
Chapter 10
Understanding Simulation Results

Andrew Evans, Alison Heppenstall, and Mark Birkin

Abstract Simulation modelling is concerned with the abstract representation of
entities within systems and their interrelationships; understanding and visualising
these results is often a significant challenge for the researcher. Within this chapter we
examine particular issues such as finding “important” patterns and interpreting what
they mean in terms of causality. We also discuss some of the problems with using
model results to enhance our understanding of the underlying social systems which
they represent, and we will assert that this is in large degree a problem of isolating
causal mechanisms within the model architecture. In particular, we highlight the
issues of equifinality and identifiability—that the same behaviour may be induced
within a simulation from a variety of different model representations or parameter
sets—and present recommendations for dealing with this problem. The chapter ends
with a discussion of avenues of future research.

Why Read This Chapter?
To help you understand the results that a simulation model produces, by suggesting
some ways to analyse and visualise them. The chapter concentrates on the internal
dynamics of the model rather than its relationship to the outside world.

10.1 Introduction

Simulation models may be constructed for a variety of purposes. Classically these
purposes tend to centre on either the capture of a set of knowledge or making
predictions. Knowledge capture has its own set of issues that are concerned
with structuring and verifying knowledge in the presence of contradiction and
uncertainty. The problems of prediction, closely associated with calibration and
validation, centre around comparisons with real data, for which the methods covered
in Chap. 9 (David et al. 2017) are appropriate. In this chapter, however, we look at
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what our models tell us through their internal workings and logic, how we might
understand/interpret simulation results as results about an attempted simulation
of the real world, rather than as results we expect to compare directly with the
world. Here then, we tackle the third purpose of modelling: the exploration of
abstracted systems through simulation. In a sense, this is a purpose predicated
only on the limitations of the human mind. By common definition, simulation
modelling is concerned with abstract representations of entities within systems
and their interrelationships and with the exploration of the ramifications of these
abstracted behaviours at different temporal and geographical scales. In a world in
which we had larger brains, models would not be required to reveal anything—we
would instantly see the ramifications of abstracted behaviours in our heads. To a
degree, therefore, models may be seen as replacing the hard joined-up thinking that
is required to make statements about the way the world works. This chapter looks at
what this simplifying process tells us about the systems we are trying to replicate.

In part, the complications of simulation modelling are a product of the dimen-
sionality of the systems with which we are dealing. Let us imagine that we are
tackling a system of some spatio-temporal complexity, for example, the prices in
a retail market selling items A, B and C. Neighbouring retailers adjust their prices
based on local competition, but the price of raw materials keeps the price surface
out of equilibrium. In addition, customers will only buy one of the products at a
time, creating a link between the prices of the three items. Here, then, we have
three interdependent variables, each of which varies spatio-temporally, with strong
auto- and cross-correlations in both time and space. What kinds of techniques can
be used to tease apart such complex systems? In Sect. 10.2 of this chapter, we will
discuss some of the available methodologies broken down by the dimensionality
of the system in question and the demands of the analysis. Since the range of
such techniques is extremely sizable, we shall detail a few traditional techniques
that we believe might be helpful in simplifying model data that shows the traits of
complexity and some of the newer techniques of promise.

Until recently, most social science models represented social systems using
mathematical aggregations. We have over 2500 years’ worth of techniques to call
upon that are founded on the notion that we need to simplify systems as rapidly as
we can to the point at which the abstractions can be manipulated within a single
human head. As is clear, not least from earlier contributions in this volume, it
is becoming increasingly accepted that social scientists might reveal more about
systems by representing them in a less aggregate manner. More specifically, the
main difference between mathematics and the new modelling paradigm is that we
now aspire to work at a scale at which the components under consideration can be
represented as having their own discrete histories; mathematics actually works in a
very similar fashion to modern models, but at all the other scales. Naturally there are
knock-ons from this in terms of the more explicit representation of objects, states
and events, but these issues are less important than the additional simulation and
analytical power that having a history for each component of a system gives us. Of
course, such a “history” may just be the discrete position of an object at a single
historical moment, and plainly at this level of complication, the boundary between
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such models and, for example, Markov models, is somewhat diffuse; however, as the
history of components becomes more involved, so the power of modern modelling
paradigms comes to the fore. What is lacking, however, are the techniques that are
predicated on these new architectures. Whilst models which are specified at the
level of individual entities or “agents” may also be analysed using conventional
mathematical techniques, in Sect. 10.3 of the chapter, we will discuss some more
novel approaches which are moving the direction of understanding the outputs of
these new, unaggregated, models on their own terms.

One of the reasons that simulation models are such a powerful methodology
for understanding complex systems is their ability to display aggregate behaviour
which goes beyond the simple extrapolation of the behaviour of the individual
component parts. In mathematical analysis, such as dynamical systems theory, this
behaviour tends to be linked to notions of equilibrium, oscillation and catastrophe
or bifurcation. Individual- and agent-based modelling approaches have veered
more strongly towards the notion of emergence, which can be defined as “an
unforeseen occurrence; a state of things unexpectedly arising” (OED 2010). The
concept of emergence is essentially a sign of our ignorance of the causal pathways
within a system. Nevertheless, emergence is our clearest hope for developing an
understanding of systems using models. We hope that emergence will give us
a perceptual shortcut to the most significant elements of a system’s behaviour.
When it comes to applications, however, emergence is a rather double-edged blade:
emergence happily allows us to see the consequence of behaviours without us
having to follow the logic ourselves; however it is problematic in relying upon
us to filter out which of the ramifications are important to us. As emergence
is essentially a sign of incomplete understanding, and therefore weakly relative,
there is no objective definition of what is “important”. one day classification of
the kinds of patterns that relate to different types of causal history, but there is
no objective manner of recognising a pattern as “important” as such. These two
problems, finding “important” patterns (in the absence of any objective way of
defining “important”) and then interpreting what they mean in terms of causality,
are the issues standing between the researcher and perfect knowledge of a modelled
system. In the fourth section of this chapter, we will discuss some of the problems
with using model results to enhance our understanding of the underlying social
systems which they represent, and we will assert that this is in large degree a
problem of isolating causal mechanisms within the model architecture. In particular,
we highlight the issues of equifinality and identifiability—that the same behaviour
may be induced within a simulation from a variety of different model representations
or parameter sets—and present recommendations for dealing with this problem.
Since recognising emergence and combating the problems of identifiability and
equifinality are amongst the most urgent challenges to effective modelling of
complex systems, this leads naturally to a discussion of future directions in the final
section of the chapter.
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10.2 Aggregate Patterns and Conventional Representations
of Model Dynamics

Whether a model is based on deductive premises or inferred behaviours, any
new understanding of a given modelled system tends to be developed inductively.
Modellers examine model outputs, simplify them and then try to work out the cause
utilising a combination of hypothesis dismissal, refinement and experimentation.
For example, a modeller of a crowd of people might take all the responses of each
person over time and generate a single simple mean statistic for each person; these
might then be correlated against other model variables. If the correlation represents a
real causal connection, then varying the variables should vary the statistic. Proving
such causal relationships is not something we often have the ability to do in the
real world. During such an analysis, the simplification process is key: it is this that
reveals the patterns in our data. The questions are: how do we decide what needs
simplifying and, indeed, how simple to make it?

We can classify model results by the dimensionality of the outputs. A general
classification for social systems would be:

• Single statistical aggregations (1D)
• Time series of variables (2D)
• The spatial distributions of invariants (2D) or variables (3D)
• Spatio-temporal locations of invariants (3D) or variables (4D)
• Other behaviours in multidimensional variable space (nD)

For simplicity, this assumes that geographical spaces are essentially two-
dimensional (while recognising that physical space might also be represented along
linear features such as a high street, across networks or within a three-dimensional
topographical space for landforms or buildings). It should also be plain that in
the time dimension, models do not necessarily produce just a stream of data, but
that the data can have complex patternation. By their very nature, individual-level
models, predicated as they are on a life cycle, will never stabilise in the way a
mathematical model might (Uchmanski and Grimm 1996); instead models may run
away or oscillate, either periodically or chaotically.

Methods for aiding pattern recognition in data break down, again, by the
dimensionality of the data, but also by the dimensionality of their outputs. It is quite
possible to generate a one-number statistic for a 4D spatio-temporal distribution. In
some cases, the reduction of dimensionality is the explicit purpose of the technique,
and the aim is that patterns in one set of dimensions should be represented as closely
as possible in a smaller set of dimensions so they are easier to understand. Table 10.1
below presents a suite of techniques that cross this range (this is not meant to be an
exhaustive list; after all, pattern recognition is a research discipline of its own with
a whole body of literature including several dedicated journals).

To begin with, let us consider some examples which produce outputs in a single
dimension. In other words, techniques for generating global and regional statistics
describing the distribution of variables across space, either a physical space or a



10 Understanding Simulation Results 209

Table 10.1 Pattern recognition techniques for different input and output data dimensions

1D output 2D output 3D output 4D output ND

1D input
2D input Exploratory

statistics
Cluster locating
Fourier/wavelet
transforms

3D input Entropy
statistics

Phase diagrams
Fourier/wavelet
transforms

4D input Diffusion
statistics

Time slices Recurrence plots

nD Network
statistics

Eigenvector
analysis

Sammon mapping Animations Heuristic
techniques

variable space. Such statistics generally tend to be single time slice, but can be
generated for multiple time slices to gauge overall changes in the system dynamics.

Plainly, standard aggregating statistics used to compare two distributions, such as
the variable variance, will lose much of interest, both spatially and temporally. If we
wish to capture the distribution of invariants, basic statistics like nearest-neighbour
(Clark and Evans 1954) or the more complex patch shape, fragmentation and
connectivity indices of modern ecology (for a review and software, see McGarigal
2002) provide a good starting point. Networks can be described using a wide
variety of statistics covering everything from shortest paths across a network to the
quantity of connections at nodes (for a review of the various statistics and techniques
associated with networks, see Boccaletti et al. 2006; Evans 2010). However, we
normally wish to assess the distribution of a variable across a surface—for example,
a price surface or a surface of predicted retail profitability. One good set of global
measures for such distributions are entropy statistics. Suppose we have a situation
in which a model is trying to predict the number of individuals that buy product A
in one of four regions. The model is driven by a parameter, beta. In two simulations
we get the following results: simulation one (low beta), 480, 550, 520 and 450 and
simulation two, (high beta) 300, 700, 500 and 400. Intuitively the first simulation
has less dispersal or variability than the second simulation. An appropriate way
to measure this variability would be through the use of entropy statistics. The
concept of entropy originates in thermodynamics, where gases in a high-entropy
state contain dispersed molecules. Thus high entropy equates to high levels of
variability. Entropy statistics are closely related to information statistics where
a -entropy state corresponds to a high information state. In the example above,
simulation two is said to contain more “information” than simulation one, because if
we approximate the outcome using no information, we would have a flat average—
500, 500, 500 and 500—and this is closer to simulation one than simulation two.
Examples of entropy and information statistics include Kolmogorov-Chaitin, mutual
information statistics and the Shannon information statistic. Most applications in the
literature use customised code for the computation of entropy statistics, although
the computation of a limited range of generalised entropy indices is possible within
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Stata.1 Entropy statistics can also be used to describe flows across networks. In this
sense they provide a valuable addition to network statistics: most network statistics
concentrate on structure rather than the variable values across them. Unless they
are looking specifically at the formation of networks over time, or the relationship
between some other variable and network structure, modellers are relatively bereft
of techniques to look at variation on a network.

In the case where variability is caused and constrained by neighbourhood effects,
we would expect the variation to be smoother across a region. We generally expect
objects in space under neighbourhood effects to obey Tobler’s first law of geography
(Tobler 1970) that everything is related, but closer things are related more. This
leads to spatial auto- or cross-correlation, in which the values of variables at a
point reflect those of their neighbours. Statistics for quantifying such spatial auto-
or cross-correlation at the global level, or for smaller regions, such as Moran’s I and
Geary’s C, are well established in the geography literature (e.g. Haining 1990); a
useful summary can be found in Getis (2007).

Such global statistics can be improved on by giving some notion of the direction
of change of the auto- or cross-correlation. Classically this is achieved through semi-
variograms, which map out the intensity of correlation in each direction traversed
across a surface (for details, see Isaaks and Srivastava 1990). In the case where it
is believed that local relationships hold between variables, local linear correlations
can be determined, for example, using geographically weighted regression (GWR;
for details, see Fotheringham et al. 2002). GWR is a technique which allows the
mapping of R2s calculated within moving windows across a multivariate surface
and, indeed, mapping of the regression parameter weights. For example, it would
be possible in our retail results to produce a map of the varying relationship
between the amount of A purchased by customers and the population density, if
we believed these were related. GWR would not just allow a global relationship
to be determined, but also how this relationship changed across a country. One
important but somewhat overlooked capability of GWR is its ability to assess how
the strength of correlations varies with scale by varying the window size. This can
be used to calculate the key scales at which there is sufficient overlap between the
geography of variables to generate strong relationships (though some care is needed
in interpreting such correlations, as correlation strength generally increases with
scale: Robinson 1950; Gehlke and Biehl 1934). Plainly, identifying the key scale at
which the correlations between variables improve gives us some ability to recognise
key distance scales at which causality plays out. In our example, we may be able to
see that the scale at which there is a strong relationship between sales of A and the
local population density increases as the population density decreases, suggesting
rural consumers have to travel further and a concomitant non-linearity in the model
components directing competition.

1Confusingly, “generalised entropy” methods are also widely used in econometrics for the
estimation of missing data. Routines which provide this capability, e.g. in SAS, are not helpful
in the description of simulation model outputs!
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If, on the other hand, we believe the relationships do not vary smoothly across
a modelled surface, we instead need to find unusual clusters of activity. The ability
to represent spatial clustering is of fundamental importance, for example, within
Schelling’s well-known model of segregation in the housing market (Schelling
1969). However clustering is often not so easy to demonstrate within both real
data and complex simulation outputs. The most recent techniques use, for example,
wavelets to represent the regional surfaces, and these can then be interpreted
for cluster-like properties. However, for socio-economic work amongst the best
software for cluster detection is the geographical analysis machine (GAM), which
not only assesses clustering across multiple scales but also allows assessment of
clustering in the face of variations in the density of the population at risk. For
example, it could tell us where transport network nodes were causing an increase in
sales of A, by removing regions with high sales caused by high population density
(the population “at risk” of buying A). Clusters can be mapped and their significance
assessed (Openshaw et al. 1988).

Often, simulations will be concerned with variations in the behaviour of systems,
or their constituent agents, over time. In common with physical systems, social and
economic systems are often characterised by periodic behaviour, in which similar
states recur, although typically this recurrence is much less regular than in many
physical systems. For example, economic markets appear to be characterised by
irregular cycles of prosperity and depression. Teasing apart a model can provide
nonintuitive insights into such cycles. For example, Heppenstall et al. (2006)
considered a regional network of petrol stations and showed within an agent
simulation how asymmetric cyclical variations in pricing (fast rises and slow falls),
previously thought to be entirely due to a desire across the industry to maintain
artificially high profits, could in fact be generated from more competitive profit
maximisation in combination with local monitoring of network activity. While it
is, of course, not certain these simpler processes cause the pattern in real life, the
model exploration does give researchers a new explanation for the cycles and one
that can be investigated in real petrol stations.

In trying to detect periodic behaviour, wavelets are rapidly growing in popularity
(Graps 2004). In general, one would assume that the state of the simulation can
be represented as a single variable which varies over time (let’s say the average
price of A). A wavelet analysis of either observed or model data would decompose
this trend into chunks of time at varying intervals, and in each interval the technique
identifies both a long-term trend and a short-term fluctuation. Wavelets are therefore
particularly suitable for identifying cycles within data. They are also useful as
filters for the removal of noise from data and so may be particularly helpful in
trying to compare the results from a stylised simulation model with observed data
which would typically be messy, incomplete or subject to random bias. It has been
argued that such decompositions are fundamentally helpful in establishing a basis
for forecasting (Ramsey 2002).

Wavelets are equally applicable in both two and three dimensions. For example,
they may be useful in determining the diffusion of waves across a two-dimensional
space and over time and can be used to analyse, for example, the relationship
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between wave amplitude and propagation distance. Viboud et al. (2006) provide
a particularly nice example of such a use, looking at the strength of the propagation
of influenza epidemics as influenced by city size and average human travel distances
in the USA. Other more traditional statistics, such as the Rayleigh statistic (Fisher
et al. 1987; Korie et al. 1998), can also be used to assess the significance of diffusion
from point sources.

In addition to global and regional aggregate statistics of single variables or
cross-correlations, it may be that there is simply too great a dimensionality to
recognise patterns in outputs and relate them to model inputs. At this point it
is necessary to engage in multidimensional scaling. If an individual has more
than four characteristics, then multidimensional scaling methods can be used to
represent the individuals in two or three dimensions. In essence, the problem is
to represent the relation between individuals such that those which are most similar
in n-dimensions still appear to be closest in a lower-dimensional space which can
be visualised more easily. The most popular technique is Sammon mapping. This
method relies on the ability to optimise an error function which relates original
values in high-dimensional space to the transformed values. This can be achieved
using standard optimisation methods within packages such as MATLAB or using
a number of bespoke R packages. Multidimensional scaling can be useful in
visualising the relative position of different individuals within a search space, for
exploring variations in a multi-criteria objective function within a parameter space
or for comparing individual search paths within different simulations (Pohlheim
2006).

Eigenvector methods are another form of multidimensional scaling. Any multidi-
mensional representation of data in n-dimensional space can be transformed into an
equivalent space governed by n orthogonal eigenvectors. The main significance of
this observation is that the principal eigenvector constitutes the most efficient way
to represent a multidimensional space within a single value. For example, Moon,
Schneider and Carley (Moon et al. 2006) use the concept of “eigenvector centrality”
within a social network to compute a univariate measure of relative position based
on a number of constituent factors.

Eigenvector analyses, however, can be nonintuitive to those not used to them.
Somewhat simpler presentations of multidimensional data can be made using clus-
tering techniques. These collapse multidimensional data so that individual cases are
members of a single group or cluster, classified on the basis of a similarity metric.
The method may therefore be appropriate if the modeller wishes to understand the
distribution of an output variable in relation to the combination of several input
variables. Cluster analysis is easy to implement in all the major statistics packages
(R, SAS, SPSS). The technique is likely to be most useful in empirical applications
with a relatively large number of agent characteristics (i.e. six or more) rather than
in idealised simulations with simple agent rules. One advantage of this technique
over others is that it is possible to represent statistical variation within the cluster
space, for example, by displaying the interquartile variation in the attribute variable
within clusters.
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10.3 Individual Patterns, Novel Approaches
and Visualisation

Plainly aggregate statistics like those above are a useful way of simplifying
individual-level data, both in terms of complexity and dimensionality. However,
they are the result of over 2500 years of mathematical development in a research
environment unsuited to the mass of detail associated with individual-level data.
Now, computers place us in the position of being able to cope with populations
of individual-level data at a much smaller scale. We still tend to place our own
understanding at the end of an analytical trail, constraining the trail to pass through
some kind of simplification and higher level of aggregation for the purposes of
model analysis. Despite this, it is increasingly true that individual-level data is dealt
with at the individual level for the body of the analysis, and this is especially true in
the case of individual-level modelling, in which experimentation is almost always
enacted at the individual level. Whether it is really necessary to simplify for human
understanding at the end of an analysis is not especially clear. It may well be that
better techniques might be developed to do this than those built on an assumption of
the necessity of aggregation.

At the individual level, we are interested in recognising patterns in space and
time, seeing how patterns at different scales affect each other, and then using this
to say something about the behaviour of the system/individuals. Patterns are often
indicators of the attractors to which individuals are drawn in any given system and
present a shortcut to understanding the mass of system interactions. However, it is
almost as problematic to go through this process to understand a model as it is, for
example, to derive individual-level behaviours from real large-size spatio-temporal
datasets of socio-economic attributes. The one advantage we have in understanding
a model is that we do have some grip on the foundation rules at the individual scale.
Nonetheless, understanding a rule and determining how it plays out in a system
of multiple interactions are very different things. Table 10.2 outlines some of the
problems.

Despite the above, our chief tool for individual-level understanding without
aggregation is, and always has been, the human ability to recognise patterns in

Table 10.2 Issues related to understanding a model at different levels of complexity

Complexity Issues

Spatial What is the impact of space (with whom do individuals initiate transactions
and to what degree)?

Temporal How does the system evolve?
Individuals How do we recognise which individual behaviours are playing out in the

morass of interactions?
Relationships How do we recognise and track relationships?
Scale How can we reveal the manner in which individual actions affect the

large-scale system and vice versa?
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masses of data. Visualisation, for all its subjectivity and faults, remains a key
element of the research process. The standard process is to present one or more
attributes of the individuals in a map in physical or variable space. Such spaces
can then be evolved in movies or sliced in either time or space (Table 10.3 shows
some examples). In general, we cannot test the significance of a pattern without
first recognising it exists, and to that extent significance testing is tainted by the
requirement that it tests our competency in recognising the correct pattern as much
as that the proposed pattern represents a real feature of the distribution of our
data. Visualisation is also a vital tool in communicating results within the scientific
community and to the wider public. The former is not just important for the
transmission of knowledge, but because it allows others to validate the work. Indeed,
the encapsulation of good visualisation techniques within a model framework
allows others to gain deeper understanding of one’s model, and to experiment
at the limits of the model—what Grimm (2002) calls “visual debugging”. Good
model design starts like the design of any good application, with an outline of
what can be done to make it easy to use, trustworthy and simple to understand.
Traditionally, user interface design and visualisation have been low on the academic
agenda, to the considerable detriment of both the science and the engagement of
taxpayers. Fortunately, in the years since the turn of the millennium, there has
been an increasing realisation that good design engages the public and that there
is a good deal of social science research that can be built on that engagement.
Orford et al. (1999) identify computer graphics, multimedia, the World Wide Web
and virtual reality as four visualisation technologies that have recently seen a
considerable evolution within the social sciences. There is an ever-increasing array
of visualisation techniques at our disposal: Table 10.3 presents a classification
scheme of commonly used and more novel visualisation methods based on the
dimensionality and type of data that is being explored.

Another classification scheme of these techniques that is potentially very useful
comes from Andrienko et al. (2003). This classification categorises techniques based
on their applicability to different types of data:

• “Universal” techniques that can be applied whatever the data, e.g. querying and
animation

• Techniques revealing existential change, e.g. time labels, colouring by age, event
lists and space-time cubes

• Techniques about moving objects, e.g. trajectories, space-time cubes and snap-
shots in time

• Techniques centred on thematic/numeric change, e.g. change maps, time series
and aggregations of attribute values

For information on other visualisation schemes, see Cleveland (1983), Hinneburg
et al. (1999) and Gahegan (2001).

In each case, the techniques aim to exploit the ease with which humans recognise
patterns (Muller & Schumann Müller and Schumann 2003). Pattern recognition is,
at its heart, a human attribute, and one which we utilise to understand models, no
matter how we process the data. The fact that most model understanding is founded
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Table 10.3 Classification of visualisation methods according to dimensionality and type of data

Method Pro Con

Spatial 1D/2D Map: overlay;
animated trajectory
representation (e.g.
arrows); snapshots

View of whole
trajectory of an object

Cannot analyse
trajectory of movement.
If several objects cross
paths, cannot tell
whether objects met at
crossing point or visited
points at different times

Spatial distribution,
e.g. choropleth
maps

Gives a snapshot of an
area.

Cannot see how a
system evolves through
time. Aggregate view of
area. Only represents
one variable; hard to
distinguish relationships

Temporal 1D Time-series
graphs/linear and
cyclical graphs

Show how the system
(or parameters) change
over time

No spatial element.
Hard to correlate
relationships between
multivariate variables

Rank clocks (e.g.
Batty 2006)

Good for visualising
change over time in
ranked order of any set
of objects

No spatial element

Rose diagrams Good for representation
of circular data, e.g.
wind speed and
direction

No spatial element

Phase diagram Excellent for examining
system behaviour over
time for one or two
variables

No spatial element. Gets
confusing quickly with
more than two variables

Spatio-temporal
3D/4D

Map animation (e.g.
Patel and
Hudson-Smith
2012)

Can see system
evolving spatially and
temporally

Hard to quantify or see
impacts of individual
behaviour, i.e. isolated
effects

Space-time cube
(Andrienko et al.
2003)

Can contain space-time
paths for individuals

Potentially difficult to
interpret

Recurrence plot Reveals hidden
structures over time and
in space

Computationally
intensive. Methods
difficult to apply. Have
to generate multiple
snapshots and run as an
animation

Vector
plotting/contour
slicing (Ross and
Vosper 2003)

Ability to visualise 2D
or 3D data and multiple
dimensional dataset

Hard to quantify
individual effects
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on a human recognition of a “significant” pattern is somewhat unfortunate, as we
will bring our own biases to the process. At worst we only pay attention to those
patterns that confirm our current prejudices: what Wyszomirski et al. (1999) call
the WYWIWYG—What You Want is What You Get—fallacy. At best, we will only
recognise those patterns that match the wiring of the human visual system and
our cultural experiences. The existence of visualisation techniques generally points
up the fact that humans are better at perceiving some patterns than others, and in
some media than others—it is easier to see an event as a movie and not a binary
representation of the movie file displayed as text. However, in addition to standard
physiological and psychological restrictions on pattern recognition consistent to all
people, it is also increasing apparent there are cultural differences in perceptions.
Whether there is some underlying biological norm for the perception of time and
space is still moot (Nisbett and Masuda 2003; Boroditsky 2001), but it is clear that
some elements of pattern recognition vary by either culture or genetics (Nisbett
and Masuda 2003; Chua et al. 2005). Even when one looks at the representation of
patterns and elements like colour, there are clear arguments for a social influence
on the interpretation of even very basic stimuli into perceptions (Roberson et al.
2004). Indeed, while there is a clear and early ability of humans to perceive moving
objects in a scene as associated in a pattern (e.g. Baird et al. 2002), there are
cultural traits associated with the age at which even relatively universal patterns are
appreciated (Clement et al. 1970). The more we can objectify the process, therefore,
the less our biases will impinge on our understanding. In many respects it is easier
to remove human agents from data comparison and knowledge development than
pattern hunting, as patterns are not something machines deal with easily. The
unsupervised recognition of even static patterns repeated in different contexts is far
from computationally solved (Bouvrie and Sinha 2007), though significant advances
have been made in recent years (Druzhkov and Kustikova 2016). Most pattern-
hunting algorithms try to replicate the process found in humans, and in that sense
one suspects we would do better to skip the pattern hunting and concentrate on data
consistency and the comparison of full datasets directly. At best we might say that
an automated “pattern” hunter that wasn’t trying to reproduce the human ability
would instead seek to identify attractors within the data.

Figure 10.1 presents several visualisation methods that are commonly found in
the literature, ranging from 1D time-series representation (a) to contour plots (d)
that could be potentially used for 4D representation.

Visualisations are plainly extremely useful. Here we’ll look at a couple of
techniques that are of use in deciphering individual-level data: phase maps and
recurrence plots. Both techniques focus on the representation of individual-level
states and the relationships between stated individuals.
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Fig. 10.1 Examples of different visualisation methods. (a) 1D Time-series graph (idealised data).
(b) 3D interpolated map (idealised data). (c) Rose diagram. (d) Contour plot

10.3.1 Phase Maps

Phase-space maps are commonly used by physicists to study the behaviour of
physical systems. In any graphical representation, a phase-space map represents an
abstract view of the behaviour of one or more of the system components. These can
be particularly useful to us as we can plot the behaviour of our system over time.
This allows us to understand how the system is evolving and whether it is chaotic,
random, cyclical or stable (Fig. 10.2).

Each of the graphs produced in Fig. 10.2 is a representation of the coincident
developments in two real neighbouring city centre petrol stations in Leeds (UK)
over a 30-day period (sampled every other day). Figure 10.2a represents a stable
system. Here, neither of the stations is changing in price and, thus, a fixed point is
produced. However, this behaviour could easily change if one or both of the stations
alter it price. This behaviour is seen in Fig. 10.2b. Both stations are changing their
prices each day (from 75.1p to 75.2p to 75.1p); this creates a looping effect; the
stations are cycling through a pattern of behaviour before returning to their starting
point. Note that the graph appears to reveal a causative link between the two stations
as they are never simultaneously low. Figure 10.2c, d shows a more varied pattern
of behaviour between the stations. In Fig. 10.2c, one point is rising in price, whilst
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Fig. 10.2 Examples of different types of behaviour found in urban petrol stations (Leeds).
(a) Stable. (b) Looping. (c) Two types of behaviour. (d) Chaotic

the other is oscillating. In Fig. 10.2(d), there is no apparent pattern in the displayed
behaviour. Simply knowing about these relationships is valuable information and
allows us a greater understanding of this system, its behaviour and its structure. For
example, it may be that the only difference between the graphs is one of distance
between the stations, but we would never see this unless the graphs allowed us to
compare at a detailed level the behaviours of stations that potentially influence each
other.

10.3.2 Recurrence Plots

Recurrence plots (RPs) are a relatively new technique for the analysis of time-series
data that allows both visualisation and quantification of structures hidden within
data or exploration of the trajectory of a dynamical system in phase space (Eckmann
et al. 1987). They are particularly useful for graphically detecting hidden patterns
and structural changes in data as well as examining similarities in patterns across a
time-series dataset (where there are multiple readings at one point). RPs can be also
used to study the nonstationarity of a time series as well as to indicate its degree of
aperiodicity (Casdagli 1997; Kantz and Schreiber 1997). These features make RPs
a very valuable technique for characterising complex dynamics in the time domain
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Fig. 10.3 Example of Recurrence Plots. (a) RP of the change in price at a retail outlet over 100
days. (b) illustrates how oscillations in the change in the price data are represented in the RP

(Vasconcelos et al. 2006), a factor reflected in the variety of applications that RPs
can now be found in ranging from climate variation (Marwan and Kruths 2002) and
music (Foote and Cooper 2001) to heart rate variability (Marwan et al. 2002).

Essentially a RP is constructed via a matrix where values at a pair of time steps
are compared against each other. If the system at the two snapshots is completely
different, the result is 1.0 (black), while completely similar periods are attributed
the value 0.0 (represented as white). Through this, a picture of the structure of the
data is built up. Figure 10.3a shows the RP of the change in price at a retail outlet
over 100 days. Above the RP is a time-series graph diagrammatically representing
the change in price. Changes in price, either increases, decreases or oscillations, can
be clearly seen in the RP. Figure 10.3b illustrates how oscillations in the change in
the price data are represented in the RP.

Early work on this area has shown that there is considerable potential in the
development and adaptation of this technique. Current research is focused on the
development of cross-reference RPs (consideration of the phase-space trajectories
of two different systems in the same phase space) and spatial recurrence plots.

10.4 Explanation, Understanding and Causality

Once patterns are recognised, “understanding” our models involves finding expla-
nations highlighting the mechanisms within the models which give rise to these
patterns. The process of explanation may be driven with reference to current theory
or developing new theory. This is usually achieved through:

1. Correlating patterns visually or statistically with other parts of the model, such
as different geographical locations, or with simulations with different starting
values.

2. Experimentally adjusting the model inputs to see what happens to the outputs.
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3. Tracking the causal processes through the model.

It may seem obvious, and yet it is worth pointing out, that model outputs can only
causally relate to model inputs, not additional data in the real world. Plainly insights
into the system can come from comparison with external data that is correlated or
miscorrelated with model outputs, but this is not the same as understanding your
model and the way it currently represents the system. One would imagine that this
means that understanding of a model cannot be facilitated by comparing it with
other, external, data, and yet it can often be worth:

4. Comparing model results with real-world data, because the relationships between
real data and both model inputs and model outputs may be clearer than the
relationships between these two things within the model.

Let’s imagine, for example, a model that predicts the location of burglaries across
a day in a city region where police corruption is rife. The model inputs are known
offenders’ homes, potential target locations and attractiveness, the position of the
owners of these targets and the police, who prefer to serve the wealthy. We may
be able to recognise a pattern of burglaries that moves, over the course of the day,
from the suburbs to the city centre. Although we have built into our model the fact
that police respond faster to richer people, we may find, using (1), that our model
doesn’t show less burglaries in rich areas, because the rich areas are so spatially
distributed that the police response times are stretched between them. We can then
alter the weighting of the bias away from the wealthy (2) to see if it actually reduces
the burglary rate in the rich areas by placing police nearer these neighbourhoods
as an ancillary effect of responding to poor people more. We may be able to fully
understand this aspect of the model and how it arises (3), but still have a higher
than expected burglary rate in wealthy areas. Finally, it may turn out (4) that there
is a strong relationship between these burglaries and real data on petrol sales, for no
other reason than both are high at transition times in this social system, when the
police would be most stretched between regions—suggesting in turn that the change
in police locations over time is as important as their positions at any one time.

Let us look at each of these methodologies for developing understanding in turn.

Correlation Most social scientists will be familiar with linear regression as a
means for describing data or testing for a relationship between two variables; there is
a long scientific tradition of correlating data between models and external variables,
and this tradition is equally applicable to intra-model comparisons. Correlating
datasets is one of the areas where automation can be applied. As an exploratory
tool, regression modelling has its attractions, not least its simplicity in both concept
and execution. Simple regressions can be achieved in desktop applications like
Microsoft Excel, as well as all the major statistical packages (R, SAS, SPSS, etc.).
Standard methodologies are well known for cross-correlation of both continuous
normal data and time series. However even for simple analyses with a single
input and single output variable, linear regression is not always an appropriate
technique. For example, logistic regression models will be more appropriate for
binary response data, Poisson models will be superior when values in the dependent
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tend to be highly clustered, while binomial models may be the most effective
when observations are highly dispersed around the mean. An interesting example
is Fleming and Sorenson (2001) in which binomial estimates of technological
innovation are compared to the complexity of the invention measured by both
the number of components and the interdependence between those components.
In behavioural space, methodologies such as association rule making (e.g. Hipp
et al. 2002) allow the Bayesian association of behavioural attributes. It is worth
noting that where models involve a distribution in physical space, this can introduce
problems, in particular where the model includes neighbourhood-based behaviours
and therefore the potential to develop spatial auto and cross-correlations. These alter
the sampling strategies necessary to prove relationships—a full review of the issues
and methodologies to deal with them can be found in Wagner and Fortin (2005).

Experimentation In terms of experimentation, we can make the rather artificial
distinction between sensitivity testing and “what if?” analyses—the distinction is
more one of intent than anything. In sensitivity analysis one perturbs model inputs
slightly to determine the stability of the outputs, under the presumption that models
should match the real world in being insensitive to minor changes (a presumption
not always well founded). In “what if?” analyses, one alters the model inputs to see
what would happen under different scenarios. In addition to looking at the output
values at a particular time slice, the stability or otherwise of the model, and the
conditions under which this varies, also gives information about the system (Grimm
1999).

Tracking Causality Since individual-based models are a relatively recent devel-
opment, there is far less literature dealing with the tracking of causality through
models. It helps a little that the causality we deal with in models, which is essentially
a mechanistic one, is far more concrete than the causality perceived by humans,
which is largely a matter of the repeated coincidence of events. Nevertheless,
backtracking through a model to mark a causality path is extremely hard, primarily
for two reasons. The first is what we might call the “find the lady problem”—that
the sheer number of interactions involved in social processes tends to be so large we
don’t have the facilities to do the tracking. The second issue, which we might call
the “drop in the ocean problem”, is more fundamental as it relates to a flaw in the
mathematical representation of objects, that is, that numbers represent aggregated
quantities, not individuals. When transacted objects in a system are represented with
numbers greater than one, it is instantly impossible to reliably determine the path
taken by a specific object through that system. For objects representing concepts,
either numerical (e.g. money) or nonnumerical (e.g. a meme), this isn’t a problem
(one dollar is much like any other; there is only one Gangnam style to know).
However, for most objects such aggregations place ambiguous nodes between what
would otherwise be discrete causal pathways. Fortunately, we tend to use numbers
in agent models as a methodology to cope with our ignorance (e.g. in the case of
calibrated parameters) or the lack of the computing power we’d need to deal with
individual objects and their transactional histories (e.g. in the case of a variable
like “number of children”). As it happens, every day brings improvements to both.
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It addition, the last 10 years or so has seen considerable theoretical advances in the
determination of the probabilities of causation (e.g. Granger 1980; Pearl and Verma
1991; Greenland and Pearl 2006). For now, however, the tracking of causality is
much easier if the models build in appropriate structures from the start. While they
are in their infancy, techniques like process calculi (Worboys 2005) and Petri nets
show the potential of this area.

The inability to track causality leads to the perennial problem of identifiability,
that is, that a single model outcome may have more than one history of model
parameters that leads to it. Identifiability is part of a larger set of issues with
confirming that the model in the computer accurately reflects the system in the
real world—the so-called equifinality issue. These are issues that play out strongly
during model construction from real data and when validating a model against real
data, and a review of techniques to examine these problems, including using model
variation to determine the suitability of variables and parameters, can be found in
Evans (2012). At the model stage we are interested in, however, we at least have the
advantage that there is only one potential model that may have created the output—
the one running. Nevertheless, the identifiability of the parameters in a running
model still makes it hard to definitively say when model behaviour is reasonable.
For those modelling for prediction, this is of little consequence—as long as the
model gives consistently good predictions it may as well be a black box. However,
if we wish to tease the model apart and look at how results have emerged, these
issues become more problematic.

The mechanisms for dealing with these problems are pragmatic:

1. Examine the stability of the calibration process and/or the state of internal
variables that weren’t inputs or outputs across multiple runs.

2. Validate internal variables that weren’t inputs or outputs used in any calibration
against real data.

3. Run the model in a predictive mode with as many different datasets as possible—
the more the system can replicate reality at output, the more likely it is to replicate
reality internally. If necessary engage in inverse modelling: initialize parameters
randomly and then adjust them over multiple runs until they match all known
outputs.

Of these, by far the easiest, but the least engaged with, is checking the stability of
the model in parameter space (see Evans 2012 for a review). Various AI techniques
have been applied to the problem of optimising parameters to fit model output
distributions to some predetermined pattern (such as a “real-world” distribution).
However, the stability of these parameterizations and the paths AIs take to generate
them are rarely used to examine the degree to which the model fluctuates between
different states, let alone to reflect on the nature of the system. The assumption of
identifiability is that the more parameterized a model, the more likely it is a set
of parameter values can be derived which fit the data but don’t represent the true
values. However, in practice the limits on the range of parameter values within any
given model allow us an alternative viewpoint: that the more parameterized rules in
a model, the more the system is constrained by the potential range of the elements
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in its structure and the interaction of these ranges. For example, a simple model
a D b has no constraints, but a D b/c, where c D distance between a and b, adds an
additional constraint even though there are more parameters. As such rules build up
in complex systems, it is possible that parameter values become highly constrained,
even though, taken individually, any given element of the model seems reasonably
free. This may mean that if a system is well modelled, exploration of the model’s
parameter space by an AI might reveal the limits of parameters within the constraints
of the real complex system. For example, Heppenstall et al. (2007) use a genetic
algorithm to explore the parameterisation of a petrol retail model/market and find
that while some GA-derived parameters have a wide range, others consistently fall
around specific values that match those derived from expert knowledge of the real
system.

The same issues as hold for causality hold for data uncertainty and error. We have
little in the way of techniques for coping with the propagation of either through
models (see Evans 2012 for a review). It is plain that most real systems can be
perturbed slightly and maintain the same outcomes, and this gives us some hope
that errors at least can be suppressed; however we still remain very ignorant as to
how such homeostatic forces work in real systems and how we might recognise or
replicate them in our models. Data and model errors can breed patterns in our model
outputs. An important component of understanding a model is understanding when
this is the case. If we are to use a model to understand the dynamics of a real system
and its emergent properties, then we need to be able to recognise novelty in the
system. Patterns that result from errors may appear to be novel (if we are lucky), but
as yet there is little in the way of toolkits to separate out such patterns from truly
interesting and new patterns produced intrinsically.

Currently our best option for understanding model artefacts is model-to-model
comparisons. These can be achieved by varying one of the following contexts
while holding the others the same: the model code (the model, libraries and
platform), the computer the model runs on or the data it runs with (including
internal random number sequences). Varying the model code (for instance, from
Java to CCC or from an object-orientated architecture to a procedural one) is a
useful step in that it ensures the underlying theory is not erroneously dependent
on its representation. Varying the computer indicates the level of errors associated
with issues like rounding and number storage mechanisms, while varying the data
shows the degree to which model and theory are robust to changes in the input
conditions. In each case, a version of the model that can be transferred between
users, translated onto other platforms and run on different data warehouses would
be useful. Unfortunately, however, there is no universally recognised mechanism for
representing models abstracted from programming languages. Mathematics, UML
and natural languages can obviously fill this gap to a degree, but not in a manner
that allows for complete automatic translation. Even the automatic translation of
computer languages is far from satisfactory when there is a requirement that the
results be understood by humans so errors in knowledge representation can be
checked. In addition, many such translations work by producing the same binary
executable. We also need standard ways of comparing the results of models, and
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these are no more forthcoming. Practitioners are only really at the stage where we
can start to talk about model results in the same way (see, e.g. Grimm et al. 2006).
Consistency in comparison is still a long way off, in part because statistics for model
outputs and validity are still evolving and in part because we still don’t have much
idea which statistics are best applied and when (for one example bucking this trend,
see Knudsen and Fotheringham 1986).

10.5 Future Directions

Recognising patterns in our modelled data allows us to:

1. Compare it with reality for validation.
2. Discover new information about the emergent properties of the system.
3. Make predictions.

Of these, discovering new information about the system is undoubtedly the
hardest, as it is much easier to spot patterns you are expecting. Despite the
above advances, there are key areas where current techniques do not match our
requirements. In particular, these include:

1. Mechanisms to determine when we do not have all the variables we need to
model a system and which variables to use.

2. Mechanisms to determine which minor variables may be important in making
emergent patterns through non-linearities.

3. The tracking of emergent properties through models.
4. The ability to recognise all but the most basic patterns in space over time.
5. The ability to recognise action across distant spaces over space and time.
6. The tracking of errors, error acceleration and homeostatic forces in models.

While we have components of some of these areas, what we have is but a
drop in the ocean of techniques we need. In addition, the vast majority of our
techniques are built on the 2500 years of mathematics that resolved to simplify
systems that were collections of individuals because we lacked the ability (either
processing power or memory) to cope with the individuals as individuals. Modern
computers have given us this power for the first time, and, as of yet, the ways we
describe such systems have not caught up, even if we accept that some reduction
in dimensionality and detail is necessary for a human to understand our models.
Indeed in the long run, it might be questioned whether the whole process of model
understanding and interpretation might be divorced from humans and delegated
instead to an artificially intelligent computational agency that can better cope with
the complexities directly.
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Further Reading

Statistical techniques for spatial data are reviewed by McGarigal (2002) while
for network statistics good starting points are Newman (2003) and Boccaletti et
al. (2006), with more recent work reviewed by Evans (2010). For information on
coping with auto-/cross-correlation in spatial data, see Wagner and Fortin (2005).
Patel and Hudson-Smith (2012) provide an overview of the types of simulation tool
(virtual worlds and virtual reality) available for visualising the outputs of spatially
explicit agent-based models. Evans (2012) provides a review of techniques for
analysing error and uncertainty in models, including both environmental/climate
models and what they can bring to the agent-based field. He also reviews techniques
for identifying the appropriate model form and parameter sets.
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