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Abstract. This paper shows some distance measures based on member-
ships and centroids for comparing fuzzy variables which are commonly
used in fuzzy logic systems and rule-based models. An application exam-
ple is provided, and some interpretation issues are explained.

1 Introduction and Motivation

Fuzzy logic systems (FLS) relate multiple inputs composed by multiple fuzzy
sets (usually fuzzy numbers) in order to represent a desired output. An FLS is
based on human-like information which contains imprecision/uncertainty, and
there is no a single way to define the shapes and parameters of every fuzzy set,
so there is a need for defining a distance measure between two FLSs to establish
how far/close they are.

An FLS is composed by three components: a set of inputs, a rule base, and a
desired output. A fuzzy variable is defined by a finite number of fuzzy sets whose
shapes and parameters can be defined by different methods such as machine
learning, experts opinions, data driven regressions, etc., with different results.

A fuzzy variable is composed by a crisp set of possible values X, a universe
of discourse often called Ω, and a set of primary fuzzy terms (a.k.a linguistic
labels/partitions) that should be used when describing specific fuzzy concepts
associated to the fuzzy variable. Then, the main problem is how to compare two
fuzzy variables whose linguistic labels are associated to Fuzzy Numbers (FN).

This paper focuses on defining some distances to compare fuzzy variables
(FV) in order to identify differences using a single measure involving all its
individual fuzzy sets (which is useful in decision making, fuzzy logic systems,
fuzzy algebras, etc.). An example is provided and its results are discussed. The
paper is divided into five sections. Section 1 introduces the problem. In Sect. 2,
some basic definitions about FNs are provided; in Sect. 3, some distance measures
for FVs are presented. Section 4 presents an application example; and finally in
Sect. 5, the concluding remarks of the study are presented.
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2 Basics on Fuzzy Sets

A fuzzy set (FS) is denoted by capital letters e.g. A with a membership function
μA(x) defined over x ∈ X. A membership function μA measures affinity of a
value x ∈ X to a linguistic label/partition A (A is then a word/concept such as
high, medium, low etc.), so A measures imprecision around X (see Fig. 1).

A : X → [0, 1],
A = {(x, μA(x)) | x ∈ X}.

where x is the primary variable, and μA(x) is the membership function of A.

2.1 Fuzzy Numbers

A fuzzy number (FN) is a fuzzy set whose membership function is normal and
convex (a fuzzy subset of R, Zadeh [1]). Thus, αA is a closed interval for all
α ∈ [0, 1], and its support supp(A) is defined over x ∈ X, as shown as follows
(the set A in Fig. 1 is also a Fuzzy Number (FN)).

Definition 1 (Fuzzy Number). Let Ã ∈ F(X). Then, A is a Fuzzy Number
(FN) iff there exists a closed interval [a, b] �= 0 such that

μÃ(x) =

⎧
⎨

⎩

1 for x ∈ [a, b],
l(x) for x ∈ [−∞, a],
r(x) for x ∈ [b,∞]

(1)

where l : (−∞, a) → [0, 1] is monotonic non-decreasing, continuous from the
right, and l(x) = ∅ for x < ω1, and r : (b,∞) → [0, 1] is monotonic non-
increasing, continuous from the left, and r(x) = ∅ for x > ω2.

CAB

µS

x ∈ X

Fig. 1. Fuzzy sets A, B, C
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Figure 1 shows three FSs associated to three linguistic labels A,B,C whose
universe of discourse is the set X. Since S is characterized by different linguis-
tic labels and their associated membership functions, then we can call it fuzzy
variable. Note that every fuzzy number is associated to a linguistic label.

A widely used method to represent a fuzzy set A is through α-cuts. The
α-cut of a A, namely αA, is defined as:

αA = {x |μA(x) � α}, (2)

where αA for a fuzzy number is:

αA =
[

inf
x∈X

{μA(x) ≥ α}, sup
x∈X

{μA(x) ≥ α}
]

=
[
Ǎα, Âα

]
. (3)

Thus, a fuzzy set A is the union of its α-cuts,
⋃

α∈[0,1] α ·αA, where ∪ denotes
union (Klir and Yuan [2]).

3 Distance-Based Similarity Between Two FVs

An FV is used to represent perceptions of people about a variable X. While
some distance measures between two FNs have been proposed by Chaudhuri
and RosenFeld [3], Nguyen and Kreinovich [4], Zheng et al. [5], Xuechang [6],
and Hung and Yang [7], Figueroa-Garćıa et al. [8], and Figueroa-Garćıa and
Hernández-Pérez [9], there is no a distance measure between two FVs. The
problem of comparing fuzzy partitions has been extensively treated by Anderson
et al. [10] and Hüllermeier et al. [11] who were focused to clustering problems
where the idea is to measure similarity of elements of a cluster regarding different
partitions. This way, our approach goes to compare two FVs using distances to
establish if they are either equal or not. To do so, we use the classical axiomatic
definitions of distance since every αA can be seen as a crisp set over X.

Let R be the set of real numbers, and R+ be its non-negative orthant. X is
the universal set; F1(X) is the class of all FNs of X; P(X) is the class of all
crisp sets of X, then the distance between A and B namely d(A,B) is called
to be a metric (or simply distance) if d(A,B) ∈ R+ and satisfies the following
three axioms:

D1: d(A,B) = d(B,A),
D2: d(A,A) = 0,
D3: d(A,C) � d(A,B) + d(B,C),

Now, in the p-dimensional Euclidean space R
p, the family of Lm Minkowski

distances is defined as:

dm(A,B) =

{
p∑

i=1

|xi − yi|m
}1/m

, (4)

where A,B are two points in R
p with coordinates xi and yi.

Now, some useful definitions of distances between intervals, FNs, and the cen-
troids of two FNs are presented. In this paper we adopt the following definition
of distance among two interval sets:
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Definition 2. Let A ∈ [a, a] and B ∈ [b, b] two interval sets defined over R+,
the L1 distance between A and B is defined as follows:

d(A,B) = |a − b| +
∣
∣a − b

∣
∣ . (5)

Kosko [12], and Nguyen and Kreinovich [4] defined the index A ∩ B ⊆ A ∪ B
for crisp/interval sets to evaluate whether A = B or not, so A = B if and only if
A ∩ B = A ∪ B. Hence, for crisp (or interval) finite sets. Then, we can establish
differences between A and B using the following ratio:

RA,B =
|A ∩ B|
|A ∪ B| .

If RA,B = 1 then A = B, so if RA,B < 1 then A �= B. As RA,B → 0 as less
elements from A ∪ B are into A ∩ B, this is:

A = B ⇔ μA(x) = μB(x)

Ramı́k and R̆imánek [13] defined that two fuzzy sets A and B are equal iff
αA = αB ∀ α ∈ [0, 1], αA := [inf αA, sup αA] and αB := [inf αB, sup αB], this is:

A = B ⇔ |αA ∩ αB|
|αA ∪ αB| = 1, ∀ α ∈ [0, 1],

Now, the distance between two FNs can be defined as follows:

Definition 3. Let A,B ∈ F1(X) be two FNs. The distance (metric) dα between
A and B given a set of n α-cuts, {α1, α2, · · · , αn} and Λ =

∑n
i=1 αi, is:

dα(A,B) � 1
Λ

N∑

i=1

αi

[∣
∣Ǎαi

− B̌αi

∣
∣ +

∣
∣Âαi

− B̂αi

∣
∣
]
, (6)

for continuous α we have that Λ =
∫ 1

0
α dα = 1/2, so dα is defined as:

dα(A,B) � 2
∫ 1

0

α
[∣
∣Ǎα − B̌α

∣
∣ +

∣
∣Âα − B̂α

∣
∣
]
dα. (7)

The centroid of A, C(A) is a crisp number that measures the central trend
of A. Now, two FNs A and B are centroid equal if their centroids are equal, this
is C(A) = C(B), so the L1 distance between C(A), C(B) is:

dc(C(A), C(B)) = |C(A) − C(B)|. (8)

We recall that A �= B �=⇒ C(A) �= C(B); and A = B ⇒ C(A) = C(B).
This means that A and B could be different, this is dα > 0 (see Definition 3)
while having equal centroids C(A) = C(B).
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3.1 Distances Between FVs

An FLS relates fuzzy variables using different linguistic labels/partitions and a
rule base. We address a case where two FVs defined over the same variable X
are to be compared; for instance, two FLSs synchronized by machine learning
techniques, clustering, genetic optimized methods, etc. To do so, some theoretical
definitions about fuzzy variables are provided.

Definition 4. A linguistic variable S is a triplet (s,X,Ω) where s =
{A,B, · · · ,K} is a set of linguistic labels defined over a subset X of a uni-
verse of discourse Ω, this is X ∈ Ω. It is said S to be a fuzzy variable if
{μA, μB , · · · , μK} ∈ F1(X).

In this paper, we do not make a distinction between a linguistic label A and
its associated fuzzy set μA. Figure 1 shows a variable S conformed by three labels
s = {A,B,C} whose fuzzy sets are FNs {A,B,C} ∈ F1(X).

Comparability: Comparability between two FVs S1, S2 is an interesting con-
cept. Two sets A,B are comparable if there is a total order relation between both,
but when comparing two FVs we have that they can be composed by different
linguistic labels and/or over different X ∈ Ω. Now, we focus on comparing two
FVs with the same linguistic labels and defined over the same universe X ∈ Ω.

Definition 5. Let S1, S2 be two FVs, then they are pairwise comparable S1⊥p S2

only if: (i) they are composed by the same partition s1 = s2 = s = {A,B, · · · ,K},
(ii) its associated fuzzy sets are defined over the same variable X ∈ Ω, and iiii)
the memberships μS1,j , μS2,j are totally ordered.

This means that S1⊥p S2 only if S1, S2 are equally labeled no matter its
membership functions e.g. s1 = {A1, B1, · · · ,K1}, s2 = {A2, B2, · · · ,K2}, they
are defined over the same universe X ∈ Ω, and there is a total order for every
pair of labels j ∈ s, this is μS1,j �,� μS2,j ∀ j ∈ s.

Conversely, two FVs S1, S2 are not pairwise comparable S1‖p S2 if they are
composed by different linguistic labels/partitions, they are defined over different
universes of discourse X ∈ Ω, or there exists only a partial order between S1, S2.
If μS1,j , μS2,j for some j ∈ s are partially ordered then we propose to compute a
distance measure between S1, S2 to see how different they are.

Now, the distances dα, dc are metrics that helps to see how different S1⊥p S2

or S1‖p S2 are, so the idea is to aggregate all distances between pairs of fuzzy
sets using its sum. This way, we propose the following distances between FVs.
First, the Minkowski distance between S1, S2 is as follows:

Proposition 1. Let S1, S2 be two FVs. The distance dα between S1, S2 given
{A1, A2, B1, B2, · · · ,K1,K2} ∈ F1(X), a set of n α-cuts {α1, α2, · · · , αn}, and
Λ =

∑n
i=1 αi, is:

dα(S1, S2) �
∑

j∈{s}
dα(S1,j , S2,j) = dα(A1, A2) + · · · + dα(K1,K2), (9)

where j ∈ {s} is the set of linguistic labels of S1 and S2.
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Now, the centroid-based L1 distance between centroids C(S1), C(S2) is:

Proposition 2. Let S1, S2 be S1⊥p S2. The centroid-based L1 distance d
between S1, S2 given {C(A1), C(A2), · · · , C(B1), C(B2), · · · , C(K1), C(K2)} ∈
P(R) is:

dc(S1, S2) �
∑

j∈{s}
dc(C(S1,j), C(S2,j))

= |C(A1) − C(A2)| + |C(B1) − C(B2)| + · · · + |C(K1) − C(K2)|}, (10)

where j ∈ {s} is the set of linguistic labels of S1 and S2.

Note that dα(S1, S2) > 0 does not imply C(S1,j) �= C(S2,j). It is also clear
that if S1,j = S2,j then C(S1,j) = C(S2,j), and conversely C(S1,j) = C(S2,j)
does not mean that S1,j = S2,j , in other words:

S1,j = S2,j =⇒ C(S1,j) = C(S2,j),
C(S1,j) = C(S2,j) �=⇒ S1,j = S2,j .

Conversely, dα = 0 implies C(S1,j) = C(S2,j). It is possible to have C(A) =
C(B) while dα �= 0 since the axiomatic idea that μA1 �= μA2 can lead to equal
centroids.

4 Application Example

In this example, we compare two FVs S1 and S2 composed by three linguistic
labels s = {A,B,C} defined over the reals X ∈ R where B and C are linear
sets L(x̌, x̄, x̂), and A is a triangular set T (x̌, x̄, x̂) (see Fig. 2 and Table 1). All
centroids were computed using the proposal of Figueroa-Garćıa [14] (other effi-
cient methods for type reduction were proposed by Melgarejo [15,16], and Wu
and Mendel [17,18]).

Table 1. Parameters and centroids for S1, S2

Set B1 B2 A1 A2 C1 C2

x̌ 0 0 4 5 12 12

x̄ 6 5 10 11 15 17

x̂ 9 10 16 17 20 20

C(Si,·) 6.59 7.08 10 11 13.4 13.9

Note that the pairs A1, A2 and C1, C2 are totally ordered pairs while the pair
B1, B2 is only partially ordered, this means S1‖pS2. To establish the difference
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61014 6 9 12 15
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A1

C1

µs1

x ∈ X

Variable S1

1110 71215

B2

A2

C2

µs2

x ∈ X

Variable S2

Fig. 2. Fuzzy variables S1, S2

between S1, S2 we apply the proposed distances dα and dc (see Propositions 1
and 2). We recall that as smaller dα and d, as closer S1 to S2. The obtained
results are shown as follows:

dα(B1, B2) = 0.666, dα(A1, A2) = 1, dα(C1, C2) = 0.505, dα(S1, S2) = 2.171,

dc(B1, B2) = 1, dc(A1, A2) = 0.5, dc(C1, C2) = 0.5, dc(S1, S2) = 2.

4.1 Discussion of the Results

The distance dα(S1, S2) = 2.171 shows us that S1 �= S2, even when they are
graphically similar (see Fig. 2). The only case in which S1 = S2 is when all fuzzy
sets are equal.

Regarding C(Si,j), we computed dc(S1, S2) = 3.035 which means there are
some differences between S1, S2, so we can conclude that its centroids are dif-
ferent. Figure 3 shows the exact location of C(S1,j), C(S2,j) and also shows that
even if the shapes of every set seem to be similar, its centroids can be different.
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Fig. 3. Ordering of centroids

Conversely, two partially ordered sets could have similar centroids, note that
B2 seems to be on the left of B1, but clearly C(B1) < C(B1). Also note that
S1, S2 are centroid totally-ordered since C(S1,j) � C(S2,j)∀ j ∈ s.

After computing all distances, there is a clear idea about the distance between
S1, S2: they are not similar, and its centroids are different. This leads us to think
that if both sets S1, S2 are used in an FLS or a rule-based model, they should
produce different results since they are different. If all distances were close to
zero then we can assert that S1, S2 are similar/equal, so no difference would be
detected when using any of them.

5 Concluding Remarks

The proposed distance measures for FVs provide a base for comparing fuzzy
logic systems (or rule-based models) which are popular in practice. We also have
provided some conditions to establish if two FVs are equal or not by using an
L1 Minkowski crisp distance.

We proposed an L1 Minkowski distance to compare the centroids of two FVs
as well. This helps to measure differences among its centroids (which are widely
used defuzzification measures). Also we point out that our proposal does not
need big computational efforts and it can be easily implemented.

The membership functions used in the example are trapezoidal and triangular
FNs since they are popular in practice. The obtained results are satisfactory
since we identified some differences between S1, S2, and how distant they are.
The same concept was applied to its centroids for which the distance between
them was computed.
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5.1 Further Topics

The definition of distance measures for Type-2 fuzzy variables is a natural step in
the analysis. On the other hand, the application of our proposal to decision mak-
ing problems, including fuzzy differential equations, fuzzy linear programming,
among others, appears as an interesting field to be covered in the future (see
Chalco-Cano and Román-Flores [19,20]), Figueroa-Garćıa and Pachon-Neira
[21,22], and Wu and Mendel [23], etc.).
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