
Segment and Fenwick Trees for Approximate
Order Preserving Matching

Rafael Niquefa1, Juan Mendivelso2,3(B), Germán Hernández4,
and Yoan Pinzón5

1 Facultad de Ciencias e Ingenieŕıa,
Politecnico Grancolombiano Institucion Universitaria,

Calle 57 # 3 - 00 Este, i Tower Bogotá, Bogotá, Colombia
rniquefa@poligran.edu.co

2 Departamento de Matemáticas, Universidad Nacional de Colombia,
Bogotá, Colombia

jcmendivelsom@unal.edu.co
3 Facultad de Matemáticas e Ingenieŕıas,

Fundación Universitaria Konrad Lorenz, Bogotá, Colombia
4 Departamento de Ingenieŕıa de Sistemas e Industrial,
Universidad Nacional de Colombia, Bogotá, Colombia

5 Departamento de Electrónica y Ciencias de la Computación,
Pontificia Universidad Javeriana, Cali, Colombia

Abstract. In this paper we combine two string searching related prob-
lems: the approximate string matching under parameters δ and γ, and the
order preserving matching problem. Order-preserving matching regards
the internal structure of the strings rather than their absolute values
while matching under δ and γ distances permit a level of error. We for-
mally define the δγ–order-preserving matching problem. We designed
two algorithms for it based on the segment tree and the Fenwick tree,
respectively. Also, we design and implement in C++ and an experi-
mental setup to compare these algorithms with the naive solution and
the updateBA algorithm introduced in [22]. The data structure based
algorithms show better experimental performance due to their better
lower bound of Ω(n lg n) complexity.

Keywords: String searching · Strings similarity metric · Fenwick tree ·
Binary indexed tree · Segment tree

1 Introduction

Stringology is the branch of computer science that is dedicated to the study of
problems in which sequences are involved. One of the main problems of interest
in stringology is string matching, which consists of finding the occurrences of a
pattern within a text. Formally, the input of a string matching algorithm is a
text T , of length n, and a pattern P , of length m. Both the text and the pattern
are formed by the concatenation of symbols of a given alphabet Σ. This alphabet
c© Springer International Publishing AG 2017
J.C. Figueroa-Garćıa et al. (Eds.): WEA 2017, CCIS 742, pp. 131–143, 2017.
DOI: 10.1007/978-3-319-66963-2 13

132 R. Niquefa et al.

for the vast majority of practical applications can be considered as an ordered
set of different symbols. The output of a pattern matching algorithm is the list
of positions in the text T where the pattern P is found.

The strings will be considered throughout the paper as indexed from 0.
A notation generally used to represent substrings in a string, and which we
will adopt in this paper, is the following: Let T0...n−1 represent a length-n string
defined over Σ. The symbol at the position i of a string T is denoted as Ti. Also,
Ti...j represents the substring of the text T from the position i to the position j,
i.e. Ti...j = TiTi+1 · · · Tj , where it is assumed that 0 ≤ i ≤ j < n. In particular,
we are interested in each length-m substring that starts at position i of the text,
i.e. Ti...i+m−1, 0 ≤ i ≤ n−m, which we call text window and denote as T i in the
rest of the paper. Then, the output of the exact string matching problem should
list all the positions i, 0 ≤ i ≤ n−m, such that Pj = Ti+j for all 0 ≤ j ≤ m− 1.

In this paper, two variants of the problem of exact search of patterns were
combined: the δγ–matching problem and the order preserving matching problem.
Both of them consider integer alphabets. The δγ–matching problem consists
of finding all the text windows in T for which max0≤j≤m−1 |Pj − Ti+j | ≤ δ

and
∑m−1

j=0 |Pj − Ti+j | ≤ γ. We can see that δ limits the individual error of
each position while γ limits the total error. Then, δγ–matching has applications
in bioinformatics, computer vision and music information retrieval, to name
some. Cambouropoulos et al. [3] was perhaps the first to mention this problem
motivated by Crawford’s work et al. [6]. Recently, it has been used to make
more flexible other string matching paradigms such as parameterized matching
[17,18], function matching [19] and jumbled matching [20,21].

On the other hand, order-preserving matching considers the order relations
within the numeric strings rather than the approximation of their values. Specif-
ically, the output of this problem is the set of text windows whose natural rep-
resentation match the natural representation of the pattern. The natural repre-
sentation of a string is a string composed by the rankings of each symbol in such
string. In particular, the ranking of symbol Ti of string T0...n−1 is:

rankT (i) = 1 + |{Tj < Ti : 0 ≤ j, i < n ∧ i �= j}| + |{Tj = Ti : j < i}|.

Then, the natural representation of T is nr(T) = rankT (0)rankT (1) · · ·
rankT (n−1). Therefore, order preserving matching consists of finding all the text
windows T i such that nr(P) = nr(T i). Note that this problem is interested in
matching the internal structure of the strings rather than their values. Then, it
has important applications in music information retrieval and stock market analy-
sis. Specifically, in music information retrieval, one may be interested in finding
matches between relative pitches; similarly, in stock market analysis the variation
pattern of the share prices may be more interesting than the actual values of the
prices [15]. Since Kim et al. [15] and Kubica et al. [16] defined the problem, it has
gained great attention from several other researchers [4,5,7–10,14].

Despite the extensive work on order-preserving matching, the only approxi-
mate variant in previous literature, to the best of our knowledge, was recently pro-
posed by Uznański and Gawrychowski [12]. In particular, they allow k mismatches

Segment and Fenwick Trees for Approximate Order Preserving Matching 133

between the pattern and each text window. Then, they regard the number of mis-
matches but not their magnitude. In this paper, we propose a different approach
to approximate order-preserving matching that bounds the magnitude of the mis-
matches through the δγ- distance. Specifically, δ is a bound between the ranking of
each character in the pattern and its corresponding character in the text window;
likewise, γ is a bound on the sum of all such differences in ranking. Thus, δ and γ
respectively restrict the magnitude of the error individually and globally across the
strings. We define δγ–order-preserving matching as the problem of finding all the
text windows in T that match the pattern P under this new paradigm.

We first defined the notion of δγ–order preserving matching in [22]. Now, in
this paper we provide a more formal definition in Sect. 2. In Sect. 3, we present
two new algorithms for this problem: one based on segment trees and the other
based on Fenwick trees. In Sect. 4, we describe the experiment performed to com-
pare the algorithms with a naive solution and the algorithm updateBA intro-
duced in [22]. The data structures based algorithms experimentally outperformed
the other two. Finally, the concluding remarks are presented in Sect. 5.

2 Definition of δγ–Order Preserving Matching Problem
(δγ–OPMP)

The motivation to define δγ–order-preserving matching stems from the obser-
vation that the application areas of order-preserving matching, mainly stock
market analysis and music information retrieval, require to search for occur-
rences of the pattern that may not be exact but rather have slight modifications
in the magnitude of the rankings. For example, let us assume that the text T
presented in Fig. 1 is a sequence of stock prices and that we want to deter-
mine whether it contains similar occurrences of the pattern P (also shown in
this figure). Under the exact order-preserving matching paradigm, there are no
matches, but there are similar occurrences at positions and 1 and 11. In particu-
lar, T1...8 and T11...18 are similar, regarding order structure, to the pattern. This
similarity can be seen even more clearly if we consider natural representations
of these strings (also shown in Fig. 1).

Next we will formally define the δγ–order-preserving match, and with that
definition we will define the δγ–order-preserving matching (δγ–OPMP).

Definition 1 (δγ–order-preserving match). Let X = X0...m−1 and Y =
Y0...m−1 be two equal-length strings defined over Σσ. Also, let δ, γ be two given
numbers (δ, γ ∈ N). Strings X and Y are said to δγ–order-preserving match,
denoted as X δγ� Y , iff nr(X) δγ= nr(Y).

Example 1. Given δ = 2, γ = 6, X = 〈10, 15, 19, 12, 11, 18, 23, 22〉 and Y =
〈14, 17, 20, 18, 12, 15, 23, 22〉, X δγ� Y as nr(X) = 〈1, 4, 6, 3, 2, 5, 8, 7〉, nr(Y) =
〈2, 4, 6, 5, 1, 3, 8, 7〉 and nr(X) δγ= nr(Y).

Problem 1 (δγ–order-preserving matching (δγ–OPMP)). Let P = P0...m−1 be a
pattern string and T = T0...n−1 be a text string, both defined over Σσ. Also, let

134 R. Niquefa et al.

Fig. 1. Order preserving matching under δγ approximation example.

δ, γ be two given numbers (δ, γ ∈ N). The δγ–order-preserving matching problem
is to calculate the set of all indices i, 0 ≤ i ≤ n − m, satisfying the condition
P δγ� T i. From now on δγ–OPMP.

3 Algorithms for the δγ–OPMP

In this section, we present two algorithms that solve the δγ–Order preserving
matching problem (δγ–OPMP): one that makes use of segment trees (Sect. 3.1)
and the other utilizes Fenwick trees (Sect. 3.2).

3.1 Segment Tree Based Algorithm (segtreeBA)

The segment tree data structure is a powerful data structure with applications in
many areas like in computational geometry [1,2] and graph theory. The segment
tree data structure uses the divide and conquer approach to answer queries in
ranges of an underlying array A. Every node in a Segment Tree is assigned a
range and will contain the answer to the query for that specific range. We will
use the segment tree data structure to solve the range minimum query (RMQ)
problem, which consists in finding the index of the minimum value of the array
in a given range, and we will be able to change elements of the array. Building
a segment tree to solve the RMQ problem for an array A of length |A| takes
O(|A|) space and time. The update and query operations both take O(lg |A|).

Based on this data structure, we propose the algorithm called settreeBA
(see Fig. 2). It first calculates the natural representation of the pattern P (line
1 in Fig. 2). Then, it iterates over all possible position and tries to find δγ-
order preserving matches in every one of them. The process of finding a match
at position i in T is as follows: First the algorithm finds the smallest number

Segment and Fenwick Trees for Approximate Order Preserving Matching 135

Fig. 2. Segment tree based algorithm: segtreeBA.

in the interval
[
i, i + m − 1

]
(line 8); this value has the rank 1 in the sliding

window T i. It then uses the natural representation of P to check the δ and
γ restrictions for the rank 1 in the window T i. Then it prepares the segment
tree for the next iteration; this is done by changing the smallest value in the
interval

[
i, i + m − 1

]
to infinity, so in the next iteration of the first inner loop

the operation querySegTree(minIndex, i, i + m − 1) finds the second smallest
value in the same interval. This process is done for all the rankings from 1 to m.

In the second inner loop (lines 17 and 18 in Fig. 2), the values of T in the
interval

[
i, i+m−1

]
must be changed so that, in the next window, those contain

the original values of T and no infinity. The arrays oldV alue and changedIndex
help in the process of restoring the segment tree. We are going to adapt the
standard operations of the segment tree to this solution as follows:

– buildSegTree(T, 0, n − 1): Builds a segment tree with T0, T1 , . . . , Tn−1 and
returns the root node. The complexity is O(n).

– updateSegTree(minIndex, i, x): Sets Ti to x. The complexity is O(lg n).
– querySegTree(minIndex, i, j): Returns the index of the minimum value

among Ti, Ti+1 , . . . , Tj . If there are several minimum values, the leftmost
(smallest index) is chosen. The complexity is O(lg n).

The complexity of segtreeBA can be computed as follows: In line 1 in
Fig. 2, the algorithm creates the natural representation of the pattern with cost

136 R. Niquefa et al.

Θ(m lg m). In line 2 it creates two arrays of size m in Θ(m). In line 3 a segment
tree is created in Θ(n). Then in the main loop it iterates over all n − m + 1 can-
didates. For each candidate it finds the elements with ranks from 1 to m using
the segment tree. Finding the position of each rank in the window costs O(lg n).
After each rank position is found, the algorithm checks if the δγ restrictions
holds for the current window (lines 10 to 12). If so, it continues with the next
rank; if not, the algorithm breaks the inner loop and continues with the next
search window (line 12).

Due to the fact that the segment tree is used to find the smallest element
in an interval, the algorithm must mark as ∞ the position of each rank. Then,
in the next iteration, the next smallest element that is found, is the next rank.
These changes are done in O(lg n) time (lines 13 to 16). Reversing those changes
costs O(m lg n) (lines 17 to 18). In fact, the inner loops (lines 7 to 20) have
a combined complexity of O(m lg n), but also have a lower bound of Ω(lg n).
The lower bound of this algorithm is then Ω(n lg n), because in many cases it
does not perform the m comparisons cost O(lg n). The total complexity of the
algorithm is then O(n+n lg n+m lg m+(n−m+1)(m lg n)) = O(nm lg n), but
with a lower bound of Ω(n lg n).

3.2 Fenwick Tree Based Algorithm (bitBA)

The Binary Indexed Tree (BIT) or Fenwick tree, proposed by Peter M. Fenwick
in 1994 [11], is a data structure that can be used to maintain and query cumula-
tive frequencies. In particular, it is mainly used to efficiently calculate prefix sums
in an array of numbers. Based on this data structure, we propose the algorithm
called bitBA (see Fig. 3). The BIT data structure could be considered then as an
abstraction of an integer array of size n indexed from 1, i.e., a bit encapsulate
A = A1A2 · · · An. The version we are going to use has two operations:

– sumUpTo(tree, i): Returns A1 + A2 + . . . + Ai. The complexity is O(lg n).
– addAt(tree, i, x): Sums x to Ai. The complexity is O(lg n).

The algorithm has a preprocessing phase in which the data structures needed
to solve the δγ–OPMP are created. This is done with a complexity of Θ(n +
n lg n + m lg m). The term n is due to the creation of the BIT. The term n lg n
is due to the creation of Tnr and the term m lg m is due to the creation of Pnr.
In the searching phase, it iterates over all possible positions in the text T to find
the existing matches. For each position i to be considered, the algorithm uses
the BIT to get the rank of every symbol in the searching window Ti...i+m−1, and
then each rank in the window is compared with each rank in Pnr to check if T i

is a δγ–order preserving match. This operation is evaluated using the function
isAMatch(P, T i, δ, γ); in particular, this function returns true iff P δγ� T i and
this takes O(m lg m + m).

Segment and Fenwick Trees for Approximate Order Preserving Matching 137

Each rank calculation using the BIT costs O(lg n). Then the total complexity
of the algorithm is O(n lg n+m lg m+(n−m+1)(m lg n)) = O(nm lg n). Similar
to segtreeBA, bitBA has a lower bound of Ω(n lg n) because, in many cases,
bitBA does not perform the m comparisons of cost O(lg n). The total complexity
of bitBA is then O(n + n lg n + m lg m + (n − m + 1)(m lg n)) = O(nm lg n), but
with a lower bound of Ω(n lg n).

In the preprocessing phase, the algorithm first creates the natural represen-
tations of the pattern P and the text T (Pnr and Tnr, respectively). Then, it
creates a BIT which is an encapsulation of an array with n positions numbered
from 1 to n. Then assigns 1 the positions Tnr

0 , Tnr
1 , . . . Tnr

m−2 (Lines 1 to 5 in
Fig. 3). In the searching phase, for each candidate position i, the algorithm com-
putes the rank of each symbol Ti+j , 0 ≤ j ≤ m − 1 using sumUpTo(i + j). After
checking if there is a match at position i, the BIT must be updated in each iter-
ation to consider symbol Ti+m (line 7 in Fig. 3). And the BIT must be updated
so it does not consider the position i in the next search window (line 9 in Fig. 3).

Fig. 3. BIT based algorithm: bitBA.

4 Experiments

In this section, we describe the experimental setup we designed to evaluate the
performance of the proposed algorithms. We compare our algorithms with two
baseline algorithms: The naive algorithm, which we call naiveA, and updateBA,
presented in [22]. The former, whose time complexity is Θ(nm lg m), considers
all possible positions in the text and, for each one of them, verifies if there is a
match in Θ(m lg m + m) time. The latter algorithm, whose time complexity is
Θ(nm), is based on linear update and verification.

We present the experimental framework (Sect. 4.1) and describe the data
generation (Sect. 4.2). Then, we discuss the results obtained (Sect. 4.3). Finally
we show the results of the experiments directed to detect how the algorithms
segtreeBA and bitBA behave when in all the experiment instances the worst
case came up (Sect. 4.4).

138 R. Niquefa et al.

4.1 Experimental Setup

Here we describe the hardware and software used for the experiments. Then, we
show how we vary the input parameters.

Hardware and Software. All the algorithms were implemented using C++.
The computer used for the experiments was a Lenovo ThinkPad with a processor
Intel(R) Core(TM) i7 4600u CPU @ 2.10 GHz 2.69 GHz and installed RAM
memory of 8 GB. The computer was running 64-bit Linux Ubuntu 14.04.5 LTS.
The C++ compiler version was g++ (Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4.

Parameters. It is clear that the defined problem has several parameters. They
may change depending on the area of study in which the problem and string
searching algorithms are applied. To show how our solution behaves with differ-
ent configuration of the given parameters, we perform five types of experiments.
In each experiment, we vary one of the given parameters n, m, δ, γ and σ, and let
the other four parameters fixed at a given value. We chose the fixed values after
several attempts via try and error to find values that produced results varying
from no matches to matches near the value of n. For each experiment type, we
performed five different experiments and took the median as the value to plot,
making the median of five experiments the representative value for a experiment
configuration of values n m, δ, γ and σ. The variation of the parameter values
for each experiment type is presented in Table 1.

Table 1. Experimental values of n m, δ, γ and σ.

Varying n Varying m Varying δ Varying γ Varying σ

n [3000, 60000]Δn = 3000 10000 10000 10000 10000

m 40 [30, 600] Δm = 30 40 40 40

δ 10 10 [0, 228] Δδ = 12 10 10

γ 60 60 60 [0, 570] Δγ = 30 60

σ 100 100 100 100 [12, 240]Δσ = 12

4.2 Random Data Generation

An experiment consists of two stages. The first stage is the pseudo-random gen-
eration of a text T of length n and the pattern P of length m. The second stage
is the execution of the algorithms on the generated strings P and T . The random
generation of each character of both the pattern P and the text T is done by
calling a function that pseudo-randomly and selects a number between 1 and σ
with the same probability for each number to be selected, i.e., all symbols have
the same probability to appear in a position and for that reason, the count of
each symbol on a generated string will be similar to the quantities of the others
symbols in the alphabet.

Segment and Fenwick Trees for Approximate Order Preserving Matching 139

4.3 Experimental Results and Analysis

The first result to highlight is the fact that, in every experiment, the naive
algorithm always has the worst performance, as expected. The results shown in
Figs. 4a, b and c show that the size of the alphabet and the parameters δ and γ
have practically no impact on the execution time of any of the algorithms, they
all show nearly constant time behavior. Figures 4d and f verify the theoretical
complexity analysis that states that n and m are the parameters that really
determine the growth in the execution time of all the algorithms. In Fig. 4d,
m is a constant and n is a variable while in Fig. 4f, n is a constant and m is a
variable. Also, for a clearer illustration, in Figs. 4e and g we only show the best
two algorithms of Figs. 4d and f, respectively, on the same data. It is important
to notice that, under these conditions, the graphs are expected to be linear and
the experiments verify that.

In the figures where we show the result of varying the parameter n and the
parameter m, (Figs. 4d–g), we can see that the best two algorithms are the based
on data structures (segtreBA and bitBA). This despite the fact that these two
algorithms have a higher upper bound on their complexities in relation with
the first two algorithms (naiveA and updateBA). This result can be explained
by the fact that the lower bound on the data structure based algorithms is
considerably lower in comparison with the other two. The lower bound of the
data structures based algorithms is Ω(n lg n) and the lower bound of the naiveA
and updateBA is the same as their upper bound which is Θ(nm lg m) and Θ(nm)
respectively. This can be understood by taking into account that the first two
algorithms check for a match after a natural representation of every window is
completely obtained; on the contrary, data structure based algorithms break the
calculation of a given natural representation of a window if at some point the δ
or γ restriction do not hold.

Given the result of the experiments, it is safe to say that the algorithms
based on data structures are faster in most cases, especially if they are going to
be used in applications where very few matches are expected to appear. This is
due to their lower bound of complexity. We test two different implementations
of the segment tree data structure: one based on classes and pointers, and the
other based on an array. Finally we chose the array based as representative for
the segment tree based solution and the experiments plots show their results.
The array–based segment tree is almost twice time faster than the classes–based
implementation.

4.4 Worst Case Experiments on seegtreBA and bitBA

Taking into account that the first two algorithms, naiveA and updateBA both
have complexities in θ–notation, i.e. their worst case is the same as their best
case, the experiments described so far are enough for their experimental analysis.
For the data structures based algorithms a more particular kind of experiment is
needed, i.e. the worst case experimental analysis. For this algorithms the worst

140 R. Niquefa et al.

Fig. 4. Experimental results of comparing the four algorithm by varying different para-
meters.

Segment and Fenwick Trees for Approximate Order Preserving Matching 141

case is when there is a match in every candidate position. An easy way to gen-
erate data for the worst case is when all the symbols in both the pattern P and
the text T are the same. Other way to generate worst cases scenarios for this
two algorithms is when either both P and T are strictly increasing or both are
strictly decreasing. Results from this experiments show a fast degradation in
experimental performance of the segtreeBA algorithm, but a very slow degra-
dation of the bitBA algorithm. Results of this last experiments are shown in
Figs. 4h and i.

5 Conclusions and Future Work

We define a new variant of the string matching problem, the δγ–order preserving
matching problem (δγ–OPMP). This new variant provides the possibility of
searching a pattern according to the relative order of the symbols as the order
preserving matching problem. But we also gives more flexibility to the search
allowing error in the individual ranking comparisons due to the parameter δ. And
also the proposed problem gives a bound for the global error in the comparison
of a pattern against a text window by γ. This new variant has at least the same
applications as the order preserving matching problem.

We designed two algorithms: one based on the segment tree and another
based on the Fenwick tree. They both have complexities of O(nm lg n) for their
worst case and a Ω(n lg n) lower bound. We implemented in C++ these algo-
rithms and compared them with a naive solution and the updateBA algorithm
introduced in [22]. Their theoretical time complexity is Θ(nm lg m). Our exper-
imental results on randomly generated data show that in many cases, given the
uniformly data generation, the proposed algorithms work faster than the naiveA
and the updateBA. One question that remains open is if an algorithm with bet-
ter worst case time complexity than O(nm) can be designed; other question that
also remains open is that if an algorithm with better lower bound than Ω(n lg n)
can be obtained.

We show experimental results on the worst cases of the bitBA and
segtreeBA. We conclude that the degradation in performance in the segtreeBA
algorithm is much more notorious than the degradation of bitBA. A question
remains, and is if we can device an experimental setup where the best worst–case
algorithm, updateBA experimentally beats the other three algorithms. Given the
theory behind the big O notation, we can say that this experimental setup exist.

Our future work on this problem will be focused on the applications of δγ–
order preserving matching. Specifically, we are interested in experiments with
real data that verify some applications of this problem in music and finance. In
music we can use it to search for a portion of a melody inside another music
score; in finance, we can look for similar change patterns in the price of stock
actions. It is important to notice that for specific applications more efficient
algorithms could be designed based on the particularities of the chosen field
(alphabet, language, etc.). Considering such particularities will also be part of
our future work.

142 R. Niquefa et al.

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: More Geometric Data
Structures, pp. 219–241. Springer, Heidelberg (2008)

2. Brass, P.: Advanced Data Structures. Cambridge University Press, Cambridge
(2008). Cambridge books online

3. Cambouropoulos, E., Crochemore, M., Iliopoulos, C., Mouchard, L., Pinzon, Y.:
Algorithms for computing approximate repetitions in musical sequences. Int. J.
Comput. Math. 79(11), 1135–1148 (2002)

4. Chhabra, T., Kulekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving
matching. In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology
Conference 2015, pp. 36–46. Czech Technical University in Prague, Prague, Czech
Republic (2015)

5. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 307–314.
Springer, Cham (2014). doi:10.1007/978-3-319-07959-2 26

6. Crawford, T., Iliopoulos, C.S., Raman, R.: String-matching techniques for musical
similarity and melodic recognition. Comput. Musicol. 11, 71–100 (1998)

7. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-Preserving Incomplete Suffix
Trees and Order-Preserving Indexes, pp. 84–95. Springer, Cham (2013)

8. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Walen, T.: Order-preserving suffix trees and
their algorithmic applications. CoRR abs/1303.6872 (2013)

9. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving indexing. Theor.
Comput. Sci. 638(C), 122–135 (2016)

10. Faro, S., Külekci, M.O.: Efficient algorithms for the order preserving pattern match-
ing problem. CoRR abs/1501.04001 (2015)

11. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Exp. 24, 327–336 (1994)

12. Gawrychowski, P., Uznański, P.: Order-preserving pattern matching with k mis-
matches. Theor. Comput. Sci. 638, 136–144 (2016)

13. Hasan, M.M., Islam, A., Rahman, M.S., Rahman, M.S.: Order Preserving Prefix
Tables, pp. 111–116. Springer, Cham (2014)

14. Hasan, M.M., Islam, A., Rahman, M.S., Rahman, M.: Order preserving pattern
matching revisited. Pattern Recogn. Lett. 55(C), 15–21 (2015)

15. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79
(2014). Advances in Stringology

16. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W.: WaleÅĎ, T.: A lin-
ear time algorithm for consecutive permutation pattern matching. Information
Processing Letters 113(12), 430–433 (2013)

17. Lee, I., Mendivelso, J., Pinzón, Y.J.: δγ-Parameterized Matching, pp. 236–248.
Springer, Heidelberg (2009)

18. Mendivelso, J.: Definition and solution of a new string searching variant termed δγ-
parameterized matching. Master’s thesis, National University of Colombia, Bogota,
Colombia (2010)

19. Mendivelso, J., Lee, I., Pinzón, Y.J.: Approximate Function Matching under
δ- and γ- Distances, pp. 348–359. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-07959-2_26

Segment and Fenwick Trees for Approximate Order Preserving Matching 143

20. Mendivelso, J., Pino, C., Niño, L.F., Pinzón, Y.: Approximate Abelian Periods to
Find Motifs in Biological Sequences, pp. 121–130. Springer, Cham (2015)

21. Mendivelso, J., Pinzón, Y.: A novel approach to approximate parikh matching for
comparing composition in biological sequences. In: Proceedings of the 6th Inter-
national Conference on Bioinformatics and Computational Biology (BICoB 2014)
(2014)

22. Niquefa, R., Mendivelso, J., Hernández, G., Pinzón, Y.: Order preserving matching
under δγ-approximation. In: Congreso Internacional de Ciencias Básicas e Inge-
nieŕıa (2017)

	Segment and Fenwick Trees for Approximate Order Preserving Matching
	1 Introduction
	2 Definition of --Order Preserving Matching Problem (--OPMP)
	3 Algorithms for the --OPMP
	3.1 Segment Tree Based Algorithm (segtreeBA)
	3.2 Fenwick Tree Based Algorithm (bitBA)

	4 Experiments
	4.1 Experimental Setup
	4.2 Random Data Generation
	4.3 Experimental Results and Analysis
	4.4 Worst Case Experiments on seegtreBA and bitBA

	5 Conclusions and Future Work
	References

