
Integration of Scholarly Communication
Metadata Using Knowledge Graphs

Afshin Sadeghi1(B), Christoph Lange1,2, Maria-Esther Vidal2,
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Abstract. Important questions about the scientific community, e.g.,
what authors are the experts in a certain field, or are actively engaged
in international collaborations, can be answered using publicly available
datasets. However, data required to answer such questions is often scat-
tered over multiple isolated datasets. Recently, the Knowledge Graph
(KG) concept has been identified as a means for interweaving heteroge-
neous datasets and enhancing answer completeness and soundness. We
present a pipeline for creating high quality knowledge graphs that com-
prise data collected from multiple isolated structured datasets. As proof
of concept, we illustrate the different steps in the construction of a knowl-
edge graph in the domain of scholarly communication metadata (SCM-
KG). Particularly, we demonstrate the benefits of exploiting semantic
web technology to reconcile data about authors, papers, and conferences.
We conducted an experimental study on an SCM-KG that merges sci-
entific research metadata from the DBLP bibliographic source and the
Microsoft Academic Graph. The observed results provide evidence that
queries are processed more effectively on top of the SCM-KG than over
the isolated datasets, while execution time is not negatively affected.

1 Introduction

Yearly thousands of research articles are published in journals and conference
proceedings around the world. To conduct research and take advantage of the
latest knowledge in an area, it is imperative for researchers to follow the work
of other scientists. Therefore, metadata describing articles, authors, journals,
calls and conferences can enable effective and efficient research communication.
A data source can be rich in one aspect and insubstantial in other aspects.
For example, the DBLP computer science bibliography database gathers ample
information about publications in specific conferences but has sparse data about
their keywords and no data about citations. Furthermore it lacks metadata on
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publications in different fields of research. The Microsoft Academic Graph fills
these gaps but is less complete in every scientific field. We claim that collecting
research communication metadata from heterogeneous sources and integrating
them in a queryable environment not only leads to a more robust knowledge base
but also, thanks to increased completeness, enables more effective data analysis.

From the 2012 blog post in which Google used the term ‘Knowledge Graph’
for the first time [11], knowledge graphs have been an important subject of
research, but still there does not exist a single, widely accepted definition of this
term. Many authors refer to ‘knowledge graphs’ as a structured base of human
knowledge in the form of a graph, with an emphasis on comprehensiveness and
large scale [4,9]. Examples of famous knowledge graphs include DBpedia, YAGO,
and Freebase.

In this work, we created an integrated graph of scientific knowledge from
DBLP and the Microsoft Academic Graph and describe the challenges in match-
ing, linking and integrating the datasets and our approach to addressing these
challenges as a methodology that can be reused to build similar knowledge
graphs. We present the application of semantic structure based similarity mea-
sures in instance matching and show that traditional linking frameworks such
as Silk are capable of linking with high relative precision and recall, when they
consider data semantics during the linking process.

The remainder of this paper is as follows: Sect. 2 describes DBLP and the
Microsoft Academic Graph, and motivates the need for knowledge graph inte-
gration with concrete examples. Section 3 defines our concept of a knowledge
graph for scholarly communication metadata (SCM-KG). Section 4 shows how
the integrated knowledge graph is built. Section 5 reviews related work, and
Sect. 6 reports on the evaluation of our approach. Finally, Sect. 7 concludes and
provides an outlook to future work.

2 Motivating Example

In this example, we target the problemof data accuracy in DBLPand the Microsoft
Academic Graph and show how creating a high-quality integrated knowledge
graph from these heterogeneous sources helps to solve ambiguity problems.

DBLP1 is an up-to-date dataset of publications, authors and conferences
in the area of computer science. Information about an article includes the title
and the year of publication; information about authors includes their most recent
affiliation. DBLP rarely includes keywords of its publications and misses valuable
information such as abstracts and information on the citation of articles. DBLP
can be browsed online and is available for download as an XML dump; third
parties also provide RDF dumps.

The Microsoft Academic Graph (henceforth called “MAG”)2 covers pub-
lications, authors, and conferences in all scientific areas. It is neither updated as
1 http://dblp.l3s.de/dblp++.php, accessed on 10 April 2017.
2 https://academicgraphwe.blob.core.windows.net/graph-2016-02-05 accessed on 10

April 2017.
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regularly nor as complete as DBLP in the computer science area, but it includes
abstracts, keywords, and citation relations. Further, for each publication, it cov-
ers the author affiliations at the time of publication. MAG is available as a
relational database dump in CSV format.

In the latest DBLP version of April 2017, there are four authors named
“Christoph Lange”, indexed 0001 to 0004. When one of these four persons pub-
lishes a new article, the maintainers of DBLP face the challenge of linking the
article to the right person using his affiliation but DBLP keeps only the cur-
rent affiliation. By matching authors’ publications and recent affiliations, we can
link DBLP authors to MAG authors. Now, an old, unindexed publication by a
researcher named “Christoph Lange” can be matched against the author and
affiliation information in the unified knowledge graph and linked to the correct
person entity – at least when no two different persons published at the same insti-
tution at different times. This example shows how combining multiple available
data sources can solve an ambiguity problem.

3 SCM Knowledge Graph Concept

In this section, we first define basic principles of knowledge graphs and then our
notion of a scholarly communication metadata knowledge graph (SCM-KG).

Identification. A key prerequisite for a knowledge graph is to uniquely iden-
tify things. All entities of interest should be uniquely identified by Univer-
sal/International Resource Identifiers (URI/IRI).

Representation. We need to ensure that information about these things can be
easily understood by different parties. The W3C Resource Description Frame-
work (RDF) has meanwhile evolved into the lingua franca of data integration.

Integration. For data exchange in a digitized domain to scale, organizations and
involved people need to develop a common understanding of the data. Vocab-
ularies define common concepts (classes) and their attributes (properties) and
assign unique identifiers to them.

Coherence. Scholarly meta-data frameworks use a large number of data models
and data exchange and serialization techniques including relational databases,
XML, and JSON. Meanwhile transformation techniques for the RDF data model
have been standardized by the W3C.

Access. Depending on the usage scenario, there are different requirements and
possibilities for data access, such as push vs. pull or individual vs. bulk access.
To support these scenarios, knowledge graphs should provide various methods
to access data.

Coverage. Knowledge graphs should cover a sizeable, extensible area of knowl-
edge stretching across several domains. Even though the field of scholarly publi-
cations is well defined with high-quality reference datasets, their incompleteness
justifies the need for an integrated knowledge graph.
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Knowledge Graph. Based on the principles introduced previously, a knowl-
edge graph is a fabric of concept, class, property, relationships, and entity
descriptions. It uses a knowledge representation formalism, typically RDF,
RDF Schema, or OWL. It aims at a holistic representation of knowledge cover-
ing multiple sources, multiple domains, and different granularity. It can be open
(e.g., DBpedia), private or closed. It includes schema data as well as instance
data. Publishing our knowledge graph as LOD allows clients to easily consume it
directly or by performing queries over an SPARQL endpoint. Additionally, it can
be integrated with other data quite easily. Third parties who want to perform
further integration would not have to install our pipeline but could also follow
alternative approaches.

Applying these principles to the domain of scholarly communication requires:

– Identification is provided by a scholarly schema such as ORCID for authors,
DOI for articles and books, or ISBN for books.

– Besides RDF-based representations, the XML schema of DBLP serves as a
well-known representation.

– Common RDF-based vocabularies for knowledge integration include those
from the SPAR family of ontologies3.

– Regarding coherence, it is necessary to map data from a variety of sources,
e.g., DBLP from XML and MAG from CSV.

There is not currently an integrated knowledge graph that satisfies all criteria
of the definition given above, but besides DBLP and MAG and non-free data
sources such as those of Google Scholar or ResearchGate, there are other open
datasets, and their schemas could serve as sources for a more comprehensive
integration. For example, Scholarly Data is a well-engineered RDF dataset on
papers of Semantic Web conferences4 and OpenCitations5 is an open repository
of scholarly citation data.

4 Building a Knowledge Graph

In this section, we step by step explore our general approach to build high quality
knowledge graphs. We use the scientific communication domain as an example,
although the methodology is domain-independent. Figure 1 shows the architec-
ture of the overall system, called SCM-KG-PIP (SCM-KG creation Pipeline).

As input of SCM-KG-PIP, heterogeneous data arrives in different formats,
such as CSV, RDF, web pages, or data returned by calling Web APIs. Our
approach results in a high-quality, queryable semantic knowledge graph, using a
unified schema.

The following subsections present the components of the SCM-KG-PIP archi-
tecture in detail and describe how we applied them to scholarly communication

3 http://www.sparontologies.net/.
4 http://www.scholarlydata.org.
5 http://opencitations.net/.

http://www.sparontologies.net/
http://www.scholarlydata.org
http://opencitations.net/
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Fig. 1. The pipeline to create a knowledge graph from heterogeneous resources.

metadata to build a knowledge graph for that domain. The pipeline steps in
order of execution are: (1) data acquisition, (2) ontology engineering, (3) map-
ping data to the ontology, (4) calculating similarity and instance matching, and
(5) producing the KG and querying it. Steps (1)–(2) are carried out manually,
steps (3)–(5) are executed automatically.

4.1 Data Acquisition

Data available in heterogeneous sources can be obtained in different ways.
When they are available as structured dumps, e.g., as CSV, SQL or RDF,
their structure may not match the target ontology. For example, the DBLP and
OpenAIRE6 datasets are available as RDF, and MAG is available as CSV. Data
from Web APIs, another source of structured data, can be collected by gradual
querying. Usually, the number of API calls in a specific time window is limited;
therefore, throttling has to be applied to requests.

When structured data is not provided through open interfaces, one may be
forced to resort to scraping data from web pages. Currently, Google Scholar and
ResearchGate, two highly relevant sources of data about authors’ current affilia-
tions and recent publications, do not provide ways to access metadata other than
by web scraping. Web scraping requires finding relevant pages, parsing them,
and extracting the desired metadata from their content. In the concrete case of
ResearchGate, we experimented with such a parser for author and publication
metadata, implemented using the Scrapy Python framework7, but found it hard
to maintain, as, after just half a year, the content structure of the ResearchGate
pages had changed significantly.

4.2 Ontology Engineering

Different structured data sources may use different schemas, e.g., DBLP
and MAG model the same concepts (e.g., affiliation) differently. Creating an
6 http://lod.openaire.eu.
7 https://scrapy.org, accessed on 5 April 2017.

http://lod.openaire.eu
https://scrapy.org
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integrated knowledge graph requires a mapping step to accommodate these dif-
ferences, e.g., that can model both an author’s current affiliation and earlier
ones.

In the SCM-KG pipeline, we reused subsets of existing vocabularies includ-
ing the SWRC ontology, Dublin Core and FOAF 8 to create a core vocabulary.
We created and matched classes for resources, i.e., nodes, in the source datasets
to the core vocabulary modeled initially and instantiated it with one of the data
sources.

When the initial vocabulary is missing a definition for a concept from a
joining data source we created a new class for it. Thereupon, we linked this new
concept to the existing classes by defining a new relation type in our ontology.
As a concrete example, DBLP is missing a notion of fields of study but MAG has
a distinct index of fields of study and also article keywords, and relates keywords
of articles to fields of study. We related the articles integrated from DBLP in
the SCM-KG to fields of study with a new RDF property given that we knew
their relation to fields of study by integrating MAG.

Challenges in integrating occur with structured datasets whose schemas model
the same concept in a way different from the ontology of the knowledge graph
existing so far. Nguyen [7] has classified these challenges. As Nguyen describes, a
conflict on the concept level occurs when classes with same name have different
structures in two merged ontologies. We encountered this issue when mapping the
affiliation property. We addressed it by keeping the more descriptive vocabulary in
our ontology model and pruning the other, conflicting vocabulary from the model.
The notion of an author’s affiliation has a temporal dimension that swrc:affiliation
used by DBLP does not cover, as it merely models the current affiliation, not the
affiliation at the time a certain article was published. We simplified a temporal
modeling approach proposed by Nuzzolese et al. [8] by following the reification
pattern of MAG’s paperAuthorAffiliations table, i.e., turning each ternary rela-
tion of a publication, its authors and their affiliations at the time of publication
into a resource. A conflict on the instance level occurs when descriptions of iden-
tical instances in different ontologies are different. To resolve it we either could
choose only one instance by fact checking their materialized instances against the
real word or if possible extend the class of the instance such that it holds both con-
flicting descriptions for later check. For example, publication dates of some articles
are different in MAG and DBLP and we had to find the correct year manually, e.g.,
via the homepages of their authors.

4.3 Mapping Data to an Ontology

Data acquired from different sources can follow a variety of data models (e.g.,
graph, relational, tree) or even be unstructured. Thus, having acquired the data,
and having modeled a common integration ontology, the next step of constructing
a knowledge graph is to convert all data into a common model. RDF is well
suited as a target data model for integration and thanks to the wide availability

8 SWRC: http://ontoware.org/swrc, FOAF: http://xmlns.com/foaf/spec/.

http://ontoware.org/swrc
http://xmlns.com/foaf/spec/
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of mapping languages and tools for it, mapping data from different sources to
RDF is practically feasible (cf. Sect. 3).

In our concrete situation, an RDF version of DBLP is already available and
the CSV sources of MAG can be mapped to RDF. We developed a process
scheduler with a command line interface to execute this step of the pipeline in
general. For CSV sources such as MAG, the Sparqlify-CSV tool [5] maps the
source ontology to the integration ontology. To use Sparqlify-CSV we expressed
mapping rules in its intuitive Sparqlification Mapping Language [14].

In some cases direct mapping of CSV files is not possible. Therefore we
implemented an ETL component to shape the data in the format required for the
mapping by applying string manipulations. Using a process scheduler, we stream
results of the ETL component into Sparqlify-CSV. To improve the performance
of mapping, we run multiple parallel instances of the process scheduler. Each
row in a CSV file and each set of triples that the Sparqlify-CSV mapping engine
creates from it is semantically independent from the other rows. Based on this
understanding, the scheduler executes the conversion in parallel processes. After
breaking the big input files, e.g., from a size of 9 GB into 20 KB in-memory-
processable chunks it creates queues that convert and map the data chunks in
parallel and finally merges the respective mapping results. Section 6.3 presents
a performance evaluation of this module.

4.4 Calculating Similarity and Instance Matching

In Sect. 4.2 we addressed how we mapped semi relational data to a common ontol-
ogy but did not cover the level of mapping instances where multiple instances
refer to the same real world thing. We therefore added a data linking step to our
pipeline. First of all, we keep data integrated from different sources in separate
URI namespaces to avoid clashes in case different sources use same identifiers. We
then created “same as” links between different URIs referring to the same thing
by instance matching. Articles can be matched by common title, publication
year and, if provided, the name of the conference or journal. To increase linking
coverage, we considered the incidence of variations of title strings in punctuation
and letter cases that occurs in different datasets, and compared them using the
Jaccard similarity measure. We implemented these conversions and comparisons
and the linking of the articles using the Silk workbench [18]. A high-quality
instance-level linking of persons is a challenge for the Silk Workbench. A mere
triple based matching, as applied in Silk, fails to distinguish different persons
with similar or even same names.

We tackled this problem using the semantic relations of the persons with
their articles. In our data sources, persons only occur in the role of authors of
publications; additionally, we can rely on links between papers as identified in
the previous step. We leverage this semantics by embedding it into the author
molecules9. First we create a hash for each article. Provided that instance match-
ing of articles is performed in the last step and they are stored in the SCM-KG,
9 Here, a “molecule” refers to a set of one node in the knowledge graph and the

immediate links to its neighbors.
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Fig. 2. Matching instances of an author in two datasets

we find those articles of a person that have been matched to an article in other
datasets. We concatenate the IDs of these articles to a comma-separated string.
We then associate this string immediately to the author via a new property of
type authorLinkedPaperIds. We store these new links in the SCM-KG to use
them in Silk subsequently.

By applying a substring similarity metric defined by Stoilos et al. [15] on the
concatenated list of unique IDs of articles, we can discover if two instances of
Person have common publications. The more common publications, the higher
the value of this metric. Figure 2 depicts an example of this step of instance
matching in action.

4.5 Producing and Querying a KG

Our objective in the final pipeline step is to store all the data in a form that is
accessible via SPARQL queries. We employed the high-performance Apache Jena
TDB as our RDF store. After importing our data into TDB we configured Apache
Jena Fuseki 2 to make the data queryable using SPARQL 1.1, both from the
command line and, via HTTP, from a SPARQL endpoint. The latter SPARQL
endpoint enables the integration of Silk in the linking step and the resulting
links are added to the KG in the end. Fuseki also supported the evaluation (cf.
Sect. 6) by enabling us to query the dataset conveniently via a web frontend. To
further improve performance, we employed the Cassandra big data database to
cache query results of Fuseki. However, we did not consider Cassandra in the
evaluation of the query execution time to have a fair comparison.
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5 Related Work

Recent approaches toward constructing knowledge graphs, e.g., NOUS [2],
Knowledge Vault [3] or NELL [1] focus on materializing a knowledge graph by
inferring relations in the existing data. In comparison, our focus was to integrate
data from heterogeneous resources and to increase the quality of the integrated
knowledge graph. For that we evaluated the steps of the knowledge graph con-
struction pipeline and optimized our pipeline based on that.

In a similar work, Szekely et al. [16] created a knowledge graph of human
trafficking data; text and images from the Web were parsed and unstructured
data was mapped to a vocabulary. In contrast, we resolved the challenge of
structure variations of the data being integrated. As explained in Subsect. 4.3,
we mapped semi-structured metadata into triples using Sparqlify-CSV. This step
distinguishes our pipeline from the research of Szekely et al. They integrated data
by building up a new ontology model while we modified the existing ontology
model of the manually maintained DBLP and aggregated other vocabularies to
it. The vocabulary used in DBLP has already a combination of the common
vocabularies in describing the scientific metadata. Therefore, we accumulated
other terms and vocabularies or modified the current model when the vocabulary
of DBLP was not sufficiently describing the integrating data.

Another difference of the two works is the ETL component. From a technical
perspective, Szekely et al. used the Karma framework [6] for data mapping.
Their approach is limited as they apply ETL the Karma component used for
mapping. ETL rules in Karma are in Python, while we implemented an efficient
ETL component in C++. Furthermore, Szekely et al. enhanced their linking
with image similarly measures, whereas we used semantics of the incoming data
to increase the quality of instance matching.

Traverso et al. [17] suggested applying semantics in relation discovery in
existing knowledge graphs. Similarly, we apply the concept of semantic molecular
similarity, but we use the semantic relations in the network toward the linking
of instances during the creation of a knowledge graph.

In a recent research, Danh Le-Phuoc et al. [10] integrated data from variety
of resources including sensors, the Twitter social network and RSS resources
of famous news websites to create a knowledge graph of things. Their pipeline
similarly needs to process a holistic amount of data in batch and makes them
queryable via a SPARQL endpoint. In contrast to our work, they process stream-
ing data coming from resources that are much more loosely coupled in compar-
ison to the resources in our pipeline.

In our experiment one of the data sources is in CSV format, i.e., semi-
structured relational data. Many approaches have been investigated to map
relational data to RDF, e.g., heuristic and rule-based methods, graph analysis,
probabilistic approaches, reasoning, machine learning, etc. We chose a manual
rule-based mapping method. This allows for vocabulary reuse but requires users
to be familiar with popular Semantic Web vocabularies to choose the most suit-
able terms [13].
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6 Evaluation and Results

We conducted an empirical evaluation to study the effectiveness of the pro-
posed pipeline in creating a knowledge graph from different data sources in the
domain of scholarly communication metadata (SCM-KG). We assessed the fol-
lowing research questions:

RQ1) Can relative answer completeness be enhanced when queries are exe-
cuted against an SCM-KG instead of the original sources? Is the query execution
time affected when queries are executed against an SCM-KG? RQ2) How accu-
rate is the linking of the integrated dataset in terms of precision and relative
recall? RQ3) How much data can be processed per second in the mapping and
linking steps of the pipeline?

Datasets: For the evaluation, we chose a subset of authors and their papers from
both DBLP and MAG [12]. This subsection involves all the metadata relevant to
the WWW conference series in both datasets10. WWW has a long history, and
this fraction of data covers all the vocabulary and structure used in the whole
dataset. MAG was last updated on 5 February 2016, and we acquired the DBLP
dataset on 10 November 2016 from the DBLP++ website11. We chose Apache
Jena Fuseki as our triple store.

Fig. 3. Articles belonging to an
author in DBLP and MAG. Arrows
represent the matched instances.

We executed each query 15 times, each
time instantiated with a different author. We
selected these 15 authors among the most
publishing authors in WWW as found by
another SPARQL query over the SCM-KG.

Queries: In the next two experiments, we
defined queries and compared their results
over the integrated knowledge graph with
their evaluation on the isolated source
datasets.

Metrics: We evaluated how much the inte-
gration enhanced the accuracy and complete-
ness of the query results. Some authors do not have a Google Scholar profile or
any other “complete” publication list available, therefore the dataset complete-
ness is calculated in a relative way. In the second experiment, we tested the
quality of the linking in terms of relative precision and recall.12 The D4–M1

connection in Fig. 3 is an example of a true positive link. When the equivalence
of items is not discovered we consider that a false negative (FN). For example,
the lack of a D5–M2 connection is a FN. When two articles are linked that are

10 The integrated WWW dataset has 346,480 triples including the “same as” links
between matched instances.

11 http://dblp.l3s.de/d2r/sparql.
12 In the process of linking articles by an author, true positives (TP) are articles whose

metadata exist in both DBLP and MAG and their instances are correctly linked in
the matching step.

http://dblp.l3s.de/d2r/sparql
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not really equivalent we assume it as a false positive, such as the arrow connect-
ing D6 and M3. When the instance matching step correctly does not relate two
different articles, we consider this a true negative, depicted as a triangle in the
diagram.

We also evaluated the data integration process by comparing the execution
times of the queries provided above over the different datasets.

Implementation: Experiments 1 and 2 were run on a test platform with an
Intel i7-4710HQ 2.5 GHz CPU and 16 GB 1333 MHz DDR3 RAM; the operating
system was Mac OS 10.12. The test queries were executed on Jena Fuseki. In
Experiment 3, we used a machine with 32 GB RAM and an Intel(R) Xeon(R)
3.00 GHz CPU with 16 cores; the operating system was openSUSE Linux. We
implemented the process scheduler in C++ with a shell script frontend. SPARQL
queries were executed to create triples for the semantic based similarity mea-
surement. The process manager, Sparqlify-CSV mapping rules, ETL source code,
and the test datasets evaluated are publicly available.13

6.1 Experiment One: Relative Completeness

Publications and the number of hits in the different datasets were collected.
Queries were executed for each of the 15 selected authors over the three datasets
and compared them in terms of relative completeness of the result sets. Com-
paring the number of WWW publications in MAG, DBLP, and SCM-KG, we
observed that although DBLP contains more articles for the selected authors,
there exist articles that are only included in MAG. The mapping and linking
process allows for identifying common articles in both datasets; thus, the result-
ing dataset includes more articles for these authors.

Query response time for WWW publications in MAG, DBLP, and SCM-KG
indicated that these queries had an average response time of 8.8 ms on DBLP,
while equivalent queries on MAG had an average response time of 11.66 ms,
and 12.8 ms was the average response time of their equivalent on the integrated
graph. These values suggest that the integration did not affect query response
time significantly.

6.2 Experiment Two: Linking Accuracy and Relative Coverage

In this survey we ran a SPARQL query over MAG and SCM-KG and evaluated
how much the process of linking affected the integrity of the author entities in
MAG.

We first defined a query that finds an author entity and his/her articles.
It searches instances of authors by name. We observed that for cases like Ravi
Kumar the query yields several different author entities instead of one. Likewise,
his/her published articles were scattered between different author entities in
MAG.

13 http://afshn.com/re/scmkg.html, accessed on 5 April 2017.

http://afshn.com/re/scmkg.html
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By running the same query over SCM-KG, we observed that the instant
matching of author entities in MAG and DBLP had brought these pieces of
information together. To survey the indirect merging of authors in MAG, we
considered the scattering of an author’s articles into each extra instance of an
author as a false negative, i.e., author instances in MAG that were equal but
not found by the linking process; true positives correspond to merged instances
of authors.

This query was executed for 15 selected authors. The comparison of indirect
integrated duplicate author entries in MAG, due to instance matching between
MAG and DBLP, indicates a correct linking (TP) with a precision of 1 in all
cases, and an average recall value of 0.986. Secondly, we tested if, per author,
the linked articles belonging to each author are linked to correct equivalent items
between datasets. The linking performed in this experiment had a precision of
1 and an average recall of 0.982; these results show the positive effect of using
semantic molecular relations in linking.

6.3 Performance Evaluation of the Mapping Process Scheduler and
Linking

In the mapping step, the process scheduler generated 10 parallel processes that
occupied approx. 99.5 percent of the available 16 CPU cores and 3.6 GB RAM.
By the SCM-KG pipeline, we converted 96.88 GB of MAG and generated approx.
2.9 B triples from MAG and integrated them with 150 M triples from DBLP. The
process scheduler could generate approx. 250,000 triples per second, that thanks
to parallelization, is significantly faster than the original Sparqlify RDB2RDF
transformation engine [5]. The instance matching process could find approxi-
mately 500 matches per second when tested on the Mac OS system mentioned
in the introduction of Sect. 6.

7 Conclusions and Future Work

In this paper, we presented the concept of Scholarly Communication Meta-
data Knowledge Graph (SCM-KG), which integrates heterogeneous, distributed
schemas, data and metadata from a variety of scholarly communication data
sources. As a proof-of-concept, we developed an SCM-KG pipeline to create a
knowledge graph by integrating data collected from heterogeneous data sources.
We showed the capability of parallelization in rule-based data mappings, and we
also presented how semantic similarity measures are applied to determine the
relatedness of concepts in two resources in terms of the relatedness of their RDF
interlinking structure. Results of the empirical evaluation suggest that the inte-
gration approach pursued by the SCM-KG pipeline is able to effectively integrate
pieces of information spread across different data sources. The experiments sug-
gest that the rule based mapping together with semantic structure based instance
matching technique implemented in the SCM-KG pipeline integrates data in a
knowledge graph with high accuracy. Although our initial use case addresses the



340 A. Sadeghi et al.

scientific metadata domain, we generated billions of triples with high accuracy in
mapping and linking, and we regard it capable at an industrial scale and in use
cases demanding high precision. In the context of the OSCOSS project on Open-
ing Scholarly Communication in the Social Sciences14, the SCM-KG approach
will be used for providing authors with precise and complete lists of references
during the article writing process.
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