
Chapter 7
Checking Simulations: Detecting and Avoiding
Errors and Artefacts

José M. Galán, Luis R. Izquierdo, Segismundo S. Izquierdo, José I. Santos,
Ricardo del Olmo, and Adolfo López-Paredes

Abstract The aim of this chapter is to simulations. The reader with a set of
concepts and a range of suggested activities that will enhance his or her ability
to understand agent-based simulations. To do this in a structured way, we review
the main concepts of the methodology (e.g. we provide precise definitions for the
terms “error” and “artefact”) and establish a general framework that summarises
the process of designing, implementing, and using agent-based models. Within this
framework we identify the various stages where different types of assumptions are
usually made and, consequently, where different types of errors and artefacts may
appear. We then propose several activities that can be conducted to detect each type
of error and artefact.

Why Read This Chapter?
Given the complex and exploratory nature of many agent-based models, checking
that the model performs in the manner intended by its designers is a very challenging
task. This chapter helps the reader to identify some of the possible types of error and
artefact that may appear in the different stages of the modelling process. It will also
suggest some activities that can be conducted to detect, and hence avoid, each type.

J.M. Galán (�) • L.R. Izquierdo • J.I. Santos • R. del Olmo
Department of Civil Engineering, Universidad de Burgos, E-09001, Burgos, Spain
e-mail: jmgalan@ubu.es; luis@izquierdo.name; jisantos@ubu.es; rdelolmo@ubu.es

S.S. Izquierdo • A. López-Paredes
Departamento de Organización de Empresas y C.I.M., Universidad de Valladolid, E-47011,
Valladolid, Spain
e-mail: segis@eis.uva.es; adolfo@insisoc.org

© Springer International Publishing AG 2017
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_7

119

mailto:jmgalan@ubu.es
mailto:luis@izquierdo.name
mailto:jisantos@ubu.es
mailto:rdelolmo@ubu.es
mailto:segis@eis.uva.es
mailto:adolfo@insisoc.org
https://doi.org/10.1007/978-3-319-66948-9_7

120 J.M. Galán et al.

7.1 Introduction

Agent-based modelling is one of multiple techniques that can be used to conceptu-
alise social systems. What distinguishes this methodology from others is the use of
a more direct correspondence between the entities in the system to be modelled and
the agents that represent such entities in the model (Edmonds 2001). This approach
offers the potential to enhance the transparency, soundness, descriptive accuracy,
and rigour of the modelling process, but it can also create difficulties: agent-based
models are generally complex and mathematically intractable, so their exploration
and analysis often require computer simulation.

The problem with computer simulations is that understanding them in reasonable
detail is not as straightforward an exercise as one could think (this also applies
to one’s own simulations). A computer simulation can be seen as the process of
applying a certain function to a set of inputs to obtain some results. This function
is usually so complicated and cumbersome that the computer code itself is often
not that far from being one of the best descriptions of the function that can be
provided. Following this view, understanding a simulation would basically consist
in identifying the parts of the mentioned function that are responsible for generating
particular (sub)sets of results.

Thus, it becomes apparent that a prerequisite to understand a simulation is to
make sure that there is no significant disparity between what we think the computer
code is doing and what is actually doing. One could be tempted to think that, given
that the code has been programmed by someone, surely there is always at least one
person—the programmer—who knows precisely what the code does. Unfortunately,
the truth tends to be quite different, as the leading figures in the field report:

You should assume that, no matter how carefully you have designed and built your
simulation, it will contain bugs (code that does something different to what you wanted
and expected). (Gilbert 2007)

An unreplicated simulation is an untrustworthy simulation—do not rely on their results,
they are almost certainly wrong. (‘Wrong’ in the sense that, at least in some detail or other,
the implementation differs from what was intended or assumed by the modeller). (Edmonds
and Hales 2003)

Achieving internal validity is harder than it might seem. The problem is knowing whether
an unexpected result is a reflection of a mistake in the programming, or a surprising
consequence of the model itself. [: : :] As is often the case, confirming that the model was
correctly programmed was substantially more work than programming the model in the first
place. (Axelrod 1997a)

In the particular context of agent-based simulation, the problem tends to be
exacerbated. The complex and exploratory nature of most agent-based models
implies that, before running a model, there is almost always some uncertainty about
what the model will produce. Not knowing a priori what to expect makes it difficult
to discern whether an unexpected outcome has been generated as a legitimate result
of the assumptions embedded in the model or, on the contrary, it is due to an error
or an artefact created in its design, in its implementation, or in the running process
(Axtell and Epstein 1994, p. 31; Gilbert and Terna 2000).

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 121

Moreover, the challenge of understanding a computer simulation does not end
when one is confident that the code is free from errors; the complex issue of
identifying what parts of the code are generating a particular set of outputs remains
to be solved. Stated differently, this is the challenge of discovering what assumptions
in the model are causing the results we consider significant. Thus, a substantial
part of this non-trivial task consists in detecting and avoiding artefacts: significant
phenomena caused by accessory assumptions in the model that are (mistakenly)
deemed irrelevant. We explain this in detail in subsequent sections.

The aim of this chapter is to provide the reader with a set of concepts and a range
of suggested activities that will enhance his ability to understand simulations. As
mentioned before, simulation models can be seen as functions operating on their
inputs to produce the outputs. These functions are created by putting together a
range of different assumptions of very diverse nature. Some assumptions are made
because they are considered to be an essential feature of the system to be modelled;
others are included in a somewhat arbitrary fashion to achieve completeness—i.e.
to make the computer model run—and they may not have a clear referent in the
target system. There are also assumptions—e.g. the selection of the compiler and the
particular pseudorandom number generator to be employed—that are often made,
consciously or not, without fully understanding in detail how they work, but trusting
that they operate in the way we think they do. Finally, there may also be some
assumptions in a computer model that not even its own developer is aware of, e.g.
the use of floating-point arithmetic, rather than real arithmetic.

Thus, in broad terms, understanding simulations requires identifying what
assumptions are being made and assessing their impact on the results. To achieve
this, we believe that it is useful to characterise the process by which assumptions
accumulate to end up forming a complete model. We do this in a structured way
by presenting a general framework that summarises the process of creating and
using agent-based models through various stages; then, within this framework, we
characterise the different types of assumptions that are made in each of the stages
of the modelling process, and we identify the sort of errors and artefacts that may
occur; we also propose activities that can be conducted to avoid each type of error
or artefact.

The chapter is structured as follows: the following section is devoted to explain-
ing what we understand by modelling, and to argue that computer simulation is
a useful tool to explore formal models, rather than a distinctively new symbolic
system or a uniquely different reasoning process, as it has been suggested in the
literature. In Sect. 7.3 we explain what the essence of agent-based modelling is in
our view, and we present the general framework that summarises the process of
designing, implementing, and using agent-based models. In Sect. 7.4 we define
the concepts of error and artefact, and we discuss their relevance for validation
and verification. The framework presented in Sect. 7.3 is then used to identify the
various stages of the modelling process where different types of assumptions are
made and, consequently, where different types of errors and artefacts may appear.
We then propose various activities aimed at avoiding the types of errors and artefacts
previously described, and we conclude with a brief summary of the chapter.

122 J.M. Galán et al.

7.2 Three Symbolic Systems Used to Model Social Processes

Modelling is the art of building models. In broad terms, a model can be defined
as an abstraction of an observed system that enables us to establish some kind of
inference process about how the system works or about how certain aspects of the
system operate.

Modelling is an activity inherent to every human being: people constantly
develop mental models, more or less explicit, about various aspects of their daily
life. Within science in particular, models are ubiquitous. Many models in the
“hard” sciences are formulated using mathematics (e.g. differential equation models
and statistical regressions), and they are therefore formal, but it is also perfectly
feasible—and acceptable—to build non-formal models within academia; this is
often the case in disciplines like history or sociology, consider, e.g. a model written
in natural language that tries to explain the expansion of the Spanish Empire in the
sixteenth century or the formation of urban “tribes” in large cities.

We value a model to the extent that it is useful—i.e. in our opinion, what makes a
model good is its fitness for purpose. Thus, the assessment of any model can only be
conducted relative to a predefined purpose. Having said that, there is a basic set of
general features that are widely accepted to be desirable in any model, e.g. accuracy,
precision, generality, and simplicity (see Fig. 7.1). Frequently some of these features
are inversely related; in such cases the modeller is bound to compromise to find a
suitable trade-off, considering the perceived relative importance of each of these
desirable features for the purpose of the model (Edmonds 2005).

Some authors (Gilbert 1999; Holland and Miller 1991; Ostrom 1988) classify
the range of available techniques for modelling phenomena in which the social
dimension is influential according to three symbolic systems.

One possible way of representing and studying social phenomena is through
verbal argumentation in natural language. This is the symbolic system traditionally
used in historical analyses, which, after a process of abstraction and simplification,
describe past events emphasising certain facts, processes, and relations at the
expense of others. The main problem with this type of representation is its intrinsic
lack of precision (due to the ambiguity of natural language) and the associated
difficulty of uncovering the exact implications of the ideas put forward in this way.
In particular, using this symbolic system, it is often very difficult to determine the
whole range of inferences that can be obtained from the assumptions embedded in
the model in reasonable detail; therefore it is often impossible to assess its logical
consistency, its scope, and its potential for generalisation in a formal way.

A second symbolic system that is sometimes used in the social sciences,
particularly in economics, is the set of formal languages (e.g. leading to models
expressed as mathematical equations). The main advantage of this symbolic system
derives from the possibility of using formal deductive reasoning to infer new facts
from a set of clearly specified assumptions; formal deductive reasoning guarantees
that the obtained inferences follow from the axioms with logical consistency. Formal
languages also facilitate the process of assessing the generality of a model and its

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 123

Generality

Lack of error
(accuracy of results)

Specificity (makes
precise predictions)

Simplicity

Fig. 7.1 The trade-off between various desirable features depends on the specific case and model.
There are not general rules that relate, not even in a qualitative fashion, all these features. The
figure shows a particular example from Edmonds (2005) that represents the possible equilibrium
relationships between some features in a particular model

sensitivity to assumptions that are allowed to change within the boundaries of the
model (i.e. parameter values and nonstructural assumptions).

However, the process of reducing social reality to formal models is not exempt
from disadvantages. Social systems can be tremendously complex, so if such
systems are to be abstracted using a formal language (e.g. mathematical equations),
we run the risk of losing too much in descriptiveness. To make things worse, in
those cases where it appears possible to produce a satisfactory formal model of
the social system under investigation, the resulting equations may be so complex
that the formal model becomes mathematically intractable, thus failing to provide
most of the benefits that motivated the process of formalisation in the first place.
This is particularly relevant in the domain of the social sciences, where the systems
under investigation often include non-linear relations (Axtell 2000). The usual
approach then is to keep on adding simplifying hypotheses to the model—thus
making it increasingly restrictive and unrealistic—until we obtain a tractable model
that can be formally analysed with the available tools. We can find many examples
of such assumptions in economics: instrumental rationality, perfect information,
representative agents, etc. Most often these concepts are not included because
economists think that the real world works in this way, but to make the models
tractable (see, for instance, Conlisk 1996; Axelrod 1997a; Hernández 2004; Moss
2001, 2002). It seems that, in many cases, the use of formal symbolic systems
tends to increase the danger of letting the pursuit for tractability be the driver of
the modelling process.

124 J.M. Galán et al.

But then, knowing that many of the hypotheses that researchers are obliged
to assume may not hold in the real world, and could therefore lead to deceptive
conclusions and theories, does this type of modelling representation preserve its
advantages? Quoting G.F. Shove, it could be the case that sometimes “it is better to
be vaguely right than precisely wrong”.

The third symbolic system, computer modelling, opens up the possibility of
building models that somewhat lie in between the descriptive richness of natural
language and the analytical power of traditional formal approaches. This third type
of representation is characterised by representing a model as a computer program
(Gilbert and Troitzsch 1999). Using computer simulation we have the potential to
build and study models that to some extent combine the intuitive appeal of verbal
theories with the rigour of analytically tractable formal modelling.

In Axelrod’s (1997a) opinion, computational simulation is the third way of
doing science, which complements induction, the search for patterns in data, and
deduction, the proof of theorems from a set of fixed axioms. In his opinion,
simulation, like deduction, starts from an explicit set of hypotheses, but, rather than
generating theorems, it generates data that can be inductively analysed.

While the division of modelling techniques presented above seems to be
reasonably well accepted in the social simulation community—and we certainly
find it useful—we do not fully endorse it. In our view, computer simulation does
not constitute a distinctively new symbolic system or a uniquely different reasoning
process by itself, but rather a (very useful) tool for exploring and analysing formal
systems. We see computers as inference engines that are able to conduct algorithmic
processes at a speed that the human brain cannot achieve. The inference derived
from running a computer model is constructed by example and, in the general
case, reads: the results obtained from running the computer simulation follow (with
logical consistency) from applying the algorithmic rules that define the model on
the input parameters1 used.

In this way, simulations allow us to explore the properties of certain formal
models that are intractable using traditional formal analyses (e.g. mathematical
analyses), and they can also provide fundamentally new insights even when such
analyses are possible. Like Gotts et al. (2003), we also believe that mathematical
analysis and simulation studies should not be regarded as alternative and even
opposed approaches to the formal study of social systems, but as complementary.
They are both extremely useful tools to analyse formal models, and they are
complementary in the sense that they can provide fundamentally different insights
on one same model.

1By input parameters in this statement, we mean “everything that may affect the output of the
model”, e.g. the random seed, the pseudorandom number generator employed, and, potentially,
information about the microprocessor and operating system on which the simulation was run, if
these could make a difference.

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 125

To summarise, a computer program is a formal model (which can therefore be
expressed in mathematical language, e.g. as a set of stochastic or deterministic
equations), and computer simulation is a tool that enables us to study it in ways
that go beyond mathematical tractability. Thus, the final result is a potentially more
realistic—and still formal—study of a social system.

7.3 Agent-Based Modelling

7.3.1 Concept

As stated before, modelling is the process of building an abstraction of a system for
a specific purpose—see Chap. 4 in this volume (Edmonds 2017; Epstein 2008) for a
list of potential modelling goals. Thus, in essence, what distinguishes one modelling
paradigm from another is precisely the way we construct that abstraction from the
observed system.

In our view, agent-based modelling is a modelling paradigm with the defining
characteristic that entities within the target system to be modelled—and the
interactions between them—are explicitly and individually represented in the model
(see Fig. 7.2). This is in contrast to other models where some entities are represented
via average properties or via single representative agents. In many other models,
entities are not represented at all, and it is only processes that are studied (e.g. a
model of temperature variation as a function of pressure), and it is worth noting
that such processes may well be already abstractions of the system.2 The specific
process of abstraction employed to build one particular model does not necessarily
make it better or worse, only more or less useful for one purpose or another.

The specific way in which the process of abstraction is conducted in agent-based
modelling is attractive for various reasons: it leads to (potentially) formal yet more
natural and transparent descriptions of the target system, provides the possibility
to model heterogeneity almost by definition, facilitates an explicit representation
of the environment and the way other entities interact with it, and allows for the
study of the bidirectional relations between individuals and groups, and it can
also capture emergent behaviour (see Epstein 1999; Axtell 2000; Bonabeau 2002).
Unfortunately, as one would expect, all these benefits often come at a price: most of
the models built in this way are mathematically intractable. A common approach to
study the behaviour of mathematically intractable formal models is to use computer
simulation. It is for this reason that we often find the terms “agent-based modelling”
and “agent-based simulation” used as synonyms in the scientific literature (Hare and
Deadman 2004).

2The reader can see an interesting comparative analysis between agent-based and equation-based
modelling in Parunak et al. (1998).

http://dx.doi.org/10.1007/978-3-319-66948-9_4

126 J.M. Galán et al.

Fig. 7.2 In agent-based modelling, the entities of the system are represented explicitly and
individually in the model. The limits of the entities in the target system correspond to the limits of
the agents in the model, and the interactions between entities correspond to the interactions of the
agents in the model (Edmonds 2001)

Thus, to summarise our thoughts in the context of the classification of modelling
approaches in the social sciences, we understand that the essence of agent-based
modelling is the individual and explicit representation of the entities and their
interactions in the model, whereas computer simulation is a useful tool for studying
the implications of formal models. This tool happens to be particularly well suited to
explore and analyse agent-based models for the reasons explained above. Running
an agent-based model in a computer provides a formal proof that a particular micro-
specification is sufficient to generate the global behaviour that is observed during
the simulation. If a model can be run in a computer, then it is in principle possible
to express it in many different formalisms, e.g. as a set of mathematical equations.
Such equations may be very complex, difficult to interpret, and impossible to solve,
thus making the whole exercise of changing formalism frequently pointless, but
what we find indeed useful is the thought that such an exercise could be undertaken,

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 127

i.e. an agent-based model that can be run in a computer is not that different from the
typical mathematical model. As a matter of fact, it is not difficult to formally charac-
terise most agent-based models in a general way (Leombruni and Richiardi 2005).

7.3.2 Design, Implementation, and Use of an Agent-Based
Model

Drogoul et al. (2003) identify three different roles in the design, implementation, and
use of a typical agent-based model: the thematician (domain expert), the modeller,
and the computer scientist. It is not unusual in the field to observe that one single
person undertakes several or even all of these roles. We find that these three roles fit
particularly well into the framework put forward by Edmonds (2001) to describe the
process of modelling with an intermediate abstraction. Here we marry Drogoul et
al.’s and Edmonds’ views on modelling by dissecting one of Drogoul et al.’s roles
and slightly expanding Edmonds’ framework (Fig. 7.3). We then use our extended
framework to identify the different types of assumptions that are made in each of
the stages of the modelling process, the errors and artefacts that may occur in each
of them, and the activities that can be conducted to avoid such errors and artefacts.
We start by explaining the three different roles proposed by Drogoul et al. (2003).

The role of the thematician is undertaken by experts in the target domain. They
are the ones that better understand the target system and, therefore, the ones who
carry out the abstraction process that is meant to produce the first conceptualisation
of the target system. Their job involves defining the objectives and the purpose of
the modelling exercise, identifying the critical components of the system and the
linkages between them, and also describing the most prominent causal relations.
The output of this first stage of the process is most often a non-formal model
expressed in natural language, and it may also include simple conceptual diagrams,
e.g. block diagrams. The non-formal model produced may describe the system using
potentially ambiguous terms (such as learning or imitation, without fully specifying
how these processes actually take place).

The next stage in the modelling process is carried out by the role of the modeller.
The modeller’s task is to transform the non-formal model that the thematician
aims to explore into the (formal) requirement specifications that the computer
scientist—the third role—needs to formulate the (formal) executable model. This
job involves (at least) three major challenges. The first one consists in acting as
a mediator between two domains that are very frequently fundamentally different
(e.g. sociology and computer science). The second challenge derives from the fact
that in most cases, the thematician’s model is not fully specified, i.e. there are
many formal models that would conform to it.3 In other words, the formal model
created by the modeller is most often just one of many possible particularisations

3Note that the thematician faces a similar problem when building his non-formal model. There are
potentially an infinite number of models for one single target system.

128 J.M. Galán et al.

Fig. 7.3 Different stages in the process of designing, implementing, and using an agent-based
model

of the thematician’s (more general) model. Lastly, the third challenge appears when
the thematician’s model is not consistent, which may perfectly be the case since
his model is often formulated using natural language. Discovering inconsistencies
in natural language models is in general a non-trivial task. Several authors (e.g.
Christley et al. 2004; Pignotti et al. 2005; and Polhill and Gotts 2006) have identified
ontologies to be particularly useful for this purpose, especially in the domain of
agent-based social simulation. Polhill and Gotts (2006) write:

An ontology is defined by Gruber (1993) as ‘a formal, explicit specification of a shared
conceptualisation’. Fensel (2001) elaborates: ontologies are formal in that they are machine
readable; explicit in that all required concepts are described; shared in that they represent
an agreement among some community that the definitions contained within the ontology
match their own understanding; and conceptualisations in that an ontology is an abstraction
of reality. (Polhill and Gotts 2006, p. 51)

Thus, the modeller has the difficult—potentially unfeasible—task of finding a set of
(formal and consistent) requirement specifications4 where each individual require-

4Each individual member of this set can be understood as a different model or, alternatively,
as a different parameterisation of one single—more general—model that would itself define the
whole set.

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 129

ment specification of that set is a legitimate particular case of the thematician’s
model and the set as a whole is representative of the thematician’s specifications
(i.e. the set is sufficient to fully characterise the thematician’s model to a satisfactory
extent).

Drogoul et al.’s third role is the computer scientist. Here we distinguish between
computer scientist and programmer. It is often the case that the modeller comes
up with a formal model that cannot be implemented in a computer. This could be,
for example, because the model uses certain concepts that cannot be operated by
present-day computers (e.g. real numbers, as opposed to floating-point numbers)
or because running the model would demand computational requirements that are
not yet available (e.g. in terms of memory and processing capacity). The job of
the computer scientist consists in finding a suitable (formal) approximation to
the modeller’s formal model that can be executed in a computer (or in several
computers) given the available technology. To achieve this, the computer scientist
may have to approximate and simplify certain aspects of the modeller’s formal
model, and it is his job to make sure that these simplifications are not affecting
the results significantly. As an example, Cioffi-Revilla (2002) warns about the
potentially significant effects of altering system size in agent-based simulations.

The Navier-Stokes equations of fluid dynamics are a paradigmatic case in point.
They are a set of non-linear differential equations that describe the motion of
a fluid. Although these equations are considered a very good (formal and fully
specified) model, their complexity is such that analytical closed-form solutions are
available only for the simplest cases. For more complex situations, solutions of the
Navier-Stokes equations must be estimated using approximations and numerical
computation (Heywood et al. 1990; Salvi 2002). Deriving such approximations
would be the task of the computer scientist’s role, as defined here.

One of the main motivations to distinguish between the modeller’s role and the
computer scientist’s role is that, in the domain of agent-based social simulation, it is
the description of the modeller’s formal model that is usually found in academic
papers, even though the computer scientist’s model was used by the authors to
produce the results in the paper. Most often the modeller’s model (i.e. the one
described in the paper) simply cannot be run in a computer; it is the (potentially
faulty) implementation of the computer scientist’s approximation to such a model
that is really run by the computer. As an example, note that computer models
described in scientific papers are most often expressed using equations in real
arithmetic, whereas the models that actually run in computers almost invariably use
floating-point arithmetic.

Finally, the role of the programmer is to implement the computer scientist’s
executable model. In our framework, by definition of the role computer scientist, the
model he produces must be executable and fully specified, i.e. it must include all the
necessary information so given a certain input the model always produces the same
output. Thus, the executable model will have to specify in its definition everything
that could make a difference, e.g. the operating system and the specific pseudo-
random number generator to be used. This is a subtle but important point, since it
implies that the programmer’s job does not involve any process of abstraction or

130 J.M. Galán et al.

simplification; i.e. the executable model and the programmer’s specifications are
by definition the same (see Fig. 7.3). (We consider two models to be the same
if and only if they produce the same outputs when given the same inputs.) The
programmer’s job consists “only” in writing the executable model in a programming
language.5 If the programmer does not make any mistakes, then the implemented
model (e.g. the code) and the executable model will be the same.

Any mismatch between someone’s specifications and the actual model he passes
to the next stage is considered here an error (see Fig. 7.3). As an example, if the
code implemented by the programmer is not the same model as his specifications,
then there has been an implementation error. Similarly, if the computer scientist’s
specifications are not complete (i.e. they do not define a unique model that produces
a precise set of outputs for each given set of inputs), we say that he has made an
error since the model he is producing is necessarily fully specified (by definition of
the role). This opens up the question of how the executable model is defined: the
executable model is the same model as the code if the programmer does not make
any mistakes. So, to be clear, the distinction between the role of computer scientist
and programmer is made here to distinguish (a) errors in the implementation of a
fully specified model (which are made by the programmer) from (b) errors derived
from an incomplete understanding of how a computer program works (which are
made by the computer scientist). An example of the latter would be one where
the computer scientist’s specifications stipulate the use of real arithmetic, but the
executable model uses floating-point arithmetic.

It is worth noting that in an ideal world, the specifications created by each role
would be written down. Unfortunately the world is far from ideal, and it is often the
case that the mentioned specifications stay in the realm of mental models and never
reach materialisation.

The reason for which the last two roles in the process are called “the computer
scientist” and the “programmer” is because, as mentioned before, most agent-
based models are implemented as computer programs and then explored through
simulation (for tractability reasons). However, one could also think of, e.g. a
mathematician conducting these two roles, especially if the formal model provided
by the modeller can be solved analytically. For the sake of clarity, and without great
loss of generality, we assume here that the model is implemented as a computer
program, and its behaviour is explored through computer simulation.

Once the computer model is implemented, it is run, and the generated results are
analysed. The analysis of the results of the computer model leads to conclusions on
the behaviour of the computer scientist’s model, and, to the extent that the computer
scientist’s model is a valid approximation of the modeller’s formal model, these
conclusions also apply to the modeller’s formal model. Again, to the extent that

5There are some interesting attempts with INGENIAS (Pavón and Gómez-Sanz 2003) to use
modelling and visual languages as programming languages rather than merely as design languages
(Sansores and Pavón 2005; Sansores et al. 2006). These efforts are aimed at automatically
generating several implementations of one single executable model (in various different simulation
platforms).

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 131

the formal model is a legitimate particularisation of the non-formal model created
by the thematician, the conclusions obtained for the modeller’s formal model can
be interpreted in the terms used by the non-formal model. Furthermore, if the
modeller’s formal model is representative of the thematician’s model, then there is
scope for making general statements on the behaviour of the thematician’s model.
Finally, if the thematician’s model is satisfactorily capturing social reality, then the
knowledge inferred in the whole process can be meaningfully applied to the target
system.

In the following section, we use our extended framework to identify the different
errors and artefacts that may occur in each of the stages of the modelling process
and the activities that can be conducted to avoid such errors and artefacts.

7.4 Errors and Artefacts

7.4.1 Definition of Error and Artefact and Their Relevance for
Validation and Verification

Since the meanings of the terms validation, verification, error, and artefact are not
uncontested in the literature, we start by stating the meaning that we attribute to
each of them. For us, validation is the process of assessing how useful a model is
for a certain purpose. A model is valid to the extent that it provides a satisfactory
range of accuracy consistent with the intended application of the model (Kleijnen
1995; Sargent 2003).6 Thus, if the objective is to accurately represent social reality,
then validation is about assessing how well the model is capturing the essence of
its empirical referent. This could be measured in terms of goodness of fit to the
characteristics of the model’s referent (Moss et al. 1997).

Verification—sometimes called “internal validation”, e.g. by Taylor (1983),
Drogoul et al. (2003), Sansores and Pavón (2005), or “internal validity”, e.g. by
Axelrod (1997a)—is the process of ensuring that the model performs in the manner
intended by its designers and implementers (Moss et al. 1997). Let us say that
a model is correct if and only if it would pass a verification exercise. Using our
previous terminology, an expression of a model in a language is correct if and only
if it is the same model as the developer’s specifications. Thus, it could well be the
case that a correct model is not valid (for a certain purpose). Conversely, it is also
possible that a model that is not correct is actually valid for some purposes. Having
said that, one would think that the chances of a model being valid are higher if
it performs in the manner intended by its designer. To be sure, according to our
definition of validation, what we want is a valid model, and we are interested in its
correctness only to the extent that correctness contributes to make the model valid.

6See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).

132 J.M. Galán et al.

We also distinguish between errors and artefacts (Galán et al. 2009). Errors
appear when a model does not comply with the requirement specifications self-
imposed by its own developer. In simple words, an error is a mismatch between
what the developer thinks the model is and what it actually is. It is then clear that
there is an error in the model if and only if the model is not correct. Thus, verification
is the process of looking for errors. An example of an implementation error would
be the situation where the programmer intends to loop through the whole list of
agents in the program, but he mistakenly writes the code so it only runs through a
subset of them. A less trivial example of an error would be the situation where it is
believed that a program is running according to the rules of real arithmetic, while
the program is actually using floating-point arithmetic (Izquierdo and Polhill 2006;
Polhill and Izquierdo 2005; Polhill et al. 2005, 2006).

In contrast to errors, artefacts relate to situations where there is no mismatch
between what the developer thinks a model is and what it actually is. Here the
mismatch is between the set of assumptions in the model that the developer thinks
are producing a certain phenomenon and the assumptions that are the actual cause
of such phenomenon. We explain this in detail. We distinguish between core and
accessory assumptions in a model. Core assumptions are those whose presence
is believed to be important for the purpose of the model. Ideally these would be
the only assumptions present in the model. However, when producing a formal
model, it is often the case that the developer is bound to include some additional
assumptions for the only purpose of making the model complete. We call these
accessory assumptions. Accessory assumptions are not considered a crucial part
of the model; they are included to make the model work. We also distinguish
between significant and non-significant assumptions. A significant assumption is
an assumption that is the cause of some significant result obtained when running
the model. Using this terminology, we define artefacts as significant phenomena
caused by accessory assumptions in the model that are (mistakenly) deemed non-
significant. In other words, an artefact appears when an accessory assumption that
is considered non-significant by the developer is actually significant. An example
of an artefact would be the situation where the topology of the grid in a model
is accessory; it is believed that some significant result obtained when running the
model is independent of the particular topology used (say, e.g. a grid of square
cells), but it turns out that if an alternative topology is chosen (say, e.g. hexagonal
cells), then the significant result is not observed.

The relation between artefacts and validation is not as straightforward as that
between errors and verification. For a start, artefacts are relevant for validation
only to the extent that identifying and understanding causal links in the model’s
referent is part of the purpose of the modelling exercise. We assume that this is
the case, as indeed it usually is in the field of agent-based social simulation. A
clear example is the Schelling-Sakoda model of segregation, which was designed
to investigate the causal link between individual preferences and global patterns
of segregation (Sakoda 1971; Schelling 1971, 1978). The presence of artefacts
in a model implies that the model is not representative of its referent, since one
can change some accessory assumption (thus creating an alternative model which

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 133

still includes all the core assumptions) and obtain significantly different results.
When this occurs, we run the risk of interpreting the results obtained with the
(nonrepresentative) model beyond its scope (Edmonds and Hales 2005). Thus, to
the extent that identifying causal links in the model’s referent is part of the purpose
of the modelling exercise, the presence of artefacts decreases the validity of the
model. In any case, the presence of artefacts denotes a misunderstanding of what
assumptions are generating what results.

7.4.2 Appearance of Errors and Artefacts

The dynamics of agent-based models are generally sufficiently complex that model
developers themselves do not understand in exhaustive detail how the obtained
results have been produced. As a matter of fact, in most cases if the exact results
and the processes that generated them were known and fully understood in advance,
there would not be much point in running the model in the first place. Not knowing
exactly what to expect makes it impossible to tell whether any unanticipated results
derive exclusively from what the researcher believes are the core assumptions in
the model or whether they are due to errors or artefacts. The question is of crucial
importance since, unfortunately, the truth is that there are many things that can go
wrong in modelling.

Errors and artefacts may appear at various stages of the modelling process (Galán
and Izquierdo 2005). In this section we use the extended framework explained in the
previous section to identify the critical stages of the modelling process where errors
and artefacts are most likely to occur.

According to our definition of artefact—i.e. significant phenomena caused by
accessory assumptions that are not considered relevant—, artefacts cannot appear
in the process of abstraction conducted by the thematician, since this stage consists
precisely in distilling the core features of the target system. Thus, there should not
be accessory assumptions in the thematician’s model. Nevertheless, there could still
be issues with validation if, for instance, the thematician’s model is not capturing
social reality to a satisfactory extent. Errors could appear in this stage because the
thematician’s specifications are usually expressed in natural language, and rather
than being written down, they are often transmitted orally to the modeller. Thus, an
error (i.e. a mismatch between the thematician’s specifications and the non-formal
model received by the modeller) could appear here if the modeller misunderstands
some of the concepts put forward by the thematician.

The modeller is the role that may introduce the first artefacts in the modelling
process. When formalising the thematician’s model, the modeller will often have
to make a number of additional assumptions so the produced formal model is
fully specified. By our definition of the two roles, these additional assumptions
are not crucial features of the target system. If such accessory assumptions have
a significant impact on the behaviour of the model and the modeller is not aware
of it, then an artefact has been created. This would occur if, for instance, (a) the

134 J.M. Galán et al.

thematician did not specify any particular neighbourhood function, (b) different
neighbourhood functions lead to different results, and (c) the modeller is using only
one of them and believes that they all produce essentially the same results.

Errors could also appear at this stage, although it is not very likely. This is so
because the specifications that the modeller produces must be formal, and they are
therefore most often written down in a formal language. When this is the case, there
is little room for misunderstanding between the modeller and the computer scientist,
i.e. the modeller’s specifications and the formal model received by the computer
scientist would be the same, and thus there would be no error at this stage.

The role of the computer scientist could introduce artefacts in the process. This
would be the case if, for instance, his specifications require the use of a particular
pseudorandom number generator; he believes that this choice will not have any
influence in the results obtained, but it turns out that it does. Similar examples could
involve the arbitrary selection of an operating system or a specific floating-point
arithmetic that had a significant effect on the output of the model.

Errors can quite easily appear in between the role of the computer scientist
and the role of the programmer. Note that in our framework, any mismatch
between the computer scientist’s specifications and the executable model received
by the programmer is considered an error. In particular, if the computer scientist’s
specifications are not executable, then there is an error. This could be, for instance,
because the computer scientist’s specifications stipulate requirements that cannot
be executed with present-day computers (e.g. real arithmetic) or because it does not
specify all the necessary information to be run in a computer in an unequivocal way
(e.g. it does not specify a particular pseudorandom number generator). The error
then may affect the validity of the model significantly, or may not.

Note from the previous examples that if the computer scientist does not provide
a fully executable set of requirement specifications, then he is introducing an error,
since in that case, the computer program (which is executable) would be necessarily
different from his specifications. On the other hand, if he does provide an executable
model but in doing so he makes an arbitrary accessory assumption that turns out to
be significant, then he is introducing an artefact.

Finally, the programmer cannot introduce artefacts because his specifications are
the same as the executable model by definition of the role (i.e. the programmer does
not have to make any accessory assumptions). However, he may make mistakes
when creating the computer program from the executable model.

7.4.3 Activities Aimed at Detecting Errors and Artefacts

In this section we identify various activities that the different roles defined in the
previous sections can undertake to detect errors and artefacts. We consider the use
of these techniques as a very recommendable and eventually easy to apply practice.
In spite of this, we should warn that, very often, these activities may require a
considerable human and computational effort.

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 135

Modeller’s activities:

• Develop and analyse new formal models by implementing alternative accessory
assumptions while keeping the core assumptions identified by the thematician.
This exercise will help to detect artefacts. Only those conclusions which are
not falsified by any of these models will be valid for the thematician’s model.
As an example, see Galán and Izquierdo (2005), who studied different instan-
tiations of one single conceptual model by implementing different evolutionary
selection mechanisms. Takadama et al. (2003) conducted a very similar exercise
implementing three different learning algorithms for their agents. In a collection
of papers, Klemm et al. (2003a, 2003b, 2003c, 2005) investigate the impact
of various accessory assumptions in Axelrod’s model for the dissemination of
culture (Axelrod 1997b). Another example of studying different formal models
that address one single problem is provided by Kluver and Stoica (2003).

• Conduct a more exhaustive exploration of the parameter space within the
boundaries of the thematician’s specifications. If we obtain essentially the same
results using the wider parameter range, then we will have broadened the scope of
the model, thus making it more representative of the thematician’s model. If, on
the other hand, results change significantly, then we will have identified artefacts.
This type of exercise has been conducted by, e.g. Castellano et al. (2000) and
Galán and Izquierdo (2005).

• Create abstractions of the formal model which are mathematically tractable. An
example of one possible abstraction would be to study the expected motion of
a dynamic system (see the studies conducted by Galán and Izquierdo (2005),
Edwards et al. (2003), and Castellano et al. (2000) for illustrations of mean-field
approximations). Since these mathematical abstractions do not correspond in a
one-to-one way with the specifications of the formal model, any results obtained
with them will not be conclusive, but they may suggest parts of the model where
there may be errors or artefacts.

• Apply the simulation model to relatively well-understood and predictable sit-
uations to check that the obtained results are in agreement with the expected
behaviour (Gilbert and Terna 2000).

Computer scientist’s activities:

• Develop mathematically tractable models of certain aspects, or particular cases,
of the modeller’s formal model. The analytical results derived with these models
should match those obtained by simulation; a disparity would be an indication of
the presence of errors.

• Develop new executable models from the modeller’s formal model using alter-
native modelling paradigms (e.g. procedural vs. declarative). This activity will
help to identify artefacts. As an example, see Edmonds and Hales’ (2003)
reimplementation of Riolo et al. (2001) model of cooperation among agents using
tags. Edmonds reimplemented the model using SDML (declarative), whereas
Hales reprogrammed the model in Java (procedural).

136 J.M. Galán et al.

• Rerun the same code in different computers, using different operating systems,
with different pseudorandom number generators. These are most often accessory
assumptions of the executable model that are considered non-significant, so any
detected difference will be a sign of an artefact. If no significant differences are
detected, then we can be confident that the code comprises all the assumptions
that could significantly influence the results. This is a valuable finding that can
be exploited by the programmer (see next activity). As an example, Polhill et
al. (2005) explain that using different compilers can result in the application of
different floating-point arithmetic systems to the simulation run.

Programmer’s activities:

• Reimplement the code in different programming languages. Assuming that the
code contains all the assumptions that can influence the results significantly,
this activity is equivalent to creating alternative representations of the same
executable model. Thus, it can help to detect errors in the implementation.
There are several examples of this type of activity in the literature. Bigbee et
al. (2007) reimplemented Sugarscape (Epstein and Axtell 1996) using MASON.
Xu et al. (2003) implemented one single model in Swarm and Repast. The
reimplementation exercise conducted by Edmonds and Hales (2003) applies here
too.

• Analyse particular cases of the executable model that are mathematically
tractable. Any disparity will be an indication of the presence of errors.

• Apply the simulation model to extreme cases that are perfectly understood
(Gilbert and Terna 2000). Examples of this type of activity would be to run
simulations without agents or with very few agents, explore the behaviour of
the model using extreme parameter values, or model very simple environments.
This activity is common practice in the field.

7.5 Summary

The dynamics of agent-based models are usually so complex that their own
developers do not fully understand how they are generated. This makes it difficult, if
not impossible, to discern whether observed significant results are legitimate logical
implications of the assumptions that the model developer is interested in or whether
they are due to errors or artefacts in the design or implementation of the model.

Errors are mismatches between what the developer believes a model is and what
the model actually is. Artefacts are significant phenomena caused by accessory
assumptions in the model that are (mistakenly) considered non-significant. Errors
and artefacts prevent developers from correctly understanding their simulations.
Furthermore, both errors and artefacts can significantly decrease the validity of a
model, so they are best avoided.

In this chapter we have outlined a general framework that summarises the
process of designing, implementing, and using agent-based models. Using this

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 137

framework we have identified the different types of errors and artefacts that may
occur in each of the stages of the modelling process. Finally, we have proposed
several activities that can be conducted to avoid each type of error or artefact.
Some of these activities include repetition of experiments in different platforms,
reimplementation of the code in different programming languages, reformulation
of the conceptual model using different modelling paradigms, and mathematical
analyses of simplified versions or particular cases of the model. Conducting these
activities will surely increase our understanding of a particular simulation model.

Acknowledgements The authors have benefited from the financial support of the Spanish
Ministry of Education and Science (projects CSD2010-00034, DPI2004-06590, DPI2005-05676,
and TIN2008-06464-C03-02) and of the Junta de Castilla y León (projects BU034A08 and
VA006B09). We are also very grateful to Nick Gotts, Gary Polhill, Bruce Edmonds, and Cesáreo
Hernández for many discussions on the philosophy of modelling.

Further Reading

Gilbert (2007) provides an excellent basic introduction to agent-based modelling.
Chapter 4 summarises the different stages involved in an agent-based modelling
project, including verification and validation. The paper entitled “Some myths and
common errors in simulation experiments” (Schmeiser 2001) discusses briefly some
of the most common errors found in simulation from a probabilistic and statistical
perspective. The approach is not focused specifically on agent-based modelling but
on simulation in general. Yilmaz (2006) presents an analysis of the life cycle of a
simulation study and proposes a process-centric perspective for the validation and
verification of agent-based computational organisation models. An antecedent of
this chapter can be found in Galán et al. (2009). Finally, Chap. 9 in this volume
(David et al. 2017) discusses validation in detail.

References

Axelrod, R. M. (1997a). Advancing the art of simulation in the social sciences. In R. Conte, R.
Hegselmann, & P. Terna (Eds.), Simulating social phenomena. (Lecture Notes in Economics
and Mathematical Systems, 456) (pp. 21–40). Berlin: Springer.

Axelrod, R. M. (1997b). The dissemination of culture: A model with local convergence and global
polarization. Journal of Conflict Resolution, 41(2), 203–226.

Axtell, R. L. (2000). Why agents? On the varied motivations for agent computing in the
social sciences. In C. M. Macal & D. Sallach (Eds.), Proceedings of the workshop on
agent simulation: applications, models, and tools (pp. 3–24). Argonne National Laboratory:
Argonne, IL.

Axtell, R. L., & Epstein, J. M. (1994). Agent based modeling: Understanding our creations. The
Bulletin of the Santa Fe Institute, 1994, 28–32.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_9

138 J.M. Galán et al.

Bigbee, T., Cioffi-Revilla, C., & Luke, S. (2007). Replication of sugarscape using MASON. In T.
Terano, H. Kita, H. Deguchi, & K. Kijima (Eds.), Agent-based approaches in economic and
social complex systems IV: Post-proceedings of the AESCS international workshop 2005 (pp.
183–190). Tokyo: Springer.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences of the United States of America,
99(2), 7280–7287.

Castellano, C., Marsili, M., & Vespignani, A. (2000). Nonequilibrium phase transition in a model
for social influence. Physical Review Letters, 85(16), 3536–3539.

Christley, S., Xiang, X., & Madey, G. (2004). Ontology for agent-based modeling and simulation.
In C. M. Macal, D. Sallach, & M. J. North (Eds.), Proceedings of the agent 2004 conference
on social dynamics: interaction, reflexivity and emergence. Chicago, IL: Argonne National
Laboratory and The University of Chicago. http://www.agent2005.anl.gov/Agent2004.pdf.

Cioffi-Revilla, C. (2002). Invariance and universality in social agent-based simulations. Proceed-
ings of the National Academy of Sciences of the United States of America, 99(3), 7314–7316.

Conlisk, J. (1996). Why bounded rationality? Journal of Economic Literature, 34(2), 669–700.
David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations.

doi:https://doi.org/10.1007/978-3-319-66948-9_9.
Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the

agents? In J. S. Sichman, F. Bousquet, & P. Davidsson (Eds.), Proceedings of MABS 2002
multi-agent-based simulation. (Lecture Notes in Computer Science, 2581) (pp. 1–15). Bologna:
Springer.

Edmonds, B. (2001). The use of models: making MABS actually work. In S. Moss & P. Davidsson
(Eds.), Multi-agent-based simulation. (Lecture notes in artificial intelligence, 1979) (pp. 15–
32). Berlin: Springer.

Edmonds, B. (2005). Simulation and complexity: How they can relate. In V. Feldmann & K.
Mühlfeld (Eds.), Virtual worlds of precision: Computer-based simulations in the sciences and
social sciences (pp. 5–32). Lit-Verlag: Münster.

Edmonds, B. (2017). Different modelling purposes. doi:https://doi.org/10.1007/978-3-319-66948-
9_4.

Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons
from model alignment. Journal of Artificial Societies and Social Simulation, 6(4). http://
jasss.soc.surrey.ac.uk/6/4/11.html.

Edmonds, B., & Hales, D. (2005). Computational Simulation as Theoretical Experiment. Journal
of Mathematical Sociology, 29, 1–24.

Edwards, M., Huet, S., Goreaud, F., & Deffuant, G. (2003). Comparing an individual-based
model of behaviour diffusion with its mean field aggregate approximation. Journal of Artificial
Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/9.html.

Epstein, J. M. (1999). Agent-based computational models and generative social science. Complex-
ity, 4(5), 41–60.

Epstein, J. M. (2008). Why model?. Journal of Artificial Societies and Social Simulation, 11(4), 12.
http://jasss.soc.surrey.ac.uk/11/4/12.html.

Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the bottom
up. Cambridge, MA: Brookings Institution Press/MIT Press.

Fensel, D. (2001). Ontologies: A silver bullet for knowledge management and electronic commerce.
Berlin: Springer.

Galán, J. M., et al. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial
Societies and Social Simulation, 12(1). http://jasss.soc.surrey.ac.uk/12/1/1.html.

Galán, J. M., & Izquierdo, L. R. (2005). Appearances can be deceiving: lessons learned re-
implementing Axelrod’s ‘evolutionary approach to norms’. Journal of Artificial Societies and
Social Simulation, 8(3). http://jasss.soc.surrey.ac.uk/8/3/2.html

Gilbert, N. (1999). Simulation: A new way of doing social science. The American Behavioral
Scientist, 42(10), 1485–1487.

Gilbert, N. (2007). Agent-based models. London: Sage Publications.

http://www.agent2005.anl.gov/Agent2004.pdf
http://dx.doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1007/978-3-319-66948-9_4
https://doi.org/10.1007/978-3-319-66948-9_4
http://jasss.soc.surrey.ac.uk/6/4/11.html
http://jasss.soc.surrey.ac.uk/6/4/9.html
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://jasss.soc.surrey.ac.uk/12/1/1.html
http://jasss.soc.surrey.ac.uk/8/3/2.html

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 139

Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind
& Society, 1(1), 57–72.

Gilbert, N., & Troitzsch, K. G. (1999). Simulation for the social scientist. Buckingham: Open
University Press.

Gotts, N. M., Polhill, J. G. & Adam, W. J. (2003, 18–21 September). Simulation and analysis
in agent-based modelling of land use change. Online proceedings of the first conference of
the European Social Simulation Association, Groningen, The Netherlands, http://www.uni-
koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 199–220.

Hare, M., & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models
in environmental management. Mathematics and Computers in Simulation, 64(1), 25–40.

Hernández, C. (2004). Herbert A. Simon, 1916-2001, y el Futuro de la Ciencia Económica. Revista
Europea De Dirección y Economía De La Empresa, 13(2), 7–23.

Heywood, J. G., Masuda, K., Rautmann, R., & Solonnikov, V. A. (Eds.). (1990). The Navier-Stokes
equations: Theory and numerical methods; Proceedings of a conference held at Oberwolfach,
FRG, Sept. 18–24, 1988. (Lecture Notes in Mathematics, 1431). Berlin: Springer.

Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. American
Economic Review, 81(2), 365–370.

Izquierdo, L. R., & Polhill, J. G. (2006). Is your model susceptible to floating point errors? Journal
of Artificial Societies and Social Simulation, 9(4). http://jasss.soc.surrey.ac.uk/9/4/4.html.

Kleijnen, J. P. C. (1995). Verification and validation of simulation models. European Journal of
Operational Research, 82(1), 145–162.

Kleindorfer, G. B., O’Neill, L., & Ganeshan, R. (1998). Validation in simulation: Various positions
in the philosophy of science. Management Science, 44(8), 1087–1099.

Klemm, K., Eguíluz, V., Toral, R., & San Miguel, M. (2003a). Role of dimensionality in Axelrod’s
model for the dissemination of culture. Physica A, 327, 1–5.

Klemm, K., Eguíluz, V., Toral, R., & San Miguel, M. (2003b). Global culture: A noise-induced
transition in finite systems. Physical Review E, 67(4), 045101.

Klemm, K., Eguíluz, V., Toral, R., & San Miguel, M. (2003c). Nonequilibrium transitions in
complex networks: A model of social interaction. Physical Review E, 67(2), 026120.

Klemm, K., Eguíluz, V., Toral, R., & San Miguel, M. (2005). Globalization, polarization and
cultural drift. Journal of Economic Dynamics & Control, 29(1–2), 321–334.

Kluver, J., & Stoica, C. (2003). Simulations of group dynamics with different models. Journal of
Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/8.html.

Leombruni, R., & Richiardi, M. (2005). Why are economists sceptical about agent-based simula-
tions? Physica A, 355, 103–109.

Moss, S. (2001). Game theory: Limitations and an alternative. Journal of Artificial Societies and
Social Simulation, 4(2). http://jasss.soc.surrey.ac.uk/4/2/2.html.

Moss, S. (2002). Agent based modelling for integrated assessment. Integrated Assessment, 3(1),
63–77.

Moss, S., Edmonds, B., & Wallis, S. (1997). Validation and verification of computational models
with multiple cognitive agents (Report no. 97–25). Manchester: Centre for Policy Modelling,
http://cfpm.org/cpmrep25.html.

Ostrom, T. (1988). Computer simulation: The third symbol system. Journal of Experimental Social
Psychology, 24(5), 381–392.

Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modeling vs. equation-based
modeling: A case study and users’ guide. In J. S. Sichman, R. Conte, & N. Gilbert (Eds.),
Multi-agent systems and agent-based simulation. (Lecture notes in artificial intelligence 1534)
(pp. 10–25). Berlin: Springer.

http://www.uni-koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf
http://jasss.soc.surrey.ac.uk/9/4/4.html
http://jasss.soc.surrey.ac.uk/6/4/8.html
http://jasss.soc.surrey.ac.uk/4/2/2.html
http://cfpm.org/cpmrep25.html

140 J.M. Galán et al.

Pavón, J. & Gómez-Sanz, J. (2003). Agent oriented software engineering with INGENIAS. In
V. Marik, J. Müller & M. Pechoucek (Eds.), Multi-agent systems and applications III, 3rd
international central and eastern European conference on multi-agent systems, CEEMAS.
(Lecture notes in artificial intelligence, 2691) (pp. 394–403); Berlin, Heidelberg: Springer.

Pignotti, E., Edwards, P., Preece, A., Polhill, J.G. & Gotts, N.M. (2005). Semantic support for
computational land-use modelling. Proceedings of the 5th international symposium on cluster
computing and the grid (CCGRID 2005) (pp. 840–847). Piscataway, NJ: IEEE Press.

Polhill, J. G. & Gotts, N. M. (2006, August 21–25). A new approach to modelling frameworks.
Proceedings of the first world congress on social simulation. (Vol. 1, pp. 215–222), Kyoto,
Japan.

Polhill, J. G., & Izquierdo, L. R. (2005). Lessons learned from converting the artificial stock
market to interval arithmetic. Journal of Artificial Societies and Social Simulation, 8(2). http://
jasss.soc.surrey.ac.uk/8/2/2.html.

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2005). The ghost in the model (and other effects
of floating point arithmetic). Journal of Artificial Societies and Social Simulation, 8(1). http://
jasss.soc.surrey.ac.uk/8/1/5.html.

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2006). What every agent based modeller should
know about floating point arithmetic. Environmental Modelling & Software, 21(3), 283–309.

Riolo, R. L., Cohen, M. D., & Axelrod, R. M. (2001). Evolution of cooperation without reciprocity.
Nature, 411, 441–443.

Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathematical
Sociology, 1(1), 119–132.

Salvi, R. (2002). The Navier-Stokes equation: Theory and numerical methods. (Lecture notes in
pure and applied mathematics). New York: Marcel Dekker.

Sansores, C., & Pavón, J. (2005, November 14–18). Agent-based simulation replication: A model
driven architecture approach. In A. F. Gelbukh, A. de Albornoz, & H. Terashima-Marín (Eds.),
Proceedings of MICAI 2005: Advances in artificial intelligence, 4th Mexican international
conference on artificial intelligence. (Lecture notes in computer science, 3789) (pp. 244–253),
Monterrey, Mexico. Berlin, Heidelberg: Springer.

Sansores, C., Pavón, J., & Gómez-Sanz, J. (2006, July 25). Visual modeling for complex agent-
based simulation systems. In J. S. Sichman & L. Antunes (Eds.), Multi-agent-based simulation
VI, International workshop, MABS 2005, revised and invited papers. (Lecture notes in computer
science, 3891) (pp. 174–189), Utrecht, The Netherlands. Berlin, Heidelberg: Springer.

Sargent, R. G. (2003). Verification and validation of simulation models. In S. Chick, P. J. Sánchez,
D. Ferrin, & D. J. Morrice (Eds.), Proceedings of the 2003 winter simulation conference (pp.
37–48). Piscataway, NJ: IEEE.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
47–186.

Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton.
Schmeiser, B. W. (2001, December 09–12). Some myths and common errors in simulation

experiments. In B. A. Peters, J. S. Smith, D. J. Medeiros, & M. W. Rohrer (Eds.), Proceedings
of the winter simulation conference (Vol. 1, pp. 39–46), Arlington, VA.

Takadama, K., Suematsu, Y. L., Sugimoto, N., Nawa, N. E., & Shimohara, K. (2003). Cross-
element validation in multiagent-based simulation: Switching learning mechanisms in agents.
Journal of Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/
6.html.

Taylor, A. J. (1983). The verification of dynamic simulation models. Journal of the Operational
Research Society, 34(3), 233–242.

Xu, J., Gao, Y. & Madey, G. (2003, April 13–15). A docking experiment: swarm and repast for
social network modeling. In Seventh annual swarm researchers conference (SwarmFest 2003.
Notre Dame, IN.

Yilmaz, L. (2006). Validation and verification of social processes within agent-based computational
organization models. Computational & Mathematical Organization Theory, 12(4), 283–312.

http://jasss.soc.surrey.ac.uk/8/2/2.html
http://jasss.soc.surrey.ac.uk/8/1/5.html
http://jasss.soc.surrey.ac.uk/6/4/6.html

	7 Checking Simulations: Detecting and Avoiding Errorsand Artefacts
	7.1 Introduction
	7.2 Three Symbolic Systems Used to Model Social Processes
	7.3 Agent-Based Modelling
	7.3.1 Concept
	7.3.2 Design, Implementation, and Use of an Agent-Based Model

	7.4 Errors and Artefacts
	7.4.1 Definition of Error and Artefact and Their Relevance for Validation and Verification
	7.4.2 Appearance of Errors and Artefacts
	7.4.3 Activities Aimed at Detecting Errors and Artefacts

	7.5 Summary
	Further Reading
	References

