CPU and
GPU depending on the order of the matrix (Table 1). The size of the coefficient
matrix of the SLE is determined by the computational grid density, the choice of
which depends on the size of heterogeneous areas of the environment and their
relative resistivity contrast.

Table 1. Computation time on CPU and GPU for matrix decomposition and SLE
solution, and total time depending on matrix size

Matrix

size th. e.

Computing time, s

CPU GPU

Decomposition Solution of SLE Total Decomposition Solution of SLE Total

10 0.01 0.28 0.46 0.02 13.33 13.83

39 0.06 1.44 2.13 0.10 51.55 52.58

154 0.87 11.11 14.51 0.51 209.29 212.60

613 12.92 82.73 106.03 3.23 1061.79 1075.15
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The results presented in Table 1 show that, as the order of the matrix
increases, time expenditures on matrix decomposition on the CPU are larger
than those on the GPU. For instance, it is more reasonable to use the CPU
when the number of elements in a matrix is below 105. Otherwise, the GPU
should be used; in the last case the acceleration is by a factor of 4. This is due to
the fact that the considered matrices are very sparse, and the decomposition is
performed rapidly for matrices of small size. Let us note that a high performance
on GPU is achieved when using denser matrices obtained by numerical solution
of other logging problems.

The graphics device memory size imposes a significant constraint on GPU
computations. The widely accepted CSR format is used to store the matrix.
In this format, the total memory size for the matrix is determined by the size
of three vectors. Two of them contain integer-valued elements whose size is
defined by the number of matrix rows and the number of its non-zero elements,
respectively. The third vector contains the SLE coefficients in single or double
precision.

Matrix decomposition also requires memory. For example, the memory size
required for the decomposition of a matrix with about 104 elements is approxi-
mately 16 times larger than the amount of memory necessary to store it. In the
case of 106 elements, the difference is a factor of 3. Moreover, double precision
calculations on the GPU take about 37 MB in the first case and 3 GB in the
second. Therefore, to implement computations on the GPU, it is necessary to
provide a sufficient amount of memory to store a matrix in the CSR format and
perform its decomposition.

In contrast to matrix decomposition, finding solutions to an SLE on a GPU
takes several times more time than it takes on a CPU (see Table 1). For instance,
for a matrix with 104 elements, CPU computing is 48 times faster than GPU
computing, whereas for a matrix with 106 elements, the corresponding difference
is a factor 13. As noted above, the data transfer time is very small, that is why
significant time expenditures on finding solutions to an SLE on a GPU are due
to very sparse matrix and GPU computing features. The latter include delays
associated with reference to the global/shared memory and synchronization of
computing threads. In general, it is seen that the gain from CPU utilization
decreases as the matrix size increases, but this happens quite slowly. Based
on the found pattern, GPU computing will be faster only for matrices with
more than 109 to 1010 elements. All the evidence points to the fact that finding
solutions to SLE is the most effective when this is parallelized on CPUs.

It ought to be noted that when solving one direct electrical logging problem
(calculations at a given point along the borehole profile for one probe), including
a single matrix decomposition and a single cycle of finding a solution to an SLE,
the use of a GPU is several times more efficient. Our calculations have shown that
when finding several (up to 10) solutions to an SLE, making use of a GPU will
be reasonable. This corresponds to the solution of two direct electrical logging
problems at two points along the borehole profile for 6 probes, which is of no
concern for practical use. However, when dealing with a large number of solutions
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of direct electrical logging problems (calculations on a profile along a borehole
tens to hundreds of meters in length, for all the probes), the time expenditures
on finding solutions to an SLE become considerable, and CPU calculations are
performed much faster than those on a GPU.

The performed analysis shows that calculations will be effective if matrix
decomposition is preformed on GPUs, and finding solutions to SLE on CPUs,
thereby carrying out a cooperative CPU–GPU computing. For the development
of a parallel algorithm, we apply the CHOLMOD library [20], which is part
of the computational library package SuiteSparse [21], comprising solvers for
sparse matrices employing NVIDIA graphics processors. Our selection of the
CHOLMOD library is due to the fact that it allows matrix decomposition and
finding a solution to an SLE to be done separately, with matrix decomposition
being carried out by cooperative CPU–GPU computing. Thus, CPU and GPU
calculations are performed simultaneously. As a consequence of this, the CPU
does not go into a long period of waiting for the completion of the matrix decom-
position on the GPU, as is the case when using the cuSOLVER library. It also
allows one not to store all the data on the GPU, but only those that are neces-
sary at the moment, which creates the possibility to perform calculations using
matrices of even higher order than those considered in this paper.

Next, we show the results of computational performance estimates when
using the developed parallel algorithms compared to the initial sequential algo-
rithm for the CPU (Fig. 3). For the implementation of parallel computing on the
GPU, we apply the cuSOLVER library, while for cooperative CPU–GPU com-
puting, we used the CHOLMOD library. The estimates were obtained during a
high-performance simulation of electrical logging data in a realistic petroleum
reservoir model when solving the problem with the largest size of the SLE matrix
(613 thousand elements).

It can be seen from Fig. 3 that the matrix decomposition by cooperative
CPU–GPU computing is performed 4.1 times faster than on CPU, and 1.1 times
faster than on GPU. Moreover, the time required to find all the solutions of an
SLE by cooperative CPU–GPU computing is shorter by a factor of 1.6 compared
to that of the initial sequential algorithm on CPU, and by a factor of 20.2
compared to that of the parallelized algorithm on GPU. It was found that the
total CPU–GPU computation time is shorter than that on CPU by a factor of
1.6, and shorter than that on GPU by a factor of 16.3.

Finally, we estimated the computing time on CPU and various NVIDIA
GPUs for the solution of a direct 2D electrical logging problem (Table 2). The
calculations were performed on the GTX 680, GTX 960 and NVIDIA TITAN,
and also on two GTX 680 GPUs. The results showed that performing the decom-
position of the SLE matrix completely on the GPU (as implemented in the
cuSOLVER) is not the optimal decision, since it does not provide any speed
gain. As already stated, when performing a matrix decomposition, it is essential
to have space for both matrix storage and the calculations themselves. Therefore,
for large matrices requiring a huge amount of memory (for a matrix containing
more than 106 elements, 10 GB of free space on the videocard are required),
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Fig. 3. Computation time on CPU and GPU, and cooperative CPU–GPU computing
time, when solving a direct 2D electrical logging problem

the use of the CHOLMOD library will be more effective, since it stores the data
only at the time of calculation. A comparative analysis of the calculation time
for such a matrix on various GPUs shows that cards less powerful than the
NVIDIA GTX TITAN are also capable of delivering high performance. On the
whole, Table 2 shows that the decomposition of an SLE matrix containing more
than 106 elements is executed 20 to 25 times faster on CPU–GPU than it is
on CPU.

Table 2. Computation time on CPU and different NVIDIA GPUs for the solution of
a direct 2D electrical logging problem

Computing device NVIDIA GTX CPU

960 680 TITAN

Time, s 10.28 10.33 8.32 207.29

Thus, the performance obtained for cooperative CPU–GPU computing
demonstrates the high efficiency of the developed algorithm and its software
implementations, pointing to their possible use for rapid data processing and
interpretation based on high-performance simulation.
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4 High-Performance Simulation of Electrical Logs

Using the developed computational algorithm and implemented software on the
basis of cooperative CPU–GPU computing, we conducted a high-performance
simulation of electrical logs in a realistic model of a petroleum reservoir typical
of the Ob River region.

We consider the case of a low-resistivity argillaceous reservoir, ubiquitous
in Western Siberia. The study of such reservoirs is an important task in petro-
leum geophysics. The presence of highly conductive clay bands in a highly resis-
tive oil-containing reservoir results in a decrease in the formation resistivity.

Fig. 4. Realistic anisotropic model of a petroleum reservoir (a), and the synthetic
logs of the apparent resistivity of the electrical logging probes (b), calculated using
cooperative CPU–GPU computing
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Consequently, when processing electrical logging data, an oil-saturated layer will
be identified as water-saturated owing to its low resistivity.

We provide an anisotropic model that describes thin lamination of sandy-
argillaceous interlayers saturated with oil at the top and with water at the
bottom, and enclosed in argillaceous deposits. The geoelectrical parameters of
the anisotropic model (namely those of the borehole, fluid-saturated layers, host
rocks) are shown in Fig. 4a.

As previously mentioned, during the process of drilling permeable formations,
drilling mud filtrates into them, leading to the displacement of the formation
fluid (oil-water mixture) and development of a modified near-borehole zone. The
change in resistivity in the invaded zone is related to redistribution of formation
water mineralization and that of mud filtrate. Behind this zone, an undisturbed
formation is located. The invasion zones and layers have their own horizontal
resistivity ρh and electrical anisotropy coefficient Λ.

We analyzed the apparent resistivity logs (for the probes A0.4M0.1N,
A1.0M0.1N, A2.0M0.5N, A4.0M0.5N and A8.0M1.0N) presented in Fig. 4b. The
logs are significantly differentiated and reflect the vertical heterogeneity of the
geological section, which allows to discern various layers and interpret data cor-
rectly. In general, the presented logs correspond to a typical model of spatially
heterogeneous fluid-saturated rocks. It should be noted that the results obtained
are completely identical if one applies the sequential algorithm.

Thus, the fast algorithm developed by us will allow in the future to carry out
rapid numerical simulations of electrical logs and examine the features of their
behavior in complex models of geologic media, including anisotropic ones. This
fact is extremely important for both the creation of new logging technologies
and hardware systems and the express interpretation of practical log data in
real time.

5 Conclusion

We developed and implemented into software an algorithm for high-performance
simulation of electrical logs from oil and gas wells using graphics processors. The
algorithm is based on the solution of the direct 2D electrical logging problem
in anisotropic models of environment by means of the grid-based finite-element
method. The solution of a SLE with a sparse matrix of high order is performed
by Cholesky decomposition.

The software implementations of the algorithm used the NVIDIA CUDA
technology and the cuSOLVER and CHOLMOD computing libraries, which
allow to decompose a matrix and finding a solution to an SLE on CPUs and
GPUs both separately and jointly. We analyzed the computation time required
for decomposing a matrix and finding a solution to an SLE on CPU and GPU
as well as the total time, depending on the order of the matrix and the NVIDIA
GPUs that were used. It was found that, regarding the considered task, the most
efficient approach consists in decomposing the matrices on GPUs and finding the
solutions of SLE on CPUs.
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We made estimates of computing speed on CPU and GPU, including high-
performance CPU–GPU computing. It was established that the use of cooper-
ative CPU–GPU computing allows to improve performance, which is not the
case with similar computations on either CPU or GPU. For instance, matrix
decomposition on CPU–GPU is 4 times faster than on CPU. In addition, find-
ing solutions to SLE on CPU–GPU is 20 times faster than on GPU. The total
CPU–GPU computation time is shorter than that on CPU by a factor of 1.5,
and shorter than that on GPU by a factor of 16.

The high-performance simulation of electrical logging data was conducted in
a realistic model of an anisotropic petroleum reservoir. The high-performance
computing carried out in our study, processing speed estimates and simulation
are indications of the high efficiency of the developed algorithm regarding a wide
range of practical problems.
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Abstract. The problems which arise during the gas-oil exploration
process and require high-performance computing resources can be
divided in two groups.

The first group is seismic data processing, the second group is 3D
reservoir simulating for the exploration process optimization.

For the each group of problems typical applications used in real tech-
nological process were chosen, and their behavior was examined on dif-
ferent computational architectures.

Performed analysis shows that the applications of the first group have
good scalability potential on the studied computational platforms, mean-
while for the applications of the second group the limit of the perfor-
mance increasing is reached relatively fast.

Keywords: Performance analysis · Architecture comparison · Profiling

1 Introduction

The parallel execution performance of applications1 depends on both algorithmic
structure of used numerical methods and features of computational hardware.

Therefore, both factors should be taken into account simultaneously. This
is an internally controversial challenge, because the target application group
should be studied as general as possible, but at the same time, any procedure of
optimization is problematic without explicit consideration of all levels of com-
putational hardware, such as [1]:

– vector or “single instruction multiple data” (SIMD) instructions;
– in-core multiple execution devices and the out-of-order execution logics;
– multicore CPUs and independent instruction streams;

1 In this article the parallel execution performance is understood, primarily, as the
execution time, while the issues related to the accuracy and correctness are the
subject of separate consideration.
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– the multiple CPUs within computational node;
– the multiple nodes connected via different computation networks.

In other words, the co-design of dedicated computational hardware is a typ-
ical “chicken-egg” problem. The possible bootstrapping procedure may be for-
mulated as follows.

As a first step, among multiple real applications used in specific subject area
the most suitable ones are carefully selected, which can serve as a basis for
further detailed investigation.

Then the dynamic behavior of chosen applications is studied to identify their
common features using the performance analysis tools. Any typical computa-
tional architecture can be used at this stage. It is possible to reduce the impact
of the computational architecture on the results by reproducing the analysis on
the different environments. However, the large variety of the testing configu-
rations could be impractical, because of substantial amount of time needed to
carry out studies and difficulties of interpreting the results.

The requirements found for specification of the computational hardware allow
making preliminary selection from a number of possible computation configura-
tions and/or architectures.

Further, the selected applications and computational hardware are tested
together to clarify their real performance and scalability potential. For this pur-
pose it is possible to use either real computational nodes or simulated virtual
environments.

Each of these two approaches has its advantages and disadvantages. Simplic-
ity of the test procedure, possibillity to use large amount of input data, and
reliable understanding of the application behavior belong to the advantages of
the real testing. However, the number of available real testbenches is still rather
limited.

Simulation of the application execution on different architectures allows to
increase the number of available hardware variants, albeit the simulation is labor
demanding procedure because of huge computational costs and log-files sizes.
Besides it requires limited scale of input data. Finally empirical and heuristic
models for hardware emulation reduce the analysis quality.

At the final stage of development the testing results are used to make further
adjustments.

In the present work the scheme described above was used to design of super-
computer specializing on geological data processing.

Currently, the highest priority in the subject area is given to exploration
and development of the offshore and deepwater fields. Such computations are
characterized by the large amount of input data (from hundreds of terabytes
up to tens of petabytes) and large model complexity that requires large compu-
tational resources. Moreover, data processing rate should be relatively high. For
this reason the development of specialized computational hardware is a rather
complicated task.

In this work analysis of dynamic behavior of selected geophysical applica-
tions was performed on the range of computational architectures, including both
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common architectures, such as x86, and prospective one, vliw. The main empha-
sis was put on the computations, the I/O requirements, which play important
role during data processing, need to be investigated further.

2 Tested Applications

For this paper we have chosen following real applications: the seismic
data processing module (wemig/cazmig) and 3D reservoir simulating module
(tNavigator). The applications are computation intensive and memory bound.
Relatively small input data were used to minimize the I/O impact on the testing
results.

2.1 Module wemig/cazmig

The applications of the module wemig/cazmig implement typical seismic data
processing methods, based on Fourier transformation for solving the wave equa-
tion. At the same time, the applications are characterized by acceptable level
of computation complexity, which allows to use different techniques for testing
different computational platforms.

The application wemig implements a 2D-seismic migration method using
reverse-time wavefield continuation in frequency/space domains and depth
imaging [2].

Pseudocode of the application wemig using MPI-only technique of code par-
allelization is represented on the Fig. 1.

Fig. 1. Pseudocode of the application wemig

The cazmig migration algorithm proposed by Cazdag [3] and based on 3D
data migration. In this method all computations are performed in the frequency
domain, where the source and the receiver positions are aligned with the phase
shift by the Fourier coefficients rotation operation.
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Hybrid MPI+OMP programming model is used for the application cazmig
module.

The algorithm of the application cazmig is much more resource demanding
as compared to the algorithm of the application wemig.

Binary codes were generated without any architecture-dependent optimiza-
tion of the source codes except for the architecture-specific compilation options
at the re-compilation phase.

We have used the cross-compilation procedure for KNC and KNL, and native
compilation for Haswell, Broadwell and Elbrus.

Source codes were compiled with architecture-specific optimization keys, such
as "-xCORE-AVX2 -qopt-prefetch" for Haswell/Broadwell, "-xMIC-AVX512
-qopt-prefetch" for Intel Xeon Phi 7120D, "-mmic" for for Intel Xeon Phi
7250, and "-mcpu=elbrus-4c -mptr64 -ffast -ffast-math" for Elbrus archi-
tectures.

The “c++11” standard features were used for Intel architectures, while these
features are unavailable for the current release of Elbrus compiler.

The library boost was compiled with the highest available optimization keys
for all architectures.

The MPICH2 library based on lcc compiler 1.21.07:Aug-10-2016 version was
used on the Elbrus testbench. The Intel MPI Library versions 2016 and 2017
was used on the Intel platforms.

The Fourier transformations was done using the FFTW [12] library on the
Elbrus testbench and Math Kernel Library [13] on the Intel test benches.

2.2 Module tNavigator

The reservoir simulator tNavigator is designed for running dynamic reservoir
simulations on engineers laptops, servers, and HPC clusters [4]. This module
solves equations of fluid flow dynamics in porous media. Set of the state variables
includes molar densities and pressure that permits formulation of the general
compositional model, where the black oil model is a special case. The general
compositional model takes into account the following factors:

– Darcy’ law for fluid flow dynamics;
– PVT tables with multiple PVT relative permeability regions;
– absolute permeability as a function of pressure;
– different options for aquifers;
– networks and gas gathering systems;
– tracer models.

Due to license restrictions only binary code of the module tNavigator
adapted for x86 architecture was used. For that reason, on the e2k (vliw) archi-
tecture the module launching is possible only in binary compilation mode, that
adds overhead costs and decreases the computation performance.

Furthermore, for the Intel Knight Landing processor (KNL) it is possible to
execute the tNavigator simulator without re-compilation, in contrast with the
previous generation of Intel Xeon Phi processors (Intel Knight Corner, KNC).
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Since the architecture-dependent instruction sets, e.g. such as AVX-512F,
AVX-512CD, AVX-512ER, and AVX-512FP, cannot be been used without the
re-compilation with architecture specific optimization keys, so the performance
results obtained on the KNL architecture are clearly not optimal.

Finally, we have used two different input data sets distinct in size and com-
plexity.

3 Tested Hardware

Performance analysis of chosen applications was carried out on the following
computational architectures:

– E5 series Intel Xeon processors;
– Intel Xeon Phi processors;
– Elbrus-4C processor from the MCST company.

Detailed specification information is listed in the Table 1.

Table 1. CPUs technical specifications

Characteristics Specifications

Model E5-2697 v3 E5-2698 v4 Xeon Phi Xeon Phi Elbrus-4C

7120D 7250

Architecture x86 64 x86 64 x86 64 x86 64 e2k

(MIC) (MIC) (VLIW)

Clock speed, GHz 2.6 2.2 1.238 1.400 0.8

Number of cores 14 20 61 68 4

Number of threads 28 40 244 272 4

Peak performance 582.4 665.6 2416.6 3046.4 25.6

(double precision),

GFLOPS

Max memory 68.0 76.8 35.2 76.8 38.4

Bandwidth, GB/sec

The Intel Xeon [8,9] Xeon Phi [10,11] series CPUs provide a high energy
efficiency, multicore and simultaneous multi-threading support (so called hyper-
threading), vector instruction sets (SSE and AVX), and the DDR4 and GDDR5
support.

The Elbrus microprocessor family belongs to the VLIW architecture class.
The main VLIW feature is explicit instruction-level parallelism. On the compila-
tion stage different program instructions that allow simultaneous execution are
composed into Very-Long Instruction Words treated by CPU pipeline as single
instructions2.
2 Very-Long Instruction Words are executed one per CPU cycle.
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Table 2. Testbenches specifications

Codename CPU # Cores Memory GB per Core

Haswell 64GB Intel Xeon 2x 14 8x DRAM 2.28

E5-2697 v3 Micron 8GB

DDR4/2133MHz

Haswell 128GB Intel Xeon 2x 14 8x DRAM 4.57

E5-2697 v3 Samsung 16GB

DDR4/2133MHz

Broadwell 64GB Intel Xeon 2x 20 8x DRAM 1.6

E5-2698 v4 Micron 8GB

DDR4/2133MHz

Broadwell 128GB Intel Xeon 2x 20 8x DRAM 3.2

E5-2698 v4 Samsung 16GB

DDR4/2133MHz

KNC Intel Xeon Phi 61 SDRAM 0.26

7120D Intel 16GB

GDDR5/2750MHz

KNL Intel Xeon Phi 68 MCDRAM 2.8

7250 Intel 16GB +

6x DRAM

Micron 32GB

DDR4/2133MHz

Elbrus Elbrus-4C 4x 4 12x DRAM 3

Micron 4GB

DDR3/1600MHz

Number of CPUs and RAM along with their characteristics define the the-
oretical performance of a computational node. In the Table 2 codenames and
specifications of studied testbenches are listed.

4 Applications Analysis

On all studied architectures the tracing was performed by the Paraver utility [5].
The set of profiling tools including Extrae [6], IPM [15] was used to describe the
dynamical behavior of wemig/cazmig module.

Additionally, the runtime analysis for the application cazmig was done using
MPI performance Snapshot [7].

4.1 CPU Workload

The tracing of the application wemig was done on the Haswell 64 GB testbench.
The CPU workload is equally distributed during the runtime. (see Fig. 2).
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Fig. 2. MIPS trace of the application wemig (Haswell testbench; NMPI = 14)

In the Table 3 different aspects of execution for the application cazmig are
reflected. In this table ‘MPI time’ denotes the mean time per process spent in the
serial and OMP parts of application code; ‘OpenMP’ denotes the mean time per
process spent in the OpenMP parallel regions; ‘I/O wait’ denotes the total time,
which the application was stalled due to I/O demand; ‘I/O operations’ denotes
the time the application spends waiting for an I/O operation to complete.

Table 3. The application cazmig execution features

Characteristic Haswell 128 GB Broadwell 128GB KNL s

Calculation time % 95.92 94.10 90.52

MPI time % 4.08 5.90 9.48

OpenMP time% 86.58 83.13 83.12

I/O wait, sec 0.53 0.00 903.02

I/O operations, % 0.00 0.00 0.73

The computational load distribution for MPI processes are reflected in Fig. 3.
Presented data indicate that on the Haswell and the Broadwell architectures
the application wemig behaves similar3, while KNL and Elbrus results differ
significantly.

The MPI processes are loaded most uniformly on the Intel KNL architecture.
The relative idle time ranges from 40% to 50 % percents of total process runtime.

3 The GFLOPS metric wasn’t measured because of architecture-specific difficulties of
GFlops measuring on vector CPUs.
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a) b)

c) d)

Fig. 3. The Rrelative computational load distribution of MPI processes for the appli-
cation wemig on the (a) Haswell 128, (b) Broadwell 128, (c) KNL, (d) Elbrus Architec-
tures; where wtime — wallclock time, utime — user time, stime system time, mtime the
MPI time, gbyte the memory usage, gflop the computation performance per process.

The results of applications profiling reflect good scalability potential of these
applications. Algthough, the workload is heavy and requires high computational
demands to CPU according to MIPS metrics.

4.2 Memory Usage

Additional assessments of the module wemig/cazmig runtime were undertaken
with regard to memory usage using Intel MPI Performance Snapshot [7]. The
analysis results show, in particular, the higher requirements to the RAM 4.

The application wemig was analyzed with 56 MPI ranks execution, while
application cazmig was executed using 14 MPI ranks and each MPI process
consists of 14 OpenMP threads (Table 4).

Table 4. Memory usage

Application Memory Bound, % MB per process

Min Max Mean Peak

wemig 31 31 36.48 35.58

cazmig 46 46 879.54 735.39
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The memory bound values are relatively high what seems to indicate that
the processor pipeline was stalled due to demands to load or store instructions.

4.3 MPI Communications

The MPI reduce operation over the data located in different address spaces of
different MPI processes, occupies most of the time during parallel execution 4.

The MPI communications pattern of the application cazmig is similar to
wemig, but the heterogeneous parallel programming model is used.

The MPI data transfer percentages are maximal for the KNL testbench, while
for Haswell and Broadwell testbenches MPI data transfers are accounted for less
then 11% of total execution time (see the Table 5). The minimal relative data
transfer rates were observed on the Elbrus testbench.

Analogous results for the application cazmig are presented in the Table 5.

Table 5. The Communication/Computation ratio (%) for the Applications wemig and
cazmig

Application Haswell 128 GB Broadwell 128 GB KNL Elbrus

wemig % 4.5/95.5 10.9/89.1 33/67 3/97

cazmig% 4.1/95.9 5.9/94.1 9.5/90.5 4.3/95.7

a) b)

c) d)

Fig. 4. MPI processes communication balance for the application wemig on the (a)
Haswell 128 GB, b) Broadwell 128 GB, (c) KNL, (d) Elbrus architectures
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The MPI calls pattern and the task distribution display high scalability
potential for all studied testbenches. So it can be assumed that total CPU usage
would be uniform with increasing the number of nodes and the data volume.

The MPI stack time distribution for the studied testbenches in shown on the
Fig. 4.

5 Benchmarking

5.1 Module wemig/cazmig

Absolute values of the execution time for the application wemig are listed in the
Table 6. This table includes execution time for two cases. The first case corre-
sponds to the minimal parallel execution possible case with 2 MPI-processes;
the second case is the maximum workload with the maximum number of MPI
ranks listed below, which depends on the number of physical cores and the
multi-threading technologies [14].

According to the preliminary investigation, such numbers are:

– 56 for Haswell-nodes (14 physical cores x 2 CPU per node x 2 hyperthreading);
– 80 for Broadwell-nodes (20 physical cores x 2 CPU per node x 2 hyperthread-

ing);
– 240 for KNC-node (60 physical cores x 1 CPU per node x 4 hyperthreading);
– 272 for KNL-node (68 physical cores x 1 CPU per node x 4 hyperthreading);
– 16 for Elbrus-node (4 physical cores x 4 CPU per node).

Table 6. Test runtimes for the application wemig

Testbench Number of MPI ranks

Min Min

N MPI time N MPI Time

Haswell 64GB 2 12 min 21 s 56 56 s

Haswell 128GB 2 12 min 15 s 56 50 s

Broadwell 64 GB 2 16 min 24 s 80 55 s

Broadwell 128 GB 2 10 min 38 s 80 36 s

KNC 2 550 min 21 s 240 12 min 58 s

KNL 2 246 min 34 s 272 2 min 59 s

Elbrus 2 280 min 11 s 16 35 min 47 s

It is interesting to note that the doubling of memory capacity leads to the sig-
nificant performance increase on the Broadwell testbench, while on the Haswell
testbench productivity gains are not substantial. It seems the Broadwell cores
with 64 GB RAM configuration were stalled due to memory demands, and the
Haswell 64 GB results are more balanced.
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Similarly the low test performance observed on the KNC testbench with small
memory capacity points out to the severe memory requirements for processing
seismic data.

So it is recommended to use RAM more than 3 GB per core for computational
node with the Broadwell CPU and no less 2 GB per core for the other types of
nodes.

As it was mentioned above the application cazmig has the computation pat-
tern similar to the application wemig, but the parallel programming model of
the application cazmig includes MPI and OpenMP levels.

The testing results of the application cazmig are listed in the Table 7. The
number of MPI-processes and OMP-threads represented in the table reflects the
optimal execution options.

Table 7. The minimal execution time Trun for the application cazmig

Testbench Trun NMPI NOMP

Haswell 64 GB 57min 35 s 14 14

Haswell 128 GB 55min 39 s 14 14

Broadwell 64 GB 56min 13 s 4 16

Broadwell 128 GB 43min 2 s 16 16

KNL 70min 30 s 34 68

5.2 Module tNavigator

The benchmarking results for the Haswell 64 GB/Haswell 128 GB, Broad-
well 64 GB/Broadwell 128 GB testbenches are listed in the Fig. 5. The test runs
were done using two different input data models. First one, Model A has larger
size and includes more active blocks, while Model B is more complex and differs
in increased number of components and connections (Table 8).

Table 8. TNavigator data models characteristics

Feature Model A Model B

Number of components (including water) 3 9

Total active grid blocks 2418989 36097

Number of connections 853 1882
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Fig. 5. The execution time Trun ratio to the thread number for the tNavigator simu-
lator. (a)–(b) Input data model A (c)–(d) Input data model B

6 Conclusion

This work includes tracing and profiling analysis, as well as workload and time
rates results for the 2D and 3D real seismic data processing.

The Intel Xeon E5 testbenches with x86 architecture and 128 GB RAM (the
Haswell 128 and Broadwell 128) show the best result in absolute values. More-
over, time and efforts spent on source code compilation, and tracing/profiling
were minimal for these testbenches because of the abundance of x86 architectures
and documentations.

For the new generation of Intel Xeon Phi processor, KNL testbench, the
benchmarking results were also satisfactory; but there was still room for source
code improvements. Additional benefit of this CPU is energy efficiency. Besides
the code migration time was minimal; while the migration of real seismic module
to the previous generation Intel Xeon Phi co-processor, KNC testbench, involved
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considerable efforts because of cross-compilation issues of the dependence code.
The performance level of KNC testbench was also lower than of KNL testbench.

Although for Elbrus testbench overall absolute values were lower than val-
ues for the Intel Xeon; the relative performance, i.e. real to peak performance
ratio, was high. For some micro-benchmarks, e.g. Fourier transformation bench-
mark, it was higher than for Intel Xeon architectures. Thus the Elbrus-based
computational nodes might be effective for seismic data pre-processing, where
the Fourier transformation methods are actively used. It is worth mention that
code migration issues could require significant efforts.

In this paper two types of real applications for solving two different groups
of tasks were considered. Two different traits of behavior for them were revealed
by tracing, profiling, and benchmarking procedures.

Therefore, more effective utilization of computational resources of modern
supercomputers for solving problems of the first group can be obtained by
massive-parallel execution of one application instance on the large number of
computational nodes.

Independent execution of several application instances with different input
data on the relatively moderate number of computational nodes can be recom-
mended for the problems of the second group.
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Abstract. The paper briefly describes a modification of the spherical
model of lithosphere seismicity taking into account random factors that
influence the dynamics of parameters of interacting block structure ele-
ments. We present the results of numerical experiments that confirm
the benefits of adopting stochastic procedures in the model. Also, we
designed a special software to study the process of model stress prop-
agation in the system of tectonic plates in detail. This software allows
for the visualization of both the instantaneous stress distribution along a
fault and the temporal migration of critical values. New possibilities are
used for testing different interconnections between model characteristics
and comparing them with real patterns. Finally, we investigate the role
of exogenous and endogenous parameters in the model calibration.

Keywords: Block-and-fault models of lithosphere dynamics and seis-
micity · Earthquake catalogs · Scientific visualization software

1 Introduction: The Necessity of Seismicity Simulation

The statistical analysis of seismicity as the spatial-temporal sequence of earth-
quakes in a given area on the basis of real catalogs is heavily hindered by the
short history of reliable observation data. The patterns of the earthquake occur-
rence that are identifiable in real catalogs may be only apparent and not be
repeated in the future. At the same time, synthetic catalogs obtained from
numerical simulations can cover very long time intervals; this allows us to acquire
more reliable estimates of parameters of a seismic flow and search for pre-
monitory patterns preceding large events. Such a possibility may be needed
in expert systems for global/regional seismic risk monitoring [1,2]. The main
result of modeling is a synthetic earthquake catalog; each of its events is char-
acterized by a time moment, epicenter coordinates, a depth, a magnitude, and,
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for some models taking into account the geology of a region, an intensity. The
simulation of lithosphere dynamics provides the field of velocities at different
depths, acting forces, induced displacements, and the character of interaction
between structural elements. So far, there is no adequate theory of seismotectonic
processes, but, using the available data, one can assume that various features
of the lithosphere (e.g., the spatial heterogeneity, hierarchical block structure,
and different types of nonlinear rheology) are related to properties of earthquake
sequences. The stability of these properties at a quantitative level in different
regions allows us to conclude that it is possible to consider the lithosphere as a
large dissipative system whose behavior does not essentially depend on partic-
ular details of specific processes progressing in a geological system. There exist
many different approaches to modeling lithospheric processes (see, for example,
[1] and its bibliography); nevertheless, we can mark out the two main direc-
tions. The first (traditional) one relies on the detailed investigation of a specific
tectonic fault, or, rather often, of a strong earthquake in order to reproduce
certain pre- and/or post-seismic phenomena (relevant to this fault or event). In
contrast, models of the second direction developed relatively recently treat the
seismotectonic process in a rather abstract way; the main goal of simulations is
to reproduce general universal properties of observed seismicity (primarily, the
power law for earthquake “size” distribution, namely the Gutenberg–Richter law
on frequency-magnitude (FM) relation, clustering, migration of events, seismic
cycle, and so on). However, it seems that an adequate model designed in the
framework of the second direction should reflect both some universal features of
nonlinear systems and the specific geometry of interacting faults.

The block models of lithosphere dynamics and seismicity [2] have been devel-
oped taking into account both requirements. The approach to modeling is based
on the concept of the hierarchical block structure of the lithosphere (see [2].
Tectonic plates are represented as a system of perfectly rigid blocks being in a
quasi-static equilibrium state. A model event is a stress drop at a fault separat-
ing two blocks occurring under the action of outer forces. In the model, the two
main mechanisms are involved in the seismotectonic process: the tectonic load-
ing, with characteristic rate of a few cm/yr, and the elastic stress accumulation
and redistribution, with characteristic rate of a few km/sec. They are considered
over time as a uniform motion and an instantaneous stress drop, respectively.
Wave processes are beyond the scope of existing block models. The plane model
[2], where a structure is restricted by two horizontal planes, has been the most
extensively studied. Models approximating the dynamics of lithosphere blocks
for real seismic regions have been built on its basis [2,3]. However, significant dis-
tortions have been revealed when simulating the motion of large tectonic plates;
therefore, the spherical geometry has been involved. The computational realiza-
tion of the spherical modification requires much more expenditures of memory
and processor time than the plane model, the use of multiprocessor machines
and parallel computing technologies is preferable.

The present paper actually continues the investigations of the problem of
lithosphere dynamics and seismicity simulation by means of the spherical block
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model developed by the authors [4–6]. The last modification has adopted addi-
tional possibilities of the mathematical model associated with the introduction
of random factors. On the one hand, this allows us to improve some properties of
synthetic seismicity [6], and, on the other hand, this creates a need for studying
the model stress propagation in the system of tectonic plates for the purpose of
feasibility verification. Such a study makes the visualization of both the instan-
taneous stress distribution along a fault and the temporal migration of critical
values along the system of faults very useful. The big data and the necessity of its
graphic representation have impeded the realization of the options in question,
thus decelerating the process of model development. To overcome these difficul-
ties, the program package has been supplied by scientific visualization tools to
verify simulation results. The novelty of the present paper lies in the description
of the “fresh” software and the discussion of some results of new computing
experiments.

2 Spherical Block Model: A Stochastic Version

Let us briefly describe the last version of the spherical block-and-fault model of
lithosphere dynamics and seismicity. The detailed description of all the modifi-
cations of the model can be found in [5]; in this paper, we restrict ourselves to
a summary of the basic ideas and principles with an emphasis on new construc-
tions. A block structure is a limited and simply connected part of a spherical
layer of depth H bounded by two concentric spheres. The outer sphere repre-
sents the Earth’s surface and the inner one represents the boundary between the
lithosphere and the mantle. The partition of the structure into blocks is defined
by infinitely thin faults intersecting the layer. Each fault is a part of a cone
surface having the same value of the dip angle with the outer sphere at all its
points. Faults intersect along curves that meet the outer and inner spheres at
points called vertices. A part of such a curve between two respective vertices is
called a rib. Fragments of faults limited by two adjacent ribs are called segments.
The common parts of blocks with the limiting spheres are spherical polygons;
those on the inner sphere are called bottoms. A block structure may be a part
of the spherical shell and be bordered by boundary blocks that are adjacent to
boundary segments. Another possibility (impossible in plane modifications) is to
consider the structure covering the whole surface of the Earth without boundary
blocks. The blocks are assumed to be perfectly rigid. All block displacements are
considered as negligible compared with block sizes. Therefore, the geometry of
the block structure does not change during the simulation, and the structure does
not move as a whole. The gravitation forces remain essentially unchanged by the
block displacements and, because the structure is in a quasi-static equilibrium
state at the initial time moment, gravity does not cause a motion of the blocks.
All blocks (both internal and boundary if specified) have six degrees of freedom
and can leave the spherical surface. The displacement of each block consists of
translation and rotation components. The motions of the boundary blocks as
well as those of the underlying medium, considered as an external action on the
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structure, are assumed to be known. As a rule, they are described as rotations
on the sphere, i.e. axes of rotation and angular velocities are given.

The current modification admits the specification of different depths for dif-
ferent blocks (in the range of H) and the changes of fault parameters depending
on the depth. Note that this is the first attempt to take into account the inho-
mogeneity of the lithosphere in block models. In this modification, we consider
two ways of introducing stochasticity into the procedures for the calculation of
the forces acting on a block and actually determining model earthquakes. This
stochasticity consists of (i) adding a noise to the differential equations describing
the dynamics of forces and displacements, and (ii) using random variables when
specifying strength thresholds for the medium of tectonic faults.

Since the blocks are perfectly rigid, all the deformations take place at the
fault zones and block bottoms; the forces arise at the bottoms due to the relative
displacements of the blocks with respect to the underlying medium, and at the
faults due to the displacements of the neighboring blocks or their underlying
medium. Let us present the formulas for the elastic force (ft, fl, fn) acting on
a fault per unit area:

ft(τ) = Kt(Δt(τ) − δt(τ)), fl(τ) = Kl(Δl(τ) − δl(τ)),

fn(τ) = Kn(Δn(τ) − δn(τ)). (1)

Here τ is the time; (t, l, n) is the rectangular coordinate system with origin at
the point of application of the force (the axes t and l lie in the plane tangent
to the fault’s surface, the axis n is perpendicular to this plane); Δt, Δl, Δn are
the components of the relative displacement in the system (t, l, n) of neighboring
elements of the structure; δt, δl, δn are corresponding inelastic displacements,
the evolution of which is described by the linear stochastic differential equations

dδt(τ) = WtKt(Δt(τ) − δt(τ))dτ + λtdξt(τ),

dδl(τ) = WlKl(Δl(τ) − δl(τ))dτ + λldξl(τ),

dδn(τ) = WnKn(Δn(τ) − δn(τ))dτ + λndξn(τ). (2)

We denote by ξt, ξl and ξn standard independent scalar Wiener processes (i.e.
processes starting from zero with zero mathematical expectation and dispersion
equal to τ); the coefficients λt, λl and λn characterize the amplitude of random
noises. There exists a unique solution (in Ito’s sense) to each equation of (2);
this is a normal Markov random process with continuous realizations [7]. The
coefficients Kt, Kl, Kn (1) and (2) characterizing the elastic properties of the
faults, the coefficients Wt, Wl, Wn (2) characterizing the viscous properties, and
the coefficients λt, λl, λn (2) may be different for different faults and, in addition,
may depend on the depth. The formulas for calculating the elastic forces and
inelastic displacements at the block bottoms are similar to (1) and (2). At the
initial time τ = 0, all the forces and displacements are equal to zero; actually,
the source of motion of the model structure is the motion of the underlying
medium and the boundary blocks (if specified) determining the dynamics of
relative displacements (like Δt, Δl, Δn) at both the faults and block bottoms.
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The translation vectors of the inner blocks and the angles of their rotation
can be found from the condition that the total force and the total moment
of the forces acting on each block are equal to zero. This is the condition of
quasi-static equilibrium of the system, and at the same time the condition of
energy minimum. It is important that the dependence of forces and moments on
displacements and rotations of blocks is linear (explicit cumbersome formulas
are omitted). Therefore, the system of equations for determining these values is
also linear:

Aw = b. (3)

Here the components of the unknown vector w = (w1, w2, ..., w6n) are the trans-
lation vectors of the inner blocks and the angles of their rotation (n is the number
of blocks). The elements of the matrix A (of dimension 6n × 6n) do not depend
on the time and can be calculated only once, at the beginning of the process. For
realistic values of the model parameters, the matrix A is non-degenerate; system
(3) has a unique solution. To calculate various curvilinear integrals, one should
discretize (divide into cells) the spherical surfaces of the block bottoms and fault
segments. The values of the forces and inelastic displacements are assumed to
be equal for all points of a cell. System (3) is solved at discrete times τi.

At every time step τi, when computing the force acting on the fault, we find
the value of a dimensionless quantity κ (a model stress) by the formula

κ =

√
f2
t + f2

l

P − fn
. (4)

Here P is a parameter, which may be interpreted as the difference between the
lithostatic and the hydrostatic pressure. Thus, the value of κ is actually the
ratio of the modulus of the force tending to shift the blocks along the fault to
the modulus of the force connecting the blocks to each other. For each fault,
three strength levels are specified. In general, they depend on time:

B > Hf ≥ Hs, B = B(τi) = B0(τi) + σX(τi),

Hf = Hf (τi) = aB(τi), Hs = Hs(τi) = bB(τi). (5)

For each i, we assume that 0 < B0(τi) < 1, 0 < σ � 1, X(τi) is a normally
distributed random value N(0; 1), 0 < a < 1, 0 < b ≤ a. The initial conditions
are such that the inequality κ < B is valid for all the cells of the structure.

The interaction between the blocks (between the block and neighboring
underlying medium) is visco-elastic (a “normal state”) as long as the value of κ
(4) at the part of the fault separating the structural elements remains below the
strength level B. When this level is exceeded at some part of the fault (a “criti-
cal state”), a stress-drop (a “failure”) occurs in accordance with the dry friction
model (such failures represent earthquakes). By a failure we mean a slippage by
which the inelastic displacements δt, δl and δn in the cells change abruptly to
reduce the model stress according to the formulas

δet = δt + γeξtft, δel = δl + γefl, δen = δn + γeξnfn, (6)
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where δt, ft, δl, fl, δn and fn are the inelastic displacements and the elastic
force per unit area just before the failure. The coefficients ξt = Kl/Kt (ξt = 0 if
Kt = 0) and ξn = Kl/Kn (ξn = 0 if Kn = 0) account for inhomogeneities of the
displacements in different directions. The coefficient γe is given by

γe =

√
f2
t + f2

l − Hf (P − fn)
Kl

√
f2
t + f2

l + KnHfξnfn
. (7)

It follows from (1) and (4)–(7) that, after recalculating the new values of the
inelastic displacements and elastic forces, the value of κ is equal to Hf . Then, the
right-hand part of the system (3) is computed, and the translation vectors and
angles of rotation for the blocks are found again. If for some cell(s) κ ≥ B, then
the entire procedure is repeated. When κ < B for all the cells of the structure,
the calculations are continued according to the standard scheme. Immediately
after the earthquake, it is assumed that the cells in which the failure occurred are
creeping (or are in the creep state). This implies that, for these cells, the para-
meters W s

t (W s
t � Wt), W s

l (W s
l � Wl), and W s

n (W s
n � Wn) are used instead

of Wt, Wl and Wn in equations (2). Such new values provide a faster growth
(compared to the normal state) of the inelastic displacements and, consequently,
a decrease of the stress. The cells remain in the creep state so long as κ > Hs

(we may call this process “healing”); when κ ≤ Hs, the cells return to the normal
state with the use of Wt, Wl and Wn in (2). The process of stress accumulation
starts again. It should be noted that this process is far from periodic, since the
values of strength levels (5) depend on time in a special way.

We consider the geometry of the block structure and the characteristics of the
outer motions as exogenous model parameters, whereas the coefficients, strength
levels and discretization steps described above as endogenous ones.

A synthetic earthquake catalog is produced as a main result of the numerical
simulation. All the cells of the same fault, in which the failure occurs at the
time τi, are considered as a single event. Its epicentral coordinates and depth
are the weighted sums of the coordinates and depths of the cells involved in
the earthquake. The weighted sum of the vectors (γeξtft, γefl) added to the
inelastic displacements δt and δl computed according to (6) approximates the
shift of the blocks along the fault and allows us to determine the mechanism of
a synthetic event. Such a mechanism is an important feature of an earthquake;
it informs on the process of propagation of different seismic waves from the
earthquake source. Depending on the direction of the shift and the dip angle of
the fault, the following basic mechanisms are commonly considered: strike-slip,
normal faulting, and thrust faulting [8]. In the current version of the model,
the magnitude of an earthquake is calculated taking into account its mechanism
according to the well-known in seismology empirical formulas [9]

M = D lg S + E, (8)

where S is the total area of the cells (in km2), D = 1.02, E = 3.98 for strike-
slip, D = 1.02, E = 3.93 for normal faulting, and D = 0.90, E = 4.33 for
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thrust faulting. In addition to the aforesaid, the model informs on the instanta-
neous kinematics of the blocks and the character of their interaction along the
boundaries.

3 Organization of Numerical Experiments

The spherical block model is most actively applied to investigating the dynam-
ics and seismicity of the global system of largest tectonic plates covering the
whole surface of the Earth [4–6]. The geometry of the structure is assumed to be
invariable: 15 plates (North America, South America, Nazca, Africa, Caribbean,
Cocos, Pacific, Somalia, Arabia, Eurasia, India, Antarctica, Australia, Philip-
pines, and Juan de Fuca), 186 vertices, 199 faults. Boundary blocks are absent,
since the structure occupies the entire spherical shell; the motion of the under-
lying medium is defined as rotations on the sphere according to the model HS3-
NUVEL1 [10]. Numerical values of different coefficients are varied in order to
obtain the best correspondence of the simulation results to real seismic data.
As main characteristics for the comparative analysis of the modeling quality, we
take the spatial distribution of strong events, the Gutenberg–Richter law on FM
relation, clustering, migration of events, seismic cycle, and so on [1,2].

In a previous research [5,6], it was established that the spherical block
model admits an effective parallelization based on the standard scheme “master-
worker” with a unique loading MPI-module. At every moment, the most time-
taking procedures are the preservation of information on model events and, sub-
stantially, the calculation of forces, inelastic displacements, and stresses (1), (2),
(4)–(6) in all the cells of the structure (so, in a typical variant for the global
system of tectonic plates, we have got more than 235000 cells at the block bot-
toms and about 3500000 cells at the fault segments). The main calculations are
performed independently from each other; therefore, they are shared uniformly
among processors. The informational exchange between processors involves only
values of small dimension. The detailed description of the parallelization scheme,
the procedure for the dynamical redistribution of loading and the analysis of
some characteristics of the parallelization quality are presented in [6].

The introduction of the stochastic component in equations (2) and the ran-
dom temporal fluctuations of strength levels (5) destined to reflect the fault
medium strength variability (not amenable to a precise analytical description
and actually non-predictable) were tested in experiments described in [6]. It was
revealed that the addition of random factors to the procedure of model event
identification provides the time exfoliation concerning the transition of cells from
the same fault into the critical state. Due to this fact, the number of small events
increases and clustering is more clearly detected (clusters consist of foreshocks,
main shocks and aftershocks; as a rule, they are present in the real seismicity
[1,2]). This essentially improves the properties of synthetic seismicity compared
to the previous versions of the model [4,5]. However, we have met serious dif-
ficulties when studying the instantaneous model stress distribution along the
faults and the new, randomly influenced, character of temporal stress dynamics.
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The matter is that it is useful to compare the states of faults at subsequent
times for a better analysis of synthetic seismicity properties. Toward this aim,
a high-speed graphic interpretation of 2 to 3 Gb of data is needed. Thus, the
need has arisen to provide the existing software with a new program to clearly
visualize simulation results.

4 Visualization Program for the Stress Dynamics

We describe the new software that allows us to visualize both the instantaneous
stress distribution along a fault and the migration of critical values over time.

Specialized systems are one of the directions for developing scientific visu-
alization tools providing a good quality of mathematical modeling. Due to the
specific character of the data and their analysis, universal visualization programs
can not be used without significant modifications, comparable in complexity to
writing a separate module. The advantages of a specialized system are its inde-
pendence and easy adaptation to the task, including an appropriate interface.

The Java language was chosen to write the program. Due to its cross-platform
feature, it is possible to run the program on either Windows or Linux comput-
ers without recompiling. During the development phase of the software, third-
party libraries were not involved in order to prevent additional dependencies.
To improve the program’s performance when working with large amounts of
data, its parallelization by standard Java tools (the Thread class) was used;
this increased the rendering speed. This optimization did not require significant
changes in the program code, since the input file is used as read-only, and the
visualized image areas do not intersect at different flows. In connection with the
problem of integration, when one view type or one model is insufficient for the
verification of visualized data, the program applies the so-called multiple views
formalized in [11]. This concept involves the use, for the data interpretation,
of several separated views with special relationships established. An important
result of the application of multiple views is the reduction of the amount of
information displayed simultaneously. In the described program, a binary view
is actually used. This view includes the mini-map ensuring the integral (but
inaccurate) perception of the structure geometry and the main image showing
a detailed and precise (but incomplete) distribution of numerical data. Thus,
while working with the visualization program, the user constantly has access to
the map of the Earth’s surface (see Fig. 1). Its black-and-white schematic repre-
sentation serves as an auxiliary tool for the orientation in tectonic fault locations
in the block structure. The parts of the structure with cells in the critical state
are highlighted in red. After selecting a specific fault, a new window opens (also
shown in Fig. 1). In this window, all the data on the fault loaded from the input
file are graphically represented as a frame vertical scanning, where each point
in time corresponds to a separate frame; frames not shown on the screen are
available via a scroll bar.

To visualize the state of the cells, gray (from black to white) has been selected
as basic color; it marks the cells with model stress below a subcritical level
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Fig. 1. Binary view of visualized data (Color figure online)

(typically 95% of the level B; the normalization with respect to B is performed
providing output values from 0 to 1). To characterize the cells with values in
the range from 0.95 to 1 (i.e. up to the critical level), the yellow color is used.
The cells in which the stress is greater than the critical level (they form a model
earthquake) are colored in bright red, because specifically these cells are of most
interest. In addition, the parts of the faults where the model stress decreases
compared to the previous frame are colored in blue; these cells were red at the
preceding point in time. Thus, the area of red/blue dots on the image shows the
earthquake spread dynamics along the system of tectonic faults. In the lower
window of Fig. 1, a typical pattern of migration of “quaked” cells along a fault is
shown. Then, this window contains a fragment of the global map, the enlarged
selected part of the fault and a table with the numerical values of the model
stress in the cells of this part. Note that when working with a large number of
frames, if it is impossible to place all of them on the screen at the same time
at a satisfactory resolution, you can switch on the comparison mode for some
selected frames. For example, this option allows us to analyze the initial and
final frames of a long time interval.

As one of the most promising directions of development of the visualization
program, we can mention a hypothetical online service; the main obstacle here is
the security policy of browsers, which makes it difficult to work with local files.
To a lesser extent, this approach is limited by the performance of javascript.
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The problem is planned to be solved by the use of WebGL and the transfer of
calculations to a graphics card. It is also possible to implement the transmission
of data to a server, then generating images on it and transmitting them back
to the client (remote visualization). Another promising development direction
is a version with 3D visualization of data from all the tectonic faults at some
selected point in time (volume rendering). This version is restricted by the screen
resolution, but it can be very useful for a rapid analysis of the structure’s state
to correct some parameters in the process of simulation.

5 Discussion of Simulation Results

In the present paper, we present the results of new numerical experiments with
the block structure described in Sect. 3. The emphasis is on the comparative
analysis of the degree of influence of two sets of model characteristics on the
properties of synthetic seismicity. The first set includes the geometry of the
structure and the parameters of the underlying medium motion actually being
external (exogenous) parameters, since they are taken from generally recognized
theories and models. The second set consists of the visco-elasticity coefficients of
the fault and block bottom medium; they are treated as internal (endogenous),
subjective enough, parameters. Two series of variants were organized: (i) with
the same values of coefficients for all the faults and blocks, and (ii) with differ-
ent values chosen on the basis of the real seismic activity of the corresponding
regions. The main idea of the experiment is to verify the hypothesis that ade-
quate results can be obtained not due to the so-called internal calibration of the
model but due to the development of its algorithmic part. Let us discuss some
simulation results for basic variants of each series.

Variants I and II (from the first series) use the following parameter values
for all the faults: Kt = Kl = Kn = 5, Wt = Wl = Wn = 0.01, and W s

t =
W s

l = W s
n = 10. As to variants III and IV (from the second series), these

values are varied from 10% to 1000% of the basic levels (in variants I and II);
the changes are based on the observed seismicity: the coefficients Kt, Kl and
Kn are increased, whereas the coefficients Wt, Wl and Wn are decreased for
faults with a high level of seismic activity (see [2]). Variants I and III do not
engage any random disturbances; they are characterized by the constant strength
levels B = 0.1, Hf = 0.085 and Hs = 0.7, and all zero coefficients λt, λl and
λn in equations (2). In variants II and IV, the levels B,Hf ,Hs are perturbed
according to (5) in the unit of model time with the parameters B(τi) = 0.1
for each i, σ = 0.005/3, a = 0.85, and b = 0.7 (in this case, by the “3σ rule”,
we assume B(τi) ∈ [0.095; 0.105]); in addition, equations (2) are also disturbed:
λt = λl = λn = 0.1. In the variants with random values, results averaged by
some number of runs are analyzed.

The comparative analysis of the spatial distributions of the epicenters of
strong events recorded in the real catalog [12], including events for the period
01.01.1900–04.07.2016 without any restrictions of depth and area (Fig. 2), and
those in the model catalogs (variants I–IV give rather similar distributions;
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Fig. 2. Registered seismicity: epicenters of strong earthquakes with M ≥ 6.0, NEIC,
01.01.1900–04.07.2016 [12], 17 extreme events with M ≥ 8.5 are marked with stars

Fig. 3 corresponds to variants II and IV) shows that a number of common fea-
tures revealed earlier [6] is preserved. In particular, the most important patterns
of the global seismicity should be noted: two main seismic belts, the Circum-
Pacific and Alpine-Himalayan, where most of the strong earthquakes occur, and
the increased seismic activity associated with triple junctions of plate boundaries.
It seems very promising that the strongest events in the model occur approxi-
mately at the same places as in reality. The distinctions between the synthetic
and real seismicity are also obvious: the absence of model events inside the
plates (in the model, earthquakes occur only at faults) and at some boundaries

Fig. 3. Synthetic seismicity: epicenters of strong earthquakes with M ≥ 6.0, 100 units
of model time, variant II (left) and variant IV (right), 17 strongest events are marked
with stars
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(for example, the north and east of African plate). The epicenter distributions
in variants II and IV do not reveal qualitative distinctions, which one can expect
taking in mind their essential differences in parameter values.

As to the distribution in depth (see Table 1), we observe (i) the noticeable
similarity of the shares of shallow earthquakes in the real and synthetic seismicity
and (ii) the essential increase in the shares of model events for average depths.
The last fact is mainly explained by the specified values of block depths (most of
them range from 30 to 50 km). It is evident that, in order to redistribute events,
we need to get more specific information on the rule of change of the model
parameters depending on depth. On the other side, the block model is intended
for modeling events only in the surface layer of the Earth’s crust. Again, we
emphasize the absence of serious distinctions between variants of the first and
second series.

Table 1. Distribution of earthquakes in depth (in percent with respect to the total
number of events with M ≥ 4.0): NEIC and model (variants I, II, III and IV) catalogs
for 100 time units

Depth NEIC I II III IV

Up to 10 km 15.98 13.99 14.18 14.65 14.70

[10, 40 km] 46.81 65.45 70.18 68.83 74.50

Over 40 km 37.21 20.56 15.64 16.52 10.80

We analyze parameters of the Gutenberg–Richter law characterizing the
power distribution of earthquakes in magnitude. The FM plots in a logarith-
mic scale for the real and synthetic seismicity are presented in Fig. 4; also, some
quantitative computing results are shown in Table 2.

The linearity of the model plots in the range of average and large magnitudes
testifies to the “rightness” of the distribution law for model events in the given
interval and, consequently, to the possibility of studying real patterns using a
synthetic catalog. This quality index has been essentially improved, compared
to previous versions of the model [4–6]. On the other hand, the characteristic
feature of the model seismicity consists in an insufficient (with respect to the
real seismicity) relative number of small events (in this context, with magnitude
4.0–4.5). In the graphic interpretation, this feature corresponds to rather exten-
sive, almost horizontal, parts of the model plots in the range of small magnitudes.
The share of small events increases when disturbing the equations (2) in variants
II and IV. All the FM plots are approximated by the linear least-squares regres-
sion lg N = c−kM constructed by the least square method. The value of k serves
as an estimate of the slope of the plot. The average distance between the points of
the plot and the line constructed is treated as an approximation error. For all the
model variants, the magnitude interval [5.3, 8.3] of “sufficient” linearity is consid-
ered; for the NEIC catalog, the whole range [4.0, 9.0]. The FM plot for the regis-
tered global seismicity is almost linear and its slope is very close to 1. The slope
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Fig. 4. The FM plots constructed for the real (NEIC, events with M ≥ 4.0, 01.01.1900–
04.07.2016, (solid line)) and for four model catalogs of 100 time units (variants I (1 ),
II (2 ), III (3 ), and IV (4 )); N is the accumulated number of earthquakes, M is the
magnitude

estimates and approximation errors are presented in Table 2; there are no essen-
tial deviations for the two series of variants. At the same time, the approximation
is obviously better for variants II and IV with random disturbances.

It seems that a key factor for increasing the interval of linearity of an FM plot
and changing the slope is the internal calibration of the model (the coefficients
in the equations of the form (1) and (2) for faults and block bottoms, the steps of
temporal and spatial discretizations and so on). This aspect has been taken into
account when constructing variants III and IV. Let us describe the characteristics
that have been considerably improved by means of the model parameter fitting.

The presence of clustering is an explicit plus of variants III and IV. The pos-
sibility of clustering events (in the sense of extracting groups of earthquakes con-
sisting of main shocks, foreshocks and aftershocks [1,2,8]) is noticeable in Fig. 5,
showing the model seismicity (variant IV) for a part of the year at a small sec-
tor of the Philippine plate margin. The magnitude-time dependence has an irreg-
ular character: isolated groups of earthquakes concentrated nearby local maxi-
mums can be marked out. Note that clustering is an important component of
many algorithms for searching premonitory patterns preceding extreme events [2];

Table 2. Simulation results: NEIC and model (variants I, II, III and IV) catalogs of
100 time units with M ≥ 4.0

NEIC I II III IV

Number of events 427950 359750 240976 432698 492018

Slope estimate 1.0 1.43 1.0 1.30 1.05

Approximation error 0.32 0.31 0.14 0.65 0.12
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Fig. 5. The magnitude-time dependence for model events (variant IV) at a small sector
of the Philippine plate margin

the possibility of investigating this phenomenon in the model should be considered
as a positive fact.

The properties of the model seismicity that are characteristic for variants
III and IV are tested with the use of the new software described in Sect. 4. In
particular, this program allows us to trace the migration of model events along
either a tectonic fault or a system of faults over time and to study the influence
of model parameters on the stress distribution in a structure. In Fig. 6, the states
of a fault located at the boundary South America/Nazca (its length along the
Earth’s surface is 977 km (977 cells), its depth is 30 km (15 layers)) are shown
at subsequent times. A narrow horizontal bar with a color interpretation of the
normalized stress distribution corresponds to every time moment.

There are 36 moments on the screen; the moment for which the zoomed
distribution pattern with numerical values is presented in the lower window is
marked out. The migration (from right to left along the fault) of the two groups
of “quaked” cells composing a model earthquake at every time moment (red-
colored) and that of stress decrease zones (blue-colored) are clearly noticeable.
Actually, the spatial-temporal dynamics of a cluster fragment is visualized with
the possibility of qualitative estimation of its parameters. In Fig. 7, the states
of a fault located at the eastern boundary of the Philippine plate (its length
along the Earth’s surface is 499 km (499 cells), its depth is 100 km (50 layers))
are shown at the same time for variants III and IV. The presence of two clearly
distinguishable layers is explained by the fact that the fault separates blocks of
different depths (30 and 100 km, respectively) and, consequently, on the one side,
we have the interaction between two blocks and, on the other side, between the
block and the neighboring underlying medium. The rather large size of the fault
and its specific form are the reasons of longitudinal inhomogeneities. In variant
III (without any random disturbances), we observe a sufficiently regular pattern
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Fig. 6. Migration of model events along a tectonic fault (Color figure online)

Fig. 7. Model stress distribution at a fault: variant III (at the top) and variant IV (at
the bottom) (Color figure online)



230 L. Melnikova et al.

of the model stress distribution along fault’s layers, whereas a similar pattern
becomes fuzzy in variant IV (with random disturbances).

Summarizing the brief analysis of the conducted experiments, we conclude
that the main properties of the synthetic seismicity are justified by the geom-
etry of the block structure and the underlying medium motion, i.e. the exoge-
nous model parameters. It seems that a key role is played by the hypothesis of
“geometrical incompatibility” of the faults [13]), according to which the places
of possible earthquake epicenters are determined, first of all, by the relative
position and motions of structural elements. The endogenous model parameters
(the visco-elasticity coefficients of faults and block bottoms, discretization steps,
and random factors) can be used for a “subtle” model adjustment to increase
the similarity between the synthetic and real seismicity; the danger of incorrect
parameter fitting aimed at a specific result should be taken into account.

6 Parallelization Quality

To test the parallelization quality characteristics, we chose the most time-taking
variant IV and considered a unit of dimensionless time with a considerable num-
ber of model earthquakes. The simulation was performed at the Institute of
Mathematics and Mechanics of UB RAS by means of a hybrid machine of clus-
ter type named “Uran” (1864 Intel Xeon CPUs (used in experiments) and 352
NVIDIA Tesla GPUs; the operative memory is 6976 Gb, and the peak perfor-
mance is about 215 TFlops). The results of the test are presented in Table 3.

Table 3. Computing time, speedup and efficiency for p processors

p Tp, sec Sp Ep

1 2464.33 — —

2 1232.84 2.00 1.00

4 634.97 3.88 0.97

8 357.76 6.88 0.86

16 175.12 14.07 0.88

32 87.84 28.05 0.88

64 48.94 50.35 0.79

Here T1 is the performance time for the sequential algorithm, Tp is the perfor-
mance time for the parallel algorithm on p processors, Sp = T1/Tp and Ep = Sp/p
are speedup and efficiency, respectively [14]. Recall that the speedup is equal to
the number of engaged processors for an “ideal” parallel algorithm; in this case,
we have the unit efficiency. It follows from Table 3 that the parallelization effi-
ciency is rather high and does not fall below an acceptable level if the number
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of engaged processors increases. For “large” calculations, we used, as a rule, 64
processors. For a model variant up to 100 units of dimensionless time, it took
about 80 min instead of 68 h for calculations on one processor.

7 Conclusive Remarks

The program for visualizing the state of faults provides the possibility of qual-
itative and quantitative analysis of the instantaneous stress distribution and
temporal migration of critical values along the structure. It serves as an effective
tool for both the internal calibration of the model and the verification of simula-
tion results. The constructed set of endogenous parameters allowed us to obtain
additional, compared to previous experiments, properties of synthetic seismicity
similar to real ones. At the same time, the exogenous parameters taken from gen-
erally recognized theories and models determine the main characteristics of the
model earthquake flow. This fact, in our opinion, testifies to a sufficient degree
of adequacy of the spherical block model.
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Abstract. We suggest a parallel implementation of a Monte Carlo
method for cathodoluminescence contrast maps simulation based on a
random walk on spheres algorithm developed by K. K. Sabelfeld for
solving drift-diffusion problems. The method for cathodoluminescence
imaging in the vicinity of external forces is based on the explicit repre-
sentation of the exit point probability density. This makes it possible to
simulate exciton trajectories governed by drift-diffusion-reaction equa-
tions with a recombination condition on the surface of dislocations or
other defects in crystals. In this study, we apply the developed stochastic
algorithm to construct a parallel implementation that uses the OpenMP
and MPI standards and is based on a distribution of simulated exciton
trajectories starting at a given source. The number of self-annihilated
excitons is evaluated as a function of the distance between the exciton
source and the dislocation. The algorithm is tested against exact results.

Keywords: Cathodoluminescence · Drift-diffusion problem · Random
walk on spheres algorithm · Monte Carlo algorithm · Parallel implemen-
tation

1 Introduction

Many physical phenomena where particles, heat, charges and other physical
quantities are transferred as a result of two processes, diffusion and convection,
are described by the drift-diffusion equation [1,2]. For instance, the drift-diffusion
equation may be used to describe semiconductor devices, where a current of
charge carriers take place owing to both its diffusion (movement from a place
of higher concentration to a place of lower concentration) and the force of the
electric field. Another important phenomenon which may be described by the
drift-diffusion equation is cathodoluminescence. An electron beam causes the
flow of electrons from the valence band to the conduction band and formation of
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excitons [3,4]. An exciton is a bound state of an electron and an electron hole that
are attracted to each other by the electrostatic Coulomb force. The electron-hole
and exciton recombination is accompanied by a photon emission, which is called
cathodoluminescence. Cathodoluminescence intensity depends on the material,
its lattice structure, purity and defects. This is what makes the cathodolumines-
cence microscope such a powerful technique to reveal morphological structures
in materials, and determine the presence and location of impurities and defects.

A random walk on spheres algorithm for solving the drift-diffusion equation
has been developed in [5]. The random walk on spheres method is known as a
probabilistic algorithm for solving the Laplace’s equation [6]. The probability
density of the exit point for the drift-diffusion process starting at the center of
the sphere was derived in [5]. Simultaneous drift and diffusion of excitons can
be simulated using this probability density. During their motion, the excitons
can either recombine on dislocations or self-annihilate with photon emission
(luminescence). According to the Monte Carlo method [7], many independent
exciton trajectories must be simulated to obtain results with sufficient accuracy.
Moreover, the construction of cathodoluminescence contrast maps used for the
analysis of materials morphology requires the cathodoluminescence intensity to
be calculated at various positions of the exciton source.

A parallel implementation of the random walk on spheres algorithm for the
drift-diffusion process is developed in the present paper, which allows for the
reduction of computation time. The main approaches to the parallel implemen-
tation of Monte Carlo algorithms have been described in [8,9]. These papers
discuss difficulties and peculiarities of parallel Monte Carlo algorithms. The
main approach to the parallel implementation of Monte Carlo algorithms is
the distribution of independent tasks among the processors of a supercomputer,
computing some number of samples of the simulated random variables. In the
present paper, we provide a parallel implementation of the drift-diffusion process
simulation using the OpenMP and MPI standards. The calculations of cathodo-
luminescence intensity at different positions of the exciton source are distributed
among MPI processes. For each MPI process, the exciton trajectories starting at
the given source are distributed among OpenMP threads. Also, the efficiency of
the parallel implementation is estimated. Using the parallel code, the cathodo-
luminescence intensity is investigated regarding diffusion length, drift velocity
and recombination coefficients on dislocations.

2 Simulation Algorithm of the Drift-Diffusion Process

2.1 The Drift-Diffusion Equation

According to [5], the drift-diffusion process is described by the following equation:

DΔu(r) + v · ∇u − 1
τ

u = 0 , r ∈ G , (1)

where u is particle concentration, D is a constant diffusion coefficient, v is the
drift velocity, τ is the mean lifetime, and r is a space coordinate.
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Following [5], we transform the Eq. (1) into the Eq. (2) by the change of
variables x = r/L, where L =

√
Dτ is the diffusion length:

Δw(x) + sα · ∇w − w = 0 , (2)

where α = Pe · v
|v| is a new expression for the velocity, and Pe = |v|·L

D is the
Péclet number.

We will try to find the solution of Eq. (2) in the center x0 of the sphere
S(x0, R) of radius R. The solution satisfies the spherical integral relation

w(x0) =
μR

sinh(μR)
sinh κ

κ

∫ π

0

∫ 2π

0

p(θ, ϕ; γ, β)w(x0 + Rζ) dθ dϕ , (3)

where κ = Pe·R
2 and μ =

√
1 + 1

4Pe2. Here γ and β denote the zenith and
azimuthal angles of the unit direction vector α of the drift in the polar spher-
ical coordinate system. The zenith angle is counted from the direction of the
Z-axis, while the azimuthal angle is counted in the XY -plane horizontal direc-
tion. Analogously, θ and ϕ are the zenith and azimuthal angles of an arbitrary
unit direction vector ζ.

According to the probabilistic interpretation of this relation, a particle start-
ing at the center of the sphere S(x0, R) survives with probability

Psurv =
μR

sinh(μR)
sinh κ

κ
, (4)

and reaches the surface of the sphere at a random exit point whose distribution
density p(θ, ϕ; γ, β) is

p(θ, ϕ; γ, β) =
κ

4π sinhκ
· exp{κ[sin θ sin γ cos(ϕ − γ) + cos θ cos γ]} · sin θ ,

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π .
(5)

The distribution is axially symmetric with respect to the velocity direction α.
Therefore, the coordinate system is chosen in such a manner that the Z-axis coin-
cides with the velocity vector, and γ = 0. Then the probability density can be
simplified as follows:

p(θ, ϕ; γ, β) =
κ · exp{κ cos θ} · sin θ

4π sinhκ
, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π . (6)

According to this distribution, the azimuthal angle ϕ is uniformly distributed
on [0, 2π], i.e. ϕ = 2π · rand, where rand stands for a random number uniformly
distributed on [0, 1]. The cosine of the zenith angle θ in the formula (5) is sampled
by the following formula:

cos θ = 1 +
1
κ

· log[1 − (1 − e−2κ) · rand] . (7)
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Thus, if one rotates the coordinate system in such a way that the Z-axis
coincides with the velocity vector α, then the coordinates of the random exit
point on the sphere S(0, R) are expressed as

x = R · sin θ cos ϕ ,

y = R · sin θ sinϕ ,

z = R · cos θ .

(8)

To rotate the Cartesian system back to the initial position, the X-axis should
be rotated so that it coincides with the velocity vector α = (α1, α2, α3), i.e. by
the angle ψ. Let us consider the case when the velocity vector is directed along
the vector α = (α1, α2, 0). Then the coordinates of the random exit point on the
sphere S(0, R) are calculated as follows:

x = R · cos θ cos ϕ − R · sin ψ sin θ cos ϕ ,

y = R · cos θ sin ψ + R · cos ψ sin θ cos ϕ ,

z = R · sin θ sin ϕ ,

(9)

where cos ψ =
α1√

α2
1 + α2

2

, sinψ =
α2√

α2
1 + α2

2

.

In the general case, when the drift vector is directed along the vector α =
(α1, α2, α3), the coordinates of the random exit point are obtained by three
successive rotations of the original coordinate system [5].

2.2 Random Walk on Spheres Algorithm for the Drift-Diffusion
Process

A random walk on spheres algorithm was developed in [5] for solving the drift-
diffusion equation in the following form:

Δw(x) + α · ∇w − w + δ(x − x0) = 0 , x ∈ G , (10)

where δ(x−x0) is a point source of particles placed at a point x0 of the domain G.
In the case of cathodoluminescence simulation, the domain is considered as

a half-space containing a dislocation in the form of a half-cylinder normal to the
top surface [10,11] (Fig. 1). The exciton generated in the source diffuses in the
domain, can be recombined either with rate S1 on the top plane boundary or
with rate S2 on the surface of the dislocation-cylinder, and can self-annihilate
with photon emission.

According to [5,11], the concentration density of excitons at a point x in G
is governed by Eq. (10) with Robin boundary conditions:

∂w(x)
∂n

+
S1 · L

D
· w = 0 , x ∈ Γ1 ,

∂w(x)
∂n

+
S2 · L

D
· w = 0 , x ∈ Γ2 ,
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Fig. 1. Schematic depiction of the domain in which cathodoluminescence is simulated.

where n is the unit exterior normal vector to the boundary, Γ1 denotes the top
plane boundary with recombination rate S1, and Γ2 denotes the surface of the
cylinder boundary with recombination rate S2.

The random walk on spheres algorithm for simulation of cathodolumines-
cence conforming to Eq. (10) with boundary condition (11) can be described as
follows [5]:

1. Generate an exciton in the source point x = x0.
2. Construct a sphere centered at x with radius d(x) equal to the minimal

distance from x to the boundaries Γ1 and Γ2.
3. Calculate the survival probability Psurv by formula (4). With probability

Pabsorb = 1−Psurv, the exciton self-annihilates, the trajectory terminates, and
the cathodoluminescence intensity ICL is incremented by 1. Go to step 1.

4. If the trajectory does not terminate, then the exciton jumps to a random
position x1 on the surface of the sphere. The coordinates of x1 are calculated
by formula (9) according to the algorithm given in Sect. 2.1.

5. If x1 hits the ε-neighborhood of the boundary Γ1, then the exciton is recom-
bined on the top plane, the trajectory terminates, and the flux value F1 to
the top plane is incremented by 1. Go to Step 1.

6. If x1 hits the ε-neighborhood of the boundary Γ2, then the exciton is recom-
bined on the cylinder-dislocation, the trajectory terminates, and the flux value
F2 to the cylinder-dislocation is incremented by 1. Go to Step 1.

7. If x1 is not adsorbed on neither of the boundaries Γ1 and Γ2, then go to Step 2.

The ε-neighborhood of the boundary Γi, i = 1, 2, is the set Γiε = {x ∈ G :
ρ(x, y) ≤ ε, x ∈ G, y ∈ Γi}, where ρ(x, y) is the minimal distance between the
points x and y. The value of ε is set equal to 0.01 nm.

To calculate the cathodoluminescence intensity ICL and flux to the bound-
aries Γ1 and Γ2, it is necessary to simulate N trajectories; after that, ICL, F1

and F2 are calculated as the arithmetic means of the relevant scores.
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Moreover, in [5], the exact solution of the drift-diffusion Eq. (1) with Robin
boundary condition is derived in the case when the recombination rate S1 of the
top plane boundary is zero:

u(r) =
e[−v·(r−R)]/2D · K0(μr)(

1 +
|v| cos(ϕ − ψ)

2S2D

)
K0(μR) +

μ

S2
K1(μR)

, (11)

where μ =

√( |v|
2D

)2

+
1

Dτ
. Here R is a point on the dislocation’s surface, ϕ is

the polar coordinate of r, ψ is the direction of the drift vector v, Ki, i = 0, 1, is
the i-order Bessel function of the second kind. The exact solution will be used
below to test the results of the cathodoluminescence simulation.

3 Parallel Implementation of the Random
Walk on Spheres Algorithm for Simulation
of Cathodoluminescence

To obtain reliable values for the cathodoluminescence intensity ICL and the
fluxes F1 and F2 to the boundaries, we need to compute the average over a suf-
ficiently large number of trajectories. In addition, the construction of cathodo-
luminescence contrast maps involves the calculation of the cathodoluminescence
intensity for various positions of the exciton source. Thus, a large amount of
computer time is required to calculate the cathodoluminescence contrast map
with sufficient accuracy. A parallel implementation of this task will allow for an
essential reduction of computational time.

The parallel implementation uses the OpenMP and MPI standards. The cal-
culations of the characteristics ICL, F1 and F2 for different positions of the exci-
ton source are distributed among nmpi MPI processes. For each MPI process,
the N exciton trajectories starting at each given position are distributed among
nomp OpenMP threads. The OpenMP threads simultaneously calculate the val-
ues of the characteristics and summarize the obtained values in the global shared
variable using the reduction clause. After computing all the trajectories for all
the source positions, the root MPI process gathers the obtained values of the
characteristics ICL, F1 and F2, normalizes them and save the computed cathodo-
luminescence contrast map. The characteristic values are normalized to unity at
large distances from the dislocation.

The efficiency of the parallel implementation of the cathodoluminescence sim-
ulation code is estimated on a computing experiment with the following para-
meter values: the exciton lifetime τ = 1 ns, the diffusion length L = 370 nm,
the drift velocity α = (10, 20) nm/ns, the recombination rates S1 = 1500 nm/ns
and S2 = 48 000 nm/ns, the dislocation radius Rdis = 1 nm, the size of the
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Table 1. Characteristics of the parallel implementation of the cathodoluminescence
simulation code executed on a single computational node.

nmpi; nomp 1;1 1;4 1;8 1;16 1;32 2;16 4;8 8;4 16;2 32;1

T , minutes 306 82 44 24 16 15 18 22 28 89

S 1 3.7 7 13 19.2 20.3 17.1 13.7 10.8 3.4

neighborhood for both boundaries ε = 0.01 nm, and the number of trajecto-
ries N = 105. The simulations are performed on the “MVS-10P” cluster of the
Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS)1.
The “MVS-10P” cluster consists of 207 computational nodes, each featuring two
Xeon E5-2690 processors.

At first, the optimal ratio between the numbers of MPI processes and
OpenMP threads for a single computational node is determined. Table 1
presents computational times T (nmpi, nomp) and speedups S(nmpi, nomp) =
T (1, 1)/T (nmpi, nomp) for different numbers of MPI processes nmpi and OpenMP
threads nomp. As it can be seen from the table, the minimal computational time
is attained for the parallel code implementation using 2 MPI processes and 16
OpenMP threads. This result corresponds to a computational node architecture
featuring two processors.

Further, the efficiency of the parallel code is investigated regarding the
number of MPI processes, in the case when two MPI processes are exe-
cuted on a single node, and each MPI process features 16 OpenMP threads.
Table 2 contains computational times T (nmpi, 16) and speedups S(nmpi, 16) =
T (1, 1)/T (nmpi, 16) for various numbers of MPI processes nmpi. The speedup of
the parallel implementation of the code is increased until the number of MPI
processes reaches 16. To increase the number of MPI processes even more, the
load on the computational nodes is insufficient, then the speedup is reduced,
and the computing time grows. According to this result, the best parameters for
the execution of the parallel code implementing the cathodoluminescence simu-
lation algorithm was found to be 16 MPI processes, each featuring 16 OpenMP
threads.

Table 2. Characteristics of the parallel implementation of the cathodoluminescence
simulation code depending on the number of MPI processes.

nmpi 2 4 8 16 32 64

T , minutes 15 9 5.8 3.6 6.2 5.7

S 20.3 33.7 52.8 83.9 49.3 53.2

1 JSCC RAS website: http://www.jscc.ru/.

http://www.jscc.ru/
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4 Results of the Cathodoluminescence Simulation

Cathodoluminescence is simulated by a parallel implementation of the random
walk on spheres algorithm for different values of the modeling parameters: the
exciton lifetime τ (ns), the diffusion length L (nm), the drift velocity α (nm/ns),
the recombination rates S1 (nm/ns) and S2 (nm/ns), the dislocation radius
Rdis (nm), the depth of the source location z (nm), and the value of the ε-
neighborhood of the boundaries Γ1 and Γ2. In addition, the accuracy of cal-
culations depends on the number of trajectories N . The cathodoluminescence
contrast map is calculated by computing the cathodoluminescence intensity for
a point source of excitons located at a different distance r from the dislocation
surface and at the same depth z from the top surface.

a)

b)

Fig. 2. Cathodoluminescence contrast map obtained by computer simulation, and ana-
lytical solution for: (a) pure diffusion case, and (b) diffusion with drift case.

To verify the cathodoluminescence algorithm implementation, a comparison of
the simulated results against the exact solution (11) of the drift-diffusion-reaction
equation derived in [5] is made for the rates S1 = 0 and S2 = ∞ in two cases: pure
diffusion without drift (α = 0), and diffusion with drift (α = (2.7, 0) nm/ns). The
values of the other modeling parameters are set as follows: τ = 1 ns, L = 370 nm,
Rdis = 1 nm, z = 1 nm, ε = 0.01 nm, and N = 105. The semi-infinite cylinder
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imitating the dislocation is placed in the domain center. The point of intersection
of the cylinder axis with the upper plane is considered as the origin of a coordinate
right-hand coordinate system. The exciton source is located at different positions
(x, 0, 1), where x is a coordinate on the X-axis.

The obtained cathodoluminescence contrast map and the exact solution for
the same parameters are shown in Fig. 2. The values of the cathodoluminescence
intensity obtained by computer simulation are in good agreement with those of
the analytical solution both in the pure diffusion case and in the diffusion with
drift case. The presence of drift yields the asymmetry of the cathodoluminescence
contrast map. This result will be explained below.

In subsequent computer experiments, we studied the influence of the basic
parameters (namely recombination rates S1 and S2, diffusion length L and drift
velocity α) on the cathodoluminescence intensity for the following values of the
other modeling parameters: τ = 1 ns, Rdis = 1 nm, z = 1 nm, ε = 0.01, and
N = 105.

Figures 3 and 4 present the cathodoluminescence contrast map obtained in
the pure diffusion case (α = 0) with diffusion length L = 370 nm for two
calculation experiments:

1. with different values of the recombination rate S1 of the top plane boundary
and the same recombination rate of the dislocation, S2 = 48 000 nm/ns;

2. with different values of the recombination rate of the dislocation and the same
recombination rate of the top plane boundary, S1 = 1500 nm/ns.

Fig. 3. Cathodoluminescence contrast map for different values of the recombination
rate S1 of the top plane and the same value of the recombination rate S2 of the
dislocation.

As mentioned before, an exciton can recombine on either the top plane
boundary or the dislocation surface, and can self-annihilate through radiative
recombination. Thus, the values of the recombination rates essentially influence
cathodoluminescence intensity. Since the dislocation surface is considerably less
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Fig. 4. Cathodoluminescence contrast map for different values of the recombination
rate S2 of the dislocation and the same value of the recombination rate S1 of the top
plane.

than the involved surface of the top plane boundary, the cathodoluminescence
intensity maximum value is defined by the recombination rate of the top plane.
As it can be seen in Fig. 3, the higher the recombination rate S1 is, the less the
maximum value of the cathodoluminescence intensity ICL is. In addition, the
intensity ICL reaches the equilibrium maximum state faster when the values of
S1 are large.

When the recombination rate of the dislocation changes while the recombina-
tion rate of the top plane remains the same, the cathodoluminescence intensity
maximum value remains constant, and the value of ICL changes only near the
dislocation (Fig. 4). The higher the recombination rate S2 is, the more excitons
recombine on the dislocation, and the less the minimal value of the cathodolumi-
nescence intensity ICL is. In addition, large values of S2 influence the intensity
values ICL at greater distances, and ICL reaches the equilibrium state more
slowly.

The dependence of the cathodoluminescence contrast map on the diffusion
length L is investigated for the pure diffusion case (α = 0) at recombination
rates S1 = 1500 nm/ns and S2 = 48 000 nm/ns. Figure 5 shows that the larger
the value of the diffusion length is, the larger the maximum value of the cathodo-
luminescence intensity is. This result can be explained as follows. The larger the
diffusion length is, the larger the distance the exciton moves during the same
time. The diffusion moving direction is random. Therefore, for larger diffusion
lengths, the exciton is more likely to go away from the top plane, bypass the
dislocation and self-annihilate. Moreover, the larger the diffusion length is, the
larger the distance at which the dislocation influences the cathodoluminescence
intensity, since an exciton can reach the dislocation faster.

The influence of the drift velocity on the cathodoluminescence contrast map is
analyzed regarding two velocity parameters: value and direction. Figure 6 shows
the cathodoluminescence intensity obtained for various values α = (α1, 0) of the
drift velocity, directed along the X-axis, recombination rates S1 = 1500 nm/ns
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Fig. 5. Cathodoluminescence contrast map for different values of the diffusion length L.

and S2 = 48 000 nm/ns, and diffusion length L = 370 nm. The presence of drift
yields the asymmetry of the cathodoluminescence contrast map. This is due to
the fact that, on the one hand, the drift causes the transfer of an exciton located
to the left of the dislocation to its surface, and consequently, the flux on the
dislocation increases, whereas the cathodoluminescence intensity decreases. On
the other hand, the drift moves an exciton located to the right of the dislo-
cation away from it, decreasing the flux on the dislocation and increasing the
cathodoluminescence intensity. The larger the velocity value is, the steeper the
cathodoluminescence intensity curve is.

Figure 7 shows the cathodoluminescence contrast map for different direc-
tions of the drift velocity α and the same velocity value α = (|2.7|, |2.7|). The
cathodoluminescence contrast maps obtained for oppositely directed along the
X-axis velocities (α = (2.7, 0) and α = (−2.7, 0)) are the mirror images of each
other with respect to the Y -axis. Adding the drift velocity along the Y -axis does
not affect the values of the cathodoluminescence intensity to the right of the
dislocation, and leads to an increase in intensity to the left of the dislocation.
Moreover, the direction of the velocity along the Y -axis has absolutely no effect
on the result. The cathodoluminescence contrast maps obtained for oppositely
directed along the Y -axis velocities (α = (2.7, 2.7) and α = (2.7,−2.7)) totally
coincide with each other. This result can be explained as follows. As is usual, the
source is located on the same line as the dislocation along the X-axis. The drift
along the X-axis takes an exciton to the dislocation, whereas the drift along
the Y -axis removes an exciton from the dislocation. Therefore, the flux on the
dislocation decreases and the cathodoluminescence intensity increases. At the
same time, it does not matter in which direction the exciton is shifted: along the
Y -axis or in the opposite direction.

Let us consider the model case of a variable drift velocity depending on the
exciton position. In this case, according to [5], in the random walk on spheres
algorithm, the radius d(x) of the sphere should be small, since inside a small
sphere, the value of the velocity may be considered as a constant. For example,
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Fig. 6. Cathodoluminescence contrast map for different values of the drift velocity α
directed along the X-axis.

Fig. 7. Cathodoluminescence contrast map for different directions of the drift velocity α.

let us suppose that the velocity vector is directed to the cylinder located as men-
tioned above (Fig. 1). The drift velocity is defined as a function of the minimal
distance r between the cylinder axis c0 = (x0, y0, z) and the exciton position
c = (x, y, z):

α = (α1, α2, 0) =
(
f(r) · x0 − x

r
, f(r) · y0 − y

r
, 0

)
,

f(r) =

{
k · (r2max − r2)if r ≤ rmax ,

k · exp(−r)otherwise ,
(12)

where rmax is the distance at which the cylinder influences the velocity, and k
is a velocity coefficient. The cathodoluminescence intensity is calculated in the
same way as before.
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Fig. 8. Cathodoluminescence contrast map for the model case of a variable drift veloc-
ity α with different values of the velocity coefficient k.

Figure 8 shows the cathodoluminescence contrast map computed for the drift
velocity defined by formula (12) and different values of the velocity coefficient
k. The distance rmax of the cylinder influence is taken equal to the diffusion
length L. The modeling parameters are set as in the previous experiments: L =
370 nm, S1 = 1500 nm/ns and S2 = 48 000 nm/ns, τ = 1 ns, Rdis = 1 nm,
z = 1 nm, ε = 0.01, and N = 105. Compared to the basic case without drift veloc-
ity, α = (0, 0), the cathodoluminescence intensity obtained for a variable drift
velocity decreases faster near the cylinder. The larger the velocity coefficient k is,
the wider the profile of the cathodoluminescence contrast map around the cylin-
der axis is. This behavior corresponds to the choice of a velocity function defined in
such a manner that, at any position, the velocity vector is directed to the cylinder,
where the exciton is annihilated. In addition, the larger the velocity coefficient k
is, the faster the exciton reaches the cylinder.

This example shows the ability of the cathodoluminescence model to take
into account a variable drift velocity depending on space position or on some
variable physical parameters.

5 Conclusions

We presented in this paper a parallel implementation of the Monte Carlo method
for cathodoluminescence contrast maps simulation based on a random walk on
spheres algorithm developed in [5] for solving drift-diffusion problems. The paral-
lel implementation is made using the OpenMP and MPI standards, and is based
on a distribution of simulated exciton trajectories starting at various source posi-
tions. We determined the optimal ratio between the number of MPI processes
and that of OpenMP threads on the “MVS-10P” cluster of the JSCC RAS.

This parallel implementation of the random walk on spheres algorithm has
allowed to study cathodoluminescence contrast maps regarding various parame-
ters, namely the recombination rates S1 and S2, the diffusion length L and the
drift velocity α. The results computed by simulation were compared with the
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exact solution of the drift-diffusion equation, and a good agreement was observed
between both approaches. It was shown in a test problem that the random walk
on spheres algorithm for the simulation of cathodoluminescence contrast maps
is able to take into account a variable drift velocity.
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Abstract. We construct in this article a two-dimensional particle-in-
cell (PIC) numerical model of electron beam - plasma interaction based
on the kinetic description of both ion and electron components with a
continuously injected electron beam, and develop the corresponding par-
allel code. In this model, an electron beam, entering the plasma along
magnetic field lines through one boundary and leaving it through the
other, provides a continuous pumping of plasma oscillations. Such a prob-
lem statement requires that the model be constructed in a sufficiently
long plasma region, where the time is long enough for the beam to be
captured by the exciting wave field. The parallel algorithm was success-
fully applied to the solution of resource-intensive problem by efficiently
using large numbers of computational cores.

Keywords: Particle-in-cell methods · Maxwell’s equations · Vlasov
equation · Open plasma trap · Generation of electromagnetic radiation

1 Introduction

We present a 2D particle-in-cell (PIC) model and the corresponding parallel code
for the computer-aided simulation of the generation of electromagnetic radiation
in a “relativistic electron beam – magnetized plasma” system under conditions of
laboratory experiments. The solution of the problem has an important meaning
for both computational plasma physics and thermonuclear research in the open
plasma traps. The development of new schemes of generation of electromagnetic
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radiation in the terahertz frequency range allows one to understand the turbulent
processes in the system “beam–plasma”. These studies are relevant to various
physical problems, such as generation of radiation in solar radio splashes, fast
ignition in inertial confinement fusion and formation of collisionless shocks in
astrophysics.

A solution to the problem of electron beam–plasma interaction with periodic
boundary conditions is given in [1,2]. This result allowed us to estimate the
level of peak radiation power at the stage of dynamic development of beam
instability. However, to study the electromagnetic emission in a quasi-stationary
fully developed turbulence regime, it is necessary to consider the possibility of
continuous injection of an electron beam into the plasma with open boundary
conditions.

We have developed a two-dimensional numerical model based on the kinetic
description of both ion and electron components plasma and a continuously
injected relativistic electron beam. In this model, the electron beam, entering
the plasma along the magnetic field lines through one boundary and leaving it
through the other, provides a continuous pumping of plasma oscillations. Such
a problem statement requires that the model be constructed in a sufficiently
long plasma region, where the time is long enough for the electron beam to
be captured by the field of an exciting wave. The plasma is adjoined across the
magnetic field lines with a vacuum regions and absorbing walls. This allows us to
compare the radiation flows leaving the plasma with the radiation flows leaving
the plasma in the laboratory experiments [3].

The effective use of supercomputer systems requires the development of a
mathematical model appropriate to investigate the physical processes, algo-
rithms and software environment. With the advent of the new generation of
exaflop computing systems, the role of high-performance modeling in solving dif-
ferent fundamental astrophysical problems and building energy sources based on
controlled thermonuclear fusion is acquiring a growing importance. The numeri-
cal model is based on a particle-in-cell method. We also have developed parallel
computation algorithms and software for performing a series of calculations on
supercomputers. Numerical experiments with different magnetic fields, beam and
plasma parameters were carried out on the Novosibirsk State University super-
computer and the “Lomonosov” supercomputer of the Supercomputing Center
at Lomonosov Moscow State University.

2 The Problem Statement

The physical process can be described by the Vlasov equation for the distribution
functions of ions and electrons (1),

∂fα

∂t
+ (−→v ,

−→∇)fα + qα

(−→
E +

1
c
[−→v × −→

B ]
)

∂fα

∂−→p = 0, (1)

and Maxwell’s equations for the electromagnetic fields (2)–(4),

rot
−→
B =

4π

c

−→
j +

1
c

∂
−→
E

∂t
, rot

−→
E = −1

c

∂
−→
B

∂t
, (2)
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div
−→
E = 4πρ, (3)

div
−→
B = 0, (4)

−→
j =

∑
α

qα

∫
−→v fα(−→p ,−→r , t) d−→p , ρ =

∑
α

qα

∫
fα(−→p ,−→r , t) d−→p , (5)

where fα is the particle distribution function of the species α (the beam electrons,
the plasma electrons and the ions),

−→
B is the magnetic field,

−→
E is the electric field,

c is the speed of light, −→v is the velocity of the particles, −→p is the momentum
of the particles, ρ is the electric charge density, j is the electric current density,
and qα is the charge of the particle of the species α.

The computation area represented in Fig. 1 has a rectangular shape, the
plasma in the area is bounded by vacuum from both sides. There are two buffers
inside the area in the plasma; they are bounded from the other two sides (at
the boundaries X = 0 and X = Lx), and constantly maintain the initial plasma
distribution. The magnetic field is

−→
B = (Bx, 0, 0).

Fig. 1. Computation area

The electron beam enters the plasma along the magnetic field lines through
the left boundary and leaves it through the the right one; the beam injection is
persistent.

Special attention should be paid to the boundary conditions. It is necessary
to set consistent boundary conditions both for particles and for electromagnetic
fields. It is assumed that at the boundaries x = 0 and x = Lx the plasma is
weakly disturbed. Therefore, the following boundary condition should be intro-
duced for the electromagnetic fields in the plasma region (6),

∂Ex

∂x

∣∣∣
x=0,x=Lx

= 0. (6)

The second-order absorbing boundary conditions (ABC) based on the one-way
wave equations (OWWE) [4,5] are set on the other boundary.
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A special absorbing layer is used for radiation diagnostics. The absorption of
electromagnetic waves is specified by multiplying at each step the electric and
magnetic field values by the absorption coefficient depending on the distance to
the border. The quadratic dependence of the absorption coefficient is used to
smooth the wave damping (7),

k =

{
a−1
l2 x2 − 2a−1

l x + a, x < l,

1, x ≥ l,
(7)

where l is the width of the absorbing layer, x is the distance to the boundary,
0 < a < 1 is the value characterizing the absorption distribution within the
absorption layer. It is difficult to estimate the energy left by the electromagnetic
wave in the ABC case. We introduce an artificial coefficient to account for the
absorbed energy. This coefficient allows to remove part of the electromagnetic
field energy at each time step. The absence of artifacts has been proven experi-
mentally by comparing the absorption with the coefficient k and using the Mur’s
ABC.

A special buffer is used for setting boundary conditions on the velocity of the
particles (Fig. 2). The particles penetrate from the plasma to the buffer, pass
through it freely, then they leave the computational domain and are removed. At
the same time, a particle with parameters corresponding to those of the removed
particle is added to the buffer through the opposite boundary. This allows keep-
ing the particle distribution close to the initial distribution, and causes a natural
plasma counterflow generated by the electron beam passing through it.

Fig. 2. Scheme of the boundary buffer

3 Solutions of the Main Equations

A PIC method (see [7–9]) is used to solve the Vlasov equation. In this method,
the plasma is simulated by a set of separate particles, each characterizing the
motion of many physical particles. The characteristics of the Vlasov equation
describe the trajectories of the particles. The equations for these characteristics
can be written as

d−→p α

dt
= qα(

−→
E + [−→vα,

−→
B ]),

d−→r α

dt
= −→v α, −→p α =

−→v αmα√
1 − (

−→v α

c )2
. (8)
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The Boris scheme [10] is used to solve these equations. The Langdon–
Lazinsky scheme (9), described by A. Langdon and B. Lasinski in [11], is used
to solve Maxwell’s equations,

Bm+1/2 − Bm−1/2

�t
= −c roth Em,

Em+1 − Em

�t
= −4πjm+1/2 + c roth Bm+1/2, (9)

where roth is the operator of the central difference scheme defined on the Yee
cell [6]. In this scheme, the electric and magnetic fields are calculated on stag-
gered grids. This yields second-order accuracy with respect to space and time.
The value of B is calculated at the fractional time step m + 1/2, while E is
calculated at the integer time step m + 1. Mur has developed special ABC [5]
for discretization and application of OWWE to the Yee algorithm.

In this scheme, the electric and magnetic fields are calculated on staggered
grids. This yields second-order accuracy with respect to space and time.

Charge densities and current densities are defined by particle velocities and
coordinates:

ρ(r, t) =
K∑

k=1

qkR(r, rk(t)), j(r, t) =
K∑

k=1

qkvk(t)R(r, rk(t)). (10)

Here qk is the charge of the k-th particle, and the function R(r, rk(t)) is the form
factor of the PIC method. It characterizes the shape and size of the particle, as
well as the charge distribution [8].

We calculate the current density according to [12] and our previous works
[13,14]; the continuity Eq. (11) is automatically satisfied:

∂ρ

∂t
+ div

−→
j = 0. (11)

By using this method, we avoid having to solve Poisson’s equation at each
time step and find the correct grid values of the electric and magnetic fields.

4 Parallel Algorithm

To correctly describe the electromagnetic wave caused by the interaction of
the electron beam with the plasma, we used no less than 20 grid nodes per
wavelength. When the wavelength is equal to c/wpe and the size of the area is
100 × 100 (c/wpe)2, we need a 2000 × 2000 grid. Even if the number of particles
per cell is small (∼100), at least 109 particles are required for the calculations,
making necessary to use high-performance computers and efficient parallel algo-
rithms.

There are several approaches to the parallel implementation of the particle-
in-cell method. Since the trajectories of the model particles can be computed
independently, the easiest way is to distribute the particles evenly among all
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processors regardless of their coordinates. In this case, each processor solves the
Maxwell’s equations in the whole computation area. The time for computation
of the electromagnetic fields is much smaller than that of the trajectories: there
are up to 1000 particles of each sort in each grid cell and, for example, a grid
with 1000 × 1000 nodes needs 3 × 106 exchanges for the values of the currents,
it is only ∼20 Mb. Thus, the parallelization is highly effective. Another possible
way is to decompose the computational domain in one direction, for instance,
perpendicular to the direction of the beam motion. We use this approach of
parallelization, called the Euler–Lagrange domain decomposition [1,2]. In this
case, the computational domain is divided into several sub-domains. A group
of processors is associated with each sub-domain [15]. The groups of processors
communicate with each other by the boundary values of the fields and parti-
cles. The particles are distributed among the processor groups within each sub-
domain, independently of their location. Within each group, there is a collective
exchange (all-to-all) by the grid values of the current density at each step. Thus,
Eqs. (3)–(4) are solved with the same input parameters by each processor, and
there is no need to send the electromagnetic field values to the group of proces-
sors. There are some limitations on the number of processor groups in this case.
The number of groups cannot exceed the number of nodes in the direction of the
domain decomposition. Moreover, the number of particles in each sub-domain
may vary significantly, therefore, a large number of groups may lead to an uneven
loading of the processors. A comparison of different ways of decomposition in
the PIC method is made in [16].

The scheme of the parallel algorithm for the one-dimensional domain decom-
position is shown in Fig. 3.

Fig. 3. Scheme of the parallel algorithm

As the length of the plasma area is significantly larger than its width, the most
natural partitioning of the area is its division in the x direction. The solution
of the equations for the particles is distributed among the group of processors.
Thus, the gain in acceleration depends on both the number of particles and the
area size.

In addition, at the initial stage of calculations, when the beam has not occu-
pied the whole area yet, there is an imbalance in computational load among the
sub-domains where the beam has already entered and the sub-domains that the
beam has not reached yet.

The speed of calculation of the problem is important. However, the practical
implication of the algorithm lies on the possibility of solving this large-scale
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problem, and improving the accuracy by increasing the number of particles and
the number of grid nodes. Thus, we want to evaluate how the computation time
depends on the number of available processors assuming that the volume of
calculations for each processor is constant.

The collective exchanges of current density within a group of processors is the
bottleneck of the algorithm, therefore, we will increase the number of processors
within a group keeping the grid size constant for each processor.

Fig. 4. Acceleration of computations

The Fig. 4 shows the acceleration of computations relative to 128 processor
cores for various numbers of processor cores, namely 256, 512, 1024, 2048, and
4096. In these calculations, we used a 1024 × 1024 grid, the total number of
particles is 109, and eight sub-domains are used.

Table 1. Computation time (sec) of one time step for different numbers of grid nodes
and various numbers of cores

Number of cores 512 × 512 512 × 1024 1024 × 1024 1024 × 2048

128 0,027 0,076 0,139 0,426

256 0,036 0,077 0,146 0,431

512 0,038 0,081 0,147 0,375

1024 0,039 0,082 0,153 0,492

2048 0,049 0,113 0,157 0,437

4096 0,054 0,119 0,197 0,428

Table 1 shows the computation time of one step of the algorithm for different
numbers of processors. We used grids with 512× 512, 512× 1024, 1024× 1024
and 1024× 2048 nodes. At the same time, the numbers of particles per processor
were 2×106, 4×106, 8×106, 16×106. These computations were performed on the
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“Lomonosov” supercomputer (Moscow State University, Intel Xeon processors
5570 2932 MHz). Table 1 demonstrates that the computation time increases for
a grid of small size as the number of cores increases, but it remains almost
unchanged for a grid of large size. Thus, both the volume of data to be sent and
the number of processors among which data exchange occurs play a significant
role. However, for large grids, increasing the number of processors within a group
does not yield additional computing costs. Thus, the parallel algorithm can be
successfully applied to the solution of resource-intensive problems by efficiently
using large numbers of computational cores.

5 Simulation Results

The grid size, the number of particles and the decomposition of the compu-
tational domain, required in the solution of the problem of generation of elec-
tromagnetic radiation by interaction of an electron beam with plasma, were
investigated in computational experiments.

The simulation parameters correspond to those of real physical experiments
performed at the GOL-3 facility (BINP SB RAS) [3]: plasma density np = 1015;
density ratio nb

np
= 0.02; beam temperature Tb = 100eV ; ratio of the beam

velocity to the speed of light vb

c = 0.9; plasma electron temperature Te = 14eV ;
and plasma ion temperature Ti = 0. We assume that the characteristic size of
the area and the characteristic wavelengths of the generated electromagnetic
radiation for these parameters are the following: area length Lx = 86 c/wpe,
and plasma layer width Ly1 = 6.4 c/wpe. Here and below, all the lengths are
expressed in c/wpe.

The numerical experiments were performed on the NSU supercomputer (Intel
Xeon X5670, 2932 MGz). The standard parameters for the calculations were: 128
processor cores, 360 × 384 grid, number of particles per core 8 × 106. The total
time of computation was about 34 h (500 000 time steps).

Figure 5 shows the time history of the electron beam density and the corre-
sponding x-p phase space. The graph shows the dynamics of the entered beam
and a forming shock wave with wavelength ∼5.

For the simulation of the beam injection throughout a long time, a large
area is required, and the grid step size is rather small. However, to reduce these
high computation costs, it is sufficient to add a new group of processors. The
scalability of the algorithm (in the sense of weak scalability) remains high, since
the exchanges among the groups are simultaneously executed and the transferred
data size does not increase. The tests have demonstrated that an eight-fold
increase of the computational domain with the corresponding eight-fold increase
of the number of processors requires only 0.27 s instead of 0.24 s, i.e. the difference
is about 12%.

We analyzed the electromagnetic waves generated by the beam–plasma inter-
action. Figure 6 shows the dynamics of the x- and z-components of the electric
field. We can observe in Fig. 6 the radial propagation of the electromagnetic
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Fig. 5. Time history of the electron beam density, and the corresponding x-p phase
space

waves in the vacuum. The amplitudes of the waves propagated in the vacuum
reach 20% of the amplitudes of those generated in the plasma.

A Fourier analysis was made at every time step for the accurate study of the
frequency of the radiation generated by the electromagnetic field. Figure 7 shows
the results of the Fourier analysis for the electric field at the following points:

1. X = 30, Y = 7 (inside the absorbent layer);
2. X = 15, Y = 43 (the central part of the area).

Figure 7 demonstrates the dominant plasma frequency of the electromagnetic
waves generated in the plasma. If the plasma density ne = 1015 cm−3, then the
frequency is equal to 0.28 THz. The radiation propagating to the vacuum has
both the dominant plasma frequency and the dominant double plasma frequency,
while the generated electromagnetic radiation is located in the subterahertz fre-
quency range.
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Fig. 6. Time history of the x- and z-components of the electric field
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Fig. 7. Fourier analysis of the electric field at the points (a) X = 30, Y = 7, (b)
X = 15, Y = 43

The low amplitude of the electromagnetic waves in the vacuum requires a
small spatial step. Since the domain decomposition is carried out only in the
x direction, the load of each processor increases as the spatial step decreases.
The exchanges of the large-scale grids within each group lead to a decrease in
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computing costs. The greatest part of the computational domain in the y direc-
tion is situated in the vacuum; for this reason, a two-dimensional decomposition
is not efficient in this case. The optimal solution, however, consists in preprocess-
ing the current density array before carrying out the exchanges, so as to remove
the zero values corresponding to the zero currents in the vacuum. The total time
costs will not increase, since removing the zero elements takes significantly less
time than the transfer itself. It was confirmed by numerical experiments that an
increase of the grid along the y direction from 1024 to 8196 nodes yields 0.26 s
(instead of 0.24) for one step of computation with the same number of proces-
sors. The standard transfer method, according to Table 1, yields a significantly
higher increase in computation time.

Let us consider the dynamics of the ion density. Figure 8 shows the ion density
and the average ion density in the y direction. From Fig. 8, one can see that the
ion density modulation appears in the process of continuous injection of the beam
into the plasma at the time instant 530/wpe, and the amplitude of modulation
is up to 40% of the average ion density. It is supposed that this effect provides
an efficient generation of radiation in the vacuum cavities. For a more accurate
description of the size and amplitude cavities formed, a further decrease of the
grid space in both x and y directions is required. In this case, the amount of data
transferred within a group increases, because the number of nodes with non-zero
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Fig. 8. Ion density and averaged ion density in the Y direction
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current values increases. The development of an irregular two-dimensional domain
decomposition will improve the scalability.

We have studied the dependence between the radiation and the entrance
angle of the beam. Since the plasma is confined by an homogeneous magnetic
field parallel to the axis x, the particles of the entering beam continue in spiral
motion along the magnetic field. The angle of the entering beam should not be
large, otherwise the beam will extend out of the plasma very quickly. The com-
putational experiments show that an increase of the angle of the entering beam
leads to an increase in radiation intensity. The propagation of the electromag-
netic waves takes place along a sector, and the width of this sector increases as
the injection angle increases. The center of the radiation does not move in the
course of time. Figure 9 shows the calculation results when the injection angle
is 30◦. The results of the numerical experiments demonstrate the existence of a
wave structure in the beam density, the density waves are directed at a certain
angle to the axis x. This fact confirms the assumption that density modulation
is a reason for the efficient generation of electromagnetic radiation.
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Fig. 9. Beam density and electric field when the angle of the entering beam is 20◦
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6 Conclusions

We presented in this article the numerical model of the continuous injection of an
electron beam in a plasma with open boundary conditions. This model is based
on a particle-in-cell method (PIC), and allows to perform numerical experiments
on generation of electromagnetic radiation by beam–plasma interaction. The
developed parallel algorithm uses the Euler–Lagrange domain decomposition for
high-performance computations.

We made an analysis of the weak scalability of the parallel algorithm. It has
shown that an increase in the number of processors from 128 to 4096 and a
proportional increase in computational load yield less than a two-fold increase
in computation time.

Computational experiments have been performed on the basis of the devel-
oped models and programs. The simulation parameters correspond to those of
physical experiments performed at the GOL-3 facility (BINP SB RAS). The
beam density, the plasma and the electromagnetic waves in the plasma and vac-
uum were defined.

Also, the characteristic domain sizes, the length and width of the plasma layer
for the most efficient generation of electromagnetic radiation were determined.

The formation of the electromagnetic spectrum was analyzed by Fourier
analysis. It was proven that the resulting radiation is located in the subterahertz
frequency range. We discovered the dominant harmonics of the electromagnetic
fields in the beam–plasma interaction in the vacuum.

It was shown that the radiation intensity increases when the injection of the
beam occurs at a certain angle to the magnetic field.

The calculations performed have demonstrated that the parallel algorithm
allows to solve successfully problems of continuous beam injection into a plasma
and explain the results obtained in laboratory experiments.
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Abstract. We propose in this paper an integrated approach to creating
algorithms and software to simulate seismic problems. Our extended co-
design concept considers supercomputer architecture at all stages, begin-
ning with the physical and mathematical formulation of the problem, and
then developing an algorithm and code. In particular, we compare the
efficiency of the parallel implementation (on a supercomputer equipped
with GPU) of algorithms for solving two mathematical statements of
dynamic elasticity problem for the numerical modeling of seismic wave
fields in 3D media, which is typical of volcanic structures.

The scalability of the algorithms is investigated using the multi-agent
system AGNES to simulate the behavior of computational nodes based
on the current state of computer equipment characteristics. We present
the results obtained for the efficiency of the implementation of the algo-
rithms when using millions of cores. Also, we assess the energy efficiency
of these algorithms.

Keywords: Elastic waves · 3D modeling · Finite-difference schemes ·
Hybrid cluster · GPU · Co-design · Agent simulation · Energy efficiency
of algorithms

1 Introduction

Numerical modeling of elastic wave propagation in heterogeneous 3D media with
complex subsurface geometries is a complex problem in terms of computation,
thereby demanding the use of efficient methods for the parallelization and scal-
ability of algorithms. This class of problems includes studying special aspects of
propagation of seismic waves in media that are typical of the magmatic struc-
tures of active (or dormant) volcanoes. Both active and sleeping volcanoes are
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potentially dangerous to the environment because sudden catastrophic eruptions
are possible. At the present state of scientific and technological achievements,
preventing such eruptions is impossible. However, predicting a probable time of
eruption using methods of active vibroseismic monitoring of magmatic structures
has become feasible.

Scientists at the Institute of Computational Mathematics and Mathematical
Geophysics of the Siberian Branch of the Russian Academy of Sciences have
developed a method of monitoring earthquake-prone zones and volcanic struc-
tures with the use of powerful vibrators [1,2]. The main idea of the method, as
applied to the monitoring of volcanoes, is as follows. On the surface of a volcanic
structure, a vibrator and a monitoring system recording incoming seismic waves
are placed at specific points. From a change in the characteristics of the observed
signal, one can make conclusions about the behavior dynamics of the magmatic
structures of volcanoes. The method proposed allows to use the main advantage
of the modern technology of seismic sounding aimed at detecting and tracking
changes in the state of seismic-acoustic parameters of volcanic vents and their
environs. This advantage is based on the high long-range stability of the emission
parameters of vibration signals. This is achieved by means of modern systems of
computer-aided control of the vibrators. This technique has been tested on the
mud volcanoes of the Taman province, Russia [1].

The relief of many real geophysical objects does not allow one to install an
observational system. Therefore, the construction of 3D models of such objects
requires solving the inverse problem by means of a set of direct problems: for
different values of the elastic parameters of a heterogeneous medium and various
geometries of the objects composing a model.

In the process of obtaining the solutions, we need to collect synthetic data:
seismograms and snapshots of the wave field. One of the approaches to solving
the problem is to use a finite-difference method and, correspondingly, a 3D mesh,
which requires storing and processing large amounts of data [3]. Thus, we need
solutions to a set of direct problems to solve an inverse problem requiring a large
volume of memory, and all this must be done rapidly.

To solve this class of problems, the authors suggest the approach described
earlier in [4]. It consists of three stages. The first stage is the co-design, which
is based on the development of a parallel computational technology taking into
account all the aspects of parallelism. The second is the development of antic-
ipated algorithms and software for the exascale supercomputers. This stage is
based on the simulation of the algorithm behavior within a certain supercom-
puter architecture. The third stage is to estimate the energy efficiency of the
algorithm with different implementations for either a concrete architecture or
different supercomputer architectures [4,5].

We apply the approach discussed above to the solution of the problem
of seismic wave propagation in a heterogeneous medium typical of magmatic
volcanoes.
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2 The Co-design Application in Modeling Seismic Wave
Propagation in an Elastic Medium

The co-design of parallel methods for solving large-scale problems is a sufficiently
complex process and one that is difficult to formalize. This is primarily due to
the fact that each individual problem, even within one and the same area of
knowledge, has its own features. Consideration of these features may seriously
change not only the parallel computing method but also the mathematical model
and, of course, the program implementation and its efficiency.

It is impossible, indeed, to “collect recipes” for the efficient solution of all
large-scale problems. Nonetheless, it is possible to propose a general approach.
The concept of the co-design can be formulated as follows:

1. Physical formulation of the problem.
2. Mathematical formulation of the physical problem.
3. Development of the numerical method for solving the mathematical formula-

tion of the physical problem.
4. Selection of a data structure and a parallel algorithm.
5. Consideration of a supercomputer architecture.
6. Choice and use of the development tools.

In the approach discussed here, we use the extended definition of the co-
design, in contrast to the approaches described, for instance, in [6]. In the context
of the numerical simulation, the co-design is the design of a physical model
and a mathematical model, a numerical method, a parallel algorithm and an
implementation with the efficient use of a hybrid supercomputer architecture. In
the above-discussed approach, not only the comparison of the methods used to
solve the problem is relevant but also the efficiencies obtained by using various
physical and mathematical statements.

The co-design has been successfully applied to the development of software
for solving problems of plasma physics and astrophysics [4,5]. In the next section,
we will consider the use of the co-design for modeling seismic wave propagation
in an elastic medium.

2.1 Description of Mathematical Statements of Dynamic Elasticity

The domain of simulation is assumed to be an isotropic 3D inhomogeneous
elastic complex medium in the form of a parallelepiped in which one of the faces
is a free surface (the plane z = 0). Let us introduce a Cartesian rectangular
coordinate system so that the axis Oz is directed vertically downwards, and
the axes Ox and Oy are directed along the free surface. The system of elasticity
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equations with appropriate initial and boundary conditions can be written down
in terms of the displacement velocity vector u = (u, v, w)T and the stress tensor
σ = (σxx, σyy, σzz, σxy, σxz, σyz)T :

ρ
∂u
∂t

= [A]σ + F(t, x, y, z), (1)

∂σ

∂t
= [B]u, (2)

A =

⎡
⎢⎣

∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
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0 0 ∂
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∂
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⎤
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∂x λ ∂
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μ ∂
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∂x

0 μ ∂
∂z μ ∂
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⎥⎥⎥⎥⎥⎥⎥⎦

,

where t is time, ρ(x, y, z) is the density, and λ(x, y, z) and μ(x, y, z) are the Lame
coefficients.

The initial conditions are

σxz|t=0 = 0, σyz|t=0 = 0, σxy|t=0 = 0, σxx|t=0 = 0, σyy|t=0 = 0, σzz|t=0 = 0,

u|t=0 = 0, v|t=0 = 0, w|t=0 = 0. (3)

The boundary conditions at the free surface are

σxz|z=0 = 0, σyz|z=0 = 0, σzz|z=0 = 0. (4)

The system of elasticity equations for the displacement vector U =
(U, V,W )T is

ρ
∂2U
∂t2

= [C]U + F(t, x, y, z), (5)

C =

⎡
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.
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The initial conditions are

U |t=0 = 0, V |t=0 = 0, W |t=0 = 0. (6)

The boundary conditions at the free surface are

σxz|z=0 = 0, σyz|z=0 = 0, σzz|z=0 = 0. (7)

In both cases, it is assumed that the right-hand side term (i.e. the mass force)
is expressed as F(t, x, y, z) = Fxi+Fyj+Fzk, where i, j,k are the unit direction
vectors of the coordinate axes.

2.2 Finite-Difference Method for Solving the Problem

In the case of a three-dimensional elastodynamic problem, the most “flexible”
and widespread method is a finite-difference method. It is important to note that
explicit finite-difference schemes fit the architecture of graphics accelerators, since
they are directly mapped onto the topology of the GPU architecture, and involve
independent computations of values at the next step in each cell of the computa-
tional domain.

To numerically solve Eqs. (1)–(4), we apply the well-known Verrier finite-
difference scheme on a staggered grid [7,8]. The calculation of its difference coef-
ficients uses integral conservation laws. The method is of second order of approx-
imation with respect to time and space [7]. Here we consider only uniform grids.
Let us present, as an example, a few finite-difference equations of the scheme used:
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To solve the problem in terms of displacements, we use a similar finite-
difference scheme. The finite-difference equation for the component U is
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Let us note the main difference between the algorithms that can be con-
structed with the above-mentioned finite-difference schemes. The calculation
of the velocities of displacement and stress requires a larger memory size (at
least, nine 3D arrays of unknowns must be stored), but requires a smaller num-
ber of floating-point operations in total. On the contrary, the calculation of
the displacements requires a smaller memory size (at least, three 3D arrays of
unknowns) but a larger number of operations.

2.3 Parallel Implementation

Graphic accelerators are well suited for solving finite-difference equations
because of their massively parallel architecture and quick access to the device
memory. Many computer systems in Russia and abroad are equipped with GPUs,
including the NKS-30T+GPU (Siberian Supercomputer Center) which consists
of forty HP SL390s G7 computational nodes, each equipped with two six-core
Xeon X5670 CPUs and three NVIDIA Tesla M2090 graphics cards with Fermi
architecture. Each card contains one GPU with 512 cores and 6 Gb of GDDR5
RAM. The peak performance of this system is 85 teraflops.
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The development of a program code for such hybrid systems requires addi-
tional knowledge and time but provides a significant increase in performance.
The efficient use of a hybrid architecture requires the parallelization and opti-
mization of the simulation algorithms. Since the methods for solving the con-
sidered statements of the elastodynamic problem are similar in their nature, the
comparison of the correctness, adaptation and optimization of these methods
is carried out in similar ways. As for the software tools, we chose CUDA and
MPI, which make possible the simultaneous use of the largest number of parallel
processes and, ultimately, the attainment of the maximum efficiency.

To carry out the parallelization, we decompose the computational domain
into layers along one of the coordinate axes. Each layer is calculated at a separate
node, where, in turn, it is sub-divided into sub-layers along another coordinate
axis (to achieve better scalability) according to the number of graphics accel-
erators available at a node. Thus, we come to a truncated 2D decomposition
whose scalability in one of the directions is limited by the number of graphics
cards present at a computational node. In such an implementation, each graph-
ics card calculates its own grid domain inside the sub-layer at each time step
independently of the other cards, except for the points at the interface between
two adjacent domains. These points are common to each of two domains, and to
continue the calculation, it is necessary to exchange information on the required
values among “neighbors”.

In order to minimize the time of data exchange, data are transferred among
nodes using appropriate non-blocking asynchronous functions of MPI, and
exploiting the asynchronous copying function of CUDA for exchanges among
the graphics cards. Let us note that the data for exchange have the same size in
both approaches. The effective use of graphics cards requires handling and opti-
mizing different memory types. To reduce the time necessary for global memory
access, we have made the same optimal arrangement of all three-dimensional
arrays used and an appropriate load distribution among threads. All the basic
constants used at each time step are specially selected and stored in the constant
memory of a graphics card. Also, we can try to use the faster shared memory
of a graphics card [9] to reduce the number of readings from the GPU global
memory. In the future, such optimization will be implemented and presumably
will bring about a greater acceleration when computing the displacement, as
in this case one re-uses a large amount of data and, correspondingly, a smaller
number of copies in the shared memory is involved.

Finally, calculating the velocities of displacement and stress requires the allo-
cation of memory to store 26 three-dimensional arrays, while calculating the dis-
placement requires only 14 arrays (the source grid coefficients λi,j,k, μi,j,k and
ρi,j,k are not stored in the GPU memory, but their modifications used in the
calculation scheme at each time step are stored to avoid re-calculation). This
reduces the amount of used memory to almost a half, which is very important
for calculations with computer systems that contain a small number of nodes.

When using CUDA it is necessary to divide all parallel-running threads into
equal blocks. The dependence of software performance on the dimension and
size of a thread block has been studied for the Tesla M2090 graphics card.
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Thus, the calculation domain at each GPU is split into a three-dimensional grid
of blocks, their size for the component x must be a multiple of the length of the
warp (the number of threads that are simultaneously executed on GPU). The
specific size of each block is empirically selected for each algorithm. Some results
of measurements are shown in Table 1. Such an optimization (uncomplicated in
the context of a code change) allows to accelerate substantially the program run
by effectively using the graphics accelerator global memory.

Table 1. Dependence of the software run speed on the thread block size (a spatial
grid of size 500× 500× 600 for the displacement velocity problem, a spatial grid of size
600× 600× 600 for the displacement problem, and 1000 time steps for both problems)

Block size, x× y × z Calculation time in displacement
velocity problems, s

Calculation time in
displacement problems, s

4 × 4 × 4 789.4 —

8 × 8 × 8 506.3 422.8

2 × 16 × 2 1429.2 —

16 × 2 × 2 352.7 —

16 × 4 × 4 358.5 317.3

4 × 32 × 4 — 629.2

32 × 2 × 2 290.1 —

32 × 4 × 4 290.9 287.5

64 × 2 × 2 272.9 260.1

64 × 4 × 2 273.8 —

128 × 2 × 2 264.0 258.4

128 × 1 × 1 277.2 258.1

256 × 1 × 1 269.9 257.7

512 × 1 × 1 300.1 256.9

For the comparison of the running speed of both approaches, we have carried
out calculations for the same media with a spatial grid of size 1500× 700× 2100
and 1000 time steps. This grid is close to the maximum grid placed in the mem-
ory of 45 graphics cards (15 nodes of the NKS-30+GPU cluster) for calculating
the velocities of displacement and stress. To calculate the displacements on the
same spatial grid, one needs about half of the memory and can use, at least, 8
nodes instead of 15. The measurement results are presented in Table 2. Calcula-
tions of the displacements and the velocities of displacement and stress on equal
numbers of nodes take roughly the same amount of time (in fact, the calculation
of displacements runs a little faster).

The conducted numerical experiments show that the approach based on the
calculation of displacements is faster, thereby allowing to carry out calculations
for very large grids requiring a smaller number of free nodes. This allows quick
access to computer cluster resources in queue conditions. The approach provides
a reasonable calculation time (several hours for a full-scale actual problem).
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Table 2. Comparison of the running speed of the algorithms

Number of nodes Time, s

Calculating velocities of displacement and stress 15 183.1

Calculating displacements 15 174.8

Calculating displacements 8 247.4

3 Study of the Algorithms Scalability Using Agent
Simulation

For the simulation of distributed systems, it is best to use a distributed simula-
tion based on message passing. The multi-agent approach [10] is used for the sim-
ulation of parallel programs running on a large number of cores owing to such
properties as decentralization, self-organization and intelligent behavior [11]. We
chose the adaptable distributed simulation system AGNES [12] among many other
multi-agent simulation platforms. It has demonstrated high efficiency in the sim-
ulation of telecommunication and information networks [13] and systems of oper-
ative management of distributed computing systems [14]. Also, it was successfully
used in a scalability study of a series of parallel problems when executed on a large
number of cores [4,15,16].

AGNES is a package based on the Java Agent Development Framework
(JADE) providing tools for creating MAC in Java [11]. AGNES takes the advan-
tages provided by JADE, and extends the multi-agent systems to a simulation
system. For the simulation of large-scale calculations, it is important that JADE
is FIPA-compatible as well as a distributed agent-based platform which can use
one or more computers (nodes). In this case, only one virtual JAVA machine
must work on each of them.

To simulate the execution of a parallel algorithm, let us represent the compu-
tational process as a set of threads that are executed in parallel at an individual
node and interact with each other by exchanging values. The main character-
istic of the threads is the execution time and the time of data exchange with
another computing node. To collect this information, we construct an interac-
tion diagram of computational processes, and investigate the profile of program
execution. We draw a general scheme of interaction of computational processes
to study the scalability of parallel implementations of the considered problem.

We implemented classes of GeoWGrid functional agents to simulate the exe-
cution of the algorithm of numerical modeling of seismic fields. These are agents-
calculators, each simulating the calculation of grid methods at a single compu-
tational node. When calculating, for instance, the velocities of displacement and
stress, this process can be described as follows. At the first step, each agent
calculates the stress tensor components in a subdomain for each node, and then
sends the results obtained to the neighbors and waits for a signal before tak-
ing further actions. Then the agents start calculating the components of the
displacement velocity vector in a subdomain for each node after receiving a
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confirmation that all the agents have received data. Then the agents simultane-
ously exchange the values obtained. A similar scheme was adopted to calculate
the displacements. The characteristics of the calculation and exchange times for
each approach mentioned above were taken from the execution profile of appro-
priate programs. The interaction scheme of the agents corresponds to the scheme
of interaction of computational processes.

We designed a model experiment for the execution of algorithms on a small
number of computational nodes with the purpose of verifying the models. The
verification results can be seen in Fig. 1, where the efficiency means the ratio of
the calculation time on n GPUs (cores) for a problem that is n times greater, to
the calculation time of the initial problem on a single node. As we can see, a com-
parison of the actual execution data with the model experiment data indicates
that our model corresponds to the execution of the parallel algorithm.

Fig. 1. Verification of the model of execution of the algorithm of numerical modeling
(by two approaches) of seismic wave propagation.

Fig. 2. Algorithm scalability depending on the simulated number of cores (the hori-
zontal axis features a logarithmic scale).
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Fig. 3. Arithmetic and memory utilization of the Nvidia K40M GPU in the displace-
ment problem tests.

We investigated the scalability of the parallel algorithms by conducting a
model experiment for their execution on a large number of processing cores (up
to 106). The simulation results are shown in Fig. 2. According to these results, we
can conclude that, even though the schemes of interaction for both approaches
are similar, their scalability differs slightly; the algorithms proposed are suitable
for execution on a large number of processing cores.

4 Assessment of the Energy Efficiency of the Algorithms

In the present paper, the term “energy efficiency” for scientific HPC applica-
tions means all the following: the most efficient use of each core, processor or
computational accelerator; the minimization of communication among compu-
tational nodes; and a good workload balancing of a program. The minimization
of communication allows to reduce the idle time for processors and accelerators.
A good workload balancing enables us to uniformly load a computational system.
In case of a good workload balancing and a stable node balancing, we can carry
out a set of program runs to show the relation between the power consumption
and the usage of cores. The most energy efficient algorithm produces the best
FLOPS per watt (joules/sec) value.

We used the Nvidia Tesla K40M GPU for our energy efficiency tests with
CUDA 7.5 toolkit. In the energy efficiency tests, we performed a numerical sim-
ulation of the displacement velocity problem and the displacement problem. In
the case of the displacement test (Fig. 3), these utilization levels indicate that
the performance of the core is most likely limited by the latency of arithmetic
or memory operations. In the displacement velocity problem tests (Fig. 4), these
utilization levels indicate that the performance of the core is most likely being
limited by the memory system of the K40M.

The average GPU power for the displacement problem and the displacement
velocity problem tests is 149 and 156 W, respectively. The energy efficiency
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Fig. 4. Arithmetic and memory utilization of the Nvidia K40M GPU in the displace-
ment velocity problem tests.

Fig. 5. Arithmetic and memory utilization of the Nvidia Tesla 2090M GPU in the
displacement velocity problem tests.

Fig. 6. Arithmetic and memory utilization of the Nvidia Tesla 2090M GPU in the
displacement problem tests.
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for the displacement problem and the displacement velocity problem tests is
9 GFLOPS/W and 12 GFLOPS/W, respectively.

We have also carried out the same tests on the Nvidia Tesla 2090M GPU.
Figures 5 and 6 show the arithmetic and memory utilization of the Nvidia
Tesla 2090M GPU in the displacement and displacement velocity problems
tests. The energy efficiency in the displacement problem and the displacement
velocity problem tests for the Nvidia Tesla 2090M is 4.3 GFLOPS/W and
4.5 GFLOPS/W, respectively. We can see that the Tesla K40M energy efficiency
index is three times greater for the same code.

5 Conclusion

This paper suggests an integrated approach to the development of algorithms
and software for the numerical simulation of seismic wave propagation in media
with complex subsurface geometries, on a hybrid cluster. For the purpose of
the co-design, we have compared the developed parallel implementations of the
solutions with the elastodynamic problem written both in terms of the velocities
of displacement and stress and in terms of displacements, on computational
clusters equipped with graphics cards. We have studied the execution time of the
created parallel programs, their scalability (including the simulation of program
execution on a large number of cores by using the AGNES simulation system)
and energy efficiency.

Based on the results obtained, we can conclude that the approach proposed
to calculate the displacements should be preferred. In spite of a small gain in
time, it allows to solve large 3D dynamic problems of elastodynamic theory
using a significantly smaller number of graphics accelerators compared with the
approach based on the calculation of the velocities of displacement and stress.
The schemes of interaction for both approaches are similar but their scalability
differs slightly: about 80% in the simulation of their execution on 106 cores. It
has been shown that the energy efficiency is close to 12 GFLOPS/W with the
Nvidia Tesla K40M accelerator, which is almost three times higher than that of
the Nvidia Tesla 2090M.

Thus, using the approach proposed, we have been able to develop a set of par-
allel programs allowing to carry out three-dimensional calculations of a required
size with necessary computational resources in a reasonable time.
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Abstract. As a result of a large amount of computational experiments
(more than two thousand) performed on a number of supercomput-
ing resources, we have developed quantum-chemical models of various
constituent components of Li-ion power sources based on silicon-carbon
nanostructure composites and promising solid electrolytes.

Transport, structural and energetic processes occurring in Li-ion
power sources during numerous charge-discharge cycles have been sim-
ulated. Using methods of molecular dynamics, we estimated the effects
of different temperature regimes on the nanosystem structure as well as
the characteristics of these processes.

Keywords: Computer simulation · Silicon-carbon nanocomposites ·
Solid electrolytes · Li-ion power sources · VASP applied package · Quan-
tum chemistry · Molecular dynamics

Introduction

This article describes the results of the project “Computer simulation of absorp-
tion and transport properties of solid electrolytes and nanostructured electrodes
based on carbon and silicon in Li-ion power sources”. The aim of this project is
the supercomputer simulation of quantum-chemistry and molecular dynamics of
new nanocomposite materials (based on silicon and carbon) and solid electrolytes
with high ionic conductivity, as well as non-reactive electrode materials during
operation of a current source. Also, transport, structural and energetic processes
occurring in the modeled nanostructures and at the “interface” between them
have been simulated.

The activity is part of the work “Creation of an effective environment of computer
modeling of quantum-chemical processes and nanostructures on the basis of a pro-
gram complex of newest computing services and high-level web- and grid-interfaces
to them”, supported by the Russian Foundation of Basic Research (project no. 15-
07-07867-a).
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Li-ion power sources (LPS) are currently the most promising and common
types of power sources and batteries. LPS are based on the transport of Li-ions
through a liquid or solid electrolyte from cathode to anode (and back when
charging). The design of new types of LPS is needed to improve their efficiency
parameters, such as energy capacity, number of charge-discharge cycles, resis-
tance to external conditions (temperatures), safety of their production and uti-
lization from an environmental point of view, and cost (prime cost of materials
in main components).

Here is a brief description of the operating principle of Li-ion power sources
(Fig. 1).

Fig. 1. Schematic diagram of a Li-ion power source.

The following reactions occur in a Li-ion power source during charge:

on the positive plates: on the negative plates:

LiMeO2 → Li1−xMeO2 + xLi+ + xe− C + xLi+ + xe− → CLix

The reverse reactions occur when discharging. Therefore, both lithiation
(lithium saturation) and delithiation (returning of lithium to electrolyte and
cathode) are basic processes.

Simulated materials should be the basis for the design and creation of
new types of electrochemical and ecologically safe Li-ion power sources (LPS).
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These power sources will be able to operate at low and medium temperatures,
provide significantly higher energy densities, and improve operational and cost
characteristics.

The synthesis of new nanocomposite materials, the study of their properties
and predictable applications are only possible as a result of a detailed computer
modeling of crystalline composite structures, elementary processes and different
mechanisms of chemical reactions and transport processes at molecular level.

Experimental studies of factors having a major influence on the solution of
the issues listed above are complex, expensive, not always possible, and in most
cases, do not give clear answers to the following questions: mechanisms of ongoing
physical and chemical processes, reasons for their differences depending on the
composition of the system and conditions, possible course of reactions, etc.

The experimental (analogue) simulation of the influence of various factors
on the properties of the constituent components of Li-ion power sources and the
processes occurring in them poses labor-intensive and costly tasks.

Since experiments give only initial and final information about processes
(like electromotive force, voltage, resistance, etc.), it is quite difficult to build
a genuine analytical model. Such tasks can be solved partially in laboratory
conditions, where experiments give incomplete or indirect information about
mechanisms and structures of experiment components. However, modern numer-
ical methods of quantum-chemical and molecular-dynamics simulation can pro-
vide substantial assistance in determining the characteristics of processes and
assessing the impact of individual factors with a high degree of accuracy. These
methods allow to obtain new theoretical data on the structure and properties
of both nanostructured cathode-anode systems and ion-conducting solid elec-
trolytes, making it possible to subsequently develop new highly effective mate-
rials for electrochemical devices.

A detailed simulation of elementary processes as well as mechanisms of lithi-
ation/delithiation and ion-transport processes in Li-ion power sources at the
micro level leads to a better control over chemical reactions occurring in them,
allowing to design the most appropriate anode materials in terms of efficiency of
electricity generation, lithiation processes, stability of materials during numerous
charge-discharge cycles, cost of LPS constructive materials and environmental
recycling processes.

Also, the created models can be reviewed for adequacy by comparing them
(and the properties of materials modeled on their basis) against observable ana-
lytical, experimental and theoretical data published in specialized literature.

For this task, the authors carried out a detailed quantum-chemical and
molecular-dynamical simulation of various nanosystems based on carbon and
silicon, as well as solid electrolytes with high ionic conductivity, both in cluster
approximation and for periodic boundary conditions with projector-augmented
wave (PAW), using VASP, CPMD and Gaussian application packages on a num-
ber of high-performance computing resources.

The objects of the computer simulation are composites based on carbon
and silicon, which have the ability to repeatedly absorb Li without damage
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and are promising materials for Li-ion power sources (nanoclusters, nanotubes,
nanowires, nanopapers and active crystal surfaces). Also objects of this computer
simulation are solid electrolytes with high ion conductivity based on glasses, salts
and polymer composites that do not react with the electrode material during
operation of a current source.

Some simulation experiments were conducted using authors’ computer sys-
tem based on up-to-date software packages for quantum-chemistry and mole-
cular dynamics, “hybrid” computing technologies, web services, data storage,
visualization of results, etc. Using high-performance resources (supercomputers,
problem-oriented clusters and hybrid systems) would greatly improve the details
and the quality of the created models of nano-objects and those of the processes
accompanying them, and would also allow to solve tasks previously inaccessible
due to their computational complexity.

1 Simulation Methods

The models of nanocomposite materials and processes occurring in them were
constructed by methods of quantum chemistry computer simulation on the clus-
ters of the Computation Center at the Institute of Problems of Chemical Physics
(IPCP), and then at the Supercomputer Center of Moscow State University
“Lomonosov” [1], using the applied software packages VASP (Vienna Ab initio
Simulation Package, https://www.vasp.at) and CPMD (Car-Parinello Molecular
Dynamics, http://www.cpmd.org) for the calculation of complex nanostructures
and the dynamics of their behavior depending on time and temperature.

The VASP package has been used by the authors during a long time for
modeling materials and components of complex electrochemical objects. This
package is applied to the simulation of various processes both in the volume and
on the surface of solids (first of all, catalysis and ionic conductivity) within the
non-empirical approaches based on the use of density functional theory with peri-
odic boundary conditions and a plane wave basis set. VASP allows to optimize
the structures and to model processes within a molecular dynamics framework.

VASP implements effective schemes of iterative matrix diagonalization and
the highly efficient Broyden–Pulay electronic charge density mixing. In addition,
the MSP processes convergence procedure (self-consistent field) and optimization
are significantly improved, which greatly increases the efficiency of calculations.
This package provides a good accuracy of description for structural and energy
characteristics of systems containing up to several hundred atoms. First of all,
we conducted a full optimization of the geometric and energy parameters of
molecules under consideration within the established basis and method of cal-
culation.

In this paper, we applied an approach based on density functional theory
(DFT) with periodic boundary conditions to simulate learning systems. We
applied the projector-augmented wave (PAW) with the corresponding PAW
pseudopotentials and PBE functional (Perdew–Burke–Ernzerhof). The limit of
energy (Ec) defining the completeness of the basis set was established at 400 eV.

https://www.vasp.at
http://www.cpmd.org
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When simulating two-dimensional plates, the vacuum layer between them was
not less than 10 Å. To simulate the Li10GeP2S12 electrolyte volume, we used a
canned double cell Li20Ge2P4S24 involving 50 atoms; for the simulation of the
surface, four such cells (200 atoms) were used.

To solve the problem of interaction of the surfaces between electrodes
and electrolytes, we modeled (with full optimization of geometric parame-
ters) a structure continuously propagating in two directions, solid electrolyte
fragments (propagated Li80Ge8P16S96-fragment), a silicon-carbon paper (prop-
agated Si32C38-fragment) and the result of their interaction (propagated
[Si32C38]·[Li80Ge8P16S96]-fragment).

In the case of polymer electrolytes, we modeled (with full optimization of
geometric parameters) the structure of infinite nanowires of LiNafion·nDMSO
(n = 0,1,8,16), and also spatially propagated fragments of Li(C15O5F29S)·
n(H6C2OS) and [Li(C15O5F29S)· n(H6C2OS)]2 of 51 to 262 atoms.

For the optimization, we applied the Methfessel–Paxton method of electronic
state (with blur parameter (σ) 0.2 and energy approximation of the value σ =
0). This approach allows for the automatic detection of system’s multiplicity.
The estimate of energy stability of combined systems was determined accord-
ing to De/n(Li), computed as the difference between the calculated energy of
the system and the total energy of isolated lithium atoms divided by the num-
ber of atoms of adsorbed lithium, for example, De/n(Li) = -[E((SiC)kSimLin) -
E((SiC)kSim) -nE(Li)]/n.

We used two approaches for the simulation of transport processes in the
framework of an ab initio non-empirical molecular dynamics with periodic
boundary conditions: CPMD (Car-Parrinello approximation), in which the cal-
culated wave function for the starting configuration is approximated by a set of
classically-moving low-mass particles, and a more accurate but slower approxi-
mation, namely MD-VASP (MD/PBE/PAW), which uses the same algorithms
as normal optimization structures, but with rougher calculation criteria.

Generally, the use of MD-VASP allows a substantially faster simulation than
CPMD. MD-VASP requires about 6 to 8 times less computation steps to achieve
the same penetration depth.

The Gaussian software package (http://gaussian.com) was used for compar-
ison and estimation of the accuracy of the simulation of some nano-objects at
DFT/B3LYP level. By comparing different levels of calculation, we noted that
the calculated values used in VASP and Gaussian software for average bond
energies and distances of identical objects give consistent results with accuracy
of 0.02 to 0.04 eV and 0.005 to 0.01 Å, respectively.

It should be noted that the difference of calculation results at B3LYP/6-
31G(d,p), PBE/6-31G(d,p) and PBE/PAW levels does not exceed 0–2% for dis-
tances and 1–13% for energies. The chosen calculation level provides the following
calculation accuracy in computer models: the Si crystal lattice calculated para-
meters a = b = c are 5.48 Å(experimental: 5.43 Å), the Si–Si distance is 2.37
Å(experimental: 2.34 Å), and the energy of the crystal is 4.44 eV (experimental:
4.52 eV).

http://gaussian.com
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The adequacy of the computer models was also evaluated by comparing the
values calculated on the basis of their physico-chemical characteristics (opti-
cal and X-ray spectra, thermodynamic measurements, energy parameters) with
those observed in physical experiments. For example, the calculated structural
parameters for crystal electrolytes (a = b = 8.79 Å and c = 12.80) are in good
agreement with X-ray experiments (a = b = 8.72 Å and c = 12.63 Å)

2 Computational Complexity and Processing Efficiency

In earlier times, similar computer simulations were hindered by a catastrophic
lack of computing resources, since calculating the behavior of small/medium
atomic clusters of the Si7−126 type, even in a simplified form, required months,
and modeling systems as a whole (containing thousands of atoms) required
approximately n·106 CPU-hours per year.

Only in recent times, the same simulation became feasible using high-
performance supercomputing centers and grid polygons. Currently, the use of
computing resources with speeds of the order of teraflops and petaflops allows
to make sufficiently detailed simulations of geometrical and energy characteris-
tics of modeled nanostructures. It is also possible to study the effects of various
factors and processes occurring in these nanostructures for a variety of conditions
determining the efficiency of the created LPS.

Let us summarize the computational complexity and use efficiency of comput-
ing resources in the process of quantum-chemical simulation of learnt structures.
We used the IPCP cluster (176 dual-node HP Proliant, making a total of 1472
cores based on 4- and 6-core Intel Xeon processors 5450 and 5670 3 GHz, 8 and
12 GB of RAM per node; InfiniBand DDR communication network, transport
and network management – Gigabit Ethernet; hard drives – no less than 36 GB
per node), and the SCC of MSU supercomputing installations “Lomonosov-1,2”
having various pools of processors (8 to 128 CPU) with obligatory presence of
local drives and no less than 2 GB of RAM per core.

A sufficient effective acceleration of the VASP package for this type of tasks
was observed for 40 to 48 CPU (similar to calculations for the simulation of fuel
cell catalysts previously carried out by the authors [2]). The further growth of the
efficiency of task parallelization is limited (or even reduced) by the rate of data
exchange due to a significant increase in the amount of data being transferred
between nodes. Thus, increasing the number of CPU over 48 (at least for this
task variant) is meaningless for the moment.

The average effective time for calculation of Sin clusters (n = 2÷ 350) and
CnSim nanofibers increases as the dimension of the silicon-carbon fragment
increases, taking up to 4 days (78 h on a pool based on 4-core Intel Xeon 5450
3 GHz processors) and even more (due to complications of the structure). The
calculation time of lithiated large mesostructures of silicon and aggregates rein-
forced with nanotubes or nanowires took tens of days to complete.

The most critical calculation parameter is the amount of memory per core,
with an effect of acceleration of calculations with a decrease in the number of
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allocated cores by increasing the amount of RAM per core. For MD calculations,
we used 14000 steps per calculation (for example, heating up to 400 K for 2000
steps, holding at 400 K for 10000 steps, cooling down to 10 K for 2000 steps,
and optimizing the structure in standard mode; the time step model was 1
femtosecond). The calculation of complex structures, such as those described in
Sect. 3.6, requires up to 80000 CPU-hours.

In the latest versions of VASP, starting with version 5.4.1 (February 2015),
the application package supports CUDA technology for the calculation method
of standard and hybrid DFT (Hartree–Fock equation). For most tasks, using
DFT on Tesla C2075 accelerators at the IPCP, we achieved (comparing VASP
versions with support and without support of GPU acceleration) 1.6- to 6-fold
accelerations depending on the dimension of the problem and its type. This gives
the prospect of a significant acceleration for VASP calculations on “hybrid”
computing nodes (following VASP upgrade to versions above 5.4), including
existing CPU-GPU pools on the SC “Lomonosov-1.2” and hybrid IPCP stations.
In addition to upgrading VASP, it is necessary to do a further reconfiguration of
VASP settings files, and update CUDA library at least to version 7.5 (current
version: 8.0).

The total number of computing experiments performed at all stages of the
work reached more than 2000.

3 Simulation Results

The results of the multi-step simulation have been described in detail in a num-
ber of publications by the authors of the present work [3–11]. Here is a brief
description of the most representative results of the computer simulation of
nanostructures and processes occurring in them.

3.1 Computer Simulation of Various Types of Porous
Nanocomposite Materials Based on Carbon and Silicon

Computer models of the following types of Si–C nanocomposites have been cre-
ated by the authors [6,7]:

– pure silicon aggregates with different morphologies (clusters of “snowballs”,
“core/shell”, etc., size up to 3 nm), and a number of silicon atoms ranging
from 2 to 350;

– silicon clusters with silicon carbide core (rod-shaped), 1.2 to 2.8 nm in diam-
eter, and nanofibers of SinCm type, n/m = 1÷3;

– carbon nanotubes (CNT) with dimension (6,6) and 0.8 nm in diameter, sur-
rounded by a layer of silicon clusters of various dimensions;

– silicon nanowires with a rod on the basis of silicon carbide and silicon shell;
– infinite carbon nanofibers coated with silicon nanoclusters;
– silicon-carbon “nanopapers”.
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A conclusion following from our research is that the use of different types of
simulated nanocomposites may be a promising opportunity in the construction
of new types of electrodes for LPS. Examples of the simulated nanostructures
are shown in Fig. 2.

)b)a

Fig. 2. Examples of nanocomposites based on Si–C: (a) Si112 mesocluster; (b)
Si288/C120 nanotube. The models have been derived from the authors’ computer sim-
ulation using the VASP package (PBE/PAW level of calculation).

3.2 Quantum-Chemical Simulation of Transport Processes
of Lithium Ions in Nanocomposite Materials Based on Carbon
and Silicon

On the basis of the constructed models of nanocomposites (see above), we made
a quantum-chemical simulation of various processes occurring during charge-
discharge cycles of LPS (i.e. processes of lithiation and delithiation on electrodes
based on the above-described nanostructures) [8,10]. A majority of characteris-
tics of these processes have been established, including:

– Li-ion transport processes and processes of lithium consistent implementation
in Si–C nanostructures of various types and dimensions;

– structural and energetic changes of nano-objects in processes of absorption of
lithium atoms;

– possible paths and migration barriers for lithium atoms in the process of
nanoparticle saturation;

– construction of models of sequential removal of lithium atoms from lithiated
nanoparticles and determination of structural and energetic changes identified
in this process;
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– determination of the limits of resistance to fracture for nanoparticles during
delithiation processes.

3.3 Computer Models of Aggregation Processes of Initial
and Lithiated Nanoparticles

In LPS operation, there are aggregation processes of small nanostructures into
larger ones and vice versa, affecting greatly the characteristics of components and
the whole LPS. We have obtained computer models of aggregation processes of
original and lithiated nanoparticles [4,8], including:

– formation of a mesostructure based on original silicon-carbon nanoparticles;
– formation of a mesostructure based on lithiated (saturated lithium atoms)

silicon-carbon nanocomposite structures.

3.4 Quantum-Chemical and Molecular Dynamics Simulation
of Highly Conductive Solid Electrolytes

This work presents the results of the computer quantum-chemistry and molec-
ular dynamics simulation [5,11] of highly conductive solid electrolytes based on
Li10GeP2S12 systems and polymer electrolytes based on LiNafionTM· dimethyl-
sulfoxide (LiNafion· 8DMSO) with an ionic conductivity that is higher than that
of liquid electrolytes.

We modeled the structures and the contact surface of superionic solid elec-
trolytes. In this connection, the ionic conductivity mechanism was determined
during simulation. We also defined the types of surface structure and the
nature of the Li10GeP2S12 electrolyte contacts with anode nanocomposite mate-
rials (carbon fibers coated with SinCm silicon nanoclusters and silicon-carbon
“nanopaper”).

We modeled the contact surfaces of superionic solid electrolytes with different
Si–C nanocomposites. It was shown that a layer of liquid or plastic polymer elec-
trolyte, such as dimethylsulfoxide (hereinafter DMSO), can be used to enhance
the contact between solid surfaces. The simulated structure and its surface are
shown in Fig. 3.

We constructed a computer model of interaction of solid and polymer lithium-
based electrolytes with composites based on carbon fibers and silicon nanoclus-
ters. Examples of the simulated complicate complexes “electrolyte–SinCm” of
different dimensions are shown in Fig. 4.

Lithium transition across the interface “electrode–electrolyte”, as well as the
determination of the migration channels and the potential barrier were modeled
taking as example the interaction of solid and polymer lithium electrolytes with
composites based on carbon fibers and silicon nanoclusters.

3.5 Simulation of Lithium Ions Migration in Non-aqueous
Polymer Electrolytes

Using methods of quantum chemistry and molecular dynamics, we modeled
various aspects of the migration of lithium ions in a complex electrolyte
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a) b)

Fig. 3. Simulated structure (a) and (b) two types of modeled surfaces (001) and (100)
Li10GeP2S12 solid electrolyte crystal.

a) b)

Fig. 4. Structure models of solid electrolyte complexes Li80Ge8P16S96 (a) and polymer
electrolyte [LiNafion*8DMSO] (b) with layers of Si32C38 silicon-carbon “paper”.
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(LiNafion· nDMSO, n = 0÷ 18) as well as the structure, stability and electronic
properties of membranes based on the electrolyte, including the effect of various
parameters, such as the degree of swelling of the electrolyte and a number of
physico-chemical properties of the plasticizer containing the molar volume, the
viscosity and the coordination number.

On the basis of the transport models, we made some conclusions on the pos-
sible paths of lithium migration and energy parameters: (1) four-coordinated
lithium transition through three-coordinated state to the next position sur-
rounded by four DMSO molecules, and (2) movement of the Li(DMSO)4+ tetra-
solvate complex.

3.6 Computer Simulations of Repeated Lithiation/Delithiation
Cycles Depending on the Degree of Lithium Saturation
and Temperature Conditions

Along with the simulation of individual LPS components (electrodes, elec-
trolytes) and processes occurring at the interfaces between them during opera-
tion of the battery, a great importance for the creation of new types of power
sources is ascribed to the stability of these elements over time in case of mul-
tiple “charge-discharge” cycles, depending on the power capacity of the system
(amount of lithium) and temperature conditions.

The molecular dynamics simulation is performed to assess the feasibility of
the composite mesostructure return to its original state after repeated lithia-
tion/delithiation cycles depending on the degree of lithium saturation and tem-
perature conditions. MD-VASP (MD/PBE/PAW) approximation is used. For
MD calculations, we used 14000 steps per calculation (for example, heating up to
400 K for 2000 steps, holding at 400 K for 10000 steps, cooling down to 10 K for
2000 steps, and optimizing the structure in standard mode; the time step model
was 1 femtosecond). We took as initial model the nanocomposite models obtained
in the first stages. The models are intended to illustrate the reorganization of the
Li / Si layer structure during gradual recovery of lithium from the surface (i.e.
discharge): the effect exerted by heating and subsequent cooling on the structure
of silicon-carbon delithiated nanosystems and their possible return to the initial
state according to the degree of heating of lithium and the saturation level.

The simulation has allowed to determine the most stable mesostructures for
electrode materials, the optimal ratio of Li : Si in the Si–C nanocomposites
saturation with lithium, and the best energy parameters of charge-discharge
cycles. It has been demonstrated that the introduction of lithium into silicon is
energetically more favorable than the formation of a metal layer on its surface,
but increasing lithium concentrations leads to a reduction of energy difference,
i.e. the implementation is less advantageous, the mesh of silicon atoms is broken
into smaller pieces, the thickness of the absorbing layer is significantly increased,
and its structure becomes amorphous. It is important to note that the energy in
the modeled systems does not lead after cooling to stabilization to the substantial
structural rearrangement that makes LPS components more resistant.
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3.7 Computer Model of Ionic Transport in Lithium-Ion Batteries

We constructed computer models of ion transport using different combinations
of the three main components of LPS, namely anode, cathode and membrane
(electrolyte)[4,5]. These models allowed to define the basic characteristics of the
energy system and evaluate the properties of the target battery based on calcula-
tions of the structure and transport properties of the electrode and electrolyte at
molecular level. Comparing the results of different simulation options, we could
identify the most promising areas of construction of lithium-ion batteries of new
type and their characteristics during lithiation / delithiation processes.

4 Conclusions

Thus, on the basis of a large number of numerical experiments regarding com-
puter quantum chemistry and molecular dynamics simulation, we calculated the
structures and surfaces of solid and polymeric electrolytes of a new type for LPS,
their interaction with various nano-objects based on carbon and silicon with
different morphologies, spatial rigidity, power characteristics, saturation poten-
tial with lithium ions. We also calculated transport processes of lithium ions
(delithiation-lithiation) in nanocomposites, including structural energy charac-
teristics and structures evolving over time (depending on the number of cycles
of lithiation).

The model structures calculated, as well as the characteristics of electrolyte
and anode materials for LPS and their interaction during charge and discharge
were used to simulate a whole picture of lithiation and delithiation processes
in Li-ion cells, the interaction of lithium ions with the surfaces of carbon and
silicon nanomaterials, the determination of the “container” received by the anode
materials, and also to model both components and new LPS types in general.

The simulation results will be used to determine the optimal conditions for
the synthesis and production of the most energetically favorable and industrially
suitable electrolyte and anode materials for new types of Li-ion power sources.

References

1. Voevodin V.V., Zhumatii S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A.,
Nikitenko, D.A., Stefanov, K.S., Voevodin, V.V.: Practice of “Lomonosov” super-
computer. In: Open Systems, vol. 7, pp. 36–39 (2012). (in Russian)

2. Volokhov, V.M., Varlamov, D.A., Zyubina, T.S., Zyubin, A.S., Pokatovich, G.A.,
Volokhov, A.V.: Quantum-chemical simulation of processes in low-temperature
electro-chemical fuel elements. In: Supercomputer Technologies in Science, Educa-
tion and Industry, no. 5, pp. 172–176. MSU printing, Moscow (2013). (in Russian)

3. Volokhov, V.M., Varlamov, D.A., Zyubina, T.S., Zyubin, A.S., Volokhov, A.V.,
Pokatovich, G.A.: Supercomputer simulation of nanocomposites on silicon-carbon
base for new types of Li-ion power sources. In: Proceedings of International Con-
ference on Russian Supercomputing Days, pp. 453–464. MSU printing, Moscow,
28–29 September 2015. (in Russian)



Supercomputer Simulation of Components and Processes 287

4. Volokhov, V.M., Varlamov, D.A.,Zyubina, T.S., Zyubin, A.S., Volokhov, A.V.,
Pokatovich, G.A.: Supercomputer simulation of transport and energetic processes
in silicon-carbon based nanocomposites. In: Proceedings of International Confer-
ence on Parallel Computing Technologies, PAVT 2016, Arkhangelsk, Russia, pp.
105–117. South Ural State Univ. printing, Chelyabinsk, 28 March–1 April (2016).
(in Russian)

5. Volokhov, V.M., Varlamov, D.A., Zyubina, T.S., Zyubin, A.S., Volokhov, A.V.:
Supercomputer simulation of interaction processes between Si-C nanostructured
electrodes and solid electrolytes in new types of Li-ion power sources. In: Proceed-
ings of International Conference Russian Supercomputing Days, pp. 690–699. MSU
printing, Moscow, 26–27 September (2016). (in Russian)

6. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Silicon-and
carbon-based anode materials: a quantum-chemical modeling. Russ. J. Inorg.
Chem. 61(1), 48–54 (2016)

7. Zyubina, T.S., Zyubin, A.S., Dobrovolsky, Y.A., Volokhov, V.M.: Quantum chem-
ical modeling of nanostructured silicon Sin (n = 2–308). The snowball-type struc-
tures. Russ. Chem. Bull. V65(3), 621–630 (2016)

8. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Quantum-
chemical modeling of Lithiation of a Silicon-Silicon Carbide composite. Russ. J.
Inorg. Chem. 61(11), 1423–1429 (2016)

9. Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Lithiation-
delithiation of infinite nanofibers of the SinCm type - the possible promising anodic
materials for lithium-ion batteries. Quantum-chemical modeling. Russ. J. Elec-
trochem. 52(10), 988–991 (2016)

10. Zyubina, T.S., Zyubina, A.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Quantum-
chemical modeling of lithiation-delithiation of infinite fibers [SinCm]k (k = ∞)
for n = 12–16 and m = 8–19 and small silicon clusters. Russ. J. Inorg. Chem.
61(13), 1677–1687 (2016)

11. Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Migration of
lithium ions in a nonaqueous nafion-based polymeric electrolyte: quantum-chemical
modeling. Russ. J. Inorg. Chem. 61(12), 1545–1553 (2016)



Development of a High Performance Code
for Hydrodynamic Calculations Using Graphics

Processor Units

Andrey V. Sentyabov1,2(B) , Andrey A. Gavrilov1,2, Maxim A. Krivov3,
Alexander A. Dekterev1,2, and Mikhail N. Pritula4

1 Siberian Federal University, Krasnoyarsk, Russia
{sentyabov a v,dekterev}@mail.ru, gavand@yandex.ru
2 Institute of Thermophysics SB RAS, Novosibirsk, Russia
3 Lomonosov Moscow State University, Moscow, Russia

m krivov@cs.msu.su
4 CTP PCP RAS, Moscow, Russia

pritmick@yandex.ru

Abstract. The paper presents the results of the implementation of com-
putational algorithms of hydrodynamics for using graphics processor
units. The implementation was carried out on the basis of the in-house
CFD code SigmaFlow. Numerical simulations were based on the solution
of the Navier-Stokes equations using SIMPLE-like procedure. The dis-
cretization of the differential equations was based on the control volume
method on unstructured mesh. In the case of multiple CPU/GPU, par-
allel calculations were performed by means of domain decomposition. In
the GPU-version of the code, basic computational functions were imple-
mented as CUDA kernels to perform on GPUs. The code has been verified
using several test cases. The computational efficiencies of several GPUs
were compared with each other and that of modern CPUs. A modern
GPU can increase the calculation performance of CFD problems by more
than two times compared to a modern six-core CPU.
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1 Introduction

Modelling of natural phenomena and industrial processes requires a continuous
growth of computing performance. In recent years, the performance of graphics
processor units (GPU) has increased so much that they have become attractive
for scientific and engineering simulations. As a result, techniques of GPGPU
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(General-Purpose computation on GPUs) have been developed. The high compu-
tational efficiency of graphical processor units leads to wide applications of GPUs
in supercomputing systems [1]. There are many fields application of GPGPU cal-
culations such as linear algebra [2], molecular dynamics [3], aeromechanics [4,5]
and so on. The GPU performance is rapidly increasing and is much higher than
the computational performance of central processor units (CPU).

Most algorithms of computational fluid dynamics for incompressible flows are
based on the elliptic equation for the pressure correction. The algorithms include
the following main steps: a discretization of the pressure correction equation and
velocity equations, solving the linear systems, corrections of the pressure and
velocity fields. The implementation of only certain algorithm functions in the
GPU is not effective. All the data for the calculation are required to be stored
in the GPU memory since their transfer between the GPU and the CPU takes a
very long time. Consequently, all the main computational operations should be
implemented in the GPU. The limited memory of the graphics processor units
imposes serious restrictions on the computational problem in the case of a single
GPU. Multiple-GPU systems allow computing the complex problem with fine
mesh. In this case, a computational domain decomposition can be used for the
parallel calculation on the multiple GPU. It is known that the efficiency of the
parallel calculations goes down as the number of the mesh cells increases, which
is a result of the intensification of the data exchange between the computational
units. In the case of graphics processor units, the speed of the data exchange is
limited by the PCI-E bus.

The paper considers the realization of the GPU-version of an in-house com-
putational fluid dynamics (CFD) code. The CFD code allows modeling the 3D
steady and unsteady viscous incompressible flow in a complex computational
domain. The main objectives of this paper are the demonstration of the prob-
lems that can be solved by means of GPU, and the comparison of the GPU and
CPU performances for the incompressible flow modelling.

2 Mathematical Model

The implementation of GPGPU calculations is based on the in-house CFD
code SigmaFlow [6]. A three-dimensional incompressible flow is described by
the Navier-Stokes equations

∇ · v = 0, (1)

∂(ρv)
∂t

+ ∇ · (ρvv) = − ∇p + ∇ · T, (2)

where the viscous stress tensor is

Tij = μ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (3)
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The model LES WALE (Large Eddy Simulation Wall Adapting Local Eddy-
viscosity) is used for the simulation of turbulent flows. This version of the LES
model is suitable for the simulation of a turbulent flow near a wall. The equations
for the filtered velocity differ from the Navier-Stokes equations by the additional
subgrid stress tensor [7]

Tt
ij = μSGS

(
∂vi
∂xj

+
∂vj
∂xi

)
, (4)

where μSGS is the subgrid viscosity. In the LES WALE model, the subgrid vis-
cosity is a function of the flow and is defined as follows [8]:

μSGS = (CWΔ)
(sdijs

d
ij)

3/2

(sijsij)5/2 + (sdijs
d
ij)5/4

, sij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (5)

sdij =
1
2
(g2ij + g2ji) − 1

3
g2kkδij , g

2
ij = gikgki, gij =

∂vi
∂xj

, (6)

where Δ is the cell size, CW = 0.325 is a model constant.
The numerical method is based on the finite volume method on an unstruc-

tured mesh. The distributions of a field and its gradient are used for the dis-
cretization of a differential equation. The gradient value in the center of the
finite volume is determined by means of the least-squares method [9].

Coupling of the pressure and velocity fields is one of the main challenges in
the numerical modelling of incompressible flows. A SIMPLE-like procedure on
the collocated grids is used. There are many references concerning the SIMPLE
approach [10–12]. Collocated grids use the same finite volumes for all variables
(both pressure and velocity). This is the most efficient approach. To eliminate
the pressure field oscillations, the Rhie-Chow method [13] is applied.

The Quick scheme [14] and Umist TVD scheme [15] are used for the approx-
imation of the convective term of the velocity equations. A second order scheme
is used for the viscous term. Unsteady calculations are based on an implicit
three-level second-order scheme. The linear systems for velocity equations are
solved by means of the incomplete factorization method DILU [16]. A variant of
Krylov subspace iterative methods is used for solving the linear system of the
pressure correction equation.

3 Software Implementation

Computational domain decomposition is used for parallel computations on mul-
tiple CPU or GPU. This method is based on a decomposition of the spatial
computational domain into subdomains. Each subdomain is handled by a sepa-
rate computational process. The connection between the subdomains is realized
by the MPI interface. The distribution of the computational load among these
processes should be uniform to obtain the highest performance. The partitioning
of the computational nodes among the subdomains is performed by means of the
MeTiS software [17].
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In the GPU-version of the code, all the computational operations are per-
formed on the GPU: calculation of the pressure and velocity gradients, discretiza-
tion of the velocity equation and pressure correction equation, solving the linear
systems, correction of the pressure and velocity according to the SIMPLE pro-
cedure and calculation of the turbulent viscosity in the case of turbulent flow
modelling. The development of the GPU-versions of all the parts of the package
was performed to prevent an excessive data transfer over the PCI-E bus. In this
code, the data transfer from the GPU memory to the CPU main memory is
performed only in the MPI data exchange or data writing. The algorithms of
the CUDA-kernels are identical to the corresponding CPU-method except for
the DILU method. Due to the intensive use of atomic operations, the CUDA
Compute Capabilities 2.0 architecture is used for the implementation of these
functions (CUDA-kernels). In order to achieve enough parallelism, the CUDA-
kernels perform an operation on values at each mesh cell or face. The kernels take
an array representing the field distribution as an argument and perform many
identical operations on the elements of the arrays. Thus, the thread corresponds
to the index of the mesh cell or mesh face.

Similarly to the CPU-version of the code, computational domain decomposi-
tion and MPI were used for the calculations by means of multiple GPU. In this
case, each subdomain was calculated on a separated GPU.

4 Laminar Test Cases

The GPU-version of the code was verified in several test cases. Two laminar
test cases were considered in this paper in detail. These are a laminar flow in a
cylinder with rotating endwall and an unsteady laminar flow around a circular
cylinder.

The swirled flow in the cylindrical container is produced by the endwall rotat-
ing with angular velocity Ω (Fig. 1). The endwall rotates the fluid by friction
force. The centrifugal force throws the fluid near the rotating endwall to the
periphery. Near the opposite endwall, the flow returns to the center. Thus, a
concentrated vortex is formed on the axis of the container. The flow is deter-
mined by the Reynolds number Re = ΩR2/ν and the ratio H/R, where ν is
the kinematic viscosity, H is the height of the cylinder, R is the radius of the
container. Two regimes were considered. In the first one, the Reynolds number
was Re = 1800, and the geometrical ratio was H/R = 1. In this case, the com-
putational mesh included 800 thousand hexahedral cells. In the second regime,
the Reynolds number was Re = 2752, and the geometrical ratio was H/R = 3.25.
In this case, a fine computational mesh was considered. The mesh included 10
million cells, which were concentrated near the wall.

For the regime H/R = 1.0 the radial and tangential velocity components
along the lines r = 0.6R and r = 0.9R were compared with experimental data
[18]. As Fig. 2 shows, the CPU and GPU codes give the same results, which are
close to experimental data. In the regime H/R = 3.25, Re = 2752 the experiment
shows a three-bubble vortex breakdown [19]. A vortex along the axis of the
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a b

Fig. 1. Flow produced in a cylindrical container by a rotating endwall: (a) scheme; (b)
flow in the central cross-section.

container is directed from the rigid to the rotating endwall. The vortex core
transforms (vortex breakdown). As a results, a recirculation zone (a bubble)
forms on the axis. Then two more bubbles form near the center of the container.
This regime corresponds to a very narrow range of the parameters. However,
numerical results agree well with experiment.

The calculation time was considered to compare the computational efficien-
cies of CPU and GPU. The same number of iterations of the SIMPLEC procedure
was fixed in the calculations (2000 iterations in the case H/R = 1, Re = 1800,
and 20 000 iterations in the case H/R = 3.25, Re = 2752). The Fig. 3 shows that
the Titan Black GPU is two times faster than the Core i7-5820k six-core CPU.
The calculation time on the Titan Black GPU corresponds to that of a system
including two CPUs. The fine mesh including 10 million cells required two Titan
Black GPUs due to memory limits.

The second test case is an unsteady flow around a circular cylinder (Fig. 4).
The flow depends on the Reynolds number Re = UD/ν, where U is the bulk
velocity, D the diameter of the cylinder, and ν is the kinematic viscosity. The
Reynolds number is 100. In this case, a Karman vortex street is formed behind
the cylinder (Fig. 5). Figure 4a shows a scheme of the computational domain.
The external boundary has size Dext = 40D. The length of the cylinder is 4D. A
uniform velocity distribution was set as inlet boundary conditions. Non-reflective
boundary conditions were used in the outlet. Symmetry was used on the side
walls. A number of the O-type meshes included from 0.75 to 1.5 million cells.
Mesh cells were concentrated near the wall and in the wake region. The time
step is τ = 0.04Tref , where Tref = D/Uin is the reference time of the flow.
Preliminary calculations showed a Karman vortex street (Fig. 5a). The Strouhal
number (dimensionless frequency) of the vortex shedding is St = fD/Uin, where
f is the frequency of the vortex shedding, Hz. The Strouhal number value (see
Table 1) agrees with experimental [20,21] and other numerical results [22]. The
averaged length of the recirculation zone also agrees well with the results [22].

For comparison of the computational efficiency, unsteady calculations of the
flow around the cylinder were performed using a uniform initial velocity field.
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a b

Fig. 2. Flow produced in a cylindrical container by a rotating endwall: (a) H/R = 1,
Re = 1800 (velocity components along the vertical lines, experiment [18]); (b) H/R =
3.25, Re = 2752 left: iso-line of zero-value of vertical velocity and stagnant zone; right:
experimental photo [19]; rotating endwall located on the bottom).

The calculation times of the first 0.6Tref (15 time steps) were used to com-
pare the computational efficiencies of the GPUs. The number of iterations of
the SIMPLEC procedure per time step was fixed equal 30. Figure 6 shows the
computational efficiency of different GPUs. It is shown that the performance of
modern GPUs is 2 to 3 times higher than that of six-core CPUs. The highest
performance is shown by Titan Black, GeForce 1070 and GeForce 780Ti. The
Ge-Force series did not show much lower performance than the Tesla series. On
the other hand, Tesla GPGPUs have much more memory (Table 2). Memory is
one of the major parameters for computational fluid dynamics, since industrial
and scientific problems require very fine computational meshes. Parallel compu-
tations on modern GPUs allow to meet these requirements.
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a b

Fig. 3. Calculation time of the flow in a cylindrical container: (a) H/R = 1, Re = 1800
(800 thousand cells); (b) H/R = 3.25, Re = 2752 (10 million cells).

a b

Fig. 4. Flow around a circular cylinder: (a) scheme; (b) computational mesh.

a

b

Fig. 5. Unsteady flow around a cylinder: (a) Karman vortex street, visualized by
instantaneous pressure distribution; (b) streamlines of the averaged flow.
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Table 1. Flow around a cylinder: mean parameters

St L/D

Calculations SigmaFlow-GPU 0.164 1.41

Calculations Shoeybi (2010) 0.168 1.41

Experiment Zdravkovich (1997) 0.165 -

Fig. 6. Flow around a cylinder: computation time (mesh includes 1.5 million cells,
single precision).

Table 2. Memory of the considered graphics processor units

GPU Memory, Gb

Tesla K40 12

Tesla K20 5

Tesla C2075 3

GeForce 750 2

GeForce 1070 8

GeForce 780Ti 3

GeForce 680 2

GeForce 580 1.5

Titan Black 6

Usually, single precision is used in computational fluid dynamics. In some
cases, however, single precision is insufficient. At the same time, GPU perfor-
mance in double precision is lower than in single precision. Therefore, in this
test case, performances in single and double precision were compared for differ-
ent GPUs (Fig. 7). The computational mesh included 0.75 million cells due to
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Fig. 7. Flow around a cylinder: computation time (the mesh includes 0.75 million cells,
single and double precision).

memory limits of GPUs. Both Tesla and GeForce GPUs show a computational
time in double precision that is two times higher than that in single precision.
Thus, the performance in double precision is determined primarily by memory
bandwidth instead of calculations blocks.

5 Turbulent Test Cases

In addition to laminar test cases, two turbulent problems were solved by means of
the LES WALE method. The first turbulent test case was a flow in a cubic cavity
with a leading cover wall that moves in the x-direction (Fig. 8a). The Reynolds
number, based on the cover wall velocity and the cavity length, was Re = 104.
The computational mesh included 1 million cells (100× 100× 100) concentrated
to the walls (Fig. 8b). Figure 9 shows a comparison of the averaged velocity along
the central vertical line with experimental data [23]. It has been shown that both
the CPU- and the GPU- versions of the code closely agree with the experimental
results. A comparison of computational times shows that the performance of two
Titan Black GPUs is 4 times higher than that of two Intel Core i7-5820k six-core
CPUs (Fig. 10).

The second test case was a turbulent swirled flow in the draft tube of a
model hydraulic turbine. The calculations were based on experimental data of
the workshop Francis-99 [24] and numerical simulation [25]. The computational
domain included the draft tube with a conical inlet (Fig. 11a). The averaged
velocity profile in the inlet, obtained in numerical investigations [25], was used
as inlet boundary conditions. A part load operation mode was considered. The
mesh included 7.8 million hexahedral cells (Fig. 11b). The dimensionless wall dis-
tance of the near-wall nodes was y+ ≈ 2. The Umist TVD scheme was used for
the approximation of the convective terms. It is not sufficient for appropriate
LES calculation, although it is reasonable for the assessment of the computa-
tional efficiency. Figure 11c shows complex vortex structures in the draft tube.
A comparison of the averaged velocity profiles behind the runner shows good
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ba

Fig. 8. Flow in a cavity: (a) scheme; (b) computational mesh.

ba

Fig. 9. Averaged velocity components along the central vertical line: (a) horizontal
velocity component; (b) vertical velocity component.

Fig. 10. Cavity: computation time.

agreement with experimental data (Fig. 12). As Fig. 13 shows, the performance
of two Titan Black GPUs is six times higher than that of the Intel Core i7-5820k
six-core CPU. The performance of four GPUs is 40% higher than that of two
GPUs (Fig 13).



298 A.V. Sentyabov et al.

a

b

c

Fig. 11. Flow in the draft tube of the Francis-99 hydraulic turbine: (a) computational
domain; (b) computational mesh in the central longitudinal cross-section; (c) vortices
visualized by the iso-surface of the Q-criterion (second invariant of the velocity gradi-
ent) and instantaneous velocity magnitude in the central cross-section.

ba

Fig. 12. Averaged velocity components in the Francis-99 draft tube: (a) axial velocity;
(b) tangential velocity.
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Fig. 13. Flow in the Francis-99 draft tube: the computation time per iteration of the
SIMPLE procedure.

6 Conclusions

Thus, a GPU-version of the CFD code was developed for parallel GPGPU simu-
lation of incompressible flows. All test cases calculations showed agreement with
experimental and other numerical results. Such problems as steady and unsteady
laminar flows, turbulent flow in a cavity and swirled turbulent flow in a part of
a hydraulic turbine were considered. Most of the arrays were stored in the GPU
memory, and main operations of the SIMPLE procedure were performed on the
GPU to provide the highest performance of the code.

The calculations showed a high performance of the graphics processor units.
The efficiency of modern GPUs is 2 to 3 times higher than that of a six-core CPU.
Parallel calculations in multiple GPU systems allow to overcome the memory
limits of a single GPU. In the case of a coarse mesh, parallel calculations on
multiple GPUs are not efficient due to data exchange with a GPU. Memory is
one of the major parameters for computational fluid dynamics, since industrial
and scientific problems require very fine computational meshes. Therefore, a
code for parallel computations on modern GPUs can be a useful tool of CFD
calculations.
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Abstract. The parallel CPU+multiGPU implementation of the Implic-
itly Restarted Arnoldi method (IRA) is presented in the paper. We focus
on the problem of implementing an efficient method for large scale non-
symmetric eigenvalue problems arising in linear stability and Floquet
theory analysis in fluid dynamics problems. We give brief details about
the problem in both cases. We use and cross-compare different methods
to implement QR shifts with polynomial filtering. Then we conduct a
benchmark on standard non-symmetric matrices. The presented results
give insight on the best choice of the method of polynomial filters. It
turns out that a polynomial filter is essential to accelerate computations
in fluid dynamics stability problems as well as to increase the Krylov
space dimension. However, some knowledge about the spectral radius of
the problem is required. Further, we investigate the parallel efficiency of
the method for single-GPU and multi-GPU modes using the problems
previously considered. It is shown that the implementation of Givens
rotations on one GPU for QR computations (of a Hessenberg matrix) is
essential in order to achieve high speed for a considerable Krylov sub-
space dimension. In the final part we present some results regarding the
application of the IRA polynomial filtered method to linear stability and
Floquet analysis for large fluid dynamics problem with parallel efficiency
comparison on multi-GPU architecture.

Keywords: Arnoldi method · Eigenvalue solvers · Matrix free meth-
ods · Krylov methods · Multi GPU · Fluid dynamics · Linear stability
analysis · Floquet theory analysis

1 Introduction

The need to calculate a few leading eigenvalues is essential in various fields of
research, such as linear stability analysis, structural stability analysis, quantum
physics, etc. The systems that are subject to eigenvalue analysis are mostly
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of large scale, hence the matrices under consideration are large. Therefore, it
is impractical to use methods such as QR to find the whole spectrum. Such
iterative methods include power-type methods, Krylov subspace-type methods,
the Jacobi–Davidson method, etc. (for more information, see [1]). Arnoldi-type
methods are among the most widely used for the solution of this problem. Suffice
it to say that the Implicitly Restarted Arnoldi method in ARPACK [2,3] is
included in NumPy (SciPy) Python and standard MATLAB package. For large
scale applications, a parallel MPI CPU version exists that is called PARPACK.

Our research focuses on linear stability analysis and the analysis of the mon-
odromy matrix for stationary and time-periodic solutions of fluid dynamics prob-
lems, respectively. There are few papers on the subject but the field is growing
rapidly. Detailed information concerning bifurcations of the main stationary solu-
tion of initial boundary value problems (IBVPs) in partial differential equations
(PDEs) is given in the book [4], in the last chapter (including 2D Navier–Stokes
bifurcation problems). It is shown that some specific methods are required to
achieve convergence in both the space of the discrete problem and the eigenvalue
solvers. The author recommends using spatial preconditioners during the eigen-
value problem solution, namely the successful use of the shift-and-invert precon-
ditioner that was initially introduced by Ericsson and Ruhe [5] for symmetric
matrices. Parallel implementation of an eigenvalue solver is mandatory due to
the problem size. In [6], the authors use the IRA method of ARPACK with both
shift-and-invert and Cayley transformations in 2D incompressible Navier–Stokes
linear stability problems with finite element discretization. The discontinuous
Galerkin and ARPACK IRA methods are used to perform the linear stabil-
ity analysis of a 2D incompressible flow in a channel with a sudden expansion
and also a flow in a pipe with cylindrical symmetry and semi-spherical stenosis
(see [7]). The authors applied an a posteriori error estimation and adaptive mesh
refinement of discontinuous Galerkin approximations to achieve the convergence
of the eigenvalues for the stability problem. ARPACK is also successfully used
in [8] for a linear stability analysis in the Rayleigh–Benard convection problem
using trilinear nodal elements for both two and three dimensional problems.
The authors demonstrated that the accuracy of the calculations deteriorates as
the flow is advectively dominated due to under-discretization of the problem,
but not due to eigensolver difficulties. ARPACK was also successfully applied
in [9] to perform a linear stability eigenvalue analysis for the control of the 2D
disturbances in the Blasius boundary layer. An alternative to shift-and-invert
preconditioning is presented in [10], where a spectral transformation based on
the filtering of the linearized equations of motion in a certain frequency range
is introduced along with a Krylov subspace iterative solver. The method is also
successfully applied to compute least stable eigenvalues in a compressible jet
problem. An analysis of bifurcations in a 2D lid driven cavity flow using the
Newton–Picard method is carried out in [11] with a linear stability and Floquet
theory analysis of some time-periodic solutions.

Some recent papers have been dedicated to the linear stability and Floquet
theory analysis of time-periodic solutions for 3D fluid dynamics problems. One
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of the first such papers was [12] (and some other papers by these authors),
where a 3D Floquet stability analysis was applied to a circular cylinder 2D wake
stability problem. The fluid flow solver was a spectral element method for 2D
equations where Floquet analysis was used through the introduction of infinites-
imal three-dimensional perturbations and derivation of a state-transition peri-
odic monodromy matrix. The eigenvalues of the latter are found using Krylov
subspace iterations of dimensions between 8 and 20, initialized either from a
random starting vector or an eigenmode computed at nearby parameter values.
The linear stability of a 3D compressible subsonic flow in a cavity is analyzed
in [13] using ARPACK’s IRA method and a sixth-order compact finite-difference
scheme for spatial discretization. The Krylov subspace iteration method imple-
mented in a matrix-free form is successfully used in [14] to find the eigenvalues
and eigenvectors of the monodromy matrix for 3D pipe flows. The authors used
the spectral element method to perform the discretization of the problem. Also,
the authors of the report [15] successfully apply Krylov subspace iterations to the
Floquet stability analysis of the 3D wake flow behind a mechanically oscillated
circular cylinder placed in a low Reynolds-number flow, on a GPGPU hardware
using CUDA C.

All these problems are solved successfully using Krylov-type methods, mostly
the IRA method from ARPACK or some other implementation. In the light of
the new computational paradigm based on CPU+multiGPU architecture, it is
expedient to adopt an implementation of the IRA method suitable for eigenvalue
analysis problems in complex PDEs for that kind of modern architecture. There
are only a few implementations of Arnoldi-type methods available for GPU and
multiGPU architectures, for example [16] (Explicitly Restarted Arnoldi) and [17]
(IRA). The latter IRA method is freely available in source code, it uses multiGPU
abstraction through C++ templates and is capable of running efficiently on mod-
ern GPU clusters. In our experience, however, we have been unable to achieve
a successful convergence of eigenvalues for non-symmetric matrices in flow sta-
bility problems using code from [17], whereas ARPACK successfully converges
with the same Krylov subspace dimension and for the same problems. Thus, it
was decided to develop a CPU and multiGPU IRA method for fluid dynamics
eigenvalue problems.

In this paper, we report results on the implementation, benchmarking and
some applications of the IRA method for CPU+multiGPU architecture with
polynomial filters. The paper is laid out as follows. First, some general infor-
mation on the linear stability and Floquet theory for fluid dynamics problems
is presented. Then we give the IRA method algorithm with polynomial filters.
Some key points of the algorithm are indicated that are crucial for the GPU
implementation. Further, this is followed by the implementation section, where
some variants of implementation are described. Additionally, benchmark prob-
lems from standard test cases and fluid dynamics applications are presented, fol-
lowed by the analysis of the parallel efficiency on GPU/CPU/multiGPU variants.
The last two sections consist of examples of application to 3D fluid dynamics
problems and conclusions.
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2 Fluid Dynamics Eigenvalue Problems

We will focus on an incompressible fluid stability problem. Let us assume that,
by some space discretization method, we have derived the following system of
Navier–Stokes equations equipped with proper initial-boundary conditions:

dûm

dt
+ P

(∑
k

ûkLûm−k

)
=

1
R
Cûm + f̂m, (1)

where m and k are space discretization parameter vectors, û is a discrete velocity
vector, P is a pressure projection operator, L is a discrete divergence operator,
C is a discrete diffusion operator, R is the Reynolds number and f̂ is a discrete
external force vector. If boundary conditions include pressure definition (e.g.
Poiseuille flow), then the pressure can be split into dynamic and static; the
gradient of static pressure is introduced through the force, whereas the gradient
of dynamic pressure is projected onto the divergence free velocity functional
subspace to fulfill the solenoidal condition Lû = 0. The convolution part can be
calculated by the pseudo-spectral finite-element/difference method or directly.
We wish to stress that the diffusion part and pressure projection are computed
implicitly. This will be essential for further considerations.

We introduce a small magnitude perturbation velocity vector v̂, and substi-
tute it into (1). After subtracting one equation from the other and linearizing,
we obtain the following system:

dv̂m

dt
+ P

(∑
k

(ûkLv̂m−k + v̂kLûm−k)

)
− 1

R
Cv̂m = 0. (2)

The system (2) is used in the form

dv̂
dt

+ A(û, t, R)v̂ = 0, (3)

where A is a linearized matrix operator. We will omit the index m from now on
if this does not cause confusion. For the stationary solutions, we have dv̂

dt = 0,
and we get the Jacobi matrix of the nonlinear operator (1) in the form

Av̂ = 0. (4)

Now, let the system (1) have a periodic solution with period T . Then the
system has the form

v̂(t + T ) = M(T )v̂(t), (5)

where M(T ) is a state-transition operator or a monodromy matrix. We integrate
the linearized system over time for a period T :∫ v̂T

v̂0

dv̂ = −
∫ t+ T

t

(A(τ, û(τ))) dτ︸ ︷︷ ︸
M(T ,û,v̂))

, (6)



Implicitly Restarted Arnoldi Method on MultiGPU 305

and obtain
v̂T = M(T )v̂0. (7)

The question of interest is whether the linear stability holds for the stationary
and periodic solutions of the Navier–Stokes discrete system. Thus, we arrive at
the eigenvalue problem for A and M. These matrices are real nonsymmetric and
dense for high order methods. We do not discuss here the question of discretiza-
tion size, but it must be noted that the high harmonics of the spatial Fourier
series must be in a deep dissipation zone in order to achieve a good conver-
gence of the eigenvalue problem. In this case, the size of either A or M is at least
equal to the typical size for DNS. This exceeds any possible limits of explicit
matrix storage. Thus, matrix-vector operations regarding (4) and (7) must be
done without explicit calculation and storage of these matrices (the so-called
matrix-free method).

3 Implicitly Restarted Arnoldi Method

The matrix-free approach is incorporated into the Arnoldi process with the oper-
ator A ∈ R

N × N . We use the IRA algorithm closely following [1,18]. We form
the Krylov subspace

Km = span{v,v(1),v(2), ...,v(k), ...,v(m − 1)}, (8)

where v(j) = Ajv and (v(l),v(j)) =
{

0; l �= j,
1; l = j

.

IRA algorithm:

1. Initialization. Set v with random values, normalize the vector, select the
number k of desired eigenvalues and the number of additional vectors p for
the implicit procedure, m = k + p. Set the variables s = 0 and ε to some
small predefined value.

2. Arnoldi step. For each element of (8) from s to m − 1, we build the Arnoldi
algorithm with Gram–Schmidt process correction by calling

v(j+1) = Av(j), j = s, ...,m − 1, (9)

where the call is performed in a matrix-free way, applying (4) or (7) to the
vector v(j). At the end, this process generates the decomposition

AVj = VjHj + wj +1Hj+1,jeT
j , (10)

where Hj is an upper Hessenberg matrix of size j×j, Vj are Arnoldi vectors of
size N × j, and wj +1 is the last Arnoldi vector. If the last value Hj +1,j = 0,
then Km is an invariant subspace of A. The process stops with AV = V H, and
the eigenvectors (eigenvalues) of H are the selected eigenvectors (eigenvalues)
of A. If the process does not stop (which is usually true), then continue to
step 3.
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3. Find estimates of the eigenvalues μm and eigenvectors of the Hessenberg
matrix. Sort the estimates in a desired order (Largest Real (LR) or Largest
Magnitude (LM) for our purposes). We designate the first estimates μ0, ..μk−1

as the desired ones and the rest as undesired, and select shifts from the
undesired ones using a function

θj = Shiftsj(μk, μk +1, ..., μm−1), j = k, ...,m − 1, (11)

which shall be defined later.
4. Perform the QR algorithm with shifts for H using polynomials with number

of shifts q = p (bulge-chasing):
j = 1, .., q

(a) QR = (H − θjE),

(b) H = RQ + θjE.

Set s = m − 1 − q, with E being the identity matrix.
5. Apply shifts:

h = Q∗,s,αQ = Qs,s−1, αH = Hk +m − 1,s − 1,
w = αHh + αQw,
Qa= s:(m+ k − 1),b=s:(m+ k − 1) = δa,b, V = V Q.

6. At this point, we have the matrices V , H with additional last Arnoldi vec-
tor wj +1. Let the vector x contain the last elements of the eigenvectors
hl corresponding to the desired eigenvalue estimates μl, l = 0, .., k − 1 of
H: x(l) = hl(m). We denote yl = V hl as a Ritz vector of A and Ritz
value λl, both associated with Km. For these Ritz variables, we have [1]:
||Ayl − λlyl||2 = ||wj +1||2|xl|. Thus, if

max
l=0,...,k − 1

(||wj +1||2|xl|) ≤ ε, (12)

stop. Else go to step 2.

In the last step, we also check the convergence of the Ritz vectors by estimating
the actual residual ||Ayl −λlyl||2. This check is performed if and only if we have
a successful convergence according to (12).

3.1 Filtering Polynomials

An exact filtering polynomial is used for the standard IRA method, i.e. one using
the exact shifts θl = μl in (11). In this case, the polynomial that is applied to
the Arnoldi vectors as w+

j = P (A)wj , where w+
j is the vector in column j of V

after step 5, is given in the form

P (λ) =
m−1∏
l= k

(λ − μl). (13)
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It is known that IRA with exact shifts may fail to converge [19] for a special
type of non-hermitian matrices.

Here we suggest an additional strategy, analogously to [20] where it was used
in the Lánczos method. We define the undesired set Ω ⊂ C

1 with boundary ∂Ω
formed by the elements μj , j = k, ...,m − 1, of H either by constructing the
convex hull or by least-square ellipse fitting according to the algorithm proposed
in [21]. After that, we place the zeros of the polynomial in Ω in such a way as
to maximize the determinant of the Vandermonde matrix. This is achieved by
means of either Fekete or Leja points in Ω. We consider Ω as a subset of R2,
and apply a greedy algorithm, taken from [22], to generate Fekete or Leja points
in Ω ⊂ R

2. It can be successfully applied through QR and LU factorizations.
In addition, we can apply a certain “fix” to the polynomial. The “fix” is simply
a user-specified point that fixes a boundary for the ellipse or the convex hull.
If some spectral properties of an operator are known a priori, then one can
facilitate by means of this “fix” the search of the desired eigenvalues in a region
not included in the filter. This strategy turned out to be effective for Jacobi
matrices by finding LR eigenvalues close to the imaginary axis.

3.2 Accelerating Techniques

The convergence of the eigenvalue estimates in the monodromy matrix calcu-
lations does not present any difficulty, since the IRA method is very good at
finding eigenvalues close to the unit circle. However, it is known ([6,8,9,16])
that the unpreconditioned IRA method converges slowly or does not converge
at all for the Jacobi matrix eigenvalues of Navier–Stokes stability problems. The
use of either shift-and-invert or Cayley transformations requires the solution of

(A − σE)vj+1 = vj , (14)

with σ being a shift that is inserted into IRA instead of (9) in a matrix-free way.
As a result, one faces the same difficulties as in IRA, since Krylov-type meth-
ods are usually used for this problem (BiCGStab, GMRES etc.). The choice of
preconditioners for matrix-free methods is a difficult task. We use instead trans-
formation acceleration techniques that avoid the solution of (14). We consider
an exponential matrix

J = eA, (15)

formed in a matrix-free way analogously to (6), i.e.

∫ v̂T (ε)

v̂0

dv̂ = −
∫ t+T (ε)

t

(A(τ, û)) dτ︸ ︷︷ ︸
J(û,v̂))

. (16)

The difference is that we use a frozen main solution û that is of interest for the
stability, and the upper limit in the integral (16) is defined by the convergence in
the norm ||v̂n+1− v̂n−1||2 ≤ ε, where n is the time step of numerical integration.
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We need to stabilize the solution û of the main problem before replacing it in
(16). For this purpose, we use a computationally cheap method outlined in [23].

Numerical integrations are performed using the Runge–Kutta 4 method with
implicit diffusion, projection operators and explicit advection operator. Thus
the stability of the integration is limited by the advection stability criterion
(CFL number). The resulting integration is supplied to (9), which is called in
each Arnoldi step. The implicit integration of diffusion allows for the use of
larger time-steps, which leads to a better separation of eigenvalues around the
unit circle. In order to obtain eigenvalues estimates for A, one can apply the
transformation R = V HAV , with the eigenvalues of R being the Ritz estimates
of the Jacobi matrix. If one applies polynomial filtering, then this approach
allows for a better estimation of the eigenvalues than the standard IRA does. If
this method fails, then we apply the shift-and-invert method. In this case, the
system (14) is solved by the GMRES method with a preconditioner that must
be calculated additionally.

4 Implementation

The described IRA method is implemented in a multiGPU and CPU frame-
work. As one can see, the method consists of some linear algebra operations.
Let us denote the matrices V ∈ R

N×m, H ∈ R
m × m and the orthogonal matrix

Q ∈ R
m × m. We will use the vectors v,w ∈ R

N , x ∈ R
m. Since matrices under

consideration have either real or complex conjugate pairs of eigenvalues, we use
real arithmetics in step 4 of the IRA algorithm. Either multiGPU or single GPU
calculations are used for all bulky parts of the algorithm. The operations V Q,
V v, ||v||2 =

√
vTv, (V,v) = V Tv and (v,w) = vTw operations of dimen-

sion N are distributed over multiple GPUs, so that Nl = N/p, where Nl is
the local vector size in the g-th GPU, i.e. Vl ∈ R

Nl × m, l = 1, . . . , g, g ≥ 1.
The operations Av and V Q are efficient and are executed locally on each GPU
using CUBLAS or MAGMA. The operations

√
vTv, V Tv and vTw are also

executed with CUBLAS or MAGMA, but additionally require MPI Allreduce
with MPI SUM operation. The effect of these operations will be investigated
below.

We test two implementation strategies. The first strategy uses LAPACK on
CPU with OpenMP for QR ← H, finding the eigenvalues of H and opera-
tions with H,Q,x. Then CPU arrays Q,H and x are copied into the GPUs,
and all the other computations are performed there. We also tested the appli-
cation of MAGMA for QR and eigenvalue calculations, but the GPU MAGMA
magma dgeqrf2 gpu operation outperforms LAPACK on our hardware for
matrix sizes starting at 600 × 600. In practice, m ≤ 150, hence the reason why
we do not compare the MAGMA approach here (see Sect. 5). However, it can be
used in systems with more CPUs than GPUs and many CPU-GPU operations
via PCI-buses. In this case, PCI transfers can be arranged in direct GPU mode.

The second strategy is based on the use of GPU-only calculations. In this case,
the QR algorithm was implemented using Givens rotations on a GPU. Givens
Q matrix is also used in the same manner during application to V matrix.
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Operations with x, H and Q are performed locally either on CPUs with
further distribution to GPUs in the first strategy or on each GPU separately. In
this case, the eigenvalues of H are compared between GPUs for consistency at
each 10-th iteration of the method.

The Arnoldi process uses functor matrix-vector calls to (16), (6) or (4), which
are executed alongside Navier–Stokes integration on a single or multiple GPUs.
In the benchmark problems with predefined matrices, we replace the simple
matrix-vector multiplication routine with CUBLAS.

5 Benchmark Problems

We use an 8-core (16 in hyper-threading) Intel Xeon E5-2640V2 Ivy Bridge and
five k40 NVIDIA GPUs assembled in one chassis.

For the benchmark of convergence, we consider the following non-
symmetric square real matrices from the SuiteSparse Matrix Collection
[24]: west0479(479), raefsky2(3242), S40PI n(2128), GT01R(7980), where
matrix dimension is given in parentheses. The matrix S40PI n has poorly sep-
arated eigenvalues with maximum real parts; the eigenvalues of the matrix
GT01R are located on a strip stretched along the imaginary axis, with
max(| Im(λ(GT01R))|) = 19 553. In addition, we also consider a Jacobi matrix
constructed using exact calculations from stability of 2D (1790) and matrix-free
3D (10368) Kolmogorov flow problems [25]. In the 2D case, the solution is sta-
ble, with critical eigenvalues just before the Hopf bifurcation. In the 3D case,
the solution is unstable, with main solution stabilized using the filtering app-
roach [23]. The matrices are tested by the IRA and IRA+Leja algorithms with
dim(Km) = 15, residual tolerance ε set to 1 · 10−8 in the L∞-norm, and four
LR targets against known spectra. The latter were obtained using the exact QR
algorithm. The resulting convergence history of the residual in the L∞-norm is
presented in Fig. 1. The Leja-points polynomials can be suitable but not in all
cases, as one can see for the GT01R matrix. The convergence of the 2D Jacobi
matrix of the Kolmogorov problem is troublesome in both cases. However, this
can be corrected by matrix exponential computations using (16) in this problem.

The 3D Jacobi matrix test case is more difficult, since the eigenvalues are
located on a thin strip stretched along the imaginary axis, with clustering of
complex conjugate pairs of small magnitude on the right half-plane (see Fig. 2).
IRA as well as IRA+Leja algorithms fail to converge (Fig. 2). The latter can be
adjusted by fixing the convex hull point near the imaginary axis. In this case,
the convergence improves and the correct LR eigenvalues are found after 43 564
calls to the functor. The application of exponential transformations corrects this
situation, what is shown in Fig. 3. The convergence was achieved by 255 calls to
the functor (16) with a total of 15300 calls to the RK integration method. Thus,
the application of the exponential matrix is more efficient.



310 N.M. Evstigneev

Fig. 1. Convergence history in the L∞-norm for test matrices using different methods

−50 0 50
−5000

0

5000

Fig. 2. Eigenvalues of the Jacobi matrix (10368) from the unstable solution of a 3D
Kolmogorov flow problem with four LR leading eigenvalues found by the IRA algo-
rithm, and residual convergence in the L∞-norm for various algorithms

An additional benchmark is presented in [26], where a 3D Rayleigh–Benard
convection stability problem is tested against an analytical neutral curve for a full
resolution of 524 288 degrees of freedom, using the Fourier–Galerkin divergence-
free method. Results show a good agreement with the analytical curve for dif-
ferent wave modes.
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Fig. 3. Exponential transformation of the Jacobi matrix from the unstable solution of
a 3D Kolmogorov flow problem with four LM and LR leading eigenvalues found by
the IRA Exponential + Leja points algorithm. A zoom of found eigenvalues and exact
spectra is given on the right

6 Parallel Efficiency

The two suggested strategies for operations with small dimensional arrays
Q,H,x are tested on single-GPU calculation mode in our hardware. FLOPS
count is performed for double precision using nvprof for the GPU part and
perf stat for the CPU part as a function of the Krylov subspace dimension. All
matrix-vector operations are executed using CUBLAS for GPUs and LAPACK
for CPUs. The results of the LR Jacobi matrix analysis are shown in Fig. 4.
Givens QR calculations are more efficient as the Krylov subspace dimension
increases. Most of the performance drawbacks are due to low CPU FLOPS and
MPI Isend,MPI Irecv during device-host transfers of the matrices H and Q.
In practice, we take m ≤ 100; therefore, we suggest using the Givens strategy in
systems where the number of GPUs is much larger than that of CPUs. Perfor-
mance improves for the calculation of exponential matrix or monodromy matrix
analysis, since most of the computational time is spent on the highly efficient
Arnoldi process. In these cases, the ratio of FLOPS drops to just below 2 for the
maximum GPU loading.

For the Givens QR variant, we also investigate scaling on multiGPUs. We
consider the Rayleigh–Benard convection problem described in [26] with Krylov
subspace dimension 2: m = 28 and m = 100. The maximum size of the problem
is scaled to fit in one GPU RAM. Results are shown in Fig. 5. The presented
algorithm gives an acceleration close to linear. Scaling suffers when GPUs are not
loaded; this, however, is a known fact. The increase in Krylov dimension reduces
scalability only for small GPU loading; a normal GPU loading gives an irrelevant
reduction of scalability. This is true, since for the Givens variant of implemen-
tation, it is almost perfectly localized. Thus, the influence of MPI Allreduce
is small for m ≤ 100.



312 N.M. Evstigneev

Fig. 4. Double precision FLOPS for LAPACK strategy (top) and Givens GPU strategy
(middle), using the Jacobi matrix from a 3D Kolmogorov flow stability problem for
different dimensions of the Krylov subspace

Fig. 5. Scaling on GPUs for m = 28, and ratios of accelerations for m = 100 to m = 28.
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7 Application Examples

In this section, we demonstrate the application of the developed method to
a bifurcation analysis in a 3D Kolmogorov flow problem described in [27]. In
Fig. 6, we show the eigenvalues and eigenvectors for the supercritical pitchfork
bifurcation of the first stationary bifurcation for Reynolds number R = 5.3732,
and the monodromy matrix for the fold bifurcation with a period-3 cycle near
R = 11.1002. The latter can be traced by the real eigenvalue passing through
the point (−1, 0i) on C

1. By applying the IRA method, we were able to confirm
the existence of a period-3 cycle and determine the values of the bifurcation
parameters more precisely.

Fig. 6. Eigenvalues and leading eigenvector absolute values for the supercritical pitch-
fork bifurcation when R = 5.2–5.4 (on the left), and for the monodromy matrix when
R = 11.1 with a period-3 cycle (on the right)

8 Conclusions

In this paper, we presented the modifications and implementation of the IRA
method for CPU/multiGPU architecture adopted for fluid dynamics problems.
These problems usually have nonsymmetric real matrices causing difficulties for
the application of the IRA method. We tested different polynomial filters and
matrix exponential calculation with the purpose of accelerating the convergence
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of the IRA method in case of a matrix-free approach. We successfully applied
the Fekete or Leja-points strategy to the filtering polynomial.

We performed a benchmark analysis of the method for various nonsymmetric
real matrices from the Matrix Collection and fluid dynamics stability problems.
It was found that the use of the exponential matrix is essential for the conver-
gence of the method in some test cases. It is desirable that the implementa-
tion of the proposed method takes GPU architectural features into considera-
tion, namely small calculations (QR algorithm and eigenvalues of a Hessenberg
matrix) must be performed locally on every GPU by the efficient Givens rota-
tions method. This saves time for MPI Isend/recv and decreases CPU use,
which had a low efficiency in our hardware setup. But this strategy is only effi-
cient if many GPUs are located in a single host chassis with one or two CPUs. In
CPU-dominating architectures, this approach is not recommended, and increas-
ing CPU use by calling LAPACK routines is suggested. However, the balance
must be tested, since MPI operations may become a bottleneck in this case.

The use of MPI for the IRA method on multiple GPUs is efficient, and
scalability does not decrease as the Krylov subspace dimension increases. This
is achieved by a good algorithm decomposition in problem dimension (N in our
case), which is natural for parallel algorithms in fluid dynamics problems, and
the use of Givens rotations in local on-device calculations for small arrays.

The application of the method was demonstrated in the last section of the
article. We emphasize that the method successfully detects unstable modes and
allows for the determination of bifurcation points. We intend to apply the method
to the problem of turbulent flow control. After subsequent testing and optimiza-
tion, the method will be freely available from the author by request, under the
terms of GPLv3 license.
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Abstract. Direct simulations of the dynamics of a large number of
deformable droplets are necessary for a more accurate prediction of rhe-
ological properties and the microstructure of liquid-liquid systems that
arise in a wide range of industrial applications, such as enhanced oil
recovery, advanced material processing, and biotechnology. The present
study is dedicated to the development of efficient computational methods
and tools for understanding the behavior of three dimensional emulsion
flows in Stokes regime. The numerical approach is based on the accel-
erated boundary element method (BEM) both via an efficient scalable
algorithm, the fast multipole method (FMM), and via the utilization of
advanced hardware, particularly, heterogeneous computing architecture
(multicore CPUs and graphics processors). Example computations are
conducted for 3D dynamics of systems of tens of thousands of deformable
drops and several droplets with very high discretization of the inter-
face in shear flow. The results of simulations and details of the method
and accuracy/performance of the algorithm are discussed. The developed
approach can be used for the solution of a wide range of problems related
to emulsion flows in micro- and nanoscales.

Keywords: Deformable droplets · Stokes flow · Boundary element
method · Fast multipole method · Graphics processors

1 Introduction

Detailed studies of the emulsion dynamics are very important for science and
many new technologies. Such dispersed systems appear in a wide range of indus-
trial applications including crude-oil recovery, food processing, pharmaceutical
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manufacturing, biotechnology, etc. For many years progress in studying emulsion
behavior was mainly empirical with just several examples of large-scale direct
simulations (e.g. [25]). Nowadays, modern computational methods and power-
ful computer resources enable fast large-scale microfluid dynamics simulations,
which makes them a valuable research tool. The main goal of this work is the
development of efficient computational methods and tools for the investigation
of the complex behavior of a three dimensional emulsion flow at low Reynolds
numbers. In this study, we consider the 3D dynamics of deformable drops of an
immiscible liquid in another liquid under imposed shear flow. The simulations
are performed using the boundary element method (BEM) accelerated both via
advanced scalable algorithms, particularly, the fast multipole method (FMM),
and via the utilization of advanced hardware, particularly, graphics processors
(GPUs) and multicore CPUs.

The BEM has been successfully applied for simulation of Stokes flows ([26];
see general overview and details of the BEM in the monograph of Pozrikidis [14]),
but its application to simulation of large non-periodic systems is very limited.
The major computational challenge is related to the solution of a large dense sys-
tem of 3N algebraic equations for each time step, where N is the number of the
surface discretization points. For systems of thousands of drops with hundreds
of boundary elements per drop, N reaches a value of the order of millions. The
direct methods of solution of algebraic systems, having computational complex-
ity O

(
N3

)
, become impractical. The use of efficient iterative methods reduces

this complexity to O
(
NiterN

2
)
, where Niter � N is the number of iterations,

and O
(
N2

)
is the cost of a single matrix-vector product (MVP). For large N ,

this is not fast enough even when using high-performance computing, since the
computational cost increases proportionally to the square of N . Thus, the key
here is the application of fast algorithms for MVP. The use of the FMM for MVP
reduces the computational complexity of the overall problem to O (NiterN) per
time step, and potentially can handle direct simulations of large droplet systems
with millions of boundary elements.

The FMM was first introduced by Rokhlin and Greengard [5] as a method
for fast summation of electrostatic or gravitational potentials in two and three
dimensions. The first application of the FMM for the solution of Stokes equations
was reported by Sangani and Mo [19], who developed the method in the case of
spherical rigid particles. The FMM accelerated BEM for domains of arbitrary
shape was developed by Wang et al. [22]. In the work [24], the authors achieved
substantial accelerations of droplet dynamics simulations via the use of multipole
expansions and translation operators, which is very much in the spirit of the
FMM, and can be considered as one- and two-level FMM. However, the O (N)
scalability of the FMM can be achieved only on hierarchical (multilevel) data
structures, which were not implemented there.

Note that the FMM can be efficiently parallelized. The first implementation
of the FMM on graphics processors was reported by Gumerov and Duraiswami
[6], who showed that the use of a GPU for the FMM for the Laplace’s equa-
tion in 3D can produce 30 to 60-fold accelerations, and achieved a time of 1 s
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for the MVP in a case of size 1 million on a single GPU. This approach was
developed further and recent papers by Hu et al. [8,9] present scalable FMM
algorithms and implementations of heterogeneous computing architectures that
may contain many distributed nodes, each of them consisting of one multicore
CPU and several GPUs. They performed the MVP for a system of size 1 billion
achieving a time of about 10 s on a 32-node cluster, and also for systems of size
1 million in a time of the order of several tenths of a second on a single hetero-
geneous CPU/GPU node. In the present study, we use a single heterogeneous
node with one GPU and apply CPU/GPU parallelism. This realization enables
computations in the case of 15 thousand dynamic droplets (more than 7 millions
of unknowns) in a reasonable time.

2 Statement of the Problem

2.1 Governing Equations

The dynamics of deformable drops (fluid 2) of an immiscible liquid in another
liquid (fluid 1) at low Reynolds numbers can be described by the Stokes equations
for the motion of each fluid [7],

∇ · σi = −∇pi + μi∇2ui = 0, ∇ · ui = 0, (1)

where u and σ are the velocity and the stress tensors, μ is the dynamic viscosity,
and p is the pressure, which includes the hydrostatic component, i = 1, 2. At
the fluid-fluid interface (S), the boundary conditions for the velocity u and the
traction f are

u1 = u2 = u, f = σ1 · n1 − σ2 · n2 = f1 − f2 = fn,

f = γ(∇ · n) + (ρ1 − ρ2)(g · x), x ∈ S,
(2)

where n is the normal to S pointing into fluid 1, ρ, γ and g are the density, the
surface tension and the gravity acceleration, respectively. In the case of infinite
domains, the condition u1 (x) → u∞ (x) should be imposed on the carrier fluid,
where u∞ (x) is a solution of the Stokes equations.

The dynamics of the fluid-fluid interface can be determined from the kine-
matic condition

dx
dt

= u(x), x ∈ S, (3)

where u(x) is the interface velocity determined from the solution of the elliptic
boundary value problem stated above. Although the governing equations and
boundary conditions are linear with respect to u and f , the dynamics of the
interface is a non-linear problem since u(x) depends on all the points of the
surface.
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2.2 Boundary-Integral Formulation

The problem is solved using the boundary element method, which is based on
the integral equations for the determination of the velocity distribution over the
boundary. Further, knowing this distribution, one can find the velocity field at
any spatial point of the computational domain.

Then the boundary integral equations for the volume of fluid occupying the
domain V bounded by the surface S can be written in the form

u (y) −
∫

S

K (y,x) · u (x) dS (x) =
1
μ

∫

S

G(y,x) · f (x) dS (x) , y ∈ V,

1
2
u (y) −

∫

S

K (y,x) · u (x) dS (x) =
1
μ

∫

S

G(y,x) · f (x) dS (x) , y ∈ S,

−
∫

S

K (y,x) · u (x) dS (x) =
1
μ

∫

S

G(y,x) · f (x) dS (x) , y /∈ S, V,

(4)

where the fundamental solutions (Stokeslet and stresslet) are given by the second
and third rank tensors

G(y,x) =
1
8π

(
I
r

+
rr
r3

)
, T (y,x) = − 3

4π

rrr
r5

,

K (y,x) = T (y,x) · n (x) , r = y − x, r = |r| ,
(5)

and I is the identity tensor. Thus, if u and f are known on the boundaries, the
velocity field u (y) can be determined at the any spatial point.

The problem describes a flow in an unbounded domain. In this case, u∞ is
prescribed (e.g., a mean shear flow u∞ = (Gz, 0, 0), G is a shear rate), and the
boundary integral equation combining formulations inside and outside the drops
can be written in the form (see [15,23])

y ∈ V1, u (y) − u∞ (y)
y ∈ V2, λu (y) − u∞ (y)

y ∈ S,
1 + λ

2
u (y) − u∞ (y)

⎫
⎪⎬

⎪⎭
(6)

=
∫

S

{
− 1

μ1
G (y,x) · f (x) + (λ − 1)K (y,x) · u (x)

}
dS (x) ,

where λ = μ2/μ1 is the viscosity ratio of the internal and external liquids, V1

and V2 are the domains occupied by the inner and outer fluids, respectively, and
f (x) is determined according to Eq. (2). Hence, in this case, f (x) is completely
determined by the surface, while u (x) can be found from the solution of the
boundary integral equation (for points y ∈ S ), which is a Fredholm equation of
the second kind with a singular kernel.

3 Numerical Technique

The numerical method is based on the discretization of droplet surfaces by tri-
angular meshes. For accurate computation of boundary integrals and surface



High-Performance BEM Simulation of 3D Emulsion Flow 321

properties, such as the curvature, the mesh should be of a good quality, and
for the method used for computation of the curvature, the valency of the mesh
vertices should be not less than 5 (we used a slightly modified method of fit-
ted paraboloid [26], which as we found provides good accuracy (no more than
a few percent for the “worst” nodes)). The regular integrals over the patches
were computed using second order accuracy formulae (trapezoidal rules). The
collocation points for a droplet surface were located at the mesh vertices. The
computation of singular integrals was performed based on the integral identities
for the Stokeslet and stresslet integrals (see [1,14,15,26]), which allow to express
these integrals via sums of regular integrals over the rest of the surface. Note that
this can be done efficiently when using the FMM, since these sums are nothing
but matrix-vector products (e.g., for problems of flow in infinite domains, this
required four additional FMM runs per time step).

The boundary integral equations combined with the boundary conditions in
discrete form result in a system of linear algebraic equations (SLAE) for each
time step,

AX = b, (7)

where A is the system matrix, X is the solution vector, and b is the right-hand-
side vector.

In the present study, the kinematic condition (3) is modified for mesh stabi-
lization in the following way

dx
dt

= u(x) + w(x), w · n = 0, x ∈ S, (8)

where u(x) is the velocity of the interface determined from the solution of the
boundary integral equation via Eq. (6), and w(x) is a locally defined tangential
velocity field that maintains the desired distribution of the point xi on the
drop surfaces [10]. A formula for the correction w(x) was proposed in [13]. In a
simplified form, it was successfully applied in [10],

wi =
N

3
2
Δ

300(1 + λ)
(I − nini)

∑

j

(
1 + |2kj |

3
2

)
ΔSj

(
xj − xi

)
, (9)

where NΔ is the number of points on the drop surface; kj and ΔSj are, respec-
tively, the mean curvature and surface area associated with the point xj ; I is
the second-rank identity tensor. The summation extends over all the vertices xj

connected directly to xi, i = 1, . . . NΔ.
For the integration of Eq. (8), we used the Adams–Bashforth–Moulton

predictor-corrector scheme of the sixth order. This scheme requires two calls
of the right-hand-side function per time step (therefore, Eq. (8) was solved two
times per time step). It also requires an initialization, which was provided by a
fourth order Runge–Kutta scheme. This requires more calls of the right-hand-
side function, but it was needed just in a few initial steps.
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The time step used in the explicit schemes should be sufficiently small. It
was selected according to the stability condition for the drops, [23],

Δt ≤ K
μ1Δxmin

γ
, (10)

where Δxmin is the minimum length scale appearing in the computational prob-
lem, and K = O(1) is some dimensionless factor.

4 FMM/GPU Accelerated BEM

Direct methods can be used for the solution of the SLAE (Eq. (7)) when the
number of drops is small. However, as the problem size increases, these methods
become impractical. This is due to the fact that the memory required for com-
putations increases proportionally to the square of the number of mesh vertices.
Furthermore, the computation time increases substantially, making computa-
tions impossible for systems with a number of drops M ≥ 102. This issue can be
fixed by applying iterative methods, which reduce time and memory costs signif-
icantly. The Krylov subspace projection methods are among the most efficient
for the solution of SLAE. In this paper, we used the unpreconditioned general
minimal residual method (GMRES) to solve the system [18]. In the computa-
tional tests, 5 to 7 iterations were usually sufficient to converge to a relative
residual error ∼10−6. The number of iterations varies from step to step, since it
depends on the distribution of the droplets in the system, but never exceeded
10 per solution.

In this method, the matrix-vector product (MVP) must be computed at each
iteration, which presents the main computational complexity. The matrix-vector
product specific for the present problem can be computed using the FMM [5].
The main advantage of this method is that the complexity of the MVP involving
a certain type of dense matrices can be reduced from O(N2) to O(N log(N), or
even O(N). In this paper, we used the implementation technique of the FMM
for the summation of the Stokeslets and stresslets (Eq. (5)) proposed in [20,22].
This is valid for a particular case of summation of the velocity fields of Stokeslets
and stresslets, but is sufficient to compute the matrix-vector products for the
BEM formulation used here. This approach is based on the summation of the
fundamental solutions of the three-dimensional Laplace’s equation. More details
on the applied factorization of the respective velocity field can be found in [2].

In the present approach, GPU acceleration is used in the so-called heteroge-
neous FMM algorithm. The FMM is based on the formal decomposition of the
matrix A in the MVP AX as

A = Asparse + Adense, (11)

where Asparse is a sparse matrix that takes into account the interaction of par-
ticles (mesh nodes) residing in the neighbour boxes of the finest level of the
octree data hierarchy, and Adense is the dense matrix accounting for all other
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Fig. 1. Flow-chart of the heterogeneous FMM

interactions. The MVP AsparseX is performed directly, whereas AdenseX is com-
puted using generation of the multipole expansions for each source box at the
finest level, multipole-to-multipole, multipole-to-local and local-to-local trans-
lation operators enabling both expansions for boxes of the coarser levels and
evaluation of the local expansions. The flow-chart of the heterogeneous FMM
is represented in Fig. 1. The features of the algorithm and implementations are
presented in [2,6].

It was found in [6] that, owing to peculiarities of the GPU architecture, the
MVP AsparseX can be performed very efficiently using the GPU (up to a 100-
fold effective acceleration), while the GPU used for AdenseX can be accelerated
just a few times compared to a single core CPU. The latter effect is due to
a relatively complicated data structure, which requires, first, an extensive ran-
dom access to the GPU global memory (very expensive operations) and, second,
limited local GPU memory, which is not sufficient for efficient storage of the
translation operators. On the other hand, the availability of CPUs with P cores,
such as those used in the present studies, enables relatively easy parallelization
of the MVP AdenseX via the Open MP. The efficiency of such parallelization is
close to 100%, which means about a P -fold acceleration. It can be noticed that
the actual acceleration of the total algorithm is much more than P -fold, owing
to the fact that larger clusters of sources can be processed by the GPU more
efficiently than on the CPU, resulting in a reduction of the depth of the octree
and additional acceleration [6]. A careful tuning of the algorithm and the octree
depth is based on the work load balance between the CPU and GPU. Using
such an heterogeneous algorithm on a system with 8 to 12 CPU cores and one
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GPU, the overall acceleration can rise by approximately 100 times compared to
its value for a single-core CPU implementation.

Such a scheme was first proposed and tried in [8], where, additionally, the
computation of the FMM data structure was performed on GPU with a new
highly efficient algorithm, which provided up to a 100-fold acceleration of this
step compared to the CPU realization. Such an acceleration is important in
dynamic problems, especially in the case when the run part of the FMM is
called one or two times for the same data structure. But in the present work,
such a modification of the data structure algorithm is not necessary. Indeed,
owing to the iterative process, the computation of the singular elements, and
3 to 4 calls of the FMM for the Laplace’s equation to provide one call of the
FMM for the Stokes equation, the number of “elementary” FMM calls on the
same data structure can be 50 or so for a given source configuration (a fixed
matrix A). Hence, computation of the FMM data structure for a given mesh
is amortized 50 times or so over the MVP computation, and the relative cost
of the data structure generation compared to the total time becomes just a few
percent.

The implemented FMM routine was tested in terms of accuracy and per-
formance. The relative errors in the FMM MVP were of the order of 10−5 for
the multipole series truncation number p = 8 (which means that p2 = 64 terms
in multipole expansions were used to represent the far fields of the singulari-
ties of the Laplace’s equation). Numerical tests show that this is sufficient to
solve the present problem. The speed of the FMM heavily depends on p, and
perhaps a smaller p, which provides larger errors, can be used for the present
problem. Indeed, all the errors of the numerical method, which include geomet-
rical discretization errors that can be percent or fractions of percent, errors of
quadratures, GMRES tolerance and errors of the time integrators, should be
considered together, and more careful analysis is required to tune the entire
method.

5 Numerical Results and Discussion

Calculations are performed on a workstation equipped with two Intel Xeon 5660,
2.8 GHz CPUs (12 physical + 12 virtual cores), 12 GB RAM, and one NVIDIA
Tesla K20 GPU (5 GB of global memory). Several algorithm implementations
were done, including CPU and CPU/GPU versions of the iterative algorithm
with the FMM accelerated MVP and a conventional BEM in which the BEM
matrices were computed and stored, and Eq. (7) was solved using standard gen-
eral purpose linear algebra libraries providing O

(
N3

)
computational complexity.

The latter implementation was developed for verification and validation purposes
to ensure that the algorithms produce consistent results.

5.1 Validation Tests

The implemented methods were tested for the case of one fixed spherical droplet
in an unbounded flow. The obtained results were compared against the analytical
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solution for a droplet in a Stokes flow [7]. The relative error in the L∞-norm
was defined as δ(u∗) = ‖u∗ − u‖∞/‖u‖∞, where ‖u‖∞ = max |ui| , u∗ is the
numerical result, u is the analytical solution, i = 1, ..., NΔ. Here the relative
error was about 1 to 1.5% for NΔ = 642, λ = 2.5, and the error decreases as the
number of mesh points increases.

The calculations for an isolated drop in a shear flow at several viscosity
ratios and capillary numbers Ca = μ1aG/γ, where a is the undeformed droplet
radius, were also compared against the experimental results of Torza et al. [21],
Rumscheidt and Mason [17], small-deformation computations by Cox [3], and
numerical results of Rallison [16], and Kennedy et al. [11]. Usually, the inclination
angle α and the deformation D = (c−b)/(c+b) are used to describe the changes
of the droplet form, where c and b are the maximum and minimum distances
from the center of the droplet to its surface, and α is the angle between u∞
and the direction of the maximum droplet elongation. Figure 2 shows the steady
drop deformation D and the inclination angle α as functions of Ca for λ = 3.6.
The results obtained at small values of Ca for the deformation are in excellent
agreement with the small-deformation theory [3]. Also, for each Ca, our results
for both the drop inclination angle and the deformation are in good agreement
with numerical computations [11,16] and experimental data [17,21].
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Fig. 2. Steady drop deformation D and 45o − α as functions of Ca, λ = 3.6

5.2 Large Scale Numerical Tests

We conducted simulations of the motion of two close droplets in a shear flow
(Gz, 0, 0) with a high mesh resolution of the surfaces. Similar cases for other
physical parameters have been considered in various works [4,12,13,24,26]. Fur-
thermore, in these works the maximum number of mesh points on the droplet
surface did not exceed NΔ = 138 240. In the present work, we considered the
motion of two initially spherical droplets with equal radii and number of mesh
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Fig. 3. Dynamics of two droplets in a shear flow, Ca = 0.05, λ = 1

points NΔ = 163 842 (which corresponds to 327 680 triangular elements). In this
case, Ca = 0.05, λ = 1, the distance between droplets centers was Δx = 2.4a,
Δy = 0, and Δz = 0.7a. The integration time step Δt was chosen according to
the stability condition (10) and was varied depending on droplet distribution.

Fig. 4. A snapshot of the initial spatial distribution of 15342 drops
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Fig. 5. 15 342 drops in a shear flow, NΔ = 162, 0.25 ≤ Ca ≤ 0.5, λ = 1.5, α = 8.8 ·10−3

(a fragment of the computational domain)

At the initial moment, Δt = 5 · 10−4, then, as droplets entered the near-contact
zone, the time step decreased to Δt = 2 · 10−5.

Figure 3 shows the droplet dynamics at different non-dimensional times. Note
that droplets affect each other in the time interval 2 ≤ t ≤ 4. The minimum
distance between droplet surfaces was hmin ∼ 10−2 · a − 10−3 · a.

Test computations were also conducted for a polydisperse emulsion with ini-
tially spherical drops and randomly uniform spatial distributions. The droplet
radii were varied from amin to amax, amax/amin = 2, 0.25 ≤ Ca ≤ 0.5, and
λ = 1.5. The results are presented for the non-dimensional time t = tnondim =
γtdim/(μ1a), where a = amin is the minimal initial droplet size.
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Figure 4 shows the initial distribution of M = 15 342 spherical drops in a
cube with edge size 300amin and volume fraction α = 8.8 × 10−3. Each drop
was discretized by means of a triangular mesh with NΔ = 162 nodes. Thus,
the total number of computational points in this case was N = M × NΔ =
2485 404. Note that this leads to the solution of a linear system with ∼7.5 · 106

independent variables for each time step. Thus, in the conventional BEM, the
memory required to store the system matrix was ∼445 TB.

Fragments of the computational domain (−10amin; 10amin)
3 are shown in

Fig. 5 for the case of 15 342 droplets at dimensionless time t = 0, t = 1, t = 2.
The integration time step Δt = 0.01, which corresponds to K � 1 in Eq. (10).
During the simulation time, the drops elongate downstream and the effect of
gravity is not significant in this case. Here the average angle and deformation are
the same as for single-drop computations, and are consistent with the respective
experimental data and computational results. The run time for one FMM call
with 15 342 droplets was about 7 s; for one time step, it was 4 min, and for 100
time steps, about 7 h.

In Fig. 6, the computational wall-clock times for one FMM call, for one time
step and for one hundred time steps are shown as functions of the problem size.
It can be seen that these functions are close to linear. This allows one to estimate
the computational times for larger scale problems.
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6 Conclusions

In this paper, we developed and tested an approach based on the boundary ele-
ment method for 3D problems, accelerated both via an advanced scalable algo-
rithm (FMM) and via the utilization of a heterogeneous computing architecture
(multicore CPUs and graphics processors). The verification and validation of the
developed codes showed that the algorithms produce consistent results. Example
computations were conducted for 3D dynamics of systems of tens of thousands
of deformable drops and systems of several droplets, with very high discretiza-
tion of the interface in a shear flow. We also studied the accuracy/performance
of the method. The results of this study show that the software developed by
us enables direct simulation of droplet systems with dynamic deformable inter-
faces discretized by millions of boundary elements on personal supercomputers.
The presented algorithms can be mapped onto heterogeneous computing clusters
[9], which should both accelerate computations and allow for the treatment of
larger systems. The developed method can become a valuable research tool for
investigations into the dynamics of emulsions.
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Abstract. We describe in this article the optimization calculations of
spray droplets in a gas injected through a nozzle into a work area, as a
part of a research icing on model objects in a small-size climatic wind
tunnel. Calculations were performed in a three-dimensional formulation.
It is assumed that the drop has some speed, temperature and diameter
as it enters the gas flow, which has a specified speed and temperature,
so that certain temperature limits are attained when it interacts with a
remote obstruction. We determined the maximum gas flow temperature,
which corresponds to the minimum of cooling energy consumption. The
optimization was carried out using the Globalizer software (Lobachevsky
State University of Nizhny Novgorod). Also, we could solve the integra-
tion issue between Globalizer and ANSYS Workbench 13.0. ANSYS was
employed as a tool to calculate optimization criteria values, whereas
Globalizer was used as an optimal parameter search tool. Calculations
were performed on the PNRPU high-performance cluster (with a peak
performance of 24 TFLOPS).
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Multiextremal functions · Parallel algorithms · Droplets flying · Numer-
ical simulation · Gas flow

1 Introduction

An energy-efficient [2] closed-loop small-sized climatic wind tunnel (CWT) is
being developed at Perm National Research Polytechnical University (PNRPU)
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aerodynamics. This installation which will provide an opportunity to conduct
aerodynamic experiments with simulated in-flight icing conditions at flow Mach
numbers as high as M = 0.8 and stagnation temperatures up to 30 ◦C [3].

As it is known, tests in wind tunnels can help to solve the following problems [4]:

1. Investigation of the shape influence of the gas-streamlined object on its aero-
dynamic characteristics depending on flow velocity and the body position in
space.

2. Investigation of air machines: gas turbines, compressors, propellers, windmills,
fans, etc.

3. Investigation of engine characteristics (turbojet, ramjet, etc.).
4. Investigation of aircraft flight dynamics.
5. Investigation of the influence of aerodynamic forces on the elasticity of aircraft

structures (e.g., research into aircraft wing flutter).
6. Physical investigations related to air flow under different conditions (research

into the boundary layer, supersonic flows, spatial streams, etc.).
7. Methodical and scientific investigations related to the creation of wind tunnels

as physical facilities, development of test methods in tunnels and processing
of the results obtained.

The article discusses the design of an energy-efficient closed-loop small-sized
CWT for full-scale icing simulation. The modeling of this process requires struc-
tural elements such as air-cooling system, injectors for water supply to the tunnel,
a device to heat them, and a dehumidifying system (described in the patent [5]).

A distinctive feature of the design is its high energy efficiency, which will allow
for testing under icing conditions at a much lower cost than already existing large
testing facilities. This economy is achieved through its ability to consume only
the energy required in operating mode to maintain a predetermined level of air
flow and by reducing the characteristic dimensions of the CWT [3].

According to studies by Russian scientists [6], the contour of the CWT must
be open, so that moisture does not accumulate. The working part is enclosed as
its length is enough to equalize the drop temperature to air temperature. Owing
to the fact that large CWTs are energy-intensive installations, small-size models
are becoming more popular. However, scale model sizes less than 1 : 8 lead to
distortion of the icing shape, which is unacceptable. Thus, there is a limitation
on the minimum diameter of the CWT.

Given the large time and material costs that are necessary for the preparation
and execution of physical experiments in an energy-efficient closed-loop small-
sized CWT, numerical simulation of experiments has become the most popular
method for studying icing processes. We propose the joint use of numerical and
physical experiments.

Ice formation processes during field experiments (spraying water with subse-
quent freezing) determine three tasks that must be accomplished for the numer-
ical simulation of processes occurring in a CWT:
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1. Simulation of cooling gas flowing in the CWT.
2. Simulation of drop disintegration to determine correctly the size of ice parti-

cles.
3. Simulation of the “water-ice” phase transition.

ANSYS CFX numerical experiments concerning spraying of water particles
are possible with the use of different mathematical models of various degrees
of accuracy. In most cases, however, significant computational resources are
required.

A modeling of icing was performed in [7], but the method suggested by the
authors does not allow to model the characteristics of the surface roughness, nor
complex-shaped ice build-ups (such as the unevenness of the “lobster tail”) in
icing areas at small slip angles of the drops. According to [8], small build-ups
of this kind have a more significant impact than the “horn-shaped” ones. Also,
that paper discusses a technique that allows to estimate the probability of such
ice build-ups. It is not possible, however, to obtain sufficiently accurate data on
the nature of the build-ups in such processes as flow separation from a wing.

Icing simulation in ANSYS FENSAP-ICE has not gained much popularity
due to requirements to conclude additional license agreements and an insufficient
number of validation studies. Nevertheless, a solution example of the problem of
icing in ANSYS FENSAP-ICE in conjunction with ANSYS CFX was presented
by researchers from Louisiana in [9]. ANSYS CFX and ANSYS FLUENT gas
dynamics packages are usually used in this regard in research practice.

As a rule, information on temperature, humidity, speed and other gas dynam-
ics parameters are used to predict icing, since a direct modeling of the “water-
ice” phase transition is not possible in these packages. Besides, investigations on
gas dynamics problems performed abroad with the use of the ANSYS CFX and
ANSYS FLUENT packages relied on subsequent accurate gas dynamics parame-
ters to solve the problem of icing by semi-empirical or analytical methods [10].

The statement of the problem of numerical simulation depends on the type
of icing, which can be divided into four categories [6,11,12]:

1. The roughness of the ice surface surpasses the height of the local boundary
layer, affecting not only the transition of the boundary layer to a turbulent
state, but also its separation downstream.

2. The icing is characterized by grooves along the stream. In this case, the area
of flow separation primarily depends on the attack angle. In combination with
its roughness, this type of icing mainly affects the increase in resistance.

3. In some cases, the droplets spreading over the surface crystallize immediately.
Then the ice begins to grow in a vicinity of the critical point adopting the
shape of a “horn”. In other cases, crystallization is delayed; a film of water
creeps over the surface, and ice forms along two areas on the side of the
critical point, forming two “horns”. The icy “horns” create a large separated
region which affects aerodynamics. This is accompanied by the separation of
flow depending on horns shape, position, and angle of attack. It significantly
reduces the aircrafts load-bearing properties.
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4. When a thermal anti-icing system is working, a film of water moves across
the surface to the outer boundary of the heated region and then freezes in
the form of a so-called barrier ice. An obstacle is formed which leads to the
appearance of a large separation region in front and behind the obstacle.
This significantly affects the aerodynamic characteristics depending on the
position and geometry of the obstacle [12].

The nature of these phenomena and the conditions producing a particular
type of icing have not been thoroughly studied until now.

Furthermore, the estimation of the surface tension of small droplets with a
typical diameter of 20 µm have shown that the excess pressure, which could
affect the freezing point of water and the crystallization process, is so small
that it practically does not affect the freezing temperature of water [6]. The
surface tension only has an effect on the spreading of drops when they hit the
surface and the disintegration of the liquid into drops at being expelled from the
injectors [13]. These processes are poorly understood and will be the subject of
forthcoming experimental studies in CWT.

In this regard, mathematical modeling of icing at the moment is not perfect.
Therefore, physical experiments cannot be completely excluded from consid-
eration. Thus, to maximize at present the effectiveness of research into icing
processes, both numerical and physical experiments are equally needed.

Investigations are frequently limited to finding one or several solutions that
satisfy the requirements of technical specifications. Searching for an optimal
solution is usually not possible, since it requires large computational resources.

Therefore, the numerical search for optimal solutions in an acceptable time
frame is one of the most important tasks [14,15]. It increases the quality of
decisions and enhances the benefits of numerical calculations, enabling the iden-
tification of new dependencies.

2 Gas Dynamics Problem

2.1 A Physical Model of the Gas Dynamics Problem

In the physical statement of the problem, it is assumed that a drop with a given
velocity, temperature and diameter falls into a gas dynamic flow having some
speed and temperature, so that, upon contact with a distant obstacle, certain
temperature limits are attained [16]. The distance to the obstacle is equal to
2 m. The maximum temperature of the carrying gas dynamic flow is determined,
and it corresponds to the minimum energy consumption of the energy-efficient
closed-loop small-sized CWT when it cools.

The calculation is carried out in a three-dimensional formulation. The inter-
nal CWT volume is modeled, and the two-phase environment, gravity and inter-
action with the cooling gas dynamic flow are taken into account.
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2.2 Mathematical Model of the Gas Dynamics Problem

We applied the finite volume method for the numerical simulation of the drop
flight from the site of injection through the nozzle to the working area of the
CWT. This implies that the field of the gas dynamic flow is approximated by a
finite number of calculation points.

A mathematical model is developed in accordance with the adopted physical
model. This model is based on the mass, momentum and energy conservation
laws, and is includes state equations of an ideal compressible gas and turbulence,
as well as with initial and boundary conditions. The mathematical model of the
gas dynamics problem includes the following relations [17]:

• The equation of mass conservation for the gas:

∂

∂t
(ρair) + ∇̄ · (ρairVair) = Qdrop

mass, (1)

where ρair is the air density, Vair is the air velocity vector, and Qdrop
mass is a

source term expressing the increase in weight caused by evaporation of water
from the drop surface.

• The equation of momentum conservation for the gas:

∂

∂t
(ρairVair) + (ρairVair · ∇̄) · Vair = −∇̄P + ∇̄τair + ρairg + Qdrop

force, (2)

where P is pressure, g is the gravity vector, τair is the shear stress at the wall,
and Qdrop

force is a source term that expresses the force with which the drop acts
on the air.

• The equation of energy conservation for the gas:

∂

∂t
(ρairHair) + ∇̄ · (ρairVairHair) =

∂P

∂t
· ∇̄ ·

((
λair

cpair

+ μt

)
∇̄Hair

)
+ Qdrop

energy,

(3)
where Hair is the total enthalpy of the air, λair is the coefficient of thermal
conductivity of the air, cpair is the air heat capacity, μt is turbulent dynamic
viscosity, Qdrop

energy is a source term expressing energy transfer between the
phases.

• The equation of mass conservation for the steam:

∂

∂t
(ρairYsteam)+ ∇̄ · (ρairVairYsteam) = ∇̄ ·

((
ρairD +

μt

Sct

)
∇̄Ysteam

)
+Qdrop

mass,

(4)
where Ysteam = 1 − Yair is steam mass concentration, Yair is air mass con-
centration, D is the diffusion coefficient, and Sct is the Schmidt turbulent
number (Sct = 1).

• The equation of state:

P =
ρairR0Tair

M
, (5)

where R0 = 8314.41 J/kmol · K is the universal gas constant, M is the mole-
cular weight, and Tair is the air temperature.
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• The equation of the drop motion dynamics:

∂Vdrop

∂t
=

πd2drop
8mdrop

CDρdrop|Vair − Vdrop|(Vair − Vdrop) + g

(
1 − ρair

ρdrop

)
, (6)

where ddrop is the drop diameter, mdrop is the drop weight, ρdrop is the drop
density, Vdrop is drop velocity, and CD is the coefficient of resistance.

• The equation of mass conservation for the drop:

∂mdrop

∂t
= −m∗πd2drop, (7)

where m∗ is the steam injection parameter per drop surface unit.
• The equation of energy conservation for the drop:

∂Tdrop

∂t
=

([
Nu

λair

ddrop
(Tair − Tdrop)

]
− m∗q(Tdrop)

)
6

ddropρdropcpdrop

, (8)

where cpdrop is the drop heat capacity, Tdrop is the drop temperature, and Nu
is the Nusselt number.

• The equation of turbulent energy:

∂

∂t
(ρairK) + ∇̄ · (ρairVairK) = ∇̄ ·

((
μ +

μt

σ

)
∇̄K

)
+ μtG − ρairε, (9)

where σ is a constant, G determines the speed of turbulent energy generation,
ε is the rate of turbulent energy dissipation, and K is turbulent energy.
Given that the computational domain has a cylindrical geometry, the gas
dynamic flow has a high speed, and the length is small and equals the distance
from the injection of droplets through the nozzles to the barrier (experimental
model), it is advisable to use the K −ε turbulence model, which is applicable
when the influence of inertial forces is large compared to viscosity forces.

• The equation of turbulent energy dissipation rate:

∂

∂t
(ρairε) + ∇̄ · (ρairVairε) = ∇̄ ·

((
μ +

μt

σε

)
∇̄ε

)
+ C1

ε

K
μtG − C2f1ρair

ε2

K
,

(10)
where σε, C1 and C2 are constants.

2.3 Parameters and Criteria for Optimization of Gas Dynamics
Calculation

The problem is solved in ANSYS CFX, as the initial and boundary conditions
are given. We studied the solution convergence. Next, input and output para-
meters were parameterized in CFX and transferred to the ANSYS Workbench,
a step that was necessary for the iterative start of ANSYS in the Globalizer
optimization program.



Optimization of Drop Characteristics in a Carrier Cooled Gas Stream 337

The following ranges of input parameters were set:

1. Tair = −30 .. 0 ◦C for gas dynamic flow temperature;
2. Vair = 10 .. 270 m/s for gas dynamic flow rate;
3. Tdrop|l=0 = +5 .. +10 ◦C for the drop temperature at the initial moment of

contact with the air flow;
4. Vdrop = 10 .. 270 m/s for the drop velocity at the initial time of contact with

the air flow.

The average drop diameter for injecting was taken equal to 20 µm, and did
not change during computations.

We adopted the following output criteria for the optimization algorithm:

1. Tdrop|l=0 = −0.5 .. +0.5 ◦C for the drop temperature at the moment when it
reaches the obstacle (L = 2 m);

2. Tair → max for the initial temperature of the gas dynamic flow.

The input parameter Tair is simultaneously an output criterion that
approaches the maximum.

As we know, when integrating the multi-criteria parallel optimization IOSO
PM program complex with ANSYS, it is possible to set the input parameter as an
output optimization criterion only with additional program code associated with
syntactic IOSO PM parameters, i.e. it is not foreseen within the core function
of the optimization complex.

As regards the drop freezing, the air temperature cannot physically be above
+0.5 ◦C, otherwise the drop will not be able to cool down to the temperature
defined by the output criterion.

The optimization problem was solved with the generalized global optimiza-
tion algorithm implemented in Globalizer. To allow for sorting the results of
the Globalizers gas dynamics solution in ANSYS CFX, we wrote the respective
functions, and parameterized the total count time (TotalTime) and the time step
(TimeSteps).

The description of both the optimization algorithm and the Globalizer pro-
gram system is given in the next section.

3 Global Optimization with Non-convex Constraints

3.1 Problem Statement

Let us consider the N -dimensional global optimization problem

ϕ(y∗) = min {ϕ(y) : y ∈ D, gi(y) ≤ 0, 1 ≤ i ≤ m}, (11)

with search domain

D =
{
y ∈ RN : −2−1 ≤ yj ≤ 2−1, 1 ≤ j ≤ N

}
. (12)
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This problem statement covers a large class of problems since the hyperinterval

S =
{
y ∈ RN : aj ≤ yj ≤ bj , 1 ≤ j ≤ N

}

can be reduced to the hypercube (12) by linear transformation. The objec-
tive function ϕ(y) (henceforth denoted by gm+1(y)) and the left-hand sides
gi(y), 1 ≤ i ≤ m, of the constraints satisfy the Lipschitz conditions with con-
stants Li, 1 ≤ i ≤ m + 1, respectively, and may be multiextremal. It is assumed
that the functions gi(y) are defined and computed only at the points y ∈ D
satisfying the conditions

gk(y) ≤ 0, 1 ≤ k < i. (13)

Employing the continuous single-valued Peano curve y(x) (evolvent) that
maps the unit interval [0, 1] of the x-axis onto the N -dimensional domain (12),
it is possible to find the minimum in the problem (11) by solving the one-
dimensional problem

ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1], gi(y(x)) ≤ 0, 1 ≤ i ≤ m} ,

where, as it follows from (13), the functions gi(y(x)) are defined and computed
in the domains

Q1 = [0, 1], Qi+1 = {x ∈ Qi : gi(y(x)) ≤ 0} , 1 ≤ i ≤ m.

These conditions allow for the introduction of a classification of the points
x ∈ [0, 1] according to the number ν(x) of the constraints computed at this
point. The index ν(x) can also be defined by the conditions

gi(y(x)) ≤ 0, 1 ≤ i < ν, gν(y(x)) > 0,

where the last inequality is inessential if ν = m + 1.
The considered dimensionality reduction scheme juxtaposes a multidimen-

sional problem with lipschitzian functions to a one-dimensional problem where
the corresponding functions satisfy the uniform Hölder condition (see [18]), i.e.

|gi(y(x′)) − gi(y(x′′))| ≤ Hi |x′ − x′′|1/N
, x′, x′′ ∈ [0, 1], 1 ≤ i ≤ m + 1.

Here N is the dimensionality of the initial multidimensional problem and the
coefficients Hi are related with the Lipschitz constants Li of the initial problem
by the inequalities Hi ≤ 2Li

√
N + 3.

Thus, a trial at a point xk ∈ [0, 1] executed at the k-th iteration of the
algorithm will consist in the following sequence of operations:

– Determine the image yk = y(xk) in accordance with the mapping y(x).
– Compute the values g1(yk), ..., gν(yk), where the index ν ≤ m is determined

by the conditions

gi(yk) ≤ 0, 1 ≤ i < ν, gν(yk) > 0, ν ≤ m.
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The occurrence of the first violation of the constraint terminates the trial. In
the case when the point yk is a feasible one, i.e. when y(xk) ∈ Qm+1, the trial
includes the computation of the values of all the functions of the problems and
the index is assumed to be ν = m + 1. The pair of values

ν = ν(xk), zk = gν(y(xk))

is a trial result.

3.2 Generalized Global Search Algorithm

The rules that determine the work of the index method are the following.
The first trial is executed at an arbitrary internal point x1 ∈ (0, 1). The

selection of the point xk +1, k ≥ 1, of any next trial is determined by the
following rules.

Rule 1. Renumber the points x1, ..., xk of the preceding trials by the lower
indices in ascending order of coordinate values, i.e.

0 = x0 < x1 < · · · < xk < xk +1 = 1,

and assign to them the values zi = gν(y(xi)), ν = ν(xi), 1 ≤ i ≤ k, computed
at these points. The points x0 = 0 and xk +1 = 1 are introduced additionally,
while the values z0 and zk +1 are not defined.

Rule 2. Classify the indices i, 1 ≤ i ≤ k, of the trial points according to the
number of the problem constraints fulfilled at these points, by constructing the
sets

Iν = {i : 1 ≤ i ≤ k, ν = ν(xi)} , 1 ≤ ν ≤ m + 1,

containing the numbers of all the points xi, 1 ≤ i ≤ k, with the same values
of ν. The end points x0 = 0 and xk+1 = 1 are interpreted as the ones having
indices equal to zero. An additional set, I0 = {0, k + 1}, corresponds to them.

Determine the maximum value of the index:

M = max {ν(xi), 1 ≤ i ≤ k} .

Rule 3. Compute the current lower estimates,

μν = max
{ |zi − zj |

(xi − xj)1/N
, i, j ∈ Iν , i > j

}
,

for the unknown Hölder constants Hν of the functions gν(y), 1 ≤ ν ≤ m + 1. If
a set Iν contains less than two elements, or if μν is equal to zero, then assume
μν = 1.

Rule 4. For all nonempty sets Iν , 1 ≤ ν ≤ m + 1, compute the estimates

z∗
ν =

{−εν , ν < M,
min{gν(y(xi) : i ∈ Iν}, ν = M,

where the nonnegative numbers (ε1, ..., εm) are parameters of the algorithm.
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Rule 5. For each interval (xi − 1, xi), 1 ≤ i ≤ k + 1, compute the character-
istics R(i) :

R(i) = 2Δi − 4
zi − z∗

ν

rνμν
, ν = ν(xi) > ν(xi − 1),

R(i) = Δi +
(zi − zi − 1)2

r2νμ2
νΔi

− 2
zi + zi−1 − 2z∗

ν

rνμν
, ν = ν(xi) = ν(xi − 1), (14)

R(i) = 2Δi − 4
zi − 1 − z∗

ν

rνμν
, ν = ν(xi − 1) > ν(xi),

where Δi = (xi − xi − 1)1/N . The values rν > 1, 1 ≤ ν ≤ m + 1, are parameters
of the algorithm. An appropriate selection of rν allows to consider the product
rνμν as an estimate of the Hölder constants Hν , 1 ≤ ν ≤ m + 1.

Rule 6. Find the interval (xt − 1, xt) with the maximum characteristic

R(t) = max {R(i) : 1 ≤ i ≤ k + 1}. (15)

Rule 7. Make the next trial at the midpoint of the interval (xt − 1, xt) if the
indices of the points xt − 1 and xt are not the same, i.e.

xk+1 =
xt + xt − 1

2
, ν(xt − 1) �= ν(xt).

Otherwise, make the trial at the point

xk +1 =
xt + xt − 1

2
− sign(zt − zt − 1)

2rν

[ |zt − zt − 1|
μν

]N

, ν = ν(xt − 1) = ν(xt).

(16)
We may take as termination condition the inequality Δt ≤ ε, where t is from

(15) and ε > 0 is the predefined accuracy.
Various modifications of this algorithm and the corresponding theory of con-

vergence are given in [18–21].
The algorithm considered above is very flexible and allows for an efficient

parallelization for shared memory, for distributed memory, and for accelerators
[22–25].

4 Integration of Globalizer and ANSYS Workbench

This section contains a brief explanation of the Globalizer software system. The
system expands the family of global optimization software that has been consis-
tently developed at Nizhny Novgorod State University during the past several
years.

The development of the system was based on the generalized global search
algorithm that was described in the previous section. A major advantage of
Globalizer is that the system is designed to solve time-consuming multiextremal
optimization problems. The system efficiently uses modern high-performance
computer systems to obtain the optimal solution within a reasonable time and
at a reasonable cost.
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The structural components of the Globalizer are the following blocks.

– Block 0 consists of the procedures for computing the function values (objective
and constraints) for the optimization problem that is being solved; this is an
external block with respect to the Globalizer system.

– Blocks 1–3 form the optimization subsystem and solve unconstrained (Block 1),
constrained (Block 2) and multicriteria (Block 3) global optimization problems.

– Block 4 is a subsystem for accumulating and processing search information.
– Block 5 contains the dimension reduction procedures based on evolvents; the

optimization blocks solve the reduced (one-dimensional) optimization prob-
lems. Block 5 provides for interaction between the optimization blocks and
the initial multidimensional optimization problem.

– Block 6 is responsible for managing the parallel processes while performing the
global search (determining the optimal configuration of parallel processes, dis-
tributing the processes between computer elements, balancing computational
loads, etc.).

– Block 7 is a common managing subsystem, which fully controls the entire
computational process when solving global optimization problems.

In order to integrate Globalizer with ANSYS Workbench 13.0, we need to pro-
vide the call of an external calculator of function values (i.e. ANSYS) as Block
0. It is necessary to transfer the input parameter values of the ANSYS Work-
bench project, update the project and receive the output parameter values. The
transfer of the parameters between the ANSYS Workbench and Globalizer was
implemented by means of an IronPython script.

In the conducted experiments, computations were performed on a single clus-
ter node. The parallelization of computations of the problem function values
relied on ANSYS tools. The computation costs of executing the optimization
algorithm in Globalizer (the choice of the next trial points, processing the trial
results, etc.) were significantly less than those of computing the problem function
values in ANSYS. Therefore, it was not necessary to parallelize the operations
of the optimization module itself.

It is important to note that the integration of ANSYS and Globalizer allows
for larger scale experiments to be performed with the use of several cluster nodes
as well. In this case, search trials at different points of the search domain will be
performed at all the nodes that are employed at each iteration of the method.
Therefore, the results of the computations can be processed in Globalizer both
synchronously and asynchronously. In the first case, the system waits until the
computations on all nodes employed are completed. Then the processing of the
results is performed, and the next iteration is started. This regime is preferred
when computing time is the same at any point of the search domain. In the
second case, the results obtained at one of the nodes are processed immediately,
and the next trial begins at this node. The asynchronous regime provides for the
full load of the nodes to be utilized in the cases when trial times are different
at different points of the search domain. The experiments performed earlier on
test problems have demonstrated this approach to be promising [26]. Performing
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experiments of this kind on the solution of applied problems will be the subject
of further investigations.

5 Optimization Results

The Globalizer system allowed to construct a field of input parameter values that
satisfy the above-mentioned (Sect. 2.3) restrictions of the gas dynamics problem
(Fig. 1).

The total time spent on finding the solution of the optimization problem at
the PNRPU high-performance computing complex was 48 h.

Fig. 1. Field of input parameter values that satisfy the output criteria of the opti-
mization problem: Vdrop — drop velocity, Tdrop|l=0 — drop temperature at the time
of injection, Vair — air velocity

It was assumed that the energy-efficient modes of the CWT are those in
which the gas dynamic flow temperature in the working section approaches the
maximum at the drop temperature +0.5 ◦C when it reaches the barrier at a 2 m
distance from the injection point:

Tair → max;
Tdrop|l=2 m = 0.5 ◦C.
However, according to expert estimates, the ranges of permissible drop speed

Vdrop and temperature Tdrop|l=0 at the time of injection are the following:
Vdrop = 5 .. 270 m/s;
Tdrop|l=0 = +5 .. +10 ◦C.
As the optimization computations show, the values of drop speed and tem-

perature in the energy-efficient modes of the CWT can vary within the following
ranges (Fig. 1):

Vdrop = 42.37 .. 237.63 m/s;
Tdrop|l=0 = +5 .. +9 ◦C.
An analysis of the results of the computational optimization experiment

(Fig. 1) showed that the range of drop velocities Vdrop and drop temperatures
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Tdrop|l=0 corresponding to these modes of operation is narrower than the rec-
ommended pre-peer evaluations.

These findings identify the speed (by 26.32%) and temperature (by 20%)
injection modes that produce icing in the work area based at the specified dis-
tance of the experimental model to the injection zone.

Figure 2 shows that the variation of only two parameters, such as the speed
of the gas dynamic flow (Vair) and the drop temperature at the time of injection
through the nozzles (Tdrop|l=0), allows to achieve the desired value of the drop
temperature (+0.5 ◦C) upon reaching the barrier (experimental model) when
meeting the output optimization criterion Tair → +0.5 ◦C. This may help to
achieve energy-efficient modes in the CWT.

Fig. 2. Dependence of Vair (gas dynamic flow rate) and Tair (gas dynamic flow tem-
perature) on Tdrop|l=2 m (drop temperature when reaching the obstacle (L = 2 m)) for
different values of Tdrop|l=0 (drop temperature at time of injection)

For example, in the given operation mode of the studied experimental model,
by varying only technological parameters such as temperature and velocity of
drops at the initial moment of contact with the gas flow, one can achieve an
energy-efficient simulation of ice formation, except for a few bottlenecks in the
drop velocity modes. Moreover, modes can be specified by applying a greater
number of iterations (ANSYS starts) in the Globalizer optimization algorithm,
which, of course, requires longer computation times.

6 Conclusions

1. As a result of the solution to the optimization problem, a combined region of
speed and temperature parameters has been detected, as well as the air flow
velocity at which the gas dynamic flow temperature in the working section
approaches the maximum. This region is energy efficient, since it allows for
icing without achieving significant negative airflow temperatures.
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2. The possibility of implementing an energy efficient operation mode of the
small-sized closed-loop CWT has been demonstrated by changing only tech-
nological parameters such as the initial drop temperature and velocity.

3. The integration of the Globalizer optimization system and the engineering
software package ANSYS has been realized for the first time.

4. The Globalizer software package helps to find the best solutions at reasonable
time and material costs.

5. The application of the Globalizer optimization software system made it pos-
sible to identify a fairly wide range of parameter combinations that allows to
maintain the energy-efficient operation mode of the small-sized closed-loop
CWT with sufficient accuracy for engineering practice (±1 ◦C).
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