
Chapter 9
Self-organization

If biologists have ignored self-organization, it is not because
self-ordering is not pervasive and profound. It is because we
biologists have yet to understand how to think about systems
governed by two sources of order. We have to see that we are
the natural expression of a deeper order…

Stuart Kauffman
As a philosopher I am interested in all kinds of phenomena of
self-organization, from the wind patterns that have regulated
human life for a long time to the self-organizing patterns within
our bodies, to the self-organizing processes in the economy, to
the self-organizing process that is the Internet.

Manuel De Landa

Abstract Self-organization is an inherent process of life and society that refers to
the capability of biological, natural, and society systems to change their structure by
their own during their operation, such as to show more order or pattern without the
help of external agents. This chapter starts with the ontological question “what is
self-organization” and provides representative alternative answers given by eminent
workers and thinkers in the field. It continues by discussing the four fundamental
mechanisms of self-organization observed in nature viz. synergetics, export of
entropy, positive/negative feedback interplay, and selective retention, followed by
an examination of the concept of self-organized criticality (edge of chaos). Then,
this chapter discusses the contribution of cybernetics to the study of
self-organization, and the relation of self-organization with “complex adaptive
systems (CAS)” providing a description of five self-organization features that are
transferred to CASs. This chapter continues with the presentation of six examples of
natural and artificial self-organizing systems, namely ecological systems, magne-
tization, convective instability cells, linguistic systems, knowledge networks, and
self-organizing neural network maps. The conclusions provide some additional
remarks about complexity and the future of man-made self-organizing systems.

Keywords Self-organization (S-O) � Natural S-O � S-O mechanisms
Synergy � Entropy export � Positive/negative feedback interplay
Requisite variety � Interdependence � Selective retention � Self-organized criticality
Complex adaptive system (CAS) � Society vertical/horizontal S-O
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Bifurcation � Pitchfork bifurcations � Stationary bifurcations � Ecological S-O
Robotic S-O � Self-organizing map

9.1 Introduction

Self-organization is a concept that refers to the capability of biological, natural, and
society systems to change their structure by themselves during their interaction process
with the environment. This means that self-organization is not environment determined
but self-determined and self-adaptive. In other words, one can say that a system is
self-organizing if it tends to become more organized on its own, i.e., if it shows more
structure or order or pattern without the help or influence of an external agent. Clearly, the
self-organization concept is one of the most useful concepts in science and society, but at
the same time a very vague concept, because all terms used to define it, viz., organization,
structure, order, pattern, etc., are not uniquely defined or interpreted. In some cases,
self-organization is interpreted as emergence, but this is not correct because we can have
self-organization without emergence and emergence without self-organization, although
both of them are features of complex adaptive systems (see Fig. 8.1). The idea that
natural systems have a tendency to become more orderly without external intervention
was first stated by the philosopher Descartes who argued that “ordinary laws of nature
tend to produce organization” (see his “Discourse on Method”). Also, Kant argued that
“the principle of unity of nature is a regulative principle according to which nature is
constructed so as to correspond to our needs for order” (see his “Critique for Judgment”).
Many authors have used other terms for defining self-organization, which sometimes are
related to human behavior. One of these terms is autopoiesis coined by Humberto
Maturama and Francisco Varela [1]. The term autopoiesis comes from the Greek
composite word atso-poίηrη (autopoiesis = self-making/self-creating). Another term is
extropy, which is the opposite of entropy. If we adopt the entropy interpretation of
Boltzmann as disorganization (disorder), then extropy means organization (order).
A general field where self-organization has been extensively studied is cybernetics. More
information on this is provided in Sect. 9.5. Another new technological field closely
related to self-organization is “Artificial Life” (ALife) [2, 3].

The purpose of this chapter is:

• To investigate the question “what is self-organization?” and present a set of
definitions given by eminent researchers in the field.

• To outline and discuss the four fundamental mechanisms of self-organization
observed in nature (synergy, entropy export, positive/negative feedback inter-
play, and selective retention).

• To examine the concept of “self-organized criticality”, a term equivalent to the
“edge of chaos”.

• To discuss the contribution of cybernetics to the study of self-organization via a
listing of well-known cyberneticists and their major results.
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• To study the relation of self-organization with “complex adaptive systems”
(CAS) providing a description of the five self-organization features that are
shared with CAS.

• To present six representative examples of natural and artificial self-organizing
systems, namely: ecological systems, magnetization, heated liquids (convective
instability cells), linguistic systems, knowledge networks, and self-organizing
maps.

9.2 What Is Self-organization?

Self-organization is inherent in life, nature, and society. However, only after the
1950s has the scientific study of self-organization assumed concrete shape.
According to the Longman Dictionary, the word organization has three linguistic
meanings [4]:

• The way in which different parts of a system are arranged and work together.
• Planning and arranging something so that it is successful or effective.
• A group such as a club or business that has formed for a particular purpose.

These meanings are used in our current scientific, information, technological,
cultural, and economic society, and cover both cases: external and internal orga-
nization of a system. In general, all these definitions imply that organization is some
kind of order and excludes randomness produced by any cause at any level. The
alternative definitions presented here are the following.

9.2.1 Definition of W. Ross Ashby

In modern times, the term “self-organizing” was first used in 1947 by W. Ross
Ashby, a cybernetician (psychiatrist, neuroscientist, and mathematician) [5–7].
According to him “a system shows self-organization if its behavior shows
increasing redundancy with increasing length of the protocol” Ashby used the term
redundancy (R) in the Shannon’s sense, i.e.,:

R ¼ 1� H=Hmax

where H is the actual uncertainty (entropy) and Hmax the maximum uncertainty of
the system. He argued that: “Since redundancy R can only increase if either H is
decreasing or Hmax is increasing, and since Hmax can only change by redefining the
system (i.e., by externally changing the number of states), one can say that a system
is self-organizing, only if the increase in the redundancy R is the outcome of a
corresponding decrease in the randomness H.” This essentially means that
non-utilized, potential, channel bandwidth provides a measure of self-organization.

9.1 Introduction 463



Ashby used Shannon’s Tenth Theorem which states: “If an error correction
channel has capacity C, then equivocation of amount C can be removed, but no
more,” to formulate his “Law of Requisite Variety”, which states: “Any quantity K
of appropriate selection demands the transmission or processing of quantity K of
information. There is no getting of selection for nothing.” Shannon’s theorem was
developed in the context of telephone and other similar communication channels,
regarding a case with a lot of “message” and little “error”. In biology, we face the
case where the “message” is small, but the disturbing errors are many and large.

Both “Shannon’s Tenth Theorem” and Ashby’s “Law of Requisite Variety” are
applicable to regulatory biological systems, such as the brain, through the fact that
“the amount of regulatory or selective action that the brain can achieve is absolutely
bounded by its capacity as a channel.”

9.2.2 Definition of Francis Heylinghen

According to Heylinghen: “Self-organization is the spontaneous emergence of
global structure out of local interactions” [8]. “Spontaneous” here means that no
internal or external agent is in control of the process; for a sufficiently large system,
any individual agent can be removed or replaced without any effect on the resulting
structure. The self-organization process is fully parallel and distributed over all the
agents, i.e., it is truly collective. This implies that the organization that is achieved
is inherently robust to faults and perturbations.

9.2.3 Definition of Chris Lucas

He stated that: “Self-organization is the evolution of a system into an organized form
in the absence of external constraints. It is a move from a large region of state space
to a persistent smaller one, under the control of the system itself” [9]. Here, the term
“organized form” is meant in the sense described before (i.e., nonrandom form).

9.2.4 Definition of Scott Camazine

According to him “Self-organization in biological systems is a process in which
pattern at the global level of a system emerges solely from numerous interactions
among the lower level components of the system, and the rules that specify
interactions, among system components, are executed using local information,
without reference to the global pattern” [10]. This definition implies that the pattern
is an emergent property of the system and not a property imposed on the system by
an external ordering influence.

464 9 Self-organization



9.2.5 Definition of A.N. Whitehead

He stated that: “Self-organization of society depends on commonly diffused sym-
bols evoking commonly diffused ideas, and at the same time indicating commonly
understood action” [11]. He argued that the human mind is functioning symboli-
cally when some components of its experience elicit consciousness, beliefs, emo-
tions, and usages, respecting other components of its experience. The former set of
components involves the “symbols”, and the latter set constitutes the “meaning” of
the symbols. He remarks that “symbolism plays a dominant part in the way in
which all higher organisms conduct their lives. It is the cause of progress and the
cause of error.”

9.2.6 Definition of M. B. L Dempster

Dempster studied the distinction between autopoietic (self-producing) and sympoietic
(collectively producing) systems. These two contrasting lenses offer alternatives
views of the world, forcing recognition of system properties frequently neglected.
Taking into account Andrew’s remark that it is difficult, probably impossible, to find
a precise definition of what is understood by a self-organizing system, he did not
attempt to give such a precise definition, while stating that: “On an intuitive level,
self-organization refers to exactly what is suggested: systems that appear to organize
themselves without external direction, manipulation, or control” [12].

Self-organization in human society occurs at various levels (vertical
self-organization) and various activities or processes (horizontal self-organization).
From top level to bottom level, vertical self-organization involves [7]:

• Human–non-human environments
• Society establishment
• Groups and communities
• Individuals.

On the horizontal dimension, we have:

• Culture
• Ideology
• Politics
• Religion

• Economy
• Industry
• Agriculture
• Education, etc

All processes are interdependent and influence each other. This implies that
coevolution occurs within and between vertical and horizontal processes.

According to Takatoshi Imada [13], in the 1960s attempts were made to develop
a theory based on the logic of a system and its control. Contrary to this view of a
societal system as the aggregate of individuals where self-organization is the sum of
the practices of a system driven by control, or self-control in particular, in the 1980s
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a new view gained popularity, adopted based on the logic of creative individuals
and fluctuations. This new view looks at the practices of individuals departing from
the standard logic of a system, making the existing system fluctuate and trans-
forming its structure. In [13], Imada integrated these two antithetical approaches
into a structure of the self and through self-reflection. This opened new ways for
designing planning and control actions and developing a spontaneously perfor-
mative action theory. More information on society self-organization and societal
complex adaptive systems will be given in Chap. 13.

9.3 Mechanisms of Self-organization

The fundamental natural mechanisms by which self-organization is achieved are the
following:

• Synergetics
• Export of entropy
• Positive/negative feedback interplay
• Selective retention.

The synergetics mechanism (from the Greek rtm-έqceia = synergia = act
together) was discovered by the German physicist Hermann Haken [14], who
studied lasers and other similar phenomena and was surprised by the apparent
cooperation (synergy) between the interacting components. The elements (agents,
components) of a complex system at the beginning interact only locally (i.e., with
their close neighbors), but, due to the direct or indirect connection and interaction of
the agents, the changes gradually propagate to faraway regions, leading finally to an
obvious synergy at the system level. Examples of such collective patterns resulting
from many interacting components include (besides lasers), chemical reactions,
molecular self-assembly, crystal formations, spontaneous magnetization, etc. This
synergy in laser-light production is explained as follows. When atoms or molecules
receive an energy input, they emit the surplus energy as “photons” at random times
and directions. This leads to diffuse light. But under certain conditions, the atoms
can be synchronized and emit photons at the same time in the same direction, with
the outcome of a highly coherent and focused beam of laser light [15].

The achievement of a synergetic state is, in general, a “trial-and-error” or
“mutual adaptation” process. System’s components (agents, etc.) handle permissi-
ble or plausible actions (or sometimes select them randomly) and maintain or repeat
those actions that bring them nearer to their goals. This process is actually a
natural-selection process, but it differs from Darwinian evolution since the system
agents are functioning simultaneously until they mutually fit, i.e., they coevolve
(mutually adapted) so as to minimize friction and maximize synergy.

The mechanism for the export of entropy self-organization was revealed by
Prigogine and Nicolis [16]. They developed and promoted the theory of dissipative
structures (i.e., systems that continuously decrease their entropy). Dissipation (i.e.,
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entropy export) is the mechanism that leads to self-organization. This means that a
self-organizing system imports high-quality (usable) energy from the environment
and exports entropy back to it. Prigogine formulated a new worldview. He saw the
world as an irreversible “becoming”, which produces novelty without end. This is
the opposite of the Newtonian reduction to a static framework, i.e., to the “being”
view. This point of view is compactly expressed by Prigogine’s quote: “The irre-
versibility of time is the mechanism that brings order out of chaos”. Speaking about
chaos, James Gleick [17] wrote that “Where chaos begins, classical science stops”.
In other words, this means that chaos is our third great revolution in physical
sciences after relativity and quantum mechanics.

Prigogine and Stengers [18] state that “order creation” at the macro-level is a
way of dissipating (exporting) entropy caused by energy flux at the micro-level. For
example, a whirlpool is formed spontaneously in a draining bathtub because in this
way the potential energy of the standing water is dissipated better than a laminar
(smooth) or turbulent (chaotic) flow [19].

As we have seen in Sect. 8.8, a nonlinear system has, in general, a multiplicity of
attractors. Each one of these attractors corresponds to a self-organized configura-
tion. Therefore, the study of self-organization is equivalent to the study of the
system attractors’ properties and dynamics. If the system starts out in a basin state,
it will settle down to the corresponding attractor, but, if it starts between different
“basins”, it has the freedom to choose the basin and the attractor in which it will end
up. This depends on the unpredictable fluctuations that may exist. The
self-organized configuration is, of course, more stable than the configuration from
which the system started. We call this phenomenon “order from noise” [20], but
thermodynamicists [18] call it “order through fluctuations” or “order out of chaos”.

The “interplay between positive and negative feedback, i.e., the self-organization
mechanism, works in the same way as described in the previous chapter in connection
with adaptability to the environment. Here, however, this constitutes an internal
(esoteric) business of the system aiming at (and leading to) increased organization and
order. Actually, self-organization takes place via existing feedback loops between
system components (elements) and between components and the structures that are
formed at the higher hierarchical levels. A necessary condition for this to occur is that
the system is “nonlinear”, as happens in living organisms, biochemistry (autocatalysis),
and the behavioral systems in human society. Typically, self-organization starts with
positive feedback. An initial fluctuation towards organization (order) is amplified and
spreads quickly, until it affects the entire system. Once all elements of the system have
“aligned” their behavior with the configuration created by the initial fluctuation, and the
system has reached an equilibrium state, further growth of self-organization is not
possible. This is because at this stage only changes that weaken the self-organized
(dominant) configuration are possible, and the same mechanisms that reinforced that
configuration will suppress the deviation (i.e., they will apply negative feedback) and
return the system to its stable configuration. In more complex situations, there may
exist several interlocking positive- and negative-feedback loops, i.e., changes in some
directions are reinforced, and changes in other directions are suppressed. The final
result of this process is very difficult to predict.
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The selective-retention mechanism of self-organization ensures that the outcome
of the interactions of the system components is not arbitrary but shows a “prefer-
ence” for certain situations over others [8]. This is analogous to Darwinian evo-
lution, which is based on the assumption that the environment acts on a population
of organisms that compete for resources (in order to survive). The winners of this
competition (those that most fit to obtain the resources) will be selected, the others
are eliminated.

The second assumption of Darwinian evolution is that selection is carried out by
the common environment of the competing organisms. However, in selective
retention, there is no need to have a population of competing organisms (config-
urations). It works well even in “population-of-one” situations. A configuration
(state) can be chosen or eliminated no matter if other candidate configurations are
present. A single system can happen via a sequence of states or configurations.
Some of them are selected (retained), while others are eliminated. Actually, the
competition in selective retention is taking place between subsequent states of the
same system, and more importantly, there is no need to assume the existence of an
environment external to the state(s) under selection. Selective retention can occur in
both living and nonliving systems. For example, a stone “prefers” to be in a stable
state at the foot of a hill, instead of being in an unstable state on the top. A “cloud”
of gas molecules in a vacuum will spontaneously diffuse, but a crystal in the same
vacuum will maintain its crystalline form. The first configuration (i.e., the cloud)
disappears; the second (i.e., the crystalline structure) is retained. An animal in an
ecosystem prefers a situation that assures more food or minimizes the risk of being
attacked by a predator.

9.4 Self-organized Criticality

Self-organized criticality (SOC) is an alternative name for the capability of complex
systems to maintain a balance between “order and disorder”, which is also called
“the edge of chaos” (see Sect. 8.9). It is a common property of living beings to live
at such an edge of chaos via self-organization. Our purpose in this section is to
discuss a little more this feature of self-organized systems. Throughout the years,
many biologists, nonlinear-systems researchers, and cyberneticians have attempted
to explain the phenomenon of self-organized criticality and especially why and how
a system moves on its own to such a state existing in the order-chaos spectrum.

Criticality, in general, is a state at which the properties of a system change
suddenly, e.g., the critical gain in a control system determines the boundary (edge)
of the stable region; higher gain leads the system to the unstable region. Another
example of criticality is the case in which a structure moves from non-percolating to
percolating or vice versa (where the system is subject to phase change). Percolation
is a structure (or matrix) of parts in which a property appears that connects the
opposite sides of a disconnecting structure by developing a path or disconnecting
them into a fully connected structure by introducing an obstruction
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(non-percolation). The edge at which this percolation/non-percolation change
occurs is exactly the edge to which a self-organized system goes and obeys a power
distribution law of effects, i.e., the smaller the effect, the more frequently it is
occurring. This is actually the typical self-similarity property of all self-organized
systems.

Examples of natural systems with self-organized criticality include: floods
caused by interconnected valleys, forest fires in areas susceptible to lightning bolts,
snow avalanches occurring on snowy hillsides, etc. Three such examples are
illustrated in Fig. 9.1(a–c).

Self-organized criticality is the capability of a system to work in a manner by
which it can approach closely to a critical point and then sustain itself at that point.
Actually, there exist many alternative theories for explaining this movement of
natural and biological systems to a self-organized critical state. Three of them are
the following [19]:

Fig. 9.1 Three natural examples of self-organized criticality: a cyclone, b sand dune, c snow
avalanche (http://www.newciv.org/pic/nl/artpic/10/1929/cyclone.jpg; http://www.nature.com/
nmat/journal/v4/n6/images/nmat1405-f1.jpg; http://en.vedur.is/media/ofanflod/myndasafn/
frodleikur/medium/P1010396%5B1%5D.JPG). The reader is informed that Web figures and ref-
erences were collected at the time of writing the book. So some of them may no longer be valid
due to change or removal by their creators
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• Stuart Kauffman His explanation is based on the so-called “coupled-fitness
landscape” which is a Boolean network of N cells, each one having S states with
an overall of C possible connection paths to other cells [21, 22]. This N-cell
system is mapped into a C-dimensional “landscape” that involves (topograph-
ically) all possible system states. According to Kauffman, the connectivity C is
an index of how orderly or chaotic is a system. When C is very small, the
system is “stuck” in its present state, and if C is very large, the system has
chaotic behavior. If C has just the right size, the system can go to very high
fitness peaks and achieve very good proficiency. The C-dimensional landscape
may represent a genome, a population, etc.

• Rod Swenson His explanation is based on the law of maximum entropy pro-
duction as explained in Sect. 8.3, which implies that ordered flow produces
entropy faster than disordered flow.

• P. Bak He and his colleagues argued that a system self-organizes to a critical
state without any “fine-tuning” process, but via a driving and dissipating pro-
cess. Self-organized criticality seems to be the underlying concept for temporal
and spatial scaling in dissipative nonequilibrium systems [23, 24]. Bak and
colleagues explained that “power law distributions of phenomena” exhibit a
self-organizing criticality performance. They studied several examples of sys-
tems in which this occurs. For example, they simulated the “sandpile” model
which consists of sand poured on a table continuously until the occurrence of
“mini avalanches”. Similar results on the self-organized criticality have been
derived by many other researchers (e.g., [25–27]).

9.5 Self-organization and Cybernetics

Self-organization was a topic of study in cybernetics right from its beginning. The
term cybernetics comes from the Greek world “jtbeqmώ/jtbeqmήsη1” (kyverno/
kyvernitis = govern/governor). The founder of Cybernetics was Norbert Wiener,
who defined it as follows: “Cybernetics is control and communication in the animal
and the machine” (1947) [28]. The initial work of Wiener was related to the control
of anti-aircraft fire. The gun should aim not at the present position of the aircraft,
but at the point to which the aircraft will move during the flight time of the shell. He
estimated this new position of the aircraft by collecting data about the discrepancies
between predicted position and actual measured position and then feeding it back to
the predictor. The result of his study is the celebrated Wiener filter/predictor. The
field of cybernetics has attracted interdisciplinary interest. Scientists and engineers
from a multitude of fields (physics, mathematics, operational research, biology,
medicine, environment, psychology, anthropology, management, neurology, eco-
nomics, sociology, ecology, computers, control, etc.), either individually or in
multidisciplinary research groups, have derived important results in many direc-
tions. A comprehensive list of cybernetics and systems thinkers (cyberneticists or
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cyberneticians) who have made substantial contributions to the field is provided in
[29], and historical remarks about their role in [30]. Among them, in addition to
Norbert Wiener, the father of cybernetics, those who have studied self-organization
and closely related topics are the following:

• W. Ross Ashby One of the founders of cybernetics. He developed homeostasis,
requisite variety law, and the self-organization principle [6, 31].

• Henri Atlan He studied self-organization in cells and networks and developed the
theory of random organization according to which, at the birth of the universe,
there was an order/disorder/organization dialogic triggered by calorific turbulence
(disorder), in which under certain conditions (random encounters) organizing
principles made possible the creation of nuclei, atoms, galaxies, and stars. The
dialogue between order, disorder, and organization exists in a wide variety of forms,
and via countless feedback processes is constantly in action in the physical, bio-
logical, and human worlds [32]. He contributed substantially to the development of
Biocentric Culture governed by the “Vital Unconscious and Biocentric Principle”.

• Warren McCulloch He developed mathematical models of learning and
self-organizing neural networks. Together with Walter Pitts, he proposed the first
model of a neural network, composed of functioning elements (neurons) and
synaptic weights. This “artificial neuron” is known as McCulloch–Pitts neuron
and is the foundation of most modern types of artificial neural networks [33].

• Ilya Prigogine He studied the thermodynamical approach to self-organization
and coined the concepts of irreversibility and dissipative structures [16, 18, 34]
discussed at many points in this book.

• Heinz von Foerster One of the founders of cybernetics. He was the first to
study self-organization and self-reference and was the creator of second-order
cybernetics [20, 25].

• Humberto Maturana He developed, together with Francisco Varela, the theory
of autopoiesis and substantially contributed to complex systems theory [1].

• Nikolas Luhmann He applied the theory of autopoiesis to social systems [35].
• Herbert A. Simon He made major contributions to management, cognitive

psychology, and complex systems theory [36]. Three important quotes of Simon
are the following:

– “I don’t care how big and fast computers are; they are not as big and fast as
the world.”

– “Learning is any change in a system that produces a more or less permanent
change in its capacity for adapting to its environment.”

– “The social sciences, I thought, needed the same kind of trigger and the same
mathematical underpinnings that had made the “hard” sciences so brilliantly
successful.”

• Francis Heylinghen He made important contributions to adaptation and
self-organization [8, 37–39].

• James Gleick He reintroduced and reformulated chaos theory and contributed
to the growth of interest in the modern science of complexity [17].
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• H. Haken He studied physical phenomena that exhibit self-organization and
revealed the synergetics mechanism between interacting components that leads
to global patterns [14, 40].

• Manfred Eigen He studied the origin of life, including chemical
self-organization and biological evolution. He was particularly interested in
extremely fast chemical reactions induced in response to very short pulses of
energy. The concept of “hypercube”, i.e., an autocatalytic chemical cycle
involving other cycles, as an explanation for the self-organization of prebiotic
systems, was coined by him in 1971 in cooperation with Peter Schuster [41].

• Gregory Bateson He studied the parallelism between mind and natural evo-
lution and developed the “double-bind” theory of the complexity of commu-
nication [42]. Some relevant statements of Bateson are the following:

– “Logic is a poor model of cause and effect.”
– “Logic can often be reversed, but the effect does not precede the cause.
– “It is impossible, in principle, to explain any pattern by invoking a single

quantity.”
– “We do not know enough how the present will lead into the future.”

• Benoit Mandelbrot He was the founder of fractal geometry, which, as we have
seen in Sect. 8.8, describes the emergence of similar shapes or patterns at dif-
ferent scales that obey the power law of distributions of self-similarity [43] (see
also: [44]).

To summarize the above aspects, we give in Fig. 9.2 the four main areas
involved in the concept of self-organization.

Figure 9.3 shows two examples of self-organized crystal formation and an
example of dissipative structure.

(a) Barium carbonate crystals (http://www.nanowerk.com/spotlight/id646.jpg),
(b) Crystals on cadmium (http://www.natureasia.com/asia-materials/article_

images/227.jpg),
(c) Dissipative structures (http://www.filefestival.org/SITE_2007/RESOURCES/

CONTENT/ILYA02.JPG).

Chaos
Dissipative
Structures

Autopoiesis

Synergetics
Cybernetics

Self-Organization

Fig. 9.2 The basic areas of self-organization
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Fig. 9.3 Natural self-organizing systems
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9.6 Self-organization in Complex Adaptive Systems

Looking at the properties complex adaptive systems listed in most definitions
available in the literature (see Chap. 8) one can verify that self-organization is one
of the most fundamental common features of CASs together with adaptation,
emergence, and complexity. The self-similarity property is a property of
self-organization that is transferred to CASs. Other properties of self-organization
that are transferred to CASs are the following:

• Interdependence
• Interaction
• Selective variety
• Modularity
• Clustering.

A short discussion of them follows.

Interdependence This is a term indicating that the elements (parts, components,
agents) of a complex system are related by interdependence relationships obeying
the physical, biological, informational, systemic, psychological, economic, eco-
logical laws, etc., depending on the scale and nature of them. Examples of such
elements are molecules cells, systems states, animals, circuit elements, trees,
human, etc.

Two elements that cooperate with each other are interdependent and intercon-
nected. Complete dependence (as, e.g., in a crystal where the state of one molecule
determines the states of all the others) may imply full order. Complete indepen-
dence (like the molecules of a gas) implies full disorder, in which case the state of a
molecule cannot give any information about the states of the other molecules.
Interdependence is a concept very common in human societies, enterprises,
economies, and countries interconnected to achieve common goals. It should be
noted that to achieve self-organization, a system must be neither too loosely
interconnected (in which case most elements are independent), nor too strongly
interconnected (in which case most elements influence one another). For example,
in Boolean networks, the optimum self-organization is obtained when there are two
connections per element (unit) [9].

Interaction This is a property closely connected (but not identical) to the inter-
dependence of two or more elements (objects, agents) that are acting so as to have
an effect upon one another. These interactive actions, when combined and inte-
grated, produce very important emergent outcomes. The interaction is usually a
purposeful process aiming at maximizing the fitness, utility, and productivity of
both the individual elements and the entire system or organism. Even if no specific
purpose exists, the elements of the system act according to the input excitation that
is received from the environment. This perception-action (causal) process (or rule)
is effected initially by some type of elements, but then through the interdependence
and interaction that is extended to other element types utilizing some learning or
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evolutionary variation. The interaction process is implemented through communi-
cation and feedback among the system elements. Examples of interactions taking
place in self-organized systems include: interaction of drugs in medications
(pharmacodynamic or pharmacokinetic interactions), physical interactions (ele-
mentary particles’ interactions via exchanging gauge bosons, interactions of
charged particles via electromagnetic-field mediation, gravitational interactions),
sociocultural interactions between individual persons, groups or larger societies and
populations and genetic interactions (combined mutations affecting or not affecting
the genotype), etc. [45, 46].

Selective variety This is the self-organization principle according to which the
wider the repertoire of configurations a system has available for selection, the
higher the probability that one or more of them will be selectively retained. This
principle is the theoretical expression of the “selective-retention” mechanism dis-
cussed in Sect. 9.3. It implies that to increase the probability of achieving
self-organization (and speed-up the process), a larger variety of configurations
should be available for the system to pass through. After self-organization, one
configuration dominates all others, which means that the system symmetry existing
in the disorganized situation is lost. Of course, it must be noted that there does not
exist well-known criteria for the preference of one stable configuration over
another. Thus, it appears that the system has made an arbitrary decision via which it
has changed the repertoire of possibilities. Actually, it is this unpredictability that
(in some sense) produces the observed novelty. This selectivity phenomenon is also
called a bifurcation (or branching) in the possible configuration. When a control
parameter l (called “bifurcation parameter” or “order-parameter”) increases to a
certain critical value lc, there are two possible outcomes for the dependent variables
u, i.e., to go upwards or downwards. In general, a bifurcation is a change in the
number of candidate operating conditions of a nonlinear system that occurs as l is
quasi-statically varied. The depiction of the equilibrium points and limit cycles of a
system plotted against the bifurcation parameter is known as the “bifurcation dia-
gram”. A bifurcation can be super-critical, sub-critical, or trans-critical depending
on the direction of bifurcation, as shown in Fig. 9.4 [47]. The trans-critical bifur-
cation appears when, in the combined space of phase space and bifurcation

(a) Super-critical (b) Sub-critical (c) Trans-critical

Fig. 9.4 Pitchfork bifurcations: a Supercritical, b Sub-critical, c Trans-critical. (https://elmer.
unibas.ch/pendulum/pbif.gif)
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parameter space, two different manifolds of fixed points cross each other. At the
crossing point, the unstable fixed point becomes stable, and, vice versa, the stable
fixed point becomes unstable.

It is noted that a trans-critical bifurcation is unlikely to occur in a space higher
than two-dimensional (because in such a space two lines are unlikely to cross each
other). When the nominal operating point exists, both before and after the critical
parameter value, we say that a stationary bifurcation occurs “from a known solu-
tion”. If the nominal solution disappears beyond the critical parameter value, we say
that a stationary bifurcation occurs “from an unknown solution”. The former is
usually called simply a “stationary bifurcation”.

To illustrate how a bifurcation occurs, we consider the following simple non-
linear system:

_u ¼ lu� u3

where l is the bifurcation parameter. Clearly, the origin u0 = 0 is an equilibrium
point for any value of l. But, as l increases from l = 0, the origin loses stability,
since, at l = lc = 0, a bifurcation occurs, and two more equilibrium points are
possible. This pair of equilibrium points is found by solving the equation (l−u2)
u = 0 for u 6¼ 0, i.e., they are u1 ¼ þ ffiffiffi

l
p

and u2 ¼ � ffiffiffi

l
p

. We say that this pair of
equilibrium points is bifurcated (branched) from the origin for the critical value
lc ¼ 0 of l (i.e., the equilibrium point “breaks”), as shown in Fig. 9.4a. If the
nonlinear system under consideration is

_u ¼ luþ u3;

the direction of bifurcation is reversed resulting in the subcritical bifurcation shown
in Fig. 9.4b.

In complex systems, there may be more than two alternatives solutions (con-
figurations) for selection at the bifurcation point. The increase in the number of
possible configurations that follows the increase in the order parameter l can be
regarded as an increase in general variability, which facilitates the self-organization
process. This is a special case of “order-from-noise” or “order-out-of chaos” pro-
cesses [8, 37, 39].

Modularity This is a general principle for managing complexity. That is, to
manage a large number of systemic interconnections, a complex system is broken
into discrete subassemblies which communicate with one another via standard
channels within a standardized structure or architecture. Modularity is an inherent
feature of many living organisms, but today it is extensively used in man-made
complex systems and social systems. According to F.A. Hayek [48]: “Complexity is
a function of the minimum number of elements of which an instance of the pattern
must consist in order to exhibit all the characteristic attributes of the class of
patterns in question.” According to Herbert Simon [36]: “A complex system is one
made up of a large number of parts that interact in a non-simple way,” and so
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complexity is a matter of both the number of distinct parts contained in the system
and the nature of the interconnection or interdependencies between these parts.
Simon states that the criterion of decomposability (i.e., of grouping the system’s
elements in a smaller number of subsystems) in modular design can be provided by
a person or drawn from the systems available (ready- made) in nature. In a
non-decomposed system, the correct working of a given part depends on the per-
formance of other parts with high probability, but in a decomposed system, this
effect occurs with much lower probability. Therefore, a decomposable system may
continue to work (of course, suboptimally) even if some subsystems are damaged or
are incomplete. In other words, decomposable systems have the important feature
of fault/failure tolerance and robustness.

In engineering and societal systems, the interaction between the parts can be
considered to be an issue of information exchange or communication. For example,
in computer systems, the decomposition of a system into modules can be done
through partitioning of information into visible design rules and hidden design rules
[49, 50].

• Visible design rules These rules consist of three parts, viz.,: architecture
(identify the modules/functions/structure of the system), interfaces (ways of
interaction and communication and fitting of modules), and standard test
(conformity of modules to design rules and measure of relative performance of
modules).

• Hidden design rules These rules are embedded within the modules without the
need of being communicated to other modules, but only within the boundaries
of the module.

According to Richard Langlois [50], the three parts (architecture, interfaces,
standard test) are collectively called “modularization”. Regarding modularity in
social systems, the design rules of interaction are the so-called “social institutions”,
which (among others) determine how much a society is a modular system [51].
Modularity in social systems has been a topic of study since the 1960s. For
example, Adam Smith [52] coined a decentralized concept which, he believed,
would lead to economic growth enforced by learning, evolution, and further divi-
sion of labor. Smith stated that his decentralized system is “the obvious and simple
system of natural liberty.”

Clustering This is a concept similar to modularization and has been developed in
the field of complex networks (electrical networks, social networks, political net-
works, etc.). A cluster is a group of elements (components, agents, etc.) that are
interacting and usually have similar goals, beliefs, values, etc. Clustering means
that, if the element A is connected to B and B to C, then there is a high probability
that A is also connected to C (this probability is always higher than the corre-
sponding probability in a random (non-clustered) network. To understand better the
concept of clustering, we consider the case of social networks (groups, societies,
etc.). Here, clustering can be interpreted as, e.g., “the friends of my friends are
(likely to be) my friends” [8]. Expressing this type of clustering in another way, we
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have a social cluster or community if, e.g., everyone knows everyone, because
when one meets regularly his/her friends, he/she has the chance to meet their friends
as well. In general, if an entity A interacts frequently with an entity B, and B
interacts with C, then with high probability A will interact (sooner or later) with C
as well. If A and B have similar (or identical) goals, it is quite likely to act in a
synergetic way, and the same is true for B and C, and consequently, between A and
C. Scientific societies and worker syndicates operate in this cluster-wise manner.

9.7 Examples of Self-organization

It is generally accepted, on the basis of deep studies and extensive experiments, that
most natural systems are self-organizing systems. Therefore, in their effort to
understand how these self-organizing systems work, and what is their performance,
scientists and engineers have designed and built appropriate computer-based
models and simulators that involve embedded multiple agents, local interactions,
multiple connections, positive and negative feedback loops, and synergetic features.
The states and outputs of these simulators are monitored, analyzed, and evaluated
over time using suitable human–machine interfaces. Therefore, these models and
simulators provide the technological tools for the qualitative and quantitative study
of self-organized systems. Some examples of such models and simulators include
flocks, herds, swarms, plant communities, predator–prey interactions,
plant-herbivore communities, social-insect colonies, fractal river basins, salmon
propagation in rivers, immune systems, cellular automata, etc. [19, 53–62].
Especially, Holland’s ECHO (ecological) CAS Model [59] has found great utility
and many applications [60, 63].

Our purpose in this section is to provide a brief outline of a few natural and
man-made self-organizing systems, namely:

• Ecological systems
• Magnetization
• Heated liquids
• Linguistic systems
• Knowledge networks
• Self-organizing maps.

Ecological systems This example illustrates very well the difference between the
classical “top-down” from the “bottom-up” (self-organizing) modeling of life in
ecological systems [19]. In the top-down methodology, the phenomena are studied
using parameters from the higher hierarchical levels. For example, predators are
studied as homogeneous populations that uniformly impact homogenous prey
population. Trees are not studied individually but as patches of trees. This
top-down approach violates two of the basic aspects of biology, namely, individ-
uality and locality, which implies that population evolution is the result of activity
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at the level of the individual and the range of locality. Actually, individual members
in a population have clear differences (e.g., body size, reproduction rate, etc.) that
may have cascading and amplifying effects at higher levels. Tree gaps that result
when a tree falls in the tropics may produce severe ecological changes in the region
of the gap (due, e.g., to a gap in the canopy). Clearly, seeds of the forest do not have
an equal chance of germinating in the gap. Ignoring this fact (i.e., locality) may
mask the factors that affect spatial and temporal ecological dynamics. For example,
seeding found in a high-rainfall region may have better-growing conditions than
those that exist in the dry soil. The possibility of increased moisture-detention is
very high, which may result in the creation of new landscape patterns. This is an
example of the validity of the ecological principle that “pattern affects process”,
which is one of the self-organization mechanisms in ecological systems [64, 65].

Magnetization This is a simple self-organizing system used by many authors to
illustrate the basic physical mechanism of self-organization [37]. Consider a
potential magnetic material (e.g., a piece of iron), which consists of a huge number
of microscopic magnetic “dipoles” (known as “spins”). At high temperatures, these
ferromagnetic dipoles move quite randomly (i.e., they are disordered), and the
orientations of their magnetic fields are random and cancel each other, resulting in a
non-magnetized overall configuration (state) of the material (see Fig. 9.5a). But, if
the temperature is lowered, the “spins” are spontaneously aligned and point in the
same direction (Fig. 9.5b). The outcome of this alignment is that now the magnetic
fields add up, producing a strong, overall magnetic field.

This preference of the spins is due to the fact that dipoles pointing in the same
direction attract each other (the north pole of one magnetic dipole attracts the south
pole of another dipole), while dipoles with opposite direction repel each other. This
spontaneous alignment (magnetization) process shows that “self-organization” is
occurring. In other cases, such as “crystallization”, the self-organization involves
not only the orientations but also the positions of the molecules which are evenly
arranged.

Fig. 9.5 Self-organization leading to magnetization a disordered spins, b ordered spins
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Heated Liquids A liquid contained in an open container is heated evenly from
below (via a hot plate) [37]. Hot liquid is lighter than cold liquid, and so it tends to
move upwards. Similarly, the cold liquid tries to sink to the bottom (convective
instability). These two opposite movements take place in a self-organized way in
the form of parallel “rolls” with an upward flow on one side of the roll and a
downward flow on the other side. Initially, the molecules of the liquid have a
random movement, but finally, all “hot” molecules are moving upward on the one
side of the roll and “cool” molecules are moving downward on the other side as
shown in Fig. 9.6.

This self-organizing process was first observed by Bénard and is known as the
“Bénard phenomenon”. In this example, the molecules after self-organization keep
in perpetual motion, whereas the magnetic dipoles, in the magnetization example,
after self-organization, do not move (the spins are “frozen”).

9.7.1 Linguistic Self-organization

Here again, a super macro-global structure is the result of local interactions.
Self-organizing issues in linguistics include [66]:

Fig. 9.6 Three steps in the self-organization movement process of the liquid molecules:
a Rayleigh number: Ra ¼ 2084, b Ra ¼ 2603, c Ra ¼ 9215 (http://hmf.enseeiht.fr/travaux/
CD0001/travaux/optmfn/hi/01pa/hyb72/rb/rb.htm)
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• Decentralized generation of lexical and semantic conventions in populations of
agents.

• Formation of conventionalized syntactic structures.
• Conditions for selection of systematic reuse.
• Shared inventories of vowels or syllables in groups of agents.

To study how self-organization takes place in linguistics, suitable operational
models are constructed that explicitly involve the set of assumptions and show how
their consequences (conclusions) are calculated.

Self-organization in linguistics occurs in the following [66]:

• In the emergence of language (information senders and receivers, composi-
tionality, the ability to sustain cultural progress cumulatively).

• In language acquisition (through the ability to see others as intentional agents,
or through joint attention of actions).

• In articulatory phonology (speech production via a coordinated set of gestures
known as “constellations”).

• In diachrony and synchrony (dynamic or self-organizing models of language
evolution).

9.7.2 Knowledge Networks

Knowledge networks [8] belong to the area of information science (see Sect. 5.2)
and refer to the documentation items in libraries and databases worldwide.
Documents (papers, books, reports) are typically produced by authors and
researchers working in defined fields and building further on the result of other
authors. This knowledge-producing system is actually a self-organized system,
because it is not controlled centrally, but is generated spontaneously by local
interactions of the individuals or groups that produce the new knowledge. The
networks are formed by the researchers, the concepts used, and the publications
linked directly or indirectly by corresponding relations (e.g., citations, collabora-
tion, and information exchange). The new knowledge (patterns) are generated via
the nonlinear interactions of multiple autonomous agents (scientists, groups,
organizations), and the overall system is a “heterogeneous network” involving three
different kinds of nodes, viz.: agents (individual scientists, groups, organizations),
containers (documents, papers, etc.), and concepts (keywords, abstract knowledge
items). Knowledge networks can be viewed as complex adaptive systems and can
be designed and operated by CASs techniques.

9.7 Examples of Self-organization 481



9.7.3 Self-organizing Maps

Self-organizing maps(SOMs) [67, 68] represent a special class of artificial neural
networks that are based on competitive learning, in which the network’s output
neurons compete among themselves to be fired or activated such that only one
output neuron is activated (on) at each time. The name self-organizing map is due to
the fact that the impact patterns are mapped on a topographical map where the
spatial locations (coordinates) of the neurons indicate the various inherent features
of the input patterns. An SOM transforms an input signal pattern of arbitrary
dimension into a one-or two-dimensional discrete map and performs this trans-
formation in a topologically adaptive way. The topographical mapping of the input
patterns can be done as suggested by Kohonen and shown in Figs. 9.7, 9.8. This
mapping is known as a Kohonen SOM or Kohonen model. It is clear that each
neuron has a set of neighbors.

Each input pattern consists of a localized region or “spot” of activity against a
quiet background. Since the location and nature of “spots” are different from one
input pattern to another, to ensure that the self-organization process will be properly
established, all neurons must receive a sufficient number of different realizations of
the input pattern. The formation of the SOM starts by initializing the network’s
synaptic weights randomly, with small values provided by a random-number
generator. After this random initialization, the SOM formation is formed via three
basic processes:

Fig. 9.7 A first
representation of a Kohonen
self-organizing map. (http://
www.ai-junkie.com/ann/som/
som1.html)
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• Competition A fitness (discriminant) function is computed for each input pat-
tern by the neurons. The neuron with the largest fitness value is declared the
winner of the competition.

• Cooperation The winning neuron specifies the location of a neighborhood of
fired neurons, which are allowed to cooperate.

• Synaptic adaptation The excited neurons increase the value of the fitness
function through suitable adjustments of their synaptic weights. In this way, the
winning neuron enhances its response to similar patterns subsequently entered
into the neural network/SOM.

The SOM starts from a completely disordered initial state and leads to an
organized representation of activation patterns drawn from the input space.
Kohonen [67, 68], pointed out that this is performed in these two phases:

• Ordering (self-organizing) phase
• Convergence phase.

Mathematical details of Kohonen’s SOM algorithm can be found in standard
textbooks on neural networks (e.g., [69–71].

9.8 Concluding Remarks

In this chapter, we have provided a tour to the basic concepts and principles of
self-organization, which occurs in natural, biological, and societal systems.
Self-organization is performed (and needed) in complex systems and, together with
adaptation, in complex adaptive systems. We have seen that the mechanisms by
which self-organization is realized are synergy, entropy export, positive/negative
feedback interplay, and selective retention. Other self-organizational properties that
are also possessed by complex adaptive systems are interdependence, interaction,
selective variety, modularity, and clustering.

Fig. 9.8 The winning node is
the pink one (http://www.ai-
junkie.com/ann/som/som1.
html http://www.lohninger.
com/comimg/kohonen1.gif)
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Complexity implies a lack of symmetry which exists in both full disorder and
full order, but the midpoint between order and disorder which specifies the com-
plexity depends on the level of representation. Something that appears to be
complex in one representation may not seem complex in a representation on another
scale [72]. A fractal is self-similar, i.e., its shape is independent of scale, something
which is not valid in the case of a simple system like a building which, to an outside
observer, is seen to be different at several scales: the entire building, the doors/
windows, the rooms, and the bricks represent four different scales. Typically, an
observer picks up those distinctions (features) that are in some sense the most
important and creates categories of similar processes (neglecting the existing dif-
ferences among the members of each category). Thus, the increase or decrease of
complexity depends on which distinctions the observer is introducing [5, 6, 38].

We have seen that an increase in variety (which is called differentiation), or an
increase in the connectivity (which is called integration) of a complex system
facilitates and speeds-up the process of self-organization. Evolution and adaptation
are based on (and produce) differentiation and integration along with several
dimensions, viz., space, spatial scale, time, and timescale, leading to the so-called
structural, hierarchical, functional, and functional hierarchical differentiation/
integration, respectively [8, 37, 39].

To recapitulate, a self-organizing system has the following (surely not exhaus-
tive) features:

• Autonomy (absence of external ordering or controlling agent).
• Self-configuration (autonomous arrangement of system’s constituent past).
• Dynamic performance (time-evolving operation).
• Spontaneous order (emerging from local interactions).
• Synergy (mutual coevolution adaptation of local agents).
• Perturbations (noise/fluctuations, order-from-noise).
• Complexity (“paradox” phenomena).
• Nonlinearity (multiple “attractors”, bifurcations).
• Dissipation (far from equilibrium, extropy).
• Self-organized criticality (edge-of-chaos operation).
• Selectively variety (selective retention).
• Positive/negative feedback interplay.
• Self-similarity (power-law distribution).
• Commonly understood action (at all levels).
• Redundancy (robustness to faults and damages).
• Self-maintenance (reproduction/repair).
• Symmetry-breaking (heterogeneity).
• Differentiation and integration.
• Modularity and clustering.
• Self-reference (the system’s behavior is evaluated with respect to the system

itself).
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We close our discussion by noting that self-organization is typically achieved
through distributed (non-centralized) control. This means that there is not a unique
external or internal controller that drives the system towards self-organization.
Rather, all parts of the system contribute smoothly to the resulting self-organized
configuration.

Today, most industrial and other man-made controllers are centralized, and those
which are decentralized or distributed work in a deterministic (reductive/
cause-effect) way. But as Jim Pinto argues [73], drawing from [17], the advent
of self-organizing industrial controllers (i.e., controllers working with mechanisms
and principles of natural-like self-organization) will mark the end of deterministic
and centralized controllers. The main reason for this is the fact that conventional
centralized or decentralized controllers and DCSs cannot be sealed (i.e., they do not
have the necessary self-similarity property). Therefore new peer-to-peer I/O-based
self-organizing controls are the controls of the future. In these controllers and
systems, the overall behavior must be the result of the interactions of the individual
elements (components, agents, computer programs), which both decompose and
integrate the control/performance problem. This means that all man-made
self-organizing systems should have autonomy (partly or fully) and be able to
operate successfully without the need for an external designer. Examples of such
man-made (engineered), self-organizing systems (with features like the ones of
natural systems) include many robotic systems such as robot swarms and robot
groups [74], etc. These systems are characterized by prediction (anticipatory con-
trol), adaptation (adaptive control), robustness (robust control), and general
intelligence (intelligent control) as described in Chap. 7. Artificial-life (Alife) sys-
tems form a class of man-made systems that exhibit properties and behaviors
characteristic of living organisms, i.e., they synthesize life-like behaviors within
computer and control science and engineering. As the founder of Alife, Chris
Langton stated [2]: “by extending the empirical foundation upon which biology is
based beyond the carbon-chain life that has evolved on Earth, Artificial Life can
contribute to theoretical biology by locating “life-as-we-know-it” within the larger
picture of “life-as-it-could-be”… Only when we are able to view life-as-we-know-it
in the larger context of life-as-it-could-be we will really understand the nature of the
beast.”

Thus, Alife is a relatively new field employing a synthetic approach to the study
of life-as-it-could-be. Alife differs substantially from artificial intelligence. The
most important philosophical aspects of this area are coming from biology, not from
psychology, and it complements traditional/theoretical biology in two ways,
namely: (i) it deals with the synthesis of life-like behavior (further to the analysis of
biological processes for which biology is concerned), and (ii) it aims at exploring
the possibilities of life-as-it-could-be. That is, Alife explores and studies the total
range of mechanisms that can aid such a synthesis, independently of their similarity
or not of what we see in the actual biosphere. An important reference work on Alife
is [3]. Two references on self-organization available on the Web are [75, 76]. Some
references on history, principles, simulation, and global patterns of
self-organization are [77–81].

9.8 Concluding Remarks 485



References

1. H. Maturana, F. Varela, The Tree of Knowledge (Shambhala, Boston, 1992)
2. C. Langton (ed.), Artificial Life, in Proceedings 1st A Life Conference, Santa Fe (Addison –

Wesley, Redwood City, CA, 1989)
3. S. Levy, Artificial Life: The Quest for a New Creation (Jonathan Cape, London, 1992)
4. Organization (noun), Longman Dictionary of Cotemporary English. http://www.idoceonline.

com/Organizations-Topic/organization
5. W. Ross, Ashby, principles of the self-organizing dynamic system. J. Gen. Psych. 37, 125–

128 (1947)
6. W.R. Ashby, Principles of the self-organizing system, in Principles of Self-organization

(Pergamon Press, Oxford, pp 255–278, 1962). (Also in: E.C.O. Special Issue, vol 6(1–2),
pp 102–126, 2004)

7. A. Schlemm, Self Organization in Society. http://www.thur.de/philo/ensoges/htm
8. F. Heylighen, Complexity and self-organization. in Encyclopedia of Library and Information

Sciences, eds. by M.J. Bates, M.N. Mack (Taylor and Francis, London, 2008)
9. C. Lucas, Self-organization FAQ, (May 1997). http://psoup.math.wisc.edu/archive/sosfaq.

html
10. S. Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonablau,

Self-organization in Biological Systems (Princeton University Press, Princeton, N.J., 2001)
11. A.N. Whitehead, Symbolism: Its Meaning and Effect (MacMillan, London/ Oxford, 1927)
12. M.B.L. Dempster, A self-organizing systems perspective on planning for sustainability,

Master Thesis, University of Waterloo, Waterloo, Ontario, Canada, 1998. http://www.bethd.
ca/pubs/mesthe.pdf http://www.nesh.ca/jameskay/ersserver.u.waterloo.ca/jjkay/grad/bd

13. T. Imada, Self-organization and Society (Springer, Berlin, 2008)
14. H. Haken, Information and Self-organization: A Macroscopic Approach to Complex Systems

(Springer, New York, 2000)
15. H.J. Zeiger, P.L. Kelley, Lasers, in The Encyclopedia of Physics ed. by R. Lerner, G. Trigg

(VCH Publishers, Chichester, U.K., pp 614–619, 1991)
16. I. Prigogine, G. Nicolis, Self-organization in Non-Equilibrium Systems (Wiley, New York,

1997)
17. J. Gleick, Chaos: Making a New Science (Cardinal, London, 1987)
18. I. Prigogine, I. Stengers, Order out Chaos (Bantam Books, New York, 1984)
19. E.H. Deker, Self-organizing systems: a tutorial in complexity, department of biology,

University of New Mexico, Albuquerque, US. http://www4.ncsu.edu/*debrown/sos.html
20. H. Von Foerster, On Self-Organizing Systems and Their Environments, in Self-Organizing

Systems, ed. by M.C. Yovits, S. Cameron (Pergamon Press, London, pp 31–50, 1960)
21. S.A. Kauffman, Co-evolution to the edge of chaos: coupled fitness landscapes, poised states,

and co evolutionary avalanches. J. Theoretical Biology 149, 467–505 (1991)
22. S.A. Kauffman, At Home in the Universe (Oxford University Press, Oxford, 1995)
23. P. Bak, C. Tang, K. Wiesenfeld, Self-Organized Criticality. Phys. Rev. A 38, 364–374 (1988)
24. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, Berlin,

1996)
25. R.V. Sole, S.C. Manrubia, Are rainforests self-organized in a critical state? J. Theor. Biol.

173, 31–40 (1955)
26. H.J. Jensen, Self-Organized Criticality (Cambridge University Press, Cambridge, 1998)
27. R.V. Sole, O. Miramontes, Information at the edge of chaos in fluid neural networks.

Physica D 80, 171–180 (1995)
28. N. Wiener, The Mathematical of Self-Organizing Systems: Recent Developments in

Information and Decision Processes (MacMillan, New York, 1962)
29. Cybernetics and Systems Thinkers, Principia Cybernetica Web. http://pespmcl.vub.ac.be/

CSTHINK.html#Foerster

486 9 Self-organization

http://www.idoceonline.com/Organizations-Topic/organization
http://www.idoceonline.com/Organizations-Topic/organization
http://www.thur.de/philo/ensoges/htm
http://psoup.math.wisc.edu/archive/sosfaq.html
http://psoup.math.wisc.edu/archive/sosfaq.html
http://www.bethd.ca/pubs/mesthe.pdf
http://www.bethd.ca/pubs/mesthe.pdf
http://www.nesh.ca/jameskay/ersserver.u.waterloo.ca/jjkay/grad/bd
http://www4.ncsu.edu/%7edebrown/sos.html
http://pespmcl.vub.ac.be/CSTHINK.html#Foerster
http://pespmcl.vub.ac.be/CSTHINK.html#Foerster


30. History of Cybernetics and Systems Science. http://pespmc1.vub.ac.be/cybhist.html, http://
www.answers.com/topic/history-of-cybernetics

31. W.K. Ashby, Design for the Brain, The Origin of Adaptive Behavior (Chapman and Hall,
London, 1966)

32. H. Atlan, Immune information, self-organization and meaning. Int. Immunol. 10(6), 711–717
(1988). http://worldcat.org/identities/lccn-n82-129180

33. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5, pp 115–133 (1943). http://philosophy.uwaterloo.ca/MindDict

34. I. Prigogine, The End of Certainty (The Free Press, New York, 1997)
35. N. Luhman, Essays on Self-Reference (Columbia University Press, Columbia, 1990)
36. H.A. Simon, The architecture of complexity. Proc. Amer. Philos. Soc. 106, 467–482 (1962)

(also: In: The Sciences of the Artificial, MIT Press, Cambridge, 1981)
37. F. Heylinghen, The science of self-organization and adaptivity, in Encyclopedia of Life

Support Systems (EOLSS Publishers, Oxford, 2001). http://www.edss.net
38. C. Gershenson, F. Heylinghen, When can we call a system self-organizing? in Advances in

Artificial Life: ECAL-2003, Dortmund, Germany, ed. by W. Banzhaf, et al. (Springer-LNAI,
Berlin, 2003), pp. 606–614

39. F. Heylighen, Principles of systems and cybernetics: an evolutionary perspective, in
Cybernetics and Systems ’92 R, ed. by Trappl (World Scientific, Singapore, pp 3–10, 1992)

40. H. Haken, Synergetics: An Introduction: Non-equilibrium Phase Transition and
Self-organization in Physics, Chemistry and Biology, Springer, Berlin, 1983

41. M. Eigen, P. Schuster, The Hypercycle: A Principle of Natural Self-organization (Springer,
Berlin, 1979)

42. G. Bateson, Mind and Nature: A Necessary Unity, Series on Advances in Systems Theory,
Complexity and Human Sciences (Hampton Press, N.J., Cresskill, 1979)

43. W.H.B. Mandelbrot, The Fractal Geometry of Nature (Freeman Press, New York, 1983)
44. I. Havel, Scale dimensions in nature. Intl. J. Gen. Syst. 23(2), 303–332 (1995)
45. Interaction-Wikipedia. http://en.wikipedia.org/wiki/interaction
46. B.L. Dress, et al, Derivation of genetic interaction networks from quantitative phenotype data.

Genome Biol. 6(4), R.38 (2005). http://genomebiology.com/2005/6/4/R38
47. E.H. Abed, H.O. Wang, A. Tesi, Control of Bifurcation and Chaos, in The Control Handbook,

ed. by W.S. Levine (CRC Press/IEEE Press, New York, 1996), pp. 951–966
48. F.A. Hayek, Studies in Philosophy, Politics, and Economics (The University of Chicago

Press, Chicago, 1967)
49. C.Y. Baldwin, K.B. Clark, Managing in an age of modularity. Harvard Bus. Rev. 75(5), 84–

93 (1997)
50. R.N. Langlois, Modularity in Technology, Organization and Society, Working Paper

1999-05, Department of Economics, University of Connecticut, August, 1999
51. R.N. Langlois (ed.), Economics as a Process, Essays in the New Institutional Economics

(Cambridge University Press, Cambridge, 1986)
52. A. Smith, An Enquiry into the Nature and Causes of the Wealth of Nations (Clarendon Press,

Glasgow Edition, Oxford, 1976)
53. M. Mitchell, S. Forrest, Genetic algorithms and artificial life. Artif. Life 1, 267–289 (1994)
54. R.D. Boids, Flocks, Herds and Schools: A distributed Behavioral Model, 1999. http://www.

red.com/cwr/boids.html
55. D. Hiebeler, The Swarm Simulation System and Individual- Based Modeling, Working Paper

94-12-065, Santa Fe Institute, 1994. http://cam.cornell.edu/hiebeler/swarm-paper.html
56. T. Smith, M. Huston, A theory of the spatial and temporal dynamics of plant communities.

Vegetation 83, 49–69 (1989)
57. E. McCauley, W.G. Wilson, A.M. de Roos, Dynamics of age-structured and spatially

structured predator-prey interactions: individual–based models and population-level formu-
lations. Am. Nat. 142, 412–442 (1993)

58. C. Furusava, K. Kaneko, Origin of complexity in multicellular organisms. Phys. Rev. Lett. 84
(26Pt1), 6130–6133 (2000)

References 487

http://pespmc1.vub.ac.be/cybhist.html
http://www.answers.com/topic/history-of-cybernetics
http://www.answers.com/topic/history-of-cybernetics
http://worldcat.org/identities/lccn-n82-129180
http://philosophy.uwaterloo.ca/MindDict
http://www.edss.net
http://en.wikipedia.org/wiki/interaction
http://genomebiology.com/2005/6/4/R38
http://www.red.com/cwr/boids.html
http://www.red.com/cwr/boids.html
http://cam.cornell.edu/hiebeler/swarm-paper.html


59. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence (MIT Press, Cambridge, MA,
1975)

60. P.T. Hraber, T. Jones, S. Forrest, The ecology of echo. Artificial Life 3, 165–190 (1997)
61. G. Hartvigsen, S.A. Levin, Evolution and spatial structure interact to influence

plant-herbivore population and community dynamics. Proc. Royal Soc. London[B] 264,
pp 1677–1685 (1997)

62. M.R. Cross, Salmon breeding behavior and life history evolution. Ecology 72, 1180–1186
(1991)

63. D.L. Harris, Echo Implemented: A Model for Complex Adaptive Systems Computer
Experimentation, Sandia National Laboratories, SAND 2001–2017, 2001

64. C.B. Huffacer, Experimental studies on predation: dispersion factors and predator-prey
oscillations. Hilgargia 27, 343–383 (1958)

65. A.S. Watt, Pattern and Process in the Plant Community. J. Ecol. 35, 1–22 (1947)
66. Self-organization: Wikipedia. http://en.wikipedia.org/wiki/Self-organization
67. T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybern. 43,

59–69 (1982)
68. T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1997
69. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, Upper Saddle

River, N.J., 1999)
70. I. Aleksander, H. Morton, An Introduction to Neural Computing (Chapman and Hall, London,

1990)
71. J.A. Anderson, Introduction to Neural Networks (MIT Press, Cambridge, MA, 1995)
72. D.A. Perry, Self-Organizing Systems across Scales. Trends in Evolution and Ecology 10,

241–244 (1995)
73. J., Pinto, The Advent of Self-Organizing Industrial Controls: The End of Centralized,

Deterministic Control Systems. http://www.jimpinto.com/writings/selforg.html
74. J. Halloy et al., Social integration of robots into groups of cockroaches to control

self-organizing choices. Science 318(5853), 1155–1158 (2007)
75. An Introduction to Self-organization http://www.rpi.edu/*eglash/eglash.dir/selforg%20intro.

htm
76. Cellular Automata. http://llk.media.mit.edu/projects/emergence/contents.html
77. History of self-organization in science and society. http://www.rpi.edu/*eglash.dir/selforg/

selforg%20history.htm
78. B. Farley, W. Clark, Simulation of self-organizing systems by digital computer. Trans. IRE,

Professional Group Inf. Theory 4(4), 76–84 (1954)
79. H. Von Foerster, Jr., W. Zopf (eds.), 9 V, Principles of self-organization, Information Systems

Branch, US Office of Naval Research, 1962
80. F. Heylinghen, Relational closure: a mathematical concept for distinction- making and

complexity analysis, in Cybernetics and Systems ’90, ed. by R. Trappl (World Science
Publishers, pp 335–342, 1990)

81. M. Kawata, V. Toquenaga, Artificial individuals and global patterns. Trends Ecol. Evol. 9,
417–421 (1994)

488 9 Self-organization

http://en.wikipedia.org/wiki/Self-organization
http://www.jimpinto.com/writings/selforg.html
http://www.rpi.edu/%7eeglash/eglash.dir/selforg%20intro.htm
http://www.rpi.edu/%7eeglash/eglash.dir/selforg%20intro.htm
http://llk.media.mit.edu/projects/emergence/contents.html
http://www.rpi.edu/%7eeglash.dir/selforg/selforg%20history.htm
http://www.rpi.edu/%7eeglash.dir/selforg/selforg%20history.htm

	9 Self-organization
	Abstract
	9.1 Introduction
	9.2 What Is Self-organization?
	9.2.1 Definition of W. Ross Ashby
	9.2.2 Definition of Francis Heylinghen
	9.2.3 Definition of Chris Lucas
	9.2.4 Definition of Scott Camazine
	9.2.5 Definition of A.N. Whitehead
	9.2.6 Definition of M. B. L Dempster

	9.3 Mechanisms of Self-organization
	9.4 Self-organized Criticality
	9.5 Self-organization and Cybernetics
	9.6 Self-organization in Complex Adaptive Systems
	9.7 Examples of Self-organization
	9.7.1 Linguistic Self-organization
	9.7.2 Knowledge Networks
	9.7.3 Self-organizing Maps

	9.8 Concluding Remarks
	References


