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Human Societies: Understanding Observed
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Abstract The chapter begins by briefly describing two contrasting simulations: the
iconic system dynamics model publicised under the Limits to Growth book and a
detailed model of first millennium Native American societies in the southwest of
the United States. These are used to bring out the issues of abstraction, replicability,
model comprehensibility, understanding vs. prediction and the extent to which
simulations go beyond what is observed. All of these issues are rooted in some
fundamental difficulties in the project of simulating observed societies that are
then briefly discussed. Both issues and difficulties result in three “dimensions” in
which simulation approaches differ. The core of the chapter is a look at 15 different
possible simulation goals, both abstract and concrete, giving some examples of each
and discussing them. The different inputs and results from such simulations are
briefly discussed as to their importance for simulating human societies.

Why Read This Chapter?
To get an overview of the different ways in which simulation can be used to gain
understanding of human societies and to gain insight into some of the principle
difficulties of these. The chapter will go through the various specific goals one might
have in doing such simulation, giving examples of each. It will provide a critical
view as to the success of reaching these various goals and hence inform about the
current state of such simulation projects.
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28.1 Introduction

Understanding social phenomena is hard. There is all the complexity found in other
fields of enquiry but with additional difficulties due to our being embedded in what
we are studying.1 Despite these, understanding our own nature is naturally important
to us, and our social aspects are a large part of that nature. Indeed, some would go
as far as saying that our social abilities are the defining features of our species (e.g.
Dunbar 1998). The project of understanding human societies is so intricate that we
need to deploy all means at our disposal. Simulation is but one tool in this vast
project, but it has the potential to play an important part.

This chapter considers how and to what extent computer simulation helps us to
understand the social complexity we see all around us. It will start by discussing two
simulations in order to raise the key issues that this project involves, before moving
on to highlight the difficulties of understanding human society in more detail. The
core of the chapter is a review of some of the different purposes that simulation can
be used for, with examples of each. It then looks at a way of assessing the success
and kind of purpose of simulations in terms of their inputs and outputs (Sect. 28.4).

28.1.1 Example 1: The Club of Rome’s “Limits to Growth”
(LTG)

In the early 1970s, on behalf of an international group under the name “The
Club of Rome”, a simulation study was published (Meadows et al. 1972) with
the attempt to convince humankind that there were some serious issues facing
it, in terms of a coming population, resource and pollution catastrophe. To do
this, the group developed a system dynamics model of the world. They chose
a system dynamics model because they felt they needed to capture some of the
feedback cycles between the key factors—factors that would not come out in simple
statistical projections of the available data. They developed this model and ran
it, publishing the findings—a number of model-generated future scenarios—for a
variety of settings and variations. The book (Limits to Growth) considered the world
as a single system, and postulated some relationships between macro variables,
such as population, available resources, pollution, etc. Based on the relationships
it simulated what might happen if the feedbacks between the various variables were
allowed to occur. The simulation outputs were the curves that resulted from this
model as the simulation was continued for future dates. The results indicated that
there was a coming critical point in time and that a lot of suffering would result,
even if humankind managed to survive it.

1This embeddedness has advantages as well, such as prior knowledge.
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The book had a considerable impact, firmly placing the possibility that
humankind could not simply continue to grow indefinitely in the public mind.
It also attracted considerable criticism (e.g. Cole et al. 1973), mainly based on the
plausibility of the model’s assumptions and the sensitivity of its results to those
relationships. (For example, it assumed that growth will be exponential and that
delay loops are extended.) The book presented the results of the simulations as
predictions—a series of what-if scenarios. Whilst the authors did add caveats and
explore various possible versions of their model, depending on what connections
there turned out to be in the world system, the overall intent of the book was
unmistakeable: that if we did not change what we were doing, by limiting our
own economic consumption and population, disaster would strike. This was a work
firmly in the tradition of Malthus (1798) who, 175 years earlier, had predicted a
constant state of near starvation for much of the world based upon a consideration
of the growth processes of population and agriculture.

The authors clearly hoped that by using a simulation (albeit a simplistic one by
present standards), they would be able to make the potential feedback loops real to
people. The simulation illustrated an understanding that the authors of LTG had.
However, the model was not presented as such, but as something more scientific
in some sense.2 A science-driven study that predicted such suffering was a definite
challenge to those who thought the problem was less severe.3 By publishing their
model and making it easy for others to replicate and analyse it, they offered critics
a good opportunity for counter-argumentation.

The model was criticised on many different grounds, but the most effective was
that the model was sensitive to the initial settings of some parameters (Vermeulen
and de Jongh 1976). This raised the question whether the model had to be finely
tuned in order to get the behaviour claimed and thus, since the parameters were
highly abstract and did not directly correspond to anything measurable, questioned
the applicability of the model to the world we live in. Its critics assumed that since
this model did not produce reliable predictions, it could be safely ignored. It also
engendered the general perception that predictive simulation models are not credible
tools for understanding human socio-economic changes—especially for long-term
analyses—and discouraged their use in supporting policy-making.

2The intentions of the authors themselves in terms of what they thought of the simulation itself are
difficult to ascertain and varied between the individuals; however, this was certainly how the work
was perceived.
3Or those whose vested interests may have led them to maintain the status quo concerning the
desirability of continual economic growth.
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28.1.2 Example 2: Modelling First Millennium Native
American Society

A contrasting example to the Club of Rome model is the use of simulation models
to assess and explore explanations of population shifts among the Native American
nations, in the pre-Columbian era. This has been called “generative archaeology”
(GA) by Kohler (2009). Here a spatial model of a population was developed,
which was fitted to a wealth of archaeological and climatological data in order
to find and assess possible explanations of the size, distribution and change in
populations that existed in the first millennium AD in the Southwest US. This case
offers a picture of settlement patterns in the context of relatively high-resolution
reconstructions of changes in climate and resources relevant to the human use of
these landscapes.

The available data in this case is relatively rich, allowing many questions to be
answered directly. However, other interesting aspects are not directly answerable
from a static analysis of the data, for example, those about the possible social
processes that existed. The problem is that different archaeologists can inspect the
same settlement pattern and generate different candidate processes (explanations)
for its generation. Here agent-based modelling helps infer the social processes
(which cannot be directly observed) from the detailed record over time. This is not
a direct or certain inference, since there are still many unknowns involved in that
process.

In (Kohler et al. 2005) and (Kohler et al. 2008),4 agent-based modelling (ABM)
has been mainly used to see what patterns one should expect if households were
approximately minimising their caloric costs for access to adequate amounts of
calories, protein, and water. The differences through time in how well this expec-
tation fits the observed record and the changing directions of departure from those
expectations provide a completely novel source of inference on the archaeological
record. Simulations using the hypothesis of local food sharing during periods of
mild food shortage may be compared to the fit in a simulation where food sharing
does not occur. In this way we can get indirect evidence as to whether food sharing
took place.

The ABM has hence allowed a comparison of a possible process with the
recorded evidence. This comparison is relative to the assumptions that are built
into the model, which tend to be plausible but questionable. However, despite the
uncertainties involved, one is able to make a useful assessment of the possible
explanation, and the assumptions are explicitly documented. This approach to
processes that involve complex interaction would be impossible to do without
a computer simulation. At the very least, such a process reveals new important
questions to ask (and hence new evidence to search for) and the times when the

4For details of the wider project connected with these papers, see the Village Ecodynamics Project,
http://village.anth.wsu.edu.

http://village.anth.wsu.edu
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plausible explanations are demonstrably inadequate. However, for any real progress
in explanation of such cases, a very large amount of data seems to have been
required.

28.1.3 Some Issues that the Aforementioned Examples
Illustrate

The previous examples raise a few issues, common with much social simulation
modelling of human societies. These will now be briefly defined and discussed as an
introduction to the problem of understanding social phenomena using simulation.

1. Abstraction. Abstraction is a crucial step in modelling observed social phenom-
ena, as it involves choices about which aspects are salient in relation to the
problem and what level of analysis is appropriate. The LTG example, being
a macromodel, assumes that distributive aspects such as geography and local
heterogeneity are less important with respect to feedbacks among global growth
variables. In this model, the detail of the whole world is reduced to the interaction
of a few numeric variables. The GA model was more specific and detailed,
including an explicit 2D map of the area and the position of settlements at
different times in the past. It is fair to say that the LTG model was driven by
the goals of its modellers, i.e. showing that the coming crisis could be sharp due
to slow feedback loops, whereas the GA model is rather driven by the available
data, with the model being applied to a number of different questions afterwards.

2. Replicability. Replicability is the extent to which a published model has been
described in a comprehensive and transparent way so that the simulation
experiments can be independently reproduced by another modeller. Replicability
may be considerably easier if care is taken to verify the initial model and if the
original source code is effectively available and well commented. Here the LTG
model was readily replicable and hence open to inspection and criticism. The GA
models are available to download and inspect, but their very complexity makes
them hard to replicate independently of the original implementation.

3. Understanding the model. A modeller’s inferential ability is the extent to which
one can understand one’s own model. Evidence suggests that humans can fully
track systems only for about two or three variables and five or six states (Klein
1998); for higher levels of complexity, additional tools are required. In many
simulations, especially those towards the descriptive end of the spectrum, the
agents can have many behavioural rules, which may interact in unpredictable
ways. This makes simulations very difficult to fully understand and check.
Even in the case of a simple model, such as the LTG model, there can be
unexpected features (such as the fine-tuning that was required). Although the
GA was rich in its depiction of the space and environment, the behavioural
rules of subpopulations were fairly simple and easy to follow at the micro level.
However, this does not rule out subtle errors and complexities that might result



768 B. Edmonds et al.

from the interaction of the microelements. Indeed, this is the point of such
a simulation that we cannot work out these complex outcomes ourselves, but
require a computer program to do it.

4. Prediction vs. understanding. The main lesson to be drawn from the history of
formal modelling is that, for most complex systems, it is impossible to model
with accuracy their evolution beyond an immediate timeframe. Whilst the broad
trends and properties may be forecast to some degree, the particulars, e.g. the
timing and scale of changes in the aggregate variables, generally cannot (Moss
1999). The LTG model attempted to forecast the future, not in terms of the precise
levels but in the presence of a severe crisis—a peak in population followed by a
crash. The GA does not aim to predict any specific thing, but rather it seeks to
establish plausible explanations for the data that is known. Most simulations of
human society restrict themselves to establishing explanations, the simulations
providing a chain of causation that shows that the explanation is possible.5

5. Going beyond what is known. In social science, there are many gaps in our
knowledge, and social simulation methods may be well placed to address some
of these gaps. Given some data, and some plausible assumptions, the simulations
can be used to perform experiments that are consistent with the data and
assumptions and then inspected to answer other questions. Clearly, this depends
on the reliability of the assumptions chosen. In the GA case, this is very clear;
a model with a food-sharing rule and one without can be compared to the
data, seeing which one fits it better. The LTG model attempts something harder,
making severe assumptions about how the aggregate variables relate; it “predicts”
aspects of the future. In general: the more reliable the assumptions and data
(hence the less ambitious the attempt at projection), the more credible the result.

A social scientist, who wants to capture key aspects of observed social phenom-
ena in a simulation model, faces many difficulties. Indeed, the differences between
formal systems and complex, multifaceted and meaning-laden social systems are so
fundamental that some criticise any attempt to bridge this gap (e.g. Clifford 1986).
Modellers have to face these difficulties, and these have an impact as to how social
simulation is done and how useful (or otherwise) such models may be. We briefly
consider six of these difficulties here.

• Firstly, there is the sheer difference in nature between formal models (i.e.
computer programs) that modellers use as compared to the social world that we
observe. The former are explicit, precise, with a formal grammar, predictable
at the micro level, reproducible and work in (mostly) the same way regardless
of the computational context. The latter is vague, fluid, uncertain, subjective,
implicit and imprecise—which often seems to work completely different in
similar situations and whose operation seems to rely on the rich interaction of

5Although in many cases this is dressed up to look like prediction, such as the fitting to out-of-
sample data. Prediction has to be for data unknown to the modeller; otherwise the model will be
implicitly fitted to it.
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meaning in a way that is sometimes explicable but usually unpredictable. In
particular, the gap between essentially formal symbols with precise but limited
meaning and the rich semantic associations of the observed social world (e.g. as
expressed in natural language) is particularly stark. This gap is so wide that some
philosophers have declared it unbridgeable (e.g. Lincoln and Guba 1985, Guba
and Lincoln 1994).

• Secondly, there are the sheer variability, complication and complexity of the
social world. Social phenomena seem to be at least as complex as biological
phenomena but without the central organising principle of evolution as specified
in the neo-Darwinian synthesis. If there are any general organising principles
(and it is not obvious that this is the case), then there are many of these, each
with differing (and sometimes overlapping) domains of application. In that sense,
it is clear that a model will always capture only a small part of the phenomenon
among many other related aspects, hence reducing drastically the possibility to
predict with any degree of certainty.

• Then there is the sheer lack of adequate multifaceted data about social phe-
nomena. Social simulators always seem to have to choose between longitudinal
studies, narrative data, cross-sectional surveys or time-series data. Having all of
these datasets about a single social process or event is to date very unlikely.
There does not seem to be the emphasis on data collection and measurement
in the social sciences that there is in some other sciences and certainly not the
corresponding prestige for those who collect it or invent ways of doing so.

• There is the more mundane difficulty of building, checking, maintaining, and
analysing simulations (Galán et al. 2009). Even the simplest simulations are
beyond our complete understanding, indeed that is often why we need them,
because there is no other practical way to find out the complex ramifications
of a set of interacting agents. This presence of emergent outcomes in the
simulations makes them very difficult to check. Ways to improve confidence
that our simulations in fact correspond to our intentions for them6 include: unit
testing, debugging, and the facility for querying the database of a simulation
(see Chap. 9 (David et al. 2017) in this handbook). Perhaps the strictest test is
the independent replication of simulations—working from the specifications and
checking their results at a high degree of accuracy (Axtell et al. 1996). However,
such replication is usually very difficult and time-consuming, even in relatively
simple cases (Edmonds and Hales 2003).

• Another difficulty is that of the inevitability of background assumptions in all we
do. There is always a wealth of facts, processes and affordances giving meaning
to, and providing the framework for, the foreground actions and causal chains
that we observe. Many of these are not immediately apparent to us since they are
part of the contexts we inhabit and so are not perceptually apparent. This is the
same as in other fields, as it has been argued elsewhere, the concept of causation

6In terms of design and implementation, if one has a good reference case in terms of observed data
then one can also check one’s simulation against this.

http://dx.doi.org/10.1007/978-3-319-66948-9_9
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only makes sense within a context (Edmonds 2007). However, it does seem that
context is more critical in the social world than elsewhere, since it can change
not only the outcomes of events but also their very meaning (and hence kind of
social outcome). Whilst in other fields it might be acceptable to represent extra-
contextual interferences as some kind of random distribution or process, this is
often manifestly inadequate with social phenomena (Edmonds and Hales 2005).

• The uncertainty behind the foreground assumptions in social simulation is also
problematic. Even when we are aware of all of the assumptions, they are often
either too numerous to include in a single model, or we simply lack any evidence
as to what they should be. For example, many social simulation models include
some version of inference, learning or decision-making within the agents of the
model, even when there is no evidence as to whether this actually corresponds to
the one used by the observed actors. It seems that often it is simply hoped that
these details will not matter much in the end—thus becoming a rarely checked,
and sometimes wrong, aspect of simulations (Edmonds 2001; Rouchier 2001).

• Finally, there is a difficulty from the nature of simulation itself. Simulation will
demonstrate possible processes that might follow from a given situation (relative
to the assumptions on which the simulation is built). It does not show all the
possibilities, since it could happen that a future simulation will produce the
same outcomes from the same set-up in a different way (e.g. using a different
cognitive model). Thus, simulation differs in terms of its inferential power from
analytic models (e.g. equation-based ones), where the simplicity of the model
can allow formal proofs of a general formulation of outcomes that may establish
the necessity of conditions as well as their adequacy. This difficulty is the same
for many mathematical formulations since, in their raw form, they are often
unsolvable. Hence, either one has to use numerical simulation of results (in which
case one is back to a simulation) or one has to make simplifying assumptions (in
which case, depending on the strength of these assumptions, one does not know
if the results still apply to the original case).

These difficulties bring up the question of whether some aspects of societies can
be at all understood by means of modelling. The hypothesis asserting that simulation
is a credible method to better explore, understand or explain social processes is
implicitly tested in the current volume and is discussed in some detail below. We
are not going to take any strong position but will restrict ourselves to considering
examples within the context of their use.7 Agent-based social simulation is not
a magic bullet and is not yet a mature technique. It is common sense in the
social simulation community that best results will be achieved by combining social
simulation with other research methods.

7Obviously, we suspect it can be a useful tool; otherwise we would not be bothering with it.
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28.2 Styles of Modelling and Their Impact on Simulation
Issues

28.2.1 Models of Evidence vs. Models of Ideas

One response to the above difficulties is not to model social phenomena directly,
but rather to restrict ourselves to modelling ideas about social phenomena. This is
a lot easier, since our ideas are necessarily a lot simpler and more abstract than
the phenomenon itself (and can be formalised with the notion of pattern modelling
(Grimm et al. 2005) rather than strict adequacy to data). Some ideas need modelling,
in the sense that the ramifications of the ideas are themselves complex. These kinds
of models can be used to improve our understanding of the ideas, and later this
understanding can be applied in a rich, flexible and context-sensitive way. This
distinction is made clear in (Edmonds 2001).

Of course, to some extent, any model is a compact abstraction of the final target
of modelling. There will, presumably, be some reason why one conceptualises what
one is modelling in terms of evidence or experience by someone, and there will
always be some level of theory/assumption that motivates the decision as to what
can be safely left out of a model. Thus, all models are somewhat about ideas, and,
presumably, all models have some relation to the evidence. However, there is still
a clear difference between those models that take their primary structure from an
idea and those whose primary considerations come from the available evidence.
For example, the former tend to be a lot simpler than the latter. The latter will
tend to have specific motivations for each feature, whilst the former will tend to
be motivated in general terms. These two kinds of simulation have a close parallel
with the theoretical and phenomenological models identified by Cartwright (1993).

Unfortunately, these kinds of model are often conflated in academic papers.
This seems frequently not deliberate, but rather due to the strong theoretical
spectacles (Kuhn 1962) that simulation models seem to provide. There is nothing
like developing and playing with a simulation model to make one see the world in
terms of that model. It is not only that the model is your creation and your best effort
in formulating an aspect of the social world but also that you have interacted with
it and changed it to include the features that you, the modeller, think it should have.
Nevertheless, whatever the source, it can take some careful “reading between the
lines” to determine the exact nature of any model and what it purports to represent.

28.2.2 Modelling as Representation of Social Phenomena vs.
as an Intervention in a Social Process

It must be said that some simulation models are not intended to represent anything
but are rather created for another purpose, such as a tool for demonstrating an
approach or an intervention in a decision-making process. This may be deliberate
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and explicit, or not, for various different reasons. Of course if a computer model
does not represent anything at all, it is not really a simulation but simply a computer
program, which may be presented in the style of a simulation. Also for a simulation
to be an effective tool for intervention, it has to have some credibility with the
participants.

However, in some research, representation is either not the primary goal or
the object of representation is deliberately subjective in character. Thus, in some
participatory approaches (see Chap. 12, Barreteau et al. 2017), it may be the primary
goal to raise awareness of an issue, to intervene in or facilitate a social process like
a negotiation or consensus process within a group of people. The modeller may not
focus as much on whether the model captures an objective reality but rather on how
stakeholders8 understand the issues and processes of concern and how this might
influence the outcomes. This does not mean that there will be no elements that are
objective and/or representative in character—for example, such models might have
a well-validated hydrological component to them—but that the parts of the model
that are the focus are checked against the opinions of those being modelled or those
with an interest in the outcomes rather than any independent evidence.

Of course, this is a matter of degree—in a sense most social simulations are a
mixture of objective aspects linked to observations and other aspects derived from
theories, opinions, hypotheses and assumptions. In participatory approaches, the
modellers seek not to put their own ideas forward but rather take the, possibly
more democratic, approach of being expert facilitators expressing the stakeholders’
opinions and knowledge. Whilst some researchers might reject such ideas as too
“anecdotal” to be included in a formal model, it is not obvious that the stakeholders’
ideas about the nature of the processes involved (e.g. how the key players make
decisions) are less reliable than the grander theories of academics. However,
researchers do have a professional obligation to be transparent and honest about
their opinions, documenting assumptions to make them explicit and, at least, not
state things that they think are false. Thus, although social simulations are not a
world away from more traditional models of using simulation, they do have some
different biases and characteristics.

28.2.3 Context and Social Simulation

Human knowledge, but particularly human social knowledge, is usually not context-
free. There is a set of background assumptions, facts, relationships and meanings
that are necessary (to understand the situation) and generally known but not
made explicit. These background features can all be associated with the context
of the knowledge (Edmonds 1999). In a similar way, most social simulation
happens within a particular context as given, for example, the environment in

8I.e. those who are part of or can influence the social phenomenon in question.

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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which racial segregation occurs might be obvious to all concerned. This context
is sometimes indicated in papers but is often left implicit since it is associated
with the many background assumptions that can be safely ignored, either because
they are irrelevant or they do not change in that context. Social simulation would
probably be impossible if one was not able to assume a context whose associated
assumptions need not be questioned for a given model (Edmonds 2010). Without
an effective restriction of scope, every social simulation model would have to
include all potential aspects of human behaviour and social interaction. Whilst such
assumptions concerning the context are common to almost all fields of knowledge,
they are particularly powerful in the social sciences because we unavoidably use our
folk knowledge9 of social situations to make sense of the studied social phenomena.
This process of (social) context identification is often automatic, so that we correctly
identify the appropriate context without expending much conscious thought. For this
reason, the context is often left implicit, despite the fact that it is can be crucial to
the construction and interpretation of a simulation. This leaves the decisions as to
what to implement as foreground, deliberate decisions.

Choosing a social context that is relatively identifiable and self-contained is
important if one is seeking to represent some evidence in a simulation. Being able to
include all the important factors of some social process and obtain some evidence for
their nature allows the building of simulations that are not misleading in the sense of
not missing out factors that might critically change the outcomes. Clearly the more
restricted the context, the easier the representational task. However, in this case one
does not know whether what one learns from the simulation is applicable in other
contexts. Using a simulation developed for one context and purpose for a different
context and/or purpose might well lead to misleading conclusions (Edmonds and
Hales 2005; Lucas 2010; Edmonds 2017).

Those simulations that are more focused on exploring an idea will often seek to
transcend context, in the hope that the models will have some degree of generality—
these often deliberately ignore any particular context. Although these may seem
general, their weakness can become apparent when its applicability is tested. Here
the ideas they represent might give some useful insights but may be misleading
if taken as the defining feature of a specific case study. Clearly, a simulation that
is claimed to have general applicability needs to have been validated across the
claimed scope before being relied upon by others. To date, no social simulation has
been found to be generally applicable beyond theoretical and illustrational purposes
(Lucas 2011).

9Folk knowledge is the set of widely held beliefs about popular psychological and social theories;
this is sometimes used in a rather derogatory way even when the reliability of the academic
alternatives is unclear.
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28.3 A Plethora of Modelling Purposes with Examples

Given the different purposes for which simulation models are used (see Epstein
2012; Edmonds 2017), they will be considered in groups of those with similar goals.
It is only relative to their goals that simulation efforts can be judged. Nowadays it is
widely acknowledged that authors should clearly state the purpose of their models
before describing how the model is constituted (Grimm et al. 2006, 2017). Firstly,
however, it is worth reviewing two goals that are widely pursued in many other fields
but have not been convincingly attained with respect to the simulation of human
society.

The first of these goals is that of predicting what will definitely happen in
unknown circumstances. In other words, social simulation cannot yet make accurate
and precise predictions. The nearest social simulations come (to our knowledge)
is predicting some outcomes in situations where the choices are very constricted,
and the data available is comprehensive. The clearest case of this is the use of
microsimulation models to predict the outcome of elections once about 30% of the
results are known (Curtis and Frith 2008). This constitutes hardly new or unknown
circumstances, and is still not immune from surprises, since such predictions can
be wrong. The microsimulation model relies on the balance between parties in
each constituency and then translates the general switches between parties (and
non-voters) to the undeclared results. Thus, although it is a prediction, its very
nature rules out counter-intuitive or surprising predictions and comes more into
the category of extending known data rather than prediction. The gold standard for
prediction is that of making predictions of outcomes that are unexpected but true.10

The second goal that simulations do not achieve is to decisively test sociological
hypotheses—in other words, they do not convincingly show that any particular
idea about what we observe occurring in human societies can be relied upon or
comprehensively ruled out. Here the distinction between modelling what we observe
and modelling our ideas is important. A simulation that attempts to model what
we observe is a contingent hypothesis that may always be wrong. However, social
simulations of evidence are always dependent on a raft of supportive assumptions—
that the simulation fails to reproduce the desired outcomes may be due to a failure
of any of its assumptions. Of course, if such a model is repeatedly tested against
evidence and fails to be proved wrong, we may come to rely upon it more (Popper
1963), but this success may be for other reasons (e.g. we simply have not tested it
in sufficiently diverse conditions). Hypothesis testing using simulations is always
relative to the totality of assumptions in the simulations, and thus the gain in

10This is when prediction is actually useful, for if it only gives expected values one would not need
the simulation.
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certainty is, at best, incremental and relative.11 Thus, the core assumptions of a field
may be preserved by adjusting “auxiliary” aspects (Lakatos and Musgrave 1970).

If a simulation is about ideas, then a very restricted kind of test is possible: a
counterexample. If it has been assumed that factor A will lead to result B, then one
might be able to show that this might not be the case in a plausible simulation.
Indeed, the simulation may show that to obtain result B from factor A an additional
and implausible assumption C is necessary. This does prove that “it is not necessarily
the case that A leads to B”, but it may shift the burden of proof back onto those who
have assumed A will lead to B. This very restricted test is only useful if the context
of causation between A and B is appropriately identifiable. This case of using a
simulation to establish counterexamples is considered below.

A particular case of seeking for counterexamples is that of testing for the
“existence of a sufficient condition” for some particular results. For example, it may
be possible to show that there is no need to add some particular hypothesis to see a
phenomenon take place, as in economics where it can be shown that in many cases
the assumption of perfect rationality for agents does not need to be made.12

One might be disappointed that simulation provides neither predictions nor
proofs (in the stronger senses of those terms), but that does not stop them being
useful in other ways, which the sections below illustrate.

In the following, we look at how simulations might contribute to the under-
standing of human societies in a number of different ways, with examples from
the literature. Unfortunately many articles describing social simulation research do
not make their goals explicit (as advocated by ODD, see Polhill et al. 2008 and
Chap. 15 Grimm et al. 2017); therefore, the categorisation below is that of the
chapter’s authors and not necessarily the category that the authors of the papers
discussed would choose. In addition, it appears that some researchers have multiple
purposes for their simulations or simply have not thought about their goals clearly.

28.3.1 Abstract Goals

First, we consider simulations that have more abstract goals, i.e. these tend to
be more about ideas and theories than observed evidence (as discussed above in
Sect. 28.2.1).

11If a simulation is not directly related to evidence but is more a model of some ideas, then it might
be simple enough to be able to test hypotheses, but these hypotheses will then be about the abstract
model and not about the target phenomena.
12This fact has led some to argue that such assumptions of perfect rationality should be dropped
and that it might be better to adopt a more naturalistic representation of human’s cognition (Gode
and Sunder 1993; Kirman 2011).

http://dx.doi.org/10.1007/978-3-319-66948-9_15
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28.3.1.1 Illustration of Ideas

Simulations can be good ways of making processes clear, because simulations
are what simulations do. Thus, if one can unpack a simulation to show how the
outcomes result from a set-up or mechanism, then this can demonstrate an idea
clearly and dramatically. Of course, if how the outcomes emerge from the set-up in
a simulation is opaque and/or difficult to understand, then this is not an effective
technique. For this reason, relatively simple simulations prevail that are specifically
designed to bring out the focus idea.

An example is (Rouchier and Thoyer 2006) which models voting and lobbying
in the EU decision-making process. It does make strong assumptions about how the
voting strategies might operate, but it does not pretend to be a descriptive model.
Instead, it makes clear how the links between public opinion, lobbying groups and
elected representatives might operate at the national scale as well as the EU one.

Another example is (Gode and Sunder 1993), a fairly simple demonstration that
in some cases market institutions are so constraining that agents do not even need
to be clever to achieve excellent results in this setting. They take the example of
continuous double auction (CDA), a two-sided progressive auction, which is the
protocol that is most used in financial markets. At any moment, buyers can submit
bids (offers to buy). Similarly, sellers can submit asks (offers to sell). Both buyers
and sellers may propose an offer or accept the offer made by others. The main
constraint is an improvement rule, imposed on new offers entering the market, which
requires submitted bids/asks at a price higher/lower than the standing bid/asks. Each
time an offer is satisfying for one of the participants, he or she announces the
acceptance of the trade at the given price, and the transaction is completed. Once
a transaction is completed, the agents who have traded leave the market, and the
bid-offer process starts again following the same rule starting from any price. The
result of Gode and Sunder’s simulation is that even with completely stupid agents,
who know nothing of the market and only follow two constraints, the bid-offer rule
described above and not selling below or buying above their reservation price, the
market converges and enables agents to get excellent profits. This paper shows how
institutional constraints might act to ensure a reasonable allocation of goods when
agents are very clear about the value of things they want to sell or buy, and that
this does not require any other substantive rationality by the agents. This result
cannot necessarily be extended to any observed markets, which are most of the time
complex, where the agents do have intelligence, where the value of items might be
unclear and where there might be many other social and institutional mechanisms,
but at least this result clarifies an idea about why protocols of this kind might be
important.

The OpenABM project13 has made significant progress in the development of a
community of people using illustrative models to facilitate the communication of
ideas. Working with others, this group in particular promotes the educational value
of agent-based models.

13http://www.openabm.org.

http://www.openabm.org
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A particular case of using a simulation to illustrate an idea is that of using a
simulation in teaching. Whilst demonstrating an idea to one’s peers might lead one
to choose a simulation that emphasises the idea’s generality and power, in teaching
one may well choose to simplify and highlight certain features of the idea that will
be important later on. This is a matter of degree but tends to result in simulations of
a slightly different kind.

For example, researchers at Oxford University Department of Computer Science
have developed a web application to assist students (particularly nonprogrammers)
in understanding the behaviour of systems of interactive agents (Kahn and Noble
2009). They model, for example, the dynamics of epidemics in schools and
workplaces and effect of vaccination or school closing/quarantine periods upon
spread of disease in the population (Scherer and McLean 2002). The students
can quickly and easily test different policies and other parameter combinations or
in intensive sessions can work through a series of guided steps to build models
from pre-existing modular components or “micro-behaviours”—a process called
“composing”. The models can also be run, saved and shared through a web browser
in order to facilitate discussion and collaboration as well as ownership of the ideas
and creative thinking.

28.3.1.2 Establishing The Possibility of a Process

A simulation can be used to show how a mechanism might result in certain
outcomes, and thus establish that a proposed process is possible, demonstrated by
enfolding the process in the simulation. This established plausibility of the process
is relative to the plausibility of the assumptions behind the simulation—clearly, if
the simulation is one that could not convincingly be related to any observed system,
then one would not have established that the process is possible in any encountered
system, but only be a theoretical possibility. This does not require that the simulation
is an accurate representation of any observed system since all that is required is that
one could imagine that a version of the target process in the simulation could occur
in a real system.

A classic example of this is Axelrod’s (1984, 1997) work on the evolution of
cooperation. Previous models in evolutionary biology had suggested that coop-
erative behaviour would not be selected within an evolutionary setting, as any
group of co-operators would be vulnerable to a single non-cooperative invader or
mutant. Axelrod’s books describe simulations in which a population of competing
individuals evolved, playing repeated games against others. Some cooperative
strategies, in particular “tit-for-tat” (cooperate unless your partner did not last time),
were shown to survive and flourish in many game set-ups. Although the simulations
described were highly speculative and abstract, they did firmly establish that it was
possible that cooperative strategies might evolve within an evolutionary setting,
where selfish strategies had a short-term advantage.

One use for establishing the possibility of a process is as a counterexample to
an existing assumption or accepted theory, if the process demonstrated contradicts
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the assumption. Thus, the simulations of Axelrod above can also be seen as a
counterexample to the assumption that cooperative behaviour cannot survive in an
evolutionary setting.

The particular case of the Schelling (1969, 1971) model can be classified in this
trend. Through very simple simulations, which Schelling ran by hand at the time,
he discovered that segregation could be attained at a group level even though each
individual agent had no strong preference for segregation. This paper was important,
because it was one of the first examples of emergent phenomena applied to social
issues. However, the most important element was the positive result obtained with
the model. Schelling used a very intuitive (though not necessarily realistic) way of
describing the change of location of agents in a city where they are surrounded by
neighbours, which can be of two distinct types: identical to themselves or different.
Each agent decides if it is satisfied with its location by judging if the proportion
of neighbours that are different is acceptable to it. If this is not the case, it moves
to a new location. Even when each agent accepts up to 65% of agents different to
itself in its neighbourhood, high levels of segregation in the global society of agents
result. This is a counterexample to the assumption that segregation results from a
high level of intolerance to those of different ethnic origins, since one can see from
the simulation that high levels of segregation in cities could be due to the movement
of people at the edges of segregated areas who are in regions dominated by those of
different ethnicities. Of course, what this does not show is that this is what actually
causes segregation in cities; it merely undermines the assumption that it must be due
to high levels of intolerance.

28.3.1.3 Understanding the Properties of an Abstract Model

With some analytic mathematical models and very few, very simple simulation
models, one might seek to prove some properties of that model, for example, the
parameter values under which a given outcome is reached. If this is not possible
(the usual case), then one has two basic options: to simplify the original to obtain
a model that is analytically tractable or to simulate it. If the simplifications that are
necessary to obtain a tractable model are well understood and plausible, then the
simplified model might be trusted to approximate the original model (although it
is always wise to check). If it is the case that to obtain an analytically tractable
model one has to simplify so much that the relationship between the simplified and
the original model is suspect (e.g. by adding implausibly strong assumptions), then
one cannot say that the simplified model is about the same things as the original
model. At best, the simplified model might be used as an analogy for what was
being modelled—it cannot be relied upon to give correct answers about the original
target of modelling. In this case, if one wants to actually model the original target of
modelling, then simulation models are the only option. In this case, one might wish
to understand the simulation itself by systematically exploring its properties, such
as doing parameter sweeps. In a sense, this is a kind of pseudo-maths, trying to get
a grasp of the general model properties when analytic proof is not feasible.
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An example of such an exploration is (Biggs et al. 2009). The authors examined
regime shifts using a fisheries food web model, in particular looking at the existence
of turning points in a system with two attractors (piscivore- and planktivore-
dominated regimes). Anthropogenic drivers were modelled as gradual changes in
the amount of angling and shoreline development. Simulations were carried out to
investigate the onset of regime shifts in fish populations, the possibilities to detect
these changes and the effectiveness of management responses to avert the shift. In
relation to angling, it was found that shifts could be averted by reducing harvesting
to zero at a relatively late stage (and well into the transition to alternate regime),
whereas with shore development, it required action to be taken substantially earlier,
i.e. the lag time was substantially longer between taking action and the resultant
shift. The behaviour of different indicators to anticipate regime shifts was examined.
This is an example of a mathematical model with stochastic elements that is solved
numerically by means of a simulation.

Such stylised models, although based on well-understood processes, are carica-
tures of real systems and have a number of simplifying assumptions. Nevertheless,
they may provide an insight that would be applicable to many types of real-
world issues. In contrast to this, some seek to understand the properties of some
very abstract models, aiming to uncover some structures and results that might be
quite generally applicable. This is directly analogous to mathematics that seeks
to establish some general structures, theorems and properties that might later be
usefully applied as part of the extensive menu of tools that mathematics applies.
In this case, the usefulness of the exercise depends ultimately on the applicability
of the results in practice. The criteria by which pure mathematics is judged can be
seen as distinguishing those that are likely to be useful in the future: soundness,
generality and importance.

An example of where the study of an abstract class of mechanisms has been
explored thoroughly to establish the general properties is the area of social influence,
in particular the sub-case of opinion dynamics. It can be found in works that use
physics methodologies (Galam 1997) or those adapted from artificial life (Axelrod
1997). The topic in itself is extremely abstract and cannot be validated against data
in any direct manner. In particular, the notion of culture or opinion that is studied
in these models is so abstract that sociologists find this hard to accept (von Randow
2003). In this area, the most studied mechanism is the creation of consensus or
convergence of culture represented by a single real number or a binary string (Galam
1997; Deffuant et al. 2000; Axelrod 1997). Many variations and special cases of
these classes of model exist, for a survey see (Lorenz 2007). Some of these studies
have indeed used a combination of parameter sweeps of simulations and analytic
approximations to give a comprehensive picture of the model behaviour (Deffuant
and Weisbuch 2007). Other merely seems to point out possible variations of the
model.

Sometimes the exploration of abstract properties of models can result in sur-
prises, showing behaviour that was contrary to expectations, so this category can
overlap with the one discussed in the next section.



780 B. Edmonds et al.

28.3.1.4 Exploration of the Safety of Assumptions in Existing Models

This is similar to the previous goal, but instead of trying to establish the behaviour of
the model as it is, one might seek to explore what happens if any of the assumptions
in the model is changed or weakened. Thus, here one is seeking to explore a space
of possibilities around the original model. The idea behind this is often that one has
a hypothesis about a particular assumption the model is based upon. For example,
one might suspect that one would get very different outcomes if one varied some
mechanism in the model in (what might seem) a trivial manner. Or one suspects that
a certain assumption is unnecessary to the outcomes and can be safely dropped.
Hence, for this goal, one is essentially comparing the behaviour of the original
model to that of an altered or extended model.

For example, Izquierdo and Izquierdo (2006) carried out a systematic analysis of
the effect of making slight modifications to structural assumptions in the prisoner’s
dilemma game: in the population size, the mutation rate, the way that pairings were
made, etc., all of which produced large changes in the emergent outcome—the
frequency of strategies employed. The authors conclude that “the type of strategies
that are likely to emerge and be sustained in evolutionary contexts is strongly
dependent on assumptions that traditionally have been thought to be unimportant
or secondary” (Izquierdo and Izquierdo 2006, 181).

How cooperation emerges in a social setting was first fashioned into a game-
theoretical problem by Axelrod (1984). The outcome was long thought to be
dependent upon the defining questions such as which strategies are available, what
are the pay-off values for each strategy, the number of repetitions in a match, etc.,
whereas other structural assumptions, supposed to be unimportant, were ignored.
On further investigation, however, conclusions based on early work were shown to
be rather less general than would be desired and sometimes actually contradicted by
later work.

A different case is explorations of the robustness of the simulation described
in (Riolo et al. 2001). This showed the emergence of a cooperative group in
an evolutionary setting similar to the Axelrod one mentioned above. Here each
individual had a characteristic (modelled as a number between 0 and 1) and a
tolerance in a similar range. Individuals were randomly paired, and if the difference
between their partner’s and their own characteristic was less than or equal to their
tolerance, they cooperated; otherwise they did not. As a result, a group of individuals
with similar characteristics formed that effectively shared with each other. However,
later studies (Roberts and Sherratt 2002 and Edmonds and Hales 2003) probed the
robustness of the model in a number of ways—crucially by altering the rule for
cooperation from “cooperate if the difference between my partner’s and my own
characteristic is less than or equal to my tolerance” to “if the difference between
my partner’s and my own characteristic is strictly less than my tolerance”, i.e. from
“�” to “<”. With this change, the crucial result—the emergence of a cooperative
group—disappeared. It turned out that the (Riolo et al. 2001) effect relied on the
existence of a group of individuals with exactly the same characteristic having to
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cooperate, since the smallest tolerance possible was zero. When the existence of
completely selfish individuals was made possible by this change, the cooperation
disappeared.

28.3.1.5 Exploring Counterfactual Possibilities

We only observe a few of the possible configurations of the social phenomena
around us. Thus, it is natural to wonder what might happen if events or processes
were other than what is observed or known to be the case. This is the world
of artificial societies, where possible worlds loosely related to the one observed
are explored. Sometimes an analogy with artificial life is made, where alternative
algorithmic versions of life in the broadest sense are specified and experimented
with—not life-as-it-is but life-as-it-might-have-been.

An extreme example of this is Jim Doran’s model of a society with knowledge
of the future (Doran 1997)—this can be thought of as what a society might be like
whose members’ predictions of the future happen to be correct. Clearly, this does
not hold in any observed human society.

Such explorations might not contribute much to the understanding of our society,
but it may inform the design of distributed computational systems where the
components have a need to flexibly organise themselves in a way analogous, but
not identical to, how humans organise (see Chap. 23 Hales 2017).

28.3.2 Concrete Goals

Here we consider some of the goals that are more at the concrete and descriptive
end of the simulation spectrum. These tend to be more concerned to relate to
the available evidence and tend to be more specific. In the subsections below,
the “plausibility” of assumptions, results and simulations is a frequent issue. The
simulation of human societies has not yet reached the situation where there is
enough evidence to obtain much more than simple plausibility. At this current stage
of social simulation, getting close enough to be deemed a “plausible” model is
difficult enough, and there is almost never data enough to justify a stronger claim.
Thus, claims of anything stronger should be treated with appropriate scepticism.

28.3.2.1 Building Towards Realism

One common approach is to start with a fairly simple model that is easier to
understand and then to add aspects and mechanisms that are thought to be significant
features of the observed system. That is, to add an additional level of realism to
make the model more plausible or useful in some way, e.g. as a thought experiment.
This is sometimes known as the TAPAS approach (“Take A Previous model and

http://dx.doi.org/10.1007/978-3-319-66948-9_23
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Add Something”). It is consistent with the engineering principle of “KISS”—keep
it simple, stupid. Here, one starts simply and adds more features/aspects one at a
time and only if the simple approach turns out to be inadequate for some purpose.

Accordingly, Izquierdo (2008) starts with some standard models of the iter-
ated prisoner dilemma games and adds some more “realistic” features, such as
case-based learning and reasoning. A key idea in this is to maintain rigorous
understanding of the extended model but take a step towards models that might
eventually be validated against observed data from human interactions.

Whether one would, in fact, reach useable and valid models by this means
is contested, with the alternative approach being to start with a complex model
that reflects the evidence as well as possible and then seek for understanding and
simplifications of this (Edmonds and Moss 2005).

To investigate the social aspects of socio-environmental systems, often some
highly complicated models have to be used that include the relevant biophysical
dynamics, coupled with social simulation. Rather than developing all components
of the simulation model “from scratch” (and because the biophysical parts are
relatively universal), such models may have a modular architecture designed to
be reusable. It may therefore be more accurate to refer to the software as a
“toolkit” from which various sub-models can be configured depending on the
desired purpose of a particular study. In the area of land use simulation, PALM
(Matthews 2006) is one such integrative model, and FEARLUS (Polhill et al. 2001,
2008) is part of another longstanding approach to socioecological modelling. With
each iteration, the toolkit obtains further refinement and new features—whilst the
level of understanding of its user(s) increases. The social simulator is interested in
what additional complexity the human interaction part brings and to what extent it
adds realism to the model’s behaviour when compared with observed evidence.

28.3.2.2 Extending Evidence to Extrapolate to Unobserved Cases

Data about social systems is often limited to measurements from a limited number
of observed cases. Thus, there may be many cases where one would like to estimate
the outcome. Of course, one could use simple statistical techniques such as linear
interpolation or similar to do this, but such techniques depend upon assumptions
concerning the regularity of the results with respect to small changes in the set-up
which may be implausible for some social systems. In this case, one might simulate
the system using plausible assumptions, validate it against the known observations
and then find the outcomes for set-ups that are different to those observed. For the
results of this to be reliable, the simulation needs to be well validated, to correctly
indicate the observed cases, to not differ very much from the observed cases (in
contrast to the case described in Sect. 28.3.2.1), and for any unvalidated assumptions
to be of a mild and uncontroversial nature.

The plausibility of the results from such experiments depends upon the validity
of the original measurements as well as the generality of the assumptions (which
must be plausible for the unobserved as well as observed cases).
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For example, Brown and Harding (2002) use a microsimulation model to extend
regional socio-demographic (census) data to cases that are not directly observed
(synthetic householder-level records for each spatial district). The extension is
attempted with deliberately cautious assumptions.

The “Sienna” programme (Snijders et al. 2010) fits a particular class of dynamic
network model to “waves” of panel data. Simplifying a little, what happens is that
the modeller specifies some basic assumptions (e.g. symmetry of network links)
along with more than one set of panel data concerning the properties of the nodes
at certain points in time. The algorithm then finds the dynamic network model that
is consistent with the given specified constraints and that most closely fits the data.
This is directly analogous to the process of fitting a line to a set of values using
minimum total squared errors (or similar). What one gets out of this are some
“surprise free” projections to network and node properties for times other than those
given in the waves of panel data. This is not simulation in the same sense as other
simulations mentioned here, since what is simulated is not a kind of process (that
is given in the base specification of the family of models this technique uses) but
rather a set of structures and values that fit given data in a statistical sense. When this
technique is reliable and what its particular biases are have not yet been established.

28.3.2.3 Establishing the Consistency of a Process/Assumption
with Evidence

Oftentimes a social process is not included in a study because it is not considered
valid in the same way as a physical or biological principle might be. This is
particularly true in historical examples where social processes are less in evidence.
Going back to our second example of generative archaeology (Sect. 28.1.2), there
are few archaeological findings that suggest a particular social structure and set of
social processes, hence the need often for guesswork and the resulting coexistence
of many competing theories. This is an area where social simulation can make an
important contribution.

Perhaps the most well-known example is the Artificial Anasazi simulation model
(Axtell et al. 2002). The objective was to see if a model could be constructed
broadly consistent with available evidence—the number of households settled in
part of the US southwest region over the period 800 to 1350. The performance of
the model was impressive in its convergence upon the actual historical time series
after a calibration of several parameters (a “fitting” process), which suggested new
social explanations regarding the apparent land abandonment after 1350 might be
possible. Interestingly a later paper (Janssen 2009) demonstrates that the model fit is
mainly explained by two parameters related only to the model’s carrying capacity.
The author argues that a more insightful basis might be to generalise the target
domain, working initially from less concrete goals rather than fitting a particular
case and focusing on one evident and quantifiable trend (such as population). If the
evidence base is broadened to include more ethnographic knowledge, this approach
would resemble the pursuit of abstract goals as discussed in Sect. 28.3.1.
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Data about real-world social networks introduced at the design or validation
stages can be a valuable way of checking the consistency of a model. For example,
Guimera et al. (2005) reconstruct the history of team collaborations in five different
scientific and artistic fields and the development of corresponding collaboration
networks. The authors develop and parameterise a probabilistic model of team
selection. Using real data on team sizes, along with estimation of probabilistic
parameters, to control the team assembly mechanism, the characteristics of the
resulting networks (the degree distribution and the largest component) are compared
with the real ones (independently for each of the five cases). The interest is in
the transition of the collaboration network from “isolated schools” to an “invisible
college”—the point at which the largest component of the network contains 50%
or more of the nodes (which is the case for all representative fields). All simulated
network measurements are shown to be in close agreement with the real networks,
which establishes the plausibility of the proposed team selection mechanism.
However, being a probabilistic model, it does not attribute any particular decision
process to this mechanism that might be able to reveal new questions.

Another example is in White (1999), which attempts to evaluate some statistical
assumptions against data about marriage systems in different cultures using a
“controlled simulation”.

28.3.2.4 Analysis of Influence Factors

In any complex system, it is very difficult to estimate the importance of different
factors on particular outcome measures or results. This is due to the “nonlinearity”
in many social systems where a normally insignificant factor can trigger a system-
wide change in behaviour. However, given a trusted simulation model of the system,
one can perform experiments to determine the importance of each factor in the class
of simulation set-ups that are run. Thus, one does not have to determine the relative
importance of factors on an a priori basis; one can simply run the experiments
and measure the outcomes. Clearly, this approach depends on having a reliable
simulation model.

(Saqalli et al. 2010) investigate a simulation model of the development over
several generations of a rural agrarian society to weigh the importance of several dif-
ferent model parameters on simulation results. In simulation experiments reported,
four parameters were assessed in relation to six state variables—with measurements
taken at the end of the run. The model was based on a case study of the Nigerian
Sahel, typified as a low-data situation where, in particular, little has been published
on the social factors governing access to economic activities (including off-farm
activities so often neglected as an important revenue generating source) or on intra-
household dynamics (which the authors recognise as having a complex structure).
The objective was to assess the robustness of results against variation in socio-
economic and biophysical parameters to show that it is “constrained by the different
parameters of its structure” (Saqalli et al. 2010: para. 3.6). This step provides the
researcher with an improved understanding of the range of possible model outcomes
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and what might constitute a significant or meaningful difference when comparing
outcomes. It is worth noting, however, that the single-parameter approach neglects
any possible parametric interaction that could be identified from a pairwise analysis
of influence factors.

A very different example of this is Yang et al. (2009), which studies the factors
that influenced success in the system of Chinese civil service exams that existed
in the Imperial era in Mainland China. The simulation model used historical data
from civil service records and some assumptions to assess the importance of factors
such as class, wealth and family connections in terms of success at passing this
exam (and hence obtaining a coveted civil service post). It is difficult to see how
such indications about events that are otherwise lost in the past could be obtained,
although this is open to the criticism of being unfalsifiable.

The disadvantages of this approach are that the assessment of influence is only
as good as the simulation model, and it only samples particular sets of initial
conditions—it does not rule out the case where very special values of parameters
cause totally different outcomes (unless one happens to be lucky and sample
these).

28.3.2.5 Assessment of Policy Options

Recently more and more articles have appeared in the literature featuring ABMs that
address policy-making in contemporary issues such as developmental sustainability
and climate change adaptation. For example, Berman et al. (2004) consider eight
employment scenarios defined by different policies for tourism and government
spending, as well as different climate futures, for an ABM case study of sustainabil-
ity in the small arctic community of Old Crow, Yukon. Scenarios were developed
with the input of local residents: tourism being a policy option largely influenced
by the autonomous community of Old Crow (stemming from their land rights)
and attracting great local interest. In ABM, policy options are often addressed as
a certain type of scenario (scenarios are discussed in Sect. 28.3.2.9), embedding
the behaviour of actors within a few possible future contexts. The attraction of this
approach is that the model could potentially be used as a decision support tool,
in a form that is familiar to many analysts, to provide answers to very specific
policy questions. The merit is that it can improve the reckoning of human and social
factors and information into the issues at stake; the drawback is the multiplication
of uncertainties, not least of which is that we do not convincingly know how social
actors might adapt (even if the possible policy options are more concrete).

For example, Alam et al. (2007) investigate the outcomes indicated by a complex
and detailed model of a village in the Sekhukhune district of South Africa. This
model in particular looks at many aspects of the situation, including social network,
family structure, sexual network, HIV/AIDS spread, death, birth, savings clubs,
government grants and local employment prospects. It concludes with hypotheses
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about this particular case. This does not mean that these outcomes will actually
occur, but this does provide a focus for future field research and may provide thought
for policy-makers.14

28.3.2.6 Social Engineering: “Designing” Better Systems

Market design is the branch of economic research aiming to provide insights into
which market protocol, i.e. interaction structure and information circulation rules,
is the best to obtain certain characteristics of a market. Agent-based simulation
seems to be a good method to test several such protocols and see their influence
on economic performances, e.g. efficiency, fairness and power repartition (Marks
2007). Each protocol is already known for its advantages and disadvantages (e.g.
whilst Dutch auction is fast, double auction tends to extract the highest global profit).
Since not every desirable aspect can be achieved with a single protocol, one has to
choose the aim to attain (LeBaron 2006). Assuming agents act rationally, it is then
possible to compare protocols to see what difference they make in prices or other
indicators (e.g. Kirman and Moulet 2008). Many studies have been designed within
the context of electricity markets, which are very crucial since unpredicted shortages
are a problem and prices vary very quickly, and involve a comparison of protocol
(e.g. Nicolaisen et al. 2001). One can also note the use of “evolutionary mechanism
design” (Phelps et al. 2002; March 2007) where strategies of three types of actors—
sellers, buyers and auctioneers—are all submitted to evolution and selection, so
the actual organisation of the market evolves, while the context of production
and demand is fixed. In today’s economy, more and more artificial agents really
interact—either in bidding on consumers’ sites or even in financial markets (Kephart
and Greenwald 2002)—so there is some convergence between real markets and
artificial systems, which utilise market mechanisms. For a more detailed discussion
of modelling and designing markets, see Chap. 25 in this handbook (Rouchier
2017).

28.3.2.7 Data Integration

A mundane and sometimes overlooked aspect of the scientific process is simple
description. That is, recording what has been observed in a suitable form. Tradition-
ally these forms have included the likes of narratives, logs, videos, measurements
and pictures. However, simulations can also be used as a sort of description, where
the aim is not to express a theory about a mechanism, but rather to integrate as
much of the relevant evidence about what is observed as possible about a particular
target. Simulation has some advantages in such a process, since it can allow the

14Although in this particular case, it did not as the model indicated outcomes that the policy-makers
preferred to ignore, being not compatible with the actions they had already decided to take.

http://dx.doi.org/10.1007/978-3-319-66948-9_25
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integration of several different kinds and levels of evidence in one framework. For
example, aspects of narrative texts can be incorporated within the behavioural rules
of an agent; the social network of subcommunities can be compared to those that
result from the simulation; time-series data can be compared to the corresponding
time series derived from measurements on the simulation outcomes and survey
data compared to the equivalent answers at instances of the simulation runs. Such
integration is far from easy, since some aspects are programmed directly (e.g. agent
behaviour), whilst others have to be achieved in terms of the results (e.g. aggregate
statistics about the outcomes). Achieving any particular set of outcomes in a social
simulation is difficult due to the prevalence of unpredictable interactions and effects
(i.e. emergence), so the achievement of a data-integration model is not an easy
one. Such models are not entirely (or solely) a description since the structure of a
simulation sometimes brings into question the consistency of the various parts of the
evidence. Thus, if it is difficult to square an account of how individuals behave with
some of the outcomes, one may be forced to make some choices, including possibly
adding in aspects that are not directly observed. This is all right as long as these
are clearly documented—they can provide fertile issues for future data collection.
However, such data-integration models do not aim for a level of generality beyond
the particular case study (or studies) focused on. In this way, they can avoid “high”
theory to motivate simulation features where this is not supported by the evidence
with respect to the target case. It is not that there is no theory in such simulations—
any description or abstraction, however mild, will rely on some theory, but the point
is that in a descriptive simulation such theory is either well established or relatively
mundane.

Examples of simulations that intend to be descriptive in this sense include (Chris-
tensen and Sasaki 2008) which aims at producing a simulation of the evacuation
from a particular building, with a view to a future evaluation of evacuation plans
and facilities, in particular with regard to disabled people. It uses many particulars
of the building structure but makes assumptions (albeit of a plausible variety) about
how people behave when evacuating. Likewise, Terán et al. (2007) aim to simulate
land use and users within a forest reserve with a view to producing a computational
representation of this. As in similar simulations, there is a mixture of assumptions—
some that are backed by evidence, and some that are just plausible guesses. This
simulation is loosely validated against some data and broadly confirms the results
found from some other models. The ultimate use of this (and similar models) is not
specified.

Such simulations can take a long time to construct, involving many iterations of
model development as well as being complicated and slow to run. The advantage
of such models is that they are a precise and coherent representation of a set
of evidence—in a sense an encapsulation of a particular case study.15 This can
be the basis for further experiments/inspection, which, in turn, can lead to more
abstraction. This kind of process can result in modelling theories of the processes

15To be precise: a possible encapsulation of a particular set of evidence on the case study.
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observed within the data-integration model with simpler models whose properties
are easier to establish but whose outcomes can be checked against targeted
experiments on the data-integration model.

28.3.2.8 Finding New Questions and Areas of Ignorance, Hypothesis
Suggestion

Another use of a simulation is as an aid to good observation. That is, suggesting
issues and questions that should be sought in order to gain an adequate observational
coverage. The simulation is developed as in the data-integration case above,
including different aspects of the observational evidence that are available. It is often
the case that only when one tries to simulate a process, the gaps in our knowledge
become clear. Thus, building a simulation as one is observing can help direct the
data-gathering research in order to complete an adequate computational description.
In this sense, it forms a similar role to simulation in some cognitive science (Newell
1990; Sun 2005).

For example, Moss (1998) exhibits a simulation built on a mixture of bases: (a)
an assumed but plausible cognitive architecture that captures how one might divide a
problem into subproblems until they are doable, (b) some suggestions elicited from
an expert from the domain and (c) plausible guesses for the remainder. This model
attempted to examine behaviour in the face of crises (defined as when one unwanted
event causes another in an out-of-control chain), in particular how the rotating of
crisis management teams and the information they pass on to the next team might
impact their effectiveness at fighting the crisis. The results were not independently
validated, but this is not the point of this simulation. As the author says:

“ : : : results obtained with the North West Water model indicate a clear need for
an investigation of appropriate organizational structures and procedures to deal with
full-blown crises”.

In contrast, Younger (2005) is a very much more abstract model, which is
only loosely built upon evidence, but with the same broad aim of suggesting
hypotheses—in this case, hypotheses concerning the occurrence of violence and
revenge within egalitarian societies. Clearly, the plausibility of the hypotheses or
questions suggested by a simulation will be greater when the simulation is more
firmly rooted in evidence. However, hypotheses and questions can be worthwhile
investigating whatever their source, and at least having a simulation grounds and
defines the question in a precise way, making clear what it might explain and the
sort of other issues and questions that might accompany it.

28.3.2.9 Creation/Critique of Scenarios

Berman et al. (2004) present an example of scenarios being used to constrain models
to produce simulations of the wider consequences of those scenarios (as mea-
sured by relevant socio-economic or environmental indicators or by their possible
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influence on human institutions) that can then be used to inform discussions with
stakeholders and may ultimately produce a better understanding of such changes.
Bharwani et al. (2005) use climate change scenarios to investigate adaptive decision-
making among villagers in the Limpopo province of South Africa, focusing on
the use of seasonal forecast information in farming strategies. Data from the
Hadley Centre climate model—HadAM3—showing a 100-year drying trend with
increasing potential evapotranspiration (PET) were used as model input (providing
PET and precipitation values). Results show that a degree of resilience to these
changes is afforded when the forecast is correct 85% of the time so that farmers
establish increased trust in, and use of, seasonal forecasts. They are able to choose
cropping strategies that are suited to climate change, though this behavioural shift
may only occur over a very long timeframe.

Bharwani et al. (2005) introduce the use of scenarios into the methodology in
a further and very interesting way: by postulating them as “drivers” of actors’
decision-making processes. In this ethnographic approach, the authors combine
simplified scenarios across different domains (irrigation, forecast and market)
asking respondents what they would do under each scenario, in a given context.
This information was then used to produce the model rules for the agents’ decision-
making.

In either case, where conventional scenarios used in future planning can seem
rather terse and lacking in specifics—which may be a limitation to their subsequent
use in policy discussion—simulation outputs that explore scenarios offer a great deal
of detailed information “that would be difficult to imagine otherwise” (Berman et al.
2004, p. 410). Moreover, this can apply at different levels of analysis from trends
in macro variables down to the impacts on different sectors and regions, as well
as differentiated impacts for agents fitting any given “profile” in which the analyst
is interested. Perhaps greater care has to be taken, however, in the use of model-
generated scenarios, to ensure that these are not taken as “more accurate predictions”
by virtue of being “computed” stories rather than conventional “imagined” stories.

Scenarios are often used in policy discussions, e.g. climate change. However,
they are usually somewhat vague and/or only described in qualitative terms.
Simulations can be used to produce consistent scenarios or to produce models that
instantiate aspects of given scenarios.

28.3.2.10 Intervention with Stakeholders

Instead of developing a simulation to represent some aspect of society, one can also
try to use a simulation to intervene in society. That is, use a simulation to change
some interaction between stakeholders, for example, to facilitate collective decision-
making or mutual understanding. One well-known approach is the Companion
Modelling approach, which has been developed since a decade (see Chap. 12,
Barreteau et al. 2017).

An example is demonstrated by Etienne (2003). Here, a model is used in
conjunction with a role-playing game to show chosen participants the issues that can

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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arise when several users compete on a pastoral resource. The model building process
was an integration of multidisciplinary knowledge acquired on French Mediter-
ranean silvopastoral systems into a model capable of representing the interactions
between ecological dynamics and social behaviours. In order to help foresters and
livestock farmers to better integrate these interactions into their planning work,
a multi-agent system was designed to simulate different management strategies
and to compare their impact on forest quality. This model was coupled with a
role-playing game (RPG) initially developed as a didactic support to silvopastoral
training programmes, and very soon, it proved useful in the negotiations and
interactions between livestock farmers and foresters involved in the management
of the same forest. The tool revealed itself flexible enough to make it possible to
play with actively involved stakeholders such as the current users of the resource
(local farmers and foresters), with potential regulators of the system (managers or
administrators), technical experts (extensionists, technicians) or learners concerned
with the topic (students, scientists).

This model is effectively an intervention between the livestock farmers and
foresters by being a subtle mediating tool, allowing the stakeholders to play at
decision-making, to educate them in the possible effects of their choices and to
thus encourage debate and introspection. This model has also been used for didactic
purposes (Sect. 28.3.1.1) by getting agronomy students to play it.

28.4 Inputs and Results of Simulation Models

One method of assessing the use, and ultimately the success, of a simulation for
understanding aspects of society is to tease out what has gone into making a
simulation model, the input, and how the results from the simulation are interpreted
and used, the output. These, the input and the output, together form the mapping
from the computer program and its calculation from and to the target of study. They
are crucial parts of what characterises a simulation, even if they tend to be described
in a less formal manner than the simulation code and behaviour.

28.4.1 Inputs

What is put “in” to the design of a model tends to be more explicitly distinguished
in papers than what comes “out”. This might be because the “job” of a modeller
is seen as a process of deciding what processes and structures will go into a
model and because the inputs are under the control of the modeller in a way that
the results certainly are not and hence can be displayed and talked about with
greater confidence. However, all social simulations are based on a raft of different
assumptions, settings and processes. These are somewhat separated out for analysis
here.
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28.4.1.1 Evidence-Based Assumptions

If there is some evidence about the nature or extent of the processes that are
being observed, then this can be used to inform the set-up or structure of a
simulation. For example, evidence from social psychology might be used to inform
the specification of the behavioural rules of a set of agents in a simulation, or the
narrative account of a participant used as the basis for programming a particular
agent.16 Of course, it is rare that such evidence constrains the possible settings
and algorithms completely but rather that it partially constrains these or constrains
them in conjunction with additional assumptions from another source. Clearly, the
more assumptions can be constrained by evidence (either directly or as the result of
previous research) the better. The presence of other assumptions and inputs does not
make a simulation useless, especially if documented, but any results are then relative
to the assumptions. If assumptions that were included are completely misguided
and critically affect the results, then this would seriously limit the usefulness of the
model with respect to the observed world.

28.4.1.2 Indirectly Inferred Settings

In situations where some parameters are unknown and where there is a relative
abundance of time-series data, one can attempt to infer the values of these
parameters by seeing which parameter values result in the model giving the best fit
to a segment of the time-series data. This is a sort of evidence-based setting, but it
often seems to be used when the parameters concerned do not have any discernable
meaning in terms of the target of modelling. A tradition of using a certain kind
of decision or learning algorithm in an agent might lead to this algorithm being
“fitted” to an initial segment of the data (so-called in-sample data) even when it is
unlikely17 that the algorithm corresponds to how the target agents think. Thus, the
credibility of this technique is dependent on the reliability of the other assumptions
in the model and the meaning of the parameters being fitted. If the parameter was a
scaling parameter, then this might be a sensible way to proceed.

16This can either be done directly as a translation of an interview text into programmed rules or
used to check that such programming is correct by comparing the resulting behaviour of an agent
against what happens when the simulation is run. Thus, there is not a clear distinction between
verification and validation from evidence. In a sense, this second method is verification since the
programming is rejected until correct, but, on the other hand, this is part of the production of a
simulation, which may only be completed later for its validation as a whole.
17Unlikely with regard to the psychological or sociological evidence about the target subjects.
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28.4.1.3 Documented Theoretical Assumptions

Clearly, researchers do not invent all the details and algorithms of their model from
the ground up, but are doing their research with knowledge of certain approaches
and algorithms and within a community of other research, with established tech-
niques and traditions. Thus, many parts of a simulation model will be based on
(parts of) other models or algorithms from other fields. Many models in economics
will use a decision algorithm based on constrained comparisons of predicted utility,
and other models might import techniques from the fields of artificial intelligence
or evolutionary computation. It seems impossible to avoid all such theoretical
assumptions; however, there are distinctions to be made in terms of the strength
of the assumptions, the likely biases behind such assumptions and the degree to
which they are evidence based.

“Strong” assumptions are those that are surprising or seem to specify conditions
that are rarely observed. Thus, an assumption that an agent has in effect a perfect
model of the economy in its head is a very strong assumption, since even experts
find it difficult to understand the economy as a whole. Strong assumptions are
often introduced to allow analytically solvable models to be specified and used, for
example, the assumption of perfect information in game theory. Whilst analytically
tractable models were necessary when there was no other avenue for the precise
modelling of many kinds of phenomena, the advent of cheap computing power
and accessible simulation platforms means that often more appropriate methods are
now available, with analytic models possibly being used to check or understand the
reference simulation model rather than being the focus. Clearly, all other things
being equal, weaker assumptions are preferable to strong ones—the stronger an
assumption, the more evidence is needed to justify its use. In any case, all such
assumptions should be as fully documented as possible.

28.4.1.4 Explored Conditions

In much simulation work, there will be a focus hypothesis or set of hypotheses
that are being investigated. In these cases, it is usual to try the simulation using
that hypothesis and then compare the results to those coming from a version of
the simulation with a different hypothesis implemented. This provides evidence
about the possible effects of that hypothesis on the outcomes, allowing comparison
with evidence and possible subsequent inference as to which is more likely to be
the case. The clearest case of this is testing the significance of the inclusion of a
hypothesis against that of a null model18 to see if the properties of the results that
are deemed significant indeed result from the hypothesis or from other aspects of

18A “null” model is a model version where the claimed causal mechanism is eliminated to see
if the resultant “effect” would have arisen as the result of background (e.g. random) mechanisms
anyway.
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the model. Thus, a simulation of a stock market might compare the results obtained
with intelligent agents (that notice patterns in pricing and try and exploit these)
to the results obtained with agents that buy and sell at random. Unfortunately, it is
sometimes the case that a simulation is presented purporting to show the significance
of a hypothesis without indicating what the comparison case is.

28.4.1.5 Randomness and Other Essentially Arbitrary Assumptions

A simulation modeller is often faced with deciding how to design a part of a
simulation model for which there is neither evidence nor any tradition of modelling
to guide them. In such a case, one might simply make that aspect random. For
example, where it is unknown how a kind of choice is made in the modelled
situation, it might be implemented as a random choice in a simulation model of
that situation.19 This is usually done in conjunction with a “Monte Carlo” approach
that runs the simulation a number of times and averages the resulting different sets
of outcomes. Presumably, this is done under the assumption that the introduced
randomness will be averaged out, leaving only the effects of the other design
settings. However, this assumption is rarely proven but often simply remains a
hope. Of course, if it can be shown that the value of the particular input does
not influence those aspects of the results that are deemed significant by a series of
simulation experiments (or otherwise), then a random input or process might well
be acceptable. However, in this case, a constant value might be simpler and have the
same effect.20

We suspect that many uses of randomness in simulations are in the nature of a
programming “stub”—that is, a stand-in that the programmer intends (or intended)
to expand to a more plausible algorithm at a later date. Whilst this is perfectly
acceptable during model development and to some extent inevitable given that
researchers always have time constraints, such stubs are likely targets for model
criticism by other researchers. At the very least, some exploration of them to assess
the extent to which they affect those aspects of the results deemed significant is
advisable.

Randomness can be considered as a special case of a broader class of assump-
tions: those that are added into the model simply to get it to run, and for no
theoretical or evidence-related reason. We hope that these are honestly declared

19Another option is to try all the possibilities exhaustively in a series of simulations or by using
techniques such as constraint logic programming, but these are technically difficult and require a
lot of computational power.
20There are possible reasons why a constant value might not work, for example, when the input
provides some mechanism of symmetry breaking.
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rather than “dressed up” under some other categories, although often these are
excused under the broad umbrella of “simplicity”.21

28.4.1.6 Undocumented Assumptions

It is not feasible to document all of the assumptions in a model. Firstly, this might
take too much space in a single paper,22 and secondly, many might be previously
established and well known to those in a particular field of work. However, it is also
likely that researchers are simply not aware of all the assumptions inherent in their
simulation models, due to the limitation of human cognition.23 Clearly, it is part of
the job of other researchers to point out undocumented assumptions where these can
be shown to be significant.24

28.4.2 Outputs

A similar set of distinctions can be made about what comes out of a simulation,
the results. There is not an obligation to describe all the outputs from a simulation,
but rather one tends to get a sample of results, which typically is composed of:
sample results, sensitivity analyses, evidence of validation and the outcomes from
experiments designed to test a hypothesis. However, not all the details of the results
are considered as equally significant—we now consider each of these in order of
increasing significance.

• Firstly, there are those aspects of the results that are considered as artefacts of the
model, for example, the randomness that might have been input into the model.

• Secondly, there are those features that might be considered to reflect some of the
model structure and the processes that result from them. These features may not
be judged as reflecting those parts of the simulation that reflect what is being
modelled, but may be caused by theoretical or arbitrary assumptions that were
put in. These features of the results may well not be so much of a surprise to the
modeller.

21There is nothing wrong with assumptions that had to be made due to constraints on resources,
such as time, expertise or computing power, but it is simply disingenuous to pretend that this is
sanctioned by a higher “virtue”.
22However, this is a poor excuse given the ease with which a relatively complete technical paper
can be archived and then cited by a journal article or report discussing the model.
23Alternatively it may be because the simulation designers had not thought about what they were
doing.
24It is trivial to point out that a simulation has missed out some assumption or other, but this is not
very useful. It is far more useful to point out how and why an assumption might be important and
for which purposes.
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• Thirdly, there are those features of the results that are interpreted as indicating
something about what is being modelled. For example, they may suggest a
hypothesis about those phenomena. They indicate a possibility that may be
inherent in what is being modelled or that is inherent in the target of modelling.
This may well go beyond what can be directly validated in the model but, for
example, track counterfactual possibilities concerning what might have occurred.

• Lastly, there are those features that would be positively expected of the phe-
nomena being modelled. That is, if they were not present, this would be taken as
evidence that there was something amiss with the model. In other words, they are
a necessity of the phenomena. It is against this category of results that models are
validated.

It is not easy to distinguish these different categories of significance in terms
of the results, since the causation within a model can be very complicated, being
a result of many model aspects interacting together. It is also usually the case that
the modeller has hypotheses (or assumptions) about what aspects of the results are
significant in which ways, and this is crucially useful information to impart to a
reader interested in the results. However, this is often left implicit.

One might justifiably criticise many social simulations in terms of the lack of
empirical grounding of both inputs and outputs. Many social simulations have only
the weakest connection with anything observed—the inputs are largely assumption
based, and indeed often highly artificial—the outputs only relating in the broadest
way to any data and then only in terms of a few aspects of the possible outputs
(i.e. only a few selected aspects are deemed significant to what is observed and
then in the loosest, “hand-waving”, manner). It may well be that simulating human
society is just very, very difficult, but one suspects that it is simply easier to stick to
considering abstract ideas.

28.5 Conclusion

Simulation has undoubtedly helped to improve our understanding of human society,
although in a number of different and usually indirect ways. It is fair to say that, so
far at least, this has served to improve our understanding of some societal processes
and our ideas about society rather than directly in terms of being able to strongly
predict aspects of society or conclusively test hypotheses about society.

Simulation is not a replacement for other ways of understanding society;25 it
is simply a flexible way of precisely modelling it in a way that can represent
some of the dynamic and complex aspects of it. It can be especially productive
in conjunction with other approaches. For example, analytic models can be used
to check the outputs and properties of a simulation model and help us understand

25At least, not in any of the cases we have as yet come across.
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the model, and, conversely, a simulation can be used to probe and check some of
the simplifications and assumptions employed in an analytic model. In participatory
models, social science techniques of engagement and elicitation can be applied to
inform the construction of agent-based social simulations as well as the simulations
suggesting what might be usefully investigated in terms of the collection of new
data.

Clearly social simulation has some way to go in terms of the maturity of its
method and the reporting and use of simulation models. There are still areas in
which the methodology needs substantial improvement and standardising. There
are also significant unresolved issues, such as how to decide what level of detail to
include and to what extent one should rely on prior theory.

We predict that simulation will be even more significant in helping us understand
human society in the future, in particular where it is used in close conjunction with
other relevant approaches.

Further Reading

A more general and simpler introduction to varying modelling purposes can be
found in Chap. 4 (Edmonds 2017). The best general introduction to social simulation
is (Gilbert and Troitzsch 2005) which covers general issues and gives code
examples. For a wider range of views on social simulation, the published papers
from the US National Academy of Sciences colloquium on “Adaptive Agents,
Intelligence, and Emergent Human Organization: Capturing Complexity through
Agent-Based Modeling” (PNAS 2002) give a good cross-section of the different
approaches people take to this area. It is difficult to point to further good sources as
this topic is so diverse, but the Journal of Artificial Societies and Social Simulation
has many accessible papers.
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