Chapter 4
Information I: Communication,
Transmission, and Information Theory

The importance of information is directly proportional to its
improbability.
Jeremia Eugene Pournelle
Intelligence is not information alone but also judgment, the
manner in which information is collected and used.
Carl Sagan

Abstract Information is a basic element of life and society involved in all areas of
human, scientific, technological, economic, and developmental activity. Information
storage, flow, and processing are inherent processes in nature and living organisms.
Information transmission and communication/networking techniques contribute to
the development of modern society, including social, economic, business, scientific,
and technological operations and activities. This chapter covers at a conceptual level
the following issues of information: definition, historical landmarks of its manifes-
tations, communication models, modulation/demodulation, computer networks,
multimedia, informatics/telematics, Shannon information entropy, source and
channel coding/decoding, and theorems of information theory. The above sets of
information/communication models, techniques, and technologies are affecting, and
will continue to increasingly affect, the social, economic/business, and develop-
mental activities of people in the short- and long-term future.

Keywords Information - Communication systems and models - Modulation
Demodulation - Analog modulation/demodulation - Frequency modulation/
demodulation - Phase modulation/demodulation - Pulse modulation/demodulation
Information theory/theorems - Shannon’s entropy - Coding/decoding

Source coding - Channel coding - Hamming distance - Convolutional codes
Error detecting and correcting codes

4.1 Introduction

The term “information” is very diverse and is used in almost all areas of human
scientific, technical, economic, and societal activity. In particular, information
covers communication theory, information theory, information technology,
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informatics, documentation science, and information systems that are the result of
the interactions between technology and human processes.

Very broadly, the development of human communication and information
dissemination has spanned three main periods:

e Speech and language development era.
e Development of writing era.
e Information revolution era.

Speech and language enabled humans to exchange knowledge with others who
were physically at the same place. Writing has enabled communication between
people at different places and times and initiated the development of civilization.
The information revolution is still on-going and expanding with advancements in
computer science and engineering, telecommunication systems, knowledge science,
and computer networks, the biggest and most powerful of which is the Internet.

The above shows that “information” is indeed one of the “basic pillars” of
human life and society, as will be addressed in this book. In the present chapter, we
will guide the reader to the concept of information, including a listing of the key
historical landmarks of its particular manifestations and branches. The core of the
chapter is the tour to communication and information transmission theory, namely,
communication models, modulation/demodulation, Shannon’s information entropy,
source coding/channel coding, and theorems of information theory. The material in
the chapter is not intended to constitute a complete treatment of the subject, but it is
sufficient for the purposes of this book which principally aims at highlighting the
impact of the “information pillar” on human life and society (Chap. 11). The fields
of information documentation science, information science, information technol-
ogy, and information systems will be discussed in the next chapter.

4.2 What Is Information?

According to the Oxford English Dictionary (1989), the two main contexts in which
the term information is used are as follows:

e The act of molding the mind.
e The act of communicating knowledge.

The two processes, “molding” and “communicating”, are intrinsically related
and, in most cases, occur inseparably (although not in a clearly known way).

Other frequently used interpretations of the term information include the fol-
lowing (Dictionary.com):

e Knowledge communicated or received concerning a particular fact or
circumstance.

e Knowledge gained through study, communication, research, instruction, expe-
rience, etc.
The act or fact of informing.
An indication of the number of possible choices or messages.
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e Important or useful facts obtained as output from a computer via the processing
input data with a program.
Data at any stage of processing (input, storage, output, transmission, etc.).
A numerical measure of the uncertainty of an experimental outcome.

e The result of applying data processing to data, giving it context and meaning.
Information can then be further processed to yield knowledge.

e Directory assistance.

The concept of information as “knowledge communicated” has a dominant
position in modern human life and society and has been fully developed after World
War II with the advancement and use of information science, informatics, computer
science, computer networks, information theory, information technology, and in-
formation systems. From an epistemological viewpoint, the information concept has
also found extensive and important use in biology, physics, psychology, etc.

The term information has a Latin origin (informatio, informo) [1, 2] and is
composed by the prefix “in” and the word “formatio” or “formo” which has the
meaning of giving a form to something. The prefix “in” here is used to make
stronger the act of this form giving. There are two primary contexts in which the
term information or informo has been used, the first is a tangible (corporaliter)
context and the second an intangible (incorporaliter) concept. The tangible context
refers to low-level processes, and the intangible context to high-level processes
(moral, pedagogical, spiritual, mental). Capurro [1] has studied the Greek origins of
the term informatio and its subsequent evolution. The Greek origin is evident in the
works of Cicero (106-43 B.C.) and Augustine (354-430 A.D.) [1, 2].

The Greek term for information is pliroforia (nAnpo@opio) composed by the two
words “pliro” (mApng = complete) and “foria” (pépw = carry/bring). The word
pliroforia indicates that the common meaning (sense) of a simple or complex symbol
consisting of two or more subjects is completely carried. Conceptually, the term
pliroforia (information) signals the content that is complete and clear (in whatever
form). In computer science, the information is reflected in the qualitative value of the
“bit = binary digit” 0 or 1 or the quantum bit (qubir) in quantum computers. The
computer processes the data (sequences of Os, 1s) and provides processed data. The
human gives meaning to these processed data and converts them into “information”.

It must be remarked that today the word information is used in almost all scientific
fields with various different meanings depending on the subject of each field and the
processes studied therein (e.g., decrease in entropy, physical organization, a com-
munication pattern, a form of feedback control, the meaning of a linguistic term, the
probability of a signal transmitted over a communication channel, etc.). According to
Bogdan [3]: “There seems to be no unique idea of information upon which these
various concepts converge and hence no proprietary theory of information.”

The issue of whether the concept of “information” should include necessarily a
human knower or an interpretative component or exclude mental processes and
user-oriented intentions and address only an objective magnitude or property of
human beings is of continuous concern by scientists and philosophers [4]. Several
approaches that belong between these two extremes, including the need for a
unified theory of information, have been proposed [5].
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In [6], Machlup and Mansfield present their view that: “Information is addressed
to human minds and is received by human minds.” All other senses are metaphoric
and anthropomorphic. That is, the basic senses in information deal with “telling
something or with the something that is being told.” Therefore, according to [6], the
term information is not appropriate for use in the context of signal transmission. In
overall, information is a human phenomenon that involves individuals transmitting
and receiving messages in the framework of their possible decisions and actions.

In [7], Capurro defines information as an anthropological class referring to the
phenomenon of human messages with vertical and horizontal structures related to
the Greek concept of message (oryyehio: aggelia or pfpvopo: menima) and the
philosophic discourse (Adyog: logos). The debate about the unification and natu-
ralization of the term information goes back to Boltzmann, Neumann, Nyquist,
Wiener, and Hartley.

In [8], R.V.L. Hartley states: “it is desirable to eliminate the psychological
factors involved [in electrical transmission systems] and to establish a measure of
information in terms of purely physical quantities” (This is because electrical
transmission systems have to do not with humans but with machines).

According to C.S. Pierce (1839-1914) and C.W. Morris (1901-1979), the
information transmitted through a communication channel between an emitter and a
receiver involves three levels:

e Syntactic level.
e Semantic level.
e Pragmatic level.

At the syntactic level, the information deals with the formal bonds that exist
between the various elements that make up the information, the rules of the com-
munication code, the capacity of the channels, and the system design and coding
methods for the transmission, processing, and storage of the information.

The semantic level is concerned with the ways of expressing the meaning of the
information (e.g., written or nonwritten, cultural, societal, or moral rules or tradi-
tions valid in the human group or society concerned).

At the pragmatic level, the information is related to its utility. This level is
determined to a large extent by the background of the person(s) who receive the
information (political, social, economic, psychological, and moral factors).

The above three levels have a hierarchical structure in which the information can
be managed (transmitted, processed, stored) at the syntactic level without the need
to necessarily know its conceptual content at the semantic level or its practical
utility at the pragmatic level.

Indeed, the word information in Shannon’s “Mathematical Theory of
Communication” is used in a sense that must not be confused with meaning [9].
Shannon and Weaver state: “the semantic aspects of communication are irrelevant
to the engineering aspects” [10]. Of course, as Capuro and Hjorland note [2]: “this
does not mean that the engineering aspects are necessarily irrelevant to the semantic
aspects.
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The philosophical discussion about the concept of information was originated by
Norbert Wiener who stated that “Information is information, not matter or energy.
No materialism which does not admit this can survive at the present day” [2]. In the
twentieth century, the notions of information and communication were applied at
higher levels of abstraction and not to the communication of human knowledge as
expressed in the above Wiener quotation. According to Titze [11], information is
not a metaphysical principle but refers to a natural tendency for order and evolution.
According to Stonier [12], structural and kinetic information is an intrinsic element
of the universe, which is independent of the existence or not of an intelligent agent
that can perceive it or not. Information may be manifested as “infons” which are
comparable to “photons” [13]. Stonier distinguishes and separates the syntactic
from the semantic features of information, and adopts the emergence of a global
brain called “noosphere” by Teillard de Chardin (from the Greek “vouvg” =
noos = mind, and c@aipa = sphere = domain/globe) [14].

4.3 Historical Landmarks

The concept of information is generic and today spans all branches of science,
technology, and human society that deal with the generation, acquisition, organi-
zation, storage, retrieval, interpretation, transformation, processing transmission,
and utilization of information. Therefore, the history of information includes the
evolution of computers, (theoretical) computer science, computation, information
theory, information technology information science, information systems, multi-
media, and informatics. Clearly, a detailed exposition of the combined history of all
these parallel and overlapping branches, which in one or the other way involve the
concept of information, needs too much space, and so here only the main historical
landmarks will be given.

On the basis of the principal technology employed for the input, processing,
output, and communication processes, the history of information technology and
systems can be divided into the following four periods [15-17]:

e Pre-mechanical period (3000 B.C.—1450 A.D.).
e Mechanical period (1450-1840 A.D.).

e Electromechanical period (1840-1940).

e Electronic period (1940—Present).

4.3.1 Pre-mechanical Period

Humans have been attempting to facilitate calculation using mechanical devices
and to find ways to communicate for thousands of years. The communication of
people using pictures and symbols (alphabet) was started by the Phoenicians
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(around 3500 B.C.). Around 2900 B.C., the Egyptians develop hieroglyphic
writing. Around 2000 B.C., the Greeks enhance the Phoenician alphabet through
the addition of vowels. The Egyptians were writing on papyrus and around 2600 B.
C. Chinese make paper from rags on which the modern paper making is based.
Around 600 B.C., religious and other books were used, to permanently store
information, made by folding papyrus vertically into leaves. Egyptians developed
the first number system 1, 2,..., 9 as vertical lines (with the number 10 as a U
circle, etc.), a number system similar to the present was developed in India (around
10-200 A.D.), and the zero number was added in around 870 A.D. The ancient
Greeks constructed some sophisticated analog computers such as the Antikythera
mechanism (involving rusted metal gears and pointers) which has discovered in
1901 on the island of Antikythera [18]. Around 200 B.C., human messengers on
foot or horseback started to be used in Egypt and China with messenger relay
stations available. Fire signals were used on many occasions instead of human
messengers.

4.3.2 Mechanical Period

Principal dates in this period are as follows:

e 10-20 A.D.: Romans establish postal services and use mirrors for sending
messages (heliographs).

e 100-200 A.D.: First wooden printing presses used in China and the first bound
books.

e 1450: Movable metal-type printing process (Johannes Gutenberg, Germany).

1600: Slide rule; an early form of analog computer (William Oughtred,

England).

1641: Blaise Pascal’s adding machine

Late 1600s: Gottfried Wilhelm Leibniz’s adding machine.

1822: Charles Babbage engines (difference engine, analytical engine).

1830-1840: Parts and processes similar to modern computers (storage, punch

card, binary logic, fixed program, real-time concept). It appears that the first

programmer is Ada Augusta Byron (Countess of Lovelace), a friend of Babbage,

who wrote a report on Babbage’s machine. The name of the Ada programming

language was chosen to honor her.

4.3.3 Electromechanical Period

This period was characterized by the conversion of information and knowledge into
electric pulses and the rise of mathematics.
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1. The start-up of telecommunications:

Late eighteenth century: Voltaic battery.

Early 1800s: Telegraph.

1835: Samuel Morse develops the telegraphic Morse code.
1876: Telephone (Alexander Graham Bell).

1894: Invention and development of radio (Guglielmo Marconi).

2. Electromechanical computing

e 1880-1940: Census tabulation machine (Herman Hollerith), early punch
cards, punch card workers, IBM Mark 1.

3. Some landmarks of mathematics

e 1928: The German mathematician David Hilbert poses the following ques-
tions: (a) Is mathematics complete (i.e., can every mathematical statement be
either proved or disproved?), (b) Is mathematics consistent (i.e., is it actually
true that statements like O = 1 cannot be proven by a valid method?), and
(c) Is mathematics decidable (i.e., does there exist a mechanical way that can
confirm the validity or not of a mathematical statement?).

e 1931: The answers to two of Hilbert’s questions were given by Kurt Godel
who proved that every sufficiently powerful formal system is either incon-
sistent or incomplete, and also that the consistence of a consistent axiom
system cannot be proven within this system. The third question remains
unanswered.

e 1936: Alan Turing (1912-1954) gave an answer to the third question of
Hilbert, via his formal model of a computer, known as the Turing machine.
He showed that his machine would not be able to solve any problem (e.g.,
the question: given a Pascal program, does it halt on all inputs?—the
so-called halting problem).

4.3.4 Electronic Period

The general-purpose electronic digital computer was developed during World
War II. One of the major needs in this period was the automatic calculation of
ballistic equations.

e 1940: At Iowa State University, an electronic computer was built for solving
systems of linear equations (John Vincent Atanasoff and Clifford Berry).
1945: Development of EDVAC (Electronic Discrete Variable Computer).
1946: Based on the ideas of Atanasoff and Berry, the ENIAC (Electronic
Numerical Integrator and Computer) system was built, originally intended for
artillery calculations. This was the first fully working high-speed
general-purpose computer using vacuum tubes.
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1948: Construction of Manchester Mark I (the first stored-program computer).
1949: Construction of EDSAC (Electronic Delay Storage Automatic
Calculator).

e Late 1940: UNIVAC (Universal Automatic Computer). This is the first
general-purpose computer for commercial use.

We now give a brief description of the development of the four generations of
digital computing and information processing.

1950-1958: First generation. Logic circuits which use vacuum tubes, punch
cards for storage of external data, internal storage of data and programs using
magnetic drums, machine language, assembly language, and the need for a
compiler.

1959-1963: Second generation. Logic circuits using transistors designed on
semiconductors, magnetic disks and tapes, magnetic cores, and high-level lan-
guages such as FORTRAN and COBOL.

1964-1979: Third generation. Integrated circuits (ICs) instead of individual
transistors, magnetic tapes and disks, metal-oxide—semiconductor (MOS) memories,
operating systems, and advanced languages, e.g., BASIC.

1980—Present: Fourth generation. Large-scale integrated (LSI) and very
large-scale integrated (VLSI) circuits, central processing units (CPUs) on a single
chip leading to the development of personal computers (PCs), e.g., Apple II (1977),
Apple Mac (1984), IBM PC (1981), Microsoft Disk Operating System (MS-DOS),
graphical user interfaces (GUIs) for PCs (1980), and MS Windows (version 3,
1990)).

4.3.5 Information Theory Landmarks

The field of information theory as we know it today was initiated by Shannon’s
celebrated paper: “A Mathematical Theory of Communication” [9]. Shannon
realized and adopted the need to have a communication theory, in which the
communication signals must be utilized separately from the meaning of the mes-
sages they transmit. He also realized that a signal can be transmitted arbitrarily close
to the theoretical channel capacity, even if the signal is contaminated by noise.
These initial ideas have inspired and guided information, communication and
computer engineers ever since. Information theory overlaps considerably with
communication theory, but it is principally concerned with the basic and theoretical
constraints on the processing and communication of information and not with the
design and operation of individual components and communication devices. The
principal historical landmarks of information theory are the following [9, 19-23]:
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e 1929: The publication of Led Szilard on the decrease in entropy caused by the
intervention of intelligent agents [21].

e 1948: The introduction by Shannon of the entropy concept in information theory
as an expected value that expresses the “information content” in a message (in
units, such as bits) [9].

e 1949: Publication of the book of Robert Fano concerning the transmission of
information [23].

e 1956: The publication of the book of Leon Brillouin about information theory
and his ambitious attempt to incorporate all of scientific endeavor within the
framework of Shannon’s information theory [22].

1957: The paper of Edwin Jaynes on maximum entropy principle (MEP) [24].
1961: Publication of the book of Myron Tribus in which he tried to formulate
the laws of thermodynamics via information theory [25].

e 1988: Publication of the work of George Saridis on the application of MEP
methods [24, 26] to control [27, 28].

e 2006: Publication of the book of George Klir [29] in which he develops a
“generalized information theory” (GIT) by viewing uncertainty as a manifes-
tation of some information deficiency, and information as the capacity to reduce
uncertainty.

e 2007: Publication of the book of Ben-Naim [30] on the benefits of the use of the
concept (term) information or uncertainty, instead of the term entropy, in sta-
tistical mechanics and thermodynamics.

More detailed historical landmarks of information theory, especially regarding
the development of error-correcting codes and lossless data compression, can be
found in Wikipedia [31].

4.3.6 Computer Networks, Multimedia,
and Telematics Landmarks

The development of computer networks and multimedia has, over the years, led to
advanced and very accurate uses of transmitted information elements of any type
for the benefit of present human society [32]:

Computer networks Before the widespread adoption of internetworking, which
led to the Internet, the majority of communication networks were allowing com-
munications only between the stations of the network. One of the dominating
methods of computer networking was based on the central mainframe concept, in
which its terminals were enabled to be connected via long-leased lines. This method
was in use, for example, during the 1950s for research communication purposes
between Pittsburgh (Pennsylvania) and Santa Monica (California). During the
1960s, a period in which the telephone network was the primary communication
network in the world, many groups were working toward enhancing and imple-
menting “packet switching”, especially in the defense field. The origin of the
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Internet was the development of the Advanced Research Project Agency Network
(ARPANET), the first ARPANET link being realized between the University of
California and Stanford (21 November 1969). ARPANET was enhanced with ideas
drawn from the ALOHA net and grew rapidly. The ARPANET development was
based on the Request for Comments (RFC) process, which continues to be used
until this day.

Some of the primary landmarks in the history of computer networking are the
following [33]:

1971: The ALOHA net, a type of TDMA transmission system and protocol for
terrestrial and satellite random access communication (developed at the University
of Hawaii) became operational in June 1971. ALOHA is a Hawaiian word (symbol)
meaning hello, or goodbye or love and coming from “Alo” = presence/front/face
and “ha” = breath.

1974: The X.25 network developed by the International Telecommunication Union
(ITU) was used on the British SERCnet network of academic and research sites
(later it became JANET). The first ITU standard on X.25 was approved in March
1976.

1982: The TCP/IP (Transmission Control Protocol and Internet Protocol) is
established as the standard for ARANET.

1986: TCP/IP is offered on workstations and PCs.

1989: The number of hosts exceeds 100,000.

1990: Several search tools (ARCHIE, Gopher, WALIS, etc.) are starting to enter the
market after the official shut down of ARPANET.

1991: Development of the World Wide Web (WWW) by Jim Berners-Lee at CERN
(European Center for Nuclear Research).

1992—Present: The WWW and Internet explode into the world [34].

Multimedia is the branch of computer science and information technology
which deals with the computer-controlled integration of text, graphics, drawing,
static and moving images (video), audio animation, and any other media suitable for
representing, storing, transmitting, and digitally processing every kind of infor-
mation. A multimedia application is any application that employs a collection of
multiple media sources (e.g., texts, graphics, images, audio, animation, and/or
video). Hypermedia is one of the multimedia applications [35].

The multimedia term is used in contrast to the term media, which indicates that
only conventional types of printed or hand-produced material are used. The term
multimedia was introduced by Bob Goldstein at Southampton, Long Island, in July
1966. Some landmark events in the area of multimedia are [36]:

e 1945: Vannevar Bush publishes the first landmark paper that describes what
amounts to a hypermedia system called “Memex”.

1960: Ted Nelson coined the concept of “hypertext”.

1969: Development of the hypertext editor at Brown (Nelson and Van Dam).
1985: Negroponte and Wiesner formed the MIT Media Laboratory.

1989: Tim Berners-Lee proposal for the World Wide Web to CERN.
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e 1990: Kristine Hooper Woolsey headed the Apple Multimedia Laboratory (with
more than 100 scientists).

e 1992: JPEG was adopted as the international standard for digital image com-
pression. Also, the first M-Bone audio multicast on the Net was made.

e 1993: Production of the first full-fledged browser, Mosaic of NCSA (The Illinois
National Center for Supercomputing Applications).

e 1994: Development of Netscape by Jim Clark and Marc Andreessen.

e 1995: Introduction of JAVA for platform-independent application development
(The first applet created is called Duke).

e 1996: Introduction of Microsoft’s Internet Explorer.

Further historical information pertaining to multimedia can be found in [37].

Telematics Telematics is the synergy of telecommunications and informatics
(telematics = tele communications + inform matics). Therefore, as an overall term,
“telematics” refers to the long-distance transmission and computer processing of
information. The term “telematics” was coined in French by Simon Nora and Alain
Minc as “telematique” (tele communication et informatique) in their 1978 report
entitled “L’ Informatisation de la Société” [38]. This report was requested by the
president of France Valery Giscard d’ Estaing in 1976 to explore how the computer
and informatics applications could be extended to the organizational, economic, and
developmental issues of modern society. In their report, Nora and Minc made the
following remark: “Today, any consumer of electricity can instantly obtain the
electric power needs without worrying about where it comes from or how much it
costs. There is every reason to believe that the same will be true in the future of
telematics.” Today, computers become smaller and smaller with ever lower energy
requirements, and computing devices gradually become mobile and can accompany
us wherever we go. These developments have led to the so-called mobile com-
puting, ubiquitous computing, or pervasive computing. The historic landmarks of
telematics involve the parallel and combined landmarks of computers and
telecommunications. On the computer side, the two major landmarks are as follows
[39, 40]:

1971: Development of the first microprocessor, the Intel 4004.
1981: Release of Osborne 1, the first portable computer.

On the telecommunications side, we mention the following:

1860: Invention of the telephone by Antonio Meucci.

1895: Invention of the wireless telegraph by Guglielmo Marconi.

1946: AT&T introduces the first mobile telephone.

1958: Launching of the first communication satellite, SCORE.

1969: The ARPANET goes online and links for the first time two computers
(University of California and Stanford).

1992: The WWW is released by CERN worldwide.

2000: The first commercial UMTS network is introduced in Japan.



168 4 Information I: Communication, Transmission, and Information ...

We now present a summarized description of the basic concepts and methods of
various manifestations of information that have been discussed in this section from
a historical point of view, namely,

Communication systems.
Information theory.

Computers and computer science.
Informatics.

Telematics.

Multimedia.

Information systems.

Information science.

4.4 Communication Systems

4.4.1 General Issues

In communication systems theory, signals represent information. Information is
used neatly packaged in analog or digital form. Communication systems are used
for both manipulating and transmitting information. The following cases are the
main types:

e Point-to-point communication (from a single place to another place).
e Broadcast communication (from one place to many other places).
e Multipoint to multipoint communication (teleconferencing, chat rooms).

Communication systems can be analog (e.g., via radio waves) or digital (e.g.,
computer networks). The question arising here is: Which is better, analog or digital
communication? This question has been answered by Shannon, in his work on
information theory [9], who suggests the use of digital representation of signals and
the digital communication strategy. This means that all information-bearing signals
are converted into digital ones (discrete-time, amplitude-quantized signals) apply-
ing the sampling theorem which shows the condition that must be met for this
conversion to be an accurate one. As mentioned in Sect. 4.3.5. Shannon has shown
that in digital form, a properly designed system can communicate digital infor-
mation without error despite the presence of communication noise in all trans-
mission channels. This result has a fundamental importance and value not only in
communications, but also in all areas where digital information is handled, e.g.,
compact discs (CDs) and digital video disks (DVDs).
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4.4.2 Shannon—Weaver Communication Model

One of the fundamental concepts in communication and information theory is the
“communication model” of Shannon and Weaver [10], which is illustrated in
Fig. 4.1b. Figure 4.1a shows the graphical representation (called block diagram) of
a system operating on a receiving signal x(¢) and producing an overall output signal
y(#). In Fig. 4.1b, we have the following components (blocks):

e The information source that selects a desired signal (message) s(#), out of a set
of possible messages, which is to be sent to the destination (sink). The message
can have several forms, e.g., speech, music, strings of letters as in telegraph or
teletype, or characters typed on the keyboard of a PC, etc.

e The transmitter that receives the message s(f) and produces a signal x(f) suitable
for transmission over the channel. The signal x(7) is either modulated or encoded,
depending on the message’s physical nature. In telephony, the transmitter’s
operation consists of changing sound pressure into electrical current. In telegra-
phy, an encoding operation takes place that generates a sequence of dots, dashes,
and spaces corresponding to the message. In a multiplexed, pulse-coded, mod-
ulation system, the various speech functions are sampled, compressed, quantized,
and encoded, and finally properly interleaved to construct the signal x(z).

e The channel is the medium over which the signal is transmitted to the receiver.
In the channel, the transmitted signal is typically corrupted by noise or distorted
or attenuated by various phenomena [giving the corrupted message r(f)].

e The receiver is a sort of inverse transmitter, changing the transmitted signal back
into a received message $() that must resemble s(r) as much as possible.

e The destination (or information sink) that is the person (or thing) for whom the
message is intended (and who uses it for the desired purpose).

The “noise” contaminating the transmitted message x(f) may be internal (i.e.,
coming from the receiver’s attitudes, beliefs, or knowledge) or external (i.e., caused

(a)

XO®,| system MU

(b ) Information

sourcs | Noise source ‘
Information
Source destination
(Sink)
Channel
s(t) Transmitter e 30
r(t) Receiver

Fig. 4.1 a Block diagram of system receiving an input signal x(#) and producing an output signal
y(¢), b Shannon—-Weaver communication model
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by other sources). This internal or external noise may either strengthen the intended
outcome of the messages (if the information confirms the message) or weaken the
intended outcome (the information in the noise disconfirms the original message).

The implementation of the Shannon—Weaver communication model needs the
following:

To understand signals and signal generation.

To understand the nature of the information these signals represent.

To know how information is transformed between analog and digital forms.
To know how information can be processed by systems working on
information-bearing signals.

These requirements are met through electrical engineering (which studies the
ways signals are represented and manipulated electrically/electronically) and signal
engineering (which studies the structure of signals, their information content, and
the capabilities that this structure imposes upon communication systems), inde-
pendently of what the signal sources are.

4.4.3 Other Communication Models

The Shannon—Weaver linear communication model is applicable to pure machine
communication, i.e., it is not intended to match human communication. This model
is focused on the technical problems associated with the selection and arrangement
of discrete units of information and not with the semantic “content” of the mes-
sages. Weaver himself pointed out that: “It is surprising but true that, from the
present view point, two messages, one heavily loaded with meaning and the other
pure nonsense, can be equivalent as regards information.”

Two other communication models devised for human communication are the
Berlo model of communication [43] and the Schramm model of communication
[44], shown in Fig. 4.2a, b [45]:

(a) Encoding Decoding
S M ¢ R
(b)

Fig. 4.2 a Berlo’s SMCR model: a source encodes a message for a channel to a receiver who
decodes the message, b Schramm’s communication model
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Berlo’s model is an enhanced adaptation of the Shannon—Weaver model so that,
to cover the human communication, it provides a mechanism in the source for the
following:

Communication skills.
Attitudes.

Knowledge.

Social and cultural issues.

In other words, the source is sufficiently flexible to include oral, written, elec-
tronic, or any other form of “symbolic” generator of messages. The “message” is
considered to be the core element of the model, stressing the transmission of ideas,
specifically content, elements, treatment, structure, and code. The receiver is rec-
ognized to be very important to communication, since it is actually the target. Like
the source, the receiver takes into account and interprets communication skills,
attitudes, knowledge, and social and cultural issues. The channel, i.e., the com-
munication medium, involves all the human senses (hearing, seeing, touching,
smelling, and tasting). The concepts of “encoding” and “decoding” emphasize the
psychophysical problem every person has in translating his/her own thoughts in
worlds or symbols and providing them in an understandable way to other people.
Here, it is tacitly assumed that human communication is similar to machine com-
munication (e.g., telephone signal, television signal, and computer information
transmission, etc.). Clearly, the accuracy of human communication using this model
depends on choosing the “proper” symbols, preventing interference, and sending
efficient messages. However, even if the proper symbols are used, people may
misunderstand each other. But all these issues are human-centered depending on
agreements, beliefs, shared values, and attitudes.

The Schramm’s model provides the additional features of “feedback field
expertise” and “psychological reference frame” for the interacting humans. It is
noted that Schramm’s model is less linear than the Shannon—Weaver or the Berlo’s
model. But again, it is suitable only for bilateral communication between two
partners (i.e., it does not cover the case of multilevel communication). Three
nonlinear models of communication are the following:

e Dance’s helical spiral (1967): This spiral depicts communication as a dynamic
process, where the helix represents how communication evolves in a human
from his/her birth up to the present [41].

e Westley and MacLean’s conceptual model (1957): This model is based on the
fact that the communication of a person begins when he/she starts to respond
selectively to the immediate surroundings and not when he/she starts to talk
[41].

¢ Becker’s mosaic model (1968): Here, it is assumed that most communicative
acts link message elements from several social situations (not just from one
situation). These complex communicative events are linked to the activity of a
receiver who moves through a permanently varying cube or mosaic of infor-
mation [41]. This model adds a third dimension, but human communication
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involves many more dimensions. Therefore, many researchers attempted to
develop multidimensional communication models. Two such models are the
following [41]:

o Ruesch and Bateson functional model (1951): This involves four levels of
analysis, i.e., level I (intrapersonal process), level 2 (interpersonal), level 3
(group interaction), and level 4 (cultural level).

e Barnlund’s transactional model (1970): A very systematic functional model
where the key assumptions on which it is based are shown explicitly. Its most
important property is that it includes no simple or linear directionality in the
interplay between itself and the surrounding world.

4.4.4 Transmitter—Receiver Operations

We now briefly discuss the operations of the transmitter and receiver in the
Shannon—-Weaver communication model (Fig. 4.1b).

Modulation The transmitter performs the modulation operation, namely, the
superposition of the information (message) onto an electronic or optical carrier
signal. Modulation can be applied to direct current (mainly by turning it on or off),
alternating current, and optical signals. The Morse code, used in telegraphy and
presently in amateur radio, uses a binary (i.e., two state) digital code similar to the
code used in modern computers. In today’s typical radio and telecommunication
systems, the carrier is an alternating current (AC) sent over a given frequency band.
Standard modulation methods are as follows:

e AM (Amplitude modulation), where the voltage superimposed on the carrier
modulation signal is time varying.

e FM (Frequency modulation), where the frequency of the carrier waveform is
varied (modulated) in suitably small amounts.

e PM (Phase modulation), where the natural flow of the alternating signal is
delayed temporarily.

The above are called continuous (analog) signal modulation methods to dis-
criminate them from PCM (Pulse-Code Modulation) which is employed to encode
analog and digital signals in a binary (digital) way. In general, the modulation
techniques can be classified as follows:

Analog versus digital modulation.

Baseband (low pass) versus bandpass (passband) modulation.
Binary versus M-ary modulation.

Linear versus nonlinear modulation.

Memoryless modulation versus modulation with memory.
Power-efficient versus bandwidth-efficient modulation.
Constant envelope versus nonconstant envelope modulation.
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e Equivalent digital modulation methods (amplitude-shift keying: ASK,
frequency-shift keying: FSK, phase-shift keying: PSK). Two-way radios employ
FM although some use single sideband (SSB). A combination of ASK and PSK
is the quadrature-amplitude modulation (QAM).

Demodulation This is the inverse operation of modulation, which extracts the
original information-bearing signal from the modulated carrier signal. An electronic
device used to perform the recovery of the original message from the modulated
carrier signal is called a demodulator. To each modulation technique, there corre-
sponds an appropriate demodulation technique and an associated demodulator. For
example, in an AM signal (which encodes the message into the carrier wave by
varying its amplitude in proportion to the analog message sent), we have two kinds
of demodulators. These are the envelope detector (which uses a rectifier allowing
the current to flow only in one direction) and the product detector. The latter
multiplies the incoming AM-modulated signal by the signal of a local oscillator
with the same frequency and phase as the carrier used. After filtering, the original
message is obtained. For FM, many typical forms of demodulators exist. For
example, a quadrature detector phase shifts the signal 90° and multiplies it with the
unshifted version. Among the terms produced by this operation is the original
message which is selected and amplified. Another FM demodulator employs two
AM demodulators, one tuned to the high end of the frequency band and the other to
the lower end. The two outputs are then passed to a difference amplifier.

A pair of transmitter (coder, modulator) and receiver (decoder, demodulator) is
called a transceiver. The general structure of modern communication systems
involving a CODEC (Coder/Decoder) and MODEM (Modulator/Demodulator) has
the form shown in Fig. 4.3.

Multiplexing To convey more information in a given amount of time, the band-
width of a signal carrier is divided such that more than one modulated messages can
be sent simultaneously on the same carrier. This is called multiplexing, where the
carrier is sometimes called the channel and its separate message signal carried is
referred to as subchannel. The multiplexer is the device that puts the individual
signals onto the carrier and takes off received transmissions—separately. Typical
forms of multiplexing are as follows:

Source .| Channel Iy Modulation

encoding encoding

Input

«| Source | | Channel Q,E: Demodulation.¢.
decoding decoding | ;

Qutput

CODE ’ MODE

Fig. 4.3 General structure of a digital communication system
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FDM: Frequency-division multiplexing.
TDM: Time-division multiplexing.

FDM which divides the principal frequency of the carrier into separate sub-
channels is commonly employed in analog communication systems, whereas TDM,
which divides the principal signal into time slots, each one carrying a separate
signal, is used in digital communication systems. A digital cellular phone tech-
nology based on TDMA (time-division multiple access), which was developed in the
1980s and is predominant in Europe, is the Global System for Mobile (GSM)
communications. GSM is also used worldwide. GSM operates in the 900 MHz and
1.8 GHz bands in Europe, and the 1.9 GHz PCS band in the United States. It is
based on a circuit-switched system, which divides each 200 kHz channel into eight
25 kHz time slots.

4.4.5 Analysis of Analog Modulation-Demodulation

Here, we outline the mathematical analysis of analog modulation. The carrier wave
is a sinusoid of the following form:

c(t) = A cos(w. + )

where the amplitude A, the carrier cyclic frequency o, = 21f, (f, is the frequency),
and the phase ¢ are the parameters that can be varied according to the
message-bearing signal:

m(t) = M cos(w,t + 6p)

where 0y is a constant and, without loss of generality, it can be assumed 6y = 0.

4.4.5.1 Amplitude Modulation

In amplitude modulation (AM), the amplitude A of the carrier signal is modulated
in proportion to the message-bearing (low frequency) signal m(t), to give

x(t) = (A+ M cos(wpt)) cos(we + @)
= A(1 + pcos m,t) cos(wt + ¢)

where

u=M/A
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is called the “modulation index” of AM, and for demodulation purposes (i.e., for the
recovery of m(t) from the above modulated carrier signal) is typically selected less
than one (i.e., M < A).

Using the well-known trigonometric identity:

cos (0) cos () = (1/2)[cos (0 + ) +cos (0 — )],

the amplitude modulated signal x(#) can be written as

x(t) = Acos(w.t+ @) + % [cos(we + W)t + @]

+ %cos[(wc — Wyt + @]

This shows that x(f) has three additive components with frequencies
We, W+ 0y and . — w,,. The frequency . + w,, is called the upper side fre-
quency, and @, — w,, is called the lower side frequency. A typical AM signal with
Uo = 0.8 is shown in Fig. 4.4.

In the type of AM described above, both side frequencies w, — w,, and w, + w,,
are transmitted. It is therefore called Double Sideband AM (DSB-AM). But for
more efficiency, only one of the sidebands must be transmitted, in which case we
have the so-called Single Sideband AM (SSB-AM). In particular, SSB-AM is called
Lower Sideband AM (LSB-AM) or Upper Sideband AM (USB-AM), if only the
lower frequency or the upper side frequency is transmitted, respectively. The case
where the modulation index is p > 1 is called overmodulation. Now, let us calculate
the power of a modulated wave. The power is proportional to the square of the
voltage (amplitude). Therefore, the power of the carrier wave is

Carrier power = KA

Fig. 4.4 Typical amplitude @)

signal with u, = 0.8 /\\/Iosinmmt
0 L

N

(b) Envelope
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where the factor %%, required because A is the amplitude (peak value) of c(?), is
included in the proportionality constant K.
The total sideband power is equal to

2 2
Total side - band power = KA> (g) 4 KA? (g)

12
=5 x Carrier power

Therefore, the total power of the AM signal is equal to
P =KA*(1+47/2)

i.e., equal to the sum of the constant carrier power KA? and the power of the two
sidebands, which depends on the value of u. For example, if
w=1, P = KA* x (3/2) = KA? x 150%.

4.4.5.2 Amplitude Demodulation

As mentioned in Sect. 4.4.4, for AM we have two kinds of demodulators (detec-
tors): the envelope demodulator and the product demodulator. The signal

v(t) = A(1+m(r))

is called the envelope of the AM signal. Clearly, if the envelope v(¢) is extracted, the
transmitted message m(f) can be recovered. A simple way to obtain the envelope is
to use the “envelope demodulator circuit” shown in Fig. 4.5.

The envelope detector is of the so-called noncoherent (asynchronous) type.
Better performance can be obtained by coherent (synchronous) detector in which
both the frequency and the phase of the carrier are known at the demodulator. The
amplitude of the carrier affects only the level of the demodulated signal, which can
be changed by a simple amplifier. Therefore, the amplitude of the carrier is not
important in the demodulation. The carrier signal is restored at the receiver by a
circuit called the carrier-recovery circuit. In the product detector, the amplitude

(a) (b) AM signal Envelope

»l
R IJ_ N N s A

g ] | II,, HINI
o CT - ! '|l' 'l-.-:. ||I .-I: |
signal LA A &

Fig. 4.5 a Envelope AM demodulator. b The AM signal passing through the demodulator
provides the envelope signal. This is done by the capacitor which removes the carrier frequency
and leaves only the envelope
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modulated signal is multiplied by the signal provided by a local oscillator. The

simplest case is obtained if the local oscillator has the same frequency as the carrier,

i.e., w.. Then, the result of the multiplication is the sum of the original message and

another AM signal at frequency 2mw.. A low-pass filter is used to suppress this

second component. The block diagram of the product detector is shown in Fig. 4.6.
In the above block diagram, we have

x(t) c(t) = A(1 4+ m(z)) cos(w,t) cos(w,t)

_ %A(l +m(#))(1 +cos(2.1))

where, without loss of generality, the phase ¢ of the carrier was omitted and use
was made of the same trigonometric identity as in the AM modulation. After
low-pass filtering, the original message is recovered.

The carrier signal can be available to the product detector in two ways:

e Through transmission of the carrier.
e Through recovering of the carrier.

The carrier recovery can be achieved by using a transmitted pilot signal outside
the passband of the modulated signal as shown in Fig. 4.7.

To recover the carrier signal, two techniques can be applied: (i) recovery by a
bandpass filter (Fig. 4.8a), and (ii) recovery by a phase-locked loop—PLL
(Fig. 4.8b).

It is noted that, with the product demodulator, we can also decode overmodu-
lated AM, SSB, and AM with suppressed carrier, in addition to the standard
DSB-AM.

Fig. 4.6 Block diagram of a c(t) carrier

product detector
t)e(t
XS] e
N\

X0 Multiplier L Received
AM signal OW-pass
e filter message
Fig. 4.7 Pilot signal outside Amplitude
the AM signal
Pilot
Carrier

A

0 Low Upper
sideband sideband

(0]
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(a) N (b)
_Ln(t) x(t NS
Received A

Recovered f(t)
message PLL J

¢(t) Recovered
Carrier

m(t)

QR

Pilot or
Carrier
filter

Fig. 4.8 a Recovery of carrier by a bandpass filter. b Recovery of carrier by a phase-locked loop
(PLL). Here, we use the symbols ¢(¢) and 7u2(¢) to indicate approximate copies of ¢(¢) and m(t)

4.4.5.3 Frequency Modulation

The principal advantages of frequency modulation (FM) over AM are as follows:
(i) better signal-to-noise ratio, (ii) less interference effects between neighboring
stations, and (iii) less radiated power. The drawbacks are as follows: (i) It requires
much more bandwidth than AM (up to 20-times more), and (ii) The transmitter and
receiver devices are more complex. In FM, the frequency of the carrier wave is
changed in proportion to the message signal m(?), i.e., we have

o(t) = o (14 pcos(wpyt))

where f, = w. /27 is called the center frequency, and u is the degree of modula-
tion. A frequency-modulated signal has the form shown in Fig. 4.9b.

Frequency modulation is popular in a variety of radio transmission applications
from broadcasting to general point-to-point transmissions. It is also widely
employed for broadcasting via very high frequency (VHF) because it provides a
very good medium for high-quality transmissions. FM is also largely used in

Fig. 4.9 Frequency ()
modulation. a The modulating Modulating
signal. b The modulated signal .
signal
/ N
N ¥
N / Frequency
e

(b)

Modulated

signal

Frequency
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several mobile applications. Here, because w is time varying, the FM signal is given
by

Acos /w(t) dt| = Acos {/ (1 —l—ucos(wmt))dt]
0

= Acos {wcu sin(wy,t) + ot + 90}

O

where the constant of integration 6y can be neglected as a constant angle. The
quantity Aw = o.p is called the cyclic frequency deviation.
The parameter

opu Ao

@ *wm*/‘f

is called the FM modulation index (or deviation ratio) and has a value in radians
that is different for each value of w,,. On the basis of this, the expression for an FM
signal becomes

x(t) = Acos(wet + gy sin(wpt))
Expanding this signal using and the identity for cos (6 + /), we obtain
x(t) =Acos(w.t + 1y sin(wyt))
= cos(ct) cos (py sin(wpt)) — sin(wer) sin (g sin(wy,t))

The two complex functions cos (g sin(w,t)) and sin(u; sin(w,f)) can be
expressed as an infinite series of Bessel functions, namely [46, 47],

cos (uf sin(wmt)) =J, (,uf) +2J, (uf)cos(Zwmt)

+ 274 (1) cos(dmt) + 2J6 (1) cos(6wpt) + - - -
sin(,uf sin(wy,t )) =2J; (,uf)sm(wm —|—2J3( f)sm (Bwpt)

+2J5 (,uf)sm (Swpt) +2J7 (,uf)sm (Twpt) + -

where the Bessel functions J; (i = 1,2,...) of the first kind are defined as

o0 )

Z ('uf>k+2q
q' q+k

q=

and are provided in corresponding mathematical tables and computer-mathematics
libraries. Using the trigonometric identities for cos (0) cos () and sin () sin (),
we get
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1) = A{Jo(1s)cos(w t) — Ji (1) [cos(@e — wit) — cos(@e + @y )1]
+2 () [eos (e — 200m)1) + COS((wc +20m)1)]
+J5 (1) o (@ = 30m)1) = cos((@e +30n)1)]
)leos(( )t)

JrJ4(Hf cos((we — 4wy )t +cos((wc+4wm)t)] —

Jeos(
[cos(
[cos(
[cos(

We see that the FM signal involves the center frequency . and an infinite
number of side frequency pairs, each pair spaced by an amount equal to the
modulating frequency w,,.

The amplitude of the successive side frequency pairs is determined by the Bessel
function coefficients. Although theoretically the FM signal covers the entire fre-
quency spectrum with sidebands, the J coefficients decrease relatively quickly and
the series converges rapidly. So, the bandwidth actually required is finite. Because
oy, and fie are inversely proportional (uf =Aw/ wm), a small w,, will result in
more side frequencies of significant value, than those obtained in the case of a high
oy, as shown in Fig. 4.10.

It is noted that Jo(u;) =0 for pu, =2.405, 5.520, 8.654, 11.79, 14.93, etc.
Therefore, for these values of y,, the center frequency component is zero (i.e., it
does not exist).

A practical rule of thumb is Carson’s rule which says that almost all (~98%) of
the power of an FM signal is contained in a bandwidth B, equal to

Bc = 2(ﬁn +Af)

where Af = yf, is the frequency deviation Aw /2n from the central frequency.

4.45.4 Frequency Demodulation

In FM, it happens that signals with a large frequency deviation are supporting
higher quality transmissions at the expense of occupying a wider bandwidth. Thus,

Af=T5K_ ' ,

£ =5000 1 1
We=15 I|| IIl I|| | Ill
Af= 75K _

£ =5000 _— | I | \ |
”_:5 l ] 1 1 l
f

Fig. 4.10 Frequency spectra of two FM signals with Af = 75K, /s
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in practice, several levels of frequency deviations (or modulation index values) are
employed, according to the application that is used. Those with low deviation are
known as narrowband frequency modulation (NBFM), with typical values
43 kHz. NBFM is generally used for point-to-point communications. Higher fre-
quency deviations are required for broadcasting and are called wideband frequency
modulation (WBFM). Typical values of WBFM frequency deviation are +75 kHz.
To receive FM, a receiver must be sensitive to the frequency variations of the
incoming signal, which may be either NBFM or WBFM, and insensitive to
amplitude variations. To assure that any amplitude variations are removed, the
signals are amplified to such a degree that the amplifier goes into limiting. The
demodulator must be frequency-dependent in order to be able to linearly convert
frequency variations into voltage variations. This suggests that the FM demodulator
must have an S-type voltage—frequency characteristic as shown in Fig. 4.11.

The principal types of FM demodulator circuits are as follows [48]:

Slope detector.

Ratio detector.

Foster—Seeley detector.
Phase-locked loop (PLL) detector.
Quadrature detector.

Slope detector This is the simplest form of FM detector. It is essentially a tank
circuit that is tuned to a frequency lightly higher or lower than the carrier frequency.

Ratio detector This detector is very popular because it provides a higher level of
amplitude variation rejection. This has the result of a greater level of noise
immunity (since most noise is amplitude noise), and a satisfactory operation with
lower levels of limiting circuitry is required. The ratio detector consists of a
frequency-sensitive, phase-shift circuit with a transformer and two diodes in series.
The transformer performs the detection of the frequency variations of the incoming
signal.

Foster—Seeley detector This detector, also called a phase-shift detector, was
invented in 1936 by Dudley Foster and Stuart Seeley [49]. It employs a
double-tuned, radio frequency transformer to convert frequency variations of its

Fig. 4.11 S-curve Demodulator
characteristic of an FM
demodulator Output
rz
f, f

; Frequency
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input signal to amplitude variations. These amplitude variations are then rectified
and filtered to give a dc output voltage that varies in both amplitude and polarity as
the frequency of the input signal varies. The output voltage is zero when the input
frequency is equal to the carrier frequency f.. A typical response curve of the
Foster—Seeley detector has the S-form shown in Fig. 4.11, where the frequency
band of operation is [fi, f3].

Phase-locked-loop detector (PLL) This detector produces a fixed (locked) relation
to the phase of a “reference” input signal and responds to both the frequency and the
phase of the input signals automatically, so that it matches the reference in both
frequency and phase. Actually, a PLL detector is an example of a control system
working under negative feedback. PLL FM detectors are very popular and used in
several types of radio equipment ranging from broadcasting receivers to
high-performance communications equipment. Their wide use started when inte-
grated circuit technology had developed to allow the manufacture of radio frequency
analog circuits. The basic structure of a PLL detector is shown in Fig. 4.12 [42].

The phase comparator compares the phase of the output signal with that of the
input signal and sends the phase-error signal to the loop filter, where it is filtered
and becomes the control signal u(f) that drives the voltage-controlled oscillator
(VCO). The key issue in designing a PLL detector is the loop filter, which must
have sufficiently wide bandwidth to allow it to follow the anticipated variations of
the frequency-modulated signal.

Quadrature detector The quadrature detector shifts the incoming signal, 90° and
multiplies it with the unshifted signal. It does not need a center-tapped transformer
and so it can easily be integrated into a single LSI chip, unlike the other detectors.
The 90°-phase shift is achieved using a high-reactance capacitor and passes the
phase-shifted signal to an LC circuit tuned at the carrier frequency. Then, the
frequency changes produce an additional leading or lagging phase shift within the
multiplier. The quadrature FM detector circuit is shown in Fig. 4.13. The operation
of the quadrature FM detector is based on the property that multiplying two periodic
signals with the same frequency generates a DC voltage that is directly proportional
to the signal-phase difference.

At the resonance frequency, the phase of the LC circuit is zero, below resonance
the phase is positive and above resonance the phase is negative, i.e., the phase
changes with the variations of the frequency, and the same is also true for the output
voltage.

Error
signa

Control
sigﬂa} Output

Input + Phase Loop
e > i
signal Comparator e() filter

x(t) T &

signal y(t)

Fig. 4.12 Basic structure of a PLL detector
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Fig. 4.13 Quadrature detector circuit (The capacitor C, shifts the phase of the input signal 90°)

4.4.5.5 Phase Modulation

For a carrier ¢(¢) = Acos(w.f+ ¢,.) and a modulating signal m(t) = pcos(w,,t),
the phase modulated (PM) signal x(¢) has the following form:

x(1) = Acos(@ct + (1)), ¥(1) = m(t) + ¢,

Here, we directly see that, as m(t) increases or decreases over time, so does the
phase shift of the modulated signal. The phase shift can also be viewed as a change
of the carrier frequency. Therefore, phase modulation is equivalent to frequency
modulation, and so it can be analyzed by the methods presented in Sect. 4.4.5.3.
We note again that, for small amplitude-modulating signals, we have the undesired
result of sidebands and poor efficiency. For very large, single, sinusoid modulating
signals, the bandwidth of PM is approximately given by Carson’s rule as in FM,
ie.,

Be = 2(1+ upy )fm

where pp,, is the PM modulation index defined as ppy, = A¢p with A¢ being the
maximum phase shift. An example of PM signal is shown in Fig. 4.14.

4.4.5.6 Phase Demodulation

Because of the equivalence of FM and PM (the carrier frequency is modulated by
the time derivative of the phase shift), phase demodulation can be performed by any
FM demodulator. Here, we will outline a phase demodulator of the PLL type, called
a “sinusoidal phase detector”, which is shown in Fig. 4.15 [42].

In the phase-locked loop detector of Fig. 4.13, the VCO tends to phase lock to
the input in “quadrature”, i.e., with 90°-phase difference (¢(r) — W (t) +7/2).
This means that we can define ¢(¢) as ¢(r) = 6(¢) + /2 with 0(¢r) — (1) as
r — 0Q.

In Fig. 4.18, the output e(z) of the multiplier is equal to
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Fig. 4.14 Typical PM signal
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Fig. 4.15 Sinusoidal phase detector

e(t) = x(1)y(t) = (AAy/2)[cos(Y (1) — ¢(1))
+ cosRw. 4+ (1) + ¢(2))]
o(

= (A:Ay / 2)[cos (1) — 0(r) — 7/2)
+ cos(2e + (1) +0(1) + m/2)]
= (AdAy /2)[sin( (1) — 0()) — sin(2eet + (1) + 0())]

Now, assuming that the low-pass filter removes the second (high frequency)
term, the output u(¢) of the filter is found to be

u(t) = (AA,/2)sin( (1) — 0(1))

where 0(r) is considered to be the output phase. Here, instead of a sawtooth
function F(-), we have the sinusoid function:

F(p) = (A:4,/2)sin(p(1)), p(r) = () = 0(1)

which has the plot shown in Fig. 4.16.



4.4 Communication Systems 185

Fig. 4.16 The sinusoidal F(y-6)
gain function F(-). For
comparison, the sawtooth
function is also shown
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Here, 0(r) — y(r), and so the phase ¢(z) of the detector tends to lock in
quadrature with the input. Figure 4.17 shows in the same plot the AM, FM, and PM
signals obtained using the same modulating signal and the same carrier in all cases.
This plot can be generated by using the proper signal generation (SigGen) modules
available in [50].

4.4.6 Pulse Modulation and Demodulation

General Issues Analog modulation (AM, FM, PM) is used for transferring an
analog low-pass (baseband) signal, such as an audio signal or TV signal, over an
analog passband channel, e.g., a restricted radio frequency band or a cable TV
network channel. Digital modulation is used for transferring a digital bit stream
over an analog passband channel, such as a limited radio frequency band or a public
switched telephone network (where a bandpass filter restricts the frequency band to
between 300 and 3400 Hz).

Pulse modulation is used to transfer a narrowband analog signal, such as a phone
call, over a wideband baseband channel, or in some cases, as a bit stream over
another digital transmission system. It is also used in neuron modeling and circuit
design. Analog modulation/demodulation techniques were discussed in previous
sections. Here, we will briefly discuss the basic pulse modulation schemes. Digital
modulation schemes will be presented in the next section. Pulse modulation

Fig. 417 AM, FM, and PM
signals compared. The carrier
and modulating signals are
shown superimposed on the
top

Amplitude | NARAVAYAvavawa' V[
Modulation || | MUYV YVVVVVVAY

Frequency
Modulation

D e

1

1 i
Phase i1 WARNAN
Modulation ||| | ! |
RIRIA




186 4 Information I: Communication, Transmission, and Information ...

schemes use as a carrier signal a pulse train. The form of the pulses can be selected
from among several types that differ in terms of energy and spectral content con-
sumption. Examples of pulse types are square pulses and raised-cosine pulses. The
five basic pulse modulation methods are the following, according to the pulse train
parameter, that is, modulated (amplitude, width/duration, frequency, and position of
leading edge):

Pulse-amplitude modulation (PAM).
Pulse-width modulation (PWM).
Pulse-frequency modulation (PFM).
Pulse-position modulation (PPM).
Pulse-code modulation (PCM).

Pulse-Amplitude Modulation and Demodulation In pulse-amplitude modulation
(PAM), the amplitude (height) of individual pulses in the pulse train is varied from
its normal value in accordance with the instantaneous amplitude of the modulating
signal at sampling intervals. The width, frequency, and position of the pulses are
kept constant. In other words, the information carried by the modulating signal is
carried on a train of pulses being encoded in the amplitude of the pulses.

Figure 4.18 shows a typical PAM signal.

The PAM transmitter design is simple since it is a standard sampler with con-
stant sampling period. Similarly, the receiver (demodulator) is simple.

Fig. 4.18 Example of PAM
in which the amplitude of a
square pulse carrier train is
modulated by a sinusoid / Msﬁgm?_e
Signal \/ \/ fm o

SAMPLING
SIGNAL
fy = 8 kHz

PAM
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Pulse-Width Modulation and Demodulation In pulse-width modulation (PWM)
or pulse-duration modulation (PDM) or pulse-length modulation (PLM), the
modulating signal changes the width of individual pulses from their normal values,
in proportion to the change at each sampling interval. The amplitude, frequency,
and position of the pulses are kept constant. PWM is extensively used in power
electronics and power control applications, because it is a very good method of
providing intermediate quantities of electric power between fully on and fully off. It
is noted that a standard power switch provides full power when switched on, and
zero power when switched off. In communication applications, the width of the
pulses corresponds to specific data values encoded at one end and decoded at the
other end. Pulses of various widths (lengths) that represent the transmitted infor-
mation are sent at regular intervals determined by the carrier frequency. There is no
need to use a clock signal, because the leading edge of the pulse train plays the role
of a clock. But, to avoid a data value with a zero-width pulse, the addition of a small
leading edge offset is required.

Pulse-Frequency Modulation and Demodulation In pulse-frequency modulation
(PFM), the instantaneous amplitude of the modulating signal changes the frequency
of the carrier-pulse train, leaving unaltered the amplitude and width of the pulses.
PFM is analogous to PWM since the magnitude of the information-bearing
(modulating) signal is encoded in the duty cycle of the square pulse train.
Compared to PAM, PFM has the advantage of better immunity to noise interfer-
ence. The drawback is that the design of transmitter and receiver is more complex.
For this reason, in practice, PAM or PWM is more commonly used. An example of
PFM is shown in Fig. 4.19.

Pulse-Position Modulation In pulse-position modulation (PPM), the variation of
the instantaneously sampled values of the modulating signal changes the position of
each pulse with respect to the position of a periodic reference pulse. The amplitude
and width of the pulses are kept constant, and so the required transmitter power is
constant. PPM has the drawback that it depends on the synchronization of the
transmitter—receiver pair. PPM is widely used in optical communications. PPM and
FSK (frequency-shift keying) modulation are two canonical forms of orthogonal
modulation. PPM and FSK are actually dual modulation techniques in the sense that

Fig. 4.19 Examples of PFM: (a)
a modulating signal, b carrier >
periodic pulse train, and \_/ t

¢ PFM pulse train (b)
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in FSK each signal gets a different slice of the frequency band, whereas in PPM
each signal gets a different slice of the signaling interval. A PPM signal can be
produced by feeding a PWM signal into a differentiating circuit, which provides
positive-and-negative-polarity pulses at the rising and falling edges of the PWM
pulses. Passing these alternating polarity pulses to a rectification circuit, which cuts
the positive fixed (non-modulated) pulses, we obtain the negative pulse train which
is the desired PPM pulse signal.

Pulse-Code Modulation and Demodulation In pulse-code modulation (PCM),
the amplitude of the analog modulating signal is sampled with a fixed sampling
rate, and then it is quantized to a set of symbols, typically a binary code. The PCM
principle is illustrated in Fig. 4.20.

The four-bit coded values of the sinusoid modulating signals at the sampling
instants one up to 12 are as shown in Table 4.1.

The general structure of a PCM modulator has the form shown in Fig. 4.21.

This structure is implemented in several ways, using suitable, single-integrated
circuits (known as analog-to-digital (A/D) converters).

Pulse-coded demodulation reproduces the analog input (message) from the
digital output using a reverse sequence of operations. A PCM demodulator circuit is
known as digital-to-analog (D/A) converter (see Fig. 4.22).

Pulse-code modulation has two important features:

e Noise contamination is almost completely eliminated when the pulse signals
exceed the noise levels by at least 20 dB.

e The signal can be received and retransmitted as many times as desired with no
distortion of the signal.

Other Pulse Modulation Techniques Besides the five types of pulse modulation
just discussed, over the years, several other techniques with associated benefits and
drawbacks have been developed. These are as follows [51]:

Fig. 4.20 The principle of 15
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levels (i.e., four-bit 12
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Table 4.1 PCM of a sinusoid using the four-bit binary code 1-2-4-8

Sampling instant Sampled value Binary coded value

1 9 1001

2 11 1011

3 12 1100

4 13 1101

5 14 1110

6 14 1110

7 15 1111

8 15 1111

9 15 1111

10 14 1110

11 14 1110

12 13 1101

Sampler
‘:“n%) Hirll;er 5| Quantization Coder eg‘uﬁ

Fig. 4.21 The pulse-code modulator performs the operations: sampling—holding, quantization,

and binary (digital) coding

D_igital Decoder Holding Analog
input Circuit OQutput

Fig. 4.22 The PCM demodulator (or D/A converter) is performed by a binary decoder and an
analog holder

ASK: Amplitude-Shift Keying, where a finite number of amplitudes are used.
FSK: Frequency-Shift Keying, where a finite number of frequencies are used.
PSK: Phase-Shift Keying, where a finite number of phases are used.

BPSK: Binary-Phase Shift Keying.

QPSK: Quadrature-Phase Shift Keying.

QAM: Quadrature-Amplitude Modulation.

ADPCM: Adaptive-Differential PCM.

PDM: Pulse-Density Modulation.

Some more specific schemes of quantized modulation (QM) are the following:

QAM: Quantized-Amplitude. Modulation

QFM: Quantized-Frequency Modulation.
QPAM: Quantized-Pulse-Amplitude Modulation.
QPM: Quantized-Phase Modulation.
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e QPPM: Quantized-Pulse-Position Modulation.

For descriptions and details about them, the reader is referred to modern text-
books of communication systems [42, 52].

4.5 Information Theory

4.5.1 General Issues

As we saw in Sect. 4.3.5, information theory was formally initiated by Claude
Shannon (1948) who coined the concept of “entropy” as the average “information
content” in a message, measured in bits (binary digits) [9]. The term “information”
was originally coined by Ralph Hartley in his 1928 paper “Transmission of
Information”, where he treated “information” in a technical sense as a measurable
quantity, reflecting the receiver’s ability to recognize the sequence of symbols sent
by the sender (without any concern about the meaning or semantic issues of these
symbols). Hartley’s formula for information is [8]

I =logS" =nlog$

where S is the number of possible symbols and n is the number of symbols in a
transmission. The information I is measured in decimal digits, also called Hartley
units.

Information theory is a mathematical theory principally concerned with coding—
decoding. Its primary mathematical tools are probability theory and statistics.
Shannon’s formula for entropy is

H(X) == pilog,ps
k=1

where p; = p(x;) are discrete probabilities of the random process (message) X, with
possible values xj,x,...,x,, which express the probabilities that a particular
message is transmitted. H(X) is a measure of how much information is contained in
the transmitted message.

Shannon gave the name “entropy” to the quantity H(X) upon the suggestion of
John von Neumann. Originally, he thought to call it “information” but since this
word was overly used, he decided to call it “uncertainty”. But, in a private con-
versation with von Neumann, he was advised to call it “entropy”. “You should call
it entropy, John von Neumann suggested, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows what
entropy really is, so in a debate you will always have the advantage.”
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In the following, we will present two derivations of the concept of entropy,
H(X), and the four fundamental theorems of information theory, namely,

Nyquist—-Shannon sampling theorem.

Shannon’s source coding theorem.

Shannon’s channel capacity theorem.

Landau—Pollack bandwidth signal dimensionality theorem.

4.5.2 Information Theory’s Entropy

The following two ways of introducing information theory’s entropy will be
discussed:

¢ Entropy as the information content of a measurement.
e Direct definition of entropy.

4.5.2.1 Entropy Derivation via the Information Content
of a Measurement

The present derivation is as follows [53]. A real number N is typically expressed by
the infinite series:

N=d 00"+ - +d ,10*°+d_110+dy+d, 107" + - +d, 107" + --.

where the d;’s (digits) are integers between 0 and 9, and d_,, # 0 for n > 0. In
shorthand, N is written in the well-known decimal form:

N = dfndfnJrl c-d_ydoedidy - - - dy,

For each number, there exists a unique decimal expansion of this form, provided
that we agree to exclude expansions like 2.36999... where nines repeat indefinitely,
and express numbers like 2.5000... as 2.5 (omitting the infinitely repeating zeros).

Rational numbers are defined to be ratios of integers, i.e.,

a/b:dn"'dldo.dldz"'dn (b>0)
A decimal expression represents a fraction if and only if some sequence of digits

in the expression repeats indefinitely. For example,

1/4 =0.2500,..., 1/6 = 0.166.. .6. ..
13/70 = 0.1857142857142857142857. ..

With other numbers, the situation is more complex. For example, the decimal
expressions for the numbers \/§ and 7 (the ratio of the circumference of a circle to
its diameter) are as follows:
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V2 = 1.41421356. .., n = 3.14159265. ..

where all digits must be calculated one by one. These classes of numbers differ in
the amount of information they convey and in the effort required to obtain that
information.

Although in some cases (like the ones mentioned above) we know explicitly all
the digits of the expansion of a number, this is not so when we observe or measure a
certain physical quantity. What one can do here is to obtain successive refined
intervals that bound the actual value m of the quantity M at hand. Suppose that we
get an estimate of the true value m in the interval /iy € (aj,by). If this is not
satisfying, a second more precise measurement is performed which gives

my € (a27 b2) with a; <a, <b, <b;

Clearly, the new bounding interval (a;, b,) provides some additional number of
digits in the decimal expansion of m. The number of decimal digits in the original
decimal expansion is approximately given by log,,(b1 — a;), and the number of
digits of the more accurate expansion is log;,(b2 — az).

The gain I,y in information when we go from the first interval (a;,b;) to the
second interval (ay,b;) is equal to

Lo =logo(b1 — a1) — logy(b2 — a2)
=log,,[(by —a1)/(bs — ay)] decimal digits

If the number N is represented in binary form: N =c_,---c_jco - c1ca - ¢y
where ¢; = 0 or 1 (for all i), the information gain is equal to

L, = logz[(bl — al)/(b2 — az)] bits

Since b; — a; is the length of the interval with limits a; and by, and b, — a; is
the corresponding length of the second interval with limits a; and b, the ratio
(by — az)/(by — ay) represents the probability p that a random point in the interval
(a1,by) lies in the interval (as,b,), i.e.,

p=(br—a)/(by —ai)

Thus, the gain in information can be expressed as

b = logy[(b1 — @)/ (b2 — @2)] = log, G) 0<p<l

Now, consider a system that can be in one of the finite sets of states xj, xz, .. ., X,
(arbitrarily ordered), and let p; be the probability of the system to be in state x;.
Clearly, the probabilities p; must satisfy the total probability condition:
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Suppose that an observation of the system reveals that the system is in state x;.
To calculate how much information was gained after this observation, we assume
that our observation system associates with each state a probability interval. For
example, state x; with probability p; corresponds to the interval 0 <x <pj, state x,
with the interval p; <x <p| + p», and so on. In general, the kth state x; is associated
with the interval:

P1+p2+ s AP <X<pir+p2+ -+ pr
with limiting condition for the nth state of
Pr+p2t - Fpp <x<pi+pr+ - +py =1

After observing that the system is in state xi, the length of the measurement
interval becomes py, whereas, at the beginning (without any measurement), we have
0<x<1, ie., a length interval equal to one. Therefore, the gain in information
compared with the case before the observation is

logy (1/px)

The average information I gained when the system changes from one state to
another, up to the state x,, is equal to

I =pilogy(1/p1) +p2logy(1/pa) + -+ +pulogy(1/pn)

ZPk log, (1/p)
k=1

n
== plogype=H
k=1

where H is exactly the entropy introduced by Shannon in his 1948 paper [9]. Here,
if py = 0 for some &, the value of the term 0log,0 is taken to be 0, consistent with
the limit liI(I)l plog,p =0.

p—07*

4.5.2.2 Direct Definition of Entropy

This direct way of defining entropy is due to Shannon and can be found in most
textbooks on information theory or communication systems. Consider a random
variable X that carries an infinite amount of information if it is continuous in
amplitude range. Each realization (presentation) of X can be considered to represent
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a message. Actually, in a physical or biological system, it is not realistic to assume
that the amplitude measurements can have infinite accuracy. Therefore, it seems to
be realistic to assume that the value of X can be uniformly quantized to a finite set
of values, in which case X is discrete random variable:

X ={x;k=0,£1, £2,...,+n}

where 2n + 1 is the total number of discrete levels. Now, suppose that the event
X = x; occurs with probability:

pr = P(x) = P(X = x;)

under the conditions:

0<pe<l and Y pp=1
k=1

If for some £, the event X = x; occurs with probability p; = 1, in which case all
other p;’s for i # k are zero, the occurrence of the event X = x; does not add any
“information” and does not incur any “surprise”, since we know surely what the
message is. However, if the various discrete levels occur with different probabili-
ties, the occurrence of some event X = x; conveys some information (Or surprise),
which is higher when p; = p(x;) is lower (i.e., the uncertainty about the occurrence
of X = x; is higher). Thus, the terms “uncertainty”, “surprise”, and “information”
can be used interchangeably in the information theory framework. In particular, the
amount of information (or surprise) is related to the inverse of the probability of
occurrence.

On the basis of this discussion, the amount of information obtained after the

observation of the event X = x; with probability p; is defined as

Ip(xx) = logg(1/px) = —logg px

where the base B of the logarithm is arbitrary and when the base B = 2, I(x;) is
measured in bits, when B = 10 I(x;) is measured in decimal digits (Hartley’s), and
when B = e (natural logarithm) I(x;) is measured in natural units (nats).

The quantity I(x;) defined here has the following properties:

e Ig(xx) = 0 for p; = 1 (i.e., no information is gained if the occurrence of X = x;
is absolutely certain).
Ig(x;) >0 for 0 <p; <1 (i.e., a loss of information never occurs).
Ig(xy) > I(x;) for py <p; (k # i) (i.e., the less probable an event is, the more
information is gained after its occurrence).

Clearly, the quantity Ig(x;) is a random variable with probability p;. Therefore,
the mean value I of Iz(x;) over the entire range of 2n + 1 discrete values is equal
to
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I5(X) = ElIw)] = > pel(x)

k=—n

==Y plogpi = H(X)

k=—n

and is called the entropy of the discrete random variable X, which takes a finite set
of (2n+ 1) values. The entropy H(X) provides a measure of the average amount of
information provided per message. The basic properties of the entropy H(X) are as
follows:

H(X) is continuous (a small change of the probabilities yield a small change in
H(X));
0<H(X)<logz(2n+1);

e H(X) = 0if and only if py = 1 for some k (i.e., if there is no uncertainty);

H(X) =logg(2n+1) if and only if all discrete levels are equally probable
(r=1/(2n+1) for all k),

H(X) is additive (i.e., the entropy is independent to how the process is divided
into parts). This allows us to calculate the entropy of a system via the entropies
of the subsystems, if we know the interactions between the subsystems. That is
if the system is divided into M blocks (subsystems) with by, by, . . ., by, elements
each, we have

1 1 by by
H et = Hy et
2n+1 2n+1 2n+1 2n+1

SN 1 1
Hy | —,...,—];
+k;n2n+1 by (bk’ 7bk>7

H(X) remains unchanged if the events X = x; are re-ordered, i.e.,

H(xm s X0, X1, .. .,)C,,) = H(x—il+17'xn7 < X0, X1, - 'axn);

For equal probability events, H(X) increases with the number of observations,

i.e.,
a1 Ly 2 AN
2n+1""""2n+1 2n+2" " ""2n+2)’

The addition or removal of an event with probability zero does not change the
value of the entropy:

1 1 1 1
H ey ,0)=H ey .
2n+1 2n+1 2n+1 2n+1
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4.5.2.3 Differential Entropy

The concept of entropy thus far discussed refers to discrete random variables. Here,
we will introduce the corresponding concept for the case of a continuous random
variable X that has a probability density function f(x). This concept is the

following:
- / £(x) logsf(x) dx

— E[logg f(x)]

h(X)

and is called the differential entropy of X (in contrast to the absolute entropy H(X)).
Of course, it is remarked right from now that 4(X) does not provide in any way a
measure of the randomness of X. This expression for the differential entropy is
justified by using the mean value theorem:

(k+1)ox

Sx)ox = / f(x)dx

which leads to the Riemannian approximation:

/ch< x)dx = lim, fok
Define
Hs; = — kz: S (xx)oxlogg[f (xx) 0x]
= — Z £ () dx logg f (xx) Z £ (xe)dxlogg dx
k=—00 k=—00
Then, as dx — O:
lim Hj = — 7 f(x)logg f(x) dx — lim (logs ox) /OC f(x)dx
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oo

h0) = = [ 00 togy () de = lim (s + logy &)

—00

where the relation [ f(x)dx =1 was used.
Now, (shmo logg 0x = —oo, which implies that the entropy of a continuous

variable is infinitely large. This is indeed justified by the fact that a continuous
random variable may take any value in the interval (—oo, c0), and so the uncer-
tainty associated with the variable is infinite. Regarding the infinite offset,
logg0 = —o0, as a reference, the quantity h(X) is actually a differential entropy.
Clearly, the differential entropy is not a limit of the Shannon entropy for n — oo,
but differs from this limit by the infinite offset log ox — —oc as dx — 0.

4.5.2.4 Joint Entropy, Conditional Entropy, and Mutual Information

Joint entropy Consider two discrete random variables X and Y. The entropy of
their pairing (X, Y) is called joint entropy H(X,Y), i.e.,
H(X,Y) = E(xy)[—loggp(x, )]
== plx,y)logg(x,y)

X,y

Conditional entropy The conditional entropy of the random variable X given the
random variable Y is defined as

H(X|Y) = Ey[H(X|Y)]
== p() > _px]y)logsp(x]y)

yey xeX

= — Zp(x, y)logg[p(x,y) / p(y)]

i.e., H(X|Y) is the average conditional entropy Ey[H(X|Y)] over Y. It follows that

H(X|Y)=H(X,Y)— H(Y)

Mutual information The mutual information (or transinformation) is defined to
be the amount of information that can be obtained about one random variable X via
the observation of another variable Y, i.e.,
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x,y)

I(X;Y) = Ex yl[l pry logB o0

where I;(x, y) is the point-wise (specific) mutual information. It follows that I(X; Y)
has the following property:

I(X;Y) = H(X) — H(X|Y)

This means that, if we know Y, we can have a saving of I(X; Y) bits in encoding
X, compared to the case in which we do not know Y. The mutual information has
the following property:

I(X;Y) =H(X) — H(X|Y)
X) = [H(X,Y) - H(Y)]

H(X) —
(X) =
(X)+H(Y) - H(X,Y)
(¥) -
(¥) -

Y) - [H(X,Y) - H(X)]

H
H
H
H(Y)— H(Y|X) = I(Y; X)

i.e., the mutual information is symmetric.

4.5.3 Coding Theory

4.5.3.1 General Issues

Coding theory is the branch of information theory that deals with the transmission
of information across communication channels (noiseless, noisy) and the recovery
of the messages. Coding theory aims to make messages easy to read, and should not
be confused with cryptography, which is concerned with making messages hard to
read. One of the principal goals of coding theory is to remove information
redundancy (i.e., compress data) and correct the errors that may occur. Specifically,
coding theory studies the properties of codes and their suitability for particular
applications. Here, a brief outline of coding theory will be given. Full presentations
can be found in the respective literature (e.g., [54—66]).

Coding is categorized into three categories:

e Source coding.
e Channel coding.
e Combined source and channel coding.

Source encoding (or data compression) performs data compression on the
information sent by a source, so that the transmission is more efficient. Channel
encoding adds extra bits to assure a more robust transmission regarding distur-
bances and noise present on the transmission channel.
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4.5.3.2 Source Coding

Source coding (compression) is the process of encoding information using fewer
information-bearing units (e.g., bits) compared to a non-coded representation,
through the employment of particular encoding schemes. Compression is very
useful since it contributes to the reduction of the consumption of expensive
resources. The development of source coding techniques and the design of
equipment must be based on compromises among several factors, such as the
degree of compression, the level of noise and distortion involved, and the com-
putational resources needed for the coding and recovery of the data.

The two ways of data compression are as follows:

e Lossless data compression, where the data must be recovered precisely.
e Lossy data compression, where the bits required for recovering the data with the
desired reliability, as measured by a distortion index, are added.

4.5.3.3 Channel Coding

Channel coding is concerned with maximizing the information rate that the channel
can convey reliably, i.e., with acceptable error probability. To this end, codes must
be designed that allow fast transmission of data, involve many valid codewords,
and can detect and correct various errors. This again requires a number of trade-offs
between several conflicting issues. Although source coding tries to remove as much
redundancy as possible, channel coding designs and investigates several
error-correcting codes, which add sufficient redundancy (i.e., error correction) that
assures efficient and faithful transmission of information across a noisy channel.

4.5.3.4 Error Detecting and Correcting Codes

Error detection It deals with the detection of errors introduced by noise and other
disturbances across the transmission channel from the transmitter to the receiver.
The general way is to add some extra data bits (i.e., redundancy) to a message,
which makes possible the detection of any errors in the conveyed message. The
additional bits are called check bits and are determined by a suitable algorithm
applied to the message bits. To detect any existing errors, the receiver applies the
same algorithm to the received data bits and compares the output to the received
check bits. If no matching of the values occurs, an error has taken place at some
point of the transmission.

Error correction It deals with both the detection of errors and the recovery of the
initial, error-free data. The three primary ways for design the channel code for error
correction are as follows:
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e ARQ (Automatic Repeat reQuest): The receiver requests the retransmission of
the data that are assumed to contain errors.

o FEC (Forward Error Correction): The transmitter sends the encoded message
with an error-correcting code. The receiver decodes the received message into
the most likely data, without sending any request for retransmission.

e Hybrid ARQ and FEC: Here minor errors are restored without retransmission,
and major errors are corrected by sending a request for retransmission.

Three ARQ schemes that are suitable for varying or unknown capacity commu-
nication channels (such as the Internet) are as follows:

e Stop-and-Wait ARQ.
e Go-back-N ARQ.
e Selective Repeat ARQ.

FEC is typically employed in lower layer communication and in storage devices
(CDs, DVDs, Dynamic RAM) and are classified into two classes:

e Block codes which are processed in blocks. In this class, we have, among others,
repetition codes, Hamming codes, and multidimensional parity-check codes.

e Convolutional codes which are processed on a bit-by-bit basis. Here, the
so-called Viterby decoder performs optimal decoding.

4.5.3.5 Block Codes

An (n,k) block code, where k is the number of input bits and » is the number of
output bits, is characterized by the following parameter:

Coderate : r=k/n
Channel datarate : Ry = rR,,

where R, denotes the bit rate of the information source.
A binary block code C of block length n is a subset of the set of all binary
n-tuples

X = [x0, X1, ..., Xy—1), where x; =0 or 1 for i =0, 1,...,n — 1. Code vector or
code word is called an n-tuple belonging to the code.

o Hamming weight w([x,,x1,...,X,—1]) is the number of nonzero components of
the n-type.

e Hamming distance d(x,x') between two n-tuples x and x’ is defined as the
number of positions in which their components differ. From this definition, it
follows that
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d(x,x') = w(x — x),

where

X = X' = [x0, X1, s X t] = [¥s Xy X,

= oo s ]

Minimum Hamming distance, d,, of the block code C is the smallest
Hamming distance between pairs of distinct code words.

Some theorems on the detection and correction ability of block codes are the
following [61].

Theorem 1 A code C can detect all patterns of s or fewer errors if and only if
Ainin > S.

Theorem 2 A code C can correct all patterns of s or fewer errors if and only if
dmin > 2s.

This theorem suggests the following implicit decoding rule: “Decode ¢ (the
corrupted received codeword of an actual codeword a) to the nearest codeword in
terms of the Hamming distance, i.e., dpy;, = min w(e) = min w(c —a) =
min d(c,a)”

Definition A binary code C is linear if, for a and a’ in C, the sum a +a’ is also in
C. For example, the code C = {[0,0,0]+[1,1,0]+[1,0,1]+[0,1, 1]} is a linear
code because [1,1,0]+ [101] = [011], and so on.

e The minimum Hamming distance of a linear block code is equal to the smallest
weight of the nonzero code words in the code.

4.5.3.6 Convolutional Codes

A binary convolutional code is characterized by a 3-tuple (n, k, m), where k is the
number of input (message) bits, n is the number of generated (output) bits, and m is
the number of memory registers (memory order). As in block codes, the parameter
r =k /nis called the code rate. Typically, k and n vary from 1 to 8, m from 2 to
10, and the code rate r from 1/8 to 7/8. In deep space applications, code rates r as
low as 1/100 or smaller have been used. In many commercial cases, the convolu-
tional codes are described as (r, L), where r is the code rate and L is the constraint
length L = k(m — 1), which represents the number of bits in the encoder memory
that affect the generation of the n output bits.

A binary convolutional encoder is represented pictorially by a set of shift reg-
isters and modulo-2 adders, where the output bits are modulo-2 sums of selective
shift register contents and present input bits. The diagram of a (2, 1, 2) convolu-
tional code r is shown in Fig. 4.23.
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Fig. 4.23 Binary (2, 1, 2) >y, =(1010011]
convolutional encoder s
(SR; = ith shift register) 0
11101 —
futor SR, | y=[110110010010]
uO u-l
ul
Fall Y
T
y,;=[1101001]

This is a rate r = 1/2 code. Each input bit is coded into two output bits. The
constraint length of the code is L=k(m—1)=1x (2—-1) =1.

The choice of the bits to be added for generating the output bit is determined by
the so-called generator polynomial (g) for that output. In Fig. 4.23, the first output
bit has a generator polynomial of 111. The second output has a generator poly-
nomial of 101. The output bits of y, and y, are given by

yi; =mod 2[u; +uo+u_1];= w1 ; Buo; Bu_y;
Y2,

mod 2[uy +u_1],= u1; Du_y,

The generator polynomial gives a unique error protection quality to the code. For
example, one code (3, 2, 2) may have entirely different properties from another,
depending on the selected polynomial. However, it is noted that not all polynomials
lead to good error correction performance. A list of good polynomials for rate 1/2
codes is given in Table 4.2 [54].

The encoders of convolutional codes are represented by multivariable (MV)
linear time-invariant (L'TI) systems as shown in Fig. 4.24.

The y; output in Fig. 4.21 is given by

k
Y= X+ g]@
i=1

Table 4..2 Efficient generator  copstraint length G, G,
polynomials for 1/2 codes 3 110 11

4 1101 1110

5 11010 11101

6 110101 111011

7 110101 110101

8 110111 1110011

9 110111 111001101

10 110111001 1110011001
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Fig. 4.24 LTI representation
of a MV convolutional
encoder

X, ——> Convolutional [——>7,
X, — Encoder =7,
X, L | —Y,

where “*” denotes the convolution operator, and gj(-')

ith input sequence with respect to the jth output. The impulse responses are the
generator polynomials (sequences) of the encoder, previously discussed.
The impulse response for the binary (2, 1, 2) convolutional code of Fig. 4.20 is

is the impulse response of the

g =[1,1,1,0,...] = [1,1,1]
g =[1,0,1,0,...] = [1,0,1]

The outputs y, and y, corresponding to the input vector x = [1 1 1 0 1] are equal
to

yi=[11101][111]=[1010011]
Y =[11101]%[101]=[1101001]

As in block codes, the convolutional codes can be generated by a generator
matrix multiplied by the input (information, message) vectors.

Let {xi,X2,..., X} and {y,,¥s,...,¥,} be the input and output sequences.
Arranging the input sequences as

X = [Xl,o,xz,m ey XK - - 3 XLy X2 ey - - -7xk.k]

= [uo,ul,...,up,...}

and the output sequences as

Y = [Y10, 5200 - - Yn0i - - Y005 Yt - - -]

= [zo,zl,...,zp,...}
the convolutional encoder is described by the matrix-vector equation:
y =xA
where A is the generator matrix of the code:
Ay A A, - A,

AO Al o Amfl Am
A= AO o Am72 Amfl Am
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where the k x n blocks A, are given by

1

g o gl
N
A[,: gl,p 8np
k k
g g

and gjg? the impulse response of the ith input with respect to the jth output:

() [ (@)

g = gj,oag;ll)“

(i) m]

8jp+ - 8jm

The output vector y of the binary encoder (2, 1, 2) of Fig. 4.30 is given by

y =xA
where x =[1 110 1], and
11 10 11
11 10 11
A= 11 10 11
11 10 11

11 10 11
ie.,
y =[11, 01, 10, 01, 00, 10, 11]

as shown in Fig. 4.30.
A better understanding of the operation of an encoder can be obtained using one
or more of the following graphical representations [59-64]:

e State diagram.
e Tree diagram.
e Trellis diagram.

The definition and the way these encoder diagrams can be drawn and used are
given in the literature [54-57].

For the decoding of convolutional codes, there are available several different
approaches that can be grouped into two basic classes [59-64]:

e Sequential decoding (Fano algorithm).
e Maximum-likelihood decoding (Viterbi algorithm).

Sequential decoding was one of the earliest techniques developed for decoding
convolutionally coded bit streams. It was first coined by Wosencraft and refined by
Fano. Maximum-likelihood decoding is a good alternative methodology that is best
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implemented by the Viterbi algorithm. For full presentations of the above decoding
techniques, the reader is referred to the bibliography [54-64].

4.5.4 Fundamental Theorems of Information Theory

Here, four fundamental theorems of information theory will be reviewed and their
roles and usefulness in practice will be explained. These theorems are the
following:

e Nyquist—-Shannon sampling theorem.

e Shannon’s source coding theorem.

e Shannon’s noisy channel coding and capacity theorem.

e Landau—-Pollack bandwidth signal dimensionality theorem.

4.54.1 Nyquist-Shannon Sampling Theorem

This theorem, which was first formulated by Harry Nyquist in 1928 [67] and
formally proved by Shannon in 1949 [68], states: “To be able to reconstruct per-
fectly a sampled analog signal x(t) from its sampled version x(kT), k =0,1,2,...
the sampling frequency 1/T Hz (where T is the sampling period) must be greater
than twice the highest frequency W of x(¢).”

If the sampling frequency is less than this limit, then frequencies in the original
analog signal that are greater than half the sampling frequency will be “aliased” and
will appear in the resulting signal as lower frequencies. If the sampling frequency is
exactly twice the highest frequency of the analog input, then “phase mismatching”,
between the sampler and the signal, will distort the signal. Therefore, in practice, an
analog low-pass filter must be used before the sampler to guarantee that no com-
ponents with frequencies above the sampling frequency remain. This is called an
“anti-aliasing filter” and must be very carefully designed, because a poor filter
causes phase distortion and other effects. The minimum sampling frequency 2 W
that permits exact reconstruction of the original signal is known as the Nyquist
frequency (or Nyquist rate), and the time spacing between samples is known as
“Nyquist time interval”. To express the above concepts mathematically, let a signal
x(7) have a Fourier transform:

Fx(@] =X(H) =0 for |f]>W.

Then, x(¢) is completely determined by giving the value of the signal at a
sequence of points, spaced T = 1/2W apart. The values x; = x(k / 2W) = x(kT),
T = sampling period, are called the samples of x(7).

The sampled signal x*(¢) is expressed as the amplitude modulation via x(z) of a
0— pulse (Dirac) train Y .- (¢t — kT), i.e.,
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x'(r) = x(¢) i o(r—kT)

k=—00

Since multiplication in the time domain is expressed by convolution “*” in the
frequency domain, we have

X ) =X()* | 32 8 —i/T)
:% / X(s)jié(fsj/T)ds

_ ;jix(f —JT) = X(eﬂ“/T)

Figure 4.25 shows pictorially the Fourier transform X*(f) = X (¢/*/T) of the
sampled version x*(¢) of a signal x(¢) that has the Fourier transform X(f) [42]. In
this case, X(f) # 0, outside the frequency region determined by the Nyquist fre-
quency W = 1/2T. Therefore, “aliasing distortion” appears, which is due to the

overlap of the various periodically repeated sections of X*(f) in the frequency
domain.

(a) X(f)
T —_II 1I 1 T f
27 2r T

|I

w

|I
g
-

N
=
N
=
Nw]

27

Fig. 4.25 a Fourier transform of a continuous-time signal, b the corresponding Fourier transform
of the sampled version with sampling frequency 1/T. The overlaps indicate that in this case we
have “aliasing effects”
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4.5.4.2 Shannon’s Source Coding Theorem

Consider a source that assigns to each outcome (sample) x a binary word, which as
we have seen is called the code. Here, the vector X is an outcome of a discrete
random vector X. The asymptotic equipartition theorem (which is the basis for the
entropy’s interpretation) states that for x € X = {X,Xp,...,X,}, where X; are
independent trials of X, as n — oo (i.e., asymptotically), there is a set of “typical”
outcomes S for which

Px(x) =27"1%) x e

and the total probability that the outcome is in S is almost one. Since the “typical”
outcomes are all equiprobable, this means that there must be approximately 2#X)
outcomes in S. As n becomes larger, this approximation becomes more accurate
[42].

In the information source, when n is large, we can assign only the “fypical”
outcomes and omit the “non-typical” ones. By using nH (X)-bit code words, we are
able to encode each of the 2"#X) typical outcomes with a unique binary word, for
an average of H(X) bits per component of the vector x. Since H(X) represents the
average information obtained from the observation, each outcome of X needs an
average of H(X) bits. This is true only for an average of n components, not for an
individual component.

The source coding theorem states that [42]:

If a source can be modeled as repeated independent trials of a random variable X at r trials
per second, then the source can be encoded by a source coder into a bit stream with bit rate
less than R + ¢, for any ¢ > 0, where R = rH (X) is the so-called “rate of the source”.

This source coding theorem establishes the limits of data compression. Stated in
another way, Shannon’s source coding theorem says that [69]:

The minimum average number of bits, C, needed to encode n symbols (which are treated as
n independent samples of a discrete random vector X with probability px(x) and entropy
H (X)) satisfies the relation:

H(X)<C<H(X)+1/n.
In practice, px(x) is not exactly available, but we only have an estimate gx(x)

for use in the source coding process. In this case, the corresponding minimum C,
satisfies

H(X)+KL(pllq) < Cy <H(X) + KL(pllg) + 1/n

where KL(p||q) is the relative entropy (or the Kullback—Leibler: KL) divergence,
defined as
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KL(pllg) =) _ px(x)log[px(x)/qx(x)] = 0

We note that KL(p||g) is the difference between the two probability distributions,
px(x) and gx(x). Clearly, KL(p||g) = O if and only if px(x) = gx(X).

Constructing practical codes that are close to R is difficult. However, con-
structing good suboptimal codes is usually easy (see Sect. 4.5.3). In words, the
source coding theorem (as expressed in the above two alternative ways) says that no
source coding scheme can be better than the “entropy of the source”, or bit stream
rate less than the “source rate”.

Example Let a binary random variable X with set of values (alphabet) A = {0, 1}.
Its entropy is equal to

H(X) = —alogya — (1 —a)log,(1 —a)

where a denotes the probability of taking the value 1, @ = px(1). The entropy H (X)
is a function of a, i.e., H = H(a) which has the graphical representation shown in
Fig. 4.26 [42].

We observe that when @ = 1 — a = 1/2 (equiprobable values 0 and 1), H(X)
takes a maximum, in agreement with the theory. The maximum of H(X) is one bit.
Also, H(X) is zero when either a =0 (1 —a = 1) or a = 1, again in agreement
with the theory. The fact that, for a = 1 — a = 1/2, the value of the entropy is
H(X) = 1 means that, to encode repeated samples of X, we need on average one bit
per sample (outcome). Here, this is also sufficient for each sample, not just on
average, since the source is binary. A source coder that can achieve rate R transmits
samples of X unaltered (exactly). Now, suppose that @ = 0.1, in which case

H(X) = —0.110g,(0.1) — 0.910g,(0.9) = 0.47

This means that, to encode repeated samples of X, we need 0.47 bits per out-
come. Clearly, there are coding methods with average number of bits greater than
0.47 but less than unity.

In information theory, when dealing with a language, we speak about the
entropy or rate of the language. For example, in the case of the English language,
the alphabet consists of 26 letters (symbols) plus some additional symbols such as

Fig. 4.26 Graphical
representation of the entropy
H(X) of a binary function in
terms of the probability
a=px(1)

12 1 e
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space, comma, period, etc. These symbols can be treated as n independent samples
of a random variable X transmitted via the communication channel, each having a
probability px(x), and entropy H(X) = —) . xpx(x)logpx(x). For example,
px(x = “s”) is much higher than px(x = “z”). To minimize the code length for the
language, we assign shorter (more compressed) codes for symbols of higher
probabilities (here, a shorter code for the letter “s” than that of the letter “z”). As

length code for a symbol x with px(x), we can use its “surprise” —log px(x).

4.5.4.3 Shannon’s Noisy Channel Coding and Capacity Theorem

Shannon’s noisy channel coding and capacity theorem deal with the maximum
possible efficiency of error-correcting codes (see Sect. 4.5.3) versus levels of data
corruption and noise interference [10, 68]. This theorem establishes that a randomly
designed error-correcting code is basically as good as the best possible code, and
states [70]:

“The capacity of a discrete-memoryless channel is given by

C = max,, x{I(X;Y)|px(x)} (bits/symbol)

where I(X;Y) is the mutual information between the channel input X and the output
Y:

I(X;Y) = H(X) — H(X|Y)

If the transmission rate R is less than C, then, for any & > 0, there exists a code
with block length n large enough whose error probability is less than &. When
R > C, the error probability of any code with any block length is bounded away
from zero. If the channel is used m times per second, then the channel capacity in
bits per second is C' = mC ”.

Example Let a binary symmetric channel with cross-over probability 0.1. Then,
C = 0.5 bits per transmission. Thus, we can send reliably through the channel
0.4 bits/per channel. This can be achieved by taking (for example) 400 input
information bits and map them into a code of length 1000 bits. The whole code is
then transmitted through the channel, in which case 400 information bits can be
decoded correctly, but 100 bits may be detected incorrectly. Now, let us consider a
continuous-time additive white-Gaussian channel with fully uncorrelated signal and
noise. In this case, the channel capacity is found to be [70]:

S\ bits
cC=WI 1 —
ng ( + N()W) S

where § is the upper bound of the power of the input signal x (measured in Watt),
No/2 is the Gaussian noise power spectral density, and W is the channel bandwidth
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in Hz. Clearly, NoW = N where N is the total noise or interference power over the
bandwidth W?

Example Using the above formula for the capacity of a Gaussian channel, we can
compute the capacity of the voice band of a telephone channel. Typical values in
this case are as follows:

W = 3000Xz, S/N = 1000 or 101og,,(1000) = 30 db.

Thus, C = 30001og,(1 + 1000) == 30 kbits/s

This means that using this model one cannot design modems faster than
30 kbits/s. Because the signal-to-noise ratio is large, one can expect to be able to
transmit C/W = 10bits/s/Hz across the telephone channel.

Remarks

(a) If the noise and signal are not fully uncorrelated (as in the case of non-white
additive noise), the signal-to-noise ratio S/N is not constant with frequency over
the bandwidth. In this case, we can assume that the channel is modeled as a
multitude of narrow independent Gaussian channels in parallel, and so C is

given by
C= /Wlog2 (1 + ;—((};)))df

0

where S(f) and W(f) are the signal and noise power spectrums, respectively,
which are functions of the frequency f.

(b) For large S/N ratio (i.e., S /N > 1), we get C ~ 0.332 W (S/N, in db), where
S/N in db = 10log,y(S/N).

(¢c) For very small SIN (i.e., S/N<D), we obtain
C~144W(S/N) =1.44W(S/NoW) = 1.44(S / Ny), i.e., the channel
capacity in this case is (approximately) independent of the noise bandwidth.

4.54.4 Landau-Pollack Bandwidth Signal Dimensionality Theorem

This theorem is a consequence of the Nyquist-Shannon sampling theorem and
states [42]: “A signal cannot be both band-limited and time-limited.”

Actually, a band-limited signal is not time-limited, because its energy cannot be
entirely restricted to any finite interval of time. Similarly, a time-limited function is
not band-limited because its energy cannot be totally confined to a finite band of
frequencies. However, one can assume that a band-limited signal is approximately
time-limited, and a time-limited signal is approximately band-limited.



4.5 Information Theory 211

Quantitatively, the Landau—Pollack theorem says: “The signal space of all
finite-energy signals is infinite dimensional, but the subset of such signals that are
band limited to W Hz and approximately time limited to [0, o], #, sufficiently large,
is approximately finite dimensional with dimension 2Wry + 1.”

This means that there exists a set of 2Wz, + 1 orthonormal basis functions ‘¥;(z),
such that for any finite-energy signal x(¢) with energy E, that is band limited to
|f|<W, for any constant ¢ with 0<e<1, and for any 7, sufficiently large, the
following relations hold:

/ lx(r)*dt > E(1 — ¢)
0

0 ZW[[) 2
/ {x(t) - Zx,-‘l’,-(t)} dt <12¢E,
. i=0
where x;, i=0,1,...,2Wry are the 2Wry+ 1 expansion coefficients. In other

words, if outside the interval [0,7], the maximum fraction of the
band-limited-signal’s energy is ¢, then this signal can be approximately expressed
by a linear combination of a set of 2W¢, + 1 orthonormal basis functions, with an
energy error less than a fraction 12¢ of the signal’s energy. As #, gets larger, the
fraction of energy outside the dimension 2Wzy + 1 of this signal subspace becomes
smaller.

To verify that the Landau—Pollack theorem is a consequence of the Nyquist—
Shannon sampling theorem, we reason as follows [71]. Suppose that a signal is both
band-limited and time-limited exists and that this signal is sampled at a frequency
greater than the Nyquist frequency. These finitely many time-domain coefficients
should represent the entire signal. In the same way, the entire spectrum of the
band-limited signal should be represented through the finitely many time-domain
coefficients resulting from the signal’s sampling. Mathematically, this would
require that a (trigonometric) polynomial can have infinitely many zeros, since the
band-limited signal must be zero on an interval beyond a critical frequency that has
infinitely many points. But we know from the fundamental theorem of algebra that
a polynomial cannot have more zeros than its order. This contradiction is due to our
incorrect assumption that a signal that is both band-limited and time-limited exists.

4.5.5 Jayne’s Maximum Entropy Principle

The maximum entropy principle (MEP) was first formulated by Jaynes [26] and is
actually a generic optimization problem, namely,

“Find a probability distribution px(x), x € X, that maximizes the Shannon’s
entropy H(X) subject to a set of given constraints ¢y, cy,...,c, which express
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partial information about the probability distribution px(x) sought, and also the
typical axioms (constraints) of probability theory.”

The most common constraints in practice are expected (mean) values of one or
more random variables and/or random functions, or several marginal probability
distributions of an unknown joint distribution. More specifically, this optimization
problem is formulated as follows:

Suppose we are given a random variable X taking the values {x,xa, ..., x,} where n can be
finite or infinite, and the mean (average) values of various functions f; (X), > (X), . . ., fu(X)
where m<n. The problem is to determine the probability assignment p; = p(x;) which
satisfies the given data (constraints):

n

Zpi: 17 plZO

i=1

Zplﬁ((xl):E[ﬁ((X)}:EK~ k:1>2>'“7m
i=1

and maximizes Shannon’s entropy:

H(X) = - ZP:‘ log pi
i=1

The solution to this mathematical problem can be determined using the
well-known method of Lagrange multipliers, which however has the drawback that
it does not make clear whether a true (global) maximum of H(X) has been obtained.
Here, without loss of generality, we will develop the solution for the case
J1(X) = xt, in which the constraints about f;(X) are reduced to

Y pu=EX)=¢
k=1

Also, for simplicity, the logarithm log in H(X) is assumed to be the natural
logarithm (log, =1In) [29]. We start the solution, by converting the
above-constrained optimization problem into the equivalent unconstrained opti-
mization problem, with respect to px(k = 1,2,...,n) and the Lagrange multipliers 4
and u, of the Lagrange function:

L:—ipklnpkf)u ipkfl — MU ikak*é
k=1 k=1 k=1

Then, we write down the associated canonical (partial derivative) equations:
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OL/Opy = —Inpy — 1 — A — . =0, k=1,2,...,n

OL/9Z=1=Y p=0

k=1

OL/Op = ¢ — Zpkxk =0

k=1
The first n equations can be rewritten as

pr=e 1A — g (IHA) e
P = eflf/lfy.xz — ef(lJri)eprxz

which, if divided by the sum p; +p,+ --- +p, = 1, gives
Dk :e’”xk/Ze”‘"k, k=1,2,...,n
i=1

Now, multiplying both sides of the p; equation by x; and adding, we get

n n
E= Y neny e
k=1 k=1

from which we obtain

n n
E Xx e_l‘-xk _ é E e—,U-Xk
k=1 k=1

Finally, multiplying this equation by e"¢ gives

n

Z (x — &) e =9 —

k=1

This is a nonlinear equation (with respect to u) and can be solved numerically for
u. Introducing this value of p into the p; equations (k = 1,2,...,n), we find the
desired probabilities p, k =1,2,...,n.

As a simple illustration of the maximum entropy principle, let us consider an
unbiased  (“honest”) die. Here, xx =k (k=1,2,3,...,6), and so
E=(14243444546)/6=21/6 =3.5. The last equation here becomes
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—2.5e>3M — 1.5e!H — 0.5e08

+0.5¢ 0% 4+ 1.5¢ 1 +2.5¢ M =0
The solution of this equation is ¢ = 0, and so we find

pr=1/6fork=1,2,....n

Remark In this example, the mean value ¢ = E(X) was known and used as a
constraint on the corresponding probabilities. If E(X) were not known, then no
constraint would be on the probabilities. In this case, the maximum entropy prin-
ciple would give equal probabilities (the uniform or equiprobable distribution
px(x)), which are the only probabilities for which the entropy takes its absolute
maximum value (see the properties of the entropy in Sect. 4.5.2.2). If the proba-
bilities are subject to constraints, the MEP principle gives a maximum entropy of
limited value, which is usually smaller than the entropy of the uniform distribution.

4.6 Concluding Remarks

This chapter is the first of three chapters that deal with the “information pillar” of
human life and society. The topics that have been covered include the general
definition of the information concept, the historical landmarks of its manifestations,
namely, communication (speech, writing, printing, telegraph, telephone, comput-
ing, and computers), information theory, computer networks, multimedia, telem-
atics, and informatics, and a technical review of communication and information
theory.

Information storage, flow, and processing are inherent processes in nature and
living organisms. Organisms do not live separately from other organisms but
interact with each other within the ecosystem in which they exist. Many of the
existing technological communication and modulation/demodulation models were
inspired by life on Earth, or they can be used to model and better understand
biological communication models. The exploration of the physical and biological
world provides unexpected surprises and discoveries that increase steadily our
information entropy.

In a similar way, modern information transmission and communication tech-
niques are affecting and will continue to increasingly affect the social and
economic/business activity of people over coming decades. An example of this is
electronic commerce (e-commerce), which reduces substantially the sales and
operational costs in comparison with the traditional stores. The Internet expands
and moves e-commerce into an open and global market with big changes in the
market structure, size, and players.
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More generally, inter-networked information technology enables people to act in

their own self-interests and affect the experiences of other people. Overall, it is
anticipated that the prospect of return-on-investment (ROI) research in communi-
cations, information theory, and information technology is very promising, with
directly measurable results in economic strength and social benefits.
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